
BizTalk
Server 2016

Performance Tuning and Optimization
—
Agustín Mántaras

www.allitebooks.com

http://www.allitebooks.org

BizTalk Server 2016
Performance Tuning and

Optimization

Agustín Mántaras

www.allitebooks.com

http://www.allitebooks.org

BizTalk Server 2016: Performance Tuning and Optimization

ISBN-13 (pbk): 978-1-4842-3993-3			 ISBN-13 (electronic): 978-1-4842-3994-0
https://doi.org/10.1007/978-1-4842-3994-0

Library of Congress Control Number: 2018965175

Copyright © 2019 by Agustín Mántaras

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava
Development Editor: Siddhi Chavan
Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-3993-3. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Agustín Mántaras
Dubai, United Arab Emirates

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3994-0
http://www.allitebooks.org

For my father, mother, wife, and friends, even though I know none of
them will read it. Oh, yes, and for the rest of my family; otherwise,

I would have a problem (Houston).

www.allitebooks.com

http://www.allitebooks.org

v

Table of Contents

Chapter 1: �Revealing the Black Box�� 1

XML Language Premier�� 2

XML Schema Concepts Used by BizTalk Server��� 2

Attribute�� 2

Namespace��� 3

Element�� 3

BizTalk and XML Namespaces in Detail��� 4

The Declaration�� 5

Identification of an Incoming Message�� 7

BizTalk Server Schemas�� 8

BizTalk Server Schema Types��� 8

Delimited Flat Files��� 9

Positional Flat Files�� 10

XML Schemas��� 10

JSON Messages�� 11

Envelope Schemas��� 13

Property Schemas�� 13

The Message Engine�� 13

About the Author�� xiii

About the Technical Reviewers��xv

Acknowledgments��xvii

Introduction���xix

Requirements and Source Code���xxi

www.allitebooks.com

http://www.allitebooks.org

vi

Host and Host Instances�� 15

Publications: The BizTalk Server Message��� 16

The Message Type Property�� 21

Subscriptions��� 27

Activation Subscriptions��� 29

Instance Subscriptions��� 32

Request-Response Scenario�� 32

Solicit-Response Scenario��� 32

Subscription Priority��� 33

Searching for Subscription Information��� 35

Publishers�� 38

Subscribers�� 40

The Dequeue Process��� 41

Adapters��� 44

The MessageBox Database�� 45

Host Tables��� 46

Queue Tables�� 46

System Tables�� 47

Spool Table��� 47

Summary��� 49

Chapter 2: �Performance Analysis�� 51

Performance Analysis Techniques��� 51

Increasing Trends Over Long Periods��� 52

Performance Counters Analysis Guidelines��� 57

Processor�� 58

Percentage of Processor Privileged Time��� 59

Percentage of User Time�� 60

Percentage of Processor Time�� 61

System Processor Queue Length��� 62

Memory�� 63

Table of Contents

vii

Memory\% Committed Bytes in Use��� 64

Memory\Available MBytes�� 64

Disks�� 65

LogicalDisk\% Free Space�� 66

Disk Idle Time Percentage�� 67

Avg. Disk Sec/Read and Avg. Disk Sec/Write��� 68

Avg. Disk Queue Length�� 70

Network��� 72

Network Interface(*)\Bytes Total/Sec��� 73

Network Interface\Output Queue Length�� 73

Latency�� 74

Latency Factors�� 77

Load�� 77

Bad Disk Performance or Overused Disks�� 77

Throttling�� 77

Complex Maps�� 78

Complex Orchestrations and Custom Code.��� 78

Size of the Message��� 78

Latency Performance Counters�� 78

Latency Thresholds��� 81

Throttling�� 83

What Is Throttling?��� 84

Throttling Performance Counters��� 87

Suspended Messages�� 100

Impact of Suspended Messages�� 101

