
Beginning Ruby on Rails
E-Commerce
From Novice to Professional

■ ■ ■

Christian Hellsten and Jarkko Laine

www.allitebooks.com

http://www.allitebooks.org

Beginning Ruby on Rails E-Commerce: From Novice to Professional

Copyright © 2006 by Christian Hellsten and Jarkko Laine

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-736-1

ISBN-10 (pbk): 1-59059-736-2

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Keir Thomas
Technical Reviewer: Peter Marklund
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Beth Christmas
Copy Edit Manager: Nicole Flores
Copy Editor: Marilyn Smith
Assistant Production Director: Kari Brooks-Copony
Production Editor: Kelly Winquist
Compositor: Pat Christenson
Proofreader: Dan Shaw
Indexer: Broccoli Information Management
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/Down-
load section.

www.allitebooks.com

http://www.allitebooks.org

iii

Contents at a Glance

About the Authors . xiii

About the Technical Reviewer . xv

Acknowledgments .xvii

Introduction . xix

■CHAPTER 1 Project Setup and Proof of Concept . 1

■CHAPTER 2 Author Management . 29

■CHAPTER 3 Book Inventory Management . 59

■CHAPTER 4 Book Catalog Browsing . 113

■CHAPTER 5 Shopping Cart Implementation . 141

■CHAPTER 6 Forum Implementation . 169

■CHAPTER 7 Tagging Support . 197

■CHAPTER 8 Security . 223

■CHAPTER 9 Checkout and Order Processing . 251

■CHAPTER 10 Multiple Language Support . 297

■CHAPTER 11 Acceptance Testing . 327

■CHAPTER 12 Application Deployment . 351

■CHAPTER 13 Performance Optimization . 381

■INDEX . 403

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Authors . xiii

About the Technical Reviewer. xv

Acknowledgments. xvii

Introduction . xix

■CHAPTER 1 Project Setup and Proof of Concept . 1

Introducing the Emporium Project . 1

Installing the Software . 2

Installing Ruby . 4

Installing RubyGems . 5

Installing Ruby on Rails . 6

Installing MySQL . 8

Installing the MySQL Driver . 9

Introducing Scrum . 10

Creating the Emporium Application . 12

Creating the Skeleton Application . 12

Creating the Emporium Database . 14

Starting Emporium for the First Time . 18

How Does Ruby on Rails Work? . 20

Implementing the About Emporium User Story . 20

Running the Generate Script . 21

Modifying the Generated View . 22

Creating the Layout. 23

Modifying the Generated Controller . 27

Summary . 28

www.allitebooks.com

http://www.allitebooks.org

vi ■C O N T E N T S

■CHAPTER 2 Author Management . 29

Using Test-Driven Development. 29

Testing in Rails . 30

Unit Testing . 30

Functional Testing. 31

Integration Testing . 31

Creating the ActiveRecord Model. 31

Using ActiveRecord Migrations . 32

Running Unit Tests . 36

Creating the Controller. 37

Implementing the User Stories . 39

Adding an Author. 39

Listing Authors. 48

Viewing an Author . 50

Editing an Author. 52

Deleting an Author . 54

Adjusting the Flash Notifications . 55

Summary . 57

■CHAPTER 3 Book Inventory Management . 59

Getting the Requirements . 59

Using Scaffolding . 60

Implementing the Publisher Administration Interface 61

Updating the Schema with the Publishers Table 61

Generating Publisher Code with the Scaffolding Script 62

Completing the Add Publisher User Story . 64

Completing the View Publisher User Story . 66

Completing the Edit Publisher User Story . 68

www.allitebooks.com

http://www.allitebooks.org

■C O N T E N T S vii

Implementing the Book Administration Interface . 69

Updating the Schema with the Books Table. 69

Creating the Book Model . 73

ActiveRecord Mapping . 73

Modifying the Generated Models . 77

Cloning the Database . 80

Unit Testing Validations . 81

Unit Testing the ActiveRecord Mappings . 82

Generating Book Administration Code
with the Scaffolding Script . 88

Integration Testing . 90

Completing the Add Book User Story. 91

Completing the Upload Book Cover User Story 102

Completing the List Books User Story . 104

Completing the View Book User Story . 107

Completing the Edit Book User Story. 110

Testing the Delete Book User Story . 112

Summary . 112

■CHAPTER 4 Book Catalog Browsing . 113

Getting the Book Catalog Requirements. 113

Implementing the Book Catalog Interface . 114

Implementing the Browse Books User Story 116

Implementing the View Book Details User Story 120

Implementing the Search Books User Story 125

Implementing the Get Latest Books User Story 133

Creating an RSS Feed. 136

Summary . 139

viii ■C O N T E N T S

■CHAPTER 5 Shopping Cart Implementation . 141

Getting the Shopping Cart Requirements . 141

Setting Up the Shopping Cart . 142

Creating the Controller . 142

Adding a Functional Test . 142

Creating the Models . 143

Modifying the Controller. 145

Creating the Views . 147

Implementing the User Stories . 152

Implementing the Add Items to the Cart User Story 152

Implementing the Remove Items from the Cart User Story 161

Implementing the Clear the Cart User Story 166

Summary . 168

■CHAPTER 6 Forum Implementation . 169

Getting the Forum Requirements. 169

Using the Threaded Forum Plugin . 170

Setting Up the Forum . 171

Updating the Database Schema . 171

Modifying the Model . 175

Unit Testing the Model . 176

Generating the Controller and View . 177

Implementing the User Stories . 179

Implementing the Post to Forum User Story. 179

Implementing the View Forum User Story . 185

Implementing the View Post User Story . 190

Implementing the Reply to Post User Story 192

Summary . 195

■CHAPTER 7 Tagging Support . 197

Getting the Tagging Requirements . 197

Using the Tagging RubyGem . 198

Setting Up for Tagging . 201

Updating the Database Schema . 201

Preparing the Models . 203

Unit Testing the Model . 204

Using the Console to Test the Model . 205

■C O N T E N T S ix

Implementing the User Stories . 207

Implementing the Assign Tags User Story . 207

Implementing the Edit Tags User Story . 211

Implementing the List Tags and Show Tag User Stories 215

Implementing the Recommend Books User Story 218

Summary . 221

■CHAPTER 8 Security . 223

Getting the Authentication Requirements. 223

Using the Authentication Plugin . 224

Implementing the User Stories . 227

Implementing the Log In User Story. 227

Implementing the Fail Log In User Story . 233

Implementing the Reset Password User Story 238

Protecting Your Application. 248

Cross-Site Scripting . 248

URL and Form Manipulation . 248

SQL Injection . 249

Cross-Site Request Forgery. 250

Summary . 250

■CHAPTER 9 Checkout and Order Processing . 251

Getting the Checkout and Order-Processing Requirements 252

Implementing the Check Out User Story. 252

Creating the Models . 252

Adding Validations to the Model . 257

Creating the Controller and Integration Test. 259

Creating the View . 262

Saving the Order Information . 268

Integrating with Payment Gateways . 271

Installing the Active Merchant Plugin . 271

Integrating with PayPal . 272

Integrating with Authorize.Net . 280

Using the Payment Gem. 284

Implementing the Administrator User Stories . 286

Implementing the View Orders User Story . 286

Implementing the View Order User Story . 290

Implementing the Close Order User Story. 292

x ■C O N T E N T S

Calculating Shipping Costs and Taxes . 294

Using the Shipping Gem. 294

Calculating Taxes . 296

Summary . 296

■CHAPTER 10 Multiple Language Support . 297

Getting the Localization Requirements . 297

Using the Globalize Plugin. 298

Localizing with Globalize . 300

Setting Up Globalize . 303

Implementing the User Stories . 304

Implementing the Change Locale User Story 304

Implementing the Translation User Stories. 306

Translating the View and the Book Model . 313

Translating the View . 313

Translating the Model. 317

Localizing Dates, Numbers, and Currency . 319

Localizing Dates . 319

Localizing Numbers and Currencies . 320

Adding Unicode (UTF-8) Support . 322

Setting Character Encoding in HTML. 323

Setting Character Encoding for the HTTP Response 324

Changing the Database to Use UTF-8 . 324

Summary . 326

■CHAPTER 11 Acceptance Testing . 327

Using Selenium . 327

Writing Selenium Tests . 330

Selenium Commands . 330

Selenium Test Formats . 334

The First Acceptance Test . 335

Recording Selenium Tests . 337

Using the Selenium IDE . 337

Recording the View Forum Acceptance Test 340

Recording the Post to Forum Acceptance Test 345

Recording the Show Post Acceptance Test 347

Recording the Reply to Post Acceptance Test 348

Summary . 350

■C O N T E N T S xi

■CHAPTER 12 Application Deployment . 351

Setting Up the Production Environment . 351

Connecting to the Production Server: SSH . 352

Installing the Web Server: LightTPD. 353

Installing the Application Server: Ruby on Rails and FastCGI 356

Installing the Database Server (MySQL) . 358

Configuring LightTPD . 358

Creating the Production Database . 365

Deploying the Application Manually . 366

Copying the Application . 367

Creating Users and Groups . 367

Starting LightTPD . 368

Starting FastCGI Processes . 369

Automating Deployment . 371

Installing Capistrano . 371

Creating the Capistrano Deployment Recipe 371

Running the Setup Task. 375

Deploying to Production . 376

Starting LightTPD . 379

Summary . 380

■CHAPTER 13 Performance Optimization . 381

Performance and Scaling . 381

Measuring Performance . 382

Checking the Log File . 382

Using Rails Analyzer . 383

Caching . 388

Page Caching . 388

Action Caching. 390

Fragment Caching. 390

Fragment Stores . 392

Caching ActiveRecord Objects . 395

Common Performance Problems in Rails . 397

Rendering Speed. 397

Database Access. 399

Summary . 401

■INDEX . 403

xiii

About the Authors

■CHRISTIAN HELLSTEN is the founder of Aktagon Ltd., a provider of
consulting services and custom Internet software development,
and CTO of Sanda Interactive Ltd. He has worked on large-scale
e-business projects as a consultant for PricewaterhouseCoopers
Consulting and IBM Business Consulting Services. Christian’s
background is in J2EE, but he fell in love with Ruby on Rails at first
sight, and has been using it professionally ever since to build web

applications. When he is not changing the diapers of his two young daughters at his home
in Finland, Christian enjoys researching new and better ways of building software.

■JARKKO LAINE is the owner and CEO of O’Design, a Rails-based web
design shop. He has been using Ruby on Rails since its public
launch in 2004. He has contributed patches to the core developer
team, and has also contributed to several Rails plugins. Jarkko has
provided Rails consultancy for a number of organizations, from
nonprofits to Fortune 500 companies. He has also taught Rails at
the university level and delivers lectures about Rails around the

world. Currently, he works on dotherightthing.com, a project that will bring people a
whole new way to rate, follow, and discuss the social responsibility of companies. Jarkko is
a sports junkie, so if he isn’t sitting in front of his computer, he is probably running around
forests or kicking a ball on the nearest field. He lives in Tampere, Finland, with his fiancée
Maria and a growing list of pending household chores.

xv

About the Technical Reviewer

■PETER MARKLUND has extensive experience with and expertise in
object orientation, web development, relational databases, and
testing, and has been doing web development with Java and Tcl
since 2000. He was one of the core developers of the OpenACS
open source web framework. In late 2004, he was introduced to
Ruby on Rails and has since helped develop an online community
and a CRM system with Rails. Peter is currently working as a Ruby

on Rails freelancer and is also helping organize events for the Ruby on Rails developer
community in Stockholm. Peter has a personal blog at http://marklunds.com, where he
shares Rails tips with other developers.

xvii

Acknowledgments

First of all, I would like to thank my family for allowing me to take on such a time-
consuming project as this in my spare time. Secondly, I would like to thank everyone
involved in this project, including Keir Thomas, Jarkko Laine, Peter Marklund, Beth
Christmas, Marilyn Smith, and Kelly Winquist. Last, but not least, I would like to thank my
parents, for buying me a Commodore VIC-20, back in the early 1980s.

Christian Hellsten

I am eternally grateful to the following people: Yukihiro “Matz” Matsumoto and David
Heinemeier Hansson for bringing passion and joy back to programming; my ex-girlfriend—
now fiancée—Maria, for putting up with the innumerable nights spent married to the com-
puter; my parents, for telling me to believe in and pursue my dreams, even if it was just
“fooling around with computers”; the whole team at Apress, for towing me back on track in
the moments of despair; and finally, Philip and Alex, for igniting the spark.

Jarkko Laine

xix

Introduction

Beginning Ruby on Rails E-Commerce is for people who want to learn how to build real-
world professional web applications using Rails best practices. We put a specific emphasis
on e-commerce by showing you how to build an online bookstore, including a shopping
cart, catalog, forum, and other functionality. On the front-end, we guide you through
important technologies like Ajax, syndication, tagging, and internationalization. On the
back-end, we show you how to integrate with payment gateways, use ActiveRecord and
the Ferret search engine, and many other techniques.

This book is also targeted at people who already have written an application or two
using Rails, but who want to learn more about how test-driven development (TDD) can
improve the quality of their code, and how to go beyond the standard test features built
inside Rails.

We will guide you through all the phases of a professional e-commerce project, from
concept to production deployment and maintenance. In the first chapters, we show you
how to jump-start your project and build a good, solid foundation for it, using agile prac-
tices like TDD. In later chapters, we dig deeper into Ruby on Rails, covering common
requirements, such as translating your application into multiple languages and debugging
production problems.

Beginning Ruby on Rails E-Commerce is not intended to be a reference manual for Ruby
on Rails. You can find many online resources and other books that provide a complete refer-
ence to the Ruby on Rails API and features, and these are mentioned throughout this book.

What Is Ruby on Rails?
Ruby on Rails (http://rubyonrails.org) is a web application framework written using the
Ruby programming language. It was originally created by David Heinemeier Hansson, a

Danish hacker, during the development of an online project collaboration tool called
Basecamp.

As with most great things, Ruby on Rails started as an itch. Hansson was not happy
with the available web application frameworks at the time, so he decided to write his own.
In the design of Ruby on Rails, David emphasized a couple of things like convention over
configuration, less software, and that programmer happiness ultimately leads to better
productivity.

Ruby on Rails was first released to the public in July 2004. Since then, it has seen an
explosive growth in popularity. It is loved because of its simplicity and power, which allow

xx ■I N T R O D U C T I O N

you to solve problems faster and with less code than, as David said, “most frameworks
spend doing XML sit-ups.”

What Is Ruby?
Ruby (http://ruby-lang.org) is a dynamically typed programming language created by a
Japanese Software Engineer called Yukihiro “Matz” Matsumoto in February 1993. Ruby is
licensed under the GPL-like Ruby license and was released to the public in 1995, which is
about one year later than Java. It is actively maintained by Matz and contributors from all
over the world.

Unlike most other programming languages, Matz designed Ruby to increase program-
mer happiness, and to let programmers concentrate more on solving the task at hand than
on language syntax. This is arguably the greatest strength of the Ruby programming lan-
guage, when compared to other programming languages.

Ruby is a completely object-oriented language, unlike for instance Java, which has

primitives. Everything in Ruby is an object, even nil. Ruby is also highly dynamic, allow-
ing you to change classes and to introduce new methods at runtime. This allows the
programmer to do things that aren’t possible in languages like Java and C++.

1

■ ■ ■

C H A P T E R 1

Project Setup and Proof of
Concept

Ruby on Rails is highly suited for rapid prototyping; complex functionality can be imple-
mented in hours or even minutes. This will come in handy, because the first thing George, our
customer and the owner of Emporium, wants us to do is to implement a proof of concept. He
needs to see with his own eyes that Ruby on Rails is not vaporware before he hands us the con-
tract. We are happy to oblige.

In this book, we’ll use a fictional bookstore project to make it easier for you to follow the
process of implementing a web application from start to finish. In this chapter, we’ll begin by
introducing the Emporium project we will develop in this book. Then we will show you how to
install Ruby on Rails and the software needed for implementing the first version of the Empo-
rium application. Next, we’ll provide a brief introduction to the Scrum lightweight project
management process, which we use to manage the project team and requirements. Then we’ll
show you how to get started with Ruby on Rails by creating the Emporium application. Finally,
we’ll implement Emporium’s About page as part of the proof of concept. This is a simple page
that shows Emporium’s contact details and will be implemented using code generation, a
powerful built-in feature of Ruby on Rails.

Introducing the Emporium Project
We’ll show you how to implement the project exactly as we would do in a real-world project.

One morning our coffee break is interrupted by a furious phone call. On the other end is
George, the owner of Emporium, a hip bookstore in downtown Manhattan. George has just
received the financial figures for the online sales of his shop, and he is not happy. “We’re losing
all our customers to Amazon.” Something must be done.

Emporium’s current online store is functional but rigid and slow, and the customers don’t
really like it. Sure, it was fine eight years ago, but now it’s really starting to show its age. “Look
at the shop at panic.com,” says George, “you can drag things into the cart there. Why doesn’t
that work in my shop?” Sure, George, we got it. George also wants to empower the users more,
with syndication of new content (you know, that RSS thingamagick) and forums. He has also
heard that tagging is the concept du jour, something a self-respecting online store just can’t
live without.

2 C H A P T E R 1 ■ P R O JE C T S E T U P A N D P R O O F O F C O N C E P T

While sitting at the back of his bookstore and spying customers, George has spotted a book
called Agile Web Development with Rails being of interest to web hackers. While flipping
through the book, he has discovered that Rails is like a breath of fresh air in the world of web
applications. Now George wants to know if Rails would be a good fit for his website. “But it
must do tagging,” he reminds us, “and don’t forget the drag thing!”

Since George is about the computer-savviest person in the whole store, the system must
also be very easy to use even on the administration side. Turns out it also has to integrate with
payment gateways, so George is able to bill his customers. And since George is worried about
expenses, the system must not cost an arm and a leg (at maximum a leg). “Can you do it? Can
Rails do it?” insists George. “Sure,” I reply, just to get back to my coffee mug. But what’s prom-
ised is promised, so it’s time to get our hands dirty.

George is not the most organized person in the world, and like most of our customers he
has no experience of IT projects. This would normally be a disaster for an IT project, but we
have dealt with difficult customers and projects without clear requirements before.

In this book, you will not only learn how to build a working e-commerce site with Ruby on
Rails, but we will also teach you techniques and best practices like test-driven development
(TDD) that will improve the quality of your application.

Installing the Software
In this section, you will learn how to install the following software:

• Ruby, the interpreter for the Ruby programming language

• RubyGems, Ruby’s standard package manager

• Ruby on Rails

• MySQL, an open source database

• Ruby MySQL driver

For our project, we will use Linux as our software development platform. Linux is highly
suited as a software development platform, as there are many tools available that increase
developer productivity. This section explains how to install all the required software on
Ubuntu Linux. The instructions should also be valid, with minor exceptions, for other Linux
distributions, since you will compile some of the software from source.

■Note While we have tried to ensure that these instructions are valid, there’s no guarantee that they will
work without problems on your setup. If you encounter problems while following these instructions, use
Google or another search engine to find a solution. You can also ask questions on the Rails IRC channel at
http://wiki.rubyonrails.com/rails/pages/IRC.

C H A P T E R 1 ■ P R O J E C T S E T U P A N D P R O O F O F C O N C E P T 3

Ubuntu is a Debian-based and award-winning Linux distribution, which is suitable for both
desktop and server use. Ubuntu comes with professional and community support and lives up to
its promise, “Linux for human beings” by being easy to install and use. Ubuntu promises regular
releases every six months and can be downloaded for free from www.ubuntu.com. For the instruc-
tions here, we assume that you have a fresh installation of Ubuntu.

■Tip The latest installation instructions for most platforms can be found at http://wiki.rubyonrails.com,
the Ruby on Rails wiki.

INSTALLING RAILS ON WINDOWS OR MAC OS X

Throughout this book, we assume that Ubuntu is used as a development platform. However, you can also
install and run Rails under Windows or Mac OS X.

Under Windows, you can either download and install everything separately or use Instant Rails, which is
available for download at http://instantrails.rubyforge.org. Instant Rails is a preconfigured pack-
age containing everything you need for developing an application: Ruby, Ruby on Rails, Apache, and MySQL.
It is perhaps the easiest way to get started with Ruby on Rails on Windows. However, we recommend that you
install everything separately, since this allows you to learn more about the software that Ruby on Rails is built
on and uses. Follow these simple instructions to manually install Ruby on Rails on Windows:

• Download and install the latest stable release of the One-Click Ruby Installer for Windows from
http://rubyinstaller.rubyforge.org. This installer comes with RubyGems installed, so
there’s no need to install it separately.

• Install Ruby on Rails by executing gem install rails --include-dependencies in a command
window.

Note that the installation of the native MySQL driver written in C is not covered by these instructions.
Installing Ruby on Rails on Mac OS X can also be done in two ways: by downloading everything

separately or by using an all-in-one installer called Locomotive, which is available for download from
locomotive.sourceforge.net. If you opt for installing everything separately, you can follow the
installation instructions available at http://hivelogic.com/articles/2005/12/01/
ruby_rails_lighttpd_mysql_tiger.

4 C H A P T E R 1 ■ P R O JE C T S E T U P A N D P R O O F O F C O N C E P T

Installing Ruby
Your first step is to install the official Ruby interpreter, since Ruby on Rails is written in the
Ruby programming language.

Log in to Ubuntu and open a console window. Check that Ruby is installed by typing
ruby --v at the command prompt and then pressing Enter. To our disappointment, Ruby is
not preinstalled on Ubuntu. You have at least two options for installing Ruby on Ubuntu:

• Use the apt-get command. This option is for Debian-based systems and requires only
that you execute apt-get install ruby. You can also use the Synaptic Package Man-
ager, a graphical front-end for apt-get, to install Ruby.

• Compile Ruby from source. This works on all Linux distributions and platforms, but
requires a bit more knowledge.

Here, we will show you how to compile Ruby from source on Ubuntu, as this allows us to
install the exact version we need, not the one provided by default by Ubuntu. Before continu-
ing, you need to install some additional tools. Issue the following command:

$ sudo apt-get install build-essential zlib1g-dev

The build-essential package contains make and the Gnu Compiler Collection (GCC) pack-
age, which includes a C/C++ compiler that we will use to compile the source. The zlib package,
also referred to as “A Massively Spiffy Yet Delicately Unobtrusive Compression Library,” is
needed by RubyGems, the standard package manager for Ruby.

Next, fire up your browser, go to www.ruby-lang.org, and click the Ruby link under
Download. Choose to download the latest stable release that is compatible with Rails.

■Note Before downloading Ruby, check which version is required by the Ruby on Rails version that you
want to use by reading the online documentation found at www.rubyonrails.org. The documentation for
version 1.1 of Ruby on Rails recommends version 1.8.4 of Ruby. Normally, you should install the latest stable
release.

After you download Ruby, enter the following command to decompress it to a temporary
directory (replacing the filename with the correct version):

$ tar zxvf ruby-version.tar.gz

Change to the directory where you extracted the source and execute the following com-
mands to compile and install Ruby:

$./configure
$ make
$ sudo make install

C H A P T E R 1 ■ P R O J E C T S E T U P A N D P R O O F O F C O N C E P T 5

■Note You need to belong to the sudoers list to execute the sudo command. The list of sudoers is
defined in /etc/sudoers. Use the visudo command to add yourself to the list.

The configure script customizes the build for your system and allows you to specify
parameters, which can be used to further customize the build.

The compilation is done by the make command according to the makefile generated by
configure.

The last line, make install, requires superuser privileges, as it will install the compiled
binaries to a shared directory.

If you have problems with the previous steps, check the README file for more detailed
installation instructions and verify that all dependencies are installed. If you received an error
message, try using a search engine to look for information about the error with a search query
such as “install ruby” Ubuntu “error message” (replace error message with the error message
you are getting).

If everything went well, Ruby is installed, and you can verify that Ruby works and has the
correct version number:

$ ruby -v

ruby 1.8.4 (2005-12-24) [i686-linux]

Installing RubyGems
RubyGems, Ruby’s standard package manager, provides a standard format for distributing
Ruby applications and libraries, including Ruby on Rails itself. For example, later in the book,
we will install the Ferret search engine and Globalize plugin with the help of RubyGems.

The software packages managed by RubyGems are referred to as gems, and can be down-
loaded either manually or by RubyGems itself from a central repository. The RubyGems
installation files and the gems are hosted by RubyForge, the home of many open source Ruby
projects.

Next, open http://rubyforge.org in your browser and search for the RubyGems project.
Click the link to the RubyGems project’s homepage, and then download the latest version.

After the download has completed, extract the contents of the package to a temporary
directory. Remember to substitute the filename with the version you downloaded:

$ tar xzvf rubygems-version.tgz

Change the current directory to where the source was extracted, and execute the following
command:

$ sudo ruby setup.rb

6 C H A P T E R 1 ■ P R O JE C T S E T U P A N D P R O O F O F C O N C E P T

You should see the following result:

 Successfully built RubyGem
 Name: sources
 Version: 0.0.1
 File: sources-0.0.1.gem

Verify that the installation was successful by running the following command:

$ gem -v

You should see the version number printed out.

■Tip Use the following command to upgrade the RubyGems installation itself later on: gem update --
system. Use gem update to update all installed gems, such as Ruby on Rails and plugins. Note that you
need to be careful and check that Ruby on Rails is compatible with all gems that get updated. For example,
plugins and libraries might break your application if they are not compatible. Don’t do this in a production
environment without testing thoroughly to make sure that it works.

Installing Ruby on Rails
Now that RubyGems is installed, you can continue and install Ruby on Rails with the following
command:

$ sudo gem install rails --include-dependencies

This tells RubyGems to install the latest version of Ruby on Rails and all its dependencies.
It does this by downloading the packages, so you need to be connected to the Internet.

■Tip You can install Ruby on Rails without access to the Internet by first downloading the Ruby on Rails
gems and all the dependencies, and then executing gem install path_to_gem, replacing path_to_gem
with the path and filename of the downloaded file.

Verify the installation by executing the following command:

$ rails -v

C H A P T E R 1 ■ P R O J E C T S E T U P A N D P R O O F O F C O N C E P T 7

You should see the version number.
You can also run gem list to see a list of all gems that have been installed on your system,

along with a brief description. Here is an example, with an abbreviated list of gems:

$ gem list

*** LOCAL GEMS ***

actionmailer (1.2.1)
 Service layer for easy email delivery and testing.

actionpack (1.12.1)
 Web-flow and rendering framework putting the VC in MVC.

Use the about command to get a more detailed view of your application’s environment.
The about script is located in the scripts directory of your Ruby on Rails application directory,
which we will explain how to create in the “Creating the Emporium Application” section later
in this chapter. Note that the version numbers shown in the following example will most likely
be different on your system.

$ cd /home/george/projects/emporium
$ script/about

About your application's environment
Ruby version 1.8.4 (i686-linux)
RubyGems version 0.8.11
Rails version 1.1.2
Active Record version 1.14.2
Action Pack version 1.12.2
Action Web Service version 1.1.2
Action Mailer version 1.2.1
Active Support version 1.3.1
Application root /home/george/projects/emporium
Environment development
Database adapter mysql

George has been monitoring our progress behind our backs. He is impressed by how sim-
ple it is to install Ruby on Rails, so he asks us if he can try it out at home on his Windows XP
machine. We advise him to install Instant Rails and suggest that he read the Ruby on Rails doc-
umentation for more details, as each platform is a bit different.

8 C H A P T E R 1 ■ P R O JE C T S E T U P A N D P R O O F O F C O N C E P T

Installing MySQL
Next, we ask George if he has a database we can use for storing the authors, books, and orders.
He replies, “Sure, I have a database. Follow me to the office and I’ll show you.” To our horror,
he fires up Microsoft Excel and proceeds to show us the orders from the previous eight years,
all stored in a single spreadsheet. We try to keep a straight face and tell him that Ruby on Rails
doesn’t support spreadsheets, but it currently supports the following databases:

• Oracle

• IBM DB2

• MySQL

• PostgreSQL

• SQLite

• Microsoft SQL Server

• Firebird

Each of these databases has its own strengths and weaknesses. MySQL, which is what we
will use in this book, is a good choice if you are looking for a fast and easy-to-use database.

MySQL is an open source database server that is developed and owned by MySQL AB, a
Swedish company founded by David Axmark and Michael “Monty” Widenius. MySQL is used
by many high-traffic websites, including craigslist.com and digg.com.

In this book, we use MySQL version 5, which supports advanced features like clustering,
stored procedures, and triggers. This means that all of the examples and code have been tested
with this version, and they might not work with earlier versions. You can either use a precom-
piled package or compile from source.

Go to the MySQL homepage at www.mysql.com and click the Developer Zone tab. Click
Downloads and find and download the latest stable binary release of MySQL.

■Tip You can also use apt-get on Ubuntu (sudo apt-get install mysql-server) to download
MySQL, but you are not guaranteed to get the latest version.

We downloaded and installed the Linux binary package (not the RPM file that’s offered
for download), and then extracted the contents of the package (replace the filename with the
name of the file you downloaded):

$ tar zxvf mysql-standard-version.tar.gz

C H A P T E R 1 ■ P R O J E C T S E T U P A N D P R O O F O F C O N C E P T 9

To complete the installation, follow the instructions in the INSTALL-BINARY file, located in
the root of the source directory.

■Tip If you are new to MySQL, we highly recommend that you also install MySQL Query Browser and
MySQL Administrator, which both can be downloaded from the MySQL Developer Zone page. MySQL Admin-
istrator, as its name implies, can be used for managing your MySQL sever. MySQL Query Browser allows you
to run SQL queries and scripts from a graphical user interface. Both applications are available for Linux,
Windows, and Mac OS X. If you’re using OS X, a good application for both managing your databases and exe-
cuting queries is CocoaMySQL (www.theonline.org/cocoamysql/).

Open a console window and execute the following command to start MySQL:

$ mysqld_safe --user=mysql &

The command starts the MySQL server in the background using the mysql user. Verify that
you can connect to the database with the following command:

$ mysql -u root

You should see the following:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 2 to server version: 5.0.19-standard

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

Installing the MySQL Driver
Ruby on Rails needs a database driver to communicate with the MySQL server. Ruby on Rails
comes with a pure Ruby MySQL driver, but we want to use the native C driver written by
Tomita Masahiro, as it is considerably faster.

■Note Each database requires a different driver, since there is no standard protocol. For more information
about which databases are supported and how to get more information, refer to the Ruby on Rails wiki page
on database drivers: http://wiki.rubyonrails.com/rails/pages/DatabaseDrivers.

10 C H A P T E R 1 ■ P R O JE C T S E T U P A N D P R O O F O F C O N C E P T

First, you must install the MySQL development library before installing the native MySQL
driver. On Ubuntu, you can find out which versions of the library are available by executing
apt-cache search libmysqlclient (note that your system might have different versions of
the library):

$ apt-cache search libmysqlclient

libmysqlclient10 - LGPL-licensed client library for MySQL databases
libmysqlclient10-dev - LGPL-licensed client development files for MySQL databases
libmysqlclient12 - mysql database client library
libmysqlclient12-dev - mysql database development files
libqt4-sql - Qt 4 SQL database module
libmysqlclient14 - mysql database client library
libmysqlclient14-dev - mysql database development files

Next, install the correct version with apt-get. Recall that we are using MySQL 5:

$ sudo apt-get install libmysqlclient14-dev

■Note On Ubuntu, you should install libmysqlclient14-dev for MySQL 5, and libmysqlclient12-
dev for MySQL 4.

Next, install the MySQL driver with the RubyGems install command:

$ sudo gem install mysql

Once again, RubyGems goes out on the Internet and downloads and installs the latest ver-
sion of the MySQL driver. If everything goes well, you should see the following success message
in the console:

Successfully installed mysql-2.7

If you get an error message, you probably forgot to install the MySQL development librar-
ies or some other dependency.

Introducing Scrum
Scrum is an empirical and lightweight agile process, which we use to manage the project team
and requirements. Scrum is mostly about common sense. Scrum embraces changes to require-
ments by keeping the time between software releases short. The biggest benefit of Scrum is
perhaps the increase in productivity.

C H A P T E R 1 ■ P R O J E C T S E T U P A N D P R O O F O F C O N C E P T 11

Scrum work is done in sprints. A sprint is the time period during which the next release of
a system is being developed. It should be short—around two to four weeks, or even shorter. At
the end of a sprint, you should normally have a working product, which can be shown to the
customer or deployed into production. In this book, each chapter will describe the implemen-
tation of one sprint.

Most, if not all, software projects have a set of functional and nonfunctional requirements.
In Scrum, these are analyzed and broken down into tasks that are documented with, for exam-
ple, user stories or use cases.

■Note A user story is a way of capturing the requirements for a project. User stories have a name and a
description. The description is short—only a few sentences—and describes the requirement using the end
user’s language. User stories contribute to an active discussion between the customer and developers,
because they are short and need clarification before implementation can start.

Scrum uses the product backlog and sprint backlog for keeping track of progress.
All tasks are written down and prioritized in the product backlog, which captures all the work

left to be done in the project. For the Emporium project, we have identified a set of user stories
and related tasks, which we have written down in the product backlog shown in Table 1-1. Note
that the product backlog will evolve during the implementation of the Emporium application.
New features will be added and old ones removed. We have also prioritized the items in the prod-
uct backlog with the help of our customer and the product owner, George.

Table 1-1. Initial Product Backlog Items for the Emporium Project

Item Description Priority

1 Add author Very high

2 Edit author Very high

3 Delete author Very high

4 List authors Very high

5 View author Very high

6 Add book Very high

7 Edit book Very high

8 Delete book Very high

9 List books Very high

10 View book Very high

11 Upload book cover Very high

12 About Emporium Medium

12 C H A P T E R 1 ■ P R O JE C T S E T U P A N D P R O O F O F C O N C E P T

Before starting work on the first real iteration, we need to identify the tasks that we are
confident can be completed inside the sprint’s time frame. In Scrum, sprint tasks are moved
from the product backlog into the sprint backlog. The sprint backlog should contain only tasks
that the team members are confident they can complete inside the selected time frame for the
sprint. Table 1-2 shows the sprint backlog for the first sprint (sprint 0), which we’ll implement
in the next chapter.

Table 1-2. Sprint Backlog for Sprint 0

Scrum is an agile and iterative process that we think most projects would benefit from using.
Although Scrum is not suited for all projects and teams, we believe it is better than having no pro-
cess at all. See www.controlchaos.com and www.mountaingoatsoftware.com/scrum/ for more
information about Scrum.

Creating the Emporium Application
We are now ready to start implementing the Emporium e-commerce site. We’ll show George
how fast we can create a Ruby on Rails application and implement one user story (About
Emporium), which is enough for our proof of concept.

Creating the Skeleton Application
To create the Emporium application, run the rails command:

$ cd /home/george/projects
$ rails emporium

The rails command creates the directory structure and configuration for an empty Rails
application in the current directory.

You can use the tree command to display the structure of the skeleton project the rails
command created for you:

$ tree -L 1 emporium/

Item Description Priority

1 Add author Very high

2 Edit author Very high

3 Delete author Very high

4 List authors Very high

5 View author Very high

C H A P T E R 1 ■ P R O J E C T S E T U P A N D P R O O F O F C O N C E P T 13

emporium/
|-- README
|-- Rakefile
|-- app
|-- components
|-- config
|-- db
|-- doc
|-- lib
|-- log
|-- public
|-- script
|-- test
`-- vendor

A brief description of the directory structure and files is provided in Table 1-3.

Table 1-3. Directories and Files Located in the Root Directory

Name Description

README Gives a brief introduction to Rails and how to get started

Rakefile The application’s build script, which is written in Ruby

app Contains your application’s code, including models, controllers, views and
helpers

components Empty by default; reusable code in the form of components should be placed
here. Note that using components is generally considered a bad practice.

config Holds your application’s configuration files, including database configuration

db Holds your ActiveRecord migrations and database schema files

doc Empty by default; put the documentation for your application in this directory
(use rake appdoc to generate the documentation for your controllers and
models)

lib Holds application-specific code that is reusable

log Log files are written to this directory

public Contains static files like HTML, CSS, and JavaScript files

script Contains various scripts for starting and maintaining your Rails application

test Holds your unit, integration, and functional tests and their fixtures

vendor Where plugins are installed

14 C H A P T E R 1 ■ P R O JE C T S E T U P A N D P R O O F O F C O N C E P T

Later, we will modify the skeleton application that Ruby on Rails created for us to fit our
requirements. But first, we will show you how to create the Emporium database and how to
configure Rails to use it.

Creating the Emporium Database
The database is where Emporium stores all its data. This includes authors, books, and order
information. In a true agile fashion, we won’t define the whole database schema immediately
before starting the implementation. Instead, we will let the database schema evolve and
update it in each chapter with the help of a powerful Ruby on Rails feature called migrations.
Migrations will be introduced in Chapter 2, but in brief, migrations allow you to change your
database schema incrementally. Each modification is implemented as a migration, which can
then be applied to the database schema and even rolled back later.

■Note We assume that you are familiar with MySQL. Sadly there isn’t the space here to provide an intro-
duction to SQL syntax. However, Apress publishes a number of excellent books that cover all aspects of
MySQL use, including Beginning MySQL Database Design and Optimization (ISBN 1-59059-332-4) and The
Definitive Guide to MySQL, Third Edition (ISBN 1-59059-535-1).

In fact, we will show you how to create three separate databases, one for each of the Ruby
on Rails environments. Ruby on Rails builds on development best practices, which recom-
mend that you use separate environments for development, testing, and production. Three
databases for one application might seem like overkill at first, but the benefits are many. One is
that each environment is dedicated to, and configured for, a specific task, as follows:

• The development environment is optimized for developer productivity. Ruby on Rails
caches very little when in development mode. You can make a change to your applica-
tion’s code and see the change immediately, without redeployment or any compilation
steps—just reload the page in your browser. This is perhaps the primary reason why
Ruby on Rails is better suited for rapid application development than, for example,
Java 2 Platform, Enterprise Edition (J2EE), which requires compilation and redeploy-
ment, slowing your development to a crawl.

• The test environment is optimized for running unit, integration, and functional tests.
Each time you run a test, the test database is cleared of all data. Ruby on Rails can also be
told to populate the database with test data before each test. This is done by using test
fixtures (introduced in Chapter 2).

• The production environment is where every application should be deployed. This
environment is optimized for performance, which means, for example, that classes
are cached.

Environment-specific configuration related to the database is located in the config/
database.yml file. Things related to code go into the config/environment.rb file. The
environment-specific files are located in the config/environments directory.

C H A P T E R 1 ■ P R O J E C T S E T U P A N D P R O O F O F C O N C E P T 15

■Caution Always use a separate database for the test environment. If you, for example, use the same
database for test and production, you will destroy your production data when running unit tests.

Creating the Development and Test Databases

You can use the MySQL command-line client to create the development and test databases.
Connect as root to your MySQL server and execute the following commands:

$ mysql -uroot

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 3 to server version: 5.0.19-standard
Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> create database emporium_development;

Query OK, 1 row affected (0.06 sec)

mysql> create database emporium_test;

Query OK, 1 row affected (0.00 sec)

This creates the two databases we need while developing the Emporium project. You can
use the show databases command to display all databases on your server, including the ones
you just created:

$ mysql -uroot
mysql> show databases;

+----------------------+
| Database |
+----------------------+
| information_schema |
| emporium_development |
| emporium_test |
| mysql |
| test |
+----------------------+
5 rows in set (0.28 sec)

16 C H A P T E R 1 ■ P R O JE C T S E T U P A N D P R O O F O F C O N C E P T

As you might have noticed, we didn’t create the production database. The production
database is normally not used while developing and testing the application. If you want to, you
can create it now, but we won’t use it before we deploy Emporium to production in Chapter 12.

Setting Up the Database User

Next, create the MySQL user that will be used when connecting to the database environments.
This is done by executing the following commands:

$ mysql -u root
mysql> grant all on emporium_development.* to \
 'emporium'@'localhost' identified by 'hacked';

Query OK, 0 rows affected (0.05 sec)

mysql> grant all on emporium_test.* to \
 'emporium'@'localhost' identified by 'hacked';

Query OK, 0 rows affected (0.01 sec)

Note that we created only one user but granted access to both environments, with the
grant all command. The first parameter, emporium_development.*, means we are giving all
available privileges to the user. The second parameter, 'emporium'@'localhost', consists of
two parts: the username and the IP address or address the user is allowed to connect from sep-
arated by @. The third parameter, identified by 'hacked', assigns the password hacked to
the user.

You can get a list of all users by executing the following SQL:

mysql> select host, user from mysql.user;

+-----------+----------+
| host | user |
+-----------+----------+
| localhost | emporium |
| localhost | root |
+-----------+----------+
2 rows in set (0.00 sec)

C H A P T E R 1 ■ P R O J E C T S E T U P A N D P R O O F O F C O N C E P T 17

■Caution Don’t give all available permissions to the MySQL user that will be used to connect to the pro-
duction database. An application normally needs only select, insert, update, and delete privileges. For more
information on the syntax of the grant command see http://dev.mysql.com/doc/refman/5.0/en/
grant.html.

Configuring Ruby on Rails to Use the Database

The information Ruby on Rails needs for connecting to the database is located in a configura-
tion file that is written in a lightweight markup language called YAML, an acronym for “YAML
Ain’t Markup Language.” Ruby on Rails favors YAML over XML because YAML is both easier to
read and write than XML.

The configuration file, database.yml, is located in the db folder and was created for you
when you ran the rails command earlier in this chapter. The generated configuration tem-
plate contains examples for MySQL, PostgreSQL, and SQLite. The MySQL configuration is
enabled by default, and the other two database configurations are commented out.

Open the file and specify the database name and remove all of the text. Next, specify the
database name, username, and password for the development and test environments, as
shown in Listing 1-1.

Listing 1-1. Emporium Database Configuration

development:
 adapter: mysql
 database: emporium_development
 username: emporium
 password: hacked

test:
 adapter: mysql
 database: emporium_test
 username: emporium
 password: hacked

Save the configuration after you are finished editing it.

■Tip The database configuration for each Rails environment is located in one file, database.yml. The
runtime configuration for the development, test, and production environments are defined in separate config-
uration files. You can see the differences between the environments by comparing the development.rb,
test.rb, and production.rb files, which can be found in the config/environments folder under the
Rails application root. This is also where you should put the environment-specific configuration of your
application.

18 C H A P T E R 1 ■ P R O JE C T S E T U P A N D P R O O F O F C O N C E P T

Starting Emporium for the First Time
We are now ready to start up Ruby on Rails and Emporium for the first time, so we tell
George to come over and have a look. We don’t have to install any separate web servers, like
Apache or LightTPD, while developing and testing Emporium. We can use the Ruby on Rails
script/server command, which starts an instance of the WEBrick web server.

■Note WEBrick is a Ruby library that allows you to start up a web server with only a few lines of code.
WEBrick is suited only for development and testing, not production. In Chapter 12, we will show you how to
set up and deploy the Emporium project to the LightTPD web server.

Next, execute script/server in the Emporium application directory to start WEBrick.

$ cd /home/george/projects/emporium
$ script/server

=> Booting WEBrick...
=> Rails application started on http://0.0.0.0:3000
=> Ctrl-C to shutdown server; call with --help for options
[2006-03-19 03:30:50] INFO WEBrick 1.3.1
[2006-03-19 03:30:50] INFO ruby 1.8.4 (2005-12-24) [i686-linux]
[2006-03-19 03:30:50] INFO WEBrick::HTTPServer#start: pid=14732 port=3000

WEBrick is now running and configured to handle incoming requests on port 3000. Static
content—like images, style sheets, and JavaScript files—are served by WEBrick from the
public directory located under the application root directory. Requests for dynamic content
are dispatched to and handled by Ruby on Rails.

Open http://localhost:3000 in your browser to see the Emporium application in all its
glory. You should see the default Welcome page shown in Figure 1-1. The most interesting
thing on the page is the “About your application’s environment” link, which, when clicked,
takes you to a page that shows you some technical information about your application.

■Tip You can start WEBrick and your application in different environments by using the environment
parameter: script/server -e test. For example, the following will start your application’s test environ-
ment and WEBrick in daemon mode, listening on port 80: script/server -d -p 80 -e test

C H A P T E R 1 ■ P R O J E C T S E T U P A N D P R O O F O F C O N C E P T 19

Figure 1-1. The default Ruby on Rails Welcome page

The code you see on the Welcome page is in the index.html file, which is located in the
public directory under the application root. It was created by the rails command and should
be deleted, so that it doesn’t prevent the controller for the root context from being called:

$ rm /home/george/projects/emporium/public/index.html

You will get an error, Recognition failed for "/", if you access http://localhost:3000
again after deleting index.html. The error is thrown because there are no controller and action
set up to handle the request.

We are now ready to start writing some code. But first, we’ll introduce you to how requests
are handled by the Rails framework.

20 C H A P T E R 1 ■ P R O JE C T S E T U P A N D P R O O F O F C O N C E P T

How Does Ruby on Rails Work?
Ruby on Rails is built around the Model-View-Controller (MVC) pattern. MVC is a design pat-
tern used for separating an application’s data model, user interface, and control logic into
three separate layers with minimal dependencies on each other:

• The controller is the component that receives the request from the browser and per-
forms the user-specified action.

• The model is the data layer that is used, usually from a controller, to read, insert, update,
and delete data stored, for example, in a relational database.

• The view is the representation of the page that the users see in their browser; usually, the
model is shown.

■Tip See Wikipedia’s entry on MVC if you want to learn more about this pattern:
http://en.wikipedia.org/wiki/Model-view-controller.

Figure 1-2 illustrates how a request from a browser is routed through the Ruby on Rails
implementation of MVC. Ruby on Rails stores all MVC-related files in the app directory, which
is located in the application root directory.

Figure 1-2. A request routed through the Rails framework

Implementing the About Emporium User Story
George has written the About Emporium user story on a piece of paper for us. He hands it over
to us, and it reads as follows:

Emporium should have an About page where the contact details and a brief description
of Emporium are shown to the user.

C H A P T E R 1 ■ P R O J E C T S E T U P A N D P R O O F O F C O N C E P T 21

We do not yet know exactly what text should be shown on the About page, but we’ll first
implement it, and then ask George again for more information when it is finished.

The requirement for the About Emporium user story is simply to display some description
and the contact details for Emporium to the user. This is easy to implement and involves only
two of the MVC layers: the controller and the view.

Running the Generate Script
First, we will jump-start the implementation of this requirement by using the generate script.
The generate script can be used for quickly creating boilerplate code for controllers, models, and
views or more complex functionality through third-party generators created by the Ruby on Rails
community. The generated code usually requires modification to fit your requirements.

Run the generate script with the following parameters to create the about controller,
index action, and related files.

$ cd /home/george/projects/emporium
$ script/generate controller about index

 exists app/controllers/
 exists app/helpers/
 create app/views/about
 exists test/functional/
 create app/controllers/about_controller.rb
 create test/functional/about_controller_test.rb
 create app/helpers/about_helper.rb
 create app/views/about/index.rhtml

The generate script created a controller, view, helper, and a functional test for us. The
controller has one action, index, which is called by default if no action is specified.

Next, open http://localhost:3000/about in your browser. You should see the About
page we just created, as shown in Figure 1-3.

Figure 1-3. The About page generated by Rails

The “About#index” is computer-generated text, and the layout is ugly, so in the next sec-
tion, we will spend some time modifying the code to fit our requirements.

As we told you earlier, the generate script creates a functional test and a helper class. In
our case, we will not use the functional test or the helper. In later chapters, we will teach you
how to use the test-driven development technique to write not only functional tests, but also
unit and integration tests.

22 C H A P T E R 1 ■ P R O JE C T S E T U P A N D P R O O F O F C O N C E P T

■Tip Helpers are useful for keeping your views clean and readable. Views shouldn’t contain complex logic
and algorithms. Instead, you should refactor your view code and move the complex logic to a helper class.
The methods in this class are automatically made available to the view. Using helpers will make your code
easier to read and more maintainable.

Modifying the Generated View
Next, we tell George to come over and have a look at the About page. He asks us why the hell we
have put the text “Find me in app/views/about/index.rhtml” on the page. We explain to him
that the page, or view as it is also called, was generated by Ruby on Rails, and that we can
change it. He scribbles down something on a paper, which looks like a foreign mailing address,
and gives it to us.

A view is where you put the code for the presentation layer that generates, for example,
HTML or XML. Views are written in a template language called Embedded Ruby (ERB), which
allows you to write Ruby code directly in the view. Here is an example of a view written in ERB
that prints out the text “This is embedded Ruby code” to the browser.

<%# This is a comment and is not shown to the user %>
<% text = "This is embedded Ruby code" %>
<%= text %>

ERB code follows the syntax <% Ruby code %>, and <%= Ruby expression %> is used for
printing out the value of an object to the browser. Comments are formatted as <%# comment %>.

ERB also allows you to prevent HTML injection by escaping the following special characters
in content entered by users: &, <, >, and ". The following line outputs the text &<> to
the browser, instead of &<>, by using the h method, which is short for html_escape.

<%= h('&<>') %>

The view we are going to change is located in the app/views directory. This is the root
directory for all views. Each view is stored in a subdirectory named after the controller. For
example, if the path to your controller is app/controllers/about_controller.rb, the path
to that controller’s views is app/views/about.

Open app/views/about/index.rhtml in an editor and change it as follows:

<p>Online bookstore located in downtown Manhattan, New York</p>
<h2>Mailing Address</h2>
<address>
Emporium

P.O. Box 0000

Grand Cayman, Cayman Islands

</address>

After saving the changes, go back to the browser and click the reload button. You should
see the page shown in Figure 1-4.

C H A P T E R 1 ■ P R O J E C T S E T U P A N D P R O O F O F C O N C E P T 23

Figure 1-4. The modified About page

Creating the Layout
George is a bit happier now, but he says that the page is not as nice looking as the current
Emporium website, which he tells us was designed eight and a half years ago by his then ten-
year-old nephew. He agrees that Emporium needs a new site design, but he tells us that he just
sent some money to his starving sister on the Cayman Islands. So we decide to implement a
design that can be improved later, because it will take a month or two before George can afford
a professional designer.

Layouts are used in Ruby on Rails for surrounding the content of your pages with a header
and footer. Figure 1-5 illustrates the concept of Rails layouts and views. The example shows a
typical page consisting of a header, content, and footer section.

Figure 1-5. Layouts and views

The same result can also be achieved by inserting the same header and footer code in all
views, but this goes against the Don’t Repeat Yourself (DRY) principle, which states that you
should avoid code duplication in all parts of your code.

24 C H A P T E R 1 ■ P R O JE C T S E T U P A N D P R O O F O F C O N C E P T

Consider the following HTML for a page generated by Rails.

<html>
 <head>
 <title>Emporium</title>
 </head>
 <body>
 <!--Content start-->
 Page content
 <!--Content end-->
 </body>
</html>

All content above the text <!--Content start--> and below <!--Content end--> comes
from the following layout file. The view contains the text “Page content.”

<html>
 <head>
 <title>Emporium</title>
 </head>
 <body>
 <!--Content start-->
 <%= yield %>
 <!--Content end-->
 </body>
</html>

Listing 1-2 shows a very minimalist layout, which is enough for the proof of concept. Enter
it in an editor and save the contents in app/views/layouts/application.rhtml.

Listing 1-2. Emporium’s First Layout

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title><%= @page_title || 'Emporium' %></title>
 <%= stylesheet_link_tag "style" %>
 </head>
 <body>
 <%= "<h1>#{@page_title}</h1>" if @page_title %>
 <%= yield %>
 </body>
</html>

C H A P T E R 1 ■ P R O J E C T S E T U P A N D P R O O F O F C O N C E P T 25

The layout contains four Ruby expressions that are all evaluated when the page is ren-
dered. The first expression will allow us to set the page title by defining an instance variable in
our controllers:

<%= @page_title || 'Emporium' %>

The default title, “Emporium,” is used if we don’t specify the @page_title variable in the
controller.

The second expression includes the Emporium style sheet, which we’ll create in the next
section.

■Tip The stylesheet_link_tag automatically appends the last modification date to the URL of the style
sheet file, for example, /stylesheets/style.css?1150321221. Appending the modification date will
make the browser download the style sheet again, when it is updated, instead of taking a stale one from the
browser cache. The same logic is used for the javascript_include_tag.

The third expression allows us to use the title of the page as the page heading:

<%= "<h1>@page_title</h1>" if @page_title %>

If the instance variable @page_title has not been defined in the controller, then nothing
is shown.

The last expression inserts the view part of the page by a call to the yield method.

Creating a Style Sheet

The About page looks a bit plain. It’s using the browser’s default font and font sizes. To make
the page look nicer, we’ll tell Emporium to use a style sheet. Style sheets separate presentation
from content and allow you to define, for example, the font and colors of HTML elements. The
biggest benefit of using style sheets is that it allows us to separate content from presentation.
This allows us to change the whole look and feel of our site by modifying only the style sheet.

■Tip For more information about style sheets, see the World Wide Web Consortium’s page on Cascading
Style Sheets: www.w3.org/Style/CSS/.

The standard way of including style sheets in Rails is through the stylesheet_link_tag, as
shown in Listing 1-3.

26 C H A P T E R 1 ■ P R O JE C T S E T U P A N D P R O O F O F C O N C E P T

Listing 1-3. The Initial Version of Emporium’s Style Sheet

body { background-color: #fff; color: #333; }

body, p, ol, ul, td {
 font-family: verdana, arial, helvetica, sans-serif;
 font-size: 13px;
 line-height: 18px;
}

pre {
 background-color: #eee;
 padding: 10px;
 font-size: 11px;
}

a { color: #000; }
a:visited { color: #666; }
a:hover { color: #fff; background-color:#000; }

Note that we have included only an excerpt from the style sheet; the complete style sheet
can be downloaded from the Source Code section of the Apress website (www.apress.com).
Save the style sheet in public/stylesheets/style.css.

Using Multiple Layouts

An application can have many layouts; for example, it may have one for normal pages and one
for pop-up windows. You can tell Ruby on Rails to use a specific layout in many ways, of which
three are shown here:

class EternalLifeController < ApplicationController
 # Option 1
 layout 'default'
 # Option 2
 layout :determine_layout

 def index
 # Uses app/views/layouts/default.rhtml
 end

 def popup
 # Uses app/views/layouts/popup.rhtml
 # Option 3
 render :layout => 'popup'
 end

C H A P T E R 1 ■ P R O J E C T S E T U P A N D P R O O F O F C O N C E P T 27

 def determine_layout
 if params[:id].nil?
 return "fancy_layout"
 else
 return "default"
 end
 end
end

Options 1 and 2 are self-explanatory. Option 2 uses a method that decides which layout to
use based on some runtime information; in this case, it checks if the id parameter is null and
uses the fancy_layout in that case.

The easiest way of changing the layout is by creating a file named application.rhtml. This
is the default layout file and will be used by Rails without the need for manually specifying the
layout.

Modifying the Generated Controller
The last thing we need to do to complete the proof of concept is to modify the controller and
action. The controller is where the main logic of your application is located. Each controller has
one or more actions that execute the business logic.

The Ruby on Rails generate script already created a controller for us in app/controllers/.
Change it as follows. Note that we set the page title to “About Emporium.”

class AboutController < ApplicationController
 def index
 @page_title = 'About Emporium'
 end
end

George is still standing behind our backs. He yells, “I’ve been standing here for 15 minutes,
guys. I don’t have the whole day! Where’s my proof of concept?” We again reload the page in
the browser, and he can finally see his proof of concept—a working About page showing a brief
description and Emporium’s address, as shown in Figure 1-6.

Figure 1-6. The completed proof of concept

28 C H A P T E R 1 ■ P R O JE C T S E T U P A N D P R O O F O F C O N C E P T

Summary
In this chapter, we showed you how to implement a simple proof of concept for the Emporium
project. We first explained how to install Ruby, Ruby on Rails, MySQL, and the MySQL driver.
Then we showed you how to create a Ruby on Rails project skeleton using the rails command.
Next, we introduced you to controllers, views, and layouts, which we used for implementing
the About Emporium user story.

In the next chapter, we’ll implement the user stories related to author management and
introduce you to concepts like Test Driven Development (TDD) and ActiveRecord.

29

■ ■ ■

C H A P T E R 2

Author Management

In this chapter, we start building the online bookstore for George for real. We first explain test-
driven development (TDD), why we should use it, and how we can use it with Rails. We also
describe the testing schemes that exist in Rails. After the introduction to TDD, we dive into our
first sprint, implementing the author management system for our application. This is the first
part of the administration interface to our bookstore application, to allow handling creating,
reading, updating, and deleting of book authors (often referred to as CRUD capabilities). After
completing this chapter, you should be able to use TDD to make a simple application in Rails.

Using Test-Driven Development
Software testing means using quality-assurance metrics to make sure the software works as it
should. There are basically two ways to test software: manual testing, with dedicated test engi-
neers banging the heck out of the software, and automated testing. While manual testing is
needed in parts of the software that are hard to test programmatically (mainly the user inter-
face), the bulk of testing can be done automatically. Automated testing is much faster and
repeatable, and thus more systematic and less error-prone than testing everything manually.

While Ruby on Rails makes it easy to write automated tests for your application, we’ll take
this one step further and write our application test-driven. TDD starts from so-called user sto-
ries. One user story could be “George logs in to the system and adds a new author.” After we
have a user story, we have enough information to write a test. In our example, we could test
that the login works and a new author is really created when George uses the application.

The real meat of TDD is that the actual code is written only after you have created the test for a
user story, using the following process (from http://wiki.marklunds.com/index.php?title=Test_
Driven_Development_with_Ruby#What_is_Test_Driven_Development_.28TDD.29.3F):

1. Write a test that specifies a bit of functionality.

2. Ensure the test fails. (You haven’t built the functionality yet!)

3. Write only the code necessary to make the test pass.

4. Refactor the code, ensuring that it has the simplest design possible for the functionality
built to date.

You read that correctly. No real code is written until you have a failing test in place to test
the story at hand.

30 C H A P T E R 2 ■ AU T H O R M A N A G E M E N T

So what do we get from developing our application using TDD? First and foremost, when
our tests pass without errors or failures, we can be certain that our application works just as we
want it to—given that we wrote our tests well. Instead of throwing our application over the wall
to George, crossing our fingers, and hoping that it won’t explode, we can sleep well at night,
knowing everything will go fine during that first demo.

But there is also another very important reason for TDD. As we try to be as agile as possi-
ble, we also want to obey one of the golden rules of Rails and 37signals: “Write less software.”
When we create the tests first and implement the functionality after that, writing the code has
a clear goal: to implement the user story and make the tests pass. It is a lot easier to write only
the code needed when you have a clear target than it is to first write the code and then start
writing tests afterwards to test functionality you’ve already implemented.

Testing in Rails
As of version 1.1, Ruby on Rails has three different testing schemes built in: unit testing, func-
tional testing, and integration testing. All of the Rails tests use (either directly or indirectly) the
Test::Unit Ruby library.

In Test::Unit, tests are built on the notion of assertions. Assertions are methods that test
the output of their arguments. The mother of all assertions methods, assert, for example, tests
that its argument’s code returns true. If the return value of the assertion argument is false or
nil, the assertion has failed, and the failure will be reported.

Unit Testing
Unit testing is used in Rails to test business logic objects, represented by ActiveRecord models.
(ActiveRecord is the object-relational mapping system in Rails, and it is described in the next
section in this chapter.) Common tests for ActiveRecord models check that, for example, all
validations work as they should and that all the methods you have written yourself work as
intended.

For example, the following code tests that the validation of a new Person object does not pass
unless the object has both the first and last name specified. It also checks that the method
Person#age calculates the age correctly from the date of birth of a person. For that, we use another
useful assertion method, assert_equal, which makes sure that its two arguments are equal.

class PersonTest < Test::Unit::TestCase
 def test_validation
 p = Person.new(:first => 'George', :last => nil)
 assert !p.valid?
 p.last = 'Pork'
 assert p.valid?
 end

C H A P T E R 2 ■ AU T H O R M A N A G E M E N T 31

 def test_age
 p = Person.create(:first => 'George', :last => 'Pork',
 :dob => (Date.today - 35.years))
 assert_equal 35, p.age
 end
end

Functional Testing
Functional tests in Rails test single controllers and can be used to test that simple user stories
work correctly. While unit tests in Rails focus on single ActiveRecord classes, functional tests
focus on controller actions, which are called with the get and post helpers, just as they would
be called by real HTTP requests.

Functional tests have a bunch of Rails-specific assertions for testing the response that
results from the action. We will use functional tests extensively later in this chapter to imple-
ment the author management functionality for the Emporium project.

Integration Testing
Integration testing is a newcomer in Rails 1.1. Unlike functional tests, integration tests can
span multiple controllers and be used to test Rails routing. Therefore, integration tests can be
used to test complete user stories, ranging from signing in, to putting things into the shopping
cart, to checking out. We will discuss integration testing in more detail in Chapter 3.

■Tip Routing is a built-in system in Rails to map URLs to controllers and actions and vice versa. The
default route in Rails is :controller/:action/:id, which means that, for example, the URL http://
localhost:3000/books/show/1 would be routed to the BooksController’s action show, and the action
would be to receive an id parameter with a value of 1. While the default routing is intuitive and easy to use,
custom routing can be used to construct very flexible URL schemes.

Creating the ActiveRecord Model
ActiveRecord is the object-relational mapping system in Rails, thus denoting the Model in the
Model-View-Controller (MVC) pattern. The job of the model part in the MVC paradigm is to
take care of handling the data storage of the application. However, ActiveRecord is much more
than simply a Ruby library for creating and executing SQL queries. It automatically maps data-
base tables to classes in a Rails application, creates public methods for all database fields, and
adds a load of useful methods for accessing the data in the database.

As noted earlier, we will be completing sprint 0 of our project in this chapter. This sprint
involves five stories related to managing authors in the Emporium application. So first, we
need a way to store our authors.

32 C H A P T E R 2 ■ AU T H O R M A N A G E M E N T

Using ActiveRecord Migrations
We could create the authors table by using the direct SQL commands. However, Rails has a
great database-agnostic system for keeping up with the changes in the database—migrations.

When using migrations, the description of the database is written in pure Ruby. The differ-
ent database adapters in Rails then interpret these commands to database-specific SQL
commands. Another big advantage of using migrations is that you can keep track of the
changes in the database schema and traverse back and forth between different schema ver-
sions. You can also deploy the migrations to multiple database servers simultaneously—
something that will be very valuable when your server stack gets bigger.

Creating the Schema

Because our database doesn’t contain anything yet, we start by creating the initial schema. As
of Rails 1.1, creating a new ActiveRecord model will also create a new migration file for the cor-
responding table, so we use the script/generate command to create both the Author class file
and the database migration for the authors table:

$ script/generate model Author

 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/author.rb
 create test/unit/author_test.rb
 create test/fixtures/authors.yml
 create db/migrate
 create db/migrate/001_create_authors.rb

Not only did this single command create a model class file for the Author model, but it also
created a skeleton for unit tests for that class and a new migration file, 001_create_authors.rb.
The number 001 at the beginning of the filename means that we’re talking about the first
migration for this application.

Editing the Migration File

The next step is to open the migration file in a text editor and edit it so that the database will
look how we want it to look. In this case, it means adding two fields to the table skeleton:

class CreateAuthors < ActiveRecord::Migration
 def self.up
 create_table :authors do |t|
 t.column :first_name, :string
 t.column :last_name, :string
 end
 end

C H A P T E R 2 ■ AU T H O R M A N A G E M E N T 33

 def self.down
 drop_table :authors
 end
end

Rails migrations use a special domain-specific language (DSL) written in Ruby. This way,
the migration code is database-agnostic and can be used to deploy the application to different
database platforms.

Every migration should implement the methods self.up and self.down, which are created
automatically when a new migration is generated by running either the generate model or the
explicit generate migration command. Code inside self.up is run when the database is
migrated to a higher version, and the code in self.down is run when the database is migrated
back to an earlier version. In our first migration, we create a new table called authors and add
columns for both the first and last names of an author. In the self.down part, we drop the
authors table, just in case we someday would want to go back to ground zero.

■Note Even though every table used by ActiveRecord (except for join tables) should have a primary key
field called id, we didn’t specify the creation of that column in our migration. This is because Rails will auto-
matically create that field for every table, unless you explicitly tell it not to by using the :id => false option
with create_table.

The commands in the migrations DSL mostly match the corresponding SQL statements.
The following are the most commonly used commands. For complete documentation, see the
Rails API documentation for migrations at http://api.rubyonrails.org/classes/ActiveRecord/
Migration.html.

• create_table(table_name, options): Creates a new table table_name. If it is given a
block parameter (as in the CreateAuthors migration shown in the previous section), the
commands inside the block will be executed inside the scope of this table.

• column(column_name, type, options): Creates a new column column_name of type type in
the scope of enclosing create_table block.

• add_column(table_name, column_name, type, options): Equivalent to column, with the
distinction that it is not used inside a create_table block, and thus needs the name of
the table as an argument.

• drop_table(table_name): Drops the table table_name from the database.

• remove_column(table_name, column_name): Removes column column_name from table
table_name.

34 C H A P T E R 2 ■ AU T H O R M A N A G E M E N T

Running the First Migration

After we are finished editing the migration file, we can run the first migration, as follows:

$ rake db:migrate

(in /home/george/projects/emporium)
== CreateAuthors: migrating ===
-- create_table(:authors)
 -> 0.1776s
== CreateAuthors: migrated (0.1778s) ==

Rails uses the development environment by default, so our development database is now
updated to match our migration file. If you want to do the migration to some database other
than the development database, you can do so by specifying the RAILS_ENV environment vari-
able before the rake command:

$ RAILS_ENV=production rake db:migrate

So what really happened when our migration script was run? First of all, we got a new table
called authors. But as this was the first migration, Rails also automatically created a table called
schema_info. The table has only one field, version, and there should be only one row in that
table at any given moment. The value of the row tells the current migration version of the data-
base schema. The migration scripts use this information to determine which migrations need
to be run to get everything up-to-date.

Last, the migration created a file called db/schema.rb, which is in the same format as the
migration files, and always describes the current state of the whole database schema. After the
file was created, future migrations will automatically keep it up-to-date. Therefore, you should
never edit it by hand.

C H A P T E R 2 ■ AU T H O R M A N A G E M E N T 35

RAKE

Rake (http://rake.rubyforge.org/) is a build language and tool similar to make (www.gnu.org/
software/make/) and ant (http://ant.apache.org/). It is written in Ruby and sports its own DSL for
handling the maintenance of a Ruby application. Rails uses Rake extensively for many kinds of tasks. The fol-
lowing are some of the most popular Rake tasks used in Rails. For a complete list, run rake -T in the root of
your Rails application directory.

• rake: Running rake without any parameters will rebuild the test database according to the migrations,
and run all unit, functional, and integration tests found in the test directory.

• rake db:migrate: Updates the database of the current environment to the latest version. You can
specify the target version by appending VERSION=x after the command.

• rake db:sessions:create: Creates a table for storing user session data in the database. Rails
automatically assigns a session cookie for each user and uses it to track the user. The session mech-
anism is very useful for tasks like user authentication, as you’ll see in Chapter 8.

• rake db:sessions:clear: Purges the sessions table. It is a good idea to schedule this command
to run on regular intervals to keep the table size from growing rapidly. Every new visitor to the applica-
tion will result in a new database row in the sessions table.

• rake log:clear: Truncates the log files of your Rails application’s log directory. Just like session
data, the log files can get massive over time, so it’s a good idea to clear them every once in a while.

• rake rails:freeze:gems: Locks your Rails application to the latest version of Rails gems you have
installed on your system. Without running this command (or rake rails:freeze:edge), your appli-
cation will “float” on the latest gem version, which might lead to problems if there are changes in Rails
code that break backward-compatibility.

• rake rails:freeze:edge: Similar to rake rails:freeze:gems, with the distinction that it locks
the Rails code to the latest (possibly unstable) code in the Rails Subversion source code repository. The
Rails code is copied to the vendor/rails directory in your application tree.

• rake rails:unfreeze: Breaks the connection between the application and Rails version that was
created by either of the freeze tasks just described.

• rake stats: Outputs useful statistics about your application, including lines of code and the code to
test ratio.

Rake is a very powerful tool that you can use to automate many of the repetitive and tedious mainte-
nance tasks in your application. If you want to know more about Rake, Martin Fowler has written an excellent
tutorial called “Using the Rake Build Language” (http://martinfowler.com/articles/rake.html).

36 C H A P T E R 2 ■ AU T H O R M A N A G E M E N T

Running Unit Tests
Since ActiveRecord creates methods for each field in the database table for a given ActiveRecord
model, Author objects now automatically respond to the methods first_name and last_name. How-
ever, it would be nice to get the whole name of an author with a single method call. Let’s first create
a unit test that checks that our method works correctly.

Open test/unit/author_test.rb and replace the test_truth method with the test_name
method:

require File.dirname(__FILE__) + '/../test_helper'

class AuthorTest < Test::Unit::TestCase
 fixtures :authors

 def test_name
 author = Author.create(:first_name => 'Joel',
 :last_name => 'Spolsky')
 assert_equal 'Joel Spolsky', author.name
 end
end

Running rake, we notice that the test will result in an error, because the Author class
doesn’t have a method called name yet. Let’s fix that by opening app/models/author.rb and
implementing the method.

class Author < ActiveRecord::Base
 def name
 "#{first_name} #{last_name}"
 end
end

The method returns a string containing the return values of the first_name and last_name
methods separated by a space. Running rake again tells us that everything is in order.

$ rake

C H A P T E R 2 ■ AU T H O R M A N A G E M E N T 37

(in /home/george/projects/emporium)
/usr/local/bin/ruby -Ilib:test
"/usr/local/lib/ruby/gems/1.8/gems/rake-0.7.1/lib/rake/rake_test_loader.rb"
"test/unit/author_test.rb"
Loaded suite /usr/local/lib/ruby/gems/1.8/gems/rake-0.7.1/lib/rake/rake_test_loader
Started
.
Finished in 0.062438 seconds.

1 tests, 1 assertions, 0 failures, 0 errors
/usr/local/bin/ruby -Ilib:test
"/usr/local/lib/ruby/gems/1.8/gems/rake-0.7.1/lib/rake/rake_test_loader.rb"
"test/functional/about_controller_test.rb"
Loaded suite /usr/local/lib/ruby/gems/1.8/gems/rake-0.7.1/lib/rake/rake_test_loader
Started
.
Finished in 0.021772 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

/usr/local/bin/ruby -Ilib:test "/usr/local/lib/ruby/gems/1.8/gems/
rake-0.7.1/lib/rake/rake_test_loader.rb"

Creating the Controller
As explained in Chapter 1, a controller is the central part of an application that takes care of
receiving the user request, modifying data through the model part, and finally either rendering
a view template or redirecting the user to another URL. Now that we have the ActiveRecord
model for authors in place, we need a controller that implements the administration interface
for authors. From that last sentence, we can already pick a good name for the controller: admin/
author.

38 C H A P T E R 2 ■ AU T H O R M A N A G E M E N T

You create a controller by using the same script/generate command that you use to
create a model. You can also give the generate controller command names of the actions
you want the controller to implement—in this case, new, create, edit, update, destroy, show,
and index.

$ script/generate controller 'admin/author' new create edit update ➥
 destroy show index

 create app/controllers/admin
 create app/helpers/admin
 create app/views/admin/author
 create test/functional/admin
 create app/controllers/admin/author_controller.rb
 create test/functional/admin/author_controller_test.rb
 create app/helpers/admin/author_helper.rb
 create app/views/admin/author/new.rhtml
 create app/views/admin/author/create.rhtml
 create app/views/admin/author/edit.rhtml
 create app/views/admin/author/update.rhtml
 create app/views/admin/author/destroy.rhtml
 create app/views/admin/author/show.rhtml
 create app/views/admin/author/index.rhtml

By using admin/author instead of just author as the controller name, we put the author
controller inside an admin subdirectory. The new AuthorController class is also set inside a
module called Admin. This way, we can later implement other administrative controllers under
the same module and make them share common code such as access control.

Just as for models, the generate command created a controller stub and empty views for
all actions for us. It also created a functional test file for our controller.

■Note If you haven’t already done so, now would be a good time to put your code under source control. We
prefer Subversion, as it’s the norm in the Rails world, but the most important thing is that you use some kind
of source control management. You wouldn’t want to tell George that you lost a whole day’s worth of code,
would you?

C H A P T E R 2 ■ AU T H O R M A N A G E M E N T 39

Implementing the User Stories
“Test-driven development sure must be great,” says George, “but I want to see something real,
plenty soon.” He is also not happy to hear that the sprints normally take more than a week to
implement. We reassure him that using Rails, the sprints really live up to their names, and that
we should have the first sprint ready before he shuts his doors for the day. A bold promise, so
let’s move on.

As you saw in our sprint backlog in Chapter 1 (Table 1-2), we need to implement five user
stories in this sprint:

• Add author: When George hears about a new cool author, he must be able to get that
author on his site. A click, typing the author details in a form, submitting the form, and
the info should be there.

• List authors: The author administration interface needs a homepage, which also works
as a list of all authors.

• View author: When the system evolves and more information about authors is added,
there must be pages showing the details of an individual author.

• Edit author: Sometimes, author details change. Some people get married; others convert
to a cargo cult and change their name to Ilyushin. Either way, nothing is perpetual.
Changing author details needs to be as easy for George as adding new authors.

• Delete author: During his vacation, George’s summer aides sometimes add totally bogus
stuff into the system. They think it’s funny. George doesn’t, and neither do many of his
customers. So it’s important that authors can be deleted from the system, too.

We will proceed story by story, first writing a functional test for the story and then making
the test pass by implementing the feature.

Adding an Author
The first user story to implement in this sprint is adding a new author.

Adding a Test Case

First, we just want to request the page with the form for adding the author and make sure that
we’re handed the correct template. We add a test case for it in test/functional/admin/
author_controller_test.rb, which is the functional test file for our controller. When we open
the file, we can see that there is a dummy test_truth test method in the file. As the comment
above the method suggests, we remove it and replace it with our own test, test_new, shown in
Listing 2-1.

40 C H A P T E R 2 ■ AU T H O R M A N A G E M E N T

Listing 2-1. test/functional/admin/author_controller_test.rb

require File.dirname(__FILE__) + '/../../test_helper'
require 'admin/author_controller'

Re-raise errors caught by the controller.
class Admin::AuthorController; def rescue_action(e) raise e end; end

class Admin::AuthorControllerTest < Test::Unit::TestCase
 def setup
 @controller = Admin::AuthorController.new
 @request = ActionController::TestRequest.new
 @response = ActionController::TestResponse.new
 end

 def test_new
 get :new
 assert_template 'admin/author/new'
 assert_tag 'h1', :content => 'Create new author'
 assert_tag 'form', :attributes => {:action => '/admin/author/create'}
 end
end

In the test, we first use the get test helper method to call the new action. Then we use the
Rails-specific assert_template method to test that we were indeed rendered the correct view
file. Last, we check that the rendered template indeed looks as it should. We do this by testing
that there are two HTML elements present: a level 1 heading with the content “Create new
author,” and a form element pointing to /admin/author/create.

Now we can go back to the command line and run our test case. We don’t want to execute
all the tests this time, so we just run the test file we’re working on right now.

$ ruby test/functional/admin/author_controller_test.rb

C H A P T E R 2 ■ AU T H O R M A N A G E M E N T 41

Loaded suite test/functional/admin/author_controller_test
Started
F
Finished in 0.052617 seconds.

 1) Failure:
test_new(Admin::AuthorControllerTest)
[test/functional/admin/author_controller_test.rb:17]:
expected tag, but no tag found matching {:content=>
'Create new author', :tag=>'h1'} in:
"<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 Transitional//EN\"
 \"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd\">
<html xmlns=\"http://www.w3.org/1999/xhtml\">
 <head>\n <title>Create new author</title>
 <link href=\"/stylesheets/style.css?1149578791\" media=\"screen\"
rel=\"Stylesheet\" type=\"text/css\" />
 </head>
 <body>

 </body>
</html>".
<nil> is not true.

1 tests, 2 assertions, 1 failures, 0 errors

We get a failure, because there wasn’t a level 1 heading on the returned page. This was to
be expected, since we haven’t implemented the page yet.

■Note Notice that there was only one failure, even though the page doesn’t contain a form element either.
This is because a test method is aborted upon the first failure.

42 C H A P T E R 2 ■ AU T H O R M A N A G E M E N T

Creating the Form

Now we need to make the test pass. Open the controller file, app/controllers/admin/
author_controller.rb. You can see that the file has a method for each of the actions we
specified in the generate controller command. We’re now interested in the new action,
which outputs the form for creating a new author. All we need in the new action is a new
Author object. We also set the @page_title variable (used by the default layout file described
in Chapter 1) to something meaningful.

class Admin::AuthorController < ApplicationController
 def new
 @author = Author.new
 @page_title = 'Create new author'
 end

 def create
 end

 def edit
 end

 def update
 end

 def destroy
 end

 def show
 end

 def index
 end
end

Next, we need to create the view for the new action. Open app/views/admin/author/
new.rhtml and add the following template code to it:

<%= form_tag :action => 'create' %>
 <%= render :partial => 'form' %>
 <%= submit_tag 'Create' %>
<%= end_form_tag %>

<%= link_to 'Back', :action => 'index' %>

C H A P T E R 2 ■ AU T H O R M A N A G E M E N T 43

■Tip Using render :partial => 'partial_name' is a great way to avoid code duplication in Rails tem-
plates. The method call finds a template file _partial_name.rhtml and renders it as a part of the
surrounding template. This way we can, for example, use the same partial form template for both creating a
new author and editing an existing author. If used together with a :collection option, the call will render
the template once for each element of the container passed with the option. You will see an example of this
in the “Listing Authors” section later in this chapter, where we output a similar table row for each author we
have in the system. More information about rendering partials in Rails can be found in the Rails API docs at
http://api.rubyonrails.org/classes/ActionController/Base.html#M000206.

The template first creates a <form> tag with the form_tag helper, pointing it to the create
action. Then it renders the actual form, which we will implement in a minute using a partial
template. Next, our template outputs a submit button for the form and closes it. Finally, we
show a link to the index page listing all the authors (although we haven’t implemented that
page yet). Next, we need to create the partial template for the actual form. Create a new file
app/views/admin/author/_form.rhtml and add the following form to it:

<%= error_messages_for 'author' %>

<p><label for="author_first_name">First name</label>

<%= text_field 'author', 'first_name' %></p>

<p><label for="author_last_name">Last name</label>

<%= text_field 'author', 'last_name' %></p>

In the form, we use two useful Rails helper methods:

• error_messages_for outputs the validation error notification if there are problems with
the form input.

• text_field is a form helper that creates a text field element for a given object attribute—
in this case, author’s first and last names. The real value of text_field can be seen when a
user inputs something invalid to the form. Rails will automatically mark the field with CSS
class fieldWithErrors, so you can use CSS to make the field stand out from other fields.

If we run our functional test again, we can see it pass. Opening http://localhost:3000/
admin/author/new in a browser, we can see that we have implemented the first part of adding a
new author, as shown in Figure 2-1.

44 C H A P T E R 2 ■ AU T H O R M A N A G E M E N T

Figure 2-1. Form for creating a new author

Creating the Author

The next thing to do is to actually create the author. For this, we use the create action, where
the form on the new page is pointing. What we want from the create functionality is that when
we post a form to the create action, a new author is created according to the parameters we
specify. Let’s extend our tests to test for this, too, by adding a new test case method.

def test_create
 assert_equal 0, Author.find(:all).size
 post :create, :author => {:first_name => 'Joel',
 :last_name => 'Spolsky'}
 assert_response :redirect
 assert_redirected_to :action => 'index'
 assert_equal 1, Author.find(:all).size
 assert_equal 'Author Joel Spolsky was successfully created.', flash[:notice]
end

C H A P T E R 2 ■ AU T H O R M A N A G E M E N T 45

Here, we first test that there are no authors in the test database. Then we try to create a new
author by simulating the HTTP POST method sending a form to the create action. We expect
that Rails responds to the POST request by redirecting us to the index page. We also want to
make sure that a new Author object is created and that Rails sets the flash[:notice] variable
correctly.

However, the test code is not really beautiful. Instead of checking the exact amount of
authors before and after running the create action, we only want to know that the amount was
incremented by one. Fortunately, the chaps at projectionist (http://project.ioni.st/) have
created a helper assertion method for testing just that (http://project.ioni.st/post/
218#post-218). Open test/test_helper.rb in a text editor and add the following code to it:

def assert_difference(object, method, difference=1)
 initial_value = object.send(method)
 yield
 assert_equal initial_value + difference,
 object.send(method)
end

def assert_no_difference(object, method, &block)
 assert_difference object, method, 0, &block
end

FLASH

Flash (http://api.rubyonrails.org/classes/ActionController/Flash/FlashHash.html) is a
clever mechanism in Rails (having nothing to do with Adobe/Macromedia Flash) for sending user notices and
error messages from page to page. When we, for example, create a new author, it is a good idea to show the
user a notice that the author was indeed created.

Flash is a hash-like structure stored on the server for the time of one sequential action. It is available in
both controllers and views. So when we set flash[:notice] in the create action and then redirect to the
index action, the index page has access to the notice. If the user then clicks a link and goes on to another
page, the notice has disappeared from the flash and the notice is not shown anymore.

If you sometimes want to show a flash message in the current action so that it will not be available in the
next action (for example, when a form input has been invalid and you want to rerender the form instead of redi-
recting to the next action), you should use flash.now instead of flash. It will cause the message to be
cleaned up immediately after the current action has been processed.

46 C H A P T E R 2 ■ AU T H O R M A N A G E M E N T

■Tip test/test_helper.rb is a file where you can define helper methods that are available to all tests.
A helper method can be a custom assertion like above, or any other method that makes writing actual tests
easier and cleaner.

assert_difference takes as its parameters an object, a method of that object, and a code
block. It first stores the initial value returned by object.method, then runs the code block, and
after that fetches the return value of object.method again. If the difference between those two
method calls is not exactly the value of the difference parameter (1 by default), the test will
fail. assert_no_difference is a convenience method that calls assert_difference with the
difference value of zero.

Now we can change the code in test_create to the following:

def test_create
 get :new
 assert_template 'admin/author/new'
 assert_difference(Author, :count) do
 post :create, :author => {:first_name => 'Joel',
 :last_name => 'Spolsky'}
 assert_response :redirect
 assert_redirected_to :action => 'index'
 end
 assert_equal 'Author Joel Spolsky was successfully created.', flash[:notice]
end

Now, instead of explicitly checking the number of authors before and after the request, we
enclose it inside an assert_difference call. And because the default value of the difference
parameter is 1, assert_difference passes if, and only if, the code inside its code block incre-
ments the count of authors by one. It doesn’t matter what the value was before, so we’re not
relying on the authors table being empty at the start anymore.

Running the test obviously fails, so let’s move on to implement the author creation. We
have an empty create action in author_controller.rb, so we can go ahead and fill it in.

def create
 @author = Author.new(params[:author])
 if @author.save
 flash[:notice] = "Author #{@author.name} was successfully created."
 redirect_to :action => 'index'
 else
 @page_title = 'Create new author'
 render :action => 'new'
 end
end

The create action is a typical example of how actions that modify data work in Rails. First,
we create a new Author object from the request parameters sent from the form on the new page.
Then we try to save the object. If the object was valid and could thus be saved, we create a flash

C H A P T E R 2 ■ AU T H O R M A N A G E M E N T 47

message to be shown to the user and redirect to a page that lists all the authors. If @author
couldn’t be saved—probably because it didn’t pass the validations (we’ll talk more about vali-
dations in the next section)—we render the new.rhtml template with the form again, so that the
user can fill in the required fields she forgot to fill in the first time.

Running the test again, we see that it passes. But George has also advised us that every
author needs to have both a first and a last name. We thus want to test that no new author is
created if either of those form fields is left empty. We create another test method for this in
test/functional/admin/author_controller_test.rb:

def test_failing_create
 assert_no_difference(Author, :count) do
 post :create, :author => {:first_name => 'Joel'}
 assert_response :success
 assert_template 'admin/author/new'
 assert_tag :tag => 'div', :attributes => {:class => 'fieldWithErrors'}
 end
end

Here, we do the same thing as in the previous test, except that this time, we leave the last
name out of the form post. Now, instead of a redirect, we want Rails to show us the form tem-
plate again, with the fields with errors marked accordingly. We also use assert_no_difference
to make sure that the new author is not created.

When we run the test, we can see it failing. Instead of rendering the form again on an
invalid form input, we are still redirected to the index page. We need a way to make the form
validate only if both the first and the last name are present. In Rails, validations are done on the
ActiveRecord object level.

Validating Data

ActiveRecord validations are a way to enforce restrictions upon editing the business model
objects of your application. For example, you might want to make sure that an e-mail address
is valid or that the balance of an account can never be less than zero.

In our case, we just want to make sure that every time someone tries to add or update an
Author object, that object has both the first and the last name specified. This can be accom-
plished with the validates_presence_of method, so let’s open app/models/author.rb and add
a line of code there to make the validations work:

class Author < ActiveRecord::Base
 validates_presence_of :first_name, :last_name

 def name
 "#{first_name} #{last_name}"
 end
end

We will meet a lot more validations during the course of this book, but for now, let’s just
settle with this and try to run our tests again.

$ ruby test/functional/admin/author_controller_test.rb

48 C H A P T E R 2 ■ AU T H O R M A N A G E M E N T

Loaded suite test/functional/admin/author_controller_test
Started
..
Finished in 0.171436 seconds.

2 tests, 12 assertions, 0 failures, 0 errors

The results look good. We can now point our browser to http://localhost:3000/admin/
author/new and try to create a new author. Leaving the last name blank, we’re greeted with the
response shown in Figure 2-2 when the form is submitted.

Figure 2-2. Failing creation of a new author

Seems that our validations are working, and as the tests agree, we move on to implement
editing of existing authors.

Listing Authors
Now that we are able to create authors, it would be nice to be able to view and list the authors
in the system, too. We will next implement the author list page, which we’ll make the index
action of our controller.

C H A P T E R 2 ■ AU T H O R M A N A G E M E N T 49

At its simplest, we want our author list to show a table with rows for all authors and a
header row. Let’s create a test case for it in author_controller_test.rb.

def test_index
 get :index
 assert_response :success
 assert_tag :tag => 'table',
 :children => { :count => Author.count + 1,
 :only => {:tag => 'tr'} }
 Author.find(:all).each do |a|
 assert_tag :tag => 'td',
 :content => a.first_name
 assert_tag :tag => 'td',
 :content => a.last_name
 end
end

In the test, we first check that the index action returns a successful HTTP response. Then
we check that there is a table with rows for each author in the database and a header row on the
resulting page. We do this by using the :children and :count options of assert_tag. We also
check that there are table cells holding the names of all authors in the database.

Implementing the index action is straightforward. In the controller, we just fetch all the
authors from the database and set the page title:

def index
 @authors = Author.find(:all)
 @page_title = 'Listing authors'
end

In the view file, app/views/admin/author/index.rhtml, we then display the table and, at
the bottom of the page, a link to add a new author:

<table>
 <tr>
 <th>Name</th>
 <th>Edit</th>
 <th>Delete</th>
 </tr>

 <%= render :partial => 'author', :collection => @authors %>
</table>

<p><%= link_to 'Add a new author', :action => 'new' %></p>

50 C H A P T E R 2 ■ AU T H O R M A N A G E M E N T

This time, we use the :collection option in the render call to render the _author.rhtml
partial template once for each author in @authors. Let’s create the partial template (app/views/
admin/author/_author.rhtml) and make it show a table row for each author.

<tr>
 <td><%= link_to author.name, :action => 'show', :id => author %></td>
 <td><%= link_to 'Edit', :action => 'edit', :id => author %></td>
 <td>
 <%= button_to 'Delete', {:action => 'destroy', :id => author},
 :confirm =>
 "Are you sure you want to delete author #{author.name}?" %>
 </td>
</tr>

On each row, we show the name of the author linking to an individual show page (which
we’ll implement soon) and a link to edit the author details. In the last cell, we use the button_to
helper to show a form button for deleting the author record (we will implement the action for
deleting authors later in this chapter). We pass the method call a :confirm option, which causes
the browser to ask the user for a confirmation with JavaScript when the Delete button is clicked.

We can now run the test file again and see that everything seems to be in order. Now we
will move on to the next user story, viewing the details of an individual author.

Viewing an Author
As you might have noticed, creating the Author model also created a file called authors.yml in
test/fixtures. This is called a fixture file. Fixtures are mock data that can be used to populate
the database with consistent data before each test method. Since the test database is purged
before every test method, you know that all the data that exists in the database at that point
came from the fixture files.

It would be handy to have a few authors in the database for testing our view functionality,
so we go ahead and create a couple of author fixtures in authors.yml:

joel_spolsky:
 id: 1
 first_name: Joel
 last_name: Spolsky
jeremy_keith:
 id: 2
 first_name: Jeremy
 last_name: Keith

C H A P T E R 2 ■ AU T H O R M A N A G E M E N T 51

Putting the line fixtures :authors in the beginning of our functional test class makes Rails
load the author fixtures automatically before every test method inside that class:

class Admin::AuthorControllerTest < Test::Unit::TestCase
 fixtures :authors
...
end

Now we can rest assured that when we start testing viewing an author, we have two items
in our authors table.

We’ll keep the show author page very simple. We just want to make sure that we’re fed the
right template and that the author is the one we’re expecting. Add the following test case to the
bottom of author_controller_test.rb:

def test_show
 get :show, :id => 1
 assert_template 'admin/author/show'
 assert_equal 'Joel', assigns(:author).first_name
 assert_equal 'Spolsky', assigns(:author).last_name
end

Here, we simply request the show page for one of our fixture authors and check that we get
the correct template. Then we use the assigns helper to check that the author instance variable
assigned in the action is the one it should be. assigns is a test helper method that can be used
to access all the instance variables set in the last requested action. Here, we expect that the show
action assigns a variable @author and that the variable responds to the methods first_name and
last_name, returning “Joel” and “Spolsky,” respectively.

The controller code for the show action is simple. We fetch the author from the database
and set the page title to the author’s name.

def show
 @author = Author.find(params[:id])
 @page_title = @author.name
end

Now let’s open the view file, app/views/admin/author/show.rhtml, and add the template
code:

<dl>
 <dt>First Name</dt>
 <dd><%= @author.first_name %></dd>
 <dt>Last Name</dt>
 <dd><%= @author.last_name %></dd>
</dl>

<p><%= link_to 'Edit', :action => 'edit', :id => @author %> |
<%= link_to 'Back', :action => 'index' %></p>

52 C H A P T E R 2 ■ AU T H O R M A N A G E M E N T

We run the tests again, and seeing them passing, open the browser and check that the page
looks fine there, too, as shown in Figure 2-3.

Figure 2-3. Show author page

Editing an Author
We start our test case for the Edit Author user story in the same way we did with the test case
for the create functionality, by loading the form page.

def test_edit
 get :edit, :id => 1
 assert_tag :tag => 'input',
 :attributes => { :name => 'author[first_name]',
 :value => 'Joel' }
 assert_tag :tag => 'input',
 :attributes => { :name => 'author[last_name]',
 :value => 'Spolsky' }
end

C H A P T E R 2 ■ AU T H O R M A N A G E M E N T 53

We try to load the edit page for author 1 and test that the form has input fields with correct pre-
set values. After running the test and finding it running red, we implement the edit interface. We
first set the needed values in the edit action in app/controllers/admin/author_controller.rb:

def edit
 @author = Author.find(params[:id])
 @page_title = 'Edit author'
end

We use the normal ActiveRecord find method to fetch the Author object with the id that
was passed with the URL. Then we populate the page title, just as we did with the new page. The
view file app/views/admin/author/edit.rhtml looks pretty much the same as new.rhtml, with
the exception that the form action is update instead of create this time. Note that we use the
same partial template to output the actual form fields as on the new page.

<%= start_form_tag :action => 'update', :id => @author %>
 <%= render :partial => 'form' %>
 <%= submit_tag 'Edit' %>
<%= end_form_tag %>

<%= link_to 'Show', :action => 'show', :id => @author %> |
<%= link_to 'Back', :action => 'index' %>

We run the tests again, and everything should pass. Next, we need to implement the action
that receives the edit form post, update. We extend our tests a bit:

def test_update
 post :update, :id => 1, :author => { :first_name => 'Joseph',
 :last_name => 'Spolsky' }
 assert_response :redirect
 assert_redirected_to :action => 'show', :id => 1
 assert_equal 'Joseph', Author.find(1).first_name
end

In the update, we post the form to the update action, and after that, check that we are
redirected and, more important, that the first name of the author is really changed. The test
doesn’t yet pass, of course, so let’s open the author_controller.rb file again and implement
the update action.

def update
 @author = Author.find(params[:id])
 if @author.update_attributes(params[:author])
 flash[:notice] = 'Author was successfully updated.'
 redirect_to :action => 'show', :id => @author
 else
 @page_title = 'Edit author'
 render :action => 'edit'
 end
end

54 C H A P T E R 2 ■ AU T H O R M A N A G E M E N T

You can see that the action is more or less similar to the create action, with the distinction
that, this time, we use the update_attributes method to update the @author object. It updates
the attributes of the object with the values it gets from the form parameters, and after that, it
calls save implicitly. Just like save, it returns false if saving the object didn’t succeed.

We can now run the test file again, and see that everything passes just fine.

$ ruby test/functional/admin/author_controller_test.rb

Loaded suite test/functional/admin/author_controller_test
Started
...
Finished in 0.519315 seconds.

3 tests, 28 assertions, 0 failures, 0 errors

Deleting an Author
For the Delete Author user story, we simply want to test that posting a form to the destroy
action correctly deletes the author from the database and then redirects us to the index page.
Let’s open author_controller_test.rb again and add another test case to it.

def test_destroy
 assert_difference(Author, :count, -1) do
 post :destroy, :id => 1
 assert_response :redirect
 assert_redirected_to :action => 'index'
 end
end

The test code is fairly simple, and the only thing new is that this time we pass -1 as the
difference argument to assert_difference, in order to make sure the number of authors
decreases by one as the result of the destroy action.

Implementing the destroy action is straightforward. We don’t need a view for it, since the
action just deletes the author and redirects back to the author list.

def destroy
 @author = Author.find(params[:id])
 flash[:notice] = "Successfully deleted author #{@author.name}"
 @author.destroy
 redirect_to :action => 'index'
end

That’s all the code it takes to delete an author. We again fetch the right author from the
database using the find method, and then use the ActiveRecord destroy method to delete the
author from the database. In between, we populate the flash notice so that the index page
where we redirect the user will show a notification to the user about the successful deletion.

We can now run the whole test enchilada.

C H A P T E R 2 ■ AU T H O R M A N A G E M E N T 55

$ ruby test/functional/admin/author_controller_test.rb

Loaded suite test/functional/admin/author_controller_test
Started
......
Finished in 0.176094 seconds.

6 tests, 31 assertions, 0 failures, 0 errors

The result is 31 assertions, no failures, no errors. It works! It works!!! We exchange a
couple of high-fives before we start the WEBrick server again, and point the browser to
http://localhost:3000/admin/author/. The result is shown in Figure 2-4.

Figure 2-4. Author list page

Adjusting the Flash Notifications
Browsing around the interface—creating, editing, and deleting authors—we can see that
everything works. However, we find one shortcoming. The flash notifications we used to dis-
play messages to the user are not shown. Indeed, while we did assign the messages, we are
never displaying them in the user interface.

Again, we create a failing test assertion demonstrating this flaw. We could put the new test
in all the test methods that should be showing a notice using flash, but we settle for doing it in
the author deletion test.

56 C H A P T E R 2 ■ AU T H O R M A N A G E M E N T

def test_destroy
 assert_difference(Author, :count, -1) do
 post :destroy, :id => 1
 assert_response :redirect
 assert_redirected_to :action => 'index'
 follow_redirect
 assert_tag :tag => 'div', :attributes => {:id => 'notice'},
 :content => 'Successfully deleted author Joel Spolsky'
 end
end

follow_redirect is a Rails test helper method that causes the test case to follow a redirect_to
call in a controller. In our case, the destroy action redirected the user to the index action in the end,
so follow_redirect causes the index action to be run. After that we can check that there is a div tag
with the correct flash message on the index page.

Since flash messages can be shown to the user on many different pages, a natural place
for displaying the notice is in the layout template used by all actions, app/views/layouts/
application.rhtml. We add a bit of code there that will show the message stored in
flash[:notice] if it is assigned.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title><%= @page_title || 'Emporium' %></title>
 <%= stylesheet_link_tag "style" %>
 </head>
 <body>
 <% if flash[:notice] %>
 <div id="notice">
 <%= flash[:notice] %>
 </div>
 <% end %>
 <%= "<h1>#{@page_title}</h1>" if @page_title %>
 <%= yield %>
 </body>
</html>

We also make a small change to the CSS file created in Chapter 1, public/stylesheets/
style.css, adding a bit of color to make the notice stand out more on the page:

… a lot of CSS lines omitted …
#notice {
 padding: 5px;
 background-color: #96FF88;
}

C H A P T E R 2 ■ AU T H O R M A N A G E M E N T 57

Running the test again indicates that the flash system works, and so does our empirical
research done in the browser, as shown in Figure 2-5.

Figure 2-5. Working flash message

Checking off the last thing as done from our sprint backlog, we call George to do the accep-
tance testing. George can’t believe we’re finished already. “Holy moly, I didn’t even have the
time to finish my lunch yet,” he says, mustard dripping from his beard. Time spent for this
sprint: three hours. Now that’s productivity!

Summary
In this chapter, we first introduced the approach of TDD and the testing methods Ruby on Rails
supports. Then we continued with putting the TDD in action in Rails, creating a controller for
handling adding, updating, deleting, and viewing authors. During the course of the chapter,
we also briefly introduced ActiveRecord object-relational mapping, Rails migrations, and
ActiveRecord validations. These techniques give you a solid foundation for managing the busi-
ness logic of your Rails applications.

In the next chapter, you will learn that we could have done the same tasks we did in this
chapter with a single command, by using the Rails scaffolding. But that’s okay. Doing it manu-
ally first, we could better introduce some useful Rails features and, most of all, run a code sprint
in a true TDD fashion.

59

■ ■ ■

C H A P T E R 3

Book Inventory Management

In this chapter, we will quickly implement a complete book inventory management system
using the built-in scaffolding feature of Ruby on Rails. While implementing the system, we
will write Ruby on Rails integration tests that exercise the whole book inventory manage-
ment system from end to end. As we work through this sprint, we will show you how to map
database relationships with ActiveRecord, including one-to-many, many-to-one, and many-
to-many relationships. Plus, you will learn how to implement file upload functionality with
Rails. We’ll also introduce you to the Textile markup language, which can be used to author
web content.

Getting the Requirements
To figure out the requirements for this sprint, we ask George what tasks he should be able to
perform with the book management system. He tells us that he receives information from pub-
lishers about when new books are published and when old ones go out of print. He asks us to
build a system that will allow him to update the Emporium book inventory accordingly.

George tells us that he is a big fan of Amazon, even if the giant is eating away at his profits.
He likes, for example, the way Amazon is able to recommend books that are similar to what the
customer has browsed and bought before, and the small details like the book cover shown next
to the details of the book.

We tell George that he at least has to be able to find books in the system, and to view and
edit the book details. George confirms that he indeed needs those features. We take a short
break, to let George have a coffee. This far into the discussion we have identified the following
user stories:

• Add book: George, the administrator of Emporium, must be able to add new books to the
inventory.

• Upload book cover: The administrator must be able to upload an image of the book
cover. This image will be shown to customers.

• List books: The administrator must be able to list all of the books that are currently avail-
able in the inventory.

• View book: The administrator must be able to view the details of a book.

• Edit book: The administrator must be able to edit the details of a book.

• Delete book: The administrator must be able to delete books from the inventory.

60 C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T

We aren’t sure how we should implement the book recommendation feature George
wanted, so we decide to postpone that for a later sprint (covered in Chapter 7).

When George comes back, he tells us that he must also be able to keep track of the book
publishers. After a brief brainstorming session, we come up with a list of user stories related to
publisher management:

• Add publisher: The administrator must be able to add publishers to the system.

• List publishers: The administrator must be able to view a list of all publishers in the
system.

• View publisher: The administrator must be able to view the details of a publisher.

• Edit publisher: The administrator must be able to edit the details of a publisher.

• Delete publisher: The administrator must be able to remove publishers from the system.

We will also implement these in this sprint, as we are confident that we can finish them
within the schedule.

Using Scaffolding
In this chapter, we’ll show you how to use a built-in Rails feature called scaffolding to jump-
start the implementation of the publisher administration and book administration user inter-
faces.

You can use scaffolding to generate a complete CRUD implementation for objects stored
in a database. Scaffolding can generate code for all three MVC layers: the model, view, and con-
troller. Scaffolding comes in two flavors:

• Static scaffolding creates the code physically on disk. Static scaffolding is suited for gen-
erating boilerplate code, which you can modify later to fit your requirements.

• Dynamic scaffolding creates the code in memory only. It does the same as static scaf-
folding but at runtime, and no files are generated. This is suited only for simple
functionality, such as an interface used only by administrators for editing a list of
options shown to users.

The scaffolding script accepts a set of parameters that tells it what to generate. You can
specify the model, view, controller, and actions as parameters to the scaffold script:

script/generate scaffold ModelName ControllerName action1 action2

When invoked, the scaffolding script connects to the database and inspects the table
structure for the specified model. It then creates the controller, actions, and views necessary
for creating, viewing, editing, and deleting the model you specified.

Dynamic scaffolding is done by adding a call to the scaffold method to a controller:

class JebusController < ActionController::Base
 scaffold :jebus
end

C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T 61

Scaffolding can’t generate code that fits your requirements perfectly, so we’ll also show
you how to modify and extend the generated code.

■Tip Scaffolding provides examples of Rails best practices and coding conventions. It’s a good idea to have
a closer look at the code that is generated with scaffolding, even if you don’t plan on using scaffolding.

Implementing the Publisher Administration
Interface
We will start by implementing the administrator interface for maintaining the list of publish-
ers. We need a table for storing publishers, so the first thing we need to do is to update the
database schema by adding the publishers table to the database schema.

Updating the Schema with the Publishers Table
As in the previous chapter, we will use ActiveRecord migrations to make the necessary modifi-
cations to the database schema. We could also use plain SQL, but migrations have the added
benefit of being database-agnostic and allowing you to roll back changes.

First, create the create_publishers migration file, which you will use for adding the
publishers table to the database schema:

$ script/generate migration create_publishers

 exists db/migrate
 create db/migrate/002_create_publishers.rb

Open db/migrate/002_create_publishers.rb in your editor and change it as follows:

class CreatePublishers < ActiveRecord::Migration
 def self.up
 create_table :publishers do |table|
 table.column :name, :string, :limit => 255, :null => false, :unique => true
 end
 end

 def self.down
 drop_table :publishers
 end
end

The migration will create a table named publishers when run, as the following sample
output shows:

$ rake db:migrate

62 C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T

(in /home/george/projects/emporium)
== CreatePublishers: migrating ==
-- create_table(:publishers)
 -> 0.2030s
== CreatePublishers: migrated (0.2030s) =======================================

The new table has two columns: id and name. Note that the id column is automatically
added by ActiveRecord migrations, so we need to add only the name column to the migration
script. We limit the name column’s length to a maximum length of 255 characters. We also spec-
ify that we don’t accept null values in the name field and that the name must be unique.

Following good practices, we undo all changes in the down method by telling ActiveRecord
to delete the publishers table.

Generating Publisher Code with the Scaffolding Script
With the database table in place, you can use the scaffolding script to create an almost com-
plete CRUD implementation for the publisher administration, unlike in Chapter 2 where all
code was created by hand. Execute the scaffolding script as follows:

$ script/generate scaffold Publisher 'admin/publisher'

 exists app/controllers/admin
 exists app/helpers/admin
 create app/views/admin/publisher
 exists test/functional/admin
 dependency model
 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/publisher.rb
 create test/unit/publisher_test.rb
 create test/fixtures/publishers.yml
 create app/views/admin/publisher/_form.rhtml
 create app/views/admin/publisher/list.rhtml
 create app/views/admin/publisher/show.rhtml
 create app/views/admin/publisher/new.rhtml
 create app/views/admin/publisher/edit.rhtml
 create app/controllers/admin/publisher_controller.rb
 create test/functional/admin/publisher_controller_test.rb
 create app/helpers/admin/publisher_helper.rb
 create app/views/layouts/publisher.rhtml
 identical public/stylesheets/scaffold.css

C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T 63

The scaffolding script creates the model, controller, and views required for doing CRUD
operations on the publishers table. Furthermore, the scaffolding creates an empty unit test for
the model, along with a fixture file and a functional test.

Next, we demonstrate the wonders of scaffolding to George. He says: “Damned consult-
ants! I’m gonna go blind if I have to look at that page for more than ten seconds! Is this all you
can do?” We understand his point, and show him the new site design we have quietly been
working on, to which he responds, “It’s not going to win any design awards. But, it will do until
I can find the money to hire a professional web designer.”

■Note To get the new layout, download the source code for this book from the Apress website
(www.apress.com), and copy the layout file (application.rhtml) and style sheet file (style.css) to
your project directory.

Next, start WEBrick, if it isn’t running already, by executing script/server in the root
directory of the application. Open http://localhost:3000/admin/publisher in your browser.
You should see the user interface for listing publishers. We’ll do a small test just to verify that
the generated code works. Click the New publisher link, enter the name Apress in the Name
field, and then click Create. You should now see a success message telling you that the pub-
lisher was created successfully. You should also see a new row in the list of publishers, as
shown in Figure 3-1.

Figure 3-1. The publisher list page after adding a publisher

64 C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T

Scaffolding creates some files that we don’t need, including a style sheet and a layout
file. Delete the public/stylesheets/scaffold.css file, as we already have a style sheet for
Emporium. Also delete app/views/layouts/publisher.rhtml, as we want to use the same lay-
out for all controllers.

Now is a good time to start writing some tests. But wait, didn’t the scaffolding script just
create a functional test for us? Let’s execute the test with rake test:functionals. There are no
errors and all tests pass. You could assume that you do not have to write any tests, but that
assumption is wrong.

■Note Because we are using scaffolding, we won’t be following TDD very strictly in this chapter.

Completing the Add Publisher User Story
The scaffolding script has created a functional test in test/functional/admin/publisher_
controller_test.rb. On closer inspection, we can see that it requires some modifications for it
to be helpful in our efforts at producing bug-free code. For example, the test_create method
doesn’t specify a name for the publisher it creates. This should have made the test fail when we
ran the test, but it didn’t. We will fix that soon, but the first thing we will do is add validations.
You never know what kind of data a user will try to enter into your application. As explained in
the previous chapter, validations help ensure that only valid data is inserted into the database.

Adding Validations to the Model

Adding validations will make the test fail and show you where the parameters should be spec-
ified. So let’s begin by adding a validation for the name field in the Publisher model. Open
app/models/publisher.rb and modify it to look as follows:

class Publisher < ActiveRecord::Base
 validates_length_of :name, :in => 2..255
 validates_uniqueness_of :name
end

As you might remember, we specified the maximum length of the name field in the
publishers table to be 255 characters. We add a validation to the model to verify this constraint
and specify that the minimum length of the name field to be 2 characters. We also add a valida-
tion that checks that the publisher name is unique.

C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T 65

Modifying the Generated Fixture Data

The fixture data generated by scaffolding is not very descriptive of our project. We can do bet-
ter. Open test/fixtures/publishers.yml in your editor and remove everything from the file.
Then add the following:

apress:
 id: 1
 name: Apress

Again, execute the functional tests with rake test:functionals. You should see the tests
fail with the following error message:

Expected response to be a <:redirect>, but was <200>

The test fails as expected because the test_create method doesn’t provide any parame-
ters to the post method that is supposed to create the publisher. To fix this, we’ll change the
functional test.

Modifying the Generated Functional Test

Open test/functional/admin/publisher_controller_test.rb in your editor and change the
test_create method as follows:

 def test_create
 num_publishers = Publisher.count

 post :create, :publisher => {:name => 'The Monopoly Publishing Company'}

 assert_response :redirect
 assert_redirected_to :action => 'list'

 assert_equal num_publishers + 1, Publisher.count
 end

The only change is that we pass a hash to the post method, instead of no data at all. The
hash contains the name for the publisher the test should create.

66 C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T

Run the tests again, and you should see the functional test pass. You should also do a
quick test in the browser to verify that the Add Publisher user story functionality works. Open
http://localhost:3000/admin/publisher/new in your browser. Test the validations you just
added by clicking the Create button, without specifying a name. You should see the error mes-
sage shown in Figure 3-2. This error message is automatically generated by Rails, and explains
exactly what you should do in order to fix the error.

Figure 3-2. Testing the Add Publisher user story

We further examine the functional tests and see that those for the List Publishers and
Delete Publisher user stories are satisfactory. However, the test for the View Publisher and Edit
Publisher user stories require some work.

Completing the View Publisher User Story
We are satisfied with the functional test that scaffolding created for the View Publisher user
story, except for one detail. It doesn’t verify that the view really is showing the details of the
publisher. This will be easy to fix, but first have a look at the view.

C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T 67

Modifying the View

Open app/views/admin/publisher/show.rhtml in your editor, and you can see that it is not
using the same style as the View Author user story we created in the previous chapter. Change
the view as follows, so that it uses the same style:

<dl>
 <dt>Name</dt>
 <dd><%= @publisher.name %></dd>
</dl>

<%= link_to 'Edit', :action => 'edit', :id => @publisher %> |
<%= link_to 'Back', :action => 'list' %>

Modifying the Generated Action

Recall that we modified the layout file (application.rhtml) in the previous chapter to display
the page title, if it is made available to the view. Currently, this is not the case for the show
publisher page, as can be verified by viewing the details of a publisher. Fix this by opening
app/controllers/admin/publisher_controller.rb and changing the show method as follows:

 def show
 @publisher = Publisher.find(params[:id])
 @page_title = @publisher.name
 end

This allows the view to access the instance variable @page_title and print out the value.

Modifying the Generated Functional Test

Next, modify the generated test so that it verifies that the page is rendered correctly. Open
test/functional/admin/publisher_controller_test.rb and change it as follows:

 def test_show
 get :show, :id => 1

 assert_response :success
 assert_template 'show'

 assert_not_nil assigns(:publisher)
 assert assigns(:publisher).valid?

 assert_tag "h1", :content => Publisher.find(1).name
 end

68 C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T

Note that we added an assert_tag assertion to the end of the test. This assertion is used to
verify that the main heading on the page is showing the publisher’s name.

Run the functional tests again, and you should see all tests pass without errors. Access
http://localhost:3000/admin/publisher/list and click the Show link next to the publisher
you just created. You should see a page that looks like Figure 3-3.

Figure 3-3. Testing the View Publisher user story

Completing the Edit Publisher User Story
The scaffold implementation of the Edit Publisher user story’s test suffers from the same prob-
lem as the Add Publisher implementation. The test doesn’t provide any parameters to the
action other than the id of the publisher. This means that no data is updated when the test is
run, but in this case, there is no error. This is okay, because Rails uses update_attributes to
update only attributes that are included as request parameters.

We do want to verify that the editing is successful, so open test/functional/admin/
publisher_controller_test.rb and change the test_update method as shown in the following
code snippet:

 def test_update
 post :update, :id => 1, :publisher => { :name => 'Apress.com' }
 assert_response :redirect
 assert_redirected_to :action => 'show', :id => 1
 assert_equal 'Apress.com', Publisher.find(1).name
 end

C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T 69

Note that we have added a new parameter to the post method call. This will update
the name of the publisher to Apress.com in the database. At the end of the test, we verify
that this really is the case with assert_equal. Execute the functional tests again, with rake
test:functionals. Access http://localhost:3000/admin/publisher/list and click the Edit
link next to the publisher you created. You should see a page that looks like Figure 3-4.

Figure 3-4. Testing the Edit Publisher user story

You now have a functioning system for maintaining the publishers. We call George over
and show him the user interface. He does a quick acceptance test and tells us that he has no
complaints, so let’s continue implementing the user stories for book management.

Implementing the Book Administration Interface
Now we implement the administrator interface for managing books. For this, we need to first
create a table for storing books in the database, and then create the ActiveRecord model for
books. Although we found some issues with scaffolding while implementing the publisher
administration functionality, it saved us some time and George was happy, so we’ll continue
using scaffolding to implement the book management administration functionality.

Updating the Schema with the Books Table
The first thing we need to do is to create a table for storing books in the database. Following the
Rails naming conventions, we name the table books, and as usual, we’ll update the database
schema using ActiveRecord migrations.

70 C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T

As a recap, the Emporium database schema already has the authors table we created in the
previous chapter and the publishers table we created earlier in this chapter. Now, we’ll add the
books table, as well as the books_authors table, which will be used to link authors to publishers.

George is still with us, at least physically. He asks us why we have to use so many tables.
“You consultants, you always want to build these fancy systems. I could do this with just one
Excel sheet!” We don’t know if he’s kidding or not, but we’ll try to get George to understand
when we show him a picture and explain how mapping works to link the tables and get the data
we want. We’ll do that after we add the new tables and create the Book model.

To start, create the migration file for adding the books table to the database schema:

$ script/generate migration create_books_and_authors_books

 exists db/migrate
 create db/migrate/003_create_books_and_authors_books.rb

Open db/migrate/003_create_books_and_authors_books.rb in your editor and add the
code in Listing 3-1 to it.

Listing 3-1. ActiveRecord Migration for the books and authors_books Tables and Foreign Keys

class CreateBooksAndAuthorsBooks < ActiveRecord::Migration
 def self.up
 create_table :books do |table|
 table.column :title, :string, :limit => 255, :null => false
 table.column :publisher_id, :integer, :null => false
 table.column :published_at, :datetime
 table.column :isbn, :string, :limit => 13, :unique => true
 table.column :blurb, :text
 table.column :page_count, :integer
 table.column :price, :float
 table.column :created_at, :timestamp
 table.column :updated_at, :timestamp
 end

 create_table :authors_books, :id => false do |table|
 table.column :author_id, :integer, :null => false
 table.column :book_id, :integer, :null => false
 end

 say_with_time 'Adding foreign keys' do
 # Add foreign key reference to books_authors table
 execute 'ALTER TABLE authors_books ADD CONSTRAINT fk_bk_authors ➥

FOREIGN KEY (author_id) REFERENCES authors(id) ON DELETE CASCADE'
 execute 'ALTER TABLE authors_books ADD CONSTRAINT fk_bk_books ➥

FOREIGN KEY (book_id) REFERENCES books(id) ON DELETE CASCADE'

C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T 71

 # Add foreign key reference to publishers table
 execute 'ALTER TABLE books ADD CONSTRAINT fk_books_publishers ➥

FOREIGN KEY (publisher_id) REFERENCES publishers(id) ON DELETE CASCADE'
 end
 end

 def self.down
 drop_table :authors_books
 drop_table :books
 end
end

■Note This migration in Listing 3-1 uses MySQL-specific SQL. This means that you would need to change
the code in order to run it on other databases.

The migration file creates two new tables, books and authors_books (authors_books in the
join table, as explained in the “Many-to-Many Relationship” section later in this chapter). To
ensure data integrity, we also add foreign key constraints to the tables. ActiveRecord doesn’t
support adding foreign keys constraints to tables. You need to add foreign keys using the ALTER
TABLE SQL command and the ActiveRecord execute method, which can execute raw SQL on the
database. The say_with_time method is used to print out the time it takes to execute the com-
mands that add foreign keys to the database schema. Also note that ISBN numbers must be
unique and that this is ensured by setting the :unique option to true.

■Tip ActiveRecord has a built-in time stamping behavior that is triggered for database columns named
created_at/created_on and updated_at/updated_on. When ActiveRecord finds one of these columns in
a database schema, it will automatically set the creation timestamp when a new object is created and the
modification time when the object is updated. ActiveRecord also has other behaviors that are triggered for
other column names. For example, the lock_version column name enables optimistic locking.

You are now ready to upgrade the Emporium database to its third version. Execute the
migration script with the rake db:migrate command:

$ rake db:migrate

72 C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T

(in /home/george/projects/emporium)
== CreateBooksAndAuthorsBooks: migrating ======================================
-- create_table(:books)
 -> 0.1410s
-- create_table(:authors_books, {:id=>false})
 -> 0.1400s
-- Adding foreign keys
-- execute("ALTER TABLE authors_books ADD CONSTRAINT fk_bk_authors ➥

FOREIGN KEY (author_id) REFERENCES authors(id) ON
 DELETE CASCADE")
 -> 0.3440s
-- execute("ALTER TABLE authors_books ADD CONSTRAINT fk_bk_books ➥

FOREIGN KEY (book_id) REFERENCES books(id) ON DELETE CASCADE")
 -> 0.3280s
-- execute("ALTER TABLE books ADD CONSTRAINT fk_books_publishers ➥

FOREIGN KEY (publisher_id) REFERENCES publishers(id
) ON DELETE CASCADE")
 -> 0.3440s
 -> 1.0160s
== CreateBooksAndAuthorsBooks: migrated (1.2970s) =============================

You should see all commands run without any errors. If you connect to MySQL with the
command-line client, you can see the two new tables that were created by the migration:

$ mysql –uemporium -phacked

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 5.0.20-community

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> use emporium_development;
Database changed
mysql> show tables;
+--------------------------------+
| Tables_in_emporium_development |
+--------------------------------+
| authors |
| authors_books |
| books |
| publishers |
| schema_info |
+--------------------------------+
5 rows in set (0.08 sec)

C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T 73

The schema_info table is where ActiveRecord stores the current version of the database
schema, as explained in the previous chapter. Running select * from schema_info; should
print 3, which is the current version of our database schema.

■Tip If you want to go back to a previous version of your database model, just specify the version number
as a parameter to the migrate script, as in rake migrate VERSION=0.

Creating the Book Model
With the database in place, you can now create the ActiveRecord model for books.
Following the ActiveRecord naming conventions, we name it Book, and create it using the
script/generate command.

$ script/generate model Book --skip-migration

 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/book.rb
 create test/unit/book_test.rb
 create test/fixtures/books.yml

■Note We skipped the creation of the migration file because we already created it in the previous
section. Normally, you would create the migration and the model at the same time with the command
script/generate model Book, but in this case, we wanted a more descriptive name for the migration file.

The script creates the model, plus a unit test and fixture that you can use in your tests.

ActiveRecord Mapping
In the previous chapter, you created the table used for storing authors, and in this chapter, you
have created three more: publishers, books, and authors_books. Figure 3-5 shows the entity
relationship diagram (ERD) for the Emporium database, which we show to George to hopefully
help him see how these tables work better than an Excel spreadsheet. The ERD shows the dif-
ferent relationships between the tables in the database (the 1 indicates the one record part of
the relationship and the * represents the many records part), which contain one-to-many,
many-to-one, and many-to-many relationships. Before we modify the generated models, let’s
take a brief look at how to set up these relationships with ActiveRecord.

74 C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T

Figure 3-5. Entity relationship diagram showing the current Emporium database

One-to-Many Relationship

A one-to-many relationship is required when you have one record that owns a set of related
records. In Emporium, we have a one-to-many relationship between the publishers and books
tables (see Figure 3-5), because a publisher can have one or more books.

With ActiveRecord, one-to-many relationships are implemented using the has_many map-
ping. Adding a has_many :books declaration to the Publisher model will inject the methods
listed in Table 3-1 into the Publisher model.

■Note We list only part of the ActiveRecord API for associations. For a full list of methods, see the Ruby
on Rails documentation at http://rubyonrails.org/api/classes/ActiveRecord/Associations/
ClassMethods.html.

Table 3-1. Some Methods Introduced by has_many Mapping

Method Description

publisher.books Returns an array containing all books associated
with the publisher. An empty array is returned if no
books belong to the publisher.

publisher.books << Book.create(...) Adds a book to the publisher and sets up the
necessary foreign keys.

publisher.books.delete(some_book) Deletes a book from a publisher’s collection
of books.

publisher.books = new_books Replaces the publisher’s collection of books.

publisher.books_singular_ids=[1,2,3,4] Replaces the publisher’s books collection with a
new collection containing the books having the ids
1, 2, 3, and 4.

id
first_name
last_name

authors

author_id
book_id

authors_books

id
title
publisher_id
published_at
isbn
blurb
page_count
price
created_at
updated_at
cover_image

books

id
name

publishers

* 1

*

1

* 1

C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T 75

Many-to-One Relationship

In the previous section, we showed you how to map the Publisher model’s side of the pub-
lisher-book relationship by using a one-to-many relationship. Looking from the Book model’s
perspective, this is a many-to-one relationship, since a particular book can have only one
publisher.

Many-to-one relationships are implemented using the belongs_to ActiveRecord mapping.
The belongs_to :publisher declaration injects the methods listed in Table 3-2 into the Book
model. This gives you access to methods such as book.publisher.nil?.

Table 3-2. Some Methods Introduced by belongs_to Mapping

Many-to-Many Relationship

A many-to-many relationship is used when you have two tables that both contain a set of
records that can refer to another set of records in the other table. In our case, authors can be
associated with one or more books, and books can be authored by one or more authors, so a
many-to-many relationship exists between the authors and books tables. Many-to-many rela-
tionships are more complex than one-to-one relationships, as they involve one extra table,
referred to as the join table. The join table is used for setting up a link between the authors and
books tables.

publisher.books.clear Removes the books from the publisher’s collection.
The behavior can be configured so that the books
are deleted, instead of just removed from the
publisher. See the Ruby on Rails documentation on
the :dependent parameter for more information.

publisher.books.empty? Returns true if the books collection is empty.

publisher.books.size Returns the number of books associated with the
publisher.

publisher.books.find Finds an associated object according to the
same rules as ActiveRecord::Base.find:
http://api.rubyonrails.org/classes/
ActiveRecord/Base.html#M000860 .

Method Description

book.publisher Returns the publisher object or nil.

book.publisher = new_publisher Sets the book publisher to the specified publisher and sets
up the required link between the database tables.

book.publisher.nil? Returns true if the book’s publisher has not been set.

Method Description

76 C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T

Many-to-many relationships are set up in ActiveRecord using the has_and_belongs_to_many
mapping, also referred to as habtm. Adding a has_and_belongs_to_many :books declaration to the
Author model will inject the methods listed in Table 3-3.

Table 3-3. Some Methods Introduced by has_and_belongs_to_many Mapping

One-to-One Relationship

A one-to-one relationship is useful, for example, when you have a master entity that consists of
two logically separate entities. For example, a customer can have both a shipping address and
billing address. If you don’t want to store all of the information in one table, you could put the
addresses into separate tables and use a one-to-one relationship to map them to the customer.
One-to-one relationships are not used in the Emporium database at the moment.

■Tip Refer to Wikipedia’s entry on database normalization, http://en.wikipedia.org/wiki/
Database_normalization, for more information about how to organize data in a relational database
and when to split entities into different tables.

Method Description

author.books Returns an array of books belonging to this author or
an empty array if none have been associated.

author.books << Book.create(...) Adds a book to the author’s collection of books and
sets up the necessary link in the database by inserting
a record in the authors_books join table.

author.books.delete(some_book) Removes a book from the author’s collection of books.
Also removes the corresponding record from the
authors_books join table.

author.books = new_books Replaces the collection of books with a new one.

author.books_singular_ids=[1,2,3,4] Replaces the author’s collection of books with the
books having the specified ids.

author.books.clear Removes all books from the author’s collection and
the corresponding row in the authors_books join table.

author.books.empty? Returns true if the collection of books is empty.

author.books.size Returns the number of books.

author.books.find(id) Finds the book that is in the author’s collection of
books and has the specified id.

C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T 77

ActiveRecord uses the has_one mapping to implement one-to-one relationships. Adding a
has_one :address declaration to the Author model would inject the methods listed in Table 3-4
into the model.

Table 3-4. Some Methods Introduced by has_one Mapping

Modifying the Generated Models
Now that you understand both the database schema and the way ActiveRecord maps to the
schema, let’s modify the generated models.

Adding the has_many Mapping to the Publisher Model

As we just explained, the one-to-many relationship between the Publisher and Book model is
set up in ActiveRecord by adding the has_many declaration to app/models/publisher.rb, as
highlighted in the following code snippet:

class Publisher < ActiveRecord::Base
 has_many :books

 validates_length_of :name, :in => 2..255
 validates_uniqueness_of :name
end

This gives you access to, for example, the books.empty? method:

Publisher.find_by_name(‘Apress’).books.empty?

In case you are wondering, find_by_name is a dynamic finder, which dynamically (at run-
time) creates a SQL query that returns the Apress publisher, or nil if the publisher is not found.

Method Description

author.address Returns the author’s address object or nil.

author.address = new_address Sets the authors address to the specified new address.

author.address.nil? Returns true if the address object hasn’t been set.

78 C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T

Adding the belongs_to Mapping to the Book Model

As you learned in the previous section about ActiveRecord mappings, the many-to-one
relationship between the Book and Publisher model is set up with ActiveRecord by using
belongs_to. Change app/models/book.rb as shown here:

class Book < ActiveRecord::Base
 belongs_to :publisher
end

The belongs_to allows you to access, for example, the name of the publisher from the
Book model:

Book.find_by_title(‘Elvis Peanut Butter Sandwich Recipes 5th
Edition’).publisher.name

DYNAMIC FINDERS

Dynamic finders are features of ActiveRecord that allow you to use the ActiveRecord API instead of SQL to find
objects. Dynamic finders use the find_by format and are created by ActiveRecord on the fly at runtime when
calling the following, for example:

Publisher.find_by_name(“Apress”)

As another example, you could make this call:

book.find_all_by_title_and_page_count(‘Drinking Tequila for Dummies’, 538)

This dynamically creates a SQL query that finds all books having both the specified title and page count.
Dynamic finders can also create a new record if the query returns no results. This is useful for imple-

menting one-liners like this:

Publisher.find_or_create_by_name(‘Apress’)

This example creates the publisher Apress (if it doesn’t already exist) and then returns it.

C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T 79

Adding the habtm Mapping to the Book and Author Models

Next, for the many-to-many mapping between the authors and books, add the
has_and_belongs_to_many mapping to app/models/book.rb as follows:

class Book < ActiveRecord::Base
 has_and_belongs_to_many :authors
 belongs_to :publisher
end

■Note ActiveRecord tries to guess the name of the join table, authors_books, by combining the two table
names. In our example, ActiveRecord will look for a table named authors_books, not books_authors, since
the string authors comes before books when compared in lexical order.

We also want to be able to access the books from the author’s side of the relationship, so
change app/models/author.rb as follows:

class Author < ActiveRecord::Base
 has_and_belongs_to_many :books

 validates_presence_of :first_name, :last_name

 def name
 "#{first_name} #{last_name}"
 end
end

That takes care of the ActiveRecord mappings, but we also want to make sure only valid
books are stored in the database. This can be done with validations, which we introduced in
Chapter 2.

80 C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T

Adding Validations to the Book Model

Before writing unit tests for the model, you should add some validations to the model. The Book
model has quite a few attributes that should be validated, as listed in Table 3-5.

Table 3-5. Validations on the Book Model

Next, add each of these validations to the book model, app/models/book.rb, as shown here:

class Book < ActiveRecord::Base
 has_and_belongs_to_many :authors
 belongs_to :publisher

 validates_length_of :title, :in => 1..255
 validates_presence_of :publisher
 validates_presence_of :authors
 validates_presence_of :published_at
 validates_numericality_of :page_count, :only_integer => true
 validates_numericality_of :price
 validates_format_of :isbn, :with => /[0-9\-xX]{13}/
 validates_uniqueness_of :isbn
end

Cloning the Database
There’s one important step left to do before we start writing unit tests: we need to clone the
development database to the test environment. Your unit tests will use the test database,

Field Description

title The title should be at least 1 character long and have a maximum of 255
characters. This validation is done by adding validates_length_of :title,
:in => 1..255 to the model.

publisher A publisher should be assigned to the book. This validation is done by adding
validates_presence_of :publisher to the model.

authors A book should have at least one author. This validation is done by adding
validates_presence_of :authors to the model.

published_at The published date should be specified. This validation is done by adding
validates_presence_of :published_at to the model.

isbn The ISBN number should be in the correct format. This validation is done by
adding validates_format_of :isbn, :with => /[0-9\-xX]{13}/ to the model.
The validation uses a regular expression, which checks that there are 13
characters in the ISBN. Note that this is not a complete validation of an ISBN
number, but sufficient for our requirements.

page_count The page count should be an integer. This validation is done by adding
validates_numericality_of :page_count, :only_integer => true to the model.

price The price should be a number. This validation is done by adding
validates_numericality_of :price to the model.

C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T 81

emporium_test, but it hasn’t been updated to the latest version. The easiest way of cloning the
database structure from the development to the test database is by executing the following
command:

rake db:test:clone_structure

■Note An alternative way of updating the test database is to recreate the database from scratch using
migrations, by executing the rake command without specifying any parameters. This first runs all the migra-
tions, and then executes the tests in the test directory.

This is a built-in task that copies the database schema from the emporium_development
to the emporium_test database. If you skip this step, you’ll get the following error when running
the unit test:

ActiveRecord::StatementInvalid: Mysql::Error: Table 'emporium_test.books' doesn't
exist: DELETE FROM books

Unit Testing Validations
You want to be absolutely sure that the validations are working. One way of doing this is to cre-
ate a unit test that tests that all fields are validated correctly.

Scaffolding already created a unit test for you, but it contains only a dummy test, so
replace the code in test/unit/book_test.rb with the following code:

require File.dirname(__FILE__) + '/../test_helper'

class BookTest < Test::Unit::TestCase
 def test_failing_create
 book = Book.new
 assert_equal false, book.save

 assert_equal 7, book.errors.size
 assert book.errors.on(:title)
 assert book.errors.on(:publisher)
 assert book.errors.on(:authors)
 assert book.errors.on(:published_at)
 assert book.errors.on(:isbn)
 assert book.errors.on(:page_count)
 assert book.errors.on(:price)
 end
end

The unit test creates a new book without specifying any values for any of the validated fields,
such as the price. It then tries to save the book to the database. This triggers a validation of each

82 C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T

of the fields to which you added validations. When you run the test, there is a validation failure on
each of the fields—eight in total. We test for this condition with the assert_equal method. We
also check that validations are done on the correct fields, by calling book.errors.on on each vali-
dated field. This method returns the actual error message for the specified field, and if it returns
nil, we know the validation is not working.

Run the unit test, and you should see it pass without errors:

$ ruby test/unit/book_test.rb

Loaded suite test/unit/book_test
Started
.
Finished in 0.172 seconds.

1 tests, 9 assertions, 0 failures, 0 errors

You should also test that a valid book can be saved to the database, by adding the
test_create method to the unit test, as follows:

 fixtures :authors, :publishers

 def test_create
 book = Book.new(
 :title => 'Ruby for Toddlers',
 :publisher_id => Publisher.find(1).id,
 :published_at => Time.now,
 :authors => Author.find(:all),
 :isbn => '123-123-123-1',
 :blurb => 'The best book since "Bodo Bär zu Hause"',
 :page_count => 12,
 :price => 40.4
)

 assert book.save
 end

This test looks up an author and a publisher from the database. These are inserted by
the publisher and author fixtures, which have also been added. The test creates a new book
with valid parameters, including a publisher and author, and then validates that the book was
saved successfully. Recall that calling save on the book object returns true if there are no vali-
dation errors.

Unit Testing the ActiveRecord Mappings
You want to be sure that the mapping between authors, books, and publishers works. George
won’t be happy at all, if there’s a bug in the code that prevents him from adding the latest best-
sellers to the catalog.

C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T 83

Adding Fixtures for Books and Publishers

We’ll verify that the mapping works by creating unit tests for the mapping code. But let’s first
add some useful data to the books and publishers fixture files, which we’ll use in later tests.

Open test/fixtures/books.yml and add the following two books:

pro_rails_ecommerce:
 id: 1
 title: Pro Rails E-Commerce
 publisher_id: 1
 isbn: 199-199-199-1
 published_at: <%= Time.now.strftime("%Y-%m-%d") %>
pro_rails_ecommerce_2:
 id: 2
 title: Pro Rails E-Commerce 2nd Edition
 publisher_id: 1
 isbn: 199-199-199-2
 published_at: <%= Time.now.strftime("%Y-%m-%d") %>

Note that the publisher_id column has been added to the fixture. This is a reference
to a row in the database, which is inserted by the publishers.yml fixture file. Currently, no
publisher has an id equal to 1, so you’ll need to add the data to the publishers fixture file to
complete the mapping.

■Tip You can write ERB in fixtures in the same way as in views. This allows you to create dynamic fixtures, as
demonstrated in the books.yml fixture file, where Time.now is used to generate the published_at value.
Although dynamic fixtures are useful in some situations, they should generally be avoided as they make tests
more complex and less predictable.

Next, add a publisher to the test/fixtures/publishers.yml file:

apress:
 id: 1
 name: Apress
emporium:
 id: 2
 name: Emporium

Recall that you specify the fixtures that the unit test should load by adding a fixtures dec-
laration. A couple of tests that we will implement later in this chapter depend on the authors,
publishers, and books fixtures. The books fixture has not been added to the test yet, so change
the fixtures line in the unit test as follows:

fixtures :authors, :publishers, :books

84 C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T

Unit Testing the One-to-Many Mapping

Now we’ll put the data into use and verify that we can access a collection of books from a pub-
lisher. This is done by adding the new test, test_has_many_and_belongs_to_mapping, to the
test/unit/book_test.rb unit test:

 def test_has_many_and_belongs_to_mapping
 apress = Publisher.find_by_name("Apress")
 assert_equal 2, apress.books.size

 book = Book.new(
 :title => 'Rails E-Commerce 3nd Edition',
 :authors => [Author.find_by_first_name_and_last_name('Christian', 'Hellsten'),
 Author.find_by_first_name_and_last_name('Jarkko', 'Laine')],
 :published_at => Time.now,
 :isbn => '123-123-123-x',
 :blurb => 'E-Commerce on Rails',
 :page_count => 300,
 :price => 30.5
)

 apress.books << book

 apress.reload
 book.reload

 assert_equal 3, apress.books.size
 assert_equal 'Apress', book.publisher.name
 end

■Note The unit test doesn’t call book.save explicitly. ActiveRecord is smart enough to know that it must
persist the book to the database when the book is added to the author’s collection of books. Also note that
you could use assert_difference (introduced in the previous chapter), instead of two calls to
assert_equal.

C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T 85

The unit test performs the following tasks in order:

1. Look up a publisher and verify that there are two books in the books collection. These
two books are inserted by the fixture at the start of the test.

2. Create a new book and associate two authors with it.

3. Add the new book to the publisher’s collection of books.

4. Reload the book and publisher data from the database.

5. Verify that the publisher has three books, instead of the original count of two.

6. Verify that the publisher’s name is the one we assigned.

■Note The order the fixtures are listed in is important. The fixture data is inserted in the order it is
listed. For example, putting the publishers fixture after the books fixture would result in a foreign key
error when the test is run and Rails tries to insert the fixture data: ActiveRecord::StatementInvalid:
Mysql::Error: Cannot add or update a child row: a foreign key constraint fails.

Next, run the unit tests. You should see all tests pass without any errors.

$ ruby test/unit/book_test.rb

Loaded suite test/unit/book_test
Started
...
Finished in 0.359 seconds.

3 tests, 13 assertions, 0 failures, 0 errors

To see the SQL that is executed by ActiveRecord behind the scenes, tail the logs/test.log
file by executing the following command in a separate console window:

$ tail -f logs/test.log

86 C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T

This will monitor the log for changes and print them out to the screen.
Run the unit tests again. You should see the following output from the test_has_many_

and_belongs_to_mapping test that you just implemented:

SQL (0.000000) BEGIN
 Publisher Columns (0.000000) SHOW FIELDS FROM publishers
Publisher Load (0.016000) SELECT * FROM publishers WHERE (publishers.`name` = '
 Book Columns (0.000000) SHOW FIELDS FROM books
SQL (0.000000) SELECT count(*) AS count_all FROM books WHERE (books.publisher_i
 Author Columns (0.015000) SHOW FIELDS FROM authors
Author Load (0.000000) SELECT * FROM authors WHERE (authors.`first_name` = 'Joe
 Author Load (0.000000) SELECT * FROM authors WHERE (authors.`first_name` = '
Book Load (0.000000) SELECT * FROM books WHERE (books.publisher_id = 1)
 SQL (0.000000) INSERT INTO books (`isbn`, `updated_at`, `page_count`, `price
authors_books Columns (0.016000) SHOW FIELDS FROM authors_books
 SQL (0.000000) INSERT INTO authors_books (`author_id`, `book_id`) VALUES (1,
authors_books Columns (0.000000) SHOW FIELDS FROM authors_books
 SQL (0.000000) INSERT INTO authors_books (`author_id`, `book_id`) VALUES (2,
Publisher Load (0.000000) SELECT * FROM publishers WHERE (publishers.id = 1) LI
 Book Load (0.000000) SELECT * FROM books WHERE (books.id = 9) LIMIT 1
SQL (0.000000) SELECT count(*) AS count_all FROM books WHERE (books.publisher_i
 Join Table Columns (0.015000) SHOW FIELDS FROM authors_books
Author Load (0.000000) SELECT * FROM authors INNER JOIN authors_books ON author
 SQL (0.329000) ROLLBACK

As you can see from the first and last line in the sample output, each test is wrapped in a
transaction, and changes done by the test are rolled back at the end of the test.

Adding a Fixture for the Many-to-Many Relationship

Next, we’ll add a fixture that contains the data needed in the authors_books join table. We will
use the data in the next section when writing a unit test that tests the many-to-many mapping.
Create a new file named test/fixtures/authors_books.yml and add the following code:

pro_rails_ecommerce_1:
 author_id: 1
 book_id: 1
pro_rails_ecommerce_2:
 author_id: 2
 book_id: 1

The fixture links the two authors defined in the authors fixture to a record found in the
books fixture.

C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T 87

Unit Testing the Many-to-Many Mapping

Change the fixtures declaration in the app/test/unit/book_test.rb file to use the new fixture:

fixtures :publishers, :authors, :books, :authors_books

Next, implement a test that verifies that the many-to-many mapping works. This test will
verify that you can access the list of authors of a specific book by calling book.authors, and that
you, from the author’s perspective, are able to access the list of books an author has written by
calling author.books. Open test/unit/book_test.rb and add the following method to the end
of the file.

 def test_has_and_belongs_to_many_authors_mapping
 book = Book.new(
 :title => 'Rails E-Commerce 3nd Edition',
 :publisher => Publisher.find_by_name('Apress'),
 :authors => [Author.find_by_first_name_and_last_name('Christian', 'Hellsten'),
 Author.find_by_first_name_and_last_name('Jarkko', 'Laine')],
 :published_at => Time.now,
 :isbn => '123-123-123-x',
 :blurb => 'E-Commerce on Rails',
 :page_count => 300,
 :price => 30.5
)

 assert book.save

 book.reload

 assert_equal 2, book.authors.size
 assert_equal 2, ➥

Author.find_by_first_name_and_last_name('Christian', 'Hellsten').books.size
 end

The unit test performs the following steps:

1. Create a new book and assign two authors and one publisher to it.

2. Reload the book from the database.

3. Verify that the book has two authors.

4. Verify that one of the authors has two books, of which one is created by the test and the
other by the fixture.

88 C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T

Now run the unit tests:

$ ruby test/unit/book_test.rb

Loaded suite test/unit/book_test
Started
..
Finished in 0.421 seconds.

4 tests, 16 assertions, 0 failures, 0 errors

You should see no errors.

Generating Book Administration Code
with the Scaffolding Script
With both the database schema and ActiveRecord model in place, we are now ready to start
implementing the front-end. The requirements for book administration include five user sto-
ries: Add Book, Upload Book Cover, View Book, Edit Book, and Delete Book.

■Tip It’s good practice to run all your tests—including unit, integration, and functional—after you make
any big changes, as we have done in this chapter. This can be done by running the rake command without
specifying any parameters. However, at this point, it will throw an error. You can fix this by adding the line
config.active_record.schema_format = :sql to config/environment.rb.

As with the publisher administration interface, we use scaffolding to create the controller,
model, and view files by executing the generate script:

$ script/generate scaffold Book 'admin/book'

C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T 89

 exists app/controllers/admin
 exists app/helpers/admin
 create app/views/admin/book
 exists test/functional/admin
 dependency model
 exists app/models/
 exists test/unit/
 exists test/fixtures/
 skip app/models/book.rb
 skip test/unit/book_test.rb
 skip test/fixtures/books.yml
 create app/views/admin/book/_form.rhtml
 create app/views/admin/book/list.rhtml
 create app/views/admin/book/show.rhtml
 create app/views/admin/book/new.rhtml
 create app/views/admin/book/edit.rhtml
 create app/controllers/admin/book_controller.rb
 create test/functional/admin/book_controller_test.rb
 create app/helpers/admin/book_helper.rb
 create app/views/layouts/book.rhtml
 create public/stylesheets/scaffold.css

You can delete the public/stylesheets/scaffold.css file, because you already have a style
sheet. Note that the generated functional test will fail if you execute it. You can decide whether
to keep it or delete it, but we deleted it by executing the following command:

$ rm test/functional/admin/book_controller_test.rb

Now we’ll introduce you to integration tests, which we’ll use to test the front-end instead
of functional tests.

90 C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T

Integration Testing
As we mentioned in Chapter 2, Ruby on Rails 1.1 introduced the concept of integration tests.
Integration tests can be used to write tests that span multiple controllers and exercise the
whole application, from the dispatcher to the database.

Suppose that we wanted to write a test for the whole Emporium administration interface.
The test would need to simulate the actions of one or more administrators: logging in to the
application; administering authors, publishers, and books; and logging out. Integration tests
are a good way of simulating these actions, as they can be used to ensure that related function-
ality works as expected when multiple controllers and actions are called in sequence.

Another benefit of using integration tests is that they allow you to open multiple sessions,
unlike functional tests, which use the same session for the whole test. Opening a new session is
done by calling the open_session method, which returns a new session object. This opens up a
whole new range of possibilities for testing your code. For example, you can simulate multiple
users accessing the same application at the same time, and you can test for bugs that are
related to the session. The open_session method also enables you to extend the session with
your own methods. This technique can be used to write a domain-specific language (DSL).

■Tip It’s a good idea to try to create test cases that are based on the user story. Try to follow the same flow
of actions and events as in the user story. Also test alternative use case flows, which might involve invalid
user input, for example.

Jamis Buck, one of the Rails core team members, points out on his blog jamis.jamisbuck.org
that one of the biggest benefits of using integration tests is that you can easily create DSLs. As dis-
cussed in Chapter 2, Rails itself uses DSLs for many tasks, such as ActiveRecord mappings and
validations. A DSL, as its name implies, is a language you write in Ruby code (or other program-
ming language) for a specific domain. In the context of the Emporium project, for example, one
domain is the integration testing of our book administration interface. DSLs should support
actions related to a domain.

The following is an example of a DSL. If you read it line by line, you can get a sense of what
it does, even without knowing too much about DSLs.

require "#{File.dirname(__FILE__)}/../test_helper"

class DSLTest < ActionController::IntegrationTest

 def test_browse_book_store
 george = new_session
 bob = new_session

 george.add_book(...)
 bob.view_book(...)
 bob.add_book_to_cart(...)
 end

C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T 91

 private

 module TestingDSL
 def add_book(...)
 ...
 end

 def view_book(...)
 ...
 end

 def add_book_to_cart(...)
 ...
 end

 def new_session
 open_session do |sess|
 sess.extend(TestingDSL)
 yield sess if block_given?
 end
 end
 end
end

You’ll see how to implement integration testing in the following sections, as we complete
each of the book administration user stories for this sprint.

Completing the Add Book User Story
As you have noticed, throughout this chapter, we haven’t followed TDD very strictly. Instead,
we first created the code using scaffolding. Although we can add, list, view, edit, and delete
books, the functionality is not tested and we are not confident that it is working as George
desires. We’ll have to talk to George to find out what exactly should be implemented.

We call George over to our cubicle, which happens to be the only cubicle in the office,
reserved exclusively for consultants. George tells us that when adding a book to the system, he
must be able to enter all details of the book, including title, price, ISBN, blurb, and so on. Fur-
thermore, George tells us that the current system is difficult to use. Because of this, he has to
consult his computer-literate nephew, who enters the details of new books into the system.
The blurb text is what is causing him most troubles. When displayed on the website, the blurb
text must be nicely styled with, for example, proper headings, bulleted lists, and italicized text,
so that it looks as good as possible. On the Web, this requires HTML skills, and because George
doesn’t know HTML, he can’t write the blurb himself. Luckily, there’s a simple answer to the
problem called Textile.

Textile is a simple text markup language that can be used to write content for the Web
without needing to know HTML. RedCloth is a Ruby module that adds Textile support to Rails
applications. You’ll see how this works when we implement the View Book user story, later in
the chapter.

92 C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T

Our first task is to create the integration test we will use to test the book administration
implementation.

Creating an Integration Test

We’ll create a DSL that will closely match the actions performed in the book administration
user stories. Create the integration test by executing the following command:

$ script/generate integration_test book

 exists test/integration/
 create test/integration/book_test.rb

As with unit tests, the integration test contains only a dummy test, so modify the
test/integration/book_test.rb file as shown in Listing 3-2.

RUBY BLOCKS

A block is a piece of Ruby code that can be passed to a Ruby method. Unlike normal parameters, blocks can
be passed to all Ruby methods without explicitly declaring that the method takes a block as a parameter. The
method receiving the block, as a parameter, can evaluate the code, by calling the yield method.

The following example shows how Ruby blocks can be used for preprocessing and postprocessing by
passing a block to the log method.

def log
 puts "before"
 yield
 puts "after"
end

log { puts "in between" } # block on one line

The following is the output of executing this example:

before
in between
after

The following syntax is preferred for blocks that span more than one line:

log do
 calculate_x
 calculate_y
end

C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T 93

Listing 3-2. First Version of Integration Test for the Book Administration Interface

require "#{File.dirname(__FILE__)}/../test_helper"

class BookTest < ActionController::IntegrationTest
 fixtures :publishers, :authors
 def test_book_administration
 publisher = Publisher.create(:name => 'Books for Dummies')
 author = Author.create(:first_name => 'Bodo', :last_name => 'Bär')

 george = new_session_as(:george)
 ruby_for_dummies = george.add_book :book => {
 :title => 'Ruby for Dummies',
 :publisher_id => publisher.id,
 :author_ids => [author.id],
 :published_at => Time.now,
 :isbn => '123-123-123-X',
 :blurb => 'The best book released since "Eating for Dummies"',
 :page_count => 123,
 :price => 40.4
 }
 end

 private

 module BookTestDSL
 attr_writer :name

 def add_book(parameters)
 post "/admin/book/create", parameters
 assert_response :redirect
 follow_redirect!
 assert_response :success
 assert_template "admin/book/list"
 assert_tag :tag => 'td', :content => parameters[:book][:title]
 return Book.find_by_title(parameters[:book][:title])
 end
 end

 def new_session_as(name)
 open_session do |session|
 session.extend(BookTestDSL)
 session.name = name
 yield session if block_given?
 end
 end

end

94 C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T

Note that the test_book_administration test will be used for verifying that the whole book
administration works from end to end. The first step in doing this is implementing a test for the
Add Book user story.

Also note that the method new_session_as(name) is used to open a new session for a virtual
user. Inside the method, we use some Ruby magic to extend the new session object at runtime
with our book-testing DSL. This is done with the extend method, which simply adds the instance
methods in the BookTestDSL module to the session object.

We also save the name of the user in an instance variable inside the DSL module. This
allows you to use it later, if required.

The line yield session if block_given? is used to pass the new session to a block, if a
block has been specified.

The integration test performs the following actions, which verify that the Add Book user
story works:

1. Create a new author and publisher.

2. Open a new session as George.

3. Create a new book by calling the create action with valid parameters.

4. Verify that there is a redirection to the list books view, which should happen if the book
was created successfully.

Run the integration test, and you should see that all tests pass:

$ ruby test/integration/book_test.rb

Loaded suite test/integration/book_test
Started
.
Finished in 0.453 seconds.

1 tests, 4 assertions, 0 failures, 0 errors

C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T 95

Since the test didn’t fail, you could be tricked into believing that we have just finished the
implementation of the Add Book user story, but you can see that this is not the case by opening
a browser and going to http://localhost:3000/admin/book/new. You should see the front-end
for the Add Book user story, as shown in Figure 3-6.

The page you see on the screen was created by the scaffolding script, and includes drop-
down lists for the published_at, created_at, and updated_at fields. The values for created_at
and updated_at are generated by Rails automatically, so George shouldn’t have to see them.
There’s also no way of specifying the authors or publisher of the book.

Figure 3-6. Testing the Add Book user story

Changing the Controller

The add book page should provide a way of selecting the publisher and one or more authors for
the book. This will be done using a drop-down list of all available publishers and a multiple-
selection list showing all authors. To be able to show the authors and publishers in the view, we
must tell the controller to load all publishers and authors, and pass them to the view.

96 C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T

Open app/controllers/admin/book_controller.rb and add the lines shown in bold to the
new and create actions.

 def new
 load_data
 @book = Book.new
 end

 def create
 @book = Book.new(params[:book])
 if @book.save
 flash[:notice] = 'Book was successfully created.'
 redirect_to :action => 'list'
 else
 load_data
 render :action => 'new'
 end
 end

Also, add the following method to the end of the controller:

 private

 def load_data
 @authors = Author.find(:all)
 @publishers = Publisher.find(:all)
 end

Note that the new method load_data should be declared private, as it is used only inter-
nally by the controller. This method loads all authors and publishers from the database and
stores them as instance variables, which allows you to access them from the view.