Monitoring Suspended Messages�� 101

BizTalk Health Monitor Tool�� 103

Visual Basic Script to Deal with Suspended Messages�� 104

Tracking��� 105

Tracking Performance Counters��� 106

Summary��� 107

Table of Contents

viii

Chapter 3: �Performance Tools��� 109

Performance Monitor��� 109

Setting Up a Performance Counter Capture��� 110

The Performance Analysis of Logs Tool�� 126

Creating a New Analysis Using PAL Tool��� 126

Understanding the PAL Output��� 136

Using LoadGen to Test the Environment�� 139

The LoadGen Configuration File�� 140

Testing a Solution��� 142

Summary��� 144

Chapter 4: �Optimizing the BizTalk Platform�� 145

Assigning Application Priority Levels (APL)�� 146

Release Stage Level (RSL)�� 148

Business Priority Level (BPL)�� 148

High Availability Level (HAL)��� 150

Transaction Levels (TL)��� 150

Performance Behavior Level (PBL)��� 151

Service-Level Agreements Between the Integrated Parties�� 152

Performance Service Level Agreement�� 152

Availability SLA��� 157

Factors That Are Important for BizTalk Performance��� 159

Message Size��� 160

Tracking�� 165

Host Architecture�� 174

Host Performance Settings��� 179

Automating Host Settings��� 190

Message Box Database�� 209

Scaling the BizTalk Server Group��� 230

Microsoft Distributed Transaction Coordinator��� 230

Number of Simultaneous Connections of HTTP Adapters��� 232

Windows Communication Foundation Throttling�� 234

Table of Contents

ix

Documenting Applications��� 235

The Excel Sheet�� 236

Application Form�� 236

Flow Forms��� 240

Sizing Message Box and DTA��� 240

Summary��� 247

Chapter 5: �Instrumenting BizTalk Solutions�� 249

Instrumenting Using Event Tracing for Windows�� 250

The BizTalk CAT Framework for ETW�� 252

Instrumenting Using Business Activity Monitoring�� 274

Business Activity Monitoring�� 274

Designing the Instrumentation Activities for a BizTalk Server Solution�������������������������������� 277

Instrumenting Creating Custom Performance Counters�� 296

Developing Custom Performance Counters�� 297

How Does It Work?��� 298

Book Orders Orchestration Flow Diagram�� 300

Examining PerformanceCounterHelper Component��� 301

Summary��� 310

Chapter 6: �Developing High-Performance Solutions��� 311

Improving Schema Definitions��� 311

Length of the Element Names�� 312

Message Properties Performance Recommendations��� 312

Canonical Schemas�� 314

Improving Orchestrations��� 316

To Orchestrate or Not To Orchestrate, That Is the Question�� 316

Reducing the Impact of Persisted Data�� 321

Improving Orchestration Latency�� 325

Controlling Orchestration Memory Consumption�� 329

Reducing Orchestration Complexity��� 331

Table of Contents

x

Improving Maps Execution��� 332

BizTalk Host Instance Temp Folder Location�� 332

Using the XslCompiledTransform Class�� 332

Improving Pipelines��� 333

Use the PassThru Pipelines�� 334

Disposing of Objects��� 334

Avoid Using XMLDocument Objects�� 335

Developing Pipeline Components to Improve Performance��� 336

Types of Pipeline Components�� 337

Custom Pipeline Interfaces��� 339

Attributes of Pipeline Components��� 341

Developing a General Custom Pipeline Component��� 341

Solution Overview�� 342

Developing the Property Schema Project��� 342

Developing the Custom Pipeline Component Project��� 343

Creating the Visual Studio Project for the Custom Pipeline Component������������������������������� 344