We also needed to change the create action, since it will render the new action’s view, which
expects to find the authors and publishers, if there is a validation error on the Book object.

The form shown on the add book page is generated by the app/views/admin/book/
_form.rhtml file. This file is shared by both the edit and add book pages.

C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T 97

Changing the View

Next, we will use the collection_select view helper to generate the drop-down list for publish-
ers. The format for the collection_select helper is as follows:

<%= collection_select :book, :publisher_id, @publishers, :id, :name %>

The first and second parameters tell the helper to which model and attribute to bind the
field. The third parameter is used to pass a list of publishers that should be shown in the drop-
down list. The two last parameters, :id and :name, are used to specify that the value for the
drop-down list should be the publisher’s id and that the label should be the publisher’s name.

select_tag is used for generating a list of authors from which George can select one or
more authors. The format for this helper is as follows:

<%= select_tag 'book[author_ids][]',
 options_from_collection_for_select(@authors, :id, :name, ➥

@book.authors.collect{|author| author.id}),
 { :multiple => true, :size => 5 }
%>

select_tag has the following parameters:

• The first parameter, book[author_ids][], specifies to which attribute the field should be
bound. Note that the parameter must end with [] so that Rails knows that the attribute
it needs to bind the value to is an array.

• The second parameter, options_from_collection_for_select, is used for generating the
list of options that should be shown in the list. This method’s first parameter is a collec-
tion of authors. The method’s second and third parameters, :id and :name, specify the
attributes that should be used as the value and label, respectively. The fourth parameter
is used for preselecting the authors that have been assigned to the book.

• The third parameter of the select_tag is used for specifying options. In this case, we
specify that the list should support multiple-selections and that five authors should
be shown.

98 C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T

Next, change the app/views/admin/book/_form.rhtml file as follows:

<%= error_messages_for 'book' %>

<p><label for="book_title">Title</label>

<%= text_field 'book', 'title' %></p>

<p><label for="book_publisher">Publisher</label>

<%= collection_select :book, :publisher_id, @publishers, :id, :name %></p>

<p><label for="book[author_ids][]">Authors</label>

<%= select_tag 'book[author_ids][]',
 options_from_collection_for_select(@authors, :id, :name, ➥

@book.authors.collect{|author| author.id}),
 { :multiple => true, :size => 5 }
%>
</p>

<p><label for="book_published_at">Published at</label>

<%= datetime_select 'book', 'published_at' %></p>

<p><label for="book_isbn">Isbn</label>

<%= text_field 'book', 'isbn' %></p>

<p><label for="book_blurb">Blurb</label>

<%= text_area 'book', 'blurb' %></p>

<p><label for="book_price">Price</label>

<%= text_field 'book', 'price' %></p>

<p><label for="book_price">Page count</label>

<%= text_field 'book', 'page_count' %></p>

C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T 99

Notice that we use the text_field, collection_select, select_tag, datetime_select, and
text_area helpers for creating the fields. You can test the Add Book user story by first adding a
couple of authors and publishers to the database, either through the user interface we created
earlier or by executing the following from the console:

$ script/console

Loading development environment.
>> Publisher.create(:name => 'Apress')
>> Author.create(:first_name => 'Salman', :last_name => 'Rushdie')
>> Author.create(:first_name => 'Joel', :last_name => 'Spolsky')

Then, open http://localhost:3000/admin/book/new in your browser. You should see a
page that looks similar to Figure 3-7.

Figure 3-7. The add book page with publishers and authors

100 C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T

You should be able to add books to the system by entering all valid information. If you
forget to enter something in a required field, you should see validation errors similar to those
shown in Figure 3-8.

Figure 3-8. Validation errors

Updating the Integration Test

As usual, we should change the integration test to reflect the changes we have made to the
code. We should test that we can create a book and that the view contains what is expected.
Next, change the add_book method in the DSL as shown in Listing 3-3.

C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T 101

Listing 3-3. The Updated Integration Test for the Add Book User Story

 def add_book(parameters)
 author = Author.find(:all).first
 publisher = Publisher.find(:all).first

 get "/admin/book/new"
 assert_response :success
 assert_template "admin/book/new"

 assert_tag :tag => 'option', :attributes => { :value => publisher.id }
 assert_tag :tag => 'select', :attributes => {
 :id => 'book[author_ids][]'}

 post "/admin/book/create", parameters
 assert_response :redirect
 follow_redirect!
 assert_response :success
 assert_template "admin/book/list"
 assert_tag :tag => 'td', :content => parameters[:book][:title]
 return Book.find_by_title(parameters[:book][:title])
 end

Instead of just calling the create action with valid parameters and verifying that the
request was successful, we now test the complete user story, including that the form contains
a list of publishers and authors. This is done with the assert_tag, which checks if the drop-
down list and multiple-selection list are displayed on the screen.

Run the integration test again, and you should see all tests pass:

$ ruby test/integration/book_test.rb

Loaded suite test/integration/book_test
Started
.
Finished in 0.532 seconds.

1 tests, 8 assertions, 0 failures, 0 errors

We have now finished the implementation of the Add Book user story.

102 C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T

Completing the Upload Book Cover User Story
The Upload Book Cover user story is performed by the administrator, George. When adding a
book, George should be able to select an image and upload it to the Emporium site. This image
is then shown to customers when they are viewing the details of a book.

Adding File Upload Functionality

We don’t have to reinvent the wheel to implement file upload functionality. Sebastian Kanthak
has already implemented the file upload functionality we need and released it as the FileColumn
plugin. The plugin contains view helpers and an extension to ActiveRecord that allows us to
implement file upload easily.

Install the FileColumn plugin by executing the following command:

$ script/plugin install \
http://opensvn.csie.org/rails_file_column/plugins/file_column/trunk/

This downloads the latest version of the plugin from the Internet and installs it in the
vendor/plugins/trunk directory. After the installation has finished, rename the trunk directory
to file_column. Note that you need to restart WEBrick to activate the plugin.

■Tip For more information about FileColumn, visit http://www.kanthak.net/opensource/
file_column/. For example, you can discover how to configure FileColumn to resize the uploaded
image with the RMagick image processing library.

The FileColumn plugin stores the path to the uploaded image in the database. The exact
column where it should store the information is specified with a call to the file_column
method. Currently, our database schema doesn’t contain a column that we can use for this
purpose, which is why we’ll create it in the next section.

But first, add the file_column call to app/models/book.rb:

class Book < ActiveRecord::Base
 has_and_belongs_to_many :authors
 belongs_to :publisher

 file_column :cover_image
 validates_length_of :title, :in => 1..255

By calling file_column, we include the file upload functionality in our model and tell it to
store the path to the uploaded image in the cover_image column.

C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T 103

■Note At the time of writing, the FileColumn plugin contained an annoying bug that runs a unit
test located in the plugin’s lib directory every time you execute rake or a script. To fix this, delete
vendor/plugins/file_column/lib/test_case.rb and remove the line require 'test_case' from
the vendor/plugin/file_column/init.rb file.

Modifying the Database Schema

We’ll use an ActiveRecord migration to add the cover_image column to the books table. Create
the migration with the following command:

$ script/generate migration add_book_cover_column

 exists db/migrate
 create db/migrate/004_add_book_cover_column.rb

Add the following migration code to db/migrate/004_add_book_cover_column.rb.

class AddBookCoverColumn < ActiveRecord::Migration
 def self.up
 add_column :books, :cover_image, :string
 end

 def self.down
 remove_column :books, :cover_image
 end
end

The migration adds the cover_image column to the books table, and removes it if we are
rolling back changes.

You can now execute the migration with rake migrate:

$ rake migrate

(in C:/projects/emporium)
== AddBookCoverColumn: migrating ==
-- add_column(:books, :cover_image, :string)
 -> 0.5150s
== AddBookCoverColumn: migrated (0.5150s) =====================================

104 C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T

Cloning the Changes

You should clone the changes to your test database, because we’ll create an integration test
later in this chapter that tests the file upload functionality. You can clone the development
database to test by executing the following command:

rake db:test:clone_structure

As usual, you could run rake without specifying any parameters.

Changing the Form

Next, we’ll change the form we created for the Add Book user story so that the user can select
an image and upload it. Add the following code to the end of the view app/views/admin/
book/_form.rhtml.

<p><label for="book_cover_image">Cover image</label>

<%= file_column_field 'book', "cover_image" %></p>

Note that the file upload functionality requires that we change the form encoding to
be multipart/form-data. This is done by changing the start_form_tag in app/views/admin/
book/new.rhtml, as follows:

<%= start_form_tag({:action => 'create'}, :multipart => true) %>

You can now test the file upload functionality in your browser by opening
http://localhost:3000/admin/book/new and selecting a file for the Cover image field.
As you can see after clicking the Create button, the path to the uploaded image is stored in
the database.

When we implement the View Book user story, we will show you how to use the
url_for_file_column method to extract the path and display the image on a page:

 <%= image_tag url_for_file_column(:book, :cover_image) %>

■Tip At the time of writing, we couldn’t test file uploading with integration tests because of a bug in Rails.
But, when it is fixed, you can use the fixture_file_upload in your tests to create a valid HTTP parameter
that can be used by the get and post methods; for example, :cover_image => fixture_file_upload
('/book_cover.gif', 'image/png'). Note that the book_cover.gif image should be in the fixtures
directory.

Completing the List Books User Story
We already created a page with scaffolding that lists all the books in the system. This page can
be accessed at http://localhost:3000/admin/book/list. We show it to George and he seems
happy, except for two things: he can’t sort the list and he only needs to see the publisher’s
name and the book’s title and ISBN.

C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T 105

Changing the View

To fix the book list page, first change the view as follows:

<table>
 <tr>
 <th>Publisher</th>
 <th>Title</th>
 <th>ISBN</th>
 <th colspan="3"></th>
 </tr>

<% for book in @books %>
 <tr>
 <td><%=h book.publisher.name %></td>
 <td><%=h book.title %></td>
 <td><%=h book.isbn %></td>
 <td><%= link_to 'Show', :action => 'show', :id => book %></td>
 <td><%= link_to 'Edit', :action => 'edit', :id => book %></td>
 <td><%= link_to 'Destroy', { :action => 'destroy', :id => book }, ➥

 :confirm => 'Are you sure?', :post => true %></td>
 </tr>
<% end %>
</table>
<%= link_to 'Previous page', { :page => @book_pages.current.previous } ➥

if @book_pages.current.previous %>
<%= link_to 'Next page', { :page => @book_pages.current.next } ➥

if @book_pages.current.next %>

<%= link_to 'New book', :action => 'new' %>

The links we added allow George to sort the list when the Publisher, Title, or ISBN column
is clicked.

Changing the Controller

The following code implements the sorting. Change the app/controllers/admin/
book controller.rb file accordingly.

 def list
 @page_title = ‘Listing books’
 sort_by = params[:sort_by]
 @book_pages, @books = paginate :books, :order => sort_by, :per_page => 10
 end

Note the sort order is specified with the sort_by parameter. This parameter is passed to
the paginate method, which has built-in support for ordering the paginated list.

106 C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T

Adding an Integration Test

We’ll update our book administration DSL to include a method for testing the List Books user
story. The new method performs a simple smoke test. It accesses the page and verifies that
the server responds with an HTTP 200 status code, which means the request was successfully
processed.

Change the BookTestDSL as follows, adding the code shown in bold.

 module BookTestDSL
 attr_writer :name

 def list_books
 get "/admin/book/list"
 assert_response :success
 assert_template "admin/book/list"
 end

 def add_book(parameters)

Also add the row highlighted below to the end of the test_book_administration test. This
method simulates George browsing to the book list page, right after he has added a new book.

 def test_book_administration
 .
 .
 george.list_books
 end

The finished page can be accessed at http://localhost:3000/admin/book/list and should
look like Figure 3-9.

Figure 3-9. Testing the List Books user story

C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T 107

Completing the View Book User Story
The View Book user story also needs some cleaning up before George is happy. The code cre-
ated by the scaffolding displays the values of all database columns directly to the user. This
means, for example, that the publisher’s ID is shown instead of the publisher’s name. We’ll fix
this and also add code that displays the authors of the book and the book cover.

Changing the View

First, change app/views/admin/book/show.rhtml as follows:

<dl>
 <dt>Title</dt>
 <dd><%= @book.title %></dd>
 <dt>Publisher</dt>
 <dd><%= @book.publisher.name %></dd>
 <dt>Published at</dt>
 <dd><%= @book.published_at.strftime("%m/%d/%Y at %I:%M%p") %></dd>
 <dt>Authors</dt>
 <dd><%= @book.authors.collect{|author| author.name }.join(', ') %></dd>
 <dt>ISBN</dt>
 <dd><%= @book.isbn %></dd>
 <dt>Blurb</dt>
 <dd><%= textilize @book.blurb %></dd>
 <dt>Price</dt>
 <dd><%= @book.price %></dd>
 <dt>Page count</dt>
 <dd><%= @book.page_count %></dd>
 <dt>Cover image</dt>
 <% if @book.cover_image.nil? %>
 <dd>N/A</dd>
 <% else %>
 <dd><%= image_tag url_for_file_column(:book, :cover_image) %></dd>
 <% end %>
</dl>

<p><%= link_to "Edit", :action => "edit", :id => @book %> |
<%= link_to "Back", :action => "list" %></p>

Note that we use image_tag and the method url_for_file_column to display the uploaded
image of the book cover, but only if it exists. We also format the field published_at to use a stan-
dard format.

Recall that George wanted the Blurb field to be easy to edit. This is why we have used the
Textile markup language in the Blurb field, instead of HTML. The Textile markup we entered in
the Blurb field is passed through the textilize method in the view:

<%= textilize @book.blurb %>

108 C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T

This translates the Textile markup in the Blurb field to HTML. You’ll see this in action in
the next section.

■Note The textilize method is resource-intensive and should be executed only once (when the object
is saved). The resulting HTML should be stored in a database field, for example, blurb_html. The conversion
can easily be done using a before_save filter in the Book model, and then changing the view to display the
blurb_html column’s value, instead of running the conversion for each request.

Changing the Controller

There’s one more thing to fix. The view expects to find the instance variable page_title, which
means you should change the controller’s show action, as follows:

 def show
 @book = Book.find(params[:id])
 @page_title = "#{@book.title}"
 end

You can now access the book details page by clicking the Show link located next to a book
on the books list page. Figure 3-10 shows the page after all the changes have been done. Note
that the uploaded image is shown at the bottom of the page.

Figure 3-10. Testing the View Book user story

C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T 109

Another thing to note about Figure 3-10 is that the Blurb field shows a heading, a bulleted,
and a numbered list. In Figure 3-10, we entered the following into the Blurb field:

h1. This is a heading

* Item 1
Item 1.1

* Step 2
Step 2.1

■Tip See http://en.wikipedia.org/wiki/Textile_(markup_language) for more information about
the Textile markup language.

Adding an Integration Test

We’ll also add an integration test for the View Book user story. This is a simple test that verifies
that the page doesn’t throw an error. Add the following code to the DSL.

 def show_book(book)
 get "/admin/book/show/#{book.id}"
 assert_response :success
 assert_template "admin/book/show"
 end

The show_book method takes a book as a parameter, which it uses to call the show action.
Also add the highlighted line, shown in the following code, to the last line of the

test_book_administration method, right after the line george.list_books:

 george.list_books
 george.show_book ruby_for_dummies
end

This calls the test using the book we created earlier in the test. Run the integration test
again to verify that it still passes:

$ test/integration/book_test.rb

Loaded suite test/integration/book_test
Started
.
Finished in 0.531 seconds.

1 tests, 12 assertions, 0 failures, 0 errors

110 C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T

Completing the Edit Book User Story
One user story remains for us to implement, before we can call it a day. Luckily, most of the
code was generated with scaffolding.

Open a browser and verify that the Edit Book user story works. Add a book to the system
and click the Edit link next to the book in the list of books. You should see the following error
message:

NoMethodError in Admin/book#edit

Rails is kind enough to tell us the error is around line 5, which is where we display the list
of publishers. The test is failing because we haven’t loaded the publisher object, which the
view expects to find. To fix this, we need to change the action so that it loads the publishers and
authors in the same way we did for the Add Book user story. Since we already created the
load_data method, we only need to add a call to it in the edit action, as follows:

 def edit
 @page_title = ‘Editing book’
 load_data
 @book = Book.find(params[:id])
 end

We also need to change the form to use multipart encoding, because we added the file
upload functionality earlier in the chapter:

<%= start_form_tag({:action => 'update', :id => @book}, :multipart => true)%>
 <%= render :partial => 'form' %>
 <%= submit_tag 'Edit' %>
<%= end_form_tag %>

<%= link_to 'Show', :action => 'show', :id => @book %> |
<%= link_to 'Back', :action => 'list' %>

C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T 111

It’s important that you test the edit functionality. Add a new method to the testing DSL:

 def edit_book(book, parameters)
 get "/admin/book/edit/#{book.id}"
 assert_response :success
 assert_template "admin/book/edit"

 post "/admin/book/update/#{book.id}", parameters
 assert_response :redirect
 follow_redirect!
 assert_response :success
 assert_template "admin/book/show"
 end

The new edit_book method takes an instance of a book as a parameter and the parameters
hash. The parameters hash should contain the new attributes that the book should be updated
to use.

Lastly, add a call to the edit_book method right after the george.show_book line in the
test_book_administration method:

 george.show_book ruby_for_dummies

 george.edit_book(ruby_for_dummies, :book => {
 :title => 'Ruby for Toddlers',
 :publisher_id => publisher.id,
 :author_ids => [author.id],
 :published_at => Time.now,
 :isbn => '123-123-123-X',
 :blurb => 'The best book released since "Eating for Toddlers"',
 :page_count => 123,
 :price => 40.4
 })
end

Run the integration test by executing ruby test/integration/book_test.rb, and you
should see no errors. Verify that you can edit a book by accessing the edit page in your browser.

112 C H A P T E R 3 ■ B O O K I N V E N T O R Y M A N A G E M E N T

Testing the Delete Book User Story
The last user story, Delete Book, is already complete. Scaffolding created the destroy action in
the book controller, which is all we need. But, we can’t be sure it works until we have a test in
place, so we’ll write an integration test for it.

Add the new delete_book method to the DSL:

 def delete_book(book)
 post "/admin/book/destroy/#{book.id}"
 assert_response :redirect
 follow_redirect!
 assert_template "admin/book/list"
 end

The new method simply calls the destroy action and verifies that we are redirected to the
list books page.

We’ll allow another user, not George, to execute the test, to better illustrate how integration
tests can be used. Add the two highlighted lines to the end of the test_book_administration
method.

 :page_count => 123,
 :price => 40.4
 })

 bob = new_session_as(:bob)
 bob.delete_book ruby_for_dummies
 end

Again, run the tests with rake test:integrations. You should see no errors, which means
you have successfully implemented the book administration interface.

We quickly do an ad hoc usability test with George, by allowing him to add a couple of
books and publishers to the system. He is delighted that everything works and that we could
finish it so quickly. We decide to call it a day and head home.

Summary
In this chapter, we introduced you to scaffolding and showed you how to map one-to-many,
many-to-one, and many-to-many relationships with ActiveRecord. We also showed you how
to write integration tests and use a custom testing DSL for the whole book administration
interface. Additionally, you saw how to implement file upload capabilities with the FileColumn
plugin and how to use the Textile markup language to simplify content creation. At the end of
the chapter, we had a working book inventory management system, with extensive tests that
make us confident that we can handle future changes to the system without breaking it.

In the next chapter, we’ll implement the front-end for the book catalog functionality,
which is what the customer will use.

113

■ ■ ■

C H A P T E R 4

Book Catalog Browsing

In this chapter, we’ll work through setting up the basic functionality of a book catalog from the
customer’s perspective. We’ll build the chapter around four user stories where Jill, George’s
book-hogging customer, plays the starring role.

For the Emporium book catalog, we will create a simple catalog page for the books, along
with pages that display details for individual titles. The interface also will need a way to search
for books by their titles and descriptions. We will use Ferret, a full-text search engine written in
Ruby, to supply this functionality. Additionally, we will create a latest books page and RSS feed,
so that Jill can follow what’s new at Emporium.

Getting the Book Catalog Requirements
If there’s one person keeping Emporium going, that’s Jill. Jill lives just a couple of blocks away
from the store. When she rushes through the door with her plasma-TV-sized goggles, George
knows that the day is saved.

However, Jill’s health is not as it used to be. Her visits have gotten fewer and fewer lately.
She would love to support George and buy a lot of new books, but it’s just too much effort for
her to come over daily. Jill is a smart lady, though, and she’s found out that this new thing
called the Internet can work as an intermediary between her and her beloved book supply.

114 C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G

To make Jill a happy online customer, George comes up with four user stories for this sprint:

• Browse books: Jill needs a way to browse the books in the shop. We will keep the list
really simple at this point, just letting her shuffle through the supply and find out about
new titles.

• View book details: After browsing through titles in the first story or getting a list of match-
ing titles in the second one, Jill needs a way to get specific information about a particular
title. As a former librarian, she is obsessed about knowing even the most mundane
details of every book she is thinking about buying.

• Search books: Sometimes Jill finds out about an interesting topic and wants to know
more about the subject. She needs to be able to write a few keywords and get a list of all
the titles that match her search.

• Get latest books: As a book addict, Jill needs a way to keep current about all new books.
She would like to find out about new titles with a single look on the Emporium site. What
would make her really happy, however, would be an RSS feed that she could follow on
her shiny white iBook without even visiting the website. That would leave her more time
for her real pleasure, perusing her precious tomes.

We will tackle these user stories in this chapter, one by one, using the already familiar
TDD method.

Implementing the Book Catalog Interface
To be able to really test browsing a list of titles, we need to have a number of books avail-

able for viewing. Therefore, we need to expand our authors.yml, publishers.yml, books.yml,
and authors_books.yml fixture files in test/fixtures. You can download the files from the
Source Code/Downloads section of www.apress.com.

As in the previous chapter, we’ll use integration tests for this sprint, because they work
well to exercise the book catalog browsing system from end to end. First, we’ll create a test stub
by using the Rails test generator:

$ script/generate integration_test BrowsingAndSearching

 exists test/integration/
 create test/integration/browsing_and_searching_test.rb

Again, we’ll delete the test_truth from the test file and replace it with our real test, as
shown in Listing 4-1.

C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G 115

Listing 4-1. First Version of the Integration Test for the Book Catalog Interface

require "#{File.dirname(__FILE__)}/../test_helper"

class BrowsingAndSearchingTest < ActionController::IntegrationTest
 fixtures :publishers, :authors, :books, :authors_books

 def test_browsing_the_site
 jill = enter_site(:jill)
 jill.browse_index
 end

 private

 module BrowsingTestDSL
 attr_writer :name

 def browse_index
 get "/catalog"

 assert_response :success
 assert_template "catalog/index"
 assert_tag :tag => "dl", :attributes =>
 { :id => "books" },
 :children =>
 { :count => 10, :only =>
 {:tag => "dt"}}
 assert_tag :tag => "dt", :content => "The Idiot"
 end
 end

 def enter_site(name)
 open_session do |session|
 session.extend(BrowsingTestDSL)
 session.name = name
 yield session if block_given?
 end
 end
end

116 C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G

In the test case, we create a DSL module, as in the previous chapter. We first test that
requesting "/catalog" works and that we get the default index template rendered. Then we
check that there is a list of books (laid out with an HTML definition list) on the page and that a
book called The Idiot exists in that list.

Our test fails magnificently, in plain old TDD way, so it’s time to implement the functionality.
First, we need to create the controller for the catalog. We’ll name it catalog so that it will

match the URL requested in the browse_site test method. Once again, use the familiar
script/generate command and give the needed action names (for all our projected user sto-
ries) as parameters.

$ script/generate controller Catalog index show search latest

 exists app/controllers/
 exists app/helpers/
 create app/views/catalog
 exists test/functional/
 create app/controllers/catalog_controller.rb
 create test/functional/catalog_controller_test.rb
 create app/helpers/catalog_helper.rb
 create app/views/catalog/index.rhtml
 create app/views/catalog/show.rhtml
 create app/views/catalog/search.rhtml
 create app/views/catalog/latest.rhtml

Implementing the Browse Books User Story
Now that we have the controller in place, we’re ready to begin with the Browse Books user story.

Modifying the Controller

At this point, we’re interested in only the index action and the corresponding view. Open
app/controllers/catalog_controller.rb, which was just created by the generator command.
Modify the index method so that it looks as follows:

def index
 @page_title = "Book List"
 @book_pages, @books = paginate :books,
 :per_page => 10,
 :include => [:authors, :publisher],
 :order => "books.id desc"
end

C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G 117

In the index action, we first set the page title so that the layout file will pick it up and show it
in the headers of the resulting page. Additionally, the action contains a normal pagination call,
just as in Chapter 3. However, this time, we use the include parameter for the paginate call.

The include parameter is used in the ActiveRecord find method (which is used internally by
paginate) to make ActiveRecord build up a join query. This single SQL query will be used not only
to find the books, but also to fetch the associated authors and publishers from the database. If we
omitted the parameter, our code would end up calling a new SQL query each time we needed to
get the author or publisher details for a given book. In our case, it would result in 2n+1 (where n
is the number of books) queries instead of just one. When the site gets more traffic, that could
become a huge performance bottleneck.

■Note We can hear you ask, “Where does the 2n+1 come from?” The first query is the one where all the
books are fetched. Then, when we iterate over all the n books and call their authors and publisher meth-
ods, each call will result in an additional SQL query, resulting in two additional queries for each book. The
resulting amount of queries is thus 2 queries × n books + the original query, or 2n+1.

Modifying the View

Next, open app/views/catalog/index.rhtml and replace its contents with the following code.

<dl id="books">
 <% for book in @books %>
 <dt><%= book.title %></dt>
 <% for author in book.authors %>
 <dd><%= author.last_name %>, <%= author.first_name %></dd>
 <% end %>
 <dd><%= pluralize(book.page_count, "page") %></dd>
 <dd>Price: $<%= sprintf("%.2f", book.price) %></dd>
 <dd><small>Publisher: <%= book.publisher.name %></small></dd>
 <% end %>
</dl>

<%= link_to 'Previous page', { :page => @book_pages.current.previous } if ➥

@book_pages.current.previous %>
<%= link_to 'Next page', { :page => @book_pages.current.next } if ➥

@book_pages.current.next %>

In the view, we iterate over all the books we got from the controller and show their titles,
authors, prices, page counts, and publishers. The pluralize helper will show the word “page”
in either singular or plural, depending on the value of book.page_count. In the end, we show
links to next and/or previous page in case there are more than ten books in the @books array.

118 C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G

Running the Integration Test

Now that we have our simple browsing functionality implemented, we can run our test case.

$ ruby test/integration/browsing_and_searching_test.rb

Loaded suite test/integration/browsing_and_searching_test
Started
.
Finished in 0.514885 seconds.

1 tests, 4 assertions, 0 failures, 0 errors

The test passes, but browsing is really not browsing if it involves only a single page. So, let’s
create another test case that checks that the pagination in our catalog works as expected. Make
the following changes to test/integration/browsing_and_searching_test.rb:

require "#{File.dirname(__FILE__)}/../test_helper"

class BrowsingAndSearchingTest < ActionController::IntegrationTest
 fixtures :publishers, :authors, :books, :authors_books

 def test_browsing_the_site
 jill = enter_site(:jill)
 jill.browse_index
 jill.go_to_second_page
 end

 private

 module BrowsingTestDSL
 attr_writer :name

 def browse_index
 get "/catalog"

 assert_response :success
 assert_template "catalog/index"
 assert_tag :tag => "dl", :attributes =>
 { :id => "books" },
 :children =>
 { :count => 10, :only =>
 {:tag => "dt"}}
 assert_tag :tag => "dt", :content => "The Idiot"
 end

C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G 119

 def go_to_second_page
 get "/catalog?page=2"
 assert_response :success
 assert_template "catalog/index"
 assert_equal Book.find_by_title("Pro Rails E-Commerce"),
 assigns(:books).last
 end
 end

 def enter_site(name)
 open_session do |session|
 session.extend(BrowsingTestDSL)
 session.name = name
 yield session if block_given?
 end
 end
end

In go_to_second_page, we first fetch the second catalog page. We then check that we get a
normal response and the correct template in return. Finally, we check that the first one of the
books in our books.yml fixture file is on this page, since the books are ordered in a descending
chronological order on the catalog page. Running the tests again confirms that the catalog
page is working as expected:

$ ruby test/integration/browsing_and_searching_test.rb

Loaded suite test/integration/browsing_and_searching_test
Started
.
Finished in 0.110837 seconds.

1 tests, 7 assertions, 0 failures, 0 errors

Now that we have a working catalog page, it would be nice to make it the home page of the
whole book store. We already briefly mentioned Rails routes in Chapter 2, and now we’re going
to take advantage of them again. Open config/routes.rb and change the line for default root
url to look like this:

You can have the root of your site routed by hooking up "
-- just remember to delete public/index.html.
map.connect ", :controller => "catalog"

This means that all the requests for the root url are routed to the default action (index) of
CatalogController.

120 C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G

Implementing the View Book Details User Story
Having a catalog page for a series of books is nice, but it’s not suitable for excruciating details
about every item. Therefore, the next thing for us to do is to implement a page for individual
titles. As always, we start by writing a test for this story.

We already have a test case, so we can just extend that. In test/integration/
browsing_and_searching_test.rb, we’ll add another chapter to the story of Jill, right
below test_browsing_the_site:

def test_getting_details
 jill = enter_site(:jill)
 jill.get_book_details_for "Pride and Prejudice"
end

Then we add a new method to our BrowsingTestDSL module to keep the test code clean:

def get_book_details_for(title)
 @book = Book.find_by_title(title)
 get "/catalog/show/#{@book.id}"
 assert_response :success
 assert_template "catalog/show"

 assert_tag :tag => "h1",
 :content => @book.title
 assert_tag :tag => "h2",
 :content => "by #{@book.authors.map{|a| a.name}}"
end

The get_book_details_for method simply fetches a book with the given name from the
database, then requests the corresponding show page and checks that both the book title and
the names of the authors are correctly displayed on the resulting page.

When we created CatalogController, we specified that we want to have an action
called show at hand. Therefore, we already have a stub method show in app/controllers/
catalog_controller.rb and a pretty much empty view file app/views/catalog/show.rhtml.
Let’s now add some flesh around these bones.

C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G 121

Modifying the Controller

Implementing the show action in CatalogController is a simple two-liner. Add the following to
app/controllers/catalog_controller.rb:

def show
 @book = Book.find(params[:id]) rescue nil
return render(:text => "Not found", :status => 404)➥

unless @book
@page_title = @book.title

end

All we do is to assign the @book instance variable with the book that matches the id we get
from the browser. If the book is not found, we show a very simple 404 Not Found page. Then
we put the title of the book in the @page_title instance variable to make it show in the layout.

Modifying the View

In the view file, we’ll show the details of the book at hand (remember that the book title is
shown by the layout file inside an h1 element). Add the following to app/views/catalog/
show.rhtml:

<h2>by <%= @book.authors.map{|a| a.name}.join(", ") %></h2>
<%= image_tag url_for_file_column(:book, :cover_image) ➥

 unless @book.cover_image.blank? %>
<dl>
 <dt>Price</dt>
 <dd>$<%= sprintf("%0.2f", @book.price) -%></dd>
 <dt>Page count</dt>
 <dd><%= @book.page_count -%></dd>
 <dt>Publisher</dt>
 <dd><%= @book.publisher.name %></dd>
 <dt>Blurb</dt>
 <dd><%= @book.blurb %></dd>
</dl>

<p><%= link_to "Back to Catalog", :action => "index" %></p>

122 C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G

Now the view will show the names of all the authors of a book separated by a comma. We
also show the cover image of the book if one has been added, and other details of the book. We
run the test again, and see that everything works just fine.

$ ruby test/integration/browsing_and_searching_test.rb

Loaded suite test/integration/browsing_and_searching_test
Started
..
Finished in 0.231862 seconds.

2 tests, 11 assertions, 0 failures, 0 errors

Figure 4-1 shows a book detail page in action.

Figure 4-1. Book detail page

Adding Links

Now that we have pages for individual books, it would be a good idea to link to them from the
catalog list page. Let’s make sure that a link exists for each book on the catalog/index page. We
create a separate method for checking the links, and then call that method from both the

C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G 123

browse_index and go_to_second_page methods. Add the following new method and calls for it
to the BrowsingTestDSL module in test/integration/browsing_and_searching_test.rb:

module BrowsingTestDSL
 attr_writer :name

 def browse_index
 get "/catalog"

 assert_response :success
 assert_template "catalog/index"
 assert_tag :tag => "dl", :attributes =>
 { :id => "books" },
 :children =>
 { :count => 10, :only =>
 {:tag => "dt"}}
 assert_tag :tag => "dt", :content => "The Idiot"
 check_book_links
 end

 def go_to_second_page
 get "/catalog?page=2"
 assert_response :success
 assert_template "catalog/index"
 assert_equal Book.find_by_title("Pro Rails E-Commerce"),
 assigns(:books).last
 check_book_links
 end

 def get_book_details_for(title)
 @book = Book.find_by_title(title)
 get "/catalog/show/#{@book.id}"
 assert_response :success
 assert_template "catalog/show"

 assert_tag :tag => "h1",
 :content => @book.title
 assert_tag :tag => "h2",
 :content => "by #{@book.authors.map{|a| a.name}}"
 end

 def check_book_links
 for book in assigns(:books)
 assert_tag :tag => "a", :attributes =>
 { :href => "/catalog/show/#{book.id}"}
 end
 end
end

124 C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G

The next thing to do is to create the links on the index page. Open app/views/catalog/
index.rhtml and add the highlighted code:

<dl id="books">
 <% for book in @books %>
 <dt><%= link_to book.title, :action => "show", :id => book %></dt>
 <% for author in book.authors %>
 <dd><%= author.last_name %>, <%= author.first_name %></dd>
 <% end %>
 <dd><%= pluralize(book.page_count, "page") %></dd>
 <dd>Price: $<%= sprintf("%.2f", book.price) %></dd>
 <dd><small>Publisher: <%= book.publisher.name %></small></dd>
 <% end %>
</dl>

Run the tests again. See for yourself the results in Figure 4-2, and bathe in the glory of hav-
ing implemented yet another user story.

Figure 4-2. Catalog list page with links

C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G 125

Implementing the Search Books User Story
An online bookstore, or any other e-commerce site for that matter, would be nothing without
search functionality. For simple cases and low loads, it would be enough to just create SQL
SELECT queries from the search terms to find matching items. However, when the load gets
higher and there is more than one table involved in the search, it is worthwhile to use a real full-
text search engine for the search. In this chapter, we will use a full-text engine written in Ruby
called Ferret (http://ferret.davebalmain.com/trac).

Using the Ferret Search Engine

Ferret is open source and uses the MIT license, so it should be a safe choice for any kind of
Rails project. There are a couple of other engines available (notably Hyper Estraier and the
acts_as_searchable Rails plugin that uses it), but we’ll use Ferret in this chapter for several
reasons:

• Using the acts_as_ferret Rails plugin makes integrating Ferret with Rails applications
really simple.

• Ferret is a full port of the more famous Java search engine Apache Lucene (http://
lucene.apache.org/), supporting its whole API. That makes Ferret an easy choice for
former Java developers.

• Ferret is reasonably fast, even though it’s written in a scripting language. Also, there are
versions of Ferret where parts or all of the code are written in C, making it suitable for
even the most challenging situations.

Installing Ferret is as easy as a single command:

$ sudo gem install ferret

The next step is to install the acts_as_ferret plugin. We could use Ferret directly, but
why duplicate proven and tested code, especially since using the plugin also makes our own
code a lot cleaner and less error-prone? You can install the plugin with the normal Rails plugin
command:

$ script/plugin install ➥
svn://projects.jkraemer.net/acts_as_ferret/trunk/plugin/acts_as_ferret

A /home/george/projects/emporium/vendor/plugins/acts_as_ferret
A /home/george/projects/emporium/vendor/plugins/acts_as_ferret/LICENSE
A /home/george/projects/emporium/vendor/plugins/acts_as_ferret/rakefile
A /home/george/projects/emporium/vendor/plugins/acts_as_ferret/init.rb
A /home/george/projects/emporium/vendor/plugins/acts_as_ferret/lib
A /home/george/projects/emporium/vendor/plugins/ ➥

acts_as_ferret/lib/acts_as_ferret.rb
A /home/george/projects/emporium/vendor/plugins/acts_as_ferret/README
Exported revision 59.

126 C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G

Now that both Ferret and acts_as_ferret are installed, the only thing we need to make our
books searchable is one line in app/models/book.rb:

class Book < ActiveRecord::Base
 has_and_belongs_to_many :authors
 belongs_to :publisher

 acts_as_ferret :fields => [:title, :author_names]
 # lots of omitted code

end

With that single line, we have made it possible to do fast searches on books according to
their titles and authors. acts_as_ferret now intercepts all create, update, and delete opera-
tions of the Book class and updates its full-text index accordingly.

But wait a minute! There is no attribute author_names in the books table. That is correct. For-
tunately, acts_as_ferret can index even objects’ instance method values, so we’ll add a method
called author_names to the Book model class. Change app/models/book.rb as shown here:

class Book < ActiveRecord::Base
 has_and_belongs_to_many :authors
 belongs_to :publisher

 acts_as_ferret :fields => [:title, :author_names]
 file_column :cover_image

 validates_length_of :title, :in => 1..255
 validates_presence_of :publisher
 validates_presence_of :authors
 validates_presence_of :published_at
 validates_numericality_of :page_count, :only_integer => true
 validates_numericality_of :price
 validates_format_of :isbn, :with => /[0-9\-xX]{13}/
 validates_uniqueness_of :isbn

 def author_names
 self.authors.map do |a|
 a.name
 end.join(", ") rescue ""
 end
end

C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G 127

The author_names method iterates over all of the authors for a given book and returns their
names separated by a comma. If there are no authors, it returns an empty string to avoid data
type problems in the indexing code.

acts_as_ferret stores its indices in index/[environment] inside your Rails application
directory, so your tests won’t affect the indices used in development and production. That said,
let’s create a unit test for the Book class to make sure that the search works correctly. Open
test/unit/book_test.rb and paste the following code after the existing tests:

def test_ferret
 Book.rebuild_index

 assert Book.find_by_contents("Pride and Prejudice")

 assert_difference Book, :count do
 book = Book.new(:title => 'The Success of Open Source',
 :published_at => Time.now, :page_count => 500,
 :price => 59.99, :isbn => '0-674-01292-5')
 book.authors << Author.create(:first_name => "Steven", :last_name => "Weber")
 book.publisher = Publisher.find(1)
 assert book.valid?

book.save

 assert_equal 1, Book.find_by_contents("Open Source").size
 assert_equal 1, Book.find_by_contents("Steven Weber").size
 end
end

In the beginning of the test, we make sure that the Ferret index is up-to-date. Rails unit
tests empty the test database before each test run, but the same doesn’t hold true for the index.
Therefore it’s better to rebuild it so that we can be sure that we always have a similar index
before we start running the tests.

Next, we use the class method Book.find_by_contents to search for a book that has “Pride
and Prejudice” in either its title or authors. The result should be positive because there is a book
with that name in the fixtures we created at the beginning of this chapter.

find_by_contents is a class method created automatically by acts_as_ferret. It is the work-
horse of the plugin, taking as its parameters a string of search terms, and returning an array of
zero or more objects, just like the normal ActiveRecord find(:all) and find_all_by_* methods.

The last part of the test case tests that a new book is correctly added to the index and is
found when searched. We have put this code inside an assert_difference block, just as we did
in Chapter 2, to make sure that the book is also saved to the database. We run the test and see
that our search engine is working like a dream.

Now that our Book model supports fast search, it’s time to implement a search interface for
our bookstore.

128 C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G

Updating the Integration Test

We start by extending our integration test to span searching, too. We do this by adding a new
method, searches_for_tolstoy, to the BrowsingTestDSL module in test/integration/
browsing_and_searching_test.rb, as shown in Listing 4-2.

Listing 4-2. Test Method for Book Searches

require "#{File.dirname(__FILE__)}/../test_helper"

class BrowsingAndSearchingTest < ActionController::IntegrationTest
 fixtures :publishers, :authors, :books, :authors_books

 def test_browsing_the_site
 jill = enter_site(:jill)
 jill.browse_index
 jill.go_to_second_page
 jill.searches_for_tolstoy
 end

 def test_getting_details
 jill = enter_site(:jill)
 jill.get_book_details_for "Pride and Prejudice"
 end

 private

 module BrowsingTestDSL
 include ERB::Util
 attr_writer :name

 def browse_index
 get "/catalog"

 assert_response :success
 assert_template "catalog/index"
 assert_tag :tag => "dl", :attributes =>
 { :id => "books" },
 :children =>
 { :count => 10, :only =>
 {:tag => "dt"}}
 assert_tag :tag => "dt", :content => "The Idiot"
 check_book_links
 end

C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G 129

 def go_to_second_page
 get "/catalog?page=2"
 assert_response :success
 assert_template "catalog/index"
 assert_equal Book.find_by_title("Pro Rails E-Commerce"),
 assigns(:books).last
 check_book_links
 end

 def get_book_details_for(title)
 @book = Book.find_by_title(title)

 get "/catalog/show/#{@book.id}"
 assert_response :success
 assert_template "catalog/show"

 assert_tag :tag => "h1",
 :content => @book.title
 assert_tag :tag => "h2",
 :content => "by #{@book.authors.map{|a| a.name}}"
 end

 def searches_for_tolstoy
 leo = Author.find_by_first_name_and_last_name("Leo", "Tolstoy")

 get "/catalog/search?q=#{url_encode("Leo Tolstoy")}"
 assert_response :success
 assert_template "catalog/search"

 assert_tag :tag => "dl", :attributes =>
 { :id => "books" },
 :children =>
 { :count => leo.books.size, :only =>
 {:tag => "dt"}}

 leo.books.each do |book|
 assert_tag :tag => "dt", :content => book.title
 end
 end

 def check_book_links
 for book in assigns(:books)
 assert_tag :tag => "a", :attributes =>
 { :href => "/catalog/show/#{book.id}"}
 end
 end
 end

130 C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G

 def enter_site(name)
 open_session do |session|
 session.extend(BrowsingTestDSL)
 session.name = name
 yield session if block_given?
 end
 end
end

Our new test method makes Jill search for Leo Tolstoy with a search form and checks that
the resulting result list will have exactly as many books as Leo has provided the shop, namely
two. We use the url_encode method to escape white space from the search string. It is provided
by the ERB::Util library, so we need to require it at the beginning of our module. Last, we test
that the books in the resulting list have the correct names by going through all the books writ-
ten by Leo and checking that there is a dt element containing the book’s title.

Creating a Search Form Template

Now that we have the integration test made, we can start implementing the thing for real. We
first create a simple search form template. Save the following code in app/views/catalog/_
search_box.rhtml:

<%= form_tag({:action => "search"}, {:method => "get"}) %>
<%= text_field_tag :q %>
<%= submit_tag "Search" %>
<%= end_form_tag %>

Saving it as a partial makes it possible for us to easily embed the search form in other
pages.

In the code, we create a simple form that points to the search action and uses the get
method. Using get instead of post will make the query string be a part of the URL. That way, Jill
can circulate a link to her search results to all of her friends. Our form has only two elements: a
text field q and the submit button.

In the actual search template, we display the partial using the render method. Save the
following line to app/views/catalog/search.rhtml:

<%= render :partial => "search_box" %>

C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G 131

Modifying the Controller

Next, open app/controllers/catalog_controller.rb and implement the search action.

def search
 @page_title = "Search"
 if params[:commit] == "Search" || params[:q]
 @books = Book.find_by_contents(params[:q].to_s.upcase)
 unless @books.size > 0
 flash.now[:notice] = "No books found matching your criteria"
 end
 end
end

In the search action, we first specify the title for the page. Then we continue in two differ-
ent directions, depending on whether the search form was already submitted or the search
page was just requested normally. We do the separation by checking if either the value of a
query parameter commit is "Search" or the query variable q is specified. From the _search.rhtml
partial view, q contains the search text that was submitted by the search form.

If our code determines that the form has been submitted, it executes the search using the
find_by_contents class method and the query parameter q. Furthermore, if there are no books
found with the terms, it sets the flash notice to show a message to the user.

Modifying the View

Now we need to extend our search view so that it shows either the books found or the “Not
found” notice. Add the following to app/views/catalog/search.rhtml:

<%= render :partial => "search_box" %>

<% if @books %>
<p>Your search "<%= params[:q] %>" produced
<%= pluralize @books.size, "result" %>:</p>
<%= render(:partial => "books") %>
<% end %>

If the search was successful, we also tell how many hits there were. We use the pluralize
helper to show the number of books, and the word “result” in singular or plural depending on
the count. Last, we render a partial to show a list of matching books.

132 C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G

We don’t have a partial view called books yet, so we need to create it. In the index action,
we also showed a list of books, so it is a good place to extract the list. Move the following code
from app/views/catalog/index.rhtml to app/views/catalog/_books.rhtml.

<dl id="books">
 <% for book in @books %>
 <dt><%= link_to book.title.t, :action => "show", :id => book %></dt>
 <% for author in book.authors %>
 <dd><%= author.last_name %>, <%= author.first_name %></dd>
 <% end %>
 <dd><%= pluralize(book.page_count, "page") %></dd>
 <dd>Price: $<%= sprintf("%.2f", book.price) %></dd>
 <dd><small>Publisher: <%= book.publisher.name %></small></dd>
 <% end %>
</dl>

Now we can just replace the moved code in index.rhtml with a similar render call that we
have in the end of the search.rhtml template, and that’s it! We have a functioning search form
in the bookstore.

If you have already added some books to your development system, you can point your
browser to /catalog/search on your development site and see the result for yourself, as shown
in Figure 4-3. (First, you will need to restart your web server, so it will pick up the introduced
Ferret code.)

Figure 4-3. Search interface

C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G 133

We also need a link to our search functionality, so add the following to app/views/catalog/
index.rhtml:

<p><%= link_to "Search", :action => "search" %></p>

<%= render(:partial => "books") %>

<%= link_to 'Previous page'.t, { :page => @book_pages.current.previous } if ➥
@book_pages.current.previous %>
<%= link_to 'Next page'.t, { :page => @book_pages.current.next } if ➥
@book_pages.current.next %>

The search functionality is now implemented

Implementing the Get Latest Books User Story
So far, we have created a book catalog that lets Jill browse and search books, and see their
details. The last part of the sprint is to implement the ultimate desire of a book-lover: a list
of the latest books. We’ll implement this feature both as a normal web page and as an RSS feed,
so that Jill can skip the step of using a browser altogether. Again, we’ll start by writing a test for
the latest books page.

Updating the Integration Test

Add another method to the BrowsingTestDSL module in test/integration/
browsing_and_searching_test.rb:

def views_latest_books
 get "/catalog/latest"
 assert_response :success
 assert_template "catalog/latest"

 assert_tag :tag => "dl", :attributes =>
 { :id => "books" },
 :children =>
 { :count => 10, :only =>
 {:tag => "dt"}}
 Book.latest.each do |book|
 assert_tag :tag => "dt", :content => book.title
 end
 check_book_links
end

134 C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G

You can see that the method is similar to browse_index and go_to_second_page, but it has
a different URL and desired template. The only thing special here is that we iterate over the
Book objects returned by Book.latest and check that there is a dt element for each book. To
make this work, we first need to create a latest class method for our Book class. Add the follow-
ing method to app/models/book.rb:

def self.latest
 find :all, :limit => 10, :order => "books.id desc",
 :include => [:authors, :publisher]
end

We could have used the find method as such in our test. However, we’re going to need the
exact same code later, so it’s a good idea to wrap it inside a class method. We also need to add
a call to our new method in the actual test case:

def test_browsing_the_site
 jill = enter_site(:jill)
 jill.browse_index
 jill.go_to_second_page
 jill.get_book_details_for "Pride and Prejudice"
 jill.searches_for_tolstoy
 jill.views_latest_books
end

Now that we have a (failing, but you guessed that) test in place, the next thing to do is to
update the controller.

Modifying the Controller

Open app/controllers/catalog_controller.rb and fill the latest action with content:

def latest
 @page_title = "Latest Books"
 @books = Book.latest
end

There’s nothing special in there. We just set the page title and then use the Book.latest
class method we just created to fetch the ten latest books.

C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G 135

Modifying the View

The view file, app/views/catalog/latest.rhtml, is even simpler:

<%= render :partial => "books" %>

We can fire our test case and see that everything works oh so smoothly.

$ ruby test/integration/browsing_and_searching_test.rb

Loaded suite test/integration/browsing_and_searching_test
Started
..
Finished in 0.478978 seconds.

2 tests, 56 assertions, 0 failures, 0 errors

We double-check in the browser to see the page shown in Figure 4-4. Filled with self-
confidence, we rush on to the final task of this code sprint.

Figure 4-4. Latest books page

136 C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G

Creating an RSS Feed
Creating an RSS feed in Rails is painstakingly easy. RSS feeds are essentially just XML files
served like normal HTML pages. Rails supports three kinds of template files out of the box. You
are already familiar with the HTML templates with the .rhtml suffix. The second type is the
Builder XML template, with an .rxml suffix, which we will use for this case. The third type? You
will learn about that in the next chapter, and boy will that be fun. But first we’ll create an RSS
feed for Jill.

Once more, we’ll create another method in our integration test. Add the following method
to the BrowsingTestDSL module in test/integration/browsing_and_searching_test.rb:

def reads_rss
 get "/catalog/rss"
 assert_response :success
 assert_template "catalog/rss"
 assert_equal "application/xml", response.headers["type"]

 assert_tag :tag => "channel",
 :children =>
 { :count => 10, :only =>
 {:tag => "item"}}
 Book.latest.each do |book|
 assert_tag :tag => "title", :content => book.title
 end
end

The method follows the familiar scheme. However, this time we also check that the
response type is XML instead of HTML. It is also worth noting that we can use the same
assert_tag methods here that we used for HTML documents, even though the output is XML.

Just as before, we call our new method from the test_browsing_the_site test method:

def test_browsing_the_site
 jill = enter_site(:jill)
 jill.browse_index
 jill.go_to_second_page
 jill.get_book_details_for "Pride and Prejudice"
 jill.searches_for_tolstoy
 jill.views_latest_books
 jill.reads_rss
end

C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G 137

Implementing the controller method is straightforward. We use the same information as
in the latest action, so we can call it the same way we call any other method. After that, we just
render our action normally, only this time, we don’t want to use the layout file (because we’re
rendering XML).

def rss
 latest
 render :layout => false
end

The view file is where the most difference between a normal HTML page and a Rails-
powered RSS feed lies. This time, we don’t use the standard .rhtml templates, but rather .rxml
templates powered by the Builder library. With Builder, XML output is specified using nested
code blocks. For our RSS feed, we’ll create the app/views/catalog/rss.rxml file, as shown in
Listing 4-3.

Listing 4-3. app/views/catalog/rss.rxml

xml.instruct! :xml, :version=>"1.0", :encoding=>"UTF-8"

xml.rss("version" => "2.0", "xmlns:dc" => "http://purl.org/dc/elements/1.1/") do
 xml.channel do
 xml.title @page_title
 xml.link(url_for(:action => "index", :only_path => false))
 xml.language "en-us"
 xml.ttl "40"
 xml.description "Emporium: Books for people"

 for book in @books
 xml.item do
 xml.title(book.title)
 xml.description("#{book.title} by #{book.author_names}")
 xml.pubDate(book.created_at.to_s(:long))
 xml.guid(url_for(:action => "show", :id => book, :only_path => false))
 xml.link(url_for(:action => "show", :id => book, :only_path => false))
 end
 end
 end
end

138 C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G

Every code block started by an xml.tag command in a Builder template will result in a
<tag> element in the output. Thus, the output of the code in Listing 4-3 would look something
like this:

<?xml version="1.0" encoding="UTF-8"?>
<rss version="2.0" xmlns:dc="http://purl.org/dc/elements/1.1/">
 <channel>
 <title>Latest Books</title>
 <link>http://0.0.0.0:3000/catalog</link>
 <language>en-us</language>
 <ttl>40</ttl>
 <description>Emporium: Books for people</description>

 <item>
 <title>The Idiot</title>
 <description>The Idiot by Fyodor Dostoyevsky</description>
 <pubDate>April 26, 2006 20:18</pubDate>
 <guid>http://0.0.0.0:3000/catalog/show/17</guid>
 <link>http://0.0.0.0:3000/catalog/show/17</link>
 </item>

 ... more items ...

 </channel>
</rss>

Note that we can use all the normal Rails helper methods, like url_for, in .rxml templates,
just as in normal .rhtml views. However, because we’re not creating the XML code by hand, we
can be sure that the output is always well-formed XML.

Running the integration test reveals that everything works fine. Encouraged, we open
http://localhost:3000/catalog/rss in a browser that supports RSS feeds (such as Safari on
Mac OS X or Firefox on other platforms) and show George how the feed functionality works for
Jill, as shown in Figure 4-5. George is excited, and we can pat ourselves on the back. Another
sprint is completed.

C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G 139

Figure 4-5. Working RSS feed

Summary
In this chapter, we implemented the basic functionality of the online bookstore that is visible
to a normal user like Jill. This consisted of four user stories: browsing the list of books, search-
ing books, visiting pages for individual books, and seeing lists of latest books in the store in
both a web page and an RSS form.

During the course of the chapter, we showed you how to use the include parameter in
ActiveRecord finder methods to avoid unnecessary SQL queries and use layouts to avoid
repeating view code. We also integrated the Ferret full-text search engine with our Rails appli-
cation using the acts_as_ferret plugin. Finally, we created RSS feeds using Builder XML
templates, which saved us a lot of time. In the next chapter we will create a shopping cart for Jill
to fill.

141

■ ■ ■

C H A P T E R 5

Shopping Cart
Implementation

In the previous chapter, we built the general interface for Emporium. That’s a good start for an
online store, but it doesn’t bring George any revenues. Now it’s time for us to take the next step
toward a working e-commerce site: create a shopping cart where customers can drag all the
interesting books they find—and preferably a few more.

A shopping cart is also a perfect match for taking advantage of Ajax to provide shoppers
with a snappier and more responsive user interface. In this chapter, we will show you how to
fully harness the power of Rails Ajax helpers to build a lightning-fast shopping cart, but we’ll
also make sure that that it works on older browsers that don’t support JavaScript.

Getting the Shopping Cart Requirements
Again, Jill, George’s faithful customer, plays the main role in our user stories for this sprint:

• Add items to the cart: The most important shopping cart feature of any e-commerce
application is the ability to add items to the cart. If building up a heaping shopping cart
is easy, that will have a positive effect on the cash flow.

• Remove items from the cart: No matter how badly George wants Jill to buy all the books
she inadvertently added to the cart, that’s just not how you make customers happy.

• Clear the cart: Sometimes Jill goes totally bonkers. She just can’t help adding every book
she runs into to the shopping cart. But then she remembers she is on a pension, not on
a 100-foot yacht, and just wants to clean up the darn thing. So, we need to make it possi-
ble to empty the shopping cart with a single stroke.

The last user story to implement for a shopping cart is check out—the ultimate goal of a
web shopping tour. Checking out is a bit more complicated than the other user stories, so we’re
going to tackle it separately in Chapter 9. There, we’ll also cover how to integrate with credit
card payment gateways.

142 C H A P T E R 5 ■ S H O P P I N G C A R T I M P L E M E N T A T I O N

Setting Up the Shopping Cart
Once again, we start our sprint by creating a test case for adding an item to the shopping cart.
This time, we will use the Rails functional tests. We could use integration tests, but since we are
testing the functionality of a single controller (which we will create first) in this case, we agree
to use functional tests for this sprint.

Creating the Controller
Our first step is to use the script/generate command to create the new Cart controller, as
follows:

$ script/generate controller Cart

 exists app/controllers/
 exists app/helpers/
 create app/views/cart
 exists test/functional/
 create app/controllers/cart_controller.rb
 create test/functional/cart_controller_test.rb
 create app/helpers/cart_helper.rb

Creating a new controller for our shopping cart also provides us with a stub file for the
functional tests.

Adding a Functional Test
Open test/functional/cart_controller_test.rb and replace the dummy test_truth method
with the following test case:

def test_adding
 assert_difference(CartItem, :count) do
 post :add, :id => 4
 end

 assert_response :redirect
 assert_redirected_to :controller => "catalog"
 assert_equal 1, Cart.find(@request.session[:cart_id]).cart_items.size
end

C H A P T E R 5 ■ S H O P P I N G C A R T I M P L E M E N T A T I O N 143

In this test, we first check that posting a form to the add action actually creates a new
CartItem. Then we check that after the form post, we are redirected to the catalog controller
and that the current shopping cart is populated with an item.

If you can’t figure out what’s happening here, don’t worry. Once we start implementing
the shopping cart, it will be clear how the test works.

Creating the Models
Before we can add anything to a shopping cart, we need to create two models: Cart for the
shopping carts themselves and CartItem for books stored in a cart. It should come as no sur-
prise that we use the script/generate command to generate these models:

$ script/generate model Cart

 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/cart.rb
 create test/unit/cart_test.rb
 create test/fixtures/carts.yml
 exists db/migrate
 create db/migrate/005_create_carts.rb

$ script/generate model CartItem

 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/cart_item.rb
 create test/unit/cart_item_test.rb
 create test/fixtures/cart_items.yml
 exists db/migrate
 create db/migrate/006_create_cart_items.rb

Next, we need to specify the associations between the new (and some old) models.
(ActiveRecord database relationships are covered in Chapter 3.) In our case, the cart items can
be seen as a join model between a cart and books. In theory, we could have used a direct
has_and_belongs_to_many association between carts and books, but the items also need to
store some data of their own. One example of such data is the quantity of a given book in a cart.
Jill might want to buy one book for herself and one for her nephew Carl. We also need to store
the price of a book at the time it was added to the cart so that it won’t change, even if the price
of a book increased during the user’s shopping session.

144 C H A P T E R 5 ■ S H O P P I N G C A R T I M P L E M E N T A T I O N

Therefore, we edit the model files book.rb, cart_item.rb, and cart.rb in app/models to
make the associations between carts, cart items, and books look as follows:

class Book < ActiveRecord::Base
…
 has_many :cart_items
 has_many :carts, :through => :cart_items
…
end

class CartItem < ActiveRecord::Base
 belongs_to :cart
 belongs_to :book
end

class Cart < ActiveRecord::Base
 has_many :cart_items
 has_many :books, :through => :cart_items
end

Note that we use the new has_many :through syntax that was implemented in
Rails 1.1. With the new syntax, we can access books belonging to a cart directly by using
@cart_object.books, even though the two classes don’t have a direct relationship. Without
using the new :through option, we would need to laboriously go through the CartItem class:
@cart_object.cart_items.map {|ci| ci.book }.

Next, we populate the CreateCartItems migration that was created by the script/generate
command. Open 006_create_cart_items.rb and make it look like the following:

class CreateCartItems < ActiveRecord::Migration
 def self.up
 create_table :cart_items do |t|
 t.column :book_id, :integer
 t.column :cart_id, :integer
 t.column :price, :float
 t.column :amount, :integer
 t.column :created_at, :datetime
 end
 end

 def self.down
 drop_table :cart_items
 end
end

C H A P T E R 5 ■ S H O P P I N G C A R T I M P L E M E N T A T I O N 145

We can leave the CreateCarts migration file untouched, since the default content is fine
for the moment. Run the migrations with the rake db:migrate command.

$ rake db:migrate

(in /home/george/projects/emporium)
== CreateCarts: migrating ===
-- create_table(:carts)
 -> 0.1681s
== CreateCarts: migrated (0.1685s) ==

== CreateCartItems: migrating ===
-- create_table(:cart_items)
 -> 0.0778s
== CreateCartItems: migrated (0.0781s) ==

Modifying the Controller
Now that we have our models in place, we need to do something to keep a shopping cart at
hand while Jill is browsing the store. The easiest way to do that is to use the filter functionality
for Rails controllers—in this case, the before_filter macro. Add the following in the beginning
of CartController (app/controllers/cart_controller.rb) and CatalogController
(app/controllers/catalog_controller.rb):

before_filter :initialize_cart

The filter makes the controller call the initialize_cart method before running an action. We
could implement the initialize_cart method in both CartController and CatalogController, but
since we don’t want to repeat ourselves, we put the definition to the ApplicationController (in
app/controllers/application.rb), which is by default the parent class of all our controllers.

class ApplicationController < ActionController::Base
 private

 def initialize_cart
 if session[:cart_id]
 @cart = Cart.find(session[:cart_id])
 else
 @cart = Cart.create
 session[:cart_id] = @cart.id
 end
 end
end

146 C H A P T E R 5 ■ S H O P P I N G C A R T I M P L E M E N T A T I O N

ACTIONCONTROLLER FILTERS

Filters are a powerful way to control your application logic in your controllers. You can extract common
code from actual actions to filters, and then make those filters run for every appropriate action. The
initialize_cart filter we use for the shopping cart is a good example of filter usage. We want a shopping
cart object at hand for every action in CartController and CatalogController, so we extract the cart
initialization code in a before_filter.

ActionController offers three types of filters:

• before_filter: Appends a method call to the before_filter chain of the controller. The chain is
executed before any affected action is run, and if any of the filters returns false, the chain is aborted
and the actual action is not run. Therefore, it’s a good way to enforce user authentication, for example,
as you will see in Chapter 8.

• after_filter: Similar to before_filter, except that the after_filter chain is executed after
the actual action is run. Therefore, it’s not possible to abort the action from an after_filter.

• around_filter: A combination of the two other types of filters. Using this filter, you can maintain
state through the action execution. So, for example, you can use an around_filter to measure the
time spent for an action.

Both before_filter and after_filter macros can take the actual filter code parameter in three
forms: a symbol, a proc object, or a filter class.

If the first parameter for a filter macro call is a symbol, a method with the same name as the symbol is
executed as the filter:

class CartController < ApplicationController
 before_filter :initialize_cart, :only => [:index, :show]

 private
 def initialize_cart
 # do the magic
 end
end

For a quick-and-dirty filter, you can use a proc object as filter parameter. The current controller is auto-
matically passed as a block parameter to the proc.

class AdminController < ApplicationController
 before_filter {|controller| false unless controller.current_user }, ➥

:except => :login
end

Continued

C H A P T E R 5 ■ S H O P P I N G C A R T I M P L E M E N T A T I O N 147

In the initialize_cart method, we check whether there is an item called :cart_id in the
session hash and if there is, load a cart with that id, also fetching all of the cart’s items with
the same query. If no cart_id is stored in the session, we create a new cart and store the id of
the new cart to the session hash. This way, we can be sure that a single session-wide Cart
object is at hand everywhere in both CatalogController and CartController. Once we now
know that there is always a Cart object @cart present, we can also show it in the actions of the
CatalogController we created in the previous chapter.

Creating the Views
We want to create a floating cart that will show all the items we have in our shopping cart and will
appear on all the catalog pages. Let’s first create a partial called app/views/cart/_cart.rhtml:

<% if flash[:cart_notice] %>
 <%= render :partial => "cart/cart_notice" %>
<% end %>

 <h3>Your Shopping Cart</h3>

If you want to reuse your filter code in many different places, it might be worth separating the code in
its own class:

class LoggingFilter
 def self.filter(controller)
 controller.logger.info "#{controller.request.request_uri} called"
 end
end

class AdminController < ApplicationController
 after_filter LoggingFilter
end

When using an around_filter, you need to use the class form for the filter. In that case, you define
methods before and after in the filter class, which are then executed before and after the actual action
code. Note that you can also use the :only and :except parameters to restrict the filter calls to only some
specific action in a controller.

For more information about ActionController filters, see http://api.rubyonrails.org/classes/
ActionController/Filters/ClassMethods.html.

148 C H A P T E R 5 ■ S H O P P I N G C A R T I M P L E M E N T A T I O N

 <% for item in @cart.cart_items %>
 <li id="cart_item_<%= item.book.id %>">
 <%= render :partial => "cart/item", :object => item %>

 <% end %>

 <p id="cart_total">Total: $<%= sprintf("%0.2f", @cart.total) %> ➥

</p>

In the partial, we first show a notice if there is something to notify. Then we show every
item in the cart. Last, we show the subtotal of the whole cart, formatted with sprintf to
always show two decimal places. The Cart class doesn’t have a total method, so let’s add it to
app/models/cart.rb.

def total
 cart_items.inject(0) {|sum, n| n.price * n.amount + sum}
end

inject is a method for arrays and other enumerable objects that can be used to calculate
sums, factorials, and so on of all the items in the container object. It takes one initial parameter
(in our case, 0) and passes it as the first block parameter (in our case, sum) for the first iteration.
Then it passes each item of cart_items to the block as n, one at a time, updating the sum all the
time. After it has gone through all of the items, it returns the final value of sum.

Although a verbal explanation of inject might sound incomprehensible, it is actually fairly
easy to use and often makes using explicit loops obsolete. We could, for example, use the fol-
lowing code to get the same result as we do with one line using inject:

sum = 0
for item in cart_items
 sum =+ item.price * item.amount
end

From the cart/_cart.rhtml partial, you can see that we call two additional partials,
cart/_item.rhtml and cart/_cart_notice.rhtml. Let’s create them at once, too. Create a new
file app/views/cart/_item.rhtml and add the following to it:

<%= link_to item.book.title, :action => "show",
 :controller => "catalog", :id => item.book.id %>
<%= pluralize(item.amount, "pc", "pcs") %>,
$<%= sprintf("%0.2f", item.price * item.amount) %>

The item partial shows a link to the book details page, the number of this book in the cart,
and the total cost for this title. As in Chapter 4, we use the pluralize helper to choose the sin-
gular or plural form of “pc,” depending on the number of items.

The app/views/cart/_cart_notice.rhtml is a one-liner, just showing the possible notice
indicating a change in the cart:

<p id="cart_notice"><%= flash[:cart_notice] %></p>

C H A P T E R 5 ■ S H O P P I N G C A R T I M P L E M E N T A T I O N 149

Now that we have a partial to show on the catalog pages, we need to add it to the layout file
app/views/layouts/application.rhtml, as shown in Listing 5-1. We also add a few JavaScript
include tags to get the power of the Prototype and script.aculo.us JavaScript libraries that
come bundled with Rails (and which we’ll need when we start using Ajax in our application, as
described in the upcoming “Implementing the Add Items to the Cart User Story” section).

Listing 5-1. Additions to the Application Layout File

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title><%= @page_title || 'Emporium' %></title>
 <%= stylesheet_link_tag "style" %>

 <%= javascript_include_tag :defaults %>
</head>
<body>

<div id="header">
 <h1 id="logo">Emporium™</h1>
 <h2 id="slogan">Books on Rails</h2>
</div>

<div id="menu">

 Authors |
 Publishers |
 Books |
 Catalog |
 About

</div>

<div id="content">
 <%= "<h1>#{@page_title}</h1>" if @page_title %>
 <% if flash[:notice] %>
 <div id="notice">
 <%= flash[:notice] %>
 </div>
 <% end %>
 <%= yield %>
</div>

150 C H A P T E R 5 ■ S H O P P I N G C A R T I M P L E M E N T A T I O N

<% if @cart %>
<div id="shopping_cart">
<%= render :partial => "cart/cart" %>
</div>
<% end %>

<div id="footer">
 © 1995-2006 Emporium
</div>

</body>
</html>

We also need to add a link for adding a book to the cart. We do that in the catalog/
_books.rhtml partial that is used to show every individual book item on the catalog pages:

<dl id="books">
 <% for book in @books %>
 <dt><%= link_to book.title, :action => "show", :id => book %></dt>
 <% for author in book.authors %>
 <dd><%= author.last_name %>, <%= author.first_name %></dd>
 <% end %>
 <dd>

 <%= link_to "+", :controller => "cart",
 :action => "add", :id => book %>

 </dd>
 <dd><small>Publisher: <%= book.publisher.name %></small></dd>
 <% end %>
</dl>

To make our shopping cart float on the catalog pages and look a bit nicer, we need to add
some CSS rules to the style.css style sheet, as shown in Listing 5-2.

C H A P T E R 5 ■ S H O P P I N G C A R T I M P L E M E N T A T I O N 151

Listing 5-2. Additions to the Style Sheet

#shopping_cart {
 border-left: 3px solid #666;
 background: #aaa;
 position: fixed;
 bottom: 0;
 right: 0;
 width: 200px;
 height: 100%;
 padding: 5px 10px;
}

#shopping_cart ul,
#shopping_cart li {
 list-style: none;
 margin: 0;
 padding: 0;
}

#shopping_cart h3 {
 padding-top: 4em;
}

#cart_notice {
 border: 2px solid #58A986;
 background: #B2FFD3;
 padding: 3px;
 position: absolute;
 top: 0;
 left: 10px;
}

body {
 background-color: #fff; color: #333;
 margin-right: 230px;
}

152 C H A P T E R 5 ■ S H O P P I N G C A R T I M P L E M E N T A T I O N

Notice the use of fixed positioning to make the shopping cart always appear “above the
fold.” Now you can open the catalog index page in the browser, and it should look like Figure 5-1.

Figure 5-1. Book catalog page with shopping cart

Implementing the User Stories
With our shopping cart set up for action, we’re ready to start implementing our user stories. Of
course, we start with adding items.

Implementing the Add Items to the Cart User Story
We’re going to use two approaches to implementing the Add Items to the Cart user story. One
is the “traditional” way, which takes care of users whose browser doesn’t support JavaScript.
The other way will use Ajax techniques to provide a streamlined user interface.

C H A P T E R 5 ■ S H O P P I N G C A R T I M P L E M E N T A T I O N 153

The Traditional Way

We need to implement the action for adding an item to a cart in our CartController (in app/
controllers/cart_controller.rb), as follows:

def add
 @book = Book.find(params[:id])

 if request.post?
 @item = @cart.add(params[:id])
 flash[:cart_notice] = "Added #{@item.book.title}"
 redirect_to :controller => "catalog"
 else
 render
 end
end

The code checks whether the request was an HTTP POST or GET request and acts on that
information. In the case of a form POST, we add the item, insert a notice to the flash hash, and
redirect to the catalog controller. If the user got to the action by clicking a link, we show her a
confirmation page with a form that points to the same action.

Create app/views/cart/add.rhtml and add the following to it to implement the confirma-
tion page:

Please confirm adding <%= @book.title %>
to your shopping cart.
<%= button_to "Confirm", :action => "add", :id => params[:id] %>

button_to is a Rails helper that behaves just like link_to, but instead of an anchor element,
it creates an inline form with a single button. When a user clicks this button, she gets to the
same add action, this time with a POST request, and will get the new item added to the cart. This
might sound awkward, but there are two good reasons to make the application behave like this:

• You should never use GET requests (normal links) to change the state of a web applica-
tion. So-called web accelerators (or link fetchers) often crawl through all the links of a
loaded web page and fetch the linked pages while the user is reading the page. If fetching
those links would result in adding random items to the shopping cart, we would proba-
bly end up with a bunch of less-than-happy customers.

• This traditional way to add items to a shopping cart will be visible to only the few cus-
tomers who are using a browser that doesn’t support JavaScript. In the next section, we
will implement an interface that will be used by the vast majority of customers, and that
is about gazillion times slicker than the approach described in this section.

154 C H A P T E R 5 ■ S H O P P I N G C A R T I M P L E M E N T A T I O N

Now adding an item to a cart almost works. However, there is no add method in the Cart
class, so we need to add it to app/models/cart.rb before we can start filling up the carts.

def add(book_id)
 items = cart_items.find_all_by_book_id(book_id)
 book = Book.find(book_id)

 if items.size < 1
 ci = cart_items.create(:book_id => book_id,
 :amount => 1,
 :price => book.price)
 else
 ci = items.first
 ci.update_attribute(:amount, ci.amount + 1)
 end
 ci
end

The idea behind the add method is that if there is already a certain amount of the current
book in the cart, we increment that amount by one, using the update_attribute method. If
there is no sign of the given book, a new item will be added and its amount will be set to 1.

We’re now finished with the old-fashioned way of adding books to the cart. Our test runs
fine (try if you don’t believe us), so we can extend our application to work with Ajax.

Ajax’ing It

Ajax, dubbed by Jesse James Garrett of Adaptive Path, stands for Asynchronous JavaScript and
XML. It’s actually not a single technique at all, but a bunch of techniques that can be used
together to update a web page without doing a full page refresh. You can use Ajax to implement
faster and more interactive user interfaces than could be possible with normal page refreshing.
The most famous example of Ajax usage is probably Google Maps (http://maps.google.com),
where the map is updated without refreshing the whole page when the user drags or zooms
the map.

■Tip If you’re looking for a sound introduction to Ajax, consider Foundations of Ajax by Ryan Asleson and
Nathaniel T. Schutta (ISBN 1-59059-582-3).

While Ajax is a very cool and useful addition to the arsenal of any web developer, it doesn’t
come without problems. To use Ajax-driven sites, a user needs to have a fairly recent browser
with JavaScript enabled (JavaScript libraries used in Rails, script.aculo.us and Prototype, offi-
cially support Internet Explorer 6.0 and up, Mozilla Firefox 1.0/Mozilla 1.7 and higher, and

C H A P T E R 5 ■ S H O P P I N G C A R T I M P L E M E N T A T I O N 155

Apple Safari version 1.2 and up). Even having a JavaScript-capable browser is not a complete
assurance of working Ajax. For example, older Opera versions don’t support the
XMLHttpRequest JavaScript object, which is the heart of Ajax.

Therefore, it is advisable to make sure that your application works even without JavaScript
and Ajax (unless you’re willing to abandon some of your customers). A good way to ensure
backward-compatibility is to first make an application work without Ajax—what we just did—
and only after that add the groovy Ajax interface.

For testing that adding items to the cart works with Ajax, we add another test to our func-
tional test file test/functional/cart_controller_test.rb:

def test_adding_with_xhr
 assert_difference(CartItem, :count) do
 xhr :post, :add, :id => 5
 end
 assert_response :success
 assert_equal 1, Cart.find(@request.session[:cart_id]).cart_items.size
end

You can see that it’s almost identical to the test_adding test method, with just two
differences:

• Instead of calling the post test helper method, we call xhr (alias for xml_http_request). It
simulates an Ajax’ed call to the same add action.

• We don’t want to be redirected after the action, but instead get a normal 200 HTTP
Success response.

To make our add controller action work correctly with Ajax calls, we need to modify
app/controllers/cart_controller.rb slightly:

def add
 @book = Book.find(params[:id])

 if request.xhr?
 @item = @cart.add(params[:id])
 flash.now[:cart_notice] = "Added #{@item.book.title}"
 render :action => "add_with_ajax"
 elsif request.post?
 @item = @cart.add(params[:id])
 flash[:cart_notice] = "Added #{@item.book.title}"
 redirect_to session[:return_to] || {:controller => "catalog"}
 else
 render
 end
end

156 C H A P T E R 5 ■ S H O P P I N G C A R T I M P L E M E N T A T I O N

With request.xhr?, we can check if the request was made by Ajax, just as we can check
whether a request was done using POST or GET. What we do is pretty much the same as with POST
requests. However, since we want the flash message to be accessible only to the current action
(and not the next one), we use the flash.now hash instead of just flash.

The most important difference is that instead of redirecting, we now render a template
called add_with_ajax. But we’re not rendering a normal .rhtml template. Instead, we now use an
.rjs template. These templates debuted in Rails 1.1 and are a great way to do JavaScript-driven
changes to a web page in pure Ruby. Create a new file, app/views/cart/add_with_ajax.rjs and
add the following code to it:

page.replace_html "shopping_cart", :partial => "cart"
page.visual_effect :highlight, "cart_item_#{@item.book.id}", :duration => 3
page.visual_effect :fade, 'cart_notice', :duration => 3

page is an object provided to the template that represents the web page in question. All the
changes done to the page are normally done through it. page.replace_html takes as its arguments
first the DOM id of the element being replaced (here, for example <div id="shopping_cart">) and
the value it’s being replaced with. As you can see, you can use partials there just as with render calls,
as well as simple strings.

page.visual_effect is a method that calls the script.aculo.us Effect.* JavaScript meth-
ods to do some visual effects for elements in the page. In our case, we highlight the cart_item
element for a newly created item for three seconds, using the so-called Yellow Fade Technique.
In addition, we slowly fade out the notice text element from the page.

■Tip You can read more about the Yellow Fade Technique at http://www.37signals.com/svn/
archives/000558.php.

Our application is now ready to receive Ajax requests for adding new cart items. However,
we need to change the links in our pages to actually use Ajax. Rails makes this extremely easy.
All you need to do is to replace a link_to call with a similar link_to_remote call. However, as we
want to maintain the backward-compatibility of our application, we specify the optional href
attribute for the link tag, so that it will behave as a normal link if the users don’t have JavaScript
enabled or supported in their browser.

Using all the attributes makes the link_to_remote call a bit messy, so we create our own
helper method for this in app/helpers/application_helper.rb. For the sake of brevity, let’s cre-
ate similar helpers for removing a book from the cart and clearing the whole cart at the same
time, as shown in Listing 5-3. We will use them in the later sections of this chapter.

C H A P T E R 5 ■ S H O P P I N G C A R T I M P L E M E N T A T I O N 157

Listing 5-3. Shopping Cart Helpers

module ApplicationHelper
 def add_book_link(text, book)
 link_to_remote text, {:url => {:controller => "cart",
 :action => "add", :id => book}},
 {:title => "Add to Cart",
 :href => url_for(:controller => "cart",
 :action => "add", :id => book)}
 end

 def remove_book_link(text, book)
 link_to_remote text, {:url => {:controller => "cart",
 :action => "remove",
 :id => book}},
 {:title => "Remove book",
 :href => url_for(:controller => "cart",
 :action => "remove", :id => book)}
 end

 def clear_cart_link(text = "Clear Cart")
 link_to_remote text,
 {:url => { :controller => "cart",
 :action => "clear" }},
 {:href => url_for(:controller => "cart",
 :action => "clear")}
 end
end

Now, instead of using the whole link_to_remote call in our views, we can make our
catalog/_books.rhtml partial look as clean as this:

<dl id="books">
 <% for book in @books %>
 <dt><%= link_to book.title, :action => "show", :id => book %></dt>
 <% for author in book.authors %>
 <dd><%= author.last_name %>, <%= author.first_name %></dd>
 <% end %>
 <dd>

 <%= add_book_link("+", book) %>

 </dd>
 <dd><small>Publisher: <%= book.publisher.name %></small></dd>
 <% end %>
</dl>

158 C H A P T E R 5 ■ S H O P P I N G C A R T I M P L E M E N T A T I O N

Drag-and-Drop

Although the Add Items to the Cart user story is now fully functional, there is one thing George
still wants us to implement: drag-and-drop shopping. Fortunately, with the functionality that
is already in place, adding that capability is very easy.

First, we need to make the books in the catalog pages draggable. Make the highlighted
changes to app/views/catalog/_books.rhtml:

<ul id="books">
 <% for book in @books %>
 <li class="book" id="book_<%= book.id %>">
 <dl>
 <dt><%= link_to book.title.t, :action => "show", :id => book %></dt>
 <% for author in book.authors %>
 <dd><%= author.last_name %>, <%= author.first_name %></dd>
 <% end %>
 <dd><%= pluralize(book.page_count, "page") %></dd>
 <dd>Price: $<%= sprintf("%.2f", book.price) %></dd>
 <dd><small><%= 'Publisher'.t %>: <%= book.publisher.name %></small></dd>
 <dd>

 <%= add_book_link("+", book) %>

 </dd>
 </dl>

 <%= draggable_element("book_#{book.id}", :revert => true) %>
 <% end %>

We changed the list to an unordered list and gave each book a list element of its own, so
that it can be referenced uniquely by its id (for example, book_75). Then we made each book
item a draggable element with the draggable_element method. Stating :revert => true in the
call makes the item slide back to its original position when the mouse button is released during
dragging. If you now reload the catalog page in a browser, you can drag the catalog items
around the browser window.

To make each item look more like an individual element, we need to style the list a bit. Add
the following at the bottom of public/javascripts/style.css:

#books {
 list-style: none;
 padding: 0;
 float: left;
}

C H A P T E R 5 ■ S H O P P I N G C A R T I M P L E M E N T A T I O N 159

#books .book {
 float: left;
 border: 4px solid #ccc;
 background-color: #fff;
 margin: 10px;
 padding: 5px;
 cursor: pointer;
}

The second part of implementing drag-and-drop functionality in a Rails application
is to define an element as a drop-receiving element. This is done using the (surprise!)
drop_receiving_element helper. In app/views/layouts/application.rhtml, add the following
code after the shopping_cart element:

 <div id="shopping_cart">
 <%= render :partial => "cart/cart" %>
 </div>
 <%= drop_receiving_element("shopping_cart", :url =>
 { :controller => "cart", :action => "add" }) %>

This makes the shopping_cart division act as a receiver for the dragged book items.
Whenever a book is released over the shopping cart div, an Ajax call to the add action of
CartController is made. You can test this by reloading the catalog page and dragging a book
to the cart. The log file should show something like the following:

Processing CartController#add (for 127.0.0.1 at 2006-10-09 15:07:07) [POST]
 Session ID: bc2009ee48c083165c6196ac7ff4b44c
 Parameters: {"action"=>"add", "id"=>"book_22", "controller"=>"cart"}
 [4;35;1mCart Load (0.000296) [0m [0mSELECT * FROM carts WHERE (carts.id = 1654)
LIMIT 1 [0m
 [4;36;1mBook Load (0.000420) [0m [0;1mSELECT * FROM books WHERE (books.id =
'book_22') LIMIT 1 [0m

ActiveRecord::RecordNotFound (Couldn't find Book with ID=book_22):

You can see that the id passed to the add action is the DOM id of the dragged element.
However, since the add action wants only the actual id of the book (22 in this case), we
need to clean up the passed value a bit. Add the highlighted code to app/controllers/
cart_controller.rb:

 def add
 params[:id].gsub!(/book_/, "")
 @book = Book.find(params[:id])

160 C H A P T E R 5 ■ S H O P P I N G C A R T I M P L E M E N T A T I O N

gsub! is a method that can be used to replace parts of a String object in place. It takes two
parameters: a regular expression that is to be sought in the string and a replacement string. In
our case, we want to remove the book_ in front of the actual id number, so we replace it with an
empty string. After the call, params[:id] has only the numeric id of the book in question and
can thus be used in the Book.find call on the following line. If the expression is not found in the
string—which is the case when the action is called normally by clicking the + link, resulting in
params[:id] being 22, for example—the string is left untouched.

That was everything needed to make drag-and-drop work. We’re now ready with the first
functionality of our shopping cart: adding items to it. Run the functional tests, see them roar
through, and finally try out the cart in your browser (see Figure 5-2), basking in the glory of
being an Ajax developer. If you want to make sure the system works even without Ajax, turn off
JavaScript in your browser and try to add items to your cart the old-fashioned way.

Figure 5-2. Adding an item to the cart

C H A P T E R 5 ■ S H O P P I N G C A R T I M P L E M E N T A T I O N 161

Implementing the Remove Items from the Cart User Story
Removing items from the shopping cart is pretty much the inverse action of adding an item. There-
fore, we can duplicate much of the code we did for the adding part, with some slight modifications.
First, we extend the functional test case in test/functional/cart_controller_test.rb to also test
for item removal:

def test_removing
 post :add, :id => 4
 assert_equal [Book.find(4)], Cart.find(@request.session[:cart_id]).books

 post :remove, :id => 4
 assert_equal [], Cart.find(@request.session[:cart_id]).books
end

def test_removing_with_xhr
 post :add, :id => 4
 assert_equal [Book.find(4)], Cart.find(@request.session[:cart_id]).books

 xhr :post, :remove, :id => 4
 assert_equal [], Cart.find(@request.session[:cart_id]).books
end

Just as with the addition, the first test checks that the removal of items works correctly with
the traditional way and the second one tests the Ajax functionality.

We start implementing the removal functionality by adding a remove method to the Cart
class in app/models/cart.rb:

class Cart < ActiveRecord::Base
 has_many :cart_items
 has_many :books, :through => :cart_items

 def add(book_id)
 items = cart_items.find_all_by_book_id(book_id)
 book = Book.find(book_id)

 if items.size < 1
 ci = cart_items.create(:book_id => book_id,
 :amount => 1,
 :price => book.price)
 else
 ci = items.first
 ci.update_attribute(:amount, ci.amount + 1)
 end
 ci
 end

162 C H A P T E R 5 ■ S H O P P I N G C A R T I M P L E M E N T A T I O N

 def remove(book_id)
 ci = cart_items.find_by_book_id(book_id)

 if ci.amount > 1
 ci.update_attribute(:amount, ci.amount - 1)
 else
 CartItem.destroy(ci.id)
 end
 return ci
 end

 def total
 cart_items.inject(0) {|sum, n| n.price * n.amount + sum}
 end
end

The remove method first uses a magical find_by_attribute_name finder method to
find the cart item in the current cart that holds a certain title. Then the method uses the
update_attribute method to make the amount attribute one smaller, except if the amount was
already one (or less, but that shouldn’t be possible). In that case, the entire cart item is deleted
from the cart.

We continue the copying and slightly modifying path in app/controllers/
cart_controller.rb:

class CartController < ApplicationController
 layout "catalog"
 before_filter :initialize_cart

 def add
 @book = Book.find(params[:id])

C H A P T E R 5 ■ S H O P P I N G C A R T I M P L E M E N T A T I O N 163

 if request.xhr?
 @item = @cart.add(params[:id])
 flash.now[:cart_notice] = "Added #{@item.book.title}"
 render :action => "add_with_ajax"
 elsif request.post?
 @item = @cart.add(params[:id])
 flash[:cart_notice] = "Added #{@item.book.title}"
 redirect_to:controller => "catalog"
 else
 render
 end
 end

 def remove
 @book = Book.find(params[:id])

 if request.xhr?
 @item = @cart.remove(params[:id])
 flash.now[:cart_notice] = "Removed 1 #{@item.book.title}"
 render :action => "remove_with_ajax"
 elsif request.post?
 @item = @cart.remove(params[:id])
 flash[:cart_notice] = "Removed 1 #{@item.book.title}"
 redirect_to :controller => "catalog"
 else
 render
 end
 end
end

164 C H A P T E R 5 ■ S H O P P I N G C A R T I M P L E M E N T A T I O N

We do the same kind of request-type sniffing here as with the add action. The method is
almost a duplicate of the add action, except that this time when Ajax is used, we render the
remove_with_ajax template, and of course, we call the Cart#remove method instead of add.

We now need to create the corresponding views, starting with app/views/cart/
remove_with_ajax.rjs:

page.insert_html :top, "shopping_cart", :partial => "cart/cart_notice"
if @cart.books.include?(@book)
 page.replace_html "cart_item_#{@book.id}", :partial => "cart/item"
 page.visual_effect :highlight, "cart_item_#{@book.id}", :duration => 3
else
 page.visual_effect :fade, "cart_item_#{@book.id}", :duration => 1.5
end
page.replace_html "cart_total", "Total: $#{@cart.total}"
page.visual_effect :fade, 'cart_notice', :duration => 3

This time, the view is a bit more involved. We don’t replace the whole shopping cart with
one updated partial, but instead modify its individual objects, as follows:

• We add the notice element to the top of the cart.

• If there are still items representing the book from which we just removed one item, we
update that element to show the correct amount and highlight the element. If the item
was the last one of the given book, we instead fade out and finally remove the whole list
item from the cart.

• We update the subtotal to match the current state of the cart.

• Finally, we slowly fade out the notice that we added in the beginning of the template.

Next, we create the view for non-Ajax operation, cart/remove.rhtml, which will be used as
the confirmation page of the remove action, just as we did with add.

Please confirm removing one <%= @book.title %>
from your shopping cart.
<%= button_to "Confirm", :action => "remove", :id => params[:id] %>

C H A P T E R 5 ■ S H O P P I N G C A R T I M P L E M E N T A T I O N 165

We already created a helper for the remove link, so all we need to do to enable the func-
tionality is to call that helper. We do that in the cart/_item.rhtml partial that we’re using to
show every item in the shopping cart:

<%= link_to item.book.title, :action => "show",
 :controller => "catalog", :id => item.book.id %>
<%= pluralize(item.amount, "pc", "pcs") %>,
$<%= item.price * item.amount %>

(<%= remove_book_link("-", item.book) %>)

Figure 5-3 shows how the removed element is faded when the remove link next to it is
clicked.

Figure 5-3. Removing an item from the cart

166 C H A P T E R 5 ■ S H O P P I N G C A R T I M P L E M E N T A T I O N

Implementing the Clear the Cart User Story
Clearing the cart follows pretty much the same path as the two previous user stories. We first
add two functional tests to test/functional/cart_controller_test.rb, to test clearing the cart
with both a normal POST request and an XmlHttpRequest.

def test_clearing
 post :add, :id => 4
 assert_equal [Book.find(4)], Cart.find(@request.session[:cart_id]).books

 post :clear
 assert_response :redirect
 assert_redirected_to :controller => "catalog"
 assert_equal [], Cart.find(@request.session[:cart_id]).books
 end

 def test_clearing_with_xhr
 post :add, :id => 4
 assert_equal [Book.find(4)], Cart.find(@request.session[:cart_id]).books

 xhr :post, :clear
 assert_response :success
 assert_equal 0, Cart.find(@request.session[:cart_id]).cart_items.size
 end

Then we add a new action called clear to app/controllers/cart_controller.rb, following
along the lines of the add and remove actions.

def clear
 if request.xhr?
 @cart.cart_items.destroy_all
 flash.now[:cart_notice] = "Cleared the cart"
 render :action => "clear_with_ajax"
 elsif request.post?
 @cart.cart_items.destroy_all
 flash[:cart_notice] = "Cleared the cart"
 redirect_to :controller => "catalog"
 else
 render
 end
end

C H A P T E R 5 ■ S H O P P I N G C A R T I M P L E M E N T A T I O N 167

Next, we add the view for the non-Ajax way of clearing the cart, cart/clear.rhtml.

Please confirm clearing your shopping cart.
<%= button_to "Confirm", :action => "clear" %>

Then we move on to implement the cart/clear_with_ajax.rjs template.

page.replace_html "shopping_cart", :partial => "cart/cart"
page.visual_effect :fade, 'cart_notice', :duration => 3

All that the template does is to replace the whole shopping cart with a new, empty one, ren-
dered by the cart/_cart.rhtml partial. Note that since we’re re-rendering the whole shopping_cart
element with a partial, we don’t need to explicitly show the cart_notification division (as we did
with the remove_with_ajax template), because it’s already part of the _cart.rhtml partial template.

We’ll also add a link for clearing the cart to the cart partial, but only if the cart is not empty.
Remember that we created the clear_cart_link helper earlier in this chapter (see Listing 5-3).

<% if flash[:cart_notice] %>
 <%= render :partial => "cart/cart_notice" %>
<% end %>

 <h3>Your Shopping Cart</h3>

 <% for item in @cart.cart_items %>
 <li id="cart_item_<%= item.book.id %>">
 <%= render :partial => "cart/item", :object => item %>

 <% end %>

 <p id="cart_total">Total: $<%= @cart.total %></p>
 <% unless @cart.cart_items.empty? %>
 <p id="clear_cart_link">
 <small>
 <%= clear_cart_link %>
 </small>
 </p>
 <% end %>

Our application can now be used to add items to the shopping cart, remove them from it,
and clear the whole cart with a single click.

The next natural step would be to implement the functionality of checking out—that is,
finalizing the order. However, since the checkout is such a beast with credit card processing
and all, we’ll postpone that for now and give you all the gory details in Chapter 9.

168 C H A P T E R 5 ■ S H O P P I N G C A R T I M P L E M E N T A T I O N

Summary
In this chapter, we implemented a shopping cart for an online store. We used the Ajax capabil-
ities in Ruby on Rails to implement a fast and interactive, but also backward-compatible
shopping cart.

In the course of implementing the shopping cart, we showed you how to use the has_many
:through association join models with ActiveRecord classes and how to use the Rails controller
filters and store information in the session hash. You saw how to put Rails helpers like pluralize
to use and how to write your own link helpers.

Our Ajax implementation demonstrated using the script.aculo.us JavaScript library, which
is bundled with Rails, to create modern, Ajax-driven shopping carts. You also saw how to make
sure your Ajax-driven site is also accessible to users whose browsers don’t support JavaScript.
Also, we covered using the Rails .rjs templates to update multiple items inside a web page with
a single Ajax call.

169

■ ■ ■

C H A P T E R 6

Forum Implementation

In this chapter, we will show you how to implement a forum that can be used by Emporium’s
customers to discuss book-related topics and provide feedback to George. Gathering feedback
from customers is an important part of an e-commerce site, as it allows you to adapt and
improve your service. For example, before implementing a new feature, you could post a mes-
sage to the forum, asking your customers if they would use the feature. If the answer is no, you
will save both money and time. Other uses for a forum include allowing customers to post bug
reports and review books, for example.

Implementing a forum can be time-consuming. To save us some time, and save George
some money, we will use the acts_as_threaded plugin as the basis for the forum implementa-
tion. While implementing the forum, we will also show you how to use view helpers. View
helpers are a built-in feature of Rails that allow you to keep your views clean from excessive
Ruby code. As usual, we will use TDD while implementing the forum, to ensure that the forum
is properly tested and working according to the requirements. And as in previous chapters, we
will use integration testing. In this case, we will simulate multiple users accessing the forum
and posting to the forum at the same time.

Getting the Forum Requirements
We start the new day in our humble cubicle, by arranging a meeting with George to discuss the
requirements for the feedback forum. George tells us that he is excited about the new possibil-
ities the forum will offer. He yells, “It has to be simple to use. I must also be able to use the
forum!” We show him a sketch of the user interface as we envision it. The create post page has
three fields: name, subject, and body. George jokes, “Looks like I will be able to use that.” We
tell him this is as simple as it gets, and that each discussion in the forum (also referred to as a
thread) starts from a root post. Replies to the root post are shown in a threaded fashion, so that
it is easy to follow the discussion. We write down the first user stories, View Forum and Post
to Forum.

Next, we show George a sketch of the View Post user story. He says, “You guys are profes-
sionals. I haven’t seen the forum yet, but I can already feel that it will be something special!” We
assure him that the forum will be simple and easy to use, and then continue by writing down
the View Post user story.

George informs us that we have to end the meeting early. He has just received news from
Jill (Emporium’s best customer) that the Emporium website is down again. He has to make an
emergency call to his IT department, which happens to be his nephew. Before he leaves, we
show him a sketch of the Reply to Post user story. He again praises our fine sketches and runs

170 C H A P T E R 6 ■ F O R U M I M P L E M E N T A T I O N

off towards the basement, mumbling, “I really hope that darn rat hasn’t put its head through
the server’s processor fan again. It would be the third time this month.” We try not to pay any
attention to what he just said and write down the Reply to Post user story.

With George in the basement, we can start the implementation of the forum. Here are the
user stories for this sprint:

• View forum: Users should be able to list all posts in the forum. Posts belonging to the
same discussion should be shown in a threaded fashion, and the list should be sorted,
with the most recent posts shown first.

• Post to forum: Users should be able to start a new discussion in the forum by entering
their name, a subject, and the body text of the post.

• View post: Users that are viewing the forum should be able to click on a post and view
the details.

• Reply to post: A customer views a forum post and decides to reply to the post by click-
ing the reply link. The user enters his name, the subject, and reply message, and then
clicks the reply button.

We’ll get started by installing the acts_as_threaded plugin.

Using the Threaded Forum Plugin
The acts_as_threaded plugin was originally developed by Bob Silva and allows you to easily
implement a forum. As you’ve seen in previous chapters, plugins are used by developers to
extend the core functionality provided by the Ruby on Rails framework. Implementing a forum
with the acts_as_threaded plugin is as simple as most tasks in Rails. Install the plugin, and then
add a database table, model, controller, and view.

The complex logic for storing forum data in a relational database, like MySQL, is handled
by the plugin, allowing you to concentrate on implementing the forum, instead of writing
infrastructure code. By not reinventing the wheel, you can implement the forum faster and
probably with fewer bugs than if you implemented it yourself, which means a happier client in
the end.

Download the plugin installation package from www.railtie.net/plugins/
acts_as_threaded.zip. Then extract the package to the vendor/plugins directory, which,
in our case, is /home/george/projects/emporium/vendor/plugins. Lastly, verify that you have
the following files in the vendor/plugins/acts_as_threaded directory:

• vendor/plugins/acts_as_threaded

• vendor/plugins/acts_as_threaded/init.rb

• vendor/plugins/acts_as_threaded/lib/threaded.rb

The init.rb file is called by Rails on startup and initializes the plugin. The threaded.rb file
contains the actual plugin code, which we will use to implement the forum.

C H A P T E R 6 ■ F O R U M I M P L E M E N T A T I O N 171

Activating the plugin is as simple as adding a call to the acts_as_threaded method to your
model, as in this example:

class Post < ActiveRecord::Base
 acts_as_threaded
end

The acts_as_threaded plugin adds the instance methods listed in Table 6-1 to the model.

Table 6-1. Instance Methods Added by the acts_as_threaded Plugin

We can hear George swearing loudly in the basement, “Damn sewer rat, you never learn!
Do you? This is your last... .” Then we hear a gun of some sort being fired six times. “Was that a
Smith & Wesson?” we ask ourselves, before continuing with the forum implementation.

Setting Up the Forum
We have been using ActiveRecord migrations since we introduced them in Chapter 2. Continu-
ing to use them for modifying the database schema to implement the Emporium forum is a
good idea.

Updating the Database Schema
The forum functionality requires that we add a new table to the database schema, which we
name forum_posts. This table is where all forum posts will be stored, including the information
about how posts are related to each other and how they should be displayed in a hierarchical
fashion.

The forum_posts table consists of ten columns, as shown in Figure 6-1. Table 6-2 provides
a brief description of each column. You can use different column names and add as many col-
umns as you need for storing your data, but we have followed the default structure.

Method Description

post.root? Returns true if the post is the root post in the thread

post.child? Returns true if the post is the child of another post

post.add_child(child) Adds a reply to the post

post.children_count Returns the number of replies under this post

post.full_set Returns an array containing the post itself and all replies under it

post.all_children Returns an array containing all replies

post.direct_children Returns an array containing only replies to this post

172 C H A P T E R 6 ■ F O R U M I M P L E M E N T A T I O N

Figure 6-1. Forum database table

Table 6-2. Columns in the forum_posts Table

■Tip For in-depth information about how hierarchical data, like forum posts, can be stored in a
MySQL database, see the “Managing Hierarchical Data in MySQL” article at http://dev.mysql.com/
tech-resources/articles/hierarchical-data.html. This article also explains how the lft, rgt,
and depth columns are used.

Column Name Description

root_id The unique identifier for the root post

parent_id The unique identifier for the parent post

lft The left boundary of the post; replies to this post have a left boundary that is
greater than this number

rgt The right boundary of the post; replies to this post have a right boundary that is
less than this number

depth The depth of the thread

name The name of the person who created the post

subject The subject of the post

body The post text

created_at Automatically set to the date and time the record was created

updated_at Automatically set to the date and time the record was updated

C H A P T E R 6 ■ F O R U M I M P L E M E N T A T I O N 173

The first five columns—root_id, parent_id, lft, rgt, and depth—are used by the plugin to
maintain the hierarchy of related posts. We have added the name, subject, and body columns,
which are used to store the data entered by the user.

Recall that the created_at and updated_at columns have a special meaning in ActiveRecord.
If ActiveRecord finds these columns in a table, it will automatically set the column values to the
current date and time, at creation time or when the record is updated.

■Note You can also name the created_at and updated_at columns created_on and updated_on; they
will be treated in the same way.

Next, create the ForumPost model, a migration, a fixture, and a unit test by executing the
script/generate command:

$ script/generate model ForumPost

 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/forum_post.rb
 create test/unit/forum_post_test.rb
 create test/fixtures/forum_posts.yml
 exists db/migrate
 create db/migrate/005_create_forum_posts.rb

Add the code shown in Listing 6-1 to the migration file: db/migrate/
005_create_forum_posts.rb.

174 C H A P T E R 6 ■ F O R U M I M P L E M E N T A T I O N

Listing 6-1. ActiveRecord Migration for the Forum Table

class CreateForumPosts < ActiveRecord::Migration
 def self.up
 create_table :forum_posts do |table|
 table.column :name, :string, :limit => 50, :null => false
 table.column :subject, :string, :limit => 255, :null => false
 table.column :body, :text

 table.column :root_id, :integer, :null => false, :default => 0
 table.column :parent_id, :integer, :null => false, :default => 0
 table.column :lft, :integer, :null => false, :default => 0
 table.column :rgt, :integer, :null => false, :default => 0
 table.column :depth, :integer, :null => false, :default => 0

 table.column :created_at, :timestamp, :null => false
 table.column :updated_at, :timestamp, :null => false
 end
 end

 def self.down
 drop_table :forum_posts
 end
end

When the migration script is executed, it creates the forum_posts database table and the
columns shown in Figure 6-1. Remember that you should always roll back all changes done by
the migration in the down method. In this case, we simply delete the forum_posts table.

Next, perform the database migration by executing rake db:migrate.

$ rake db:migrate

(in /home/george/projects/emporium)
== CreateForumPosts: migrating ==
-- create_table(:forum_posts)
 -> 0.1430s
== CreateForumPosts: migrated (0.1432s) =======================================

C H A P T E R 6 ■ F O R U M I M P L E M E N T A T I O N 175

Modifying the Model
The ForumPost model created by the generate script is almost complete. We just need to acti-
vate the plugin and add some basic validations to the model to prevent bad data from being
stored in the database. We will add validations for three fields:

• The name field is used for storing the name of the person who created the post, and must
be between 2 to 50 characters in length.

• The subject field is shown on the forum main page and should be descriptive but not
too long, which is why it is limited to between 5 and 250 characters.

• The body field should be long enough for the user to write a short message, but not too
long, which is why it is limited to 5000 characters.

We activate the plugin by adding the line acts_as_threaded to our model, and use the
validates_length_of validation method to enforce the length of a field. Here are the additions
to make to app/models/forum_post.rb:

class ForumPost < ActiveRecord::Base
 acts_as_threaded

 validates_length_of :name, :within => 2..50
 validates_length_of :subject, :within => 5..255
 validates_length_of :body, :within => 5..5000
end

EXTENDING THE FORUM

If you have different requirements for your forum, you can add as many columns to the forum_posts table
as you need. For example, you might add email, first_name, and last_name columns.

It is also easy to split the forum into separate categories, such as Feedback, News, FAQ, and Help. To set
up categories, add a category_id column to the forum_posts table, which references a forum category
that is stored in the categories table. Then add the following code to the model:

 belongs_to :category

 def self.find_all_in_category(category)
 category = Category.find_by_name(category)
 self.find :all, :conditions => "category_id = #{category.id}"
 end

The belongs_to mapping allows you to access the category the post belongs to; for example,
post.category.name. The find_all_in_category method could be used to retrieve posts from a spe-
cific category; for example, ForumPost.find_all_in_category('FAQ').

176 C H A P T E R 6 ■ F O R U M I M P L E M E N T A T I O N

Notice how simple Rails and the acts_as_threaded plugin have made it to implement a
forum. The model contains only four lines of code, and we needed to create only one table.
This is enough for a basic forum implementation. You can now start using the ForumPost model
in your controllers to add, retrieve, edit, and delete forum posts.

Unit Testing the Model
It is a good idea to have proper unit tests in place, even if you’re using an external plugin that
has been tested thoroughly. The plugin API might change in later releases, and this would
probably go unnoticed until one of your customers informs you about the problem.

We’ll create a basic test that verifies that you can create a post and also create a reply to it.
Remember that the generate script has already created an empty unit test for us. All we need to
do is add the code shown in Listing 6-2 to test/unit/forum_post_test.rb.

Listing 6-2. Unit Test for the ForumPost Model

require File.dirname(__FILE__) + '/../test_helper'

class ForumPostTest < Test::Unit::TestCase
 fixtures :authors

 def test_create_post_and_reply
 post = ForumPost.new(:name => 'George',
 :subject => 'Subject',
 :body => 'Body text')

 assert post.save
 assert_not_nil ForumPost.find_by_name('George')

 reply = ForumPost.new(:name => 'Jill',
 :subject => 'Reply',
 :body => 'Reply body text',
 :parent_id => post.id)

 assert reply.save
 assert reply.child?

 post.reload

 assert post.root?
 assert_equal 1, post.all_children().size
 assert_equal reply, post.all_children()[0]
 end
end

C H A P T E R 6 ■ F O R U M I M P L E M E N T A T I O N 177

Notice that the test uses the authors fixture that we created in Chapter 2. First, the unit test
creates a new post, which is the root post of a new thread. Then it saves the post and verifies
that it was successfully saved to the database with an assert. Recall that the save method
returns false if the object was not saved successfully. We double-check that the post can be
found with the find_by_name dynamic finder method (introduced in Chapter 3). The unit test
also verifies that the first post is the root post by calling root?. This method returns true if the
post has no parent posts.

We also want to be sure that someone can reply to the post, which is why we create a reply
to the root post. This is done by creating a new post and setting the parent_id column to the id
of the root post. After saving the reply post, we verify that the post really is a reply to the first
post by calling the child? method. This method returns true if the post is a child, or reply, of
another post.

At the end of the unit test, we verify that the root post has exactly one child post, and that
the first post returned by all_children returns the reply.

Before running the tests, clone the development database structure to the test database by
executing the following command:

rake db:test:clone_structure

Next, run the unit test as follows:

$ ruby test/unit/forum_post_test.rb

Loaded suite test/unit/forum_post_test
Started
.
Finished in 0.101902 seconds.

1 tests, 7 assertions, 0 failures, 0 errors

Now we are ready to create the controller and view.

Generating the Controller and View
George has given us a tight schedule. We could create the forum controller and view files
manually, but instead, we decide to save some time and use the generate script. Run the
generate script with the following parameters to generate the controller:

$ script/generate controller Forum index reply show post create

178 C H A P T E R 6 ■ F O R U M I M P L E M E N T A T I O N

 exists app/controllers/
 exists app/helpers/
 create app/views/forum
 exists test/functional/
 create app/controllers/forum_controller.rb
 create test/functional/forum_controller_test.rb
 create app/helpers/forum_helper.rb
 create app/views/forum/index.rhtml
 create app/views/forum/reply.rhtml
 create app/views/forum/show.rhtml
 create app/views/forum/post.rhtml
 create app/views/forum/create.rhtml

Note that each action in the controller maps to a user story:

• The index action implements the View Forum user story.

• The reply action implements the Reply to Post user story.

• The show action implements the View Post user story.

• The post and create actions implement the Post to Forum user story.

Open app/controllers/forum_controller.rb in your editor. You should see the following
code (note that we have left out part of the file):

class ForumController < ApplicationController

 def index
 end

 def reply
 .
 .
end

Next, we will implement each of the forum user stories.

C H A P T E R 6 ■ F O R U M I M P L E M E N T A T I O N 179

Implementing the User Stories
As in previous chapters, we will show you how to use the TDD approach while implementing
the forum. This means that you will first create the unit tests, or in this chapter, integration
tests. In Chapter 3, we introduced integration testing and mentioned some of the benefits of
using integration tests, including multiple session support and tests that span multiple con-
trollers. A forum can be accessed by many users at the same time, which makes it a good
candidate for integration testing. For example, George might be replying to a post at the same
time as Jill is creating a new post. Integration tests make it possible to simulate this by allowing
us to open multiple sessions in the test and execute each action in a different session.

The forum needs some posts for the other user stories to make any sense, so we’ll start by
implementing the Post to Forum user story.

Implementing the Post to Forum User Story
The Post to Forum user story describes how a customer, or George himself, submits a new post
to the forum. This is done by filling out the required information, including the name of the
person creating the post, plus the subject and body of the post. To publish the post to the
forum, the user should click the Post button. This saves the post in the database and redirects
the user to the main page of the forum, where he can see the post at the top of the page.

Creating the Integration Test

First, create the integration test with the generate script:

$ script/generate integration_test Forum

 exists test/integration/
 create test/integration/forum_test.rb

If you open the generated test, you can see that it contains one dummy test, which should
be removed.

Next, create the new testing DSL for the forum by adding the code shown in Listing 6-3 to
test/integration/forum_test.rb.

180 C H A P T E R 6 ■ F O R U M I M P L E M E N T A T I O N

Listing 6-3. First Version of the Integration Test

require "#{File.dirname(__FILE__)}/../test_helper"

class ForumTest < ActionController::IntegrationTest

 def test_forum
 end

 private

 module ForumTestDSL
 attr_writer :name
 end

 def new_session_as(name)
 open_session do |session|
 session.extend(ForumTestDSL)
 session.name = name
 yield session if block_given?
 end
 end

end

The new_session_as method is used for opening a new session for a user. This can be used
to simulate George starting his browser and going to the Emporium website, for example. The
test_forum method is the main method for the integration test that will use the DSL to test all
the user stories as a whole.

Next, add the post_to_forum method to the ForumTestDSL directly after the line
attr_writer :name:

 def post_to_forum(parameters)
 get "/forum/post"
 assert_response :success
 assert_template "forum/post"

 post "/forum/create", parameters

 assert_response :redirect
 follow_redirect!
 assert_response :success
 assert_template "forum/index"
 return ForumPost.find_by_subject(parameters[:post][:subject])
 end

C H A P T E R 6 ■ F O R U M I M P L E M E N T A T I O N 181

The post_to_forum method simulates a user creating a new post. First, it opens the URL
/forum/post and verifies that it works simply by checking the HTTP status code. Then it creates
a new post by calling the /forum/post URL. Next, the test verifies that the request was success-
ful and that there is a redirect to the forum main page. At the end, the method returns the post
object that was created by the test, so that we can use it later in the test.

Next, put the new method to use by changing the test_forum method as follows:

 def test_forum
 jill = new_session_as(:jill)
 post = jill.post_to_forum :post => {
 :name => 'Bookworm',
 :subject => 'Downtime',
 :body => 'Emporium is down again!'
 }
 end

This will test the Post to Forum user story. It simulates Jill creating a new post on the
forum. Note that we are saving the post for later use in the integration test, so that we can
reply to it.

You can now run the integration test, in true TDD style (it should fail):

$ ruby test/integration/forum_test.rb

Loaded suite test/integration/forum_test
Started
F
Finished in 0.061169 seconds.

 1) Failure:
test_forum(ForumTest)
 [test/integration/forum_test.rb:26:in 'post_to_forum'
 test/integration/forum_test.rb:7:in 'test_forum'
 /usr/lib/ruby/gems/1.8/gems/actionpack-1.12.1/lib/action_controller/ ➥

integration.rb:427:in `run']:
Expected response to be a <:redirect>, but was <200>

1 tests, 3 assertions, 1 failures, 0 errors

It fails because we haven’t implemented anything but the test yet. Now let’s complete the
user story by modifying the controller and views that were created by the generate script.

182 C H A P T E R 6 ■ F O R U M I M P L E M E N T A T I O N

Completing the Controller

The controller contains two actions that are used in the Post to Forum user story. One displays
the form, and the other takes the user input and persists the post to the database. Both the
post and create actions exist already, but they contain no code, so modify app/controllers/
forum_controller.rb as follows:

 def post
 @page_title = 'Post to forum'
 @post = ForumPost.new
 end

 def create
 @post = ForumPost.new(params[:post])
 if @post.save
 flash[:notice] = 'Post was successfully created.'
 redirect_to :action => 'index'
 else
 @page_title = 'Post to forum'
 render :action => 'post'
 end
 end

The post action does one thing: it creates a new ForumPost object that is used by the form
tags in the view. The create action is a bit more complex. It receives the form input from the
user and creates a new ForumPost object. It then tries to save it to the database. If the user-
supplied data passes validation, it redirects the user to the forum main page. If there are any
validation errors, it renders the create post page instead, where we use the error_messages_for
helper to show the validation errors to the user.

Creating the View

Recall that the Post to Forum user story is implemented with the controller’s post action, which
directly maps to the app/views/forum/post.rhtml view. The ERB code for this view is shown in
Listing 6-4. Save the code in app/views/forum/post.rhtml.

C H A P T E R 6 ■ F O R U M I M P L E M E N T A T I O N 183

Listing 6-4. View for the Post to Forum User Story

<%= error_messages_for 'post' %>
<%= start_form_tag :action => 'create' %>
 <%= hidden_field :post, :parent_id %>
 <p><label for="post_name">Name</label>

 <%= text_field 'post', 'name' %></p>
 <p><label for="post_subject">Subject</label>

 <%= text_field 'post', 'subject' %></p>
 <p><label for="post_body">Body</label>

 <%= text_area 'post', 'body' %></p>

 <%= submit_tag "Post" %>
<%= end_form_tag %>

The view uses the built-in Ruby on Rails form helpers hidden_field, text_field, and
text_area for creating the form fields. Note that we are using label tags and that the label tag’s
for attribute is used to associate the label with a form field. Using label tags in forms is impor-
tant because it improves usability, such as by extending the clickable area to outside the field.
The hidden field in the view is used by the Reply to Post user story, which we will implement
later in this chapter.

■Tip For more information about form helpers, see the online documentation at:
http://api.rubyonrails.org/classes/ActionView/Helpers/FormHelper.html.

Testing

Let’s run the integration test and verify that our user story is functioning as specified:

$ ruby test/integration/forum_test.rb

Loaded suite test/integration/forum_test
Started
.
Finished in 0.114117 seconds.

1 tests, 5 assertions, 0 failures, 0 errors

184 C H A P T E R 6 ■ F O R U M I M P L E M E N T A T I O N

If you followed our instructions, the test should pass without errors.
If you want, you can try a manual test as well. Manual testing is an important complement

to automated tests and also makes development more fun, as you can see what you are build-
ing. Open http://localhost:3000/forum/post in your browser. Enter your name, the subject,
and the body of the post in the form. Figure 6-2 shows our validation at work: an error message
appears because we tried to post a message without entering any data into the fields.

Figure 6-2. The create post page showing some validation errors

When you click the Post button, and if the data you entered passes validation, you’re redi-
rected to http://localhost:3000/forum. The page displays the message Forum#index, as we
have not yet implemented the View Forum user story.

■Note Here, we showed you how to implement a test that verifies that a valid post is created successfully.
It would be a good idea to also create tests for other scenarios, such as when data fails validation.

C H A P T E R 6 ■ F O R U M I M P L E M E N T A T I O N 185

Implementing the View Forum User Story
The View Forum user story describes how a user can access the forum’s main page to view a list
of the most recent posts. The page displays all the forum posts in a threaded fashion, with the
most recent post shown at the top of the list, similar to this example:

Hello from the Cayman Islands by George * 02/02/2006
-->Bring a keg of Rum by Jill * 02/03/2006
---->Is one enough? by George * 02/05/2006
WARNING! Rat poison deployed in server room by George * 31/12/2005

George has great plans for Emporium. He envisions a lot of traffic and users posting exotic
questions on the forum, so showing all posts on the same page is not very wise. This is easy to
fix with pagination, which we will use to ensure that no more than 20 posts are shown at the
same time.

Updating the Integration Test

As explained earlier, integration tests are great for testing multiple sessions. The test that we’ll
create next will check this by simulating both George and Jill accessing the forum at the same
time. Add the following code to the DSL in test/integration/forum_test.rb, immediately
after the post_to_forum method:

 def view_forum
 get "/forum"

 assert_response :success
 assert_template "forum/index"
 assert_tag :tag => 'h1', :content => 'Forum'
 assert_tag :tag => 'a', :content => 'New post'
 end

This method simply accesses the forum main page and verifies that the heading on
the page is displayed correctly. The main forum page should also contain a link to the create
post page. This is verified with another assert_tag that looks for a link named New post.
Change the test_forum method as follows (changes are highlighted):

 def test_forum
 jill = new_session_as(:jill)
 george = new_session_as(:george)
 post = jill.post_to_forum :post => {
 :name => 'Bookworm',
 :subject => 'Downtime',
 :body => 'Emporium is down again!'
 }
 george.view_forum
 jill.view_forum
 end

186 C H A P T E R 6 ■ F O R U M I M P L E M E N T A T I O N

This simulates George opening the forum in his browser right after Jill has posted to the
forum. In later tests, we’ll create a test that simulates George replying to the post made by Jill.

Next, run the test by executing ruby test/integration/forum_test.rb. You should see the
test fail with the following message:

expected tag, but no tag found matching {:content=>"New post", :tag=>"a"} in:

The test is expecting to find the link New post, but fails because we haven’t modified the
view. Note that the test didn’t fail on the first assert because the heading is Forum#index.

Modifying the View

Fix the view by opening app/views/forum/index.rhtml and changing the contents of the file to
match Listing 6-5.

Listing 6-5. The View for the View Forum User Story

<% if @posts.size > 0 %>
<div><%= link_to 'New post' , :action => 'post' %></div>
<p>
<%= display_as_threads @posts %>
</p>
<% else %>
There are no posts yet. <%= link_to 'Be the first one to post here' , ➥

:action => 'post' %>
<% end %>

<%= link_to 'Previous page' , { :page => @post_pages.current.previous } ➥

if @post_pages.current.previous %>
<%= link_to 'Next page' , { :page => @post_pages.current.next } ➥

if @post_pages.current.next %>

Run the integration test again with the following command: $ ruby test/integration/
forum_test.rb. This time, you should see the test fail with the following message:

Expected response to be a <:success>, but was <500>

C H A P T E R 6 ■ F O R U M I M P L E M E N T A T I O N 187

To find the cause for this, open your browser and go to http://localhost:3000/forum. As
shown in Figure 6-3, the page shows a nice and detailed error message of where the error is
located.

Figure 6-3. Rails error page

■Tip The error page that is displayed when exceptions are thrown is exceptionally well thought out. It
shows you details about the request, response, and session. At the bottom of the page, you can also see the
stack trace leading up to the error, including links that allow you to filter the stack trace to show only your
application code, the Rails framework’s code, or the full trace.

The error page tells you that line 1 contains an error and shows you the code around line 1
in your browser. As you can see, the page generates an error when it tries to call the size
method on the @posts instance variable. This is because we haven’t initialized the @posts vari-
able in the controller. Fixing the page requires completing the following tasks:

• Change the index action in the controller to retrieve a paginated list of posts.

• Create a view helper containing the display_as_threads method. This method is used to
display the forum posts.

188 C H A P T E R 6 ■ F O R U M I M P L E M E N T A T I O N

Modifying the Controller

Start by changing the index action. Open app/controllers/forum_controller.rb in an editor
and modify the index action as follows:

 def index
 @page_title = 'Forum'
 @post_pages, @posts = paginate :forum_posts, :per_page => 20, ➥

 :order => 'root_id desc, lft'
 end

The paginate method is used to retrieve a paginated list of ForumPost objects. Further-
more, we specify that we want to show a maximum of 20 posts per page, and that the posts
should be ordered by the root_id and the lft columns.

You can try to access the page again in your browser or run the integration test. Both
should fail with an error being shown, because the display_as_threads method is not found.

Using a View Helper

Displaying a list of posts requires a fair amount of code, as each post can have one or more
replies, and these need to be shown as a thread. To avoid cluttering the view with too much
Ruby code, we will use a view helper to generate the list of posts.

■Tip Putting too much code in the view is usually a bad idea. If you see that your view is getting cluttered
with Ruby code, you can refactor it and move the code to a view helper, controller, or another part of
the system.

The generate script already created a view helper for you. Open app/helpers/
forum_helper.rb and add the display_as_threads method, as follows:

module ForumHelper
 def display_as_threads(posts)
 content = ''
 for post in posts
 url = link_to("#{h post.subject}", {:action => 'show', :id => post.id})
 margin_left = post.depth*20
 content << %(
 <div style="margin-left:#{margin_left}px">
 #{url} by #{h post.name} · ➥

#{post.created_at.strftime("%H:%M:%S %Y-%M-%d") }
 </div>)
 end
 content
 end
end

C H A P T E R 6 ■ F O R U M I M P L E M E N T A T I O N 189

The new display_as_threads method takes an array of post objects as a parameter. Recall
that we are calling this method from the view and passing the posts variable to it, which is ini-
tialized by the controller. The method loops through all the posts and creates the HTML
necessary for displaying the posts in a threaded fashion.

Note that each post is located inside a div tag that is indented to the right by specifying a
left margin. This is done with the margin-left CSS property. The size of the indentation is
related to how deep down the reply is in the hierarchy; each reply is indented 20 pixels to the
right of the parent. Also note that the link_to method is used to create a link to the show post
page, which we will implement in the next section.

Open your browser and create a couple of posts. You should see a page similar to the one
shown in Figure 6-4. Recall that in Chapter 2, we changed the layout to show the flash message
at the top of the page.

Figure 6-4. The forum main page

You can now run the test again by executing ruby test/integration/forum_test.rb. You
should see the test pass without errors or failures.

$ ruby test/integration/forum_test.rb

Loaded suite test/integration/forum_test
Started
.
Finished in 0.183961 seconds.

1 tests, 13 assertions, 0 failures, 0 errors

You can now both create and view a list of posts. The next logical thing to implement is the
View Post user story.

190 C H A P T E R 6 ■ F O R U M I M P L E M E N T A T I O N

Implementing the View Post User Story
On the forum main page, you can see the posts you have created. If you click the post subject,
you are taken to a page that displays the text Forum#show. This page was created by the generate
script and is clearly not what we want. We need to modify the page so that it shows all the infor-
mation about the post.

Updating the Integration Test

Start by modifying the integration test. As we said earlier, most forums have more than one
user. We will therefore continue simulating a scenario where Jill is creating a post and George
is browsing to the post details page. Add the new view_post method to test/integration/
forum_test.rb.

 def view_post(post)
 get "/forum/show/#{post.id}"

 assert_response :success
 assert_template "forum/show"
 assert_tag 'h1', :content => "'#{post.subject}'"
 end

The new DSL method takes a post object as a parameter, which it uses to access the post
details page. On the post details page, the test verifies that the subject of the post can be found
in the page content.

Next, we want to simulate George browsing the forum and viewing the post Jill created.
Add a call to the view_post action, as follows (highlighted):

def test_forum
 jill = new_session_as(:jill)
 george = new_session_as(:george)
 post = jill.post_to_forum :post => {
 :name => 'Bookworm',
 :subject => 'Downtime',
 :body => 'Emporium is down again!'
 }
 george.view_forum
 jill.view_forum

 george.view_post post
 end

Running the test now would cause the test to fail miserably with the following error:

expected tag, but no tag found matching {:tag=>"h1", :content=>"'Downtime'"} in:

C H A P T E R 6 ■ F O R U M I M P L E M E N T A T I O N 191

 This is because you have not yet modified the show action and view to show the details of
the post. Remember that we created these earlier with the help of the generate script.

Modifying the Controller

Modify the show action in app/controllers/forum_controller.rb so that it loads the specified
forum post. This is done with a call to ForumPost.find:

 def show
 @post = ForumPost.find(params[:id])
 @page_title = "'#{@post.subject}'"
 end

As usual, we set the page title using the @page_title variable.

Modifying the View

Change the contents of the app/views/forum/show.rhtml to be as follows:

<dl>
 <dt>Name</dt>
 <dd><%= h @post.name %></dd>
 <dt>Subject</dt>
 <dd><%= h @post.subject %></dd>
 <dt>Body</dt>
 <dd><%= h @post.body %></dd>
</dl>
<%= link_to 'Reply', :action => 'reply', :id => @post %> |
<%= link_to 'Back', :action => 'list' %>

■Note It is extremely important that you escape all data that is entered by users with the h method. This
helps in protecting you from security risks, such as cross-site scripting attacks. For more information about
how to protect your site against various attacks, refer to Chapter 8, “Security”.

With the action and view in place, the integration test should now work, so run it once
more to verify that the integration test passes:

$ ruby test/integration/forum_test.rb

Loaded suite test/integration/forum_test
Started
.
Finished in 0.145623 seconds.

1 tests, 11 assertions, 0 failures, 0 errors

192 C H A P T E R 6 ■ F O R U M I M P L E M E N T A T I O N

You should also perform a manual test to verify that the page works correctly. Open
http://localhost:3000/forum/show/1 (you might have to change the id), and you should see
the details of the post, as shown in Figure 6-5. Notice that there is a Reply link at the bottom
of the page.

Figure 6-5. The final version of the post page

The Reply to Post user story is the last user story that we need to implement.
In case you want to display links to replies (to the current post) on the Show Post page, you

can add the following code to the view:

<%= display_as_threads @post.direct_children%>

This displays the replies to the current post, but only the direct replies. To display all
replies use the following code:

<%= display_as_threads @post.all_children%>

Implementing the Reply to Post User Story
After, for example, Jill has posted a message to the forum, George should be able to view the
post and reply to it. George should be able to do this by clicking the Reply link on the post
details page (see Figure 6-5).

C H A P T E R 6 ■ F O R U M I M P L E M E N T A T I O N 193

The Reply to Post user story requires that you change the integration test one last time.
Add the reply_to_post method to the DSL:

 def reply_to_post(post, parameters)
 get "/forum/reply/#{post.id}"
 assert_response :success
 assert_tag 'h1', :content => "Reply to '#{post.subject}'"

 post "/forum/create/#{post.id}", parameters

 assert_response :redirect
 follow_redirect!
 assert_response :success
 assert_template 'forum/index'
 assert_tag :a, :content => post.subject
 end

The reply_to_post method simulates a user browsing to the reply to post page. The test
verifies that the page title is correct and checks that there is a redirection to the forum main
page, which indicates that the post was saved successfully. At the end, the test verifies that the
main page lists the post that was created, by looking for an anchor tag having the same content
as the post’s subject.

Next, change the test_forum method as follows:

 def test_forum
 jill = new_session_as(:jill)
 george = new_session_as(:george)
 post = jill.post_to_forum :post => {
 :name => 'Bookworm',
 :subject => 'Downtime',
 :body => 'Emporium is down again!'
 }
 george.view_forum
 jill.view_forum

 george.view_post post
 george.reply_to_post(post, :post => {
 :name => 'George',
 :subject => 'Rats!',
 :body => 'Rats!!!!!!!!'
 }
)
 end

194 C H A P T E R 6 ■ F O R U M I M P L E M E N T A T I O N

This will create a reply to the post Jill made earlier in the test. But when the integration test
is run, it should fail with the following error message:

expected tag, but no tag found matching {:content=>"Reply to 'Downtime'", :tag=>"h1"

The test is failing because the reply_to action is empty, when it should be creating a new
post and setting the correct page title. Fix this by modifying the reply action:

 def reply
 reply_to = ForumPost.find(params[:id])
 @page_title = "Reply to '#{reply_to.subject}'"
 @post = ForumPost.new(:parent_id => reply_to.id)
 render :action => 'post'
 end

First, the reply_to action loads the post object that the user is replying to from the database.
This is because we want the page title to be the subject of the post we are replying to, which is
done by setting the page_title instance variable. Then we create a new post object, which is the
reply, and set the parent_id to be the id of the post to which we are replying.

Execute the test one final time, and you should see it pass without any errors.
As usual, do a quick manual test by replying to one of the posts you have already created.

This opens a URL pointing to http://localhost:3000/forum/reply/1 (note that your id param-
eter might be different) in your browser, as shown in Figure 6-6.

Figure 6-6. The reply to post page

C H A P T E R 6 ■ F O R U M I M P L E M E N T A T I O N 195

After you reply to the post, you should be redirected to the main page, where you should
see something similar to Figure 6-7.

Figure 6-7. The forum main page showing a discussion thread

We notice that George has come up from the basement and that he is holding a Smith &
Wesson, just as we suspected. He yells, “There’s nothing that beats a Smith & Wesson—not
even a rabid sewer rat!”

We ask him to do an acceptance test of the forum functionality. He seems happy with how
easy it is to use, and tells us that we have done a good job.

Summary
In this chapter, we showed you how to implement a forum with the help of a third-party plugin.
We also demonstrated how to create integration tests that simulate multiple users accessing
the forum and how to create a view helper to display the posts in the forum as threads.

In the next chapter, you will learn how to implement tagging.

197

■ ■ ■

C H A P T E R 7

Tagging Support

In this chapter, we will extend the Emporium site to support tagging. Tagging, which is done
by assigning a set of tags (keywords) to an entity, is used by some of the most respected web-
sites on the Internet. For example, Amazon, Yahoo, and Google allow their users to categorize
and link together a variety of information with the help of tags.

Adding tagging functionality to an e-commerce site has several benefits. One benefit is
that tagging simplifies the categorization of content. A good showcase for the benefits of tag-
ging is del.icio.us, which uses a collaborative form of tagging (folksonomy) where all users are
allowed to bookmark websites and assign tags to them. The success of del.icio.us can largely be
attributed to tagging, because it simplified the way people could categorize and find their
bookmarks.

Another benefit of tagging is that it allows you to make recommendations to your custom-
ers. Say, for example, that your customer is browsing a book on programming that has been
tagged with the keywords Ruby and Programming. You can then show other books that share
these tags, and this will probably increase your sales.

Getting the Tagging Requirements
Back when we were getting George’s requirements for the book inventory management system
(in Chapter 3), George told us that he wanted the online store to recommend related items
when users look for books, as he has seen on Amazon. Now we’re ready to tackle the imple-
mentation of this feature in this sprint.

George tells us “I feel really stupid today! I was going to buy just one book on home brew-
ing from Amazon, but they tricked me into ordering both The Brewmaster's Bible: Gold
Standard for Home Brewers and Homebrewing for Dummies. I was viewing the details of
The Brewmaster's Bible, when I noticed that they recommended Homebrewing for Dummies,
and I just had to buy it!” He hopes that adding this feature will have the same effect on his cus-
tomers and that it will double his sales.

198 C H A P T E R 7 ■ T A G G I N G S U P P O R T

We agree with him that this is a good idea, and tell him that this would be easy to imple-
ment with a tagging system. We also point out that it can be used for categorizing books, so that
customers can browse a list of categories. After a brief discussion, we come up with the follow-
ing user stories:

• Assign tags: George must be able to assign a set of tags to a book by typing in a comma-
delimited list of tags on the add book page. This extends the Add Book user story we
implemented in Chapter 3.

• Edit tags: George must be able to remove or add tags to an existing book on the edit book
page. This should be possible by editing the Tags text field. This extends the Edit Book
user story we implemented in Chapter 3.

• List tags: Emporium’s customers must be able to view all tags that have been used in
the system.

• Show tag: While viewing the details of a book, a customer must be able to click each tag
and display books having the same tags.

• Recommend books: While the user is viewing a book, the system must be able to recom-
mend similar books to the user. The system must provide links to both books and tags
that are related to the current book.

We tell George that it will take about a day to implement the tagging functionality. George
responds, “No worries. It can cost a million dollars, as long as it doubles my sales.”

Using the Tagging RubyGem
Implementing a tagging system is a complex task and requires a fair amount of code and SQL
to be written. Fortunately, we can save days (or weeks) of coding and bug fixing by using the
acts_as_taggable gem. acts_as_taggable is an ActiveRecord mix-in that allows you to add
tagging capabilities to your ActiveRecord models. Originally coded by Demetrius Nunes,
acts_as_taggable is an open source project hosted by RubyForge. The API documentation
can be found at http://taggable.rubyforge.org, and the project’s homepage is http://
rubyforge.org/projects/taggable/.

■Note Don’t confuse the acts_as_taggable gem (http://rubyforge.org/projects/taggable/) with
the acts_as_taggable plugin (http://dev.rubyonrails.com/svn/rails/plugins/acts_as_taggable/).
Both the gem and plugin have similar features. We chose to use the gem because, at the time of writing, the plugin
was lacking some of the more advanced features that we showcase in this book.

C H A P T E R 7 ■ T A G G I N G S U P P O R T 199

To install acts_as_taggable, simply execute the following command:

$ sudo gem install acts_as_taggable

Bulk updating Gem source index for: http://gems.rubyforge.org
Successfully installed acts_as_taggable-2.0.2
Installing ri documentation for acts_as_taggable-2.0.2...
Installing RDoc documentation for acts_as_taggable-2.0.2...

The location of the repository depends on your system and RubyGems configuration. On our
machine, the gem was installed in /usr/lib/ruby/gems/1.8/gems/acts_as_taggable-2.0.2/.

■Tip If desired, you can turn the gem into a plugin. First, change the current directory to the
vendor/plugins directory with cd vendor/plugins, and then execute gem unpack acts_as_taggable.
Next, create a file called init.rb in the acts_as_taggable folder and put the following code in it: require
'taggable'.

We need to tell Rails to load the acts_as_taggable gem at startup, since we are using a gem
and not a Rails plugin. To do this, add the line require_gem 'acts_as_taggable' to the last line
of config/environment.rb, as shown here:

Include your application configuration below
require_gem 'acts_as_taggable'

After you have saved the changes and restarted WEBrick, you can specify that an ActiveRecord
model should be taggable by adding the line acts_as_taggable to the code. This gives you access to
the instance methods shown in Table 7-1 and the class methods shown in Table 7-2.

■Tip See the online documentation at http://taggable.rubyforge.org/ for the complete and latest
version information about acts_as_taggable.

200 C H A P T E R 7 ■ T A G G I N G S U P P O R T

Table 7-1. Instance Methods Introduced by acts_as_taggable

■Tip The RubyGems packaging system provides a handy command that can be used for accessing the doc-
umentation of packages installed with RubyGems, including acts_as_taggable. This is useful, for example, if
you are working offline and can’t read the online documentation. Execute gem_server to start a web server on
your local machine, which allows you to access the documentation at http://localhost:8808.

Table 7-2. Class Methods Introduced by acts_as_taggable

Method Description

book.tag(tags, options) Assigns the specified tags to the book. This is done by
parsing the tags parameter. The tags parameter is a
string, and tags are separated by spaces. A different
separator can be used by adding the :separator => '
' option to the options hash. Add the :clear => true
option to remove all existing tags before assigning the
new ones.

book.tag_names(reload) Returns an array of tags that have been assigned to the
book. The collection can be forced to be reloaded from
the database by setting reload to true.

book.tagged_related(options) Finds books that share most of the same tags as the
current book. The options hash can be used for
specifying how many books should be returned by
the method. The default is five. To specify a different
value, add :limit => n to the options hash. Note that
you need to specify the separator with the separator
parameter, if you are not using the default separator.

book.tagged_with?(tag_name, reload) Returns true if the book has been assigned the
specified tag. The reload parameter can be used to
force a reload of the book, before the check is
performed.

Method Description

Book.find_related_tagged(book, options) Finds related books and returns them as an array.
The method returns the five books that share the
most tags with the specified book. The options
hash can be used to set the maximum amount of
books returned.

Book.find_related_tags(tags, options) Returns tags that are related to the ones specified
with the tags parameter. The options hash can
be used to set the maximum amount of tags
returned.

Book.find_tagged_with(options) Finds books that are tagged with the specified
options. This can be used to find books that have
any or all of the specified tags, for example. See
the online documentation for a complete list of
available options.

C H A P T E R 7 ■ T A G G I N G S U P P O R T 201

Setting Up for Tagging
As in previous chapters, we will use ActiveRecord migrations to modify the database schema to
implement tagging. We will add tables, create a model, and develop unit tests. We’ll also intro-
duce testing with the console.

Updating the Database Schema
When George assigns a set of tags to a book, we must be able to store them somewhere, and
also be able to associate them with the book. For this purpose, we will add two new tables to the
database schema (see Figure 7-1):

• The tags table is where the unique id and name of all tags are stored.

• The books_tags table is used to associate a set of tags with one or more books, through
a many-to-many relationship (ActiveRecord database relationships are covered in
Chapter 3). The books_tags table includes foreign key references to the tags and
books tables.

Figure 7-1. Tables used by the tagging system

Next, create the migration by executing the generate command:

$ script/generate migration CreateTagsAndBooksTags

 exists db/migrate
 create db/migrate/006_create_tags_and_books_tags.rb

The generate script creates an empty migration script for you. Next, change the script as
shown in Listing 7-1.

id
title
publisher_id
published_at
isbn
blurb
page_count
price
created_at
updated_at
cover_image

books

tag_id
book_id

books_tags

id
name

tags
1 1

202 C H A P T E R 7 ■ T A G G I N G S U P P O R T

Listing 7-1. Migration Script for the Tagging Functionality

class CreateTagsAndBooksTags < ActiveRecord::Migration
 def self.up
 create_table :tags do |table|
 table.column :name, :string, :limit => 255, :null => false, :unique => true
 end

 create_table :books_tags, :id => false do |table|
 table.column :tag_id, :integer, :null => false
 table.column :book_id, :integer, :null => false
 end

 say_with_time 'Adding foreign keys' do
 # Add foreign key reference to books_tags table
 execute 'ALTER TABLE books_tags ADD CONSTRAINT fk_tb_tags ➥

FOREIGN KEY (tag_id) REFERENCES tags(id) ON DELETE CASCADE'
 execute 'ALTER TABLE books_tags ADD CONSTRAINT fk_tb_books ➥

FOREIGN KEY (book_id)
REFERENCES books(id) ON DELETE CASCADE'
 end
 say_with_time 'Adding default tags' do
 execute(insert_tags_sql)
 end
 end

 def self.down
 drop_table :books_tags
 drop_table :tags
 end

 def self.insert_tags_sql
 <<-END_OF_DATA
insert into tags values
(1,"Romance"),
(2,"Cooking"),
(3,"Mystery"),
(4,"History"),
(5,"Politics"),
(6,"Elvis"),
(7,"Science Fiction")
END_OF_DATA
 end
end

C H A P T E R 7 ■ T A G G I N G S U P P O R T 203

The script creates the two tables, tags and books_tags. The migration also adds foreign
key references to the books and tags tables by executing raw SQL with the execute command.
At the end of the migration, the script adds a default set of tags to the tags table by again calling
the execute command.

■Note The create_table method creates an id column by default. When creating the books_tags
join table, we are telling the create_table command not to add an id column by setting the id parameter
to false.

Now, run the migrations by executing the following command:

rake db:migrate

You should see the command run without errors.

■Note Remember to clone the database structure from the development to the test database by executing
rake db:test:clone_structure. You can also perform the migration by executing the rake command
without parameters. This will run the tests and the migrations.

Preparing the Models
In Chapter 3, we created the Book model. Before creating the Tag model, we need to modify the
Book model so that it can be tagged. This is a simple operation. Just add the acts_as_taggable
method call to the model, as shown here:

class Book < ActiveRecord::Base
 acts_as_taggable

This gives us access to the acts_as_taggable API methods listed in Tables 7-1 and 7-2. We
can now do things like Book.find_by_title('The Satanic Verses').tag('Novel, Blasphemous')
and Book.find_tagged_with(:any => 'Blasphemous') with the model. As you can see, the code
reads almost like a sentence written in English.

Next, create the ActiveRecord model for the tags table by executing the generate script:

$ script/generate model Tag --skip-migration

204 C H A P T E R 7 ■ T A G G I N G S U P P O R T

 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/tag.rb
 create test/unit/tag_test.rb
 create test/fixtures/tags.yml

We tell the generate script not to generate a migration file, since we already created it man-
ually. You can open the app/models/tag.rb and examine it. You should see the following code:

class Tag < ActiveRecord::Base
end

The Tag model doesn’t include a mapping to the Book model. This means you can’t access
the books that are associated with a tag by calling, for example, Tag.find(1).books. This won’t
be a problem, as we will use the acts_as_taggable API instead, which does the same work with
the Book.find_tagged_with method. However, if you need it, you can add the mapping by add-
ing has_and_belongs_to_many :books to the Tag model.

Unit Testing the Model
Upgrading the acts_as_taggable gem or changing your own code can easily break the tagging
functionality. To prevent this, or at least minimize the risk of this happening in our production
environment, we’ll create unit tests for the model. These tests will be used to verify that we can
add tags to a book and find the book.

Open test/unit/book_test.rb in your editor and add the following test_tagging method:

require File.dirname(__FILE__) + '/../test_helper'

class BookTest < Test::Unit::TestCase
 fixtures :publishers, :authors, :books, :authors_books

 def test_tagging
 book = Book.find(1)
 book.tag 'Elvis,Thriller', :separator => ','

 book.reload

 assert book.tagged_with?('Elvis')
 assert book.tagged_with?('Thriller')
 assert_equal 2, book.tags.size
 assert_equal ['Elvis', 'Thriller'], book.tag_names

 assert_equal 1, Book.find_tagged_with(:any => ['Elvis', 'Thriller']).size
 assert_equal 1, Book.find_tagged_with(:all => ['Elvis', 'Thriller']).size
 end
 def test_failing_create

C H A P T E R 7 ■ T A G G I N G S U P P O R T 205

The unit test first loads a single book from the books fixture and assigns the tags Elvis and
Thriller to it. Then the test reloads the book from the database and verifies that the book has
been tagged correctly. The verification is done by using the acts_as_taggable API methods
tagged_with and find_tagged_with.

■Tip You can use book.errors.full_messages.join(';') to get a string representation of all valida-
tion errors after an unsuccessful save of an ActiveRecord object. This is useful when debugging validations.

Next, run the unit test, and you should see all tests pass:

$ ruby test/unit/book_test.rb

Loaded suite test/unit/book_test
Started
.....
Finished in 0.159311 seconds.

5 tests, 22 assertions, 0 failures, 0 errors

Using the Console to Test the Model
You normally test an application with your browser or with unit, integration, and functional
tests. The console script, located in your application’s script directory, provides you with one
more option. When executed, the script loads your application and opens an interactive ses-
sion that you can use to write and execute code directly in the console window. You can create,
update, and delete objects and access your controllers. This is useful when you want to per-
form additional testing.

■Tip By default, the console script loads your development environment. But you can also use it on
your production machine, for example, for doing maintenance work on your database. Simply execute
script/console production and write some code that uses your ActiveRecord models as you would in
a controller.

Let’s use the console to double-check that tagging works. Open a command prompt and
start the Emporium console by executing script/console in the application’s root directory.
You can run script/console –-help to get a list of options.

When the console has loaded, you should see the following:

$ script/console

206 C H A P T E R 7 ■ T A G G I N G S U P P O R T

Loading development environment.
>>

The console is now waiting for input, and you can write the following code in the console
to create a publisher, author, and a book:

publisher = Publisher.create(:name => 'A Publisher')
author = Author.create(:first_name => 'An', :last_name => 'Author')
book = Book.create(
 :title => 'A Book',
 :publisher => publisher,
 :authors => [author],
 :published_at => Time.now,
 :isbn => '123-123-123-x',
 :blurb => 'The blurb',
 :page_count => 300,
 :price => 30.5
)

Press Enter to execute the code and print out the object to the console, as follows (this is a
partial listing):

=> #<Book:0xb745b42c @new_record=false, @authors=[#<Author:0xb748d314 @new_record...

You can now use the book object that was created and tag it with the code shown here:

book.tag('A B C D E F')
book.save

Recall that the save method should return true if the save was successful. You can verify
that the book was tagged correctly by executing a search for books that have been tagged with
either A or B:

Book.find_tagged_with(:any => 'A B')

=> [#<Book:0xb73f0820 @attributes={"isbn"=>"123-123-123-x", "updated_at"=>"2006...

You should see the method print out to the console the object that you created.

C H A P T E R 7 ■ T A G G I N G S U P P O R T 207

Implementing the User Stories
Web applications like Flickr and del.icio.us allow their users to tag content by entering a list of
tags, separated by spaces, in a text field; for example, they may enter News Europe London. This
is a simple and elegant way of tagging, and is easy enough for George to understand and use.
To make George’s life even easier, we’ll use autocompletion to help him remember the tags
that have previously been assigned to books. When George types in, for example, the string
Beer in the Tags field, the system should display all tags containing that string, including Beer
Tasting and Brewing Beer. This will prevent George from entering duplicate tags.

Implementing the Assign Tags User Story
According to our requirements, George should be able to assign tags to a book on the add book
page. We’ll modify the page and add an autocompletion field that uses the script.aculo.us
JavaScript library, which we introduced in Chapter 5.

Updating the Integration Test

First, we’ll modify the integration test and add a test that simulates George entering the tags
Elvis, Thriller, and Cooking in the Tags field. Change the test_book_administration method
in test/integration/book_test.rb as follows (changes are marked in bold):

 george = new_session_as(:george)
 george.add_book :tags => 'Ruby, Programming, Dummies', :book => {
 :title => 'Ruby for Dummies',
 :publisher_id => publisher.id,
 :author_ids => [author.id],
 :published_at => Time.now,
 :cover_image => fixture_file_upload('/books.yml', 'image/png'),
 :isbn => '123-123-123-X',
 :blurb => 'The best book released since "Eating for Dummies"',
 :page_count => 123,
 :price => 40.4
 }

The change adds the tags parameter, and the specified tags, to the request. This parameter
will be used by the controller to tag the book. Note that we can’t put it in the book hash, as that
would make Rails try to assign a string to the tags attribute, which it expects to be an array of
Tag objects.

We want the test to fail in TDD fashion, but if you try to run it now, it will succeed. This is
because we haven’t yet added a check that verifies that the book was tagged.

208 C H A P T E R 7 ■ T A G G I N G S U P P O R T

Update the add_book method as follows (changes are marked in bold):

 assert_response :success
 assert_template "admin/book/list"
 assert_tag :tag => 'td', :content => parameters[:book][:title]
 book = Book.find_by_title(parameters[:book][:title])
 assert_equal parameters[:tags].split(',').size, book.tags.size
 return book
 end

With the change, we check that the book can be found by its title and that it is tagged. If you
run the test now, it will fail and print out the following message:

<3> expected but was
<0>.

We haven’t created the code that actually tags the book, so the test fails when it checks the
size of the tags collection. This is easily fixed by changing the create action in the controller,
as follows:

 def create
 @book = Book.new(params[:book])
 @book.tag(params[:tags], :separator => ',')

 if @book.save
 flash[:notice] = 'Book was successfully created.'
 redirect_to :action => 'list'
 else

The create action calls the book object’s tag method to assign the tags. Recall that the tags
are specified with the tags parameter, and that the comma is used as a separator. Note that if
the user doesn’t enter any tags, this will do nothing.

Run the integration test again with the following command:

$ ruby test/integration/book_test.rb

This time, it should pass without errors.

Modifying the View

Next, we need to change the view. As we explained earlier, the view should have an autocom-
pletion field where George can enter the tags. This functionality could easily be implemented
with Ajax, but instead, we’ll do it the old-school way with plain JavaScript—just to save some
resources and a couple of Ajax calls to the server.

The tags will be stored in a JavaScript variable and passed to the Autocompleter.Local helper
provided by script.aculo.us.

C H A P T E R 7 ■ T A G G I N G S U P P O R T 209

■Tip The documentation for Autocompleter.Local can be found on the script.aculo.us wiki at
http://wiki.script.aculo.us/scriptaculous/show/Autocompleter.Local.

Next, add the new Tags field to the view file app/views/admin/book/_form.rhtml, right after
the Title field:

<p>
<label for="tags">Tags</label>

<input type="text" id="tags" autocomplete="off" size="50" name="tags" value=" ➥

<%= @book.tags.collect{|tag| tag.name }.join(",") if @book.tags -%>">
</p>
<div id="tags_update"></div>
<script type="text/javascript" language="javascript" charset="utf-8">
// <![CDATA[
 new Autocompleter.Local('tags','tags_update',
 new Array(<%= @tags.collect{|tag| "\"" + tag.name + "\"" }.join(",") %>), ➥

{ tokens: new Array(',','\n'), fullSearch: true, partialSearch: true });
//]]>
</script>

Notice that we specify the tag separator to be a comma with the tokens parameter. This is
an array and can contain more than one separator. For example, it could also contain the new-
line character \n. Also notice that the tags will be shown in the tags_update div.

Modifying the Controller

You can now try to access the page with your browser. It should generate the following error, as
the view expects to find the tags instance variable:

You have a nil object when you didn't expect it!

Fix this by changing the load method in the book controller (app/controllers/admin/
book_controller.rb), as follows:

 def load_data
 @authors = Author.find(:all)
 @publishers = Publisher.find(:all)
 @tags = Tag.find(:all)
 end

Recall that we use the load_data method to load all authors, publishers, and tags in the new
and edit actions. Now, if you open http://localhost:3000/admin/book/new, you should see
the new field.

210 C H A P T E R 7 ■ T A G G I N G S U P P O R T

Add a book and type in a few tags, such as Programming, Rails, Ruby. Save the book, and
create another book. Type the character R in the Tags field. This time, you should see a list of
tags containing both Rails and Ruby.

■Note As stated earlier, this example does not use Ajax. Instead, the tags are all stored in a JavaScript vari-
able. Using Ajax would be easier. The autocompletion text field could be generated with the following code:
<%= text_field_with_auto_complete :book, :tags %> This would also require us to add the
auto_complete_for_book_tags action to the controller, which would render a partial view.

Changing the Style Sheet

The list that displays the tags has a white background, which makes it difficult to tell apart from
the rest of the page. Remember that the autocompletion field uses a div element to show the
list of tags. The div has been assigned the id #tags_update, so it is easily fixed by adding the fol-
lowing style to public/stylesheets/style.css:

#tags_update {
 font-size: 75%;
 font-weight: normal;
 color: white;
 margin: 0px;
 padding: 0px;
 border:1px solid black;
 background-color: #B36B00;
}

Also add the following style to highlight a tag when you move your mouse over it:

#tags_update li:hover {
 text-decoration: underline;
}

Reload the page and add a new book again. This time, you should see the tags in a brown
box, as shown in Figure 7-2. You can double-click a tag to add it to the list.

C H A P T E R 7 ■ T A G G I N G S U P P O R T 211

Figure 7-2. The Tags field with autocompletion

Implementing the Edit Tags User Story
George must be able to go back to a book that he has added to the system and edit the details,
including removing and adding tags. The edit book page uses the same _form.rhtml partial as
we used for the add book page. This means that most of the work has already been done in the
previous section. The only part of the code we need to change is the controller. As usual, we will
start by creating the integration test.

212 C H A P T E R 7 ■ T A G G I N G S U P P O R T

Updating the Integration Test

Change the test_book_administration method in the integration test test/integration/
book_test.rb. Add the tags parameters to the line that starts with george.edit_book, as
shown here:

 george.edit_book(ruby_for_dummies, :tags => 'Toddlers', :book => {
 :title => 'Ruby for Toddlers',
 :publisher_id => publisher.id,
 :author_ids => [author.id],
 :published_at => Time.now,
 :isbn => '123-123-123-X',
 :blurb => 'The best book released since "Eating for Toddlers"',
 :page_count => 123,
 :price => 40.4
 })

Also change the implementation of edit_book DSL method as follows:

 def edit_book(book, parameters)
 get "/admin/book/edit/#{book.id}"
 assert_response :success
 assert_template "admin/book/edit"

 post "/admin/book/update/#{book.id}", parameters
 assert_response :redirect
 follow_redirect!
 assert_response :success
 assert_template "admin/book/show"

 book.reload
 assert_equal parameters[:tags].split(',').size, book.tags.size
 end

Note that we reload the book object from the database, before we check that the tags have
been updated.

Run the test, and you should see it fail with the following error message:

<1> expected but was
<3>.

You get the error because we haven’t yet modified the controller.

C H A P T E R 7 ■ T A G G I N G S U P P O R T 213

Modifying the Controller

Next, change the edit action in app/controllers/admin/book_controller.rb as follows:

 def update
 @book = Book.find(params[:id])
 @book.tag(params[:tags], :separator => ',', :clear => true)

 if @book.update_attributes(params[:book])
 flash[:notice] = 'Book was successfully updated.'

By setting the :clear parameter to true, we first empty the collection of tags, before
assigning the new one.

Run the integration tests with ruby test/integration/book_test.rb. This time, all tests
should pass without errors.

Modifying the Views

We have finished the implementation of this user story. Now, we need to check that it works by
editing an existing book that has been assigned some tags. Add or remove a tag and verify the
results. Notice that there’s one small problem we should fix before moving on to the next user
story: the book details and book list pages should display the tags to the administrator.

Start by changing the book list view. Open app/views/admin/book/list.rhtml in your edi-
tor and modify the existing code as shown here:

 <tr>
 <th>Publisher</th>
 <th>Title</th>
 <th>Tags</th>
 <th>ISBN</th>
 <th colspan="3"></th>
 </tr>

<% for book in @books %>
 <tr>
 <td><%= book.publisher.name %></td>
 <td><%= link_to book.title, :action => 'show', :id => book %></td>
 <td><%= display_tags book %></td>
 <td><%= book.isbn %></td>
 <td><%= link_to 'Show', :action => 'show', :id => book %></td>

214 C H A P T E R 7 ■ T A G G I N G S U P P O R T

Notice that we have introduced a new helper method called display_tags, because we
need to display the tags on both pages. Instead of duplicating the code in the view, we add the
following method to the application helper (app/helpers/application_helper.rb):

 def display_tags(book)
 book.tags.collect{|tag| tag.name }.join(", ") if book.tags
 end

By adding the new method to the application helper, we can now access it from any view
in our application.

After making the change, access http://localhost:3000/admin/book/list. You should
now see the tags displayed in the list, as shown in Figure 7-3.

Figure 7-3. The book list page showing the Tags column

Next, change the book details view file. Open app/views/admin/book/show.rhtml and add
the following after the Title field:

 <dt>Tags</dt>
 <dd><%= display_tags @book %></dd>

Now, when you access the book details page, you should see the tags on the screen, as
shown in Figure 7-4.

C H A P T E R 7 ■ T A G G I N G S U P P O R T 215

Figure 7-4. The book details page showing the book’s tags

We are now confident that the administrator’s part of the tagging functionality works as
George wants. We tell him to come over and have a look. Again, he seems happy that it is so
simple and that it works like a train on rails.

Implementing the List Tags and Show Tag User Stories
The Show Tag user story describes how customers should be able to view all tags in the system.
Before we continue with the next user story implementation, George reminds us that he
expects us to complete the three remaining user stories today: “I have friends in Bangalore! I’ll
just offshore the whole project to India, if you can’t get it done today.”

To speed up development, we’ll use the generate script to create a new controller.
Execute the generate script with the following parameters to generate the controller for these
user stories:

$ script/generate controller tag list show

216 C H A P T E R 7 ■ T A G G I N G S U P P O R T

 exists app/controllers/
 exists app/helpers/
 create app/views/tag
 exists test/functional/
 create app/controllers/tag_controller.rb
 create test/functional/tag_controller_test.rb
 create app/helpers/tag_helper.rb
 create app/views/tag/list.rhtml
 create app/views/tag/show.rhtml

This creates the controller, functional test, helper, and views. The List tags and Show tag
user stories are easy to implement, as we’ll show you next

First, open the tag_controller.rb file, and change the list and show actions as shown here:

 def list
 @page_title = 'Listing tags'
 @tag_pages, @tags = paginate :tags, :order => :name, :per_page => 10
 end

 def show
 tag = params[:id]
 @page_title = "Books tagged with '#{tag}'"
 @books = Book.find_tagged_with(:any => tag, :separator => ',')
 end

The list action uses the standard paginate helper to show a paginated list of tags. The
show action uses the find_tagged_with method to find books having the specified tag.

Next, add the following code to app/views/admin/books/list.rhtml:

<% for tag in @tags %>
 <%= link_to tag.name, :action => 'show', :id => tag.name %>

<% end %>
<p>
<%= link_to 'Previous page', { :page => @tag_pages.current.previous } ➥

if @tag_pages.current.previous %>
<%= link_to 'Next page', { :page => @tag_pages.current.next } ➥

if @tag_pages.current.next %>
</p>

The view loops through the tags and generates a link to the show tag page. At the bottom
of the page we show the pagination links.

For the show tag page, we need to add the following to show.rhtml:

<% for book in @books %>
 <%= link_to book.title, :controller => 'catalog', :action => 'show', ➥

:id => book %>

<% end %>

C H A P T E R 7 ■ T A G G I N G S U P P O R T 217

This simply loops through all the books and links to the book details page we implemented
in Chapter 4. Now you can do a quick test by accessing http://localhost:3000/tag/list. You
should see a list of tags, as shown in Figure 7-5.

Figure 7-5. The tag list page showing a list of tags

If you click a tag, you should see all books that have been tagged with that specific tag, as
shown in Figure 7-6. Clicking the book title takes you to the book details page.

Figure 7-6. The show tag page

218 C H A P T E R 7 ■ T A G G I N G S U P P O R T

We still don’t have a link to either the tag list or the show tag page. It would be natural to
link to the show tag page from all the places where the tag is being displayed. Luckily, we used
a helper to display the list of tags that have been assigned to a book, so the change is just in one
place. Change the display_tags method in app/helpers/application_helper.rb as follows:

 def display_tags(book)
 book.tags.collect{|tag| link_to tag.name, :controller => '/tag', ➥

:action => 'show', :id => tag.name }.join(", ") if book.tags
 end

Instead of just showing the tag’s name, we now link to the show tag page.

■Note Notice that we needed to prepend a forward slash to the controller, so that the admin pages
also point to the correct page. If we had used only :controller => 'tag', the generated URL would be
/admin/tag/show/x.

Now, if you access any of the pages where we display a book and the tags, the tags should
be clickable and point to the show tag page.

A good place for putting a link to the tag list page would be the menu. To do this, add the
following code to application.rhtml:

 Books |
 Tags |
 Catalog |
 About

Implementing the Recommend Books User Story
Recall that the Recommend Books user story describes how George wants to be able to
automatically recommend related books to customers. The acts_as_taggable gem has two
methods that we can use for implementing this functionality:

• book.tagged_related: We can use this instance method to display books that share one
or more of the same tags, and that are related to the current book being displayed to the
customer.

• Book.find_related_tags: We can use this class method to recommend books that use
tags that are related to the tags used by the currently displayed book.

C H A P T E R 7 ■ T A G G I N G S U P P O R T 219

Open app/views/catalog/show.rhtml in your editor and add the following code to it:

<dl>
 <dt>Price</dt>
 <dd>$<%= sprintf("%0.2f", @book.price) -%></dd>
 <dt>Page count</dt>
 <dd><%= @book.page_count -%></dd>
 <dt>Tags</dt>
 <dd><%= display_tags @book -%></dd>
</dl>

<% if @book.tags.size > 0 %>
<div id="recommended">
<h2>Recommendations</h2>
<h4>Books</h4>
<% for book in @book.tagged_related %>
 <%= link_to book.title, :action => 'show', :id => book.id %>

<% end %>

<h4>Tags</h4>
<% for tag in Book.find_related_tags(@book.tags.collect(&:name), ➥

:separator => ',', :raw => true, :limit => 100) %>
 <%= link_to tag['name'], :controller => 'tag', :action => 'show', ➥

:id => tag['name'] %>

<% end %>
</div>
<% end %>

We now show the tags on the page. We also added a div that is used to recommend similar
books and tags to the customer. This div uses the id recommended, so that we can style it with
CSS. We want it to be displayed as a sidebar to the right of the page. We do this by adding the
following to public/stylesheets/style.css:

#recommended {
 border-left: 3px solid #666;
 background-color: white;
 position: fixed;
 bottom: 0;
 right: 0;
 width: 200px;
 height: 100%;
 padding: 5px 10px;
}

220 C H A P T E R 7 ■ T A G G I N G S U P P O R T

Note that the recommendations are done with the acts_as_taggable API.
Now add three new books with tags, as follows:

• For the first book, add the tags Ruby, Ruby on Rails, Programming.

• For the second book, add the tags Ruby, Programming.

• For the third book, add the tags Ruby, Ruby on Rails, Programming, E-Commerce.

You should see something similar to Figure 7-7 when accessing the second book. The sys-
tem automatically recommends the first and third book, and the Ruby on Rails and E-Commerce
tags to the customer.

Figure 7-7. The book details page displaying recommendations in the sidebar

Related books are pulled out of the database by calling book.tagged_related, which
returns an array of books. Related tags are displayed with the code shown here:

<% for tag in Book.find_related_tags(@book.tags.collect(&:name), ➥

:separator => ',', :raw => true) %>
 <%= link_to tag['name'], :controller => 'tag', :action => 'show', ➥

:id => tag['name'] %>

<% end %>

We specify three parameters for the Book.find_related_tags method:

• @book.tags.collect(&:name): This is shorthand notation for @book.tags.collect(|tag|
tag.name), and returns an array of tag names.

• :separator => ',': We specify that the separator is a comma.

• :raw => true: We specify that we want an array of hashes returned, so that we can use
tag['name'] instead of tag[0], to access the tag names.

C H A P T E R 7 ■ T A G G I N G S U P P O R T 221

With five minutes left in the workday, we call in George to do some acceptance testing of
the work done in this sprint. He’s happy with the results and tells us that he’s impressed at how
incredibly fast we were able to finish the tagging functionality. He says, “That other consultant
told me it would take a month to complete, and you do it in one day!

Summary
In this chapter, we showed you how to implement a tagging system that allows you to add tags
to books and later edit them. Using the acts_as_taggable gem, we built a system that is able to
recommend similar or related items to online shoppers. Along the way, we showed you how to
use the console to test the model, write appropriate integration tests for the new functionality,
and implement an autocompletion field using the script.aculo.us JavaScript library.

In the next chapter, we’ll secure our application.

223

■ ■ ■

C H A P T E R 8

Security

Our application is already fairly extensive. George can administer all kinds of things in the
application, including books, authors, and publishers. However, the application has one major
shortcoming: Anyone can browse to the administrative part of the site and wreak havoc by
deleting and editing information.

In this chapter, we will show you how to implement a basic authentication system for an appli-
cation with the help of the acts_as_authenticated plugin. We will also take a look at some common
security problems in web applications and give you tips on how to use Rails to avoid them.

Getting the Authentication Requirements
We need to support three basic scenarios in the Emporium’s authentication system:

• Log in: George has just gotten his hands on Henrik Mårtensson’s Pro Ruby, and abso-
lutely wants to add it to his catalog. However, as he hasn’t logged in already, when he
tries to access the admin section of the site, he is redirected to a login page. George gives
his credentials and is automatically redirected to the add book page, where he tried to go
in the first place.

• Fail log in: While George is busy maintaining his catalog, another guy tries to access the
admin pages, too. His name is Dirty Harry and his intentions are too evil to print here.
Luckily for George, Harry doesn’t know the admin username and password. Harry is
redirected to the login page, just as George is. Here, he tries to log in with scott/tiger, so
his attempts fail, and he is just shown the login form with an error message each time.

• Reset password: George has an amazing memory. It’s just sometimes a bit short. Thus,
occasionally, he forgets his password to the system. Then he just clicks a link to reset his
password, and the system sends him the new one by e-mail. After he has received the
new password, he can again log in to the system successfully.

Once we put together the authentication system, George will sleep a lot more peacefully—
he won’t need to worry about people wreaking havoc on the Emporium site.

224 C H A P T E R 8 ■ S E C U R I T Y

Using the Authentication Plugin
We can create a simple authentication framework for our Rails application by using the
acts_as_authenticated plugin (http://technoweenie.stikipad.com/plugins/show/
Acts+as+Authenticated), written by Rails core team member Rick Olson.

Let’s start by installing the plugin in our application. Enter the following command to
tell the Rails plugin framework to look for plugins in the given repository:

$ script/plugin source http://svn.techno-weenie.net/projects/plugins

Added 1 repositories.

Next, run the actual install command:

$ script/plugin install acts_as_authenticated

+ ./acts_as_authenticated/CHANGELOG
+ ./acts_as_authenticated/README
+ ./acts_as_authenticated/generators/authenticated/USAGE
... many lines omitted ...
Consult the Acts As Authenticated wiki for more:
http://technoweenie.stikipad.com/plugins/show/Acts+as+Authenticated

Now that the plugin is installed, the next step is to generate the models and controllers for
authentication. The plugin installs custom generators just for this, so all we need to do is to
execute the following command:

$ script/generate authenticated user account

C H A P T E R 8 ■ S E C U R I T Y 225

 exists app/models/
 exists app/controllers/
 exists app/helpers/
 create app/views/account
 exists test/functional/
 exists test/unit/
 create app/models/user.rb
 create app/controllers/account_controller.rb
 create lib/authenticated_system.rb
 create lib/authenticated_test_helper.rb
 create test/functional/account_controller_test.rb
 create app/helpers/account_helper.rb
 create test/unit/user_test.rb
 create test/fixtures/users.yml
 create app/views/account/index.rhtml
 create app/views/account/login.rhtml
 create app/views/account/signup.rhtml
 exists db/migrate
 create db/migrate/009_create_users.rb

As you can see from the output, the generate command created the following:

• A new model named User and a new controller named AccountController, as well as
tests for both of them

• The views for the login functionality and a new module containing the authentication
code, AuthenticatedSystem, in the lib directory

• A new migration (db/migrate/009_create_users.rb) to bring the new user model into
the database, shown in Listing 8-1

226 C H A P T E R 8 ■ S E C U R I T Y

Listing 8-1. ActiveRecord Migration for the Users Table

class CreateUsers < ActiveRecord::Migration
 def self.up
 create_table "users", :force => true do |t|
 t.column :login, :string
 t.column :email, :string
 t.column :crypted_password, :string, :limit => 40
 t.column :salt, :string, :limit => 40
 t.column :created_at, :datetime
 t.column :updated_at, :datetime
 t.column :remember_token, :string
 t.column :remember_token_expires_at, :datetime
 end
 end

 def self.down
 drop_table "users"
 end
end

Notice that the password will be stored in the database in an encrypted form.
Now let’s run the migration to get our database up-to-date. (Don’t forget to run rake

db:test:clone_structure afterwards to clone the new additions to the test database, too.)

$ rake migrate

(in /home/george/projects/emporium)
== CreateUsers: migrating ===
-- create_table("users", {:force=>true})
 -> 0.2946s
== CreateUsers: migrated (0.2953s) ==

Great! We now have a working authentication framework deployed in our system.
If you take a look at the beginning of the new AccountController in app/controllers/

account_controller.rb, you can see that AuthenticatedSystem is mixed in the controller:

class AccountController < ApplicationController
 # Be sure to include AuthenticationSystem in Application Controller instead
 include AuthenticatedSystem
 ...

C H A P T E R 8 ■ S E C U R I T Y 227

However, we want the authentication system to be available to other controllers as
well, so let’s move the include line from AccountController to ApplicationController in
app/controllers/application.rb:

class ApplicationController < ActionController::Base
 include AuthenticatedSystem

 private

 def initialize_cart
 ...

As ApplicationController is the parent class of all our controllers, authentication func-
tionality is now provided throughout our application. It’s only a matter of putting it into action
where necessary.

Since we want to make the tests provided by the plugin work as well, we also move the follow-
ing line from the AccountControllerTest class in test/functional/account_controller_test.rb to
the beginning of the Test::Unit::TestCase class in test/test_helper.rb:

 include AuthenticatedTestHelper

With our authentication framework in place, we’re ready to implement our authentication
user stories.

Implementing the User Stories
As usual, we will take the TDD approach while implementing the user authentication system.
For this sprint, we will use integration tests, as we have done in previous chapters.

Implementing the Log In User Story
We start the grunt work by creating a new integration test case for the login functionality.

$ script/generate integration_test authentication

 exists test/integration/
 create test/integration/authentication_test.rb

First, we want to test that when George tries to go to the admin section of the site, he gets
redirected to the login page. Open test/integration/authentication_test.rb and create the
DSL for our integration test, as shown in Listing 8-2.

228 C H A P T E R 8 ■ S E C U R I T Y

Listing 8-2. First Version of the Authentication Integration Test

require "#{File.dirname(__FILE__)}/../test_helper"

class AuthenticationTest < ActionController::IntegrationTest
 def test_successful_login
 george = enter_site(:george)
 george.tries_to_go_to_admin
 end

 private

 module BrowsingTestDSL
 include ERB::Util
 attr_writer :name

 def tries_to_go_to_admin
 get "/admin/book/new"
 assert_response :redirect
 assert_redirected_to "/account/login"
 end

 end

 def enter_site(name)
 open_session do |session|
 session.extend(BrowsingTestDSL)
 session.name = name
 yield session if block_given?
 end
 end
end

Here, the most interesting part is in the tries_to_go_to_admin method. This is where we
test that the first part of the story goes as planned: George is redirected to the login page when
trying to access admin pages. If you run the test, you get the following failure:

$ ruby test/integration/authentication_test.rb

C H A P T E R 8 ■ S E C U R I T Y 229

Loaded suite test/integration/authentication_test
Started
F
Finished in 1.44942 seconds.

 1) Failure:
test_successful_login(AuthenticationTest)
 [test/integration/authentication_test.rb:17:in 'tries_to_go_to_admin'
 test/integration/authentication_test.rb:6:in 'test_successful_login'
 /usr/local/lib/ruby/gems/1.8/gems/actionpack-
1.12.1/lib/action_controller/integration.rb:427:in 'run']:
Expected response to be a <:redirect>, but was <200>

1 tests, 1 assertions, 1 failures, 0 errors

It seems the redirection is not working, which should come as no surprise. Now it’s time to
put the authentication plugin to work.

Adding the Filter

In Chapter 5, we hinted that filters would be a good fit for implementing authentication func-
tionality in Rails, and that is exactly what acts_as_authenticated does (or, to be precise, makes
us do). The AuthenticatedSystem module (which is now included in all our controllers, remem-
ber?) implements a function called login_required, which is the workhorse of the whole
plugin. If it’s called as a before_filter inside a controller, a login check is done before any
action in that controller is let loose:

class SomeController < ApplicationController
 before_filter :login_required

 def first_action
 # this action is now only available for logged in users
 end
end

As you might remember from Chapter 5, you can restrict the filter to certain actions by
using the :only and :except parameters in the before_filter call:

before_filter :login_required, :only => :secret_action
before_filter :login_required, :except => [:index, :rss]

230 C H A P T E R 8 ■ S E C U R I T Y

In our case, we want to protect all controllers in the app/controllers/admin directory. This
is most easily done by creating a common parent class for them:

$ script/generate controller 'admin/base'

Next, we’ll put the filter macro in the newly created app/controllers/admin/
base_controller.rb file:

class Admin::BaseController < ApplicationController
 before_filter :login_required
end

Now we need to make the actual admin controllers inherit from Admin::BaseController.
Make the following change in all controller files (for authors, books, and publishers) in
app/controllers/admin, except the one we just created:

class Admin::AuthorController < Admin::BaseController

Note that the classes are still descendants of ApplicationController because
Admin::BaseController inherits it.

If you now run the integration test file again, you’ll see that the protection works as it
should:

$ ruby test/integration/authentication_test.rb

Loaded suite test/integration/authentication_test
Started
.
Finished in 0.20896 seconds.

1 tests, 3 assertions, 0 failures, 0 errors

Testing Redirection

The last part of the story was that after successful login, George is redirected to the page he
tried to access in the first place. acts_as_authenticated should do this for us automatically.
Let’s extend our integration test (authentication_test.rb) as follows to make sure.

require "#{File.dirname(__FILE__)}/../test_helper"

class AuthenticationTest < ActionController::IntegrationTest
 def setup
 User.create(:login => "george",
 :email => "george@emporium.com",
 :password => "cheetah",
 :password_confirmation => "cheetah")
 end

C H A P T E R 8 ■ S E C U R I T Y 231

 def test_successful_login
 george = enter_site(:george)
 george.tries_to_go_to_admin
 george.logs_in_successfully("george", "cheetah")
 end

 private

 module BrowsingTestDSL
 include ERB::Util
 attr_writer :name

 def tries_to_go_to_admin
 get "/admin/book/new"
 assert_response :redirect
 assert_redirected_to "/account/login"
 end

 def logs_in_successfully(login, password)
 post_login(login, password)
 assert_response :redirect
 assert_redirected_to "/admin/book/new"
 end

 private

 def post_login(login, password)
 post "/account/login", :login => login, :password => password
 end
 end

 def enter_site(name)
 open_session do |session|
 session.extend(BrowsingTestDSL)
 session.name = name
 yield session if block_given?
 end
 end
end

In the beginning of the test, we use the setup method, which is automatically run before
every test method, to create George as a user in the system. Then we create another DSL method
for logging in to the system successfully. We extracted the actual posting of the login credentials
to a private method, because we will need the same code later when we test a failed login. All our
new method tests is that after successful login, George is redirected to /admin/book/new, the page
he tried to access before he was thrown to the login page.

232 C H A P T E R 8 ■ S E C U R I T Y

Running the test again shows that the authentication system indeed remembers where
George was heading:

$ ruby test/integration/authentication_test.rb

Loaded suite test/integration/authentication_test
Started
.
Finished in 0.192056 seconds.

1 tests, 6 assertions, 0 failures, 0 errors

Trying to access the admin pages in a browser confirms what the test already says. As you
can see in Figure 8-1, if you haven’t logged in successfully, you’re redirected to the login page.

Figure 8-1. Accessing the admin pages redirects to the login page

C H A P T E R 8 ■ S E C U R I T Y 233

Implementing the Fail Log In User Story
To make sure that logging in with incorrect credentials doesn’t work, we can use the same basic
code we already have in place in test/integration/authentication_test.rb, with only some
slight additions to the DSL:

require "#{File.dirname(__FILE__)}/../test_helper"

class AuthenticationTest < ActionController::IntegrationTest
 def setup
 User.create(:login => "george",
 :email => "george@emporium.com",
 :password => "cheetah",
 :password_confirmation => "cheetah")
 end

 def test_successful_login
 george = enter_site(:george)
 george.tries_to_go_to_admin
 george.logs_in_successfully("george", "cheetah")
 end

 def test_failing_login
 harry = enter_site(:harry)
 harry.tries_to_go_to_admin
 harry.attempts_login_and_fails("scott", "tiger")
 end

 private

 module BrowsingTestDSL
 include ERB::Util
 attr_writer :name

 def tries_to_go_to_admin
 get "/admin/book/new"
 assert_response :redirect
 assert_redirected_to "/account/login"
 end

234 C H A P T E R 8 ■ S E C U R I T Y

 def logs_in_successfully(login, password)
 post_login(login, password)
 assert_response :redirect
 assert_redirected_to "/admin/book/new"
 end

 def attempts_login_and_fails(login, password)
 post_login(login, password)
 assert_response :success
 assert_template "account/login"
 assert_equal "Incorrect login!", flash[:notice]
 end

 private

 def post_login(login, password)
 post "/account/login", :login => login, :password => password
 end
 end

 def enter_site(name)
 open_session do |session|
 session.extend(BrowsingTestDSL)
 session.name = name
 yield session if block_given?
 end
 end
end

As you can see, Harry’s case is similar to George’s, but he tries to log in with an account
that doesn’t exist. In attempts_login_and_fails, we check that he is not redirected and is
served the login form again. You can run the test and see that it almost works:

$ ruby test/integration/authentication_test.rb

C H A P T E R 8 ■ S E C U R I T Y 235

Loaded suite test/integration/authentication_test
Started
F.
Finished in 0.36565 seconds.

 1) Failure:
test_failing_login(AuthenticationTest)
 [test/integration/authentication_test.rb:45:in 'attempts_login_and_fails'
 test/integration/authentication_test.rb:20:in 'test_failing_login'
 /usr/local/lib/ruby/gems/1.8/gems/actionpack-
1.12.1/lib/action_controller/integration.rb:427:in 'run']:
<"Incorrect login!"> expected but was
<nil>.

2 tests, 12 assertions, 1 failures, 0 errors

The failure means that the flash message is not set as we would like it to be. This is some-
thing that the plugin lets the developer handle.

Adding the Flash Message

Open app/controllers/account_controller.rb and add the flash message to show for failed
logins:

class AccountController < ApplicationController
 # If you want "remember me" functionality, add this before_filter to➥

Application Controller
 before_filter :login_from_cookie

 # say something nice, you goof! something sweet.
 def index
 redirect_to(:action => 'signup') unless logged_in? || User.count > 0
 end

236 C H A P T E R 8 ■ S E C U R I T Y

 def login
 return unless request.post?
 self.current_user = User.authenticate(params[:login], params[:password])
 if current_user
 if params[:remember_me] == "1"
 self.current_user.remember_me
 cookies[:auth_token] = { :value => self.current_user.remember_token ,➥

:expires => self.current_user.remember_token_expires_at }
 end
 redirect_back_or_default(:controller => '/account', :action => 'index')
 flash[:notice] = "Logged in successfully"
 end
 flash.now[:notice] = "Incorrect login!"
 end
...

Running the test again shows all green, so try it out in the browser. Figure 8-2 shows the
result. As you can see, the plugin is doing its job.

Figure 8-2. A failed login

C H A P T E R 8 ■ S E C U R I T Y 237

Adding Login Links and Styling

Let’s finish off by adding links for logging in and out in the default layout file, app/views/
layouts/application.rhtml:

<div id="header">
 <h1 id="logo">Emporium™</h1>
 <h2 id="slogan">Books on Rails</h2>
 <p id="loginlogout">
 <% if current_user %>
 Logged in as <%= current_user.login %>
 (<%= link_to "Logout", :controller => "/account", :action => "logout" %>)
 <% else %>
 <%= link_to "Login", :controller => "/account", :action => "login" %>
 <% end %>
 </p>
</div>

Finally, let’s add a bit of styling for the #loginlogout box. Open public/stylesheets/
style.css and add the following rules at the bottom of the file:

#loginlogout {
 background-color: #ccc;
 padding: 8px;
 width: 100px;
 position: absolute;
 top: 0px;
 right: 10px;
}

Now the login status box appears in the top-right corner of the page, as shown in
Figure 8-3.

238 C H A P T E R 8 ■ S E C U R I T Y

Figure 8-3. Styled login status box

Implementing the Reset Password User Story
To implement the third user story, Reset Password, we need a way to send e-mail messages
from our application. The acts_as_authenticated plugin comes with a generator for this, too.
Execute the following command:

$ script/generate authenticated_mailer user

 exists app/models/
 create app/views/user_notifier
 exists test/unit/
 create app/models/user_notifier.rb
 create app/models/user_observer.rb
 create test/unit/user_notifier_test.rb
 create app/views/user_notifier/activation.rhtml
 create app/views/user_notifier/signup_notification.rhtml

C H A P T E R 8 ■ S E C U R I T Y 239

There are two interesting things created by the generate authenticated_mailer com-
mand: UserNotifier (an ActionMailer object) and UserObserver (an observer). Even though
neither of them is a normal ActiveRecord model, they both reside in the app/models directory.
We’ll cover the mailer part now and talk about observers after we update the User model.

Using ActionMailer Mailers

Rails has a specific package for sending (and receiving, which we don’t need in this chapter)
e-mail called ActionMailer. ActionMailer mailers are Rails classes stored in app/models just like
normal ActiveRecord models, but they work quite differently.

The UserNotifier mailer class we just created in app/models/user_notifier.rb looks
like this:

class UserNotifier < ActionMailer::Base
 def signup_notification(user)
 setup_email(user)
 @subject += 'Please activate your new account'
 @body[:url] = "http://YOURSITE/account/activate/#{user.activation_code}"
 end

 def activation(user)
 setup_email(user)
 @subject += 'Your account has been activated!'
 @body[:url] = "http://YOURSITE/"
 end

 protected
 def setup_email(user)
 @recipients = "#{user.email}"
 @from = "ADMINEMAIL"
 @subject = "[YOURSITE] "
 @sent_on = Time.now
 @body[:user] = user
 end
end

Here, signup_notification and activation represent two different e-mail messages sent
by the class. The former is sent when a new user has registered and must activate her account,
and the latter is sent when the activation is complete. They both use the protected setup_email
method to prepare common header attributes of the e-mail, such as recipients, from, and
subject. You can also set attributes for the message body, such as @body[:url] and @body[:user].
They will be available as instance variables in the e-mail templates.

240 C H A P T E R 8 ■ S E C U R I T Y

We don’t need the two mail methods that exist in the mailer, so we delete them and add
our own method, as follows:

class UserNotifier < ActionMailer::Base
 @@session = ActionController::Integration::Session.new

 def forgot_password(user)
 setup_email(user)
 @subject += "Password reset"
 @body[:url] = @@session.url_for(:controller => "account",
 :action => "reset_password",
 :id => user.pw_reset_code, :only_path => false)
 end

 protected
 def setup_email(user)
 @recipients = "#{user.email}"
 @from = "admin@emporium-books.com"
 @subject = "[Emporium] "
 @sent_on = Time.now
 @body[:user] = user
 end
end

forgot_password is the mail method we deliver when George or someone from his staff
requests a password reset. In the method, we set the subject for the mail, as well as define the
password-reset URL sent in the e-mail message. Note that as url_for is an instance method for
ActionController controllers, we can’t call it directly from inside a mailer. However, with the
trickery on the first line, we create a new ActionController::Integration::Session object
through which we can call url_for, and store it in a class variable, which can be used every-
where inside our mailer class. We also change the setup_email method a bit, to accommodate
our application.

Next, we need to create a template for the mail body. Create a new template called
forgot_password.rhtml in app/views/user_notifier and put the following code in it:

Dear <%= @user.login %>,

Click the following link to reset your password at Emporium:
<%= @url %>

As you can see, the @body hash contents from the mailer method have been extracted to
instance variables in the template, so that, for example, @body[:user] became @user and
@body[:url] became @url.

C H A P T E R 8 ■ S E C U R I T Y 241

Now that we have a mailer class and template ready, we can deliver a password-reset
e-mail message by calling UserNotifier.deliver_forgot_password(@user_object). Rails will
automatically retrieve the mailer method name after the deliver_ part in the method call, and
deliver the mail prepared by that method.

■Tip If you want to delay the delivery of the e-mail (for example, because you have a mail sweeper
that takes care of the deliveries), you can use create_ instead of deliver_ in the method call, and you will
get a TMail object in return. For more information about TMail, see http://i.loveruby.net/en/
projects/tmail.

Updating the User Model

To accommodate resetting a password, we need to add a new field to the User model. This field
will hold the generated random token that the system will e-mail to George when he forgets his
password. Only with this token can he get to a page where he can change to a new password.
Run the following code to generate the migration file:

$ script/generate migration add_pw_reset_code_to_users

 exists db/migrate
 create db/migrate/010_add_pw_reset_code_to_users.rb
Loaded suite script/generate

Now open the new file (db/migrate/010_add_pw_reset_code_to_users.rb) and change it to
add the new column, as follows:

class AddPwResetCodeToUsers < ActiveRecord::Migration
 def self.up
 add_column :users, :pw_reset_code, :string, :limit => 40
 end

 def self.down
 remove_column :users, :pw_reset_code
 end
end

Run rake db:migrate for the changes to take effect.

242 C H A P T E R 8 ■ S E C U R I T Y

Next, we need to change the User model in app/models/user.rb so that we can create a new
reset code when needed:

require 'digest/sha1'
class User < ActiveRecord::Base
 # Virtual attribute for the unencrypted password
 attr_accessor :password, :password_forgotten

 # ... scroll 'til the end of the file

 def forgot_password
 self.password_forgotten = true
 create_pw_reset_code
 end

 def reset_password
 update_attributes(:password_reset_code => nil)
 end

 protected
 def create_pw_reset_code
 self.pw_reset_code = Digest::SHA1.hexdigest("secret-#{Time.now}")
 end

 # before filter
 def encrypt_password
 return if password.blank?
 self.salt = Digest::SHA1.hexdigest("--#{Time.now.to_s}--#{login}--") ➥

if new_record?
 self.crypted_password = encrypt(password)
 end

 def password_required?
 crypted_password.blank? || !password.blank?
 end
end

In the beginning of the file, we declare an instance variable called @password_forgotten and
accessor methods for it. Then we create a new method, forgot_password, which uses this variable
to state whether a password reset has been requested. This method sets the @password_forgotten
variable to true using its accessor method, and then calls the protected method create_pw_
reset_code to create a random, unique 40-character token for this resetting case. reset_password
will be called when George has successfully completed the process. All it does is set the
password_reset_code attribute to nil, awaiting the next time George’s memory shows signs of
deterioration.

C H A P T E R 8 ■ S E C U R I T Y 243

Using Observers

When we created UserNotifier in the beginning of the Reset Password user story implementa-
tion, the generator also created a file called user_observer.rb in app/models. Observers in Rails
are classes that monitor the life cycle of ActiveRecord objects, somewhat similar to the filters
for controllers. Observers support the following callback methods:

• after_create

• after_destroy

• after_save

• after_update

• after_validation

• after_validation_on_create

• after_validation_on_update

• before_create

• before_destroy

• before_save

• before_update

• before_validation

• before_validation_on_create

• before_validation_on_update

You can call these callbacks directly in an ActiveRecord model, too:

class MyModel < ActiveRecord::Base
 after_save :say_foo

 def say_foo
 logger.info "Foo-oo!"
 end
end

However, if your callback code gets longer and/or you want to implement similar behavior
for multiple models, it’s a good idea to extract the callbacks to an observer. Observers also give
you more flexibility, since you can restrict the callbacks to happen only in certain controllers,
as we will do in this section.

244 C H A P T E R 8 ■ S E C U R I T Y

When the generate authenticated_mailer user command created the UserObserver
observer, it created two callbacks for it:

class UserObserver < ActiveRecord::Observer
 def after_create(user)
 UserNotifier.deliver_signup_notification(user)
 end

 def after_save(user)
 UserNotifier.deliver_activation(user) if user.recently_activated?
 end
end

However, we don’t need either of these callbacks, since we aren’t implementing signup
notification or user activation in this sprint. We can simplify the observer to look like this:

class UserObserver < ActiveRecord::Observer
 def after_save(user)
 UserNotifier.deliver_forgot_password(user) if user.password_forgotten
 end
end

You might have wondered what we’re going to do with the @password_forgotten variable
in the User class, and here’s the answer. Our after_save method in UserObserver kicks in when
the User object is saved and checks whether the variable is true. If yes, it asks the UserNotifier
mailer to deliver the forgot_password mail, passing the current user as an attribute. In normal
cases, when @password_forgotten is nil, the observer does nothing.

Modifying the Controller

The last things to do for our password reset functionality are to tie it all together in
AccountController and to create views for it. First, to make our new observer work, we
need to call it in the controller with the observer macro. Add the following code to the
AccountController class in app/controllers/account_controller.rb:

class AccountController < ActionController::Base
 observer :user_observer
...

C H A P T E R 8 ■ S E C U R I T Y 245

Next, we need two actions to support the password reset functionality: one to request
the reset code to e-mail, and one to do the actual resetting. We’ll call them forgot_password
and reset_password. Let’s implement these actions at the end of AccountController:

 def forgot_password
 return unless request.post?
 if @user = User.find_by_email(params[:email])
 @user.forgot_password
 @user.save
 flash[:notice] = "An email with instructions for resetting your password
 has been sent to your email address."
 redirect_back_or_default(:controller => "/account")
 else
 flash.now[:notice] = "Could not find a user with the given email address."
 end
 end

 def reset_password
 @page_title = "Reset Password"
 @user = User.find_by_pw_reset_code(params[:id]) rescue nil
 unless @user
 render(:text => "Not found", :status => 404)
 return
 end
 return unless request.post?
 if @user.update_attributes(params[:user])
 @user.reset_password
 flash[:notice] = "Password successfully reset."
 redirect_back_or_default(:controller => "/account")
 end
 end

forgot_password will show a form where the users can add their e-mail address. When
the form is submitted to the same action, it will fetch the user with the given e-mail address
from the database. Then the action calls the forgot_password method for the @user object to
generate the reset code. Finally, it saves the object, thus triggering the after_save call in
UserObserver and causing the e-mail message with the reset URL to be sent. If everything goes
smoothly, the action redirects the user back to where he started the new password request.
Otherwise, we’ll redisplay the form with an error message.

246 C H A P T E R 8 ■ S E C U R I T Y

reset_password is the action where George lands when following the link in the e-mail
message. It gets the user object by the reset code part of the URL. If the user isn’t found, a sim-
ple 404 Not Found page is shown. Otherwise, the action shows a form where George can give
and confirm a new password. We use postback here as well, meaning that the form is posted to
the same reset_password action. When the action is run from a POST request, we update the
password, set the reset code to nil calling the reset_password method for @user, and finally
redirect the browser back to wherever George happened to be before trying to log in.

Creating the Form Templates

We need form templates for both the request and password resetting actions. Let’s start by cre-
ating app/views/account/forgot_password.rhtml and adding the following code to it:

<p>Give your email address and we'll send you instructions on how to
create a new one.</p>
<%= form_tag %>
<label for="email">Email</label>

<%= text_field_tag "email" %>

<%= submit_tag "Submit" %>
<%= end_form_tag %>

The form is extremely simple, consisting of one text field for the e-mail address and a
Submit button, as shown in Figure 8-4.

Figure 8-4. Forgot password? form

C H A P T E R 8 ■ S E C U R I T Y 247

Notice that since we’re posting the form back to the current action, we don’t even need to
specify an address for form_tag.

The reset form in app/views/account/reset_password.rhtml is almost as simple as the
request form:

<%= error_messages_for :user %>
<%= form_tag %>
<p><label for="user_password">Password:</label>

<%= password_field :user, :password %></p>
<p><label for="user_password_confirmation">Confirm password:</label>

<%= password_field :user, :password_confirmation %></p>
<p><%= submit_tag "Submit" %></p>
<%= end_form_tag %>

Here, we just show two password fields: one for the actual password and one for a confir-
mation. Since the User class has a validates_confirmation_of validation specified for the
password attribute, the password confirmation is automatically checked against the password.
After that, it is stripped from the new User object before saving. If the two passwords don’t
match, @user can’t be saved, and the form is shown with an error notification by using the
error_messages_for call, as shown in Figure 8-5.

Figure 8-5. Error message when passwords do not match

We now have a working authentication system in our application. It could be easily
extended to support open user registration, role-based authentication, reversible encrypted
passwords, and “remember me” functionality. For instructions on how to implement these

248 C H A P T E R 8 ■ S E C U R I T Y

functions, refer to the plugin’s homepage at http://technoweenie.stikipad.com/plugins/
show/Acts+as+Authenticated.

■Note In the implementation described in this chapter, the current password of a user is not reversible.
When a user forgets her password, she must create a new one. The system will not mail her the old one.

Protecting Your Application
Web applications are vulnerable to many exploits, and no framework can make up for a sloppy
developer building an application that is easy to hack. In this section, we will review some of the
most common exploits and show you how to use Rails to protect your application against them.

Cross-Site Scripting
If you let your users provide content on the site, you must consider that someone may try to
enter some malicious content, often in form of JavaScript. Therefore, you should never output
anything generated by users directly in the browser. Rails has a shortcut method h (alias for
html_escape), which escapes all the output run through it:

<%= h @user.first_name %>

For example, if first_name is >George<, the output of h will be >George<. That way, a
user cannot enter HTML tags or JavaScript and get it parsed by the browser.

If you want to allow the user to store some safe HTML, you can also run the output through
the sanitize helper, which strips all form tags, script tags, and onXXX (such as onclick) attributes
from tags to prevent running arbitrary JavaScript on the page.

URL and Form Manipulation
It’s easy for people to build their own form by copying, for example, your registration form, and
adding some fields to it, like this:

<input type="hidden" name="user[accepted]" value="1" />
<input type="hidden" name="user[admin]" value="1" />

Now suppose the malicious user submits this form to your standard registration action,
which has something like this in it:

@user = User.create(params[:user])

This way, he might end up being an admin user.
It is fairly easy to protect against this type of manipulation in Rails. Just define sensitive

attributes as protected:

class User < Activerecord::Base
 attr_protected :accepted, :admin
end

C H A P T E R 8 ■ S E C U R I T Y 249

Now these variables cannot be mass-assigned with a parameters hash like the one in the
preceding example. However, you can still set them individually when needed:

@user.accepted = true

Another vulnerability raises its ugly head when you let users edit their information; for
example, with URLs like http://www.domain.com/posts/edit/28. It won’t take long before
someone notices that by changing the last part of the URL, she can get access to posts created
by other people. You can protect your application from this by always getting to the objects
through the logged-in user:

BAD
@post = Post.find(params[:id])
GOOD
@post = current_user.posts.find(params[:id])

If someone now tries to access a post that doesn’t belong to her, an
ActiveRecord::RecordNotFound exception is raised, which you can then rescue and
show a Not Found page to the user:

rescue ActiveRecord::RecordNotFound
 return render(:template => "/shared/404", :status => 404)
end

SQL Injection
One of the most common security holes in web applications is that they pass user input
directly to the database without quoting. Thus, a malicious user can fairly easily run all the SQL
he wants to on the server. An example of this would be a search form submission that is han-
dled by the following code:

@users = User.find(:conditions => "name = '#{params[:q]'")

Now let’s say Dirty Harry puts the following string into the search form:

"monkey'; delete from users; --"

The resulting SQL query will be as follows:

SELECT * from users where name = 'monkey'; delete from users; --'

This is a perfectly valid SQL query and will effectively wipe out the whole users table. Thus,
you should never, ever, pass anything unquoted to the :conditions parameter of ActiveRecord
finders. Instead, use the bind variable syntax:

@users = User.find(:conditions => ["name = ?", params[:q]])

You can pass in as many question mark/variable pairs you need. They will be parsed and
quoted in the order they are specified.

Another option in simple cases is to use the magic finders, where the parameter value is
automatically quoted, too:

@users = User.find_by_name(params[:q])

250 C H A P T E R 8 ■ S E C U R I T Y

Cross-Site Request Forgery
Cross-site request forgery is an attack where, for example, George is tricked into visiting a page
where some code attacks Emporium, a site where he is logged in as an administrator. Let’s say
that George browses to Dirty Harry’s site, dirty-harrys.com, where Harry has the following
image tag:

When George visits the page, his browser will try to load an image from the given URL. It
won’t find an image, but requesting that address gives administrator access to user 666. Note
that even though this example uses the GET protocol, restricting the URL to POST requests
doesn’t help, because JavaScript can be used to send POST requests.

The only way to protect from these kinds of attacks is to use some kind of transient (for exam-
ple, session-specific) token, in addition to the session cookie, that will be verified upon form
postings. You can use a Rails plugin called Security Extensions (http://wiki.rubyonrails.com/
rails/pages/Security+Extensions+Plugin) to tackle this problem; see its homepage for details.
This defense is also effective against the form manipulation threat described earlier.

Summary
In this chapter, we showed you how to integrate a security plugin into your Rails application
and how to extend it to reset forgotten passwords. Using the acts_as_authenticated plugin, we
added support for user authentication. In implementing the reset password functionality, you
saw how to use an ActionMailer mailer to send e-mail from your Rails application, as well as
how observers can follow the life cycle of ActiveRecord objects and act on events like creating,
updating, or deleting an object. Finally, we covered some security problems common to web
applications and how to protect your Rails application from them.

In the next chapter, we will finish up the process of buying books from Emporium, by
implementing checkout functionality and integration with credit card processing services.

251

■ ■ ■

C H A P T E R 9

Checkout and
Order Processing

In this chapter, we’ll implement a checkout page and an order-processing system for the
Emporium site. This involves integrating with payment gateways, which George uses for han-
dling the transactions.

We’ll show you how to integrate with two popular payment gateways: PayPal and
Authorize.Net using two separate frameworks: the Active Merchant plugin and the Payment
gem. These two libraries have already implemented the toughest part of the integration with
the payment gateway. All we need to do is implement the front-end for the user stories and
use the libraries to communicate with the payment gateways.

Towards the end of the chapter, we’ll explain how to use the Shipping gem to calculate
shipping costs. Lastly, we’ll briefly discuss how taxes are calculated.

252 C H A P T E R 9 ■ C H E C K O U T A N D O R D E R P R O C E S S I N G

Getting the Checkout and Order-Processing
Requirements
For this sprint, we have four user stories to implement:

• Check out: Jill, Emporium’s beloved customer, has found two new books that she wants
to buy, and has placed them in the shopping cart. The next step for her to continue
with the order is to go to the checkout page. Here, she can type in her contact informa-
tion, the shipping address, and credit card information, and then place the order by
submitting the information. This initiates the order-processing workflow that involves
billing the customer and shipping the books.

• View orders: George needs to be able to view the status of all orders, such as processed
orders and closed ones. Processed orders are the ones that have been billed to the cus-
tomer but have not been shipped yet. Closed orders are the ones that George has sent to
the customer.

• View order: Before George can ship anything anywhere, he must be able to view the
details of the order. We will add a page that shows the shipping address and billing infor-
mation, along with the contact information for the customer.

• Close order: After George has shipped the books, he should close the order. We will set
this up on the order details page, so George can simply click a button that sets the order
status to closed.

Let’s start by implementing the Check Out user story.

Implementing the Check Out User Story
Back in Chapter 5, we implemented the shopping cart for Emporium customers. Now we will
complete the web shopping experience by adding the crucial last step: check out, including
how to integrate with credit card payment gateways.

Creating the Models
We need a place where we can store the order information. We’ll use two tables, named orders
and order_items, which are similar to the carts and cart_items tables we created in Chapter 5.

You could use single-table inheritance to store both the order items and cart items in the
same table, but in this case, we want to clearly separate the two entities. For more informa-
tion on single-table inheritance, see the API documentation for ActiveRecord::Base at
http://rubyonrails.org/api/classes/ActiveRecord/Base.html.

Creating the Order Model

Begin by creating the Order model and the associated migration:

$ script/generate model Order

C H A P T E R 9 ■ C H E C KO U T A N D O R D E R P R O C E S S I N G 253

 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/order.rb
 create test/unit/order_test.rb
 create test/fixtures/orders.yml
 exists db/migrate
 create db/migrate/011_create_orders.rb

Open db/migrate/011_create_orders.rb and replace the contents with the following code:

class CreateOrders < ActiveRecord::Migration
 def self.up
 create_table :orders do |t|
 # Contact Information
 t.column :email, :string
 t.column :phone_number, :string
 # Shipping Address
 t.column :ship_to_first_name, :string
 t.column :ship_to_last_name, :string
 t.column :ship_to_address, :string
 t.column :ship_to_city, :string
 t.column :ship_to_postal_code, :string
 t.column :ship_to_country, :string
 # Private parts
 t.column :customer_ip, :string
 t.column :status, :string
 t.column :error_message, :string
 t.column :created_at, :timestamp
 t.column :updated_at, :timestamp
 end
 end

 def self.down
 drop_table :orders
 end
end

Columns with names that start with ship_to map directly to the shipping information sec-
tion of the form we’ll create later in this chapter. The email and phone_number fields map to the
contact information section of the checkout form. We also want to store private data, including
the customer’s IP address, so that it is possible to track, for example, credit card frauds.

The status field is a string that indicates in which of the following states the order cur-
rently is: open, processed, closed, or failed. The open status is used by default. processed is
the status of an order for which George has charged the customer. Orders are closed when
George has verified that the payment has been approved, and after he has sent the books to the

254 C H A P T E R 9 ■ C H E C K O U T A N D O R D E R P R O C E S S I N G

customer. If we receive an error message from the payment gateway, or something else fails in
the order processing, we store it in the error_message field and set the status to failed.

■Tip If you want to keep an audit trail of all the changes that have been done to an order, you can use the
acts_as_versioned plugin, which can be found at http://ar-versioned.rubyforge.org/.

As usual, we drop the table when rolling back changes.

Creating the Order_Item Model

The books that have been ordered also must be stored somewhere, which will be in the
order_items table. Create the model and the migration with the following command:

$ script/generate model Order_Item

 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/order_item.rb
 identical test/unit/order_item_test.rb
 identical test/fixtures/order_items.yml
 exists db/migrate
 create db/migrate/012_create_order_items.rb

Open db/migrate/012_create_order_items.rb and replace the contents with the
following code:

class CreateOrderItems < ActiveRecord::Migration
 def self.up
 create_table :order_items do |t|
 t.column :book_id, :integer
 t.column :order_id, :integer
 t.column :price, :float
 t.column :amount, :integer
 t.column :created_at, :timestamp
 t.column :updated_at, :timestamp
 end
 end

 def self.down
 drop_table :order_items
 end
end

C H A P T E R 9 ■ C H E C KO U T A N D O R D E R P R O C E S S I N G 255

We store the price of the ordered book and the amount of books ordered. We link each
order item to a book and an order.

You can now run the migrations by executing the following:

$ rake db:migrate

Specifying the Associations

Next, we want to set up the link between the orders and ordered items. We can do this by first
changing the Order model (app/models/order.rb) as shown here:

class Order < ActiveRecord::Base
 attr_protected :id, :customer_ip, :status, :error_message, ➥

:updated_at, :created_at

 has_many :order_items
 has_many :books, :through => :order_items

 def total
 order_items.inject(0) {|sum, n| n.price * n.amount + sum}
 end
end

Next, change app/models/order_item.rb as follows:

class OrderItem < ActiveRecord::Base
 belongs_to :order
 belongs_to :book
end

Note that we protect the id,customer_ip, status, error_message,updated_at, and created_at
fields, so that no one can hack the form and assign a value to these fields, which are used only
internally. Protecting the fields is done with the attr_protected method, which we introduced in
Chapter 8.

■Note In our example, we allow MySQL to generate the order id. If you want more complex order num-
bers, you’ll need to generate them yourself.

We have also added a method for calculating the total price of the order. To verify that the
relationship between the Order, Order_Item, and Book models are set up correctly, let’s create a
simple unit test. Open test/unit/order_test.rb and add the test shown in Listing 9-1 to it.

256 C H A P T E R 9 ■ C H E C K O U T A N D O R D E R P R O C E S S I N G

Listing 9-1. Unit Test for Model Relationships

 def test_that_we_can_create_a_valid_order
 order = Order.new(
 # Contact Information
 :email => 'abcdef@gmail.com',
 :phone_number => '3498438943843',
 # Shipping Address
 :ship_to_first_name => 'Hallon',
 :ship_to_last_name => 'Saft',
 :ship_to_address => 'Street',
 :ship_to_city => 'City',
 :ship_to_postal_code => 'Code',
 :ship_to_country => 'Iceland',
 # Billing Information
 :card_type => 'Visa',
 :card_number => '4007000000027',
 :card_expiration_month => '1',
 :card_expiration_year => '2009',
 :card_verification_value => '333'
)
 # Private parts
 order.customer_ip = '10.0.0.1'
 order.status = 'processed'

 order.order_items << OrderItem.new(
 :book_id => 1,
 :price => 100.666,
 :amount => 13
)

 assert order.save

 order.reload

 assert_equal 1, order.order_items.size
 assert_equal 100.666, order.order_items[0].price
 end

Note that we can’t set the customer_ip and status fields in the same way as the other fields,
because they are now protected fields.

Before running the test, remember to copy the changes from the development database to
the test by executing the following command:

$ rake db:test:clone_structure

C H A P T E R 9 ■ C H E C KO U T A N D O R D E R P R O C E S S I N G 257

If you run the test now, it should generate errors related to the billing information fields.

Adding Validations to the Model
We need to validate the billing information, but there’s one problem. We don’t want to store
that information in the database, so there are no fields in our model that we can validate. We
can fix this by adding the code we have highlighted here to app/models/order.rb:

class Order < ActiveRecord::Base
 attr_protected :id, :customer_ip, :status, :error_message, ➥

:updated_at, :created_at
 attr_accessor :card_type, :card_number, ➥

:card_expiration_month, :card_expiration_year, :card_verification_value

 has_many :order_items
 has_many :books, :through => :order_items

Using attr_accessor has the same result as adding a getter and a setter for each of the
attributes. However, it can all be done with one line, instead of something like this:

def card_type=(type)
 @card_type = type
end

def card_type
 @card_type
end

Collecting correct information on the checkout page is important. If the customer mis-
spells her e-mail address or forgets to enter information in one of the required fields, George
might not be able to complete the order. To help prevent this, add the following validations to
the Order model (app/models/order.rb):

 validates_size_of :order_items, :minimum => 1
 validates_length_of :ship_to_first_name, :in => 2..255
 validates_length_of :ship_to_last_name, :in => 2..255
 validates_length_of :ship_to_address, :in => 2..255
 validates_length_of :ship_to_city, :in => 2..255
 validates_length_of :ship_to_postal_code, :in => 2..255
 validates_length_of :ship_to_country, :in => 2..255

 validates_length_of :phone_number, :in => 7..20
 validates_length_of :customer_ip, :in => 7..15
 validates_format_of :email, :with => /^([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})$/i
 validates_inclusion_of :status, :in => %w(open processed closed failed)

258 C H A P T E R 9 ■ C H E C K O U T A N D O R D E R P R O C E S S I N G

 validates_inclusion_of :card_type, :in => ['Visa', 'MasterCard', 'Discover'], ➥

:on => :create
 validates_length_of :card_number, :in => 13..19, :on => :create
 validates_inclusion_of :card_expiration_month, ➥

:in => %w(1 2 3 4 5 6 7 8 9 10 11 12), :on => :create
 validates_inclusion_of :card_expiration_year, ➥

:in => %w(2006 2007 2008 2009 2010), :on => :create
 validates_length_of :card_verification_value, :in => 3..4, :on => :create

We validate all fields, including credit card information. The credit card fields are vali-
dated only on create, as they don’t exist in the database.

We should also take care that the amount and price are correct, so add the validate call-
back method shown here to order_items.rb:

class OrderItem < ActiveRecord::Base
 belongs_to :order
 belongs_to :book

 def validate
 errors.add(:amount, "should be one or more") ➥

unless amount.nil? || amount > 0
 errors.add(:price, "should be a positive number") ➥

unless price.nil? || price > 0.0
 end

This method validates that the customer is ordering at least one book and that the price is
a positive number. Let’s add the following test to test/unit/order_test.rb, which verifies that
all fields are validated:

 def test_that_validation_works
 order = Order.new
 assert_equal false, order.save
 # An order should have at least one order item
 assert order.errors.on(:order_items)
 assert_equal 15, order.errors.size
 # Contact Information
 assert order.errors.on(:email)
 assert order.errors.on(:phone_number)
 # Shipping Address
 assert order.errors.on(:ship_to_first_name)
 assert order.errors.on(:ship_to_last_name)
 assert order.errors.on(:ship_to_address)
 assert order.errors.on(:ship_to_city)
 assert order.errors.on(:ship_to_postal_code)
 assert order.errors.on(:ship_to_country)

C H A P T E R 9 ■ C H E C KO U T A N D O R D E R P R O C E S S I N G 259

 # Billing Information
 assert order.errors.on(:card_type)
 assert order.errors.on(:card_number)
 assert order.errors.on(:card_expiration_month)
 assert order.errors.on(:card_expiration_year)
 assert order.errors.on(:card_verification_value)

 assert order.errors.on(:customer_ip)
 end

Run the unit test one last time:

$ ruby test/unit/order_test.rb

You should see the tests pass.

Creating the Controller and Integration Test
The next task is to create the controller for the Checkout user story. In a console, type the fol-
lowing command:

$ script/generate controller Checkout index place_order thank_you

 exists app/controllers/
 exists app/helpers/
 create app/views/checkout
 exists test/functional/
 create app/controllers/checkout_controller.rb
 create test/functional/checkout_controller_test.rb
 create app/helpers/checkout_helper.rb
 create app/views/checkout/index.rhtml
 create app/views/checkout/place_order.rhtml
 create app/views/checkout/thank_you.rhtml

Now, let’s continue by using TDD to implement the user story. We want to test two scenarios:
one where the cart is empty and one where the cart contains books. We are going to call multiple
controllers (the Cart and Checkout controllers) from our tests, so we’ll use an integration test
instead of a functional test. Create the test with the following command:

$ script/generate integration checkout

 exists test/integration/
 create test/integration/checkout_test.rb

260 C H A P T E R 9 ■ C H E C K O U T A N D O R D E R P R O C E S S I N G

Let’s start with the first scenario. When the cart is empty, the user shouldn’t be able to per-
form a checkout. This can be verified by replacing the test_truth method in test/integration/
checkout_test.rb with the code shown here:

 def test_that_empty_cart_shows_error_message
 get '/checkout'
 assert_response :redirect
 assert_redirected_to :controller => "catalog"
 assert_equal "Your shopping cart is empty! ➥

Please add something to it before proceeding to checkout.", flash[:notice]
 end

This test verifies that when the cart is empty, we are redirected to the catalog page and an
error message is displayed.

If you run the test now, it fails, because we haven’t implemented the controller yet.
Open app/controllers/checkout_controller.rb in your editor and change the index method
as follows:

 def index
 @order = Order.new
 @page_title = "Checkout"
 if @cart.books.empty?
 flash[:notice] = "Your shopping cart is empty! ➥

Please add something to it before proceeding to checkout."
 redirect_to :controller => 'catalog'
 end
 end

Also add the initialize_cart filter to the controller:

class CheckoutController < ApplicationController
 before_filter :initialize_cart

 def index

Recall that this filter was implemented in Chapter 5. It initializes the cart, so that we can
access it from the Checkout controller and views. It also enables us to show the shopping cart to
the right on the page (also implemented in Chapter 5).

Execute the test with the following command:

$ ruby test/integration/checkout_test.rb

C H A P T E R 9 ■ C H E C KO U T A N D O R D E R P R O C E S S I N G 261

You should see no errors. Perform a manual test by opening http://localhost:3000/
checkout. Because the shopping cart is empty, you should be redirected to the catalog page,
where the error message in Figure 9-1 is displayed.

Figure 9-1. The catalog page displaying an empty cart error message

Next, we’ll add a test for the second scenario. When the shopping cart contains one
or more items (books), we want to display a form with three sections: contact information,
shipping address, and billing information. First, add the following fixtures and test to
test/integration/checkout_test.rb:

 fixtures :authors, :publishers, :books

 def test_that_placing_an_order_works
 post '/cart/add', :id => 1
 get '/checkout'
 assert_response :success
 assert_tag :tag => 'legend', :content => 'Contact Information'
 assert_tag :tag => 'legend', :content => 'Shipping Address'
 assert_tag :tag => 'legend', :content => 'Billing Information'
 end

The test begins by adding a book (defined in the books fixture file) to the cart by calling the
/cart/add action. Then it accesses the checkout page and verifies that the request is successful.
It proceeds by checking that the page contains the three required sections. This is done by
looking for three legend tags having the following content: Contact Information, Shipping
Address, and Billing Information.

Now that we have the new test in place, we could try to run it, but it would fail miserably
when it tries to find the three sections.

262 C H A P T E R 9 ■ C H E C K O U T A N D O R D E R P R O C E S S I N G

Creating the View
To build the checkout view, open app/views/checkout/index.rhtml and add the following code:

<%= error_messages_for 'order' %>
<p>Your order is displayed in the shopping cart to the right.</p>
<form method="post" id="checkout" action="<%= url_for :action => :place_order %>">
 <fieldset>
 <legend>Contact Information</legend>
 <p>
 <label for="order_email">Email</label>

 <%= text_field :order, :email %>
 </p>
 <p>
 <label for="order_phone_number">Phone number</label>

 <%= text_field :order, :phone_number %>
 </p>
 </fieldset>
 <p>
 <%= submit_tag "Place Order" %>
 </p>
</form>

The code contains the checkout form and the contact information section. Notice that we
are using the fieldset and legend tags, which are good from a usability point of view, to group
the email and phone_number fields. We are trying hard not to overwhelm the customers with
fields that they need to fill in.

■Tip The checkout page is probably your site’s most important page. You definitely don’t want a customer
to cancel an order on the checkout page. To make the checkout process faster for returning customers, you
could ask them to register. This would allow you to save the customer’s contact and shipping information, and
prepopulate the form on the checkout page.

C H A P T E R 9 ■ C H E C KO U T A N D O R D E R P R O C E S S I N G 263

Next, add the shipping information section (below the </fieldset> tag) with the code
shown here:

 <fieldset>
 <legend>Shipping Address</legend>
 <p>
 <label for="order_ship_to_first_name">First name</label>

 <%= text_field :order, :ship_to_first_name %>
 </p>
 <p>
 <label for="order_ship_to_last_name">Last name</label>

 <%= text_field :order, :ship_to_last_name %>
 </p>
 <p>
 <label for="order_ship_to_address">Address</label>

 <%= text_field :order, :ship_to_address %>
 </p>
 <p>
 <label for="order_ship_to_city">City</label>

 <%= text_field :order, :ship_to_city %>
 </p>
 <p>
 <label for="order_ship_to_postal_code">Postal/Zip code</label>

 <%= text_field :order, :ship_to_postal_code %>
 </p>
 <p>
 <label for="order_ship_to_country">Country</label>

 <%= country_select(:order, :ship_to_country, ➥

priority_countries = ['United States']) %>
 </p>
 </fieldset>

This section contains six fields to collect the customer’s first name, last name, address,
city, postal code, and country. Note that the country field displays a list of all countries in the
world. The list is generated by the built-in Rails method country_select:

 country_select(:order, :ship_to_country, priority_countries = ['United States'])

264 C H A P T E R 9 ■ C H E C K O U T A N D O R D E R P R O C E S S I N G

This binds the country field to the order model’s ship_to_country field, which we’ll create
later. The priority_countries parameter is an array of strings that specifies which countries
should be displayed at the top of the list, as shown in Figure 9-2.

Figure 9-2. The country selection list

Next, add the billing information section directly after the last </fieldset> tag:

 <fieldset>
 <legend>Billing Information</legend>
 <p>
 <label for="order_card_type">Credit card type</label>

 <select name="order[card_type]" id="order_card_type">
 <%= options_for_select(["Visa", "MasterCard", "Discover"], ➥

@order.card_type) %>
 </select>
 </p>
 <p>
 <label for="order_card_expiration_month">Expiration date</label>

 <select name="order[card_expiration_month]">
 <%= options_for_select(%w(1 2 3 4 5 6 7 8 9 10 11 12), ➥

 @order.card_expiration_month) %>
 </select>
 /
 <select name="order[card_expiration_year]">
<%= options_for_select(%w(2006 2007 2008 2009 2010 2011), ➥

 @order.card_expiration_year) %>
 </select>
 </p>

C H A P T E R 9 ■ C H E C KO U T A N D O R D E R P R O C E S S I N G 265

 <p>
 <label for="order_card_number">Card number</label>

 <%= text_field :order, :card_number %>
 </p>
 <p>
 <label for="order_card_verification_value"> ➥

 <abbr title="Card Verification Value">CVV</abbr>/ ➥

<abbr title="Card Validation Check">CVC</abbr>
 </label>

 <%= text_field :order, :card_verification_value %>
 </p>
 </fieldset>

This section contains fields for the credit card type, expiration date, card number, and
card verification code (CVC).

■Note The card verification code is used for fraud prevention. For more information, see
http://en.wikipedia.org/wiki/Card_Verification_Code.

The options for drop-down lists, such as the one that lists credit cards, are generated with
the options_for_select helper method. This method generates one <option> tag for each item
in the specified array. With the second parameter, we specify the item that should be selected
from the list.

Everything required for the test to pass is now in place, so execute it by issuing the follow-
ing command:

$ ruby test/integration/checkout_test.rb

This time, all tests should pass. Before we test that it works with our browser, we’ll add a
checkout link to the shopping cart that we created in Chapter 5. Open app/views/cart/_
cart.rhtml and add the highlighted code:

 <h3>Your Shopping Cart</h3>
 <p>

 <%= link_to "Proceed to Checkout", :controller => 'checkout' ➥

unless controller.controller_name == 'checkout' %>

 </p>

 <% for item in @cart.cart_items %>
 <li id="cart_item_<%= item.book.id %>">
 <%= render :partial => "cart/item", :object => item %>

 <% end %>

266 C H A P T E R 9 ■ C H E C K O U T A N D O R D E R P R O C E S S I N G

Note that we show the Proceed to Checkout link only if the user is not already on the
checkout page.

We want to make the checkout page look a bit nicer, so add the code shown in Listing 9-2
to the style sheet (app/public/stylesheets/style.css).

Listing 9-2. Additions to the Style Sheet

#checkout fieldset {
 border-top: 1px solid #efefef;
 border-left: 1px solid #efefef;
 border-bottom: 1px solid #ccc;
 border-right: 1px solid #ccc;
 padding: 1em 1em 1em 1.5em;
 width: 300px;
 margin-bottom: 10px;
}

#checkout fieldset:hover {
 border: 1px solid #3A789D;
}

#checkout legend {
 font-weight: bold;
}

#checkout fieldset input {
 margin: 1px;
}

#order_card_verification_value {
 width: 50px;
}

#checkout fieldset input:focus {
 background-color: #cccccc;
}

Open http://localhost:3000/catalog in your browser and add a couple of books to the
shopping cart. Then click the Proceed to Checkout link. You should now see the checkout page,
as shown in Figure 9-3.

C H A P T E R 9 ■ C H E C KO U T A N D O R D E R P R O C E S S I N G 267

Figure 9-3. The checkout page

To the right, the shopping cart is displayed, so that the customer can view the contents of
it and remove books before placing the order. At the bottom of the page is a Place Order button,
which will just show an exception if you click it now. Two things should happen when this but-
ton is clicked:

• The order information, including the amount and price of ordered books, contact infor-
mation, and shipping address, should be saved to the database.

• The total price of the order should be charged to the credit card specified in the billing
information section.

Note that it’s the payment gateway that actually charges the credit card, and that the pay-
ment gateway is the only system that needs the credit card information. We don’t need to store
the credit card information in the database.

With the controller and view in place, we can continue. Let’s first implement the part that
stores the data in the database. Then we’ll tackle the integration with the payment gateway.

268 C H A P T E R 9 ■ C H E C K O U T A N D O R D E R P R O C E S S I N G

Saving the Order Information
We are now confident that the checkout form and the two new ActiveRecord models work as
we intended, so let’s continue with the next part of the checkout page implementation: the
place_order action. This action is triggered when the user has filled out the form and clicks the
Place Order button.

Updating the Integration Test

First, we change the integration test (test/integration/checkout_test.rb) we created earlier
as shown here:

 def test_placing_order
 post '/cart/add', :id => 1
 get '/checkout'
 assert_response :success
 assert_tag :tag => 'legend', :content => 'Contact Information'
 assert_tag :tag => 'legend', :content => 'Shipping Address'
 assert_tag :tag => 'legend', :content => 'Billing Information'

 post '/checkout/place_order', :order => {
 # Contact Information
 :email => 'abce@gmail.com',
 :phone_number => '3498438943843',
 # Shipping Address
 :ship_to_first_name => 'Hallon',
 :ship_to_last_name => 'Saft',
 :ship_to_address => 'Street',
 :ship_to_city => 'City',

STORING CREDIT CARD INFORMATION

You should be very careful when handling credit card information. If your business doesn’t depend on it, never
store the information on your system. In case you need it, for instance, when implementing a checkout process
similar to Amazon’s One-Click Shopping (http://cse.stanford.edu/class/cs201/projects-99-00/
software-patents/amazon.html), you should read about the Cardholder Information Security Program
(CISP) and Payment Card Industry (PCI) security standards, which mandate that you never under any circum-
stances store the CVC2/CVV2/CID, PIN, or magnetic stripe data on your system.

For more information about the security standards, see the following:

• http://usa.visa.com/business/accepting_visa/ops_risk_management/cisp.html

• www.pcisecuritystandards.org/tech/download_the_pci_dss.htm

James Duncan Davidson has also written a good summary of the issues related to handling credit card
information. You can read it at http://blog.duncandavidson.com/2006/06/cautious_advice.html.

C H A P T E R 9 ■ C H E C KO U T A N D O R D E R P R O C E S S I N G 269

 :ship_to_postal_code => 'Code',
 :ship_to_country => 'Iceland',
 # Billing Information
 :card_type => 'Visa',
 :card_number => '4007000000027',
 :card_expiration_month => '1',
 :card_expiration_year => '2009',
 :card_verification_value => '333',
 }

 assert_response :redirect
 assert_redirected_to '/checkout/thank_you'
 end

This will place an order for one book and check that the order process was successful,
which is indicated by a redirect to the page where we show a thank you message to the
customer.

Adding the place_order Action

Next, we add the place_order action to the checkout controller (app/controllers/
checkout_controller.rb):

 def place_order
 @page_title = "Checkout"
 @order = Order.new(params[:order])
 @order.customer_ip = request.remote_ip
 populate_order

 if @order.save
 if @order.process
 flash[:notice] = 'Your order has been submitted, ➥

and will be processed immediately.'
 session[:order_id] = @order.id
 # Empty the cart
 @cart.cart_items.destroy_all
 redirect_to :action => 'thank_you'
 else
 flash[:notice] = "Error while placing order. ➥

'#{@order.error_message}'"
 render :action => 'index'
 end
 else
 render :action => 'index'
 end
 end

270 C H A P T E R 9 ■ C H E C K O U T A N D O R D E R P R O C E S S I N G

The place_order action calls two methods, populate_order and order.process, which we
haven’t created yet. The populate_order method (added in checkout_controller.rb) simply
copies the books from the shopping cart to the order:

 private

 def populate_order
 for cart_item in @cart.cart_items
 order_item = OrderItem.new(
 :book_id => cart_item.book_id,
 :price => cart_item.price,
 :amount => cart_item.amount
)
 @order.order_items << order_item
 end
 end

The following code for the process method should be added to the Order model
(app/models/order.rb):

 private

 def process
 result = true
 #
 # TODO Charge the customer by calling the payment gateway
 #
 self.status = 'processed'
 save!
 result
 end

process is where we charge the customer for the total amount of the order, and this is
where we’ll put the payment gateway integration code.

You can run the integration test by executing the following command:

$ ruby test/integration/checkout_test.rb

Although we haven’t implemented the thank you page yet, the test will pass. Open
app/views/checkout/thank_you.rhtml and add the following code to it:

For future references use invoice number <%= session[:order_id] %>

Next, change the thank_you action in the Checkout controller (app/controllers/
checkout_controller.rb) as follows:

 def thank_you
 @page_title = 'Thank You!'
 end

C H A P T E R 9 ■ C H E C KO U T A N D O R D E R P R O C E S S I N G 271

To test the thank you page, add a couple of books to the shopping cart and click the check-
out link. Then fill out the checkout form and place the order. You should now see the thank you
page, as shown in Figure 9-4.

Figure 9-4. The thank you page

Integrating with Payment Gateways
You can think of a payment gateway as a kind of proxy that handles the tricky details of credit
card transactions for merchants. You send the payment details to the gateway, and the gateway
forwards the details to the financial institution. The payment is then processed (with a possible
delay) by the financial institution, after which the result is communicated back to the gateway,
and then to you or your application.

We’ll first show you how to use Active Merchant, a payment abstraction library, to
integrate with PayPal, the leading online payment solution that enables merchants to
manage credit card transactions online. Later, we’ll also demonstrate how to integrate with
Authorize.Net, another leading payment gateway, including how to do this with the Payment
gem as an alternative to Active Merchant.

■Note Only US-based businesses are allowed to use PayPal’s Website Payments Pro and Authorize.Net.
For alternative payment gateways, see the Active Merchant homepage at http://home.leetsoft.com/am.
And remember, using payment gateways is not the only option. Some banks allow you to add a simple form
to your site, which the customer can use for transferring money directly to your bank account.

Installing the Active Merchant Plugin
Active Merchant (http://home.leetsoft.com/am) is a Rails plugin, written by Tobias Lütke and
various contributors, that allows you to integrate with various payment gateways, including:
Moneris, Authorize.Net, TrustCommerce, PsiGate, and PayPal’s Website Payments Pro. It’s
currently used by Shopify (http://shopify.com) in production.

272 C H A P T E R 9 ■ C H E C K O U T A N D O R D E R P R O C E S S I N G

You first need to install the Money gem (http://rubyforge.org/projects/money/), which
Active Merchant uses to handle money:

$ sudo gem install money

Next, install Active Merchant itself with the following command:

$ script/plugin install svn://home.leetsoft.com/active_merchant/trunk/ ➥

active_merchant

The command checks out the latest version of the plugin and places it in the vendor/
plugins/active_merchant directory.

Active Merchant uses the SOAP protocol to communicate with PayPal. This means you’ll
need to install soap4r, an implementation of SOAP 1.1. Download the latest version from
http://dev.ctor.org/soap4r, extract the package to a folder of your choice, and then execute
the following command:

$ sudo ruby install.rb

■Note At the time of writing, Active Merchant required soap4r version 1.5.5 or greater to work. To retrieve
the latest version, execute svn checkout http://dev.ctor.org/svn/soap4r/trunk soap4r.

soap4r uses the http-access2 library to communicate with the PayPal servers, so down-
load the latest stable release of this library from http://dev.ctor.org/http-access2/, extract
the package, and install it with the following command:

$ sudo ruby install.rb

That’s it. If you have the server running, restart it for the changes to take effect.

Integrating with PayPal
To be able to test PayPal, you will first need to sign up for an account at PayPal Developer
Central (https://developer.paypal.com/). After you log in, you are greeted with the page
shown in Figure 9-5.

C H A P T E R 9 ■ C H E C KO U T A N D O R D E R P R O C E S S I N G 273

Figure 9-5. The PayPal Developer Central homepage

Along with links to the forums and help references, PayPal Developer Central provides
access to three important areas:

• Sandbox: This is where you can create dummy bank accounts and credit cards that you
can use for testing transactions without actually billing anyone.

• Test Certificates: This is where you can download the test certificate, which you’ll need
when communicating with PayPal over a secure SSL connection.

• Email: This page is where all e-mail messages that PayPal sends end up. Instead of send-
ing them to your real account, PayPal simply stores them on its servers and displays
them on this page.

274 C H A P T E R 9 ■ C H E C K O U T A N D O R D E R P R O C E S S I N G

Using PayPal Developer Central, we will first create a business account and credit card in
the Sandbox. This will include steps for verifying and confirming the account. Then we will set
up the API credentials that Active Merchant needs when communicating with PayPal, by cre-
ating a private key and certificate. Finally, we can return to our application and implement the
integration with the payment gateway.

Creating a Dummy Bank Account and Credit Card

The Sandbox is a safe testing environment and replica of the production PayPal environment.
We’ll use it to create a business account and a dummy credit card for our tests.

From the PayPal Developer Center homepage, click the Sandbox link to open the PayPal
Sandbox page. Click the Create Account link and select Business Account. To create the busi-
ness account, follow the suggested steps. Remember to write down the credit card
information, because you’ll need it later.

Once you have created the test account, you should see it listed on the Sandbox page, as
shown in Figure 9-6.

Figure 9-6. The PayPal Sandbox page displaying the test account

Continue by clicking the Launch Sandbox button beneath the Test Accounts listing. This
opens the Sandbox login page. Log in, and you should see the business account, as shown in
Figure 9-7.

C H A P T E R 9 ■ C H E C KO U T A N D O R D E R P R O C E S S I N G 275

Figure 9-7. The business account displayed in the PayPal Sandbox

Here, you can see that the status of the account is verified. In the example in Figure 9-7, we
have already made some test transactions, which is why the account balance is $30,536,45.

Creating API Credentials

Next, we’ll create the credentials that Active Merchant needs when communicating with
PayPal. Follow these steps:

1. From the business account display (Figure 9-7), click the Profile tab. Then click Request
API Credentials.

2. On the next page, select API SSL Client-Side Certificate, agree to the terms by selecting
the appropriate option, and click the Submit button.

276 C H A P T E R 9 ■ C H E C K O U T A N D O R D E R P R O C E S S I N G

3. On the following page, you should see the API username and API password, as
shown in Figure 9-8. Click the Download Certificate button. This will download a file
(cert_key_pem.txt) containing the private key and the certificate, in the following
format:

-----BEGIN RSA PRIVATE KEY-----
...
-----END RSA PRIVATE KEY-----
-----BEGIN CERTIFICATE-----
...
-----END CERTIFICATE-----

Figure 9-8. The Download or Remove API Certificate page

4. Select and copy the private key, including the start and end tags, and save it in
config/paypal/sandbox.key.

5. Select and copy the certificate and save it in config/paypal/sandbox.crt.

6. Download one of the PayPal Software Development Kits (SDKs), such as the
PHP SDK, from http://developer.paypal.com. Then copy the server certificate
(api_cert_chain.crt) to config/paypal/api_cert_chain.crt.

C H A P T E R 9 ■ C H E C KO U T A N D O R D E R P R O C E S S I N G 277

This completes the PayPal signup and account configuration process. Now we’re ready to
use Active Merchant and the PayPal account.

Setting Up PayPal Transactions

We can now start using the test account. First, change the process method in the Order model
(app/models/order.rb) as shown here:

 def process
 if closed? raise "Order is closed"
 begin
 process_with_active_merchant
 rescue => e
 logger.error("Order #{id} failed with error message #{e}")
 self.error_message = 'Error while processing order'
 self.status = 'failed'
 end
 save!
 self.status == 'processed'
 end

We’ll call the payment gateway from the process method. If there’s an exception in the
order-processing code, we set the order status to failed and log the error message to the stan-
dard log. The main logic is located in the process_with_active_merchant method, which
should be added to app/models/order.rb:

 def process_with_active_merchant
 Base.gateway_mode = :test

 gateway = PaypalGateway.new(
 :login => 'business_account_login',
 :password => 'business_account_password',
 :cert_path => File.join(File.dirname(__FILE__), "../../config/paypal")
)
 gateway.connection.wiredump_dev = STDERR

 creditcard = CreditCard.new(
 :type => card_type,
 :number => card_number,
 :verification_value => card_verification_value,
 :month => card_expiration_month,
 :year => card_expiration_year,
 :first_name => ship_to_first_name,
 :last_name => ship_to_last_name
)

278 C H A P T E R 9 ■ C H E C K O U T A N D O R D E R P R O C E S S I N G

 # Buyer information
 params = {
 :order_id => self.id,
 :email => email,
 :address => { :address1 => ship_to_address,
 :city => ship_to_city,
 :country => ship_to_country,
 :zip => ship_to_postal_code
 } ,
 :description => 'Books',
 :ip => customer_ip
 }

 response = gateway.purchase(total, creditcard, params)

 if response.success?
 self.status = 'processed'
 else
 self.error_message = response.message
 self.status = 'failed'
 end
 end

We are setting the gateway mode to test, because we want to use the Sandbox instead of
the live environment.

We set the wiredump_dev parameter to true by using gateway.connection.wiredump_dev =
STDERR. This prints out the HTTP traffic to the console, which helps debug the traffic between
the server and the gateway.

Note that PayPal expects the country field to contain the country code, not the country
name, which is the case at the moment. We can fix this by hard-coding the list of countries and
codes in the view (app/views/checkout/index.rhtml), as shown here:

 <select name="order[ship_to_country]">
 <option value="FI">Finland</option>
 <option value="NO">Norway</option>
 <option value="SE">Sweden</option>
 <option value="DK">Denmark</option>
 </select>

C H A P T E R 9 ■ C H E C KO U T A N D O R D E R P R O C E S S I N G 279

■Note Another option for getting the country codes is to use the TZInfo library
(http://tzinfo.rubyforge.org/), as explained at http://rails.techno-weenie.net/
tip/2006/6/5/country_select_with_country_codes.

We can now test that transactions are sent to PayPal, by adding a few books to the shop-
ping cart and placing an order. Then log in to the PayPal Sandbox (www.sandbox.paypal.com/)
with the dummy account you created earlier. You should see the order on the History page, as
shown in Figure 9-9.

Figure 9-9. The PayPal History page displaying transactions

Note that the signup and verification e-mail messages are not sent to the e-mail address
you specify on the signup forms. To view the messages, go to the Email page in PayPal
Developer Central, shown in Figure 9-10, which is accessible after you log in.

280 C H A P T E R 9 ■ C H E C K O U T A N D O R D E R P R O C E S S I N G

Figure 9-10. The Email page displaying payment notifications

Integrating with Authorize.Net
Authorize.Net is an alternative to PayPal. To be able to test Authorize.Net, you’ll first need
to apply for a test account. This account works in the same way as a real account, except
that no one is billed. This means you can play around with the code, without the fear of
losing money.

To apply for a test account, go to the http://developer.authorize.net/testaccount/ page
and fill out the form. You should receive an e-mail message with the test account information.

■Note For more information about the Authorize.Net payment integration API that these libraries imple-
ment, refer to the Advanced Integration Method (AIM) documentation at http://www.authorize.net/
support/AIM_guide.pdf.

We are now ready to use Active Merchant for billing the customer. The first step is to
include Active Merchant in the Order model, by adding the following code to the first line in
app/models/order.rb:

include ActiveMerchant::Billing

The code for the Active Merchant version of the process method (process_with_
active_merchant) is shown in Listing 9-3. Add it to app/models/order.rb.

C H A P T E R 9 ■ C H E C KO U T A N D O R D E R P R O C E S S I N G 281

Listing 9-3. The process_with_active_merchant Method

 def process_with_active_merchant
 creditcard = ActiveMerchant::Billing::CreditCard.new({
 :type => card_type,
 :number => card_number,
 :month => card_expiration_month,
 :year => card_expiration_year,
 :first_name => ship_to_first_name,
 :last_name => ship_to_last_name
 })

 if creditcard.valid?
 gateway = AuthorizedNetGateway.new({
 :login => "your login",
 :password => "your password"
 })
 options = {
 :card_code => card_verification_value,
 :name => ship_to_first_name + " " + ship_to_last_name,
 :address => ship_to_address,
 :city => ship_to_city,
 :zip => ship_to_postal_code,
 :country => ship_to_country,

 :email => email,
 :phone => phone_number,
 :customer_ip => customer_ip
 }
 response = gateway.purchase(total, creditcard, options)

 if response.success?
 self.status = 'processed'
 else
 self.status = 'failed'
 self.error_message = response.message
 end
 else
 self.status = 'failed'
 self.error_message = 'Invalid credit card'
 end
 end

We first create a credit card object and check that it is valid, using the Active Merchant API.
Then we call the purchase method on the gateway, passing in the total amount of the order, the
credit card information, and the options, including contact information and shipping address.

282 C H A P T E R 9 ■ C H E C K O U T A N D O R D E R P R O C E S S I N G

Lastly, we check the response from the gateway, and set the status to processed. If the gate-
way returns an error, we set the status to failed and store the error message in the
error_message field.

To see if it works, add some books to the shopping cart and check out. Then go to
https://test.authorize.net/ and log in with the credentials you received from Authorize.Net.
You should see the transaction listed on the Unsettled Transactions page, as shown in
Figure 9-11.

Figure 9-11. The Authorize.Net Unsettled Transactions page

C H A P T E R 9 ■ C H E C KO U T A N D O R D E R P R O C E S S I N G 283

Click the transaction ID shown in the first column on the left side of the Unsettled
Transactions page. You will see the Transaction Detail page, as shown in Figure 9-12.
On this page, you should see the contact information and shipping information that the user
entered on your site.

Figure 9-12. Authorize.Net Transaction Detail page

Later, when the funds are transferred by the financial institution from the customer to
your bank account, you can find the transaction listed on the Authorize.Net Transactions page.

284 C H A P T E R 9 ■ C H E C K O U T A N D O R D E R P R O C E S S I N G

Using the Payment Gem
The Payment gem (developed by Lucas Carlson) is an alternative to Active Merchant that can
also be used to integrate with Authorize.Net. It is a bit easier to use than Active Merchant, but
it doesn’t support multiple gateways. The project is also not being as actively developed as
Active Merchant; the last release was in June 2005.

Downloading and installing the Payment gem is easy. Simply execute the following
command:

$ sudo gem install payment

Before you can use the Payment gem, you need to create a configuration file that holds the
login name and password to Authorize.Net. Save the following in config/payment.yml:

username: <Your login>
transaction_key: <Your password>

Next, add the require line to the Order model (app/models/order.rb):

 require 'payment/authorize_net'
 include ActiveMerchant::Billing

 class Order < ActiveRecord::Base

Then change the process method as follows:

 def process
 begin
 process_with_payment_gem
 rescue => e
 logger.error("Order #{id} failed with error message #{e}")
 self.error_message = 'Error while processing order'
 self.status = 'failed'
 end
 save!
 self.status == 'processed'
 end

We changed only one line, which allows us to easily switch back to use Active Merchant.
As usual, the code for the process_with_payment_gem method, shown in Listing 9-4, should be
added to app/models/order.rb.

C H A P T E R 9 ■ C H E C KO U T A N D O R D E R P R O C E S S I N G 285

Listing 9-4. The process_with_payment_gem Method

def process_with_payment_gem
 transaction = Payment::AuthorizeNet.new(
 :prefs => "#{RAILS_ROOT}/config/payment.yml",
 :login => 'your login',
 :password => 'your password',
 :url => 'https://test.authorize.net/gateway/transact.dll',
 :amount => total,
 :card_number => card_number,
 :expiration => "#{card_expiration_month}/#{card_expiration_year}",
 :first_name => ship_to_first_name,
 :last_name => ship_to_last_name,
 :ship_to_last_name => ship_to_last_name,
 :ship_to_first_name => ship_to_first_name,
 :ship_to_address => ship_to_address,
 :ship_to_city => ship_to_city,
 :ship_to_zip => ship_to_postal_code,
 :ship_to_country => ship_to_country,
 :customer_ip => customer_ip,
 :invoice_num => id
)
 begin
 transaction.submit
 logger.debug(
 "Card processed successfully.
 Response codes:
 authorization: #{transaction.authorization}
 result code: #{transaction.result_code}
 avs code: #{transaction.avs_code}
 transaction id: #{transaction.transaction_id}
 md5: #{transaction.md5}
 cvv2 response: #{transaction.cvv2_response}
 cavv response: #{transaction.cavv_response}"
)
 self.status = 'processed'
 rescue => e
 self.error_message = transaction.error_message
 self.status = 'failed'
 end
 end

286 C H A P T E R 9 ■ C H E C K O U T A N D O R D E R P R O C E S S I N G

Note that we are specifying the test URL that we received from Authorize.Net here.
We now have all code in place, so perform a manual test by shopping for some books and

placing the order on the checkout page. The result should be the same as with Active Merchant:
you should see the order on the Authorize.Net Unsettled Transactions page.

Implementing the Administrator User Stories
Next, we’ll build the administrator interface for managing orders. After the system has sent
the payment request to the payment gateway, George needs to log in to the payment gateway
and verify that the transaction has been settled, meaning that the funds have been transferred
from the customer to George’s bank account. There might be a delay between the request and
when the funds are actually transferred.

When George goes to the order administration interface, he wants to see a list of all
orders, sorted by the date they were created. He also wants to list orders by status, so we’ll cre-
ate a view for listing all orders, as well as individual views for listing orders by their status: open,
processed, closed, and failed.

Implementing the View Orders User Story
The first step in implementing this View Orders user story is to generate a controller:

$ script/generate controller 'admin/order' index show close

 exists app/controllers/admin
 exists app/helpers/admin
 exists app/views/admin/order
 exists test/functional/admin
 create app/controllers/admin/order_controller.rb
 create test/functional/admin/order_controller_test.rb
 create app/helpers/admin/order_helper.rb
 create app/views/admin/order/index.rhtml
 create app/views/admin/order/show.rhtml
 create app/views/admin/order/close.rhtml

C H A P T E R 9 ■ C H E C KO U T A N D O R D E R P R O C E S S I N G 287

Open app/controllers/admin/order_controller.rb and replace the empty index method
with the code shown here:

class Admin::OrderController < ApplicationController

 def index
 @status = params[:id]
 if @status.blank?
 @status = 'all'
 conditions = nil
 else
 conditions = "status = '#{@status}'"
 end

 @page_title = "Listing #{@status} orders"
 @order_pages, @orders = paginate :orders, :per_page => 10, ➥

:order => 'created_at desc', :conditions => conditions
 end

First, we retrieve the status parameter, which we’ll use to filter the list of orders. If it is
blank, we simply show all orders. If the status parameter is not blank, then we use it to build
the conditions parameter for the paginate method. We also set the order parameter so that the
list is sorted.

Next, we’ll create a menu that allows George to filter the list of orders easily. Save the code
shown here in app/views/admin/order/_navigation.rhtml:

<p>
 View: <%= link_to "all", :id => '' %>,
 <%= link_to "open", :id => 'open' %>,
 <%= link_to "processed", :id => 'processed' %>,
 <%= link_to "closed", :id => 'closed' %>,
 <%= link_to "failed", :id => 'failed' %>
</p>

288 C H A P T E R 9 ■ C H E C K O U T A N D O R D E R P R O C E S S I N G

We’ll later use the same partial on the order details page, but for now, we’ll just use it on
the view orders page (app/views/admin/order/index.rhtml), which is shown here:

<%= render :partial => 'navigation' %>
<table>
 <tr>
 <th>ID</th>
 <th>Status</th>
 <th>Total amount</th>
 <th>Size</th>
 <th>Created at</th>
 <th>Updated at</th>
 <th></th>
 </tr>
<% for order in @orders %>
 <tr>
 <td align="right"><%= order.id %></td>
 <td align="right"><%= order.status %></td>
 <td align="right"><%= order.total %></td>
 <td align="right"><%= order.books.size %></td>
 <td align="right"><%= order.created_at.strftime("%Y-%m-%d %I:%M") %></td>
 <td align="right"><%= order.updated_at.strftime("%Y-%m-%d %I:%M") %></td>
 <td><%= button_to "View", :action => 'show', :id => order %></td>
 </tr>
<% end %>
</table>
<%= 'View page:' if @order_pages.page_count > 1 %>
<%= pagination_links @order_pages %>

At the top of page, we include the navigation. Then we loop through the orders and display
them in a table. We also include a button that takes us to the order details page, which we’ll
implement shortly. At the very bottom of the page, we use the pagination_links helper method
to generate a menu that is used to navigate between the pages. Each page displays ten orders,
and if there are more, a menu like this will be displayed:

View page: 1 2 3 4 5 6 7 8 9 10

That was easy! We have now implemented the View Orders user story. Before moving on
to the next user story, let’s do a quick acceptance test, by opening http://localhost:3000/
admin/order. If you (or your customers) have created some orders, you’ll see something similar
to Figure 9-13.

C H A P T E R 9 ■ C H E C KO U T A N D O R D E R P R O C E S S I N G 289

Figure 9-13. The view orders page displaying all orders

If you navigate to the page that shows processed orders (http://localhost:3000/admin/
order/processed), you’ll see orders that the system has sent to the payment gateway, but which
George still needs to ship to the customer and close. An example of this page is shown in
Figure 9-14.

Figure 9-14. The view orders page showing only processed orders

■Note For the administrator user stories, we won’t walk through functional and integration tests. At this
point, you should be familiar with developing these tests and able to write them all by yourself.

290 C H A P T E R 9 ■ C H E C K O U T A N D O R D E R P R O C E S S I N G

Implementing the View Order User Story
The order details page is where George can see the information about the order. He needs to
check this page before he ships the books to the customer. The page will show the customer’s
contact information and shipping address. Furthermore, we need to display the order details—
in other words, the books that the customer has ordered. The credit card details are needed
only by the payment gateway, and keeping them in our database would be a huge security risk.

Open app/controllers/order_controller.rb and replace the empty show action with the
following code:

 def show
 @page_title = "Displaying order ##{params[:id]}"
 @order = Order.find(params[:id])
 end

The action simply pulls out the specified order from the database and sets the page title.
Next, create the view by saving the following code in app/views/admin/order/show.rhtml:

<%= render :partial => 'navigation' %>
<p>
 Order total $<%= @order.total %>
</p>
<h2>Contact Information</h2>
<dl>
 <dt>ID</dt>
 <dd><%= @order.id %></dd>
 <dt>Email</dt>
 <dd><%= @order.email %></dd>
 <dt>Phone number</dt>
 <dd><%= @order.phone_number %></dd>
</dl>
<h2>Shipping Address</h2>
<dl>
 <dt>First name</dt>
 <dd><%= @order.ship_to_first_name %></dd>
 <dt>Last name</dt>
 <dd><%= @order.ship_to_last_name %></dd>
 <dt>Address</dt>
 <dd><%= @order.ship_to_address %></dd>
 <dt>City</dt>
 <dd><%= @order.ship_to_city %></dd>
 <dt>Postal/Zip code</dt>
 <dd><%= @order.ship_to_postal_code %></dd>
 <dt>Country</dt>
 <dd><%= @order.ship_to_country %></dd>
</dl>

C H A P T E R 9 ■ C H E C KO U T A N D O R D E R P R O C E S S I N G 291

<h2>Order Details</h2>
<% for item in @order.order_items %>
 <%= link_to item.book.title, :action => "show",
 :controller => "catalog", :id => item.book.id %>
 <%= pluralize(item.amount, "pc", "pcs") %>,
 $<%= item.price * item.amount %></br>
<% end %>
<p>
 <%= button_to "Close Order", :action => 'close', :id => ➥

@order unless @order.closed? %>
</p>

At the top of the page, we show the navigation and order total. Next, we show the contact
information, shipping address, and order details sections. At the bottom, we display a button
that allows George to close the order, but only if the order hasn’t been closed already, which is
checked by calling the closed? method on the Order model. Note that the page will generate an
error until we have added the code shown here to the Order model (app/models/order.rb):

 def closed?
 status == 'closed'
 end

Let’s perform an acceptance test. Click the View button from the view orders page (shown
in Figures 9-13 and 9-14). You should now see the order details, as shown in Figure 9-15.

Figure 9-15. The order details page displaying a test order

292 C H A P T E R 9 ■ C H E C K O U T A N D O R D E R P R O C E S S I N G

Implementing the Close Order User Story
The Close Order user story is the last one we’ll implement in this sprint. It is used by George
(after he has shipped the order) to set the order status to closed. The user story requires that we
change the close action in order_controller.rb as follows:

 def close
 order = Order.find(params[:id])
 order.close
 flash[:notice] = "Order #{order.id} has been closed"
 redirect_to :action => 'index', :id => 'closed'
 end

The code finds the specified order and calls the close method on the Order model
(app/models/order.rb):

 def close
 self.status = 'closed'
 save!
 end

This method sets the status to closed and saves the order. After this, the action sets a flash
message and redirects to the Closed section of the view orders page.

Test the Close Order user story by closing an order. View the details of a processed order
(click the View button for the transaction on the view orders page), and you should see the
Close Order button at the bottom of the order details page, as shown in Figure 9-16.

Click the Close Order button, and you are redirected to the page shown in Figure 9-17.
This ends our implementation of the checkout and order-processing functionality. How-

ever, you still need to take into account two other items when processing orders: shipping costs
and taxes. We’ll take a brief look at those calculations next.

C H A P T E R 9 ■ C H E C KO U T A N D O R D E R P R O C E S S I N G 293

Figure 9-16. The order details page displaying the Close Order button

Figure 9-17. The view orders page displaying a message after closing an order

294 C H A P T E R 9 ■ C H E C K O U T A N D O R D E R P R O C E S S I N G

Calculating Shipping Costs and Taxes
For calculating Federal Express (FedEx) and United Parcel Service (UPS) shipping costs,
you can use the handy Shipping RubyGem (http://shipping.rubyforge.org/).

Using the Shipping Gem
You’ll first need to register an account at FedEx (http://www.fedex.com) and UPS
(http://www.ups.com).

Next, install the Shipping gem by executing this command:

$ sudo gem install shipping --include-dependencies

Then save your account information in config/shipping.yml:

 fedex_url: https://gatewaybeta.fedex.com/GatewayDC
 fedex_account: <your FedEx account number>
 fedex_meter: <your FedEx meter number>

 ups_account: <your UPS account number>
 ups_user: <your UPS username>
 ups_password: <your UPS password>

■Note You can obtain the fedex_meter number by first registering for a FedEx account, and then calling
the Shipping::FedEx.register method with the following parameters: name, company, phone, email,
address, city, state, zip, fedex_account, and fedex_url. You need to register to both the live and test
servers. The URL to the live environment is https://gateway.fedex.com/GatewayDC.

C H A P T E R 9 ■ C H E C KO U T A N D O R D E R P R O C E S S I N G 295

Now let’s test how much it costs to send an order weighing 2.0 pounds from Emporium
(located in New York) to Durham, North Carolina. We chose UPS because it’s easier to use
than FedEx, which requires that we apply for a meter number. Save the code shown here in
test/unit/test_shipping.rb:

require File.dirname(__FILE__) + '/../test_helper'
class PaymentTest < Test::Unit::TestCase
 def test_ups_shipping
 params = {
 :zip => 27712,
 :state => "North Carolina",
 :sender_zip => 10001,
 :sender_state => "New York",
 :weight => 2,
 :prefs => '../../config/shipping.yml'
 }
 ship = Shipping::UPS.new params
 assert ship.price > 5
 puts ship.price
 end
end

Run the test by executing the following command:

$ ruby test/unit/test_shipping_rb

The output when we ran it was $8.59 (your result might be different).

296 C H A P T E R 9 ■ C H E C K O U T A N D O R D E R P R O C E S S I N G

Calculating Taxes
Taxes vary from country to country and from state to state. Check your local tax system for how
to calculate taxes.

As an example, if you live in the US and buy goods from an out-of-state store, then you
are not required to pay sales tax. But, if you buy goods from a store located in your own state,
the store charges you a sales tax, which is different for each state. Some goods are also exempt
from sales taxes. See http://en.wikipedia.org/wiki/Sales_taxes_in_the_United_States for
more information about sales taxes in the US. For general information about sales taxes, see
http://en.wikipedia.org/wiki/Sales_tax.

In Europe, most countries use a tax system called value-added tax (VAT). The VAT
rate is different in each country. For example, in Finland, the standard VAT rate is 22%. See
http://en.wikipedia.org/wiki/Value_added_tax for more information about VAT.

Summary
In the first part of this chapter, we built a checkout page that can be used by Emporium’s cus-
tomers for placing orders. We also demonstrated how to bill the customer by integrating with
PayPal and Authorize.Net, using the Active Merchant plugin and the Payment gem.

In the second part of the chapter we built an order-processing administration interface,
which can be used to view and change the status of orders. At the end, we briefly explained how
you can calculate shipping costs and taxes.

In the next chapter, we’ll show you how to add support for multiple languages, which is
useful for increasing your customer base.

297

■ ■ ■

C H A P T E R 1 0

Multiple Language Support

In this chapter, you will learn how to translate your application into multiple languages. Sup-
porting more than one language is essential to the success of an online business. For example,
tens of millions of Spanish-speaking Internet users are all potential customers, and making
your website accessible to these people will most likely increase your sales. Supporting a new
language usually means a lot of extra work, but we’ll show you how to do it easily with the help
of a Rails plugin called Globalize.

Getting the Localization Requirements
George is hoping that making the new Emporium website accessible in multiple languages will
boost his sales and profits into the stratosphere. His end goal is to make Emporium the biggest
online bookstore, and translating the site to Swedish is the first step. He also has plans on
expanding to China and North Korea, but that’s going to be done later after he has conquered
the English- and Swedish-speaking countries.

We tell him that the technical part is easy with Rails, because there’s a plugin called
Globalize that does the tricks needed for supporting different languages. All he has to do is find
someone who can type in the translations, and we’ll provide the technical implementation.

For this sprint, we define one user story related to the user interface and four user stories
related to the administration interface for managing translations:

• Change locale: The customer must be able to change the locale on the Emporium web-
site. This should be done by clicking a link, which changes the locale and stores the
setting in the session.

• List translations: The administrator must be able to view a list of all text that is used in
Emporium. The administrator should be able to easily see text that hasn’t been trans-
lated and text that has been translated.

• Add translation: The administrator must be able to add a new translation for text.

• Edit translation: The administrator must be able to edit translated text.

• Delete translation: The administrator must be able to delete translated text.

We’ll get started by installing the Globalize plugin and seeing how it supports localization.

298 C H A P T E R 1 0 ■ M U L T I P L E L A N G U A G E S U P P O R T

Using the Globalize Plugin
Because of its close integration with Rails, the Globalize plugin provides a simple way of local-
izing the following in your application:

• Dates, times, numbers, and currencies. For example, 100000000.00 localized to US stan-
dards is 100,000,000.0.

• Text stored in a database. For example, the book The Old Man and the Sea is Der alte
Mann und das Meer in German.

• Text used in views. For example, the link Next Page is Nästa Sida in Swedish.

But that’s not all. Currently, Globalize comes with built-in data for 7599 languages and 239
countries, including pluralization rules and language names. Globalize knows, for example, that
Tuesday is tisdag in Swedish. Pluralization is done by specifying both the singular and plural
form for a translation; for example, “Displaying one book” and “Displaying many books.”

■Note Globalize is not the only alternative for localizing Ruby on Rails applications. There’s also
the GetText library, which allows you to externalize text into resource bundles and translate them into
multiple languages. GetText doesn’t have as many features as Globalize and lacks support for things
like date and currency formatting. For more information about GetText and other options, see
http://wiki.rubyonrails.org/rails/pages/InternationalizationComparison.

INTERNATIONALIZATION AND LOCALIZATION

Adapting an application to a specific language or region is commonly referred to as internationalization (i18n)
and localization (L10N). The numbers, 18 and 10, specify the number of characters that have been left out in
the somewhat cryptic abbreviations.

Internationalization refers to the process of modifying an application’s design so that it can support
locale differences like text orientation, currency, date and time format, sorting, and so forth. This can be done
by externalizing text strings into files or a database, and by developing currency and date formatting utilities.

Localization means adapting an application to a specific language or locale; for example, by translating
text into multiple languages. A locale is identified by the user’s language and country, and specifies how, for
example, numbers, currencies, and dates are displayed on the screen. The code for the US English locale is
en-US. Locales are specified by RFC 3066 and consist of two parts. The first is an ISO 639 language code and
uses lowercase letters. The second is usually an ISO 3166 country code in uppercase letters.

C H AP T E R 1 0 ■ M U L T I P L E L A N G U A G E S U P P O R T 299

To install Globalize, execute the script/plugin script:

$ script/plugin install http://svn.globalize-rails.org/svn/globalize/globalize/trunk

The script checks out the latest version of the plugin from the Subversion repository
and installs it in the vendor/plugins directory. By default, the directory is named trunk.
You should give the directory a more descriptive name. For example, we renamed it to
globalize-for-1.1.

■Note At the time of writing, the latest version of Globalize didn’t support Rails 1.1. Instead of installing the
latest version, we had to install the Rails 1.1 specific branch of Globalize with the following command:
script/plugin install http://svn.globalize-rails.org/svn/globalize/globalize/

branches/for-1.1.

Globalize extends the Rails framework’s ActionView, ActiveRecord, and ActionMailer
modules, allowing it to provide the tools used for translating text. Globalize uses three data-
base tables containing predefined data for thousands of languages and hundreds of countries:

• globalize_countries: Holds countries and the country-specific localization rules,
including ISO 3166 country code, date formats, and currency formats.

• globalize_languages: Holds languages and the language-specific localization rules,
including ISO 639 language code, English name, and native name.

• globalize_translations: Holds translated text. The table is prepopulated with data for
hundreds of languages. The tr_key column contains text in the base language. The text
column is where the actual translation is stored.

Figure 10-1 shows the schema for these tables.

Figure 10-1. Globalize database schema

id
code
english_name
date_format
currency_format
currency_code
thousands_sep
decimal_sep
currency_decimal_sep
number_grouping_scheme

globalize_countries
id
iso_639_1
iso_639_2
iso_639_3
rfc_3066
english_name
english_name_locale
english_name_modifier
native_name
native_name_locale
native_name_modifier
macro_language
direction
pluralization
scope

globalize_languages

id
type
tr_key
table_name
item_id
facet
language_id
pluralization_index
text

globalize_translations

*1

300 C H A P T E R 1 0 ■ M U L T I P L E L A N G U A G E S U P P O R T

Localizing with Globalize
Globalize uses the term base language for the language from which you are translating. So, if
you write the text in your views and database in English, this means your base language is
English. Globalize uses the base language as the key for other translations. For example, a view
containing the following text inserts a record into the globalize_translations table, where the
text Picture is stored in the tr_key column:

<%= 'Picture'.t %>

When translating into Swedish, for example, a new row is inserted, where the tr_key con-
tains the text Picture and the text column contains the translated text Bild.

Localizing Text

Using Globalize, you can translate the base language to other languages, by telling Globalize
that the text should be translatable. You tell Globalize that text stored in a view should be trans-
latable by appending .t (translate) to the string, as follows:

Locale.set('sv')
puts 'Tuesday'.t

Tisdag

Locale.set('fi')
puts 'Wednesday'.t

Keskiviikko

In this example, the base language is English. The first line, Locale.set('sv'), sets the
locale to Swedish, and the second line prints out Tuesday in Swedish (Tisdag). The fourth line
sets the locale to Finnish, and the fifth line prints out Wednesday in Finnish (keskiviikko).
This example doesn’t require you to translate the weekdays to Swedish and Finnish, because
Globalize already contains these translations. However, if you want to add translations, use
Locale.set_translation and Locale.set_pluralized_translation, as explained in the Global-
ize API documentation (http://globalize.rubyforge.org/).

All the work is done behind the scenes by Globalize. The translated text is pulled out of the
database with a query similar to this one:

SELECT * FROM globalize_translations WHERE ➥

(tr_key = 'Tuesday' AND language_id = 6024 AND pluralization_index = 1) ➥

AND ((globalize_translations.`type` = 'ViewTranslation')) LIMIT 1

Globalize caches the view translations in memory to avoid unnecessary database hits.

C H A P T E R 1 0 ■ M U L T I P L E L A N G U A G E S U P P O R T 301

Localizing the Model

You can translate text stored in your database by adding a call to the translates method to
your model, followed by the column names that should be translatable, as follows:

 class Book < ActiveRecord::Base
 translates :title, :blurb
 end

This tells Globalize that you want to be able to translate the title and blurb columns in
the books table. After you have translated the text and stored the translations in your database,
you can execute, for example, the following code with the script/console command to print
out the text in different languages:

book = Book.find_by_name('Bodo Bear on the Farm')
Locale.set('de-DE')
book.reload
puts book.title

Bodo Bär auf dem Bauernhof

In this example, the base language is English. The first line finds the record using the base
language, and then sets the locale to German and prints out the book title in German. Notice
that you don’t need to add the .translates method call.

As with view translations, Globalize works behind the scenes and modifies the SQL query on
the fly by intercepting calls to the find methods (except for the find_by_sql method). The modi-
fied SQL query uses a left outer join to pull in the translations from the globalize_translations
table, as follows (this is just part of the query):

...LEFT OUTER JOIN globalize_translations AS...

This can potentially have a serious impact on the performance, so watch the MySQL slow
query log for problems. Note that Globalize doesn’t cache the model translations, in contrast
to the view translations, which are cached.

■Note The MySQL slow query log is your friend when you’re having problems with slow queries. Enable it
and watch the log for queries that can be optimized. For more information about the MySQL slow query log,
see http://dev.mysql.com/doc/refman/5.0/en/slow-query-log.html.

Globalize also has a piggybacking feature that allows you to retrieve translations for asso-
ciated objects in the same query. To enable this feature, use the include_translated option:

Book.find(:all, :include_translated => Product)

302 C H A P T E R 1 0 ■ M U L T I P L E L A N G U A G E S U P P O R T

Localizing Dates, Currencies, and Numbers

Globalize provides localization features for dates and numbers. These classes can be localized
by using the localize method:

puts Time.now.localize("%d %B %Y")

05 July 2005

12345.45.localize

"12,345.45"

The first line in the sample output prints out the current date, which is localized according
to the rules for the base language by calling the localize method. The third line demonstrates
how to localize a number in the same way. As you can see, Globalize converts the number
12345.45 to the localized string "12,345.45".

Currencies are formatted automatically according to the current locale by adding the fol-
lowing to the model:

class Item < ActiveRecord::Base
 composed_of :price_localized, :class_name => "Globalize::Currency",
 :mapping => [%w(price cents)]
end

By calling composed_of, you are telling ActiveRecord that the new price_localized field is
of type Globalize::Currency, and that the value for it is taken from the price field, which is
specified in cents, since the Globalize::Currency constructor expects this. Creating a book
where the price field has the value 100000 and the locale was set to en-US prints out the string
$1,000.00.

■Note The price_localized field is not editable because of a limitation in Globalize that might be fixed
in the future. This is why we can’t use it in a form and need to create a separate field for it.

C H A P T E R 1 0 ■ M U L T I P L E L A N G U A G E S U P P O R T 303

Setting Up Globalize
As previously mentioned, Globalize uses three database tables. After you’ve installed Global-
ize, as described earlier, run the following command to update your database schema and
import the data:

$ rake globalize:setup

The command can take a minute or two to run, as it inserts a lot of data.
Next, you need to update the application’s environment configuration to include Globalize.

This will initialize Globalize at startup. You should also set the base language and the default
locale for your application in the same configuration file. To do all this, add the following code to
the end of config/environment.rb:

globalize
include Globalize
Locale.set_base_language 'en-US'
DEFAULT_LOCALE = 'en-US'

The default locale is a separate setting, since it does not necessarily need to be the same
as the base language. We are including Globalize in the default namespace with the include
Globalize call, so that we can use Locale.set instead of Globalize::Locale.set.

UPDATING THE BASE LANGUAGE

Be careful when updating the base language, which is used in the views and database, because this breaks
the link between the base language and the translations. For instance, suppose that you have a view contain-
ing the base language text “Next page” and that you have translated it to Swedish. Now, if you change the
base language text to “Show next page,” you will need to translate the text again to Swedish, and you will still
have the old translation in the database. This is a problem in most applications where you want to be able to
update the base language text and still keep the translations.

One way of avoiding this problem is not to change the base language after you have translated it to
other languages. A better option is to use a base language that is not one of languages that you want to
support (Swahili maybe?), and then never show it to your users by setting the default locale (in the
config/environment.rb file) to one of the languages that you want to support. Just use the base language
as the key for your translations. So, instead of writing the full text in the view, just write a summary, such as
“help_page_text,” and translate the text as usual to the target languages. But remember that the users should
never see the base language text, because you’ve set the default locale to another language.

304 C H A P T E R 1 0 ■ M U L T I P L E L A N G U A G E S U P P O R T

Implementing the User Stories
With Globalize set up, we can now start localizing the Emporium application. But first, we’ll
change the base controller so that users can change the locale.

■Note We won’t be following TDD very strictly in this chapter, as we want to concentrate on showing you
how to use the Globalize plugin.

Implementing the Change Locale User Story
The base language, or default locale, for Emporium is US English. The user should be able to
change to another language by clicking a link. For example, by accessing the following URL, the
user can change the locale to British English:

http://localhost:3000/forum?locale=en-GB

Accessing the following URL changes the locale to Swedish:

http://localhost:3000/forum?locale=sv

Note that the link contains the locale parameter, which tells your system which locale the
user wants to use. The code that changes the locale is easily implemented as a before_filter.
As explained in Chapter 5, filters allow you to run code before, around, and after the control-
ler’s action is called. In our case, the set_locale filter (Listing 10-1) is called before anything
else is called.

Next, open app/controllers/application.rb in your editor and add the code for the
set_locale method shown in Listing 10-1.

Listing 10-1. The set_locale Filter

class ApplicationController < ActionController::Base
 before_filter :set_locale

 private

 def set_locale
 accept_lang = request.env['HTTP_ACCEPT_LANGUAGE']
 accept_lang = accept_lang.blank? ? nil : accept_lang[/[^,;]+/]

 locale = params[:locale] || session[:locale] || accept_lang || DEFAULT_LOCALE

C H A P T E R 1 0 ■ M U L T I P L E L A N G U A G E S U P P O R T 305

 begin
 Locale.set locale
 session[:locale] = locale
 rescue
 Locale.set DEFAULT_LOCALE
 end
 end
end

The filter looks for a user-specified locale from the request parameters. If the locale is
not found in the request parameters, it looks for a locale stored in the session. If the locale is not
found in either the request or session, it tries to use the HTTP_ACCEPT_LANGUAGE header, which is
sent out by the browser. Note that the algorithm falls back on the default locale, which we
defined in the environment.rb configuration file, if all other methods of discovering the user’s
locale fail.

■Tip To set the HTTP_ACCEPT_LANGUAGE HTTP header in Firefox, select Tools ➤ Options and click the
Advanced icon at the top of the Options dialog box. Then click the Edit Languages button on the General tab,
as shown in Figure 10-2.

Lastly, the filter stores the locale in the session, so users don’t need to change the locale
every time they navigate to a new page. The filter falls back on the default locale if the user
specifies an invalid locale.

Figure 10-2. Setting the preferred language with the HTTP_ACCEPT_LANGUAGE header

306 C H A P T E R 1 0 ■ M U L T I P L E L A N G U A G E S U P P O R T

Implementing the Translation User Stories
Jill, Emporium’s best customer, has been recruited by George to translate and localize Empo-
rium to Swedish, and later to Chinese and other languages. Jill should be able to access a page
that lists all text that can be translated. Text that hasn’t been translated should be highlighted,
so she can see it clearly without using a magnifying glass. The page should allow her to add text
and the translations for it directly. She will also need to be able to manage existing translations.

These requirements are covered by the List Translations, Add Translation, Edit Transla-
tion, and Delete Translation user stories. These user stories make up the administration
interface that can be used to manage the view and model translations. We’ll start by imple-
menting the List Translations user story.

Implementing the List Translations User Story

This translation list page should show all translations available in the database. First, use the
generate script to create the controller and one view:

$ script/generate controller 'admin/translate' index

 exists app/controllers/admin
 exists app/helpers/admin
 create app/views/admin/translate
 exists test/functional/admin
 create app/controllers/admin/translate_controller.rb
 create test/functional/admin/translate_controller_test.rb
 create app/helpers/admin/translate_helper.rb
 create app/views/admin/translate/index.rhtml

Note that we don’t tell the generate script to create actions for the other user stories,
because these user stories don’t need a dedicated view.

Next, change app/controllers/admin/translate_controller.rb as follows:

class Admin::TranslateController < ApplicationController
 def index
 @page_title = ➥

"Translating from #{Locale.base_language} to #{Locale.language.english_name}"
 @view_translations = ViewTranslation.find(:all,
 :conditions => ['language_id = ?', Locale.language.id], :order => 'id desc')
 end
end

The index action uses the ViewTranslation model, which is provided by Globalize, to
retrieve all translations from the database. The list is filtered so that only the current locale is
shown. The list is also sorted, so that the latest inserted translations are shown first. We set the
page title to show the base language and the language to which we are translating, such as
“Translating from English to Swedish.”

C H A P T E R 1 0 ■ M U L T I P L E L A N G U A G E S U P P O R T 307

■Note The code described here is originally from the Globalize wiki, but has been modified and improved.

Next, create the index action’s view, which displays the translations in a table and uses an
Ajax-enabled in-place editor to allow the user to edit the translation, by saving the code shown
in Listing 10-2 in app/views/admin/translate/index.rhtml.

Listing 10-2. The Translation View
<%= form_tag :action => 'create' %>
<p><label for="text">Text</label>

<%= text_field 'view', 'text' %></p>
<p><label for="translation">Singular form</label>

<%= text_field 'view', 'singular_form' %>
<p><label for="translation">Plural form (optional)</label>

<%= text_field 'view', 'plural_form' %></p>
<%= submit_tag "Add translation" %>
<%= end_form_tag %>

<table style="width: 100%;">
 <tr>
 <th>id</th>
 <th>key</th>
 <th>qty</th>
 <th>translation</th>
 </tr>
 <% @view_translations.each do |tr| %>
 <tr id="row_<%= tr.id %>">
 <td><%= tr.id %></td>
 <td><%= tr.tr_key %></td>
 <td><%= tr.pluralization_index %></td>
 <td>
 <span id="tr_<%= tr.id %>" <%= 'class="translate"' if tr.text.nil? %>>
 <%= tr.text || 'Click here to translate' %>

 </td>
 <td>
 <%= link_to_remote "Delete",
 :url => { :action => "destroy", :id => tr },
 :confirm => "Are you sure you want to delete '#{tr.id}'?",
 :post => true
 %>
 </td>

308 C H A P T E R 1 0 ■ M U L T I P L E L A N G U A G E S U P P O R T

 </tr>
 <%= in_place_editor "tr_#{tr.id}",
 :url => { :action => :set_translation_text, :id => tr },
 :load_text_url => ➥

url_for({ :action => :get_translation_text, :id => tr }) %>
 <% end %>
</table>

The first part of the view contains a form for the Add Translation user story. This form can
be used to add new translations directly to the database. The form has three fields: the text that
should be translated, the singular form of the translated text, and the plural form of the trans-
lated text. The plural form is optional.

For example, suppose you entered the following in the form:

• Text: Displaying %d books

• Singular form: Displaying one book

• Plural form: Displaying %d books

Then you could use this code to print out the singular and plural form of the text using the
irb command:

"Displaying %d books" / 1

"Displaying one book"

"Displaying %d books" / 2

"Displaying 2 books"

Next, the list displays the internal id, the base language text (tr_key), the pluralization
index (1 for singular and 0 for plural form), and the translated text. Notice that there’s also a
Delete link that can be used to delete translations from the list.

At the end of the view, there’s an in-place-editor that is created with the in_place_editor
helper. This helper creates a form, which uses Ajax to update the edited field’s contents with-
out refreshing the whole page.

C H AP T E R 1 0 ■ M U L T I P L E L A N G U A G E S U P P O R T 309

To make it easier for Jill, the administrator, to notice text that hasn’t been translated yet,
you should add the following new CSS class to public/stylesheets/style.css:

.translate {
 font-weight: bolder;
 color: red;
}

This will highlight text that hasn’t been translated in bold and red.
Now that you have set up the translation view, open http://localhost:3000/admin/

translate?locale=sv in your browser. You should see a page similar to the one shown in
Figure 10-3.

Figure 10-3. The translation list page

The list already displays the default translations that Globalize inserted when you ran rake
globalize:setup.

If you click the Add translation button, you should get an “Unknown action” error. This is
because we haven’t implemented the Add Translation user story yet. We’ll do that next.

310 C H A P T E R 1 0 ■ M U L T I P L E L A N G U A G E S U P P O R T

Implementing the Add Translation User Story

Add the following code (showing the create action) to translate_controller.rb:

 def create
 from = params[:view][:text]
 singular = params[:view][:singular_form]
 plural = params[:view][:plural_form]
 if(plural.empty? && !singular.empty? && !from.empty?)
 Locale.set_pluralized_translation(from, 1, singular)
 flash[:notice] = "Translated '#{from}' to '#{singular}'"
 elsif(!plural.empty? && !singular.empty? && !from.empty?)
 Locale.set_translation(from, Locale.language, singular, plural)
 flash[:notice] = ➥

"Translated '#{from}' to singular '#{singular}' and plural '#{plural}'"
 else
 flash[:notice] = ➥

"Please specify singular and/or plural form for the translation"
 end
 redirect_to :controller => 'translate', :action => 'index'
 end

The if clause checks if the user is entering a translation that has only a singular form, and
then uses Locale.set_pluralized_translation to add the translation to the database. The first
parameter is the base language text, the second parameter specifies that the text is in singular
form (1 for singular and 0 for plural), and the last parameter specifies the translated text in
singular form.

The elsif clause uses Locale.set_translation to add a new translation to the database,
which has both singular and plural forms. The method’s first argument is the base language
text, the second is the current locale, the third is the singular form, and the fourth is the plural
form of the translated text.

The controller shows an error message if no text was entered in both the singular and text
fields. At the end of the action, we redirect the user to the same translation list page.

Type “Next page” in the Text field and “Nästa sida” in the Singular form field, and then
click Add translation. This time, it should succeed, and you should see the list showing the new
translation at the top of the list, as shown in Figure 10-4.

You could now try to click the “Nästa sida” text, but the in-place editor would show an
error message, because we haven’t created the action for it yet.

C H AP T E R 1 0 ■ M U L T I P L E L A N G U A G E S U P P O R T 311

Figure 10-4. Translation view showing a list of translations

Implementing the Edit Translation User Story

The in-place editor uses two actions that are called through Ajax requests: get_translation_text
and set_translation_text. Next, add these two actions to the controller (app/controllers/
admin/translate_controller.rb):

 def get_translation_text
 @translation = ViewTranslation.find(params[:id])
 render :text => @translation.text || ""
 end

 def set_translation_text
 @translation = ViewTranslation.find(params[:id])
 previous = @translation.text
 @translation.text = params[:value]
 @translation.text = previous unless @translation.save
 render :text => @translation.text || '[no translation]'
 end

312 C H A P T E R 1 0 ■ M U L T I P L E L A N G U A G E S U P P O R T

The get action is called to retrieve and show the translation for the current record, when
the administrator clicks somewhere inside the in-place editor field (in the translation column).
The set action is called when the administrator saves the translation by clicking the OK button.

Now clicking the translated text in the translation column opens an in-place editor, which
allows you to edit the translation, as shown in Figure 10-5. You can save the changes by clicking
the OK button, or cancel them by clicking the Cancel button. You can even open more than one
in-place editor at a time.

Figure 10-5. The in-place editor

Implementing the Delete Translation User Story

We have one user story left to implement: the Delete Translation user story, which is triggered
by clicking the Delete link (see Figure 10-5).

Add the following code for the Delete Translation user story to the controller (app/
controllers/admin/translate_controller.rb):

 def destroy
 ViewTranslation.find(params[:id]).destroy
 render :update do |page|
 page.remove("row_#{params[:id]}")
 end
 end

This uses the ViewTranslation model to find and delete the specified translation from the
database. Like the two actions used by the in-place editor, this action is called asynchronously.
After the action has deleted the translation, it uses an .rjs script to remove the tr element
having the specified id from the calling page. This deletes, for example,

C H A P T E R 1 0 ■ M U L T I P L E L A N G U A G E S U P P O R T 313

the <tr id="row_1">…</tr> HTML element, including the contents, from the view. Recall
that the .rjs template, introduced in Chapter 5, generates a JavaScript snippet that is executed
within the browser.

Now that everything is in place, you can start translating your views and Book models.
We’ll first show you how to translate the view.

Translating the View and the Book Model
In this section, we’ll show you how to translate the book catalog we created in Chapter 4. We’ll
translate the view and then the Book model.

Translating the View
To prepare a view for translation, you need to change the text to a Ruby string, surround it with
<%= %>, and append a call to .translate (or its alias .t) to the string. For example, to prepare
the text “Type a question for help” for translation from the base language to other languages,
change it to this:

<%= 'Type a question for help'.t %>

■Note Globalize inserts a new record into the database (the base language text) for each string that is
appended with a .t (or .translate) method call when that particular code is executed. Code that is located
inside an if statement that doesn’t get executed won’t be inserted into the database.

After changing the text, you should switch from the base locale to the locale to which you
want to translate. In the Emporium application, this is done by appending ?locale=iso_code to
the URL.

To recap, the required steps for translating a view are as follows:

1. Change the base language text into Ruby strings and add a call to the Globalize
translate method. For example, Page title to <%= 'Page title'.t %>.

2. Change to the locale you want to translate the page into by accessing any given page
with the correct locale parameter. For example, use ?locale=sv to change the locale to
Swedish.

3. Access the page you want to translate. This inserts a row into the globalize_translations
table for each translatable Ruby string on the page.

4. Access the translation view (http://localhost:3000/admin/translate?locale=sv) and
add a translation for the text by changing the text column of the rows that were
inserted in the previous step.

5. Repeat steps 2 through 4 for each locale and page. You could also write a Ruby script
that copies empty translations to all locales. That way, you wouldn’t need to repeat the
steps for each locale.

314 C H A P T E R 1 0 ■ M U L T I P L E L A N G U A G E S U P P O R T

If you have a complex page or controller that uses a lot of if/else branches, it might be dif-
ficult to insert all of the text into the database with the preceding steps. In this case, it is better
to manually enter the translations using the translation view we just created. Another option is
to write a script that extracts all strings that end with .t (.translate) and then inserts them into
the database. But there are still validation error messages that wouldn’t be translated. This is
because error messages are generated by the Rails framework, and they are shown only when
there’s a validation error. To prepare error messages for translation, you could submit an
empty form that generates validation errors. This will insert the error messages to the database,
so you can translate them.

We are now ready to start modifying the views. First, change the view app/views/catalog/_
books.rhtml partial as shown here:

<dl id="books">
 <% for book in @books %>
 <dt><%= link_to book.title, :action => "show", :id => book %></dt>
 <% for author in book.authors %>
 <dd><%= author.last_name %>, <%= author.first_name %></dd>
 <% end %>
 <dd>

 <%= add_book_link("+", book) %>

 </dd>
 <dd><%= pluralize(book.page_count, "page") %></dd>
 <dd>Price: $<%= sprintf("%.2f", book.price) %></dd>
 <dd><small><%= 'Publisher'.t %>: <%= book.publisher.name %></small></dd>
 <% end %>
</dl>

Notice that the only thing we changed is the text Publisher, which now reads
<%= 'Publisher'.t %>.

Next, change the pagination links in app/views/catalog/index.rhtml as follows:

<%= link_to 'Previous page'.t, { :page => @book_pages.current.previous } ➥

if @book_pages.current.previous %>
<%= link_to 'Next page'.t, { :page => @book_pages.current.next } ➥

if @book_pages.current.next %>

Notice that we added .t, the abbreviation for translate, to the previous and next links.
This is all you need to do to enable translation for a piece of text in the view.

In the next section, we’ll show you how to translate the book title, which is retrieved from
the database. This doesn’t require any changes in the view; you need to modify only the
ActiveRecord model.

C H AP T E R 1 0 ■ M U L T I P L E L A N G U A G E S U P P O R T 315

Now let’s continue by translating the text into Swedish. Access localhost:3000/
catalog?locale=sv in your browser. (You specify the locale for Swedish by appending
?locale=sv to the URL.) By accessing the page, we made Globalize insert two new rows: one for
“Publisher” and one for “Next page,” which we already translated to Swedish. Navigate to the
next page by clicking the link. Now you should have one row for “Previous page” also. The three
new rows can be found by executing the following query:

select * from globalize_translations g order by id desc limit 0,100

■Note The next and previous links are visible only if there are more than ten rows in the database. This
means you need to have at least ten books in the database, because Globalize inserts the rows only when
'Next page'.t and 'Previous page'.t are executed. If you haven’t already added the fixture files,
download them from the Source Code/Downloads section of www.apress.com. Once you have copied the
fixtures to the test/fixtures directory, you can load them into the development database by executing
rake db:fixtures:load FIXTURES=authors,publishers,books,authors_books.

You can start translating the text by accessing the translation page we created earlier.
Open your browser and go to localhost:3000/admin/translate?locale=sv. You should see
the translation page shown in Figure 10-6. At the top of the translation list, you can see the two
rows that are highlighted with the text “Click here to translate.”

Figure 10-6. Translation view showing two new rows

316 C H A P T E R 1 0 ■ M U L T I P L E L A N G U A G E S U P P O R T

Click the first row’s “Click here to translate” text. This opens an in-place-editor, as shown
in Figure 10-7. Type in the translation “Förlag,” and then click OK. This stores the translation
in the database. If you go back to the catalog page, or any other page using the same text, you
will see that the text is now displayed in Swedish.

Figure 10-7. Translation page showing three in-place editors

■Note If the Scandinavian characters åäö are not displayed correctly, you need to specify a character
encoding when starting WEBrick. This is done by specifying the charset parameter at startup:
script/server webrick --charset=utf-8.

C H A P T E R 1 0 ■ M U L T I P L E L A N G U A G E S U P P O R T 317

Translating the Model
You can prepare an ActiveRecord model for translation by using the translates method.
Change app/models/book.rb as follows:

class Book < ActiveRecord::Base
 has_and_belongs_to_many :authors
 belongs_to :publisher

 translates :title, :blurb
 acts_as_ferret :fields => [:title, :authornames]

We added the :title, :blurb parameters to the translates method. With these,
we specify that the title and blurb database columns should be translated. The translation
process for ActiveRecord models works similarly to the view layer, so you need to change
app/views/catalog/_books.rhtml as highlighted here:

<dl id="books">
 <% for book in @books %>
 <dt><%= link_to book.title.t, :action => "show", :id => book %></dt>
 <% for author in book.authors %>
 <dd><%= author.last_name %>, <%= author.first_name %></dd>
 <% end %>
 <dd>

 <%= add_book_link("+", book) %>

 </dd>
 <dd><%= pluralize(book.page_count, "page") %></dd>
 <dd>Price: $<%= sprintf("%.2f", book.price) %></dd>
 <dd><small><%= 'Publisher'.t %>: <%= book.publisher.name %></small></dd>
 <% end %>
</dl>

318 C H A P T E R 1 0 ■ M U L T I P L E L A N G U A G E S U P P O R T

■Note You shouldn’t need to add a call to the translates method in your view, as in our example:
book.title.t. Adding the translates method call to your model should be enough, but at the time of writ-
ing, Globalize didn’t translate the view, or even add a translation record to the database, until we also changed
the view. This is probably a bug and should be fixed.

Now if you access http://localhost:3000/admin/translate, you should see the book titles
in the list, as shown in Figure 10-8.

Figure 10-8. Translation view showing book titles

C H A P T E R 1 0 ■ M U L T I P L E L A N G U A G E S U P P O R T 319

Localizing Dates, Numbers, and Currency
As we mentioned earlier, Globalize supports localization of dates, numbers, and currencies.
We’ll demonstrate how this works on parts of the Emporium site.

Localizing Dates
We’ll show you how to localize dates by changing the forum that we created in Chapter 6. Recall
that we implemented the View Forum user story, where we display a list of posts, including the
date and time when the posts were created. Currently, the format is 01:50:50 2006-07-07, which
is not formatted according to the selected locale.

To fix this, open the forum helper app/helpers/forum_helper.rb in your editor and change
it as follows:

module ForumHelper
 def display_as_threads(posts)
 content = ''
 for post in posts
 url = link_to("#{h post.subject}", {:action => 'show', :id => post.id})
 margin_left = post.depth*20
 content << %(
 <div style="margin-left:#{margin_left}px">
 #{url} by #{h post.name} · ➥

#{post.created_at.localize(DEFAULT_DATE_FORMAT)}
 </div>)
 end
 content
 end
end

We changed the display_as_threads method to localize the date the post was created on.
Add the following line at the end of config/environment.rb to complete the localization

change:

DEFAULT_DATE_FORMAT = '%H:%M:%S - %A %B %d %Y'

320 C H A P T E R 1 0 ■ M U L T I P L E L A N G U A G E S U P P O R T

Restart the server, open your browser, and change the locale to Swedish, by accessing
http://localhost:3000/forum?locale=sv. The date should now look like this: 01:50:50 -
Fredag Juli 07 2006.

The formatting directives for dates and times follow the same rules as strftime. Table 10-1
lists some of the more important data and time formatting directives.

Table 10-1. Some Formatting Directives for Dates and Times

Localizing Numbers and Currencies
Next, we’ll show you how to change the product catalog to display the correctly formatted page
count and price for the currently selected locale.

Code Description

%a Abbreviated weekday name; for example, Sun

%A Full weekday name; for example, Sunday

%b Abbreviated month name; for example, Jan

%B Full month name; for example, January

%c Preferred local date and time representation

%d Day of the month

%H Hour of the day, using the 24-hour clock format

%I Hour of the day, using the 12-hour clock format

%j Day of the year

%m Month of the year

%M Minute of the hour

%p AM or PM

%S Second of the minute

%U Week number of the current year (count starting from Sunday)

%W Week number of the current year (count starting from Monday)

%w Day of the week

%y Year without century

%Y Year with century

%Z Time zone name

C H A P T E R 1 0 ■ M U L T I P L E L A N G U A G E S U P P O R T 321

Open app/views/catalog/catalog.rhtml in your editor and append .localize to the code
that prints the page count:

<h2>by <%= @book.authors.map{|a| a.name}.join(", ") %></h2>
<%= image_tag url_for_file_column(:book, :cover_image) ➥

unless @book.cover_image.blank? %>
<dl>
 <dt>Price</dt>
 <dd>$<%= @book.price -%></dd>
 <dt>Page count</dt>
 <dd><%= @book.page_count.localize -%></dd>

This will now localize the page count. For example, a book having 400000 pages will be dis-
played as 400,000.

To localize the price field, we first need to modify the Book model (app/models/book.rb), as
shown here:

class Book < ActiveRecord::Base
 acts_as_taggable

 has_and_belongs_to_many :authors
 belongs_to :publisher
 has_many :cart_items
 has_many :carts, :through => :cart_items

 translates :title, :blurb
 acts_as_ferret :fields => [:title, :author_names]
 composed_of :price_localized, :class_name => "Globalize::Currency",
 :mapping => [%w(price cents)]

This adds the new field price_localized to the model, which will be properly formatted
when used in a view.

Next, change the catalog view (app/views/catalog/show.rhtml) to use the new field:

<h2>by <%= @book.authors.map{|a| a.name}.join(", ") %></h2>
<%= image_tag url_for_file_column(:book, :cover_image) ➥

unless @book.cover_image.blank? %>
<dl>
 <dt>Price</dt>
 <dd>$<%= @book.price_localized -%></dd>
 <dt>Page count</dt>
 <dd><%= @book.page_count.localize -%></dd>

322 C H A P T E R 1 0 ■ M U L T I P L E L A N G U A G E S U P P O R T

Now if you access the book details page (http://localhost:3000/catalog/show/1), you
should see the following:

Price
 $10,000.00
Page count
 400,000

Adding Unicode (UTF-8) Support
As we mentioned earlier, George wants to enter the Chinese market sooner or later. In China,
the official character set is simplified Chinese, which contains about 6000 different characters.
Languages like Simplified Chinese that contain hundreds or thousands of characters do not fit
into the standard used by most languages in Europe and North America (ISO-8859-1). Instead,
these languages require that we change the application to support UTF-8.

UTF-8 can represent any universal character in the Unicode standard and is backward-
compatible with ASCII. UTF-8 is a variable-length character encoding, where each character
can be encoded using one to four bytes.

Character encoding is a cause of many problems. For Unicode, or any other character
encoding, to work properly, all parts of the system must use the same encoding. In most sys-
tems, like Rails-based web applications, this includes the following parts:

• The HTML page

• The HTTP response headers

• The database

• The database connection

Failing to use the correct character encoding in one or more subsystems usually means
that Unicode characters are displayed as question marks or some other invalid character. For
example, instead of seeing , you would see ??? or some other characters.

■Note The Ruby language doesn't support Unicode out-of-the-box. For example, String#length and
String#substr won't work correctly with Unicode strings. See wiki.rubyonrails.com/rails/
pages/HowToUseUnicodeStrings for more information about how to add Unicode support to Ruby.

C H A P T E R 1 0 ■ M U L T I P L E L A N G U A G E S U P P O R T 323

Setting Character Encoding in HTML
Start by changing the HTML page to use the UTF-8 character encoding. Update the layout file,
app/views/layout/application.rhtml, as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 lang="<%= Locale.active.language.iso_639_1 -%>"
 xml:lang="<%= Locale.active.language.iso_639_1 -%>">
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title><%= @page_title || 'Emporium' %></title>
 <%= stylesheet_link_tag "style" %>
 <%= javascript_include_tag :defaults %>
</head>
<body>

<div id="header">
 <h1 id="logo">Emporium™</h1>

We specify the character encoding by adding a Content-Type meta tag to the head tag. This
will help browsers select the appropriate character encoding while rendering the page.

We also changed the html tag so that it declares that the content of the page is written in
the language currently selected (Globalize::Locale.active.language). This helps search
engines in identifying your content and also helps you in positioning your site higher in search
results in languages other than English. This is referred to as search engine optimization (SEO).

■Tip Currently, we change the locale by appending a parameter to the URL, such as /catalog?locale=sv.
This is not optimal from a SEO perspective, as some search engines prefer to index pages without parameters.
To fix this, you can add the following to your config/routes.rb file: map.connect ':language/
:controller/:action/:id', :defaults => { :language => Locale.language.code, :id =>

nil }. Then you can use URLs like /sv/catalog or /de/catalog instead, which are more likely to be indexed
by search engines.

324 C H A P T E R 1 0 ■ M U L T I P L E L A N G U A G E S U P P O R T

Setting Character Encoding for the HTTP Response
Next, add a new after_filter to app/controllers/application.rb that sends the correct
Content-Type HTTP header. Update app/controllers/application.rb as follows:

class ApplicationController < ActionController::Base
 before_filter :set_locale
 after_filter :set_charset

 private

 def set_charset
 headers["Content-Type"] = "text/html; charset=utf-8" if headers ➥

["Content-Type"].blank?
 end

 def set_locale
 accept_lang = request.env['HTTP_ACCEPT_LANGUAGE']
 accept_lang = accept_lang.empty? ? nil : accept_lang[/[^,;]+/]

 locale = params[:locale] || session[:locale] || accept_lang || DEFAULT_LOCALE

Now, when a user accesses a page at the Emporium site, the following response header is
sent to the browser:

Content-Type: text/html; charset=utf-8

This helps the browser in selecting the correct character encoding for displaying your page.

Changing the Database to Use UTF-8
The default character encoding in your database is probably currently latin1 (the default for
MySQL). It might be different depending on how you installed MySQL and your system set-
tings. You can check the encoding by opening a mysql client and typing in the following
command:

show variables like 'character_set_%';

This will show you the character set used by different parts of the system. If you see that
the character encoding for the database is not UTF-8, as in the following sample output, you
need to fix it by changing the database to UTF-8.

$ mysql -uemporium –phacked emporium_development

C H A P T E R 1 0 ■ M U L T I P L E L A N G U A G E S U P P O R T 325

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 3 to server version: 5.0.20-community

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> show variables like 'character_set_%';
+--------------------------+--------+
| Variable_name | Value |
+--------------------------+--------+
character_set_client	latin1
character_set_connection	latin1
character_set_database	latin1
character_set_filesystem	binary
character_set_results	latin1
character_set_server	latin1
character_set_system	utf8
+--------------------------+--------+
7 rows in set (0.00 sec)

If you try to save Unicode text, it will end up being converted to question marks. To use a
different character encoding, we need to specify the encoding when we create the database
tables. Since we have been using migrations to create the tables, we must modify all of the
ActiveRecord migrations. This is done by adding the options parameter to the create_table
method:

 create_table :publishers, :options => 'default charset=utf8' do |table|

MySQL uses utf8 as the encoding name, instead of the more common format utf-8.
After changing the character encoding, re-create the database from scratch with the

migrations. And remember to create the globalize tables again with rake globalize:setup.

■Tip You can also specify the default character encoding used by MySQL at startup by using the
--character-set-server parameter. After changing the character encoding, all new tables will use
the default character encoding, so the migrations don’t need to be changed.

326 C H A P T E R 1 0 ■ M U L T I P L E L A N G U A G E S U P P O R T

The last part of the system that you should change to use the correct encoding is the data-
base connection. Change config/database.yml as shown here:

development:
 adapter: mysql
 database: emporium_development
 username: emporium
 password: hacked
 encoding: utf8
test:
 adapter: mysql
 database: emporium_test
 username: emporium
 password: hacked
 encoding: utf8

Restart WEBrick so that it picks up the changes to the configuration. Remember to add the
same setting for the production database connection.

Now access the translation view one last time. Add some Chinese to the Text field, and the
translation “Next page” for it, and then click the Add translation button. The Chinese charac-
ters should show up correctly in the list.

That’s it! George’s application is now Globalized, internationalized, and ready for world
domination.

Summary
In this chapter, we introduced the Globalize plugin, which can be used to localize an applica-
tion for multiple locales and languages. We showed you how to install the Globalize plugin and
how to create a translation view for easy translation of content. We also showed you how to
localize dates, numbers, and text, and how to add Unicode support to your applications.

In the next chapter, we will introduce you to Selenium, Selenium on Rails, and accep-
tance tests.

327

■ ■ ■

C H A P T E R 1 1

Acceptance Testing

In this chapter, you will learn how to automate acceptance tests. Acceptance tests are impor-
tant, since they prove that the system works according to the requirements.

Throughout this book, George has been performing acceptance testing quite haphazardly
by randomly testing that the user stories we have implemented work as he intended. This is
better than no acceptance tests at all, but since we’re building an e-commerce site, we want to
be absolutely sure that everything works all the time. We don’t want to lose a customer by pro-
viding a service that doesn’t work as expected, and George doesn’t have the money to hire a
dedicated tester. This is where Selenium—an open source testing tool originally developed as
an in-house project at ThoughtWorks—comes in handy.

With Selenium and the Selenium on Rails plugin, you can automate acceptance tests that
otherwise would be performed manually, or more likely, not at all. You can run the automated
acceptance tests when, for example, you refactor code or release a new version. This raises
your comfort level by giving you immediate feedback when something breaks.

Using Selenium
The core of Selenium, referred to as Selenium Core, is implemented as JavaScript that runs
directly inside your browser, unlike other similar tools like Fitnesse, which run in a separate
process. This allows scripts written using Selenium to issue commands like mouse clicks and
other actions that mimic the real interaction between a user’s browser and a web application.
We can, for instance, write a script that simulates George accessing the Emporium forum, fill-
ing out the form on the new post page, and then clicking the submit button. Selenium can also
check whether the request was successful by, for example, checking that the next page displays
the expected content. All these actions are done through Selenium commands, which we’ll go
through in the “Writing Selenium Tests” section later in this chapter.

328 C H A P T E R 1 1 ■ A C C E P T A N C E T E ST I N G

Selenium on Rails (http://www.openqa.org/selenium-on-rails), a plugin developed by
Jonas Bengtsson, integrates Selenium into the Rails framework. The plugin provides many fea-
tures to simplify the use of Selenium with Rails. For example, it does the following:

• Creates test suites automatically from tests that are located in the same directory.
For example, storing a test in test/selenium/authentication/test_login.sel
would automatically make the test (test_login.sel) belong to the authentication
test suite.

• Deploys Selenium to the test environment automatically. (Selenium is not deployed to
the development or production environments by default.)

• Allows you to write Selenium tests in ERB, Selenese, or RSelenese, rather than just HTML.

• Lets you place the Selenium files in a directory other than /public. Selenium can be
located in /vendor/selenium or the RubyGems repository.

• Allows for the use of fixtures in Selenium tests and clearing sessions. Fixtures are run by
accessing the URL /selenium/setup from acceptance tests.

Before installing the plugin, you need to install Selenium itself, as follows:

 $ sudo gem install selenium

Attempting local installation of 'selenium'
Local gem file not found: selenium*.gem
Attempting remote installation of 'selenium'
Updating Gem source index for: http://gems.rubyforge.org
Successfully installed selenium-0.7

■Note The RubyGems repository might not contain the latest version. If you want the latest version of
Selenium, download Selenium Core from http://www.openqa.org/selenium-core and extract it to
vendor/selenium.

The Selenese format uses the Textile markup format (introduced in Chapter 3), which
requires that you have RedCloth installed on your machine. To verify that you have RedCloth
installed, execute the following command:

$ gem list

C H A P T E R 1 1 ■ A C C E P T A N C E T E S T I N G 329

...
RedCloth (3.0.4)
 RedCloth is a module for using Textile and Markdown in Ruby. Textile
 and Markdown are text formats. A very simple text format. Another
 stab at making readable text that can be converted to HTML.
...

If you don’t see RedCloth in the list of installed RubyGem packages, execute the following
command:

$ sudo gem install redcloth

Next, install the Selenium plugin directly from the Subversion repository:

$ script/plugin install http://svn.openqa.org/svn/selenium-on-rails/

This installs the latest version of the plugin in the vendor/plugins/selenium-on-rails direc-
tory. Execute the rakecommand in the plugin directory to verify that the installation works:

$ cd vendor/plugins/selenium_on_rails
$ rake

The rake script executes all tests. You should see them pass without errors.

■Note On Windows, if you want to use rake to run your acceptance tests, you need to install win32-
open3. See the Selenium on Rails homepage (http://www.openqa.org/selenium-on-rails/) for details.

When using Selenium Core, you start the acceptance tests by opening the Selenium test
runner in your browser and executing the Selenium test suite. With Selenium on Rails, these
steps have been automated and can all be executed with the following command:

$ cd /home/projects/george/emporium
$ rake test:acceptance

If you execute the command now, Selenium on Rails will complain that you haven’t spec-
ified the path to the browser executables. To specify the path, you need to modify the Selenium
on Rails configuration file (vendor/plugins/selenium_on_rails/config.yml). The configura-
tion file allows you to specify where browser executables are located on your system and the
environments for which Selenium should be enabled. Create the configuration by renaming

330 C H A P T E R 1 1 ■ A C C E P T A N C E T E ST I N G

vendor/plugins/selenium_on_rails/config.yml.example to config.yml. Update the paths to
match your system’s configuration, as in the example shown here:

Enable Selenium for the following environments
environments:
 - test
- development
- production

Paths to browsers
browsers:
 safari: '/Applications/Safari.app/Contents/MacOS/Safari'
firefox: /usr/bin/firefox

 ie: 'c:\Program Files\Internet Explorer\iexplore.exe'

■Tip Selenium on Rails runs the acceptance tests in all browsers that have been listed in the configuration
file. This makes it easy to test that your application works on multiple browsers. Selenium supports most
browsers and platforms, including Windows, Mac OS X, and Linux. Check the Selenium documentation
(http://www.openqa.org/selenium-core) to verify that your setup is supported.

Selenium and Selenium on Rails are now installed, which means you can start writing
Selenium tests.

Writing Selenium Tests
We’ll take a quick look at the Selenium commands and various formats that you can write tests
in. After this we’ll write an acceptance test for the View Forum user story.

Selenium Commands
Selenium tests have the following basic structure:

|command|target|value|

C H A P T E R 1 1 ■ A C C E P T A N C E T E S T I N G 331

The items work as follows:

• command tells Selenium what to do. For example, you may want to access a page, click a
link, and verify that the title of the page is correct. These commands can be classified
into the three groups: actions, assertions, and accessors, as described in the following
sections.

• target tells Selenium on which element to perform the action; for example, you can
specify a link or button. The target of an action can be specified with an element locator,
which we’ll explain after describing the command types.

• value is a parameter to the command that tells Selenium, for example, what it should
type in a text field.

■Tip The Selenium homepage (http://www.openqa.org/selenium-core/) provides a complete refer-
ence to all Selenium commands.

Action Commands

Actions perform user actions that modify the state of the application, including clicking links
and submitting forms; even drag and drop is supported. So, actions can be used to mimic
almost any action performed in a browser by George or any of Emporium’s customers.
Table 11-1 lists some of the available action commands.

Table 11-1. Some Selenium Actions

Name Description

open(url) Accesses a page, such as the forum1

click(locator) Simulates a user clicking a link, button, check box, or radio button2

type(locator, value) Simulates a user typing some text into a text box or any other form
field that accepts user input

select(locator, value) Selects a specific item from a drop-down list

1 The URL must point to the same domain where the Selenium script has been deployed. For example, you
can’t test www.google.com. This is due to the so-called same origin policy enforced by browsers. This lim-
itation can be circumvented by using a proxy.

2 Use clickAndWait(locator) if the action causes a new page to load (as most do).

332 C H A P T E R 1 1 ■ A C C E P T A N C E T E ST I N G

Assertion Commands

Assertions, or checks, verify that the state of the application is as expected after one or more
actions have been executed by Selenium. For example, you can test that the title of the page or
the value of a variable is correct.

Assertions are split into three groups that behave somewhat differently:

• Assertions (assert) abort the test if they fail.

• Verifications (verify) log the error and allow the test to continue.

• Wait for (waitFor) assertions wait for the specified event to happen. They can be used for
testing Ajax functionality. For example, you can wait for the value of an element on the
page to be updated by an Ajax request.

Table 11-2 shows a partial list of supported Selenium assertions.

Table 11-2. Commonly Used Selenium Assertions

Verification and wait for assertions use the same format. Use verifyLocation(/forum)
to verify that the location is /forum, and use waitForLocation(/forum) to wait for that page to
be loaded.

Name Description

assertLocation (location) Asserts the location of the currently loaded page; for example,
that it’s /forum and not /catalog

assertTitle(title) Asserts that the title of the currently loaded page is correct

assertTextPresent(text) Asserts that the specified text is present on the page

C H A P T E R 1 1 ■ A C C E P T A N C E T E S T I N G 333

Accessor Commands

Accessors are used for accessing the content that is displayed in the browser and for storing the
content in a variable that can be used later in the script. Accessors follow the same logic as ver-
ification and wait for assertions. For example, use storeLocation(variableName) to store the
title of the page in a variable. Table 11-3 lists some commonly used accessors.

Table 11-3. Commonly Used Selenium Accessors

Let’s say that you want to store the text that you entered in the Name field on the post to
forum page (http://localhost:3000/forum/post) and use the same text in the Subject field.
You could do that with the following commands:

open	/forum/post	
type	post[name]	George
storeValue	post[name]	name
type	post[subject]	This is posted by ${name}

The first two commands open the post to forum page and type George in the Name field.
The third command stores the field’s value in a variable (name), which is then used on the last
row to type the text “This is posted by George” in the Subject field.

Name Description

store(value, variableName) Stores the value in the specified variable

storeValue(locator, variableName) Stores the value of an input field in the specified
variable

storeText(locator, variableName) Stores the text of the specified element in the specified
variable

storeChecked(locator, variableName) Stores true in the specified variable if the check box is
selected, otherwise stores false

334 C H A P T E R 1 1 ■ A C C E P T A N C E T E ST I N G

Element Locators

Element locators tell Selenium which HTML element a command should be performed
against. For example, you can tell Selenium to locate a link where the id attribute equals xyz.
Some of the element locators that Selenium supports are listed in Table 11-4.

Table 11-4. Some Selenium Element Locators

Selenium Test Formats
Selenium acceptance tests can be written in various ways. The default is HTML format.
Selenium on Rails also offers the Selenese and RSelenese formats.

HTML Format

Tests using this format are written as normal HTML documents that contain a table:

<table>
 <tr>
 <td>open</td>
 <td>/</td>
 <td></td>
 </tr>
 <tr>
 <td>verifyTitle</td>
 <td>Home</td>
 <td></td>
 </tr>
</table>

Selenium parses the table and executes the commands in the order they appear.
There is one downside to using HTML tables to write acceptance tests: they are difficult to

maintain and write.

Name Description

id=element id Finds the element with the specified id attribute

name=element name Finds the element with the specified name attribute

identifier=element id Finds the element that has a matching id attribute; if no match
is found, finds the element whose name attribute matches the
specified id

dom=JavaScript expression Finds the element using a JavaScript DOM expression; for
example, document.forms['someForm'].someButton

xpath=XPath expression Finds the element based on an XPath expression; for example,
//a[@href='http://google.com']

link=text pattern Finds the link that matches the specified pattern

C H A P T E R 1 1 ■ A C C E P T A N C E T E S T I N G 335

■Note You can write dynamic tests by using RHTML templates containing ERB code. However, like HTML,
these tests are hard to maintain and write.

Selenese Format

The Selenese format is the easiest to write and maintain. Acceptance tests written using this
format contain a table where columns are separated by the pipe character:

open	/help
assertTextPresent	The Forgotten Soldier
goBack	

The only downside to the Selenese format is that the tests are static. This is why Selenium
on Rails also supports the RSelenese format.

RSelenese Format

RSelenese scripts are written in Ruby and allow you to use the full power of the Ruby language,
as shown in the following example:

setup :fixtures => :all
open '/'
assert_title 'Home'
(1..10).each {|i| open :controller => 'catalog', :action => 'list', :page => i }

The biggest benefit of using RSelenese is that it allows you to create dynamic tests.

The First Acceptance Test
Now we’ll write a simple acceptance test for the View Forum user story, which we imple-
mented in Chapter 6. In the next section, we’ll show you how to speed up the process of
creating tests by using the Selenium IDE extension for Mozilla Firefox.

Create the first acceptance test by executing the generate script:

$ script/generate selenium forum/01_view_forum

 create test/selenium/forum
 create test/selenium/forum/01_view_forum.sel

Open 01_view_forum.sel in your editor and modify it to contain the Selenese commands
shown here:

open	/forum/
assertTitle	Forum
assertTextPresent	Forum
assertTextPresent	There are no posts

336 C H A P T E R 1 1 ■ A C C E P T A N C E T E ST I N G

When Selenium executes the View Forum test case, it will perform the following actions in
the browser:

• Open the /forum URL.

• Verify that the title of the page is Forum.

• Verify that the text “Forum” can be found somewhere on the page.

• Verify that the page contains the text “There are no posts.” Note that this requires that
the test database is empty. You can empty the table manually or have the script do it, as
we’ll show you in the next sections.

Selenium tests are stored in the test/selenium directory. It is good practice to group
related tests into test suites, which is why we put the forum acceptance tests in a folder called
forum. Selenium on Rails creates test suites automatically by scanning the test/selenium
directory for subdirectories and acceptance tests. Acceptance tests are sorted by their
filenames, which are run sequentially. In our case, the test suite will be created from the
test/selenium/forum folder.

■Tip If you need the tests to run in a specific order, prepend their filenames with a number. For example,
a test suite containing a login and logout test could have files named 01_login.sel and 10_logout.sel,
so that the login test runs before the logout test. The same naming scheme can be used with test suite
directories.

By default, Selenium scripts are enabled only for the test environment. This means you
need to start WEBrick in test mode by executing the following command:

$ script/server -e test

Before running the test, make sure your test database has been updated to the latest
version. This can be done with the rake command:

$ rake db:test:clone_structure

You can now execute the test we just created by issuing the following command:

$ rake test:acceptance

This will open all the browsers that you specified in the Selenium on Rails configuration
file, one by one, and execute the View Forum test case in your browser. After the tests have run,
you should see the test result page, as shown in Figure 11-1.

C H A P T E R 1 1 ■ A C C E P T A N C E T E S T I N G 337

Figure 11-1. The Selenium TestRunner after a successful test run

Successfully executed commands are shown in green. Failures are in red. The table at the
bottom of the page shows detailed statistics of the test.

Recording Selenium Tests
Writing acceptance tests requires detailed knowledge of how Selenium works (and a lot of typ-
ing). The good news is that Selenium IDE simplifies acceptance test creation. Selenium IDE is
an integrated development environment that has been implemented as an extension available
for Mozilla Firefox only.

Using the Selenium IDE
Selenium IDE allows you to record your tests directly in the browser. You simply click the
record button and perform the actions in your browser. Selenium IDE also allows you to run
and debug tests. These features are all made possible by the inclusion of Selenium Core in the
extension. On top of this, Selenium IDE provides you with features like autocompleting com-
mands and saving recorded tests as HTML, Ruby, or other any other user-defined format.

338 C H A P T E R 1 1 ■ A C C E P T A N C E T E S T I N G

The Selenium IDE project is hosted, like Selenium itself, at www.openqa.com. Install Sele-
nium IDE by going to http://www.openqa.org/selenium-ide/ and accessing the Selenium IDE
Downloads page, as shown in Figure 11-2.

Figure 11-2. The Selenium IDE Downloads page

Firefox requires that you allow www.openqa.org to install extensions on your machine. So,
your first step is to click the Edit Options button at the top left of the Selenium IDE Downloads
page (see Figure 11-2) and add www.openqa.org to the list of privileged sites.

Next, click the Download link again. This time, you should see the dialog box shown in
Figure 11-3. To continue with the installation, click the Install button.

After restarting Firefox, you can open Selenium IDE by selecting Tools ➤ Selenium IDE
from the browser menu bar. You should now see the Selenium IDE window, as shown in
Figure 11-4.

C H A P T E R 1 1 ■ A C C E P T A N C E T E S T I N G 339

Figure 11-3. Installing the Selenium IDE extension

Figure 11-4. The Selenium IDE window

340 C H A P T E R 1 1 ■ A C C E P T A N C E T E ST I N G

The Selenium IDE window has two tabs:

• The Table tab is where the recorded commands are shown. Right-click a row to see a
context-sensitive pop-up menu that allows you to insert new commands, delete existing
commands, and perform other actions.

• The Source tab is where the actual source for the acceptance test is shown. You can
either copy and paste the code or use the File ➤ Save Test menu item to save the test
to a file. You can switch between different supported output formats by selecting the
appropriate option from the Options ➤ Format menu.

Recording the View Forum Acceptance Test
We’ll start by recording a test for the View Forum user story (originally implemented in Chapter 6).
This is the same user story that we wrote a simple acceptance test for in the previous section, but
this test will check a few different details. Recall that this user story describes how a user is able to
view a list of the most recent posts by going to the forum main page, where posts are shown in a
threaded fashion:

First post
-->Reply 1
---->Reply 1.1
-->Reply 2

We will verify that the following requirements are met (in the mentioned order):

• The page title of the forum must be Forum.

• When the forum is empty, the page must show a message and a link that provides
instructions on how the user can create a new post.

• When there are more than 20 posts in the forum, the list must be paginated.

Certainly, we could test more aspects of the user story, but this is sufficient for the
moment. If something breaks in the future, we can always extend the test.

If not already done, start the Emporium application by executing the following command:

$ ruby script/server -e test

We have enabled Selenium only for the test environment, which is why we start WEBrick
using the -e switch.

Next, make sure that the forum_posts table in your test database is empty by executing the
following command and SQL:

$ mysql –uemporium –phacked emporium_test

C H A P T E R 1 1 ■ A C C E P T A N C E T E S T I N G 341

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 74 to server version: 5.0.20-community

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> delete from forum_posts;

Query OK, 13 rows affected (0.09 sec)

You can also tell Selenium to empty the table automatically for you at the start of the test,
as we’ll show you later in this section.

Now open Firefox and start Selenium IDE by selecting Tools ➤ Selenium IDE from
the main menu in the browser. You should see the Selenium IDE (see Figure 11-4).

■Tip To be able to record tests in Selenese, you have to add a new custom test format. This is done by
clicking Add on the Formats tab in the options dialog. The source for the Selenese “wiki-like” format can be
downloaded from this page: http://wiki.openqa.org/display/SIDE/SeleniumOnRails.

Select the Selenese output format from the Options ➤ Format menu in the Selenium IDE
window. This makes Selenium IDE generate the acceptance tests in Selenese instead of the
default HTML. When started, Selenium IDE is in record mode by default, so you can start
recording immediately.

Follow these steps to record the test:

1. Open http://localhost:3000/forum. You should now see the forum main page showing
the text “There are no posts yet.”

2. Right-click somewhere on the page and select Show All Available Commands ➤
assertTitle Forum from the pop-up menu.

3. Select the text “There are no posts yet.”

4. Right-click the selected text and select verifyTextPresent There are no posts yet
from the pop-up menu.

5. Right-click the “Be the first one to post here” link, then select assertText link=Be the
first one to post here from the pop-up menu. This verifies that the page has a link
that says “Be the first one to post here.”

6. You have now recorded the first two requirements of the acceptance test, and the Sele-
nium IDE Table tab should look like Figure 11-5. Save the test by selecting File ➤ Save
Test from the Selenium IDE menu.

342 C H A P T E R 1 1 ■ A C C E P T A N C E T E ST I N G

Figure 11-5. The first version of the acceptance test

■Tip You can execute the acceptance test and view the results directly in Selenium IDE by clicking the
green play button in the Table tab. You can also watch the test being executed in slow-motion by selecting
the Walk mode. Use the Step mode to step through each command in the test manually.

Next, we need to verify that pagination works correctly when there are more than 20 posts
in the forum. To prepopulate the database with test data, we can use the following fixture:

<% 40.times do |i| %>post_<%= i %>:
 id: <%= i %>
 name: Post <%= i %> name
 subject: Post <%= i %> subject
 body: Post <%= i %> body
 created_at: <%= Time.now.to_s(:db) %>
 updated_at: <%= Time.now.to_s(:db) %>
<% end %>

Save the fixture in test/fixtures/forum_posts.yml. The dynamic fixture adds 40 posts to
the database, which means there should be two pages in the forum, and you should see Next
page and Previous page links when navigating between the pages.

C H A P T E R 1 1 ■ A C C E P T A N C E T E S T I N G 343

Selenium on Rails supports fixtures in the same way as the built-in Rails unit, integration,
and functional tests. Use the open command to load a special URL that inserts all the specified
fixtures into the database. Load multiple fixtures by separating them with commas:

|open|/selenium/setup?fixtures=beer,wine,booze||

Now add a new command to the test by selecting the line after the last assertText command
in the list. Type open in the Command field, and enter /selenium/setup?fixtures=forum_posts in
the Target field, as shown in Figure 11-6.

Figure 11-6. Adding a fixture to the test

Now that we are inserting data in the tests, the test will fail if we execute it twice in succes-
sion, so we need to make sure that the forum_test database table is empty at the start of the
test. We do this by adding the following to the start of the script:

|open|/selenium/setup?clear_tables=forum_posts||

The trick to emptying tables of all data is to use the clear_tables parameter when calling
the setup action. To empty more than one table, separate the table names with commas.

We also want to verify that the list is showing exactly 20 posts. We do this with the
verifyElementNotPresent command and an XPath element locator that tries to find the
twenty-first post, which it shouldn’t find on the page:

|verifyElementNotPresent|//div[@id='posts']/div[21]||

344 C H A P T E R 1 1 ■ A C C E P T A N C E T E ST I N G

We can test that the navigation between the two pages works by adding the following
commands:

|clickAndWait|link=Next page||
|clickAndWait|link=Previous page||

After adding these commands, the test should look as follows (you can verify this by click-
ing the Source tab, as shown in Figure 11-7):

open	/selenium/setup?clear_tables=forum_posts	
open	/forum	
assertTitle	Forum	
verifyTextPresent	There are no posts yet.	
assertText	link=Be the first one to post here	Be the first one to post here
open	/selenium/setup?fixtures=forum_posts	
verifyElementNotPresent	//div[@id='posts']/div[21]	
clickAndWait	link=Next page	
clickAndWait	link=Previous page	

Figure 11-7. The source for the View Forum acceptance test shown in Selenium IDE

C H A P T E R 1 1 ■ A C C E P T A N C E T E S T I N G 345

Save the changes, and then run the test once by clicking the green run button in Selenium IDE.
We can now execute the acceptance tests with rake:

$ rake test:acceptance

The test should pass, as shown in Figure 11-8.

Figure 11-8. The results after running the final version of the View Forum acceptance test

Recording the Post to Forum Acceptance Test
In the acceptance test for the Post to Forum user story, which describes how a post is created,
we want to verify that posting to the forum works and that the post is shown on the forum
main page.

Record the acceptance test by following these steps:

1. Select File ➤ New Test from the Selenium IDE menu. Verify that Selenium IDE is record-
ing, by checking that the red record button is activated.

2. Open http://localhost:3000/forum in your browser. Line 1 should now contain an open
command. You should also see the posts that were created by the previous test case.

3. Click the New post link at the top of the page. You should see a clickAndWait command
inserted at line 2.

346 C H A P T E R 1 1 ■ A C C E P T A N C E T E ST I N G

4. On the new post page, type a name (for example, Luke Rhinehart) in the Name field.

5. In the Subject field, type a post subject (for example, The Dice Man).

6. In the Body field, type a message (for example, Roll the die!).

7. Click the Post button. You should be redirected to the main page of the forum, where
you should see the post.

8. Select the text (“The Dice Man by Luke Rhinehart” in our example).

9. Right-click the selected text and select verifyTextPresent The Dice Man by Luke
Rhinehart from the pop-up menu.

10. Save the recorded test as test/selenium/forum/02_post_to_forum.sel (by selecting
File ➤ Save Test from the Selenium IDE menu).

Run the test by clicking the run button in Selenium IDE. You should see the test succeed
(all rows are green), as shown in Figure 11-9.

Figure 11-9. The Post to Forum acceptance test in Selenium IDE

C H A P T E R 1 1 ■ A C C E P T A N C E T E S T I N G 347

If you open 02_post_to_forum.sel in an editor, you should see something like the
following:

open	/forum	
clickAndWait	link=New post	
type	post[name]	Luke Rhinehart
type	post[subject]	The Dice Man
type	post[body]	Roll the die!
clickAndWait	commit	
verifyTextPresent	The Dice Man by Luke Rhinehart	

Now test that the View Forum and Post to Forum acceptance tests work when both are run
in succession by executing the following:

$ rake test:acceptance

Recording the Show Post Acceptance Test
Next, we’ll create a test that verifies that the Show Post user story works as intended. You should
now have the forum main page open in Firefox, which is where we left off in the previous section.

Like the other tests, the test case requires that we are on the page where the previous test
ended. We’ll use the assertLocation check to verify this. Record the acceptance test by follow-
ing these steps:

1. Select File ➤ New Test from the Selenium IDE menu. Verify that Selenium IDE is record-
ing, by checking that the red record button is activated.

2. Click the Source tab and type |assertLocation|/forum|| in the text area, as shown in
Figure 11-10. Switch back to the previous view by clicking the Table tab.

Figure 11-10. The Source tab showing the acceptance test after step 2

348 C H A P T E R 1 1 ■ A C C E P T A N C E T E ST I N G

3. Click the second line in the table.

4. Click the post that was created by the Post to Forum acceptance test (The Dice Man).
You are now taken to the show post page.

5. Select the text “The Dice Man,” right-click it, and select verifyTextPresent The Dice
Man from the pop-up menu.

6. Select the text “Luke Rhinehart,” right-click it, and select verifyTextPresent Luke
Rhinehart from the pop-up menu.

7. Right-click the Reply link and select assertTextLink link=Reply Reply from the
pop-up menu.

8. Save the test as test/selenium/forum/03_show_post.sel (by selecting File ➤ Save Test
from the Selenium IDE menu).

The file should now contain the following:

assertLocation	/forum	
clickAndWait	link=The Dice Man	
verifyTextPresent	'The Dice Man'	
assertText	link=Reply	Reply

Verify that what you have done so far works by executing the acceptance tests once again:

$ rake test:acceptance

You should see the acceptance tests run without failures.

Recording the Reply to Post Acceptance Test
The Reply to Post acceptance test is run after the Show Post test, and it is used to verify that
replying to the post works. The Reply to Post user story is similar to the Post to Forum user
story. Record it by following these steps:

1. Select File ➤ New Test from the Selenium IDE menu. Verify that Selenium IDE is record-
ing, by checking that the red record button is activated.

2. We want to verify that we are on the page where the previous acceptance test left us.
Right-click somewhere on the page and choose assertTitle 'The Dice Man' from the
pop-up menu.

C H A P T E R 1 1 ■ A C C E P T A N C E T E S T I N G 349

■Note If step 2 adds an open command to the acceptance test, remove it from the list. You need to get rid
of it because it contains the unique id of the post, which won’t be the same when you run the test again.

3. Click the Reply link. You should now see the reply to post page.

4. Type a name (for example, George) in the Name field.

5. Type a subject (for example, Let’s play) in the Subject field.

6. Type a message (for example, I’m starting today!) in the Body field.

7. Click the Reply button. You are taken to the forum main page.

8. Select the text (“Let's play by George” in our example), right-click it, and select
verifyTextPresent Let's play by George from the pop-up menu.

9. Switch to the Source view by clicking the Source tab. Add the following to the end of the
test: |assertLocation|/forum||.

10. Save the test as test/selenium/forum/04_reply_to_post.sel (by selecting File ➤ Save
Test from the menu).

The test should now contain the text shown here:

assertTitle	'The Dice Man'	
clickAndWait	link=Reply	
type	post[name]	George
type	post[subject]	Let's play
type	post[body]	I'm starting today!
clickAndWait	commit	
verifyTextPresent	Let's play by George	
assertLocation	/forum	

We have now created acceptance tests for all of the forum-related user stories. Let’s show
George the wonder of automation by executing the complete set of Selenium acceptance tests:

$ rake test:acceptance

Firefox starts up, and Selenium then executing our acceptance tests one by one. Figure 11-11
shows the result page, which appears after the tests have run. All tests should be green, which indi-
cates that they passed.

350 C H A P T E R 1 1 ■ A C C E P T A N C E T E S T I N G

Figure 11-11. Running the recorded acceptance tests

Next, click the Walk radio button in the Execute Tests section of TestRunner window, and
then click the All button beneath it to run the tests again. Selenium now runs the tests in a slow-
motion mode that allows you to see each command being executed.

You can also try stepping through the tests, by clicking the Step radio button in the Execute
Tests section and clicking the All button. Instead of executing the whole test, Selenium stops
after each executed command. To continue the test, click the Continue button. This is useful
when you’re debugging a test.

Summary
In this chapter, you learned how to write automated acceptance tests using Selenium and the
Selenium on Rails plugin. By automating acceptance tests, you not only remove manual work,
but you also raise your confidence that your application works according to the requirements.
We also showed you how to simplify the process of writing acceptance tests by using the Sele-
nium IDE Firefox extension to record the tests.

In the next chapter, we’ll show you how to deploy your application to production. There
shouldn’t be any surprises, as we have implemented a full set of automated tests that exercise
almost all parts of the application.

351

■ ■ ■

C H A P T E R 1 2

Application Deployment

In this chapter, we’ll show you how to set up an application’s production environment,
including the LightTPD web server and FastCGI extension. Then we will walk through the
manual deployment process. Finally, we’ll demonstrate how to simplify deployment tasks
with Capistrano, a tool specifically designed to automate the deployment of Ruby on Rails
applications.

Setting Up the Production Environment
George has bought a new Intel-powered server running Ubuntu Linux, to which we will deploy
LightTPD (web server), Ruby on Rails and FastCGI (application server), and MySQL (database
server). The high-level system architecture of the Emporium production environment is
shown in Figure 12-1.

Although we talk about three different servers, the production environment consists of
only one physical machine, since that is all we need to start. Later, we can support more traffic
if the need arises by scaling horizontally (adding more machines) or vertically (adding more
processing power).

352 C H A P T E R 1 2 ■ A P P L I C A T I O N D E P L O Y M E N T

Figure 12-1. The Emporium production environment

Connecting to the Production Server: SSH
We will be using Secure Shell (SSH) throughout this chapter to connect to the production
machine. If you haven’t installed the SSH server on your production machine yet, you need to
do it now before proceeding. Log in to the production server and execute the following
command:

$ sudo apt-get install openssh-server

After the installation is complete, you can start the SSH server with this command:

$ sudo /etc/init.d/ssh start

* Starting OpenBSD Secure Shell server…

C H A P T E R 1 2 ■ A P P L I C A T I O N D E P L O Y M E N T 353

With the SSH server running on the production machine, connect to the production server
by executing the following:

$ ssh username@production_server_ip

■Note Originally developed by Tatu Ylönen, SSH is a set of standards and protocols that allow you to
establish a secure connection to a remote server. We assume that you have a basic understanding of
what SSH is and how it can be used. For more information about SSH, see Wikipedia’s entry on SSH
(http://en.wikipedia.org/wiki/Secure_Shell).

You are now ready to start installing the software on your production environment.

Installing the Web Server: LightTPD
The web server handles the communication between the user’s browser and the Emporium
application, which is running on the application server in one or more separate processes.
When a request comes in from the Internet, the web server forwards the request (by acting as a
reverse proxy and a load balancer) to one of the application servers.

In this book, we use LightTPD as the web server, because it is a tried-and-tested open
source web server that, according to its homepage (http://www.lighttpd.net) is optimized
for high performance. This claim is backed up by benchmarks, which put it among the fastest
web servers available currently, and in front of the more popular Apache in some areas.
LightTPD is easy to configure and includes the mod_fastcgi module, which can communicate
with external FastCGI processes running Ruby on Rails applications. After being forwarded by
LightTPD, the request is processed by Ruby on Rails, and the output is sent back to the client,
again using the FastCGI protocol.

■Tip The LightTPD wiki (http://trac.lighttpd.net/trac/wiki/) is a good starting point if you
want to find out more about LightTPD and how to use it with Ruby on Rails.

Here, we provide instructions for installing LightTPD from source on Ubuntu Linux. You
can also find a binary installation package for Windows, Mac OS X, and most Linux distribu-
tions at http://www.lighttpd.net/download.

Although some commands are specific to Ubuntu Linux, the installation instructions are
generally applicable to most Linux/Unix platforms, with some exceptions, such as how depen-
dencies are installed. See the Rails wiki (wiki.rubyonrails.org) and other online resources for
detailed instructions on how to set up and configure the software on other platforms.

354 C H A P T E R 1 2 ■ A P P L I C A T I O N D E P L O Y M E N T

■Tip If you are using Mac OS X, you can find a good resource for how to set up Rails, LightTPD, FastCGI, and
MySQL at http://hivelogic.com/articles/2005/12/01/ruby_rails_lighttpd_mysql_tiger.

LightTPD has the following external dependencies, which must be installed separately
and before LightTPD itself:

• The Perl Compatible Regular Expressions (PCRE) library, used by mod_rewrite and
other modules

• The zlib compression library, used for enabling gzip and other compression support

• OpenSSL for enabling HTTPS and Secure Sockets Layer (SSL)

On Ubuntu Linux, you can install the dependencies with the apt-get command:

$ sudo apt-get install libpcre3-dev
$ sudo apt-get install zlib1g-dev
$ sudo apt-get install open-ssl
$ sudo apt-get install libssl-dev

You also need to install the compiler provided by GCC, which is available through the
build-essentials package in Ubuntu Linux:

$ sudo apt-get install build-essentials

Next, download the latest available stable source LightTPD package from
http://www.lighttpd.net/download to a directory on your production server (such as
/usr/local/src or /tmp). Then execute the following commands one by one (we’ve
omitted the output of the commands here for the sake of clarity):

$ tar xzvf lighttpd-1.x.x.tar.gz
$ cd lighttpd-1.x.x
$./configure --with-openssl
$ make
$ sudo make install

These commands extract the package and compile the source.

C H A P T E R 1 2 ■ A P P L I C A T I O N D E P L O Y M E N T 355

■Tip For more information about compiling LightTPD, refer to the INSTALL and README files, which are
located inside the source package.

As we said, you need to install both the OpenSSL package and the SSL development librar-
ies and headers in order to run LightTPD. If you didn’t install them, you would get an error
similar to the one shown here when starting LightTPD:

SSL: ssl requested but openssl support is not compiled in

You can verify that the required dependencies are found by inspecting the output of the
configure command:

 .
 checking for OpenSSL... yes
 checking openssl/ssl.h usability... yes
 checking openssl/ssl.h presence... yes
 .
 .
 checking pcre.h usability... yes
 checking pcre.h presence... yes
 checking for pcre.h... yes
 checking for deflate in -lz... yes
 checking zlib.h usability... yes
 checking zlib.h presence... yes
 checking for zlib.h... yes
 .

If you don’t see any errors while compiling and installing the source, it means you can
continue and verify that the installation was successful. Execute the following command to
print the version information of the binary you just compiled:

$ lighttpd -v

 lighttpd-1.4.11 - a light and fast webserver
 Build-Date: May 14 2006 20:46:11

We’ll show you how to configure LightTPD after we install the other software.

356 C H A P T E R 1 2 ■ A P P L I C A T I O N D E P L O Y M E N T

Installing the Application Server: Ruby on Rails and FastCGI
The application server is where Emporium is running inside one or more Ruby processes that
use the FastCGI protocol to communicate with the web server. These processes, also referred
to as dispatchers, listen for incoming requests, process the request, and then send the response
back to the web server. The processes are then made available for processing the next request.

FastCGI (http://www.fastcgi.com/) is an open extension to CGI. The biggest problem
with CGI comes from the fact that each request to the web server starts a new process, and each
process requires some startup and cleanup tasks to be performed. As its name implies, FastCGI
removes most of the performance and scalability problems associated with CGI by using a pool
of long-running processes.

FastCGI also promises security enhancements. Multiple load-balanced FastCGI processes
can run on remote machines instead of locally on the web server like CGI. This means that
you can run the FastCGI processes and the web server under different users. Then a hacker try-
ing to gain access to your system must hack into both accounts: the one running your web
server and the one running the FastCGI processes.

To install the FastCGI library, download the source for the latest stable version from
http://www.fastcgi.com/dist/, and then compile it according to the installation instruc-
tions found in the INSTALL and README files, which are located in the root of the distribution
package:

$ tar zxvf fcgi-x.x.x.tar.gz
$ cd fcgi-x.x.x
$./configure
$ make
$ sudo make install

■Note FastCGI can also be installed through a binary distribution on most platforms. However, installing
from source usually works better.

You also need to install the Ruby-FastCGI library to allow your Ruby on Rails application
to communicate with the web server. First, download the latest version of the Ruby-FastCGI
library from http://raa.ruby-lang.org/project/fcgi. Then change the current directory to
where you downloaded the package and execute the following commands:

$ tar zxvf ruby-fcgi-x.x.x.tar.gz
$ cd ruby-fcgi-x.x.x
$ ruby install.rb config
$ ruby install.rb setup
$ sudo ruby install.rb install

C H A P T E R 1 2 ■ A P P L I C A T I O N D E P L O Y M E N T 357

If you are having problems installing the library, check the README file. Some systems
might require that you specify where the FastCGI headers and library files are located. You can
do this by executing the install script with the following parameters:

ruby install.rb config -- --with-fcgi-include=/usr/local/include ➥

--with-fcgi-lib=/usr/local/lib

■Note The Ruby-FCGI library can also be installed through the RubyGems packaging system by executing
sudo gem install fcgi.

The Ruby-FastCGI library contains two different implementations: one native implemen-
tation written in C and one written in pure Ruby. In a production environment, you want to use
the native implementation because of the performance benefits it provides. By default, the
native implementation will be used, but only if the FastCGI shared library can be found. This
shared library is created when you compile and install FastCGI from source. To verify that
Ruby-FastCGI uses the native implementation of FastCGI, execute the following commands in
the interactive Ruby console, irb:

$ irb
require 'fcgi.so'

=> true

The line require 'fcgi.so' should return true, as shown here. If it returns false, it
means it cannot find the fcgi.so library, and so it will run using the pure Ruby
implementation.

If you get an error saying fcgi.so cannot be found, you might need to add the path to
/usr/local/lib to /etc/ld.so.conf and run ldconfig.

You can verify that the pure Ruby (slower) version is found by executing the following
in irb:

$ irb
> require 'fcgi'

=> true

358 C H A P T E R 1 2 ■ A P P L I C A T I O N D E P L O Y M E N T

Installing the Database Server (MySQL)
In the case of Emporium, the database server is running a single instance of MySQL
(http://www.mysql.com). MySQL is claimed to be the world’s most popular open source
database. It is a safe choice that is used by many high-traffic websites, including craigslist.com,
which serves millions of classified ads a day from a MySQL cluster.

The communication between Ruby on Rails and the database is done through a native
MySQL database driver.

You need to install MySQL and the MySQL driver (native) on the production server. We
explained how to install these in Chapter 1.

Configuring LightTPD
Configuring LightTPD is straightforward. You can use the template (doc/lighttpd.conf) that
is distributed along with the source and customize it to meet your needs.

The configuration file for Emporium’s production environment is shown in Listing 12-1.
Save this configuration in $EMPORIUM_PATH/config/lighttpd_production.conf, where
$EMPORIUM_PATH is the path to your application.

ALTERNATIVES TO LIGHTTPD, FCGI, AND MYSQL

You have a multitude of options to choose from when planning your production environment. Most often, the
best strategy is to follow Ruby on Rails best practices and to concentrate on keeping the architecture simple.

Running your application on LightTPD is a safe option, as it is used by many existing Ruby on Rails appli-
cations, and can be considered to be fairly simple to install and maintain. But LightTPD is by no means the
only option. Apache (httpd.apache.org) might be a better option for some applications and platforms; for
example, Basecamp (www.basecamphq.com) runs on Apache. Other alternatives include any web server
that supports FastCGI or that can act as a proxy for Mongrel.

Mongrel (mongrel.rubyforge.org), an alternative to using FastCGI, is a fast HTTP library and
server that is slowly becoming the de facto standard for new Rails production deployments. With Mongrel,
there’s no need for FastCGI, because Mongrel itself talks HTTP and acts as a web server. This simplifies the
deployment and maintenance of applications. Note that at the time of writing, the author of Mongrel, Zed
Shaw, recommends using Apache, rather than LightTPD, with Mongrel, because of problems with its
mod_proxy module. This will probably be fixed when the new mod_proxy_core module is released. See
Coda Hale’s blog post (http://blog.codahale.com/2006/06/19/time-for-a-grown-up-
server-rails-mongrel-apache-capistrano-and-you/) for a write-up on Mongrel, and how to
use it together with Apache and Capistrano.

Ruby on Rails plays well with most of the popular database servers found on the market today, both open
source and commercial. If you’re looking for an open source database server similar to MySQL, we recom-
mend PostgreSQL (www.postgresql.org).

C H A P T E R 1 2 ■ A P P L I C A T I O N D E P L O Y M E N T 359

Listing 12-1. LightTPD Configuration File

server.modules = (
 "mod_rewrite",
 "mod_access",
 "mod_fastcgi",
 "mod_compress",
 "mod_accesslog")

Deny access to potentially dangerous files
url.access-deny = ("~", ".inc")

Deny access to URLs matching the specified regexp
In this case subversion files
$HTTP["url"] =~ "/\.svn/" {
 url.access-deny = ("")
}

Enable HTTPS/SSL
$SERVER["socket"] == "0.0.0.0:443" {
 ssl.engine = "enable"
 ssl.pemfile = "/u/apps/emporium/current/config/server.pem"
}

Listen on all network interfaces on port 80
server.port = 80
server.bind = "0.0.0.0"
server.pid-file = "/var/run/lighttpd.pid"

server.document-root = "/u/apps/emporium/current/public"
server.indexfiles = ("index.html", "dispatch.fcgi")
server.error-handler-404 = "/dispatch.fcgi"
server.errorlog = "/var/log/lighttpd/lighttpd_error.log"
server.tag = "Emporium Server 1.0"

server.username = "lighttpd"
server.groupname = "lighttpd"

accesslog.filename = "/var/log/lighttpd/lighttpd_access.log"

Four FastCGI processes running locally
fastcgi.server = (".fcgi" =>
 ("emporium-7000" => ("host" => "127.0.0.1", "port" => 7000)),
 ("emporium-7001" => ("host" => "127.0.0.1", "port" => 7001)),
 ("emporium-7002" => ("host" => "127.0.0.1", "port" => 7002)),
 ("emporium-7002" => ("host" => "127.0.0.1", "port" => 7002))
)
include "mimetypes.conf"

360 C H A P T E R 1 2 ■ A P P L I C A T I O N D E P L O Y M E N T

The syntax of the configuration file uses the following format:

option = value

Options are usually grouped into modules, such as server.port and accesslog.filename.
Supported value formats include strings, integers, booleans, arrays, and others.

■Note For more information about the LightTPD configuration file, see the wiki entries on the
supported configuration syntax and options, located at http://trac.lighttpd.net/trac/
wiki/Docs%3AConfiguration and http://trac.lighttpd.net/trac/wiki/
Docs%3AConfigurationOptions, respectively.

Let’s have a closer look at each section of the configuration file.

Module Configuration

The first line in Listing 12-1, server.modules, tells LightTPD which modules it should load and
enable at startup. Similar to Apache modules, LightTPD modules extend the base functionality
of LightTPD. In Listing 12-1, we enabled the following modules:

• mod_rewrite: Allows you to rewrite, or modify, the URL that was used to access a server
resource. For example, you could configure mod_rewrite so that requests for URLs end-
ing with .html are stripped of the .html suffix and processed by Ruby on Rails. For
example, /catalog/index.html is rewritten to /catalog/index.

• mod_access: Allows you to deny access to certain files that match a regular expression
pattern.

• mod_fastcgi: Used to communicate with external FastCGI processes.

• mod_compress: Adds support for deflate, gzip2, and bzip2 content compression.
Enabling content compression allows you to save bandwidth and makes it faster for the
browser to download the content.

• mod_accesslog: Logs each request to a file or other supported destination.

Each module is configured separately and adds a set of options that can be used in the
configuration file.

■Note See the module documentation for more information. You can find links for each module’s docu-
mentation at http://trac.lighttpd.net/trac/wiki/Docs.

C H A P T E R 1 2 ■ A P P L I C A T I O N D E P L O Y M E N T 361

Log File Configuration

LightTPD maintains an access log, an error log, and a PID file, which all tell you something
about the server’s status. Most system and application logs can be found in the /var/log direc-
tory, so a good place to keep the access and error logs is /var/log/lighttpd/. For LightTPD to
be able to write to these directories, you must first create the directories, and then change the
access rights, as follows:

$ sudo mkdir /var/log/lighttpd
$ sudo chgrp lighttpd /var/log/lighttpd
$ sudo chmod g+rw /var/log/lighttpd

The access log is where LightTPD keeps a log of all requests that have been made to the
server. Among other things, the access log is useful for generating usage reports with, for exam-
ple, AWStats (http://awstats.sourceforge.net/) and Webalizer (http://www.mrunix.net/
webalizer/). You tell LightTPD where to write the access log data with the accesslog.filename
setting in the configuration file (Listing 12-1). A typical entry in the access log might look like this:

127.0.0.1 www.emporium.com - [13/Aug/2006:07:45:45 +0000] "GET / ...

The LightTPD error log is specified with the server.errorlog setting in the configuration
file. The following are typical entries in this log:

2006-06-06 09:57:50: (log.c.133) server stopped
2006-06-06 09:58:19: (log.c.75) server started

The location of the PID file is specified with the server.pid-file setting in the configura-
tion file. The PID file is created by LightTPD at startup, and it contains the process ID of
LightTPD. The file should be located in the /var/run directory, along with PID files of other
processes.

Mime-Type Configuration

The last line in the configuration file (Listing 12-1), include "mimetypes.conf", tells LightTPD
to include the mime-type configuration file. This configures LightTPD so that it responds with
the correct Content-Type HTTP header matching the requested file. For example, the web
server sends the header Content-Type: application/pdf when a browser requests a PDF file
with the extension .pdf.

Save the configuration shown in Listing 12-2 in config/mimetypes.conf.

362 C H A P T E R 1 2 ■ A P P L I C A T I O N D E P L O Y M E N T

Listing 12-2. Mime-Type Configuration

mimetype.assign = (
 ".xpi" => "application/x-xpinstall",
 ".rdf" => "application/xml",
 ".xul" => "application/vnd.mozilla.xul+xml",
 ".pdf" => "application/pdf",
 ".sig" => "application/pgp-signature",
 ".spl" => "application/futuresplash",
 ".class" => "application/octet-stream",
 ".ps" => "application/postscript",
 ".torrent" => "application/x-bittorrent",
 ".dvi" => "application/x-dvi",
 ".gz" => "application/x-gzip",
 ".pac" => "application/x-ns-proxy-autoconfig",
 ".swf" => "application/x-shockwave-flash",
 ".tar.gz" => "application/x-tgz",
 ".tgz" => "application/x-tgz",
 ".tar" => "application/x-tar",
 ".zip" => "application/zip",
 ".mp3" => "audio/mpeg",
 ".m3u" => "audio/x-mpegurl",
 ".wma" => "audio/x-ms-wma",
 ".wax" => "audio/x-ms-wax",
 ".ogg" => "audio/x-wav",
 ".wav" => "audio/x-wav",
 ".gif" => "image/gif",
 ".jpg" => "image/jpeg",
 ".jpeg" => "image/jpeg",
 ".png" => "image/png",
 ".xbm" => "image/x-xbitmap",
 ".xpm" => "image/x-xpixmap",
 ".xwd" => "image/x-xwindowdump",
 ".css" => "text/css",
 ".html" => "text/html",
 ".htm" => "text/html",
 ".js" => "text/javascript",
 ".asc" => "text/plain",
 ".c" => "text/plain",
 ".conf" => "text/plain",
 ".text" => "text/plain",
 ".txt" => "text/plain",
 ".dtd" => "text/xml",
 ".xml" => "text/xml",
 ".mpeg" => "video/mpeg",
 ".mpg" => "video/mpeg",
 ".mov" => "video/quicktime",

C H A P T E R 1 2 ■ A P P L I C A T I O N D E P L O Y M E N T 363

 ".qt" => "video/quicktime",
 ".avi" => "video/x-msvideo",
 ".asf" => "video/x-ms-asf",
 ".asx" => "video/x-ms-asf",
 ".wmv" => "video/x-ms-wmv"
)

■Note You can also use the mime-type listing found in LightTPD’s configuration template
(doc/lighttpd.conf).

Access Configuration

Letting your web server blindly serve all files will most likely cause security problems in a pro-
duction environment. Your web server might serve files containing sensitive information like
backups created by vi and emacs or files used by Subversion. To deny access to these files, the
configuration file (Listing 12-1) defines two rules using url.access-deny: one for backups, as
defined in the LightTPD template, and one for Subversion files.

Later in this chapter, we will use Capistrano to deploy the application to production. By
default, Capistrano uses the Subversion checkout command when deploying the application
to the production machine. Using the Subversion checkout command, instead of the export
command, means that the deployment directory will contain .svn directories, which could be
served by your web server, if someone is smart enough to request them. Here is an example of
the information that can be found in .svn/entries:

<?xml version="1.0" encoding="utf-8"?>
<wc-entries
 xmlns="svn:">
<entry
 committed-rev="106"
 name=""
 committed-date="2006-04-11T21:07:20.659809Z"
 url="svn://127.0.0.1:3690/emporium/public"
 last-author="george"
 kind="dir"
 uuid="1612fdca-df0d-0410-9dbd-93b5c6b9c7f0"
 prop-time="2006-04-19T20:19:36.000000Z"
 revision="109"/>

As highlighted in the example, a hacker can find out the URL of your Subversion server and
the user that updated the file.

364 C H A P T E R 1 2 ■ A P P L I C A T I O N D E P L O Y M E N T

You can prevent access to all files and folders named .svn using the following rule in the
lighttpd configuration file (as described in http://hivelogic.com/articles/2006/04/30/
preventing_svn_exposure):

$HTTP["url"] =~ "/\.svn/" {
 url.access-deny = ("")
}

SSL Configuration

The communication between a browser and an e-commerce site needs to be secured through
encryption to prevent theft of sensitive information like credit card numbers and login creden-
tials. The SSL protocol is the de facto standard for secure communication on the Internet. SSL
uses public-key encryption and requires that you acquire an SSL certificate from a certified
issuer like VeriSign (www.verisign.com) or Thawte (www.thawte.com). To apply for an SSL cer-
tificate, go to the issuer’s website and select the appropriate SSL certificate.

The part of the configuration file (Listing 12-2) that enables SSL is shown here:

Enable HTTPS/SSL
$SERVER["socket"] == "0.0.0.0:443" {
 ssl.engine = "enable"
 ssl.pemfile = "/u/apps/emporium/current/config/server.pem"
}

The IP and port is specified with $SERVER["socket"]. The HTTPS port should always be
443. Note that specifying 0.0.0.0 configures LightTPD to listen to all network interfaces, which
might not be desired. Instead, you could set it to the public IP of your server. The ssl.pemfile
configuration property should point to your SSL certificate file that you received from
the issuer.

Before starting LightTPD, you need to acquire the SSL certificate or remove the SSL part
from the configuration; otherwise, you will get an error when you try to start LightTPD.

■Tip If you don’t want to buy a certificate immediately, you can generate a self-signed SSL certificate,
which is valid for 365 days, with this OpenSSL command: openssl req -new -x509 -keyout
server.pem -out server.pem -days 365 –nodes. A self-signed certificate is not very useful in a
production environment, because users will receive a warning when accessing your site, saying that the cer-
tificate was not created by a trusted issuer. However, such a certificate is handy for development and testing
purposes.

C H A P T E R 1 2 ■ A P P L I C A T I O N D E P L O Y M E N T 365

FastCGI Module Configuration

In the configuration file (Listing 12-1), the FastCGI module is configured to proxy requests to
four FastCGI processes running on different ports on the same machine as the web server, as
shown here:

fastcgi.server = (".fcgi" =>
 ("emporium-7000" => ("host" => "127.0.0.1", "port" => 7000)),
 ("emporium-7001" => ("host" => "127.0.0.1", "port" => 7001)),
 ("emporium-7002" => ("host" => "127.0.0.1", "port" => 7002)),
 ("emporium-7002" => ("host" => "127.0.0.1", "port" => 7002))
)

Scaling horizontally, by adding more application servers to your environment, is easy with
FastCGI—just install the new machines and add them to the list.

The FastCGI processes are started by the spawner script located in the script/process
directory. We will show you how to manage FastCGI processes later in this chapter, in the sec-
tions about manual and automated deployment.

Creating the Production Database
Before deploying and starting the application, you need to create the production database.
Without it, your application wouldn’t work and Rails wouldn’t even start in production mode.
Log in to the remote server and execute the following commands:

$ mysql –uroot
create database emporium_production;
grant select,insert,update,delete,create,drop on ➥

emporium_production.* to 'emporium'@'localhost' identified by 'hacked';
flush privileges;

This creates the emporium_production database and the MySQL user that is used when
connecting to the database. Notice that we are not granting all rights to the user, as was the
case with the development and test databases that we created in earlier chapters. Instead, we
are granting only the minimum privileges required by the application: select, insert, update,
delete, create, and drop. It’s not a good idea to give grant and show database privileges, for
example, since they could be used by a hacker to gain access to other databases.

366 C H A P T E R 1 2 ■ A P P L I C A T I O N D E P L O Y M E N T

Next, update the database configuration file (config/database.yml) as shown here:

development:
 adapter: mysql
 database: emporium_development
 username: emporium
 password: hacked
 encoding: utf8
test:
 adapter: mysql
 database: emporium_test
 username: emporium
 password: hacked
 encoding: utf8
production:
 adapter: mysql
 database: emporium_test
 username: emporium
 password: hacked
 encoding: utf8

Finally, run the migrations by executing the migration scripts:

rake db:migrate RAILS_ENV=production

We are now ready to deploy the application to production. We’ll first describe how to
deploy it manually, so that you can appreciate the benefits of using Capistrano to automate
the deployment process. It’s also good to do a manual deployment first to verify that every-
thing is set up and configured correctly.

Deploying the Application Manually
Deploying an application to your production server manually requires the following steps:

• Copy the application to the production environment.

• Create users and groups for the owners of the LightTPD, FastCGI, and spawner
processes.

• Start LightTPD.

• Start the FastCGI processes.

As you’ll see, the procedure isn’t difficult, but there are many details to handle, and it is
error-prone.

C H A P T E R 1 2 ■ A P P L I C A T I O N D E P L O Y M E N T 367

Copying the Application
First, you need to copy the application to the production environment. We are assuming that
you have been using Subversion during the development of the Emporium application. This
means the source code is located in the Subversion repository, and that you can deploy the
code to production by using the Subversion checkout command:

$ svn co svn://localhost/emporium/trunk /u/apps/emporium/current/

This checks out the latest version of your project to /u/apps/emporium/current/.
If you don’t have Subversion installed on the production machine, you can execute the

following command to install it:

$ sudo apt-get install subversion

With Subversion installed, you can create a new repository and import the source or copy
over your previous repository. Then start the Subversion server with the following command:

$ svnserve -d -r /home/george/subversion/repository --listen-host 127.0.0.1

This starts the svnserve daemon on the local machine and uses the directory /home/
george/subversion/repository as the repository. svnserve is easy to use, but it is not
capable of handling large amounts of traffic. If you need to handle a lot of traffic, use Apache
and mod_dav instead.

■Note While deploying the application, you are working on two machines: the local workstation and the
remote server. Whenever you edit or create a file, either locally or on the server, remember to commit
the changes to Subversion. Capistrano, which we will demonstrate later in this chapter, will use the latest ver-
sion found in Subversion when deploying to production.

You could also use SCP, which is distributed with the OpenSSH package, to copy the files
from your local machine to the production server:

$ scp -r /home/george/projects/emporium \
george@production_machine:/u/apps/emporium/current/

Creating Users and Groups
We’ll create two different users and groups: one will be the owner of the LightTPD process,
and the other will be the owner of the FastCGI and spawner processes. (The spawner is a sepa-
rate process running in the background that makes sure that the specified amount of FastCGI
processes is running at all times.) Log in to the remote machine and execute the following
commands:

$ sudo addgroup rails
$ sudo useradd -g rails -d /home/lighttpd rails

368 C H A P T E R 1 2 ■ A P P L I C A T I O N D E P L O Y M E N T

This creates the rails user and group, and sets the home directory to /home/rails.
Next, create the home directory and set the access rights with the following commands:

$ sudo mkdir /home/rails
$ sudo chown rails /home/rails
$ sudo chgrp rails /home/rails

You should also add the rails user to the list of sudoers by executing the visudo
command:

$ sudo visudo

This allows the user to gain administrator rights through the sudo command. The visudo
command opens the file /etc/visudoers in an editor. Add the following to the end of that file:

%rails ALL=(ALL) ALL

We also need to create the user and group that will own the LightTPD processes. This is
done by executing the following commands on the production machine:

$ sudo addgroup lighttpd
$ sudo useradd -g lighttpd -d /home/lighttpd lighttpd

The first command creates the lighttpd group. The second creates a user named
lighttpd that belongs to the lighttpd group. We also specify the home directory for the
new user account, which doesn’t exist yet. Create this directory and give the appropriate rights
to it by executing the following commands:

$ sudo mkdir /home/lighttpd
$ sudo chown lighttpd /home/lighttpd
$ sudo chgrp lighttpd /home/lighttpd

Note that the user that LightTPD runs under is specified in the configuration file with the
server.username and server.groupname options.

You should also set a sensible password for both the lighttpd and rails users using the
passwd command, as shown here:

$ sudo passwd rails

Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

Starting LightTPD
Now that we have the project on the production machine, we can start LightTPD by using the
lighttpd command and specifying the location of the configuration file:

$ sudo lighttpd -f /u/apps/emporium/current/config/lighttpd-production.conf

C H A P T E R 1 2 ■ A P P L I C A T I O N D E P L O Y M E N T 369

We start LightTPD using the sudo command because the server needs to bind to the
restricted port 80. You can verify that LightTPD is running by executing the following
command:

$ ps -ef|grep lighttpd

lighttpd 2325 1 0 13:53 ? 00:00:00 lighttpd -f /u/apps/emporium/…

Note that the process is running under the lighttpd user we just created, even though we
started it using the sudo command and another user. This is because we set the server.username
and server.groupname parameters to lighttpd in the lighttpd configuration file.

Starting FastCGI Processes
Before starting the FastCGI processes, we need to change the group ownership of the applica-
tion directory to rails with the following command:

$ sudo chgrp -R rails /u/apps/emporium/current/
$ sudo chown -R rails /u/apps/emporium/current/

Next, start the FastCGI processes (and the application) by executing the following
commands:

$ su - rails

Password:

$ /u/apps/emporium/current/script/process/spawner -p 7000 -i 4

Checking if something is already running on port 7000...NO
 Starting FCGI on port: 7000
 spawn-fcgi.c.190: child spawned successfully: PID: 4289
Checking if something is already running on port 7001...NO
 Starting FCGI on port: 7001
 spawn-fcgi.c.190: child spawned successfully: PID: 4291
Checking if something is already running on port 7002...NO
 Starting FCGI on port: 7002
 spawn-fcgi.c.190: child spawned successfully: PID: 4293
Checking if something is already running on port 7003...NO
 Starting FCGI on port: 7003
 spawn-fcgi.c.190: child spawned successfully: PID: 4295

370 C H A P T E R 1 2 ■ A P P L I C A T I O N D E P L O Y M E N T

The spawner script automatically starts the number of FastCGI processes specified with
the i parameter. As you can see from the example, the spawner script starts four processes lis-
tening on ports 7000, 7001, 7002, and 7004.

Capistrano expects to find a “spinner” script that it can execute to start (spawn) your
application, so save the following in scripts/spin:

/u/apps/emporium/current/script/process/spawner -p 7000 -i 4 --repeat=60

Notice that we added the repeat option, which keeps the spawner process running. The
spawner checks (every 60 seconds) that all FastCGI processes are running, and starts them
again if they crash.

■Note Remember to make the scripts executable by running chmod ug+x script/process/*, before
checking in the files to Subversion. Subversion will preserve the access rights after adding the files to source
control. This means that the scripts can be executed when the code is checked out by Capistrano on the pro-
duction server.

Next, run the spin script:

$ scripts/spin

Verify that there are one lighttpd process, a spawner process, and four FastCGI ruby pro-
cesses up and running with the following command:

$ ps -ef | grep 'ruby\|lighttpd'

lighttpd 2325 1 0 13:53 ? 00:00:00 lighttpd -f ➥

/u/apps/emporium/current/config/lighttpd-production.conf
rails 4557 1 0 15:03 ? 00:00:00 ruby ➥

 /u/apps/emporium/current/script/process/spawner ➥

-p 7000 -i 4 --repeat=10
rails 4559 1 0 15:03 ? 00:00:01 /usr/bin/ruby1.8 ➥
/u/apps/emporium/current/public/dispatch.fcgi
rails 4561 1 0 15:03 ? 00:00:01 /usr/bin/ruby1.8 ➥

/u/apps/emporium/current/public/dispatch.fcgi
rails 4563 1 0 15:03 ? 00:00:01 /usr/bin/ruby1.8 ➥

 /u/apps/emporium/current/public/dispatch.fcgi
rails 4565 1 0 15:03 ? 00:00:01 /usr/bin/ruby1.8 ➥

/u/apps/emporium/current/public/dispatch.fcgi

The first column in the output tells you the owner of the process. You can now try
to access your production environment by opening one of Emporium’s pages, such as
http://production_server/catalog, in your browser. You should see the Emporium
catalog load. If not, examine the Rails and LightTPD error logs to see what went wrong.

C H A P T E R 1 2 ■ A P P L I C A T I O N D E P L O Y M E N T 371

Phew! Remembering all of the commands required to deploy a Rails application is tough.
This is where Capistrano comes in handy. In the next section, we’ll automate the deployment
with Capistrano.

Automating Deployment
Capistrano is a tool aimed at automating deployment tasks, but it can also do a lot more.

Capistrano allows you to execute almost any command simultaneously on multiple remote
servers. For example, it can restart a web server, create a database, deploy your application,
and start the FastCGI dispatchers at the same time on one or more remote servers. Instead of
remembering a long series of commands, you can deploy a new version of your application
with just one command: rake deploy. This makes it easy to deploy new versions or simple bug
fixes. Capistrano does everything in transactions and supports rollback, so that if something
fails on one server, the changes on all servers are rolled back. Capistrano also lets you roll back
to the previous version of an application after deployment (by running cap rollback).

Capistrano requires that you have an SSH server running on your remote server. (Setting
up an SSH server was discussed earlier in this chapter.) Capistrano first logs in to the remote
server using SSH, and then issues shell commands, which are part of a user-defined deploy-
ment script, over the secure connection.

Capistrano uses Portable Operating System Interface (POSIX) shell commands, so the
operating system on the remote server must be POSIX-based. Linux, Mac OS X, and Unix sys-
tems fulfill this requirement, but Windows doesn’t.

Installing Capistrano
You can install Capistrano with the RubyGems package system. Simply execute gem install
capistrano on the command line:

$ sudo gem install capistrano --include-dependencies

Note that Capistrano will ask you for the password when it establishes the connection to
the remote server. By default, Capistrano shows the password in clear text as you type, which
is not a good idea if Kevin Mitnick is standing behind you. To hide the password, install the
termios RubyGem package with the following command:

$ sudo gem install termios

With Capistrano installed, you’re ready to prepare for deployment. The first step is to cre-
ate the script, or deployment recipe.

Creating the Capistrano Deployment Recipe
Capistrano scripts are called deployment recipes and are written in a custom Ruby domain-
specific language. Although Capistrano allows you to use the full power of the Ruby language,
you probably won’t need it, as Capistrano comes with a set of configurable built-in tasks that
can be used for the most common requirements. Let’s take a quick look at the components of
a deployment recipe before we create the Emporium deployment recipe.

372 C H A P T E R 1 2 ■ A P P L I C A T I O N D E P L O Y M E N T

Understanding Deployment Recipe Components

The deployment recipe consists of tasks, roles, and variables, which can be customized for
your production environment.

Roles

Capistrano allows you to assign roles to servers. For example, all servers running MySQL are
assigned the db role, servers running LightTPD are assigned the web role, and the servers run-
ning the FastCGI processes are assigned the app role.

Roles allow you to target tasks to be run only on servers having a specific role. Roles can be
defined in the deployment recipe, as shown here:

role :web, "www.emporium.com"
role :app, "app1.emporium.com", "app2.emporium.com"
role :db, "db.emporium.com"

Variables

The lead developer of Capistrano and Rails core team member, Jamis Buck, embraced
the familiar “convention over configuration” rule when writing Capistrano. For example,
Subversion is the default version control system, but you can change it to any of the supported
ones by modifying a variable in the deployment recipe. You can also declare your own vari-
ables and use them in custom tasks. For example, the following lines set the application name
to Emporium and the Subversion repository URL to svn://localhost/emporium/trunk.

set :application, "Emporium"
set :repository, svn://localhost/emporium/trunk

Capistrano comes with a set of predefined variables. The following are three of the more
commonly used variables:

• application: The name of your application, such as Emporium.

• repository: The location of your application’s source managed by a version control sys-
tem, such as a Subversion URL: svn://localhost/emporium/trunk.

• user: The name to use when logging in to the remote server. Note that Capistrano uses
the same name when logging in to all servers. This means that the user must exist on all
servers.

Tasks

Capistrano has a set of built-in tasks that can be used to perform work on the remote server.
The deploy task, for example, installs and deploys a new version of your application on the
remote machine. The deploy task itself calls the restart task to restart FastCGI processes and
other tasks to complete the deployment.

C H A P T E R 1 2 ■ A P P L I C A T I O N D E P L O Y M E N T 373

You can also add your own custom tasks to the deployment recipe. Tasks are written in
Ruby. For example, you could create a task that runs the mysqldump command on the remote
machine, as shown in this example:

task :backup_production_database do
 run "mysqldump –uemporium –phacked emporium_production >> ➥

/var/emporium/production_backup.sql"
end

You can get a list of all available tasks by executing rake remote:show_tasks.
A task is run on all servers by default. Specify roles to run a task on a specific server or

group of servers.

Generating the Deployment Recipe

The first thing you need to do is create the deployment recipe, by applying Capistrano to your
application. To do this, execute the cap --apply-to command on your local machine:

$ cap --apply-to /home/george/project/emporium Emporium

 exists config
 create config/deploy.rb
 exists lib/tasks
 create lib/tasks/capistrano.rake

The command creates two files: deploy.rb is your deployment recipe, and capistrano.rake
is an extension to rake that allows you to run all the tasks in your deployment recipe with rake. If
you run rake -T now, you can see that Capistrano added a lot of new tasks, some of which are
shown here:

$ rake -T

rake remote:cleanup
rake remote:cold_deploy
rake remote:deploy
rake remote:deploy_with_migrations
rake remote:diff_from_last_deploy
rake remote:disable_web
rake remote:enable_web

374 C H A P T E R 1 2 ■ A P P L I C A T I O N D E P L O Y M E N T

Modifying the Deployment Recipe

Now that you have the deployment recipe, you can start modifying it to fit your environment.
First, set the required variables. Open config/deploy.rb in your editor and change the
required variables section as shown here:

===
REQUIRED VARIABLES
===
set :application, "emporium"
set :repository, "svn://localhost/emporium/trunk"

The application variable is used when creating the directory structure. The repository
variable should be set to point to your Subversion repository.

Next, define roles. Recall that we have the web, application, and database servers deployed
on the same machine, so define the three different roles shown in this example (remember to
change the IP address to fit your environment):

===
ROLES
===
role :web, "192.168.0.1"
role :app, "192.168.0.1"
role :db, "192.168.0.1", :primary => true

We can now target a command to be run on the web, application, or database server. We
can also add servers to the environment, and the deployment of the application would still
remain the same; only the configuration would change. For example, to add two more applica-
tion servers to the environment, we might change the configuration as follows:

role :app, "192.168.0.1", "192.168.0.11", "192.168.0.12"

Also note that we have set the one and only database server to be the primary server, so
that we can run migrations on it.

Our particular production environment requires some modifications to the Capistrano
default settings, so change the optional settings section as shown here:

===
OPTIONAL VARIABLES
===
set :user, "rails" # defaults to the currently logged in user
set :spinner_user, 'rails'
set :svn_username, "svn"
set :svn_password, "hacked"

C H A P T E R 1 2 ■ A P P L I C A T I O N D E P L O Y M E N T 375

By default, Capistrano will take the username that you used to log in to the machine you
are running Capistrano from and use it to log in to the remote system. So, for example, if you
logged in as george to your workstation, Capistrano would use that username. You usually
want to have one dedicated user for deploying applications to production, and this is most
likely not the same as your own username. By specifying the user variable, we are telling
Capistrano to use the rails user, which we created earlier, to log in to the remote system.

Recall that the FastCGI processes will be started by the spinner script (script/spin) that
we created earlier. By default, Capistrano is configured to start the spinner script with the app
username. But we also want the spinner process to run as the rails user, so we have added
spinner_user to the optional variables section.

svn_username and svn_password are used by Capistrano to log in to the Subversion repos-
itory when checking out the code. Change them as appropriate.

Running the Setup Task
To prepare the production server for deployment, we’ll use the setup task, which creates the
required directory structure. To simulate a deployment to a clean environment, first delete
the /u directory we created earlier:

$ sudo rm -rf /u

Then kill any Ruby or LightTPD processes that might be running with the following
commands:

$ sudo killall -9 /usr/bin/ruby1.8
$ sudo killall -9 lighttpd

By default, Capistrano deploys your application to the /u directory. This directory can
be created only by the root user, which means the deployment will fail if you run it now. To fix
this, we’ll use a Capistrano before filter that creates the directory and then changes the access
rights. Add the following task to the end of the deployment recipe (config/deploy.rb):

task :before_setup do
 sudo "mkdir -m 770 /u"
 sudo "chgrp rails /u"
end

Note that we use the sudo command to create the directory. Earlier, we also added the
rails user to the sudoers list.

Now run the setup task in the root of the application directory:

$ cap -a setup

376 C H A P T E R 1 2 ■ A P P L I C A T I O N D E P L O Y M E N T

 loading configuration /usr/lib/ruby/gems/1.8/gems/capistrano- ➥

1.1.0/lib/capistrano/recipes/standard.rb
 loading configuration ./config/deploy.rb
 * executing task before_setup
 * executing "sudo mkdir -m 770 /u"
 servers: ["192.168.0.1"]
Password:
 [192.168.0.1] executing command
 command finished
 * executing "sudo chgrp rails /u"
 servers: ["192.168.0.1"]
 [192.168.0.1] executing command
 command finished
 * executing task setup
 * executing "mkdir -p -m 775 /u/apps/emporium/releases ➥

/u/apps/emporium/shared/system &&\n ➥

mkdir -p -m 777 /u/apps/emporium/shared/log"
 servers: ["192.168.0.1"]
 [192.168.0.1] executing command
 command finished

By inspecting the output of the command, you can see that it executes the before_setup
task we added. If you log in to the remote machine, you will notice that Capistrano created the
following directory structure:

$ tree /u

/u
`-- apps
 `-- emporium
 |-- releases
 `-- shared
 |-- log
 `-- system

6 directories, 0 files

Note that you need to run the setup task only once.

Deploying to Production
Now that we have run the setup task, we can continue and start the Emporium application
on the production server. We could check out the source from Subversion and execute the
spawner script manually, but instead, we’ll introduce you to the cold_deploy Capistrano task.

C H A P T E R 1 2 ■ A P P L I C A T I O N D E P L O Y M E N T 377

The cold_deploy task does exactly what we need: first it executes the Capistrano deploy
task and then the spawner task. Recall that the deploy task checks out the source code on the
remote machine and the spinner task starts the FastCGI processes. Execute rake as
shown here:

$ rake remote:cold_deploy

 (in /home/george/projects/emporium)
 loading configuration /usr/lib/ruby/gems/1.8/gems/capistrano- ➥

1.1.0/lib/capistrano/recipes/standard.rb
 loading configuration ./config/deploy.rb
 * executing task cold_deploy
 * executing task deploy
 ** transaction: start
 * executing task update_code
 * querying latest revision...
 * executing "if [[! -d /u/apps/emporium/releases/20060813212006]]; ➥

then\n svn co --username svn -q -r7
svn://localhost/emporium/trunk /u/apps/emporium/releases/20060813212006 ➥

&&\n (test -e /u/apps/emporium/revi
sions.log || touch /u/apps/emporium/revisions.log && chmod 666 ➥

/u/apps/emporium/revisions.log) && echo `date +\"%Y-%m-%d
 %H:%M:%S\"` $USER 7 20060813212006 >> /u/apps/emporium/revisions.log;\n ➥

 fi"
 servers: ["192.168.0.1"]
Password:
 [192.168.0.1] executing command
 command finished
 * executing "rm -rf /u/apps/emporium/releases/20060813212006/log ➥

 /u/apps/emporium/releases/20060813212006/public/syste
m &&\n ln -nfs /u/apps/emporium/shared/log ➥

/u/apps/emporium/releases/20060813212006/log &&\n ➥

ln -nfs /u/apps/empor
ium/shared/system /u/apps/emporium/releases/20060813212006/public/system"
 servers: ["192.168.0.1"]
 [192.168.0.1] executing command
 command finished
 * executing task symlink
 * executing "ls -x1 /u/apps/emporium/releases"
 servers: ["192.168.0.1"]
 [192.168.0.1] executing command
 command finished
 * executing "ln -nfs /u/apps/emporium/releases/20060813212006 ➥

/u/apps/emporium/current"
 servers: ["192.168.0.1"]
 [192.168.0.1] executing command
 command finished

378 C H A P T E R 1 2 ■ A P P L I C A T I O N D E P L O Y M E N T

 ** transaction: commit
 * executing task restart
 * executing "sudo /u/apps/emporium/current/script/process/reaper"
 servers: ["192.168.0.1"]
 [192.168.0.1] executing command
 ** [out :: 192.168.0.1] Couldn't find any process matching: ➥

/u/apps/emporium/current/public/dispatch.fcgi
 command finished
 * executing task spinner
 * executing "sudo -u rails /u/apps/emporium/current/script/spin"
 servers: ["192.168.0.1"]
 [192.168.0.1] executing command
 command finished

Capistrano will also restart existing FastCGI processes with the reaper script, as you can
see from the output of the rake command.

Next, log in to the remote machine and use the tree command to display the directory
structure created by Capistrano.

$ tree /u

/u
`-- apps
 `-- emporium
 |-- current -> /u/apps/emporium/releases/20060516214952
 |-- releases
 | `-- 20060516214952
 |-- revisions.log
 `-- shared
 |-- log
 `-- system

The apps directory contains a separate directory for all applications that have been
deployed. Now there’s only one directory for Emporium, which contains a subdirectory named
releases.

The releases directory is where your application is deployed into a directory named after
the time and date the build was created. The releases directory is not referred to directly by
scripts; instead, they refer to the symbolic link current. The current link is updated by the
deploy task and points to the latest version of your application.

The next time you deploy your application, you can run rake deploy instead of rake
cold_deploy.

C H A P T E R 1 2 ■ A P P L I C A T I O N D E P L O Y M E N T 379

■Note You should configure the Ferret search engine (introduced in Chapter 4) to store the index
outside your application directory (for example, /u/apps/emporium/shared). This is because Capistrano
deploys your application to a different directory each time you perform a deployment. If the index were in the
application directory, Ferret wouldn’t be able to find it, and would create a new, empty one. One option is to
put the indices in shared/index, and create an after_deploy hook that creates a symlink from
current/index to shared/index.

Capistrano also has a built-in task that you can use for running database migrations dur-
ing deployment on the remote machine. This means that you don’t need to create the database
schema yourself, as you do when you deploy your application manually. Use the following
command to run migrations along with the deployment:

$ rake remote:deploy_with_migrations

This checks out the latest version of the source on the remote machine. After the checkout
has completed, rake runs the migrations, which create the Emporium database.

Starting LightTPD
The last step we need to perform is to start up LightTPD, which acts as a reverse proxy for the
FastCGI processes. Again, we’ll create a new task in our deployment recipe to save us the trou-
ble of having to manually log in to the remote server(s) and execute the command each time we
want to start the web server.

Add the following task to the deployment recipe (config/deploy.rb):

task :start_lighttpd, :roles => 'web' do
 sudo "lighttpd -f /u/apps/emporium/current/config/lighttpd-production.conf"
end

Notice that we have told Capistrano to run the task only on servers having the web role.
Next, run the task by executing the following command:

$ cap -a start_lighttpd

 loading configuration /usr/lib/ruby/gems/1.8/gems/capistrano- ➥

1.1.0/lib/capistrano/recipes/standard.rb
 loading configuration ./config/deploy.rb
 * executing task start_lighttpd
 * executing "sudo lighttpd -f ➥

/u/apps/emporium/current/config/lighttpd-production.conf"
 servers: ["192.168.0.1"]
Password:
 [192.168.0.1] executing command
 command finished

380 C H A P T E R 1 2 ■ A P P L I C A T I O N D E P L O Y M E N T

You should see the script complete successfully.

■Tip You should need to start LightTPD web server only once. Rebooting the machine will, of course, kill
your processes, so remember to create a start script that runs at reboot and that starts LightTPD and the
spawner process.

Open Emporium in your browser and do a quick test. You shouldn’t see any errors, which
means that you have completed the deployment.

Before we wrap up this chapter, we should tell you that FastCGI processes are known
to start acting crazy once in a while. The only option, usually, is to restart the processes.
This is one of the reasons why you should install a system monitoring tool like Nagios
(http://nagios.org/) or monit (www.tildeslash.com/monit/). These tools help you notice
when things go bad—not only with FastCGI, but also with other processes and protocols.

Summary
In this chapter, you learned how to set up a real-world production environment. We showed
you how to install LightTPD and FastCGI by compiling from source. We also explained how to
configure LightTPD for use in a production environment. Then we showed you how to deploy
an application manually. Finally, you saw how to automate the deployment process with
Capistrano, which makes your life as a developer easier and drastically lowers the barrier for
deploying new features into production (at least for procrastinators).

In the next chapter, we’ll show you how to tune an application’s performance.

381

■ ■ ■

C H A P T E R 1 3

Performance Optimization

We now have a working application, and people are already rambling in to shop at the
Emporium online store. While George is very happy that the money is flowing in, he has
noticed that the site is behaving less responsively lately.

Here, we will look at techniques for optimizing the application. This chapter is not about
specific functionality in the application, so we won’t tell it in the form of user stories. Neither
do we use TDD here, since we’re not really developing anything.

Performance and Scaling
Recently, the terms performance and scaling have been used interchangeably within the con-
text of web development. Actually, they don’t mean the same thing.

Performance means how many concurrent users can use a web application and still
consider it working fast enough. The “fast enough” part depends on the application and its use.

Scaling, on the other hand, is a totally different beast. To paraphrase the creator of
Mongrel, Zed Shaw (http://www.oreillynet.com/ruby/blog/2006/05/post.html), scaling
should be more analogous to “resource-expandable,” meaning that you can start with a mod-
erate hardware and software stack, and easily expand it so that the application is snappy, even
if it gets Slashdotted.

An often-heard argument against Rails is that it doesn’t scale. People stating this often
assume that scaling and performance are the same thing, and really mean that Rails is slow.
Although Ruby as an interpreted, dynamic language is not among the fastest programming
languages, that doesn’t mean Rails as a web framework is slow. The fact that 37signals ran
Basecamp with up to tens of thousands of customers on a single box without any caching
whatsoever should be enough to prove that Rails is fast enough for most uses.

There is nothing in Rails that would make it inherently hard to scale (scale as in being eas-
ily “resource-expandable”)—quite the contrary. Rails uses shared nothing architecture similar
to that used by many very high-traffic websites like Google and Livejournal. Shared nothing is
a distributed architecture consisting of independent nodes without a single point of conten-
tion. In Rails, this means that you can scale very easily by adding new application servers. If the
pages are not rendered fast enough by one server, add another server next to it. Load balance
requests between the two, and you have roughly doubled the performance of the application
(depending on the database performance).

382 C H A P T E R 1 3 ■ P E R F O R M A N C E O P T I M I Z A T I O N

Measuring Performance
An old saying goes, “You can’t manage what you don’t measure.” You need to know what to
optimize in order to optimize right things.

We have a plethora of options for measuring the performance of a Rails application. Here,
we will look at what the log files can tell us, and then try out the Rails Analyzer tool set.

Checking the Log File
To use the simplest way to “profile” your application, you don’t need any extra tools. Just take
a look at the development.log file in the log directory of your application. Here is sample output
of loading the show page for a book:

Processing CatalogController#show (for 127.0.0.1 at 2006-09-27 23:45:30) [GET]
 Session ID: 83bd38942bba92536d89eabe192877a4
 Parameters: {"action"=>"show", "id"=>"17",
"controller"=>"catalog"}
 [4;36;1mCart Load (0.000750) [0m [0;1mSELECT *
FROM carts WHERE (carts.id = 2) LIMIT 1 [0m
 [4;35;1mBook Load (0.007462) [0m [0mSELECT *
FROM books WHERE (books.id = '17') LIMIT 1 [0m
 [4;36;1mBook Columns (0.000859) [0m [0;1mSHOW
FIELDS FROM books [0m
Rendering within layouts/application
Rendering catalog/show
 [4;35;1mJoin Table Columns (0.084852) [0m [0mSHOW
FIELDS FROM authors_books [0m
 [4;36;1mAuthor Load (0.001258) [0m [0;1mSELECT *
FROM authors INNER JOIN authors_books ON authors.id =
authors_books.author_id WHERE (authors_books.book_id = 17) [0m
 [4;35;1mAuthor Columns (0.000625) [0m [0mSHOW FIELDS
FROM authors [0m
 [4;36;1mCart Columns (0.000682) [0m [0;1mSHOW FIELDS
FROM carts [0m
 [4;35;1mCartItem Load (0.001169) [0m [0mSELECT * FROM
cart_items WHERE (cart_items.cart_id = 2) [0m
Rendered cart/_cart (0.08493)
Completed in 1.78054 (0 reqs/sec) | Rendering: 0.17748 (9%)
| DB: 0.09766 (5%) | 200 OK [http://localhost/catalog/show/17]

From the output, you can see the times it took to run individual SQL queries. The final
lines show a summary of the whole action.

Here, we don’t see any glaring performance hogs. However, if a single database query took
considerably more time than others, it would be a good starting point for optimization.

Note that only the development environment outputs this much detail in the log file.

C H A P T E R 1 3 ■ P E R F O R M A N C E O P T I M I Z A T I O N 383

Using Rails Analyzer
The Robot Co-op, the creators of the popular 43things.com, 43places.com, and 43people.com,
has released an impressive set of tools for analyzing the performance of a Rails application. The
tool set is called Rails Analyzer and can be found at http://rails-analyzer.rubyforge.org/.

Rails Analyzer consists of four independent parts:

• The Production Log Analyzer can be used to analyze Rails log files. It produces a report
that tells which actions are the most popular and which take the most time to render. It
is an invaluable tool for measuring the performance of those actions that are used most
often in the production setting.

• The Action Profiler is used to profile individual actions. Run it as the next step after using
the Production Log Analyzer to find the slow actions. With the Action Profiler, you can
drill down to the action and see where it is taking its time.

• Rails Analyzer Tools is a collection of tools for monitoring and benchmarking a Rails appli-
cation. The tools included are bench for benchmarking a particular page, crawler for
crawling a page and requesting all the local linked files on that page, and rails_stat for
pinging the load status of a live production Rails application.

• SQL Dependency Grapher can be used to visualize the frequency of table dependencies
in a Rails application. (We won’t cover this part of the tool set in this chapter.)

Let’s see how Rails Analyzer can help us. First, log on to the production server and install
the needed gems:

$ sudo gem install rails_analyzer_tools production_log_analyzer action_profiler

Now we can get started by setting up for the Production Log Analyzer and then running it.

Using the Production Log Analyzer

The Production Log Analyzer can’t use the standard Rails log format because it needs a log line
to be able to be clearly identified with a single action. So, we need to substitute the logger with
SyslogLogger, a class provided by the Rails Analyzer Tools gem. Note that this works only on
Linux and FreeBSD. If you use some other production environment, consult the Rails Analyzer
homepage for more information.

Add the following lines to config/environments/production.rb:

require 'analyzer_tools/syslog_logger'
RAILS_DEFAULT_LOGGER = SyslogLogger.new

This tells Rails to use the replacement logger when in production.
Next, add the following lines to /etc/sysconf.log:

!rails
 . /var/log/production.log

This tells syslog to log all Rails-related entries to your own production log file.

384 C H A P T E R 1 3 ■ P E R F O R M A N C E O P T I M I Z A T I O N

Now create the file and restart the syslog daemon:

sudo touch /var/log/production.log
sudo killall -HUP syslogd

Restart the Rails application, and it should be logging to /var/log/production.log. Con-
firm this by tailing the log file (with tail -f, for example) and loading a page on the site. You
should see something like the following show up at the end of the output:

Sep 28 00:46:22 emporium rails[6975]: Rendered cart/_cart (0.09150)
Sep 28 00:46:22 emporium rails[6975]: Completed in 0.53988
(1 reqs/sec) | Rendering: 0.37126 (68%) | DB: 0.05668 (10%) | 200
OK [http://emporium.com/catalog/show/17]

Now you know that the logging is working in the way it needs to for the Production Log
Analyzer.

Let’s wait overnight and see how much traffic George gathers on the site. (If you are eager
to get going, write a little script that loads the pages randomly, or go the manual route by
browsing around the site a few times.)

Woke up already? Good, not bad for a hacker. Let’s get back to work. Run the Production
Log Analyzer to see what happened while we were asleep:

$ sudo pl_analyze /var/log/production.log

Request Times Summary: Count Avg Std Dev Min Max
ALL REQUESTS: 266 0.115 0.344 0.000 2.066

Unknown: 197 0.000 0.000 0.000 0.000
CatalogController#index: 28 1.047 0.378 0.550 2.066
CatalogController#show: 21 0.034 0.113 0.005 0.540
AboutController#index: 20 0.023 0.016 0.013 0.077

Slowest Request Times:
 CatalogController#index took 2.066s
 CatalogController#index took 1.750s
 CatalogController#index took 1.654s
 CatalogController#index took 1.504s
 CatalogController#index took 1.476s
 CatalogController#index took 1.392s
 CatalogController#index took 1.388s
 CatalogController#index took 1.237s
 CatalogController#index took 1.222s
 CatalogController#index took 1.219s

--
--

C H A P T E R 1 3 ■ P E R F O R M A N C E O P T I M I Z A T I O N 385

DB Times Summary: Count Avg Std Dev Min Max
ALL REQUESTS: 266 0.006 0.019 0.000 0.165

Unknown: 197 0.000 0.000 0.000 0.000
CatalogController#index: 28 0.052 0.032 0.024 0.165
CatalogController#show: 21 0.003 0.012 0.000 0.057
AboutController#index: 20 0.000 0.000 0.000 0.001

Slowest Total DB Times:
 CatalogController#index took 0.165s
 CatalogController#index took 0.156s
 CatalogController#index took 0.077s
 CatalogController#index took 0.063s
 CatalogController#index took 0.062s
 CatalogController#index took 0.058s
 CatalogController#index took 0.057s
 CatalogController#show took 0.057s
 CatalogController#index took 0.054s
 CatalogController#index took 0.054s

--
--

Render Times Summary: Count Avg Std Dev Min Max
ALL REQUESTS: 266 0.099 0.306 0.000 1.934

Unknown: 197 0.000 0.000 0.000 0.000
CatalogController#index: 28 0.915 0.377 0.429 1.934
CatalogController#show: 21 0.018 0.079 0.000 0.371
AboutController#index: 20 0.020 0.010 0.013 0.055

Slowest Total Render Times:
 CatalogController#index took 1.934s
 CatalogController#index took 1.554s
 CatalogController#index took 1.524s
 CatalogController#index took 1.403s
 CatalogController#index took 1.396s
 CatalogController#index took 1.266s
 CatalogController#index took 1.208s
 CatalogController#index took 1.122s
 CatalogController#index took 1.102s
 CatalogController#index took 1.100s

386 C H A P T E R 1 3 ■ P E R F O R M A N C E O P T I M I Z A T I O N

The first listing in the output is a summary of the complete request times. After that are
similar summaries for the times needed in the database and for the rendering. A summary lists
the different requested actions, the count of times they were requested, and the statistics of
their performance (including average, minimum, and maximum times and the standard devi-
ation). From this listing, it is pretty easy to see which actions tend to be the slowest. If a slow
action is also a very popular action, it is a good candidate for being optimized in one way or
another.

Following the statistical analysis is a list of the slowest individual action loads in each cat-
egory. An astute reader can see that the slowest request time should match the Max field value
in the ALL REQUESTS row in the statistical analysis.

From the analysis, you can see that the three actions that had been requested are pretty
much equally popular. However, the index page in CatalogController is clearly the slowest,
and its request times are more than one second on average.

Next, take a look at what happens in the action by using the action_grep command
included in the Production Log Analyzer package:

$ sudo action_grep CatalogController#index /var/log/production.log

Sep 28 12:17:50 emporium rails[10500]: Processing CatalogController#index
 (for 81.193.72.157 at 2006-09-28 12:17:50) [GET]
Sep 28 12:17:50 emporium rails[10500]: Session ID:
ba0a2e9b205ed0da9390dc08ea00d114
Sep 28 12:17:50 emporium rails[10500]: Parameters: {"action"=>"index",
 "controller"=>"catalog"}
Sep 28 12:17:50 emporium rails[10500]: Globalize::Language Columns
(0.002259) SHOW FIELDS FROM globalize_languages
Sep 28 12:17:50 emporium rails[10500]: Globalize::Language Load (0.000155)
 SELECT * FROM globalize_languages WHERE (globalize_languages.`iso_639_1`
 = 'en') LIMIT 1
Sep 28 12:17:50 emporium rails[10500]: Cart Load (0.000108) SELECT * FROM
 carts WHERE (carts.id = 107) LIMIT 1
Sep 28 12:17:50 emporium rails[10500]: Book Count (0.000156) SELECT
COUNT(DISTINCT books.id) FROM books LEFT OUTER JOIN authors_books
ON authors_books.book_id = books.id LEFT OUTER JOIN authors
ON authors.id =authors_books.author_id LEFT OUTER JOIN publishers
ON publishers.id = books.publisher_id
Sep 28 12:17:50 emporium rails[10500]: Globalize::Language Load (0.000650)
SELECT * FROM globalize_languages WHERE (globalize_languages.`rfc_3066` =
'en-US') LIMIT 1
Sep 28 12:17:50 emporium rails[10500]: Globalize::Language Load (0.000140)
SELECT * FROM globalize_languages WHERE (globalize_languages.`iso_639_1` =
'en') LIMIT 1
Sep 28 12:17:50 emporium rails[10500]: Book Columns (0.002050) SHOW FIELDS
FROM books
Sep 28 12:17:50 emporium rails[10500]: Author Columns (0.001774) SHOW FIELDS
FROM authors

C H A P T E R 1 3 ■ P E R F O R M A N C E O P T I M I Z A T I O N 387

Sep 28 12:17:50 emporium rails[10500]: Publisher Columns (0.001681) SHOW
FIELDS FROM publishers
Sep 28 12:17:50 emporium rails[10500]: Book Load IDs For Limited Eager
Loading (0.000133) SELECT id FROM books ORDER BY books.id desc LIMIT 0, 10

The command gives a lot of output about what has been happening in the index actions in
CatalogController. You can see that most of the database traffic is related to the Globalize
plugin. However, if you take a closer look at the Production Log Analyzer output, you will see
that most of the time is not spent in the database, but in rendering the page (0.052 second vs.
0.915 second). We should find out what is taking so much time in rendering the page. And
that’s where Action Profiler comes in.

Running the Action Profiler

The Action Profiler can profile a single Rails action call. It works with any of the three profiler
tools for *nix machines: the built-in Ruby profiler, ruby-prof (http://ruby-prof.rubyforge.org/),
or ZenProfiler (http://rubyforge.org/projects/zenhacks/). If you want to use ruby-prof or
ZenProfiler, you need to install it first.

Here’s an example of running the Action Profiler with the built-in profiler against the show
action in CatalogController:

$ action_profiler -P Profiler CatalogController#show

Warmup...
Profiling...
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 26.98 1.02 1.02 204 5.00 6.37 String#scan
 12.17 1.48 0.46 408 1.13 1.94 Pathname#initialize
 10.32 1.87 0.39 204 1.91 11.62 Pathname#cleanpath_aggressive
 5.82 2.09 0.22 424 0.52 2.52 Class#new
 5.56 2.30 0.21 2587 0.08 0.08 String#==
 4.50 2.47 0.17 306 0.56 10.52 String#gsub
 3.70 2.61 0.14 614 0.23 0.44 Kernel.dup
 3.44 2.74 0.13 613 0.21 0.21 String#initialize_copy
... a lot of output ...

You can see from the output that about half of the time is spent scanning strings and creating
path names. However, since the built-in profiler presents everything in a flat output, it is hard to
know in which part of the application code the time is actually spent. If you want output with call
graphs to see where different methods are called from, consider installing ruby-prof.

■Note There are currently some compatibility issues between the Action Profiler and both ZenProfiler and
ruby-prof. We hope they will be resolved by the time this book hits the shelves.

388 C H A P T E R 1 3 ■ P E R F O R M A N C E O P T I M I Z A T I O N

Caching
Now that we have measured the performance of our application and tracked slow actions, it’s
time to do something about them. One of the most common ways to speed up a website is to
use some kind of caching. If an often-viewed page needs a large amount of database queries or
otherwise expensive calculations to produce its output, storing the output in a cache can make
the site a lot more responsive.

Out of the box, Rails sports three caching levels: page, action, and fragment caching. You
can also use the cached_model library for caching ActiveRecord objects, when you need to go
beyond the usual caching.

Page Caching
Page caching is the fastest of the caching schemes in Rails. With page caching, the cached page
is stored as a static HTML file in the document root of the web server and served directly from
there on subsequent requests. This means that Rails can be bypassed altogether, and the web
server can serve the page in the same way that it serves other static files. This obviously means
a huge impact on the performance. Whereas a single Rails process can serve a few dozen non-
cached pages per second, a real web server serving static files can easily reach speeds of up to
1000 requests per second.

Should all our actions then be using page caching? Well, no. Page caching stores the out-
put of an action in a file and serves that same file all the time, to all the people. This has many
drawbacks. The page is not really dynamic anymore. You can’t use authentication, since Rails
is bypassed. You also can’t have any personalization on the page. Therefore, page caching is
not really recommended for anything but the most static pages served by a Rails application.

Page caching is also kind of against the shared nothing architecture, since the cached
pages are stored on the file system. You could use a networked file system that all the applica-
tion servers would use as the document root, but you would still be vulnerable to different
application servers trying to write the same file at the same time.

However, we do have one page in the Emporium application that hardly ever changes: the
About page. Let’s implement page caching for it as an exercise.

RAILSBENCH

Another tool for measuring Rails application performance is Railsbench by Rails performance expert Stefan
Kaes. You can download if from http://railsbench.rubyforge.org/.

If you’re working on Windows, you might find Railsbench more useful than the Action Profiler. By default,
it uses the Windows-only Ruby Performance Validator (www.softwareverify.com/ruby/profiler/
index.html), which is said to be the best Ruby profiler around.

C H A P T E R 1 3 ■ P E R F O R M A N C E O P T I M I Z A T I O N 389

It turns out it is extremely easy to use page caching. The only thing we need to do is add a sin-
gle row to the controller in question, which in this case is app/controllers/about_controller.rb:

class AboutController < ApplicationController
 caches_page :index

 def index
 @page_title = 'About Emporium'
 end
end

The next time you load the About page, it is stored in app/public/about.html and served
from there ever after.

We can use the bench command (part of the Rails Analyzer tool set) to look at the perfor-
mance of the page without and with caching (repeat the runs several times until the results
stabilize). First try it without caching:

$ bench -u http://localhost/about -r 100 -c 10

100.........90.........80.........70.........60.........50
.........40.........30.........20.........10.........
Total time: 48.2463064193726
Average time: 0.482463064193726

And then run bench with caching (remember to restart the application to make the code
changes live on a production server):

$ bench -u http://localhost:3000/about -r 100 -c 10

100.........90.........80.........70.........60.........50
.........40.........30.........20.........10.........
Total time: 5.81317806243896
Average time: 0.0581317806243896

■Note By default caching is turned on only in the production environment. If you want to test it in the devel-
opment environment, change the config.action_controller.perform_caching parameter to true in
config/environments/development.rb.

390 C H A P T E R 1 3 ■ P E R F O R M A N C E O P T I M I Z A T I O N

The difference is noticeable, although not nearly as big as it is in reality, since we’re run-
ning the bench command on the same machine and it is consuming part of the processing
power itself.

But what if you want to change the page and expire the cache some time? That’s easy, too.
Just call expire_page :action => "index" in the action where you change the page.

Action Caching
Action caching is the second level of caching in Rails. With action caching, the whole page out-
put is still cached, but this time, the request goes through ActionController, and thus the filters
are run before the rendering. The most important consequence of this is that you can use
action caching even for pages that need authentication.

Action caching is turned on in the same way as page caching. Add caches_action :index
to the controller, and call expire_action :index to expire the action. You won’t get the same
raw speed as with page caching, but you will get more flexibility with filtering the requests. The
speed would still be plenty fast.

Action caching shares many, but not all, of the problems with page caching. There is still
no way to make the page contents dynamic, and complete personalization isn’t possible
(although action caching can use the user ID as a key in the cached page).

If the results of page caching are stored in the file system, where do the action caches go?
The answer is that it depends. Action caching uses internally the third built-in caching scheme
in Rails, fragment caching.

Fragment Caching
Fragment caching is the most granular of the standard caching mechanisms in Rails. With it,
you can cache parts of a page. For example, you could cache the contents of a shopping cart
like this (in app/views/layouts/application.rhtml):

<% if @cart %>
 <% cache(:controller => "cart", :action => "show",
 :id => @cart) do %>
 <div id="shopping_cart">
 <%= render :partial => "cart/cart" %>
 </div>
 <% end %>
<% end %>

This would cause the contents of the cache block to be cached, and we could avoid a per-
haps expensive database trip on every request a particular user makes.

The cache method takes a hash as its parameter and uses url_for to build a URL to be used
as a key to the cached item. Needless to say, this should be unique. Note that it doesn’t have to be
a real, existing URL. In our case, for example, there is no action called show in CartController.
However, the cache key of a stored cart would be something like emporium.com/cart/show/179.

Cached fragments are expired with the expire_fragment method, which takes a hash as its
argument, similar to the argument for the cache method. In our case, we need to expire the
fragment whenever the shopping cart is changed—when we add or remove books to the cart,
clear the cart, or check out.

C H A P T E R 1 3 ■ P E R F O R M A N C E O P T I M I Z A T I O N 391

Let’s start with CheckoutController (in app/controllers/checkout_controller.rb):

def place_order
 @page_title = "Checkout"
 @order = Order.new(params[:order])
 @order.customer_ip = request.remote_ip
 populate_order

 if @order.save
 if @order.process
 flash[:notice] = 'Your order has been submitted,
 and will be processed immediately.'
 session[:order_id] = @order.id
 # Empty the cart
 @cart.cart_items.destroy_all
 expire_fragment(:controller => "cart",
 :action => "show",
 :id => cart)
 redirect_to :action => 'thank_you'
 else
 flash[:notice] = "Error while placing
 order.'#{@order.error_message}'"
 render :action => 'index'
 end
 else
 render :action => 'index'
 end
 end

Now whenever an order is processed and the shopping cart is cleared, the cached cart
fragment is expired.

For CartController, we use a different approach—a cache sweeper. A cache sweeper is a
special kind of an observer. It observes the lifeline of an object and can sweep cached stuff
when specific changes (such as create, update, or destroy) are made to the object in question.
Create a file called cart_sweeper.rb in app/models and add the following code to it:

class CartSweeper < ActionController::Caching::Sweeper
 observe Cart, CartItem

 def after_save(record)
 cart = record.is_a?(Cart) ? record : record.cart
 expire_fragment(:controller => "cart",
 :action => "show",
 :id => @cart)
 end
end

You can see that the sweeper looks just about the same as a normal observer. In this case,
we observe both the Cart object and the CartItem objects that belong to it. When either kind

392 C H A P T E R 1 3 ■ P E R F O R M A N C E O P T I M I Z A T I O N

of object is saved, we find the relevant Cart object and expire the fragment that belongs to that
cart. To make the sweeper work, we need to call it in CartController (app/controllers/
cart_controller.rb):

class CartController < ApplicationController
 cache_sweeper :cart_sweeper
 before_filter :initialize_cart
...

That’s all. Since we want the sweeper to work on all the actions in CartController, we
don’t have to specify anything else. If we wanted to restrict the sweeper to only certain actions,
we could use the :only parameter for that.

Fragment Stores
Page caching results are always stored in the file system. Fragment caching has a few more
options:

• File store: The contents of the cache are stored in the file system, just as in page caching.

• Memory store: All the cached fragments are stored in memory. This is the fastest option
of all, but it doesn’t scale beyond one application server process, since each process
keeps its own cache.

• DRb store: Cached fragments are kept in the memory of a shared DRb (Distributed Ruby)
process. This option scales, but it requires you to build and maintain the process
yourself.

• Memcache store: Fragments are stored in a memcached process. Is very fast and scales
well, since memcached can be accessed through the network.

The fragment store that is being used can be chosen either on the application (in config/
environment.rb) or environment level (for example, in config/environments/production.rb)
by setting the fragment_cache_store parameter:

ActionController::Base.fragment_cache_store = :mem_cache_store, "localhost"

■Note Technically, since fragment_cache_store is a class variable of the ActionController::Base
class, you can overwrite it on a controller-specific level as well.

C H A P T E R 1 3 ■ P E R F O R M A N C E O P T I M I Z A T I O N 393

Caching with Memcached

Let’s make our application use memcached to store the fragment cache contents. For this, we
need to install memcached.

On OS X, you can use Geoffrey Grosenbach’s shell script to automate the installation:

$ curl –O http://topfunky.net/svn/shovel/memcached/install-memcached.sh
$ sudo sh install-memcached.sh

After that, add EVENT_NOKQUEUE=1 to your environment variables. In bash, run the following
command:

$ echo 'export EVENT_NOKQUEUE=1' >> ~/.bash_profile

On other *nix variants, you can use their native package management systems to install
memcached or do it by hand. We do the latter, because that way we get the latest version
of memcached. Download and compile memcached as follows (check the latest version from
danga.com/memcached/download.bml):

$ curl -O http://danga.com/memcached/dist/memcached-1.2.0.tar.gz
$ tar zxvf memcached-1.2.0.tar.gz
$ cd memcached-1.2.0
$./configure
$ make
$ sudo make install

MEMCACHED

According to its website (www.danga.com/memcached/), memcached is “a high-performance, distributed
memory object caching system.” It was developed by Danga Interactive to help speed the performance of
LiveJournal.com, a site serving more than 20 million dynamic page views per day.

Memcached can be used to temporarily store items such as the results of complex database queries and
objects that are accessed frequently. Contents of memcached are always stored in RAM, so fetching them is
blazingly fast.

Memcached is very lightweight and easy to deploy. It is very memory-hungry and CPU-light, so it is a
good companion for an application server, which is often CPU-hungry and lighter on memory. Good advice is
to deploy memcached on any server that has free memory, because the load of memcached servers can be
distributed.

In a standard Rails setup, you can use memcached to store sessions and cache data. With the libraries
introduced later in this chapter, in the “Caching ActiveRecord Objects” section, you can basically cache what-
ever data you want.

394 C H A P T E R 1 3 ■ P E R F O R M A N C E O P T I M I Z A T I O N

If the configure command nags about missing libevent, install the libevent-dev package
(again, with apt-get or equivalent, or by hand from http://www.monkey.org/~provos/libevent/)
and rerun configure. Be sure to read the notes in the README file in the memcached source distri-
bution if you’re on Linux.

On Windows, the support for memcached is a bit flaky. There is no official distribution, but
you might want to test if the release at http://jehiah.com/projects/memcached-win32/ works
for you.

After you’ve installed memcached, you need to install the ruby-memcache gem, which is
used to interface with memcached:

$ sudo gem install ruby-memcache --include-dependencies

Now that memcached is installed, you might as well start it. Run it with the -vv command
to get verbose output of everything that’s happening in it.

$ memcached -vv

...
<4 server listening (udp)

This will start the memcached server with its default values: port 11211 and 64MB of mem-
ory. The server will stay in the foreground, so you can monitor that it’s working correctly.

Now you need to make your application use memcached. Add the following line at the end
of config/environments/production.rb:

ActionController::Base.fragment_cache_store = :mem_cache_store, ➥

"localhost"

Restart the application server, and the new memcached store should be in use. Try to load
a page that includes a shopping cart. You should see memcached output something like the
following:

<8 new client connection
<8 get emporium.com:3000/cart/show/107
>8 END
<8 set emporium.com:3000/cart/show/107 4 0 311
>8 STORED

That’s it—our fragment cache is on memcached.

C H A P T E R 1 3 ■ P E R F O R M A N C E O P T I M I Z A T I O N 395

At this point, you would probably want to restart the memcached process, perhaps give it
some more memory (128MB should be enough for most Rails applications, but your mileage
may vary) with the -m option, and make it run in the background using the -d option:

$ memcached -d -m 128

It is also a good idea to monitor the memcached process, just as you watch any other
server process. You can use one of the monitoring tools mentioned in the previous chapter
for this.

Storing Sessions with Memcached

In Rails, you can use memcached for both caching and storing session data. The reason it
would be a good idea to store sessions on memcached, too, is that the data is in a container that
can be accessed through a network, in case you later scale the application horizontally by add-
ing new servers. The default session store is file system, which makes scaling possible (using a
networked file system), but certainly harder and not as efficient as with memcached.

Making Rails use memcached for storing sessions is another one-liner. Just add the follow-
ing to config/environment/production.rb:

config.action_controller.session_store = :mem_cache_store

Other options for storing the session data are :active_record_store, :drb_store, and
:memory_store, corresponding to the fragment cache store options described previously.

Caching ActiveRecord Objects
While the standard Rails caching mechanisms are useful in many ways, they have their limita-
tions. Page and action caching in particular aren’t very useful in applications where the user is
shown personalized and highly dynamic content. Fragment caching can be used in many of
these cases, but it’s kind of cumbersome, and many feel it’s done in the wrong place—on the
view level.

To address this in a real-world situation, The Robot Co-op has developed and released
another library, cached_model. cached_model creates a new subclass of ActiveRecord::Base,
which automatically caches the model in memcached.

In our application, an obvious model to cache is Book. Another one would be the shopping
cart, but we already took care of it with fragment caching.

As usual, installing the cached_model gem is simple:

$ sudo gem install memcache-client
$ sudo gem install cached_model

396 C H A P T E R 1 3 ■ P E R F O R M A N C E O P T I M I Z A T I O N

cached_model uses memcache-client, a replacement client for ruby-memcache. It should be a
drop-in replacement and compatible with fragment caching in Rails. However, as of this writ-
ing, there were some compatibility issues, so we’ll keep the old library around as well.

Now restart the application server and make sure that everything is still working with the
new setup.

Next, we need to make our application use the new gem. Add the following to config/
environments/production.rb:

require 'cached_model'

memcache_options = {
 :c_threshold => 10_000,
 :compression => true,
 :debug => false,
 :namespace => 'emporium_production',
 :readonly => false,
 :urlencode => false
}

CACHE = MemCache.new memcache_options
CACHE.servers = 'localhost:11211'

In order to make other environments work with CachedModel, you need to add the preced-
ing lines to all used environments in config/environments. Be sure to give them a different
namespace name, though, so that the caches won’t clash.

Now all we need to do to make the Book model cached is to change the first line in app/
models/book.rb, and make the class inherit from CachedModel instead of ActiveRecord::Base:

class Book < CachedModel
 acts_as_taggable
 ...

If you now restart the application server and load a book page a couple times in the
browser, you should see (if you’re still running the memcached server in the foreground) that
the book object is stored in memcached on the first request and fetched from there on the sub-
sequent page loads:

<10 new client connection
<10 get emporium_production:active_record:Book:15
>10 END
<10 set emporium_production:active_record:Book:15 1 900 193
>10 STORED
<8 get emporium.com:3000/cart/show/107
>8 sending key emporium.com:3000/cart/show/107
>8 END
<10 get emporium_production:active_record:Book:15
>10 sending key emporium_production:active_record:Book:15
>10 END

C H A P T E R 1 3 ■ P E R F O R M A N C E O P T I M I Z A T I O N 397

On the second line, memcached checks whether book number 15 exists in the cache. It
doesn’t, so on the fourth line, it caches the object and confirms this by outputting STORED.
When the page is requested again, the book (as well as the shopping cart fragment) is found
from the cache.

cached_model expires the cached model objects automatically every 15 minutes (you can
adjust this by setting CachedModel.ttl). Since it’s tightly integrated with ActiveRecord, expiring
objects when they are updated is taken care of automatically.

■Tip For more information about cached_model and how to use memcache-client directly to cache arbi-
trary things like collections of objects (cached_model doesn’t help if you use find(:all), for example), read
Geoffrey Grosenbach’s excellent tutorial “memcached Basics for Rails” at http://nubyonrails.com/
articles/2006/08/17/memcached-basics-for-rails.

Common Performance Problems in Rails
The performance of any web application can be severely crippled by small issues in the source
code, and a Rails application is no different. Here, we’ll look at some of the most common per-
formance problems in Rails applications and how to avoid them.

Rendering Speed
Rendering a page to a user should probably be the fastest and best optimized thing in a web
application. Therefore, all really expensive calculations should be made at some other point.
One example of this is textilizing content. In Chapter 3, we used the textilize method to trans-
form the book blurb stored in Textile format to HTML. However, this formatting can just as
well be done whenever the blurb is changed; that is, when the book is saved.

Let’s add a field for the blurb in HTML format to the database:

$ script/generate migration add_blurb_html_to_books

 exists db/migrate
 create db/migrate/013_add_blurb_html_to_books.rb

Next, we open up the migration file we just created and add the new column to it:

class AddBlurbHtmlToBooks < ActiveRecord::Migration
 def self.up
 add_column :books, :blurb_html, :text
 end

 def self.down
 remove_column :books, :blurb_html
 end
end

398 C H A P T E R 1 3 ■ P E R F O R M A N C E O P T I M I Z A T I O N

Then run the migration:

$ rake db:migrate

Now we have a column in the database where we can store the textilized blurb. We will
do the textilization in a before_save filter in the Book class. Add the following to app/models/
book.rb:

class Book < CachedModel
 before_save :textilize_blurb

 acts_as_taggable

 [a lot of lines omitted]

 def tagged_with
 tags.collect{|tag| tag.name }.join(", ") if not tags.nil?
 end

 private

 def textilize_blurb
 self.blurb ||= ""
 textilized = RedCloth.new(self.blurb)
 self.blurb_html = textilized.to_html
 end

end

Now, whenever a book is saved, its blurb is also transformed to HTML.
We should find all the textilize calls in the application and replace them with blurb_html.

For example, in app/views/admin/book/show.rhtml, replace this line:

<dd><%= textilize @book.blurb %></dd>

with this one:

<dd><%= @book.blurb_html %></dd>

The result is one less expensive calculation to do in the page-rendering phase.

■Caution Although textilize is a cool quick-and-dirty helper, as a rule of thumb, it should never be
used in a production setting.

C H A P T E R 1 3 ■ P E R F O R M A N C E O P T I M I Z A T I O N 399

Another thing that can slow down rendering is building the URLs in link_to and form
helpers. If your profiling shows that a url_for call is taking a lot of time, you might consider
replacing the helper with a handwritten HTML tag. So, for example <%= link_to "Home",
home_url %> would be replaced by Home. However, remember to measure and
profile. It serves no purpose to optimize these helpers unless you see that they are guilty of
slowing down your application.

Database Access
We already mentioned in Chapter 4 how fetching a list of books and then referencing their
authors can lead to 2n+1 queries, but it’s worth a reminder. Use the :include parameter in
finders if you know you are going to use the associated objects, like authors, on the page:

def index
 @book_pages, @books = paginate :books,
 :per_page => 10,
 :include => [:authors, :publisher],
 :order => "books.id desc"
end

Another common database performance problem arises when you forget to add needed
indices to the database. This is not a Rails-specific problem per se, but it is easy to forget when
building an application with small sample data. When the amount of data then grows, you
might start wondering why queries that were so snappy when testing are now taking a minute
or an hour (no kidding!).

If you track the root of a slow action to a certain database query (or find one by following
the slow query log with MySQL, as described in Chapter 10), the next step is to analyze that
query. Most database vendors have their own tools for that. In MySQL and PostgreSQL, you
can use EXPLAIN [SELECT query] for this. As an example, let’s run EXPLAIN on a query that is run
whenever the index page of the catalog controller is loaded (we’ve truncated the output lines to
make them more readable):

mysql> EXPLAIN SELECT COUNT(DISTINCT books.id)
 -> FROM books LEFT OUTER JOIN authors_books
 -> ON authors_books.book_id = books.id
 -> LEFT OUTER JOIN authors
 -> ON authors.id = authors_books.author_id
 -> LEFT OUTER JOIN publishers
 -> ON publishers.id = books.publisher_id;

400 C H A P T E R 1 3 ■ P E R F O R M A N C E O P T I M I Z A T I O N

+----+-------------+---------------+--------+---------------+----
| id | select_type | table | type | possible_keys | key
+----+-------------+---------------+--------+---------------+----
| 1 | SIMPLE | books | ALL | NULL | NULL
| 1 | SIMPLE | authors_books | ALL | NULL | NULL
| 1 | SIMPLE | authors | eq_ref | PRIMARY | PRIMARY
| 1 | SIMPLE | publishers | eq_ref | PRIMARY | PRIMARY
+----+-------------+---------------+--------+---------------+----
4 rows in set (0.00 sec)

We’re mostly interested in the type column of the output. For the two first tables, books
and authors_books, ALL means that a full-table scan is done, which should always be at least a
bit alarming. If we wanted this query to stay fast when more data is imported in the database,
we should make the query use an index for the authors_books table. We can do that easily with
a migration:

$ script/generate migration add_indices
 exists db/migrate
 create db/migrate/014_add_indices.rb

Then edit the migration file to add needed indices:

class AddIndices < ActiveRecord::Migration
 def self.up
 add_index :authors_books, :author_id
 add_index :authors_books, :book_id
 end

 def self.down
 remove_index :authors_books, :author_id
 remove_index :authors_books, :book_id
 end
end

We added indices for both foreign key fields. Now let’s run the migration:

$ rake db:migrate

If we now run the EXPLAIN query again, we can see that the type of the join is now ref
instead of ALL, meaning that an index is being used to perform the join:

mysql> EXPLAIN SELECT COUNT(DISTINCT books.id)
 -> FROM books LEFT OUTER JOIN authors_books
 -> ON authors_books.book_id = books.id
 -> LEFT OUTER JOIN authors
 -> ON authors.id = authors_books.author_id
 -> LEFT OUTER JOIN publishers
 -> ON publishers.id = books.publisher_id;

C H A P T E R 1 3 ■ P E R F O R M A N C E O P T I M I Z A T I O N 401

+----+-------------+---------------+--------+-----------------------------
| id | select_type | table | type | possible_keys | key
+----+-------------+---------------+--------+-----------------------------+
| 1 | SIMPLE | books | ALL | NULL | NULL
| 1 | SIMPLE | authors_books | ref | authors_books_book_id_index | ➥

authors_books_book_id_index
| 1 | SIMPLE | authors | eq_ref | PRIMARY | ➥

PRIMARY
| 1 | SIMPLE | publishers | eq_ref | PRIMARY | ➥

PRIMARY
+----+-------------+---------------+--------+-----------------------------+
4 rows in set (0.01 sec)

In the key field, you can see that the index used is authors_books_book_id_index, the index
we just created with the migration.

■Tip For more information about using EXPLAIN in MySQL, see http://dev.mysql.com/doc/refman/
5.0/en/explain.html. For details on the PostgreSQL version, see www.postgresql.org/docs/8.1/
interactive/sql-explain.html.

As a rule of thumb, you should create indices for all foreign key fields, as well as for all col-
umns you are using in WHERE clauses. A good example of such a column is tags.name, which is
used extensively by the acts_as_taggable code to find tags in the database table.

Summary
In this chapter, we took a look at how to measure and optimize the performance of a Rails
application. We introduced the Rails Analyzer set of profiling tools. Then we added different
caching mechanisms to our application, for entire pages and content chunks that are either
needed very often or that take expensive operations to be produced. Finally, we took a look at
common performance problems in Rails applications and how to solve them.

Measuring and optimizing a web application are constant processes. It is not enough to
make the application fast once and then lean back and enjoy the profits. User behavior
changes over time, and the hit rates go up (hopefully), so it pays to follow closely how the site
behaves.

Optimizing a Rails application is a topic that merits a book or three just for itself. We
could only scratch the surface in this chapter. For a lot more information on this topic, follow
Stefan Kaes’s blog at http://railsexpress.de/blog/, and look for his upcoming book on
the topic, Performance Rails: Building Rails Applications with Sustainable Performance
(ISBN: 0-32147-741-3).

403

Index

■Special Characters
$ apt-cache search libmysqlclient

command, 10

$ mysql -u root command, 9, 15–16

$ mysqld_safe --user=mysql & command, 9

$ rails emporium rails command, 12

$ rails -v command, 6

$ sudo gem install mysql install command, 10

$EMPORIUM_PATH path, 358

*nix variants, 393

<% Ruby code %> syntax, 22

<%# comment %> syntax, 22

<%= Ruby expression %> syntax, 22

</fieldset> tag, 264

■A
about command, 7

about controller, 21

About Emporium user story

creating layout, 23–27

modifying generated controller, 27

modifying generated view, 22–23

overview, 20–21

running generate script, 21–22

About page, 388

acceptance testing. See Selenium

access configuration of LightTPD, 363

accesslog.filename module, 360–361

accessor commands, 333

AccountController class, 225, 244

AccountControllerTest class, 227

action caching, 390

action commands, 331

Action Profiler, 383, 387–388

action_grep command, Production Log
Analyzer package, 386

ActionController, 240, 390

ActionMailer mailers, 239–241

Active Merchant plugin, 271–272

:active_record_store, :drb_store option, 395

ActiveRecord mapping, 77, 90

many-to-many relationship, 75–76

many-to-one relationship, 75

one-to-many relationship, 74–75

one-to-one relationship, 76–77

overview, 73–74

ActiveRecord model, creating

overview, 31

running unit tests, 36–37

using ActiveRecord migrations

creating schema, 32

editing migration file, 32–33

overview, 32

running first migration, 34–35

ActiveRecord objects, caching, 395–397

acts_as_authenticated plugin, 223–224, 238

acts_as_ferret plugin, 125

acts_as_taggable method, 203–204

acts_as_threaded plugin, 169, 170

add action, 143, 153, 164

Add author user story, 39

Add Book user story, 104

changing controller, 95–96

changing view, 97–100

creating integration test, 92–95

overview, 91–92

updating integration test, 100–101

404 ■I N D E X

Add books user stories, 59

Add Items to Cart user story, 152–157, 160

Add Publisher user story

adding validations to model, 64

modifying generated fixture data, 65

modifying generated functional test,
65–66

overview, 64

Add publishers user stories, 60

Add translation button, 309

Add Translation user story, 310

add_book method, 100, 208

add_column migration, 33

add_with_ajax template, 156

Admin module, 38

admin subdirectory, 38

admin/author command, 38

administrator interface, 286

Administrator user stories

Close Order user story, 292

overview, 286

View Order user story, 290–291

View Orders user story, 286–289

after_filter, 146

after_save method, 244

Ajax, 210

all_children command, 177

ALTER TABLE SQL command, 71

amount attribute, 162

Apache Lucene, 125

app file, 13

app/controllers/admin directory, 230

appdoc file, 13

application deployment

automating deployment

creating Capistrano deployment recipe,
371–375

deploying to production, 376, 378–379

installing Capistrano, 371

overview, 371

running setup task, 375–376

starting LightTPD, 379–380

manual deployment

copying application, 367

creating users and groups, 367–368

overview, 366

starting FastCGI processes, 369–371

starting LightTPD, 368–369

overview, 351

setting up production environment

configuring LightTPD, 358–361, 363–365

connecting to production server, Secure
Shell (SSH), 353

connecting to production server,
SSH, 352

creating production database, 365–366

installing application server, 356–357

installing database server, 358

installing web server, 353–355

overview, 351

application server, 394

application variable, 372, 374

ApplicationController class, 145, 227

application.rhtml, 218

app/models directory, 239

apps directory, 378

app/test/unit/book_test.rb file, 87

app/views directory, 22

app/views/cart/_cart.rhtml, 147

app/views/forum/post.rhtml view, 182

apt-get command, 4, 354

around_filter, 146

assert_difference block, 127

assert_difference method, 46

assert_equal method, 30, 69, 82

assert_no_difference method, 46–47

assert_tag assertion, 68, 101

assert_tag methods, 136

assert_template method, 40

assertion commands, 332

405■I N D E X

Find it faster at http://superindex.apress.com

assertions, 30

assertLocation (location) assertion,
Selenium, 332

assertLocation check, 347

assertText command, 343

assertTextPresent(text) assertion,
Selenium, 332

assertTitle(title) assertion, Selenium, 332

Assign Tags user story

changing style sheet, 210–211

modifying controller, 209–210

modifying view, 208–209

overview, 207

updating integration test, 207–208

assigns helper, 51

attr_accessor method, 257

attr_protected method, 255

AuthenticatedSystem module, 229

authentication, 223, 388

Author class, 32

author management

creating ActiveRecord model

overview, 31

running unit tests, 36–37

using ActiveRecord migrations, 32–35

creating controller, 37–38

implementing user stories

adding author, 39–48

adjusting flash notifications, 55–57

deleting author, 54–55

editing author, 52–54

listing authors, 48–50

overview, 39

viewing author, 50–52

overview, 29

testing in Rails, 30–31

functional testing, 31

using test-driven development (TDD),
29–30

Author model, 32, 77

Author object, 45

author_controller_test.rb method, 49, 51, 54

author_controller.rb method, 53

author.address = new_address method, 77

author.address method, 77

author.address.nil? method, 77

author.books << Book.create(.) method, 76

author.books = new_books method, 76

author.books method, 76, 87

author.books.clear method, 76

author.books.delete(some_book) method, 76

author.books.empty? method, 76

author.books.find(id) method, 76

author.books.size method, 76

Authorize.Net, 271, 280–283

authornames method, 126

author.rhtml partial template, 50

authors fixture, 86, 177

authors method, 117

authors table, 32, 46, 70, 75

authors validation, 80

authors_books join table, 86

authors.yml template, 50

Autocompleter.Local helper, 208

automating application deployment

creating Capistrano deployment recipe

components, 372–373

generating deployment recipe, 373

modifying deployment recipe, 374–375

overview, 371

deploying to production, 376, 378–379

installing Capistrano, 371

overview, 371

running setup task, 375–376

starting LightTPD, 379–380

AWStats, 361

■B
backlogs, 11

base language, 300

Find it faster at http://superindex.apress.com

406 ■I N D E X

base language text, 308

before_filter, 145–146, 304

before_save filter, 398

before_setup task, 376

belongs_to ActiveRecord mapping, 75

belongs_to method, 78

belongs_to :publisher declaration, 75

bench command, 389

bench tool, Rails Analyzer, 383

block parameter, 148

blocks, 92

Blurb field, 107

blurb parameter, 317

body column, 172

body field, 175

book administration interface
implementation

ActiveRecord mapping

many-to-many relationship, 75–76

many-to-one relationship, 75

one-to-many relationship, 74–75

one-to-one relationship, 76–77

overview, 73–74

Add Book user story

changing controller, 95–96

changing view, 97–100

creating integration test, 92–95

overview, 91–92

updating integration test, 100–101

cloning database, 80–81

creating book model, 73

Edit Book user story, 110–111

generating book code with scaffolding
script, 88–89

integration testing, 90–91

List Books user story

adding integration test, 106

changing controller, 105

changing view, 105

overview, 104

modifying generated models

adding belongs_to mapping to book
model, 78

adding habtm mapping to book and
author models, 79

adding has_many mapping to publisher
model, 77–78

adding validations to book model, 80

overview, 77

overview, 69

testing Delete Book user story, 112

unit testing ActiveRecord mappings

adding fixture for many-to-many
relationship, 86

adding fixtures for books and
publishers, 83

overview, 82

unit testing many-to-many mapping,
87–88

unit testing one-to-many mapping,
84–86

unit testing validations, 81–82

updating schema with books table, 69–73

Upload Book Cover user story

adding file upload functionality,
102–103

changing form, 104

cloning changes, 104

modifying database schema, 103

overview, 102

View Book user story

adding integration test, 109

changing controller, 108–109

changing view, 107–108

overview, 107

book hash, 207

book inventory management example

book administration interface
implementation

ActiveRecord mapping, 73–77

cloning database, 80–81

407■I N D E X

Find it faster at http://superindex.apress.com

completing Add Book user story, 91–101

completing Edit Book user story,
110–111

completing List Books user story,
104–106

completing Upload Book Cover user
story, 102–104

completing View Book user story,
107–109

creating book model, 73

generating book code with scaffolding
script, 88–89

integration testing, 90–91

modifying generated models, 77–80

overview, 69

testing Delete Book user story, 112

unit testing ActiveRecord mappings,
82–88

unit testing validations, 81–82

updating schema with books table,
69–73

getting requirements, 59–60

overview, 59

publisher administration interface
implementation

completing Add Publisher user story,
64–66

completing Edit Publisher user story,
68–69

completing View Publisher user story,
66–68

generating publisher code with
scaffolding script, 62–64

overview, 61

updating schema with publishers table,
61–62

using scaffolding, 60–61

Book model, 70, 126, 203

Book object, 96

book object, 206

book.authors, 87

book.errors.on command, 82

Book.find_by_contents class method, 127

Book.find_related_tagged method, 200

Book.find_related_tags method, 200, 218, 220

Book.find_tagged_with method, 200, 204

Book.latest class method, 134

book.publisher = new_publisher method, 75

book.publisher method, 75

book.publisher.nil? method, 75

books table, 70, 75, 126, 203

books_authors table, 70

books.empty? method, 77

books.yml fixture file, 119

book.tag_names(reload) instance method, 200

book.tagged_related instance method, 218

book.tagged_related(options) instance
method, 200

book.tagged_with?(tag_name, reload)
instance method, 200

book.tag(tags, options) instance method, 200

BookTestDSL module, 94, 106

browse_index method, 123, 134

browse_site test method, 116

BrowsingTestDSL module, 120, 123, 128,
133, 136

Buck, Jamis, 90

build-essentials package, 354

button_to helper, 153

■C
cache method, 390

cache sweeper, 391

cached model objects, 397

cached_model. cached_model library, 395

cached_model gem, 395

cached_model library, 388

caches_action :index statement, 390

caching

action caching, 390

ActiveRecord objects, 395–397

fragment caching, 390–392

408 ■I N D E X

caching (continued)

fragment stores

caching with memcached, 393–395

overview, 392–393

storing sessions with memcached, 395

overview, 388

page caching, 388–390

cap --apply-to command, 373

Capistrano tool

creating deployment recipe

components, 372–373

generating deployment recipe, 373

modifying deployment recipe, 374–375

overview, 371

default settings, 374

installing, 371

card verification code (CVC), 265

Cardholder Information Security Program
(CISP), 267

Cart class, 154, 161

Cart controller, 142

Cart model, 143

Cart object, 391

Cart#remove method, 164

cart/_cart.rhtml partial, 148, 167

:cart_id item, 147

cart_item element, 156

cart/_item.rhtml partial, 165

/cart/add action, 261

cart/clear_with_ajax.rjs template, 167

CartItem class, 144

CartItem model, 143

CartItem objects, 391

_cart.rhtml partial template, 167

catalog/_books.rhtml partial, 150, 157

CatalogController index page, 386

Change Locale user story, 304–305

character encoding, 322

character-set-server parameter, 325

charset parameter, 316

Check Out user story

adding validations to model, 257–259

creating controller and integration test,
259–261

creating models

creating Order model, 252–254

creating Order_Item model, 254–255

overview, 252

specifying associations, 255–257

creating View, 262–268

overview, 252

saving order information

adding place_order action, 269–271

overview, 268

updating integration test, 268–269

checkout and order processing

Administrator user stories

Close Order user story, 292

overview, 286

View Order user story, 290–291

View Orders user story, 286–289

calculating shipping costs and taxes

overview, 294

taxes, 296

using Shipping gem, 294–295

Check Out user story

adding validations to model, 257–259

creating controller and integration test,
259–261

creating models, 252–257

creating View, 262–268

overview, 252

saving order information, 268–271

getting requirements for, 252

integrating with payment gateways

Active Merchant plugin, 271–272

Authorize.Net, 280–283

overview, 271

409■I N D E X

Find it faster at http://superindex.apress.com

Payment gem, 284–286

PayPal, 272–279

overview, 251

checkout command, 363, 367

Checkout controller, 260, 268, 391

:children option, 49

CISP (Cardholder Information Security
Program), 267

Clear Cart user story, 166–167

:clear parameter, 213

clear_cart_link helper, 167

clear_tables parameter, 343

click(locator), Selenium, 331

close method, 292

Close Order user story, 292

closed? method, 291

code block, 46

cold_deploy task, 377

:collection option, 50

collection_select view helper, 97

column migration, 33

commands, Selenium

accessor commands, 333

action commands, 331

assertion commands, 332

element locators, 334

overview, 330–331

components file, 13

conditions parameter, 249, 287

config file, 13

config/environment/production.rb:
option, 395

config/environments, 395

config/environments directory, 14

configuration file, Rails, 329

configure command, 355, 394

configure script, 5

:confirm option, 50

console script, 205

Content-Type header, 361

Content-Type meta tag, 323

controller, 20

:controller => 'tag' parameter, 218

:count option, 49

country field, 263

country_select method, 263

Cover image field, 104

cover_image column, 103

crawler tool, Rails Analyzer, 383

create action, 43–44, 54, 96, 101, 178, 208

Create button, 104

create_publishers migration file, 61

create_pw_reset_code method, 242

create_table method, 325

create_table migration, 33

CreateCartItems migration file, 144

CreateCarts migration file, 145

created_at column, 172–173

creating, reading, updating, and deleting
(CRUD), 29, 60

credit card payment gateways. See payment
gateways

cross-site request forgery, 250

cross-site scripting, 248

CRUD (creating, reading, updating, and
deleting), 29, 60

currencies, localizing, 302, 320–322

current link, 378

current state, 34

customer_ip field, 256

CVC (card verification code), 265

■D
d option, 395

database, Emporium

configuring Ruby on Rails to use
database, 17

creating development and test databases,
15–16

overview, 14–15

setting up database user, 16–17

410 ■I N D E X

database.yml configuration file, 17

dates, localizing, 302, 319–320

db file, 13

db folder, 17

db role, 372

default index template, 116

Delete author user story, 39

Delete books user stories, 59, 112

Delete Publisher user stories, 66

Delete publishers user stories, 60

Delete Translation user story, 312–313

delete_book method, 112

deploy task, 372, 377

deployment. See application deployment

deployment recipes, 371

depth column, 172

destroy action, 54, 112

destroy method, 54

Developer Zone tab, MySQL, 8

development environment, 14

development.log file, 382

difference argument, 54

difference parameter, 46

dispatchers, 356

display_as_threads method, 187–188, 319

display_tags method, 214, 218

div element, 210

div tag, 189

doc file, 13

dom=javascriptExpression element locator,
Selenium, 334

domain-specific language (DSL), 33, 90

Don't Repeat Yourself (DRY) principle, 23

down method, 62

Downloads page, Selenium IDE, 338

DRb store option, 391

drop_table migration, 33

DRY (Don't Repeat Yourself) principle, 23

DSL (domain-specific language), 33, 90

dt element, 130

dynamic fixture, 342

Dynamic scaffolding, 60

■E
E-Commerce tag, 220

edit action, 53

Edit books user stories, 59, 110–111

Edit Languages button, 305

Edit link, 110

Edit Options button, Selenium IDE
Downloads page, 338

Edit publishers user stories, 60, 68–69

Edit tags, 198

Edit Tags user story

modifying controller, 213

modifying views, 213–215

overview, 211

updating integration test, 212

Edit Translation user story, 311–312

edit_book method, 111, 212

element locators, 334

elsif clause, 310

Email, PayPal, 273

email field, 253, 262

Embedded Ruby (ERB), 22

Emporium application, 340, 372

administration interface, 90

creating database

configuring Ruby on Rails to use
database, 17

creating development and test
databases, 15–16

overview, 14–15

setting up database user, 16–17

creating skeleton application, 12–14

overview, 12

starting for first time, 18–19

'emporium'@'localhost' identified by
'hacked' command, 16

'localhost' identified by, 16

411■I N D E X

Find it faster at http://superindex.apress.com

'emporium'@'localhost' parameter, 16

emporium_development.* parameter, 16

emporium_production database, 365

emporium_test test database, 81

entity relationship diagram (ERD), 73

environment.rb configuration file, 305

ERB (Embedded Ruby), 22

ERB::Util library, 130

ERD (entity relationship diagram), 73

error message, 5

error_message field, 254, 282

error_messages_for helper, 182

error_messages_for method, 43

EVENT_NOKQUEUE=1 environment
variable, 393

Excel spreadsheet, 73

:except parameters, 147

execute command, 203

execute method, 71

Execute Tests section, TestRunner
window, 350

expire_action :index statement, 390

expire_fragment method, 390

expire_page :action =< "index"
statement, 389

EXPLAIN, 399

export command, 363

extend method, 94

■F
fail log in, 223

Fail Log In user story

adding flash message, 235–236

adding login links and styling, 237–238

overview, 233–235

FastCGI, 351

configuration of LightTPD, 365

installing, 356–357

starting processes, 369–371

Federal Express (FedEx), shipping costs, 291

Ferret, 113

fieldset tag, 262

File store option, 392

file upload functionality, 104

file_column method, 102

FileColumn plugin, 102

filter parameter, 146

find method, 54, 117, 134, 301

find_all_by_attribute_name finder
method, 162

find_all_in_category method, 175

find_by format, 78

find_by_contents class method, 127, 131

find_by_name dynamic finder, 177

find_tagged_with method, 205, 216

Firefox browser, 341

first_name method, 36, 51

fixture files, 50, 114

Fixtures, 50

fixtures :authors template, 51

fixtures declaration, 83, 87

flash notifications, 55–57

flash.now hash, 156

follow_redirect test helper method, 56

for attribute, 183

foreign key constraints, 71

forgot_password mail method, 240

forgot_password method, 245

form_tag helper, 43

<form> tag, 43

_form.rhtml partial, 211

forum implementation

getting forum requirements, 169–170

implementing user stories

overview, 179

Post to Forum use story, 179–184

Reply to Post user story, 192–195

View Forum user story, 185–189

View Post user story, 190–192

412 ■I N D E X

forum implementation (continued)

overview, 169

setting up forum

generating controller and view, 177–178

modifying model, 175–176

overview, 171

unit testing model, 176–177

updating database schema, 171,
173–174

using threaded forum plugin, 170–171

forum_posts database table, 174

forum_posts table, 171, 340

forum_test database table, 343

ForumTestDSL, 180

fragment caching, 390–392

fragment stores

caching with memcached, 393–395

overview, 392–393

storing sessions with memcached, 395

fragment_cache_store parameter, 392

functional testing, 31

■G
GCC (Gnu Compiler Collection), 4

gem install capistrano command, 371

gems, 5

generate authenticated_mailer command,
239, 244

generate command, 38, 201, 225

generate controller command, 38, 42

generate migration command, 33

generate model command, 33

generate script, 27, 88, 175–177, 179, 201, 203,
215, 306, 335

generator command, 116

get method, 130

GET protocol, 250

GET request, 153

get test helper method, 40

get_book_details_for method, 120

get_translation_text action, 311

GetText library, 298

Globalize plugin, 297, 387

localizing with

localizing dates, currencies, and
numbers, 302

localizing model, 301

localizing text, 300

overview, 300

overview, 298–299

setting up, 303

globalize_countries database table, 299

globalize_languages database table, 299

globalize_translations database table, 299

globalize_translations table, 313

Gnu Compiler Collection (GCC), 4

go_to_second_page method, 123, 134

grant all command, 16

grant database, 365

■H
h method, 191

has_and_belongs_to_many :books
declaration, 76

has_and_belongs_to_many mapping, 76, 79

has_many :books declaration, 74

has_many declaration, 77

has_many mapping, 74

has_many :through syntax, 144

has_one :address declaration, 77

has_one mapping, 77

home directory, 368

HTML format, 334–335

html tag, 323

HTTP_ACCEPT_LANGUAGE header, 305

http-access2 library, 272

■I
id attribute, 334

id column, 62

413■I N D E X

Find it faster at http://superindex.apress.com

id parameter, 27

:id parameter, 97

id=id element locator, Selenium, 334

identified by 'hacked' parameter, 16

identifier=id element locator, Selenium, 334

if/else branches, 314

image_tag method, 107

in_place_editor helper, 308

include parameter, 117

:include parameter, 398

include_translated option, 301

index action, 48, 116, 132, 178, 187, 386

index method, 260, 287

index.html file, 19

indices, 400

initialize_cart filter, 146, 260

initialize_cart method, 145

init.rb file, 170

inject method, 148

install command, 10, 199, 224

INSTALL file, 356

install script, 357

INSTALL-BINARY file, 9

installing

Capistrano, 371

FastCGI, 356–357

LightTPD web server, 353–355

MySQL, 8–9, 358

MySQL driver, 9–10

overview, 2–3

Ruby, 4–5

Ruby on Rails, 6–7, 356–357

RubyGems, 5–6

integration testing, 31, 90, 179

internal id, 308

irb console, Ruby, 357

isbn validation, 80

item partial, 148

■J
join table, 75

■K
key field, 401

■L
language support. See multiple language

support

last_name method, 36, 51

latest action, 137

Launch Sandbox button, 274

layout file, 64, 67

legend tag, 261–262

lft column, 172

lib directory, 225

lib file, 13

libevent-dev package, 394

LightTPD, 351, 353

configuring

access configuration, 363

FastCGI module configuration, 365

log file configuration, 361

mime-type configuration file, 361–363

module configuration, 360

overview, 358–360

SSL configuration, 364

starting, 368–369, 380

lighttpd group, 368

LightTPD web server, 353–355

link fetchers, 153

link_to call, 156

link_to method, 189

link_to_remote call, 156

link=textPattern element locator,
Selenium, 334

Linux binary package, 8

list action, 216

List authors user story, 39

414 ■I N D E X

List Books user story, 59, 106

adding integration test, 106

changing controller, 105

changing view, 105

overview, 104

List Publishers user stories, 60, 66

List tags, 198

List Tags user stories, 215–218

List Translations user story, 306–309

load method, 209

load_data method, 96, 110, 209

locale parameter, 304

Locale.set namespace, 303

localization requirements, 297–298

localize method, 302

localizing

dates, 319–320

with Globalize plugin

localizing dates, currencies, and
numbers, 302

localizing model, 301

localizing text, 300

overview, 300

numbers and currencies, 320–322

lock_version column, 71

log file, 13

log file configuration of LightTPD, 361

log in, 223

Log In user story

adding filter, 229–230

overview, 227–229

testing redirection, 230–232

login_required function, 229

logs/test.log file, 85

■M
m option, 395

make command, 5

manual application deployment

copying application, 367

creating users and groups, 367–368

overview, 366

starting FastCGI processes, 369–371

starting LightTPD, 368–369

margin-left CSS property, 189

Masahiro, Tomita, 9

Max field value, ALL REQUESTS row, 386

Memcache store option, 392

memcache-client, 396

memcached

caching with, 393–395

storing sessions with, 395

Memory store option, 392

:memory_store option, 395

migration, 14, 32, 103, 397

mime-type configuration file of LightTPD,
361, 363

mod_access module, 360

mod_accesslog module, 360

mod_compress module, 360

mod_fastcgi module, 353, 360

mod_proxy module, 358

mod_proxy_core module, 358

mod_rewrite module, 360

Model-View-Controller (MVC) pattern, 20, 31

Money gem, 271

Mongrel, 358

multiple language support

adding Unicode (UTF-8) support

changing database to use UTF-8,
324–326

overview, 322

setting character encoding for HTTP
response, 324

setting character encoding in HTML, 323

getting localization requirements,
297–298

415■I N D E X

Find it faster at http://superindex.apress.com

implementing user stories

Change Locale user story, 304–305

overview, 304

Translation user stories, 306–313

overview, 297

translating model, 317–318

translating view, 313–316

using Globalize plugin

localizing with, 300–302

overview, 298–299

setting up, 303

MVC (Model-View-Controller) pattern, 20, 31

MySQL, 8–9, 170, 351, 358

MySQL command-line, 15

MySQL driver, 9–10

mysql> create database
emporium_development
command, 15

mysql> create database emporium_test
command, 15

mysql> grant all on
emporium_development.* to \
command, 16

mysql> grant all on emporium_test.* to \
'emporium'@'localhost' identified
by 'hacked' command, 16

mysqldump command, 373

■N
name column, 62, 172

name field, 64, 175

name method, 36

:name parameter, 97

name=name element locator, Selenium, 334

new action, 42, 96

new page, 53

New publisher link, 63

new_session_as method, 94, 180

new.rhtml template, 47

numbers, localizing, 302, 320–322

■O
only parameter, 230

:only parameter, 392

onXXX attributes, 248

open command, 343

open status, 253

open_session method, 90

open(url) action, Selenium, 331

Opera browser, 155

<option> tag, 265

options parameter, 325

options_for_select helper method, 265

options_from_collection_for_select
parameter, 97

Order model, 252–255, 277, 291

order parameter, 287

Order_Item model, 254–255

order_items table, 252

orders table, 252

■P
page caching, 388–390

page_count validation, 80

page_title instance variable, 108, 194

page.visual_effect method, 156

paginate call, 117

paginate helper, 216

paginate method, 105, 188, 287

pagination_links helper method, 288

parameter, 97

parameters hash, 111

parent_id column, 172, 177

passwd command, 368

password attribute, 247

Payment Card Industry (PCI), 268

payment gateways, 266

Active Merchant plugin, installing,
271–272

Authorize.Net, 280–283

416 ■I N D E X

payment gateways (continued)

overview, 271

Payment gem, 284–286

PayPal

creating API credentials, 275–277

creating dummy bank account and
credit card, 274–275

overview, 272–274

setting up transactions, 277–279

PayPal Developer Central, 272

PCI (Payment Card Industry), 268

PCRE (Perl Compatible Regular Expressions)
library, 354

performance optimization

common performance problems in Rails

database access, 399–401

overview, 397

rendering speed, 397–399

measuring performance

checking log file, 382

overview, 382

using Rails Analyzer, 383–388

overview, 381

and scaling, 381

Perl Compatible Regular Expressions (PCRE)
library, 354

Person object, 30

Person#age method, 30

phone_number field, 253, 262

Place Order button, 267–268

place_order action, 268–271

plugin command, 125

plugins, 170

pluralization, 298

pluralize helper, 131, 148

populate_order method, 269

POSIX (Portable Operating System Interface)
shell command, 371

post action, 178

POST method, 45

post method, 65, 69

post object, 181

post test helper method, 155

Post to Forum acceptance test, 345–347

Post to Forum user story

completing controller, 182

creating integration test, 179–181

creating view, 182–183

overview, 179

testing, 183–184

Post to forum user story, 170

post_to_forum method, 180, 185

post.add_child(child) method, 171

post.all_children method, 171

post.child? method, 171

post.children_count method, 171

post.direct_children method, 171

post.full_set method, 171

post.root? method, 171

posts variable, 189

price field, 321

price validation, 80

price_localized field, 302

priority_countries parameter, 264

Pro Ruby, 223

proc object, 146

Proceed to Checkout link, 266

process method, 270, 277, 280, 284

process_with_active_merchant method, 277

process_with_payment_gem method, 283

product backlog, 11

production environment, setting up

configuring LightTPD

access configuration, 363

FastCGI module configuration, 365

log file configuration, 361

mime-type configuration file, 361, 363

module configuration, 360

417■I N D E X

Find it faster at http://superindex.apress.com

overview, 358–360

SSL configuration, 364

connecting to production server, Secure
Shell (SSH), 352–353

creating production database, 365–366

installing application server, Ruby on Rails
and FastCGI, 356–357

installing database server (MySQL), 358

installing web server, LightTPD, 353–355

overview, 351

Production Log Analyzer, 383–387

project setup and proof of concept

About Emporium user story
implementation

creating layout, 23–27

modifying generated controller, 27

modifying generated view, 22–23

overview, 20–21

running generate script, 21–22

creating Emporium application

creating Emporium database, 14–17

creating skeleton application, 12–14

overview, 12

starting for first time, 18–19

Emporium project overview, 1–2

how Ruby on Rails works, 20

installing software

MySQL, 8–9

MySQL driver, 9–10

overview, 2–3

Ruby, 4–5

Ruby on Rails, 6–7

RubyGems, 5–6

overview, 1

Scrum overview, 10–12

proof of concept. See project setup and proof
of concept

public directory, 18

public file, 13

public-key encryption, 364

public/stylesheets/scaffold.css file, 64, 89

published_at field, 108

published_at validation, 80

publisher administration interface
implementation

Add Publisher user story

adding validations to model, 64

modifying generated fixture data, 65

modifying generated functional test,
65–66

overview, 64

Edit Publisher user story, 68–69

generating publisher code with
scaffolding script, 62–64

overview, 61

updating schema with publishers table,
61–62

View Publisher user story

modifying generated action, 67

modifying generated functional test,
67–68

modifying View, 67

overview, 66

publisher method, 117

Publisher model, 64, 74–75

publisher object, 110

publisher validation, 80

publisher_id column, 83

publisher.books << Book.create(.) method, 74

publisher.books = new_books method, 74

publisher.books method, 74

publisher.books.clear method, 75

publisher.books.delete(some_book)
method, 74

publisher.books.empty? method, 75

publisher.books.find method, 75

publisher.books.size method, 75

publishers table, 61, 70

publishers.yml fixture file, 83

purchase method, 281

418 ■I N D E X

■R
Rails Analyzer

overview, 383

running Action Profiler, 387–388

using Production Log Analyzer, 383–387

Rails application directory, 127

rails command, 12, 17

rails directory, 368–369

Rails framework, 328

Rails plugin, 224, 271

Rails wiki, 353

RAILS_ENV environment variable, 34

rails_stat tool, Rails Analyzer, 383

rake cold_deploy task, 378

rake command, 34–35, 378

rake db, 174

rake db:migrate command, 35, 71, 145, 174, 203

rake db:sessions:clear command, 35

rake db:sessions:create command, 35

rake deploy command, 371

rake deploy task, 378

rake log:clear command, 35

rake migrate command, 103

rake rails:freeze:edge command, 35

rake rails:freeze:gems command, 35

rake rails:unfreeze command, 35

rake stats command, 35

rake test:functionals command, 64–65

rake test:integrations test, 112

Rakefile file, 13

:raw => true parameter, 220

README file, 13, 356–357, 394

reaper script, 378

Recognition failed for "/" error, 19

Recommend books, 198

Recommend Books user story, 218–221

RedCloth, 91, 328

releases directory, 378

remove action, 164

Remove Items from Cart user story, 161–162,
164–165

remove method, 161–162

remove_column migration, 33

remove_with_ajax template, 164

render method, 130

repeat option, 370

reply action, 178

Reply link, 192

Reply to Post acceptance test, 348–350

Reply to Post user story, 170, 192–195

reply_to action, 194

reply_to_post method, 193

repository variable, 372, 374

require line, 284

reset password, 223

Reset Password user story

creating form templates, 246–248

modifying controller, 244–246

overview, 238–239

updating User model, 241–242

using ActionMailer mailers, 239–241

using observers, 243–244

resource-expandable, 381

restart task, 372

rgt column, 172

.rhtml suffix, 136

.rhtml template, 137, 156

.rjs template, 313

root post, 169

root_id column, 172

routing, 31

RSelenese format, 335

Ruby on Rails framework, 170

Ruby on Rails tag, 220

Ruby Performance Validator, Windows, 388

ruby --v command, 4

Ruby-FastCGI library, 356

RubyGems, 5–6, 328

419■I N D E X

Find it faster at http://superindex.apress.com

ruby-memcache gem, 394

.rxml templates, 136–138

■S
sales taxes, 296

Sandbox, PayPal, 272–273

save method, 177, 206

say_with_time method, 71

scaffold method, 60

scaffolding, 60–61

scaling, 395

schema_info table, 34, 73

script directory, 205

script file, 13

script.aculo.us Effect.* JavaScript methods, 156

script.aculo.us JavaScript library, 149,
207–208

script/console command, 301

script/generate command, 32, 38, 73, 116,
142–144, 173

script/plugin script, 299

script/process directory, 365

scripts directory, 7

script/server command, 18

Scrum, 10–12

search action, 130

search engine optimization (SEO), 323

searches_for_tolstoy method, 128

_search.rhtml partial view, 131

search.rhtml template, 132

Secure Shell (SSH), 352–353

security

getting authentication requirements, 223

implementing user stories

Fail Log In user story, 233–238

Log In user story, 227–232

overview, 227

Reset Password user story, 238–248

overview, 223

protecting application

cross-site request forgery, 250

cross-site scripting, 248

overview, 248

SQL injection, 249

URL and form manipulation, 248–249

using authentication plugin, 224–227

SELECT queries, 125

select_tag method, 97

select_tag parameter, 97

select(locator, value), Selenium, 331

Selenese format, 328, 335

Selenium

overview, 327

recording tests

overview, 337

Post to Forum acceptance test, 345–347

Reply to Post acceptance test, 348–350

Show Post acceptance test, 347–348

using Selenium IDE, 337–338, 340

View Forum acceptance test, 340–345

using, 327–330

writing tests

commands, 330–334

first acceptance test, 335–337

formats, 334–335

self.down method, 33

self.up method, 33

SEO (search engine optimization), 323

:separator => ',' parameter, 220

server.errorlog setting, 361

server.groupname option, 368

server.pid-file setting, 361

server.port module, 360

server.username option, 368

session hash, 147

session object, 90, 94

set_locale method, 304

420 ■I N D E X

set_translation_text action, 311

setup method, 231

setup task, 375

setup_email method, 239

shared nothing architecture, 381

shell script, 393

ship_to field, 253

ship_to_country field, 264

shipping costs, calculating, 294

Shipping gem, 294–295

Shopify, 271

shopping cart implementation

getting requirements, 141

implementing user stories

Add Items to Cart user story, 152–157,
160

Clear Cart user story, 166–167

overview, 152

Remove Items from Cart user story,
161–162, 164–165

overview, 141

setting up shopping cart

adding functional test, 142–143

creating controller, 142

creating models, 143–145

creating views, 147–150, 152

modifying controller, 145–147

overview, 142

shopping_cart element, 167

show action, 51, 178

show action, CartController, 390

show action, CatalogController, 387

show databases command, 15

show method, 67

show page, 120

Show Post acceptance test, 347–348

Show Post test, 348

Show tags, 198

Show Tags user stories, 215–218

show_book method, 109

size method, 187

SOAP, 272

soap4r library, 272

sort_by parameter, 105

Source tab, Selenium IDE, 340

spawner process, 367

spawner script, 365, 370, 376

spin script, 370

spinner script, 375

spinner task, 377

sprint, 11

sprint backlog, 12

SQL Dependency Grapher, 383

SQL injection, 249

SSH (Secure Shell), 352–353

SSL configuration of LightTPD, 364

ssl.pemfile configuration property, 364

Static scaffolding, 60

status field, 253, 256

status parameter, 286

Step radio button, 350

storeChecked(locator, variableName)
accessor, Selenium, 333

storeText(locator, variableName) accessor,
Selenium, 333

store(value, variableName) accessor,
Selenium, 333

storeValue(locator, variableName) accessor,
Selenium, 333

style sheets, 25, 64, 150

subject column, 172

subject field, 175

Subversion, 363, 372

sudo command, 368, 375

.svn directories, 363

svnserve daemon, 367

syslog daemon, 383

SyslogLogger class, 383

421■I N D E X

Find it faster at http://superindex.apress.com

■T
table skeleton, 32

Table tab, Selenium IDE, 340

Tag model, 203

tag_controller.rb file, 216

<tag> element, 138

tagged_with method, 205

tagging

getting tagging requirements, 197–198

implementing user stories

Assign Tags user story, 207–211

Edit Tags user story, 211–215

List Tags and Show Tags user stories,
215–218

overview, 207

Recommend Books user story, 218–221

overview, 197

setting up for

overview, 201

preparing models, 203–204

unit testing model, 204–205

updating database schema, 201, 203

using console to test model, 205–206

using RubyGem, 198–200

tags, 197

tags attribute, 207

tags collection, 208

Tags field, 210

tags parameter, 207–208

tags table, 201, 203

tags_books table, 201

target, Selenium, 331

taxes, calculating, 296

TDD (test-driven development), 2, 29–30

Test Accounts listing, 274

Test Certificates, PayPal, 273

test environment, 14

test file, 13

test_adding test method, 155

test_book_administration method, 109,
111–112, 207, 212

test_book_administration test, 94, 106

test_browsing_the_site test method, 136

test_create method, 46, 64, 82

test_forum method, 180, 193

test_has_many_and_belongs_to_mapping
test, 84

test_name method, 36

test_tagging method, 204

test_truth method, 36, 142, 259

test_truth test method, 39

test_update method, 68

test-driven development (TDD), 2, 29–30

test/fixtures directory, 315

test/fixtures/publishers.yml file, 83

test/functional/cart_controller_test.rb
test, 155

testing, acceptance. See Selenium

testing in Rails

functional testing, 31

integration testing, 31

overview, 30

unit testing, 30–31

test/integration/book_test.rb file, 92

TestRunner window, 350

test/selenium directory, 336

test/selenium/forum folder, 336

Test::Unit Ruby library, 30

text, localizing, 300

text markup language, 92

text_field method, 43

Textile, 91

Textile markup, 108

Textile markup format, 328

Textile markup language, 59

textilize method, 107–108, 397–398

thank_you action, 270

threaded forum plugin, 170–171

threaded.rb file, 170

422 ■I N D E X

threads, 169

:through option, 144

title parameter, 317

title validation, 80

tokens parameter, 209

tr_key column, 300

translate method, 313

translates method, 301, 318

Translation user stories

Add Translation user story, 310

Delete Translation user story, 312–313

Edit Translation user story, 311–312

List Translations user story, 306–309

overview, 306

tree command, 12, 378

tries_to_go_to_admin method, 228

trunk directory, 329

type column, 400

type(locator, value), Selenium, 331

■U
/u directory, 375

Ubuntu Linux, 3, 353

:unique option, 71

unit testing, 30–31

United Parcel Service (UPS), shipping
costs, 294

update action, 53

update_attribute method, 162

update_attributes method, 54, 68

updated_at column, 172–173

Upload book cover user stories, 59

Upload Book Cover user story

adding file upload functionality, 102–103

changing form, 104

cloning changes, 104

modifying database schema, 103

overview, 102

UPS (United Parcel Service), shipping
costs, 294

URL and form manipulation, 248–249

url_encode method, 130

url_for call, 399

url_for key, 390

url_for templates, 138

url_for_file_column method, 104, 107

User class, 247

User model, 241–242

user stories, 11, 29

adding author

adding test case, 39–41

creating author, 44–47

creating form, 42–44

overview, 39

validating data, 47–48

adjusting flash notifications, 55–57

deleting author, 54–55

editing author, 52–54

Fail Log In user story

adding flash message, 235–236

adding login links and styling, 237–238

overview, 233–235

listing authors, 48–50

Log In user story

adding filter, 229–230

overview, 227–229

testing redirection, 230–232

overview, 39, 179, 227

Post to Forum use story

completing controller, 182

creating integration test, 179–181

creating view, 182–183

overview, 179

testing, 183–184

Reply to Post user story, 192–195

Reset Password user story

creating form templates, 246–248

modifying controller, 244–246

overview, 238–239

423■I N D E X

Find it faster at http://superindex.apress.com

updating User model, 241–242

using ActionMailer mailers, 239–241

using observers, 243–244

View Forum user story

modifying controller, 188

modifying view, 186–187

overview, 185

updating integration test, 185–186

using view helper, 188–189

View Post user story

modifying controller, 191

modifying view, 191–192

overview, 190

updating integration test, 190–191

viewing author, 50–52

user variable, 372, 375

UserNotifier, 239

UserNotifier mailer, 244

UserObserver, 239

■V
validate callback method, 258

validates_confirmation_of validation, 247

validates_length_of validation method, 175

validates_presence_of method, 47

validation failure, 82

value-added tax (VAT), 295

/var/log directory, 361

/var/run directory, 361

VAT (value-added tax), 295

vendor file, 13

vendor/plugins directory, 170, 199, 299

vendor/plugins/active_merchant
directory, 272

vendor/plugins/acts_as_threaded
directory, 170

vendor/plugins/trunk directory, 102, 329

verifyElementNotPresent command, 343

view, 20, 22

View author user story, 39

View Book user story, 104, 109

adding integration test, 109

changing controller, 108–109

changing view, 107–108

overview, 107

View books user stories, 59

View Forum acceptance test, 340–345

View Forum test case, 336

View Forum user story, 170

modifying controller, 188

modifying view, 186–187

overview, 185

updating integration test, 185–186

using view helper, 188–189

view helpers, 169

View Order user story, 290–291

View Orders user story, 286–289

View Post user story, 169–170

modifying controller, 191

modifying view, 191–192

overview, 190

updating integration test, 190–191

View Publisher user story

modifying generated action, 67

modifying generated functional test,
67–68

modifying View, 67

overview, 66

view_post method, 190

ViewTranslation model, 306, 312

visudo command, 368

vv command, 393

■W
web accelerators, 153

Webalizer, 361

WEBrick, 63, 102, 199

WHERE clauses, 401

wiredump_dev parameter, 278

424 ■I N D E X

■X
XMLHttpRequest JavaScript object, 155

xml.tag command, 138

xpath=xpathExpression element locator,
Selenium, 334

■Y
YAML Ain't Markup Language (YAML), 17

yield method, 25, 92

yield session if block_given? line, 94

■Z
ZenProfiler, 387

zlib compression library, 354

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