Summary��� 366

Chapter 7: �Decreasing Downtime�� 367

Side-by-Side Versioning��� 367

How Can You Solve this Problem?�� 368

Component Version Side-by-Side Execution�� 369

Applying Side-by-Side Versioning to a BizTalk Server Project��� 370

Using Business Rules to Reduce Deployment�� 380

Policy Execution Steps��� 381

Business Rules Performance Recommendations��� 382

Securing Application Configuration Settings�� 387

The SSO MMC Snap-In Tool�� 388

Adding New Keys to the SSO Store�� 390

Importing and Exporting Application Configuration�� 392

Creating an SSO Helper Component��� 394

Summary��� 397

Table of Contents

xi

Chapter 8: �Monitoring Using BizTalk 360�� �399

Understanding Monitoring in BizTalk 360�� 399

Different Types of Monitoring��� 399

Setting Up an Alarm�� 401

What Do You Monitor?�� 407

BizTalk Platform Monitoring��� 407

BizTalk Application Monitoring��� 417

What Is Data Monitoring?��� 421

Endpoint Monitoring��� 425

How Are You Notified?�� 425

Dashboards�� 426

Automated Recovery�� 430

Summary��� 431

Chapter 9: �Testing BizTalk Server Solutions�� 433

Unit Testing�� 433

Creating Unit Testing for a .NET Component��� 434

Creating Unit Testing for a BizTalk Project�� 443

Performance Testing�� 454

Performance Testing Methodology��� 455

Assessing the Production Environment�� 456

Assessing the Performance of a BizTalk Application�� 462

Creating a Web Test for BizTalk WCF Service HTTP Binding��� 487

Providing a Dynamic Data Source�� 492

Summary��� 499

Chapter 10: �A BizTalk Server Tale�� 501

Chapter 1: The One with the Baby BizTalk Server�� 501

Chapter 2: The One with New Applications�� 502

Chapter 3: The One with Performance Problems (I)��� 502

Chapter 4: The One with Performance Problems (II)�� 503

Chapter 5: The One with the Disaster (I)�� 504

Table of Contents

xii

Chapter 6: The One with the Disaster (II)��� 504

Chapter 7: The One with the Big File that Changes Everything�� 505

Chapter 8: The One with Web Service�� 507

Chapter 9: The One with the Disk Performance Issue�� 507

Chapter 10: The One with the New Application (I)�� 509

Chapter 11: The One with FTP Server�� 511

Chapter 12: The One that Sends Files Too Fast�� 512

Chapter 13: The One That Floods a Destination System�� 514

Chapter 14: The One with the New Application (II)��� 515

Chapter 15: The One with the High Throughput Application�� 519

Summary��� 519

�Index�� 521

Table of Contents

xiii

About the Author

Agustín Mántaras discovered BizTalk Server back in

2004, working on its implementation in one of Spain's

largest banks. His passion for developing and architecting

BizTalk solutions continued to grow and, in 2008, he joined

Microsoft as a Premier Field Engineer, a job that has taken

him around the globe to work on some the biggest BizTalk

Server implementations. He is currently based in United

Arab Emirates, delivering BizTalk and Azure services to

clients in the Middle East, Africa, and Europe.  

xv

About the Technical Reviewers

Jean-Pierre Accounie is passionate about code

development. He started his career at Microsoft in 1992 as a

Support Engineer for Visual Basic 1.0 for DOS and Windows

and then moved quickly to supporting Windows SDK via

Quick C and C++ 6.0 and then Visual C++ and its famous

MFCs.

After several years being an SME on the MTS/COM+

Microsoft middleware products line, he joined the integration

world and started to support BizTalk 2002 and BizTalk 2004.

There he created a support tool that, in one click, gathered all the information about

a BizTalk configuration. He also made this tool public because of its popularity inside

MS. Its current version, named BizTalk Health Monitor, is used today by all MS engineers

and almost all BizTalk admins to monitor their platform.

After 26 years at Microsoft, Jean-Pierre Accounie still works in its Support division,

supporting its Integration offers (BizTalk, Logic Apps, MSMQ, WFM, etc.).

Originally from Dayton, OH, Clint Huffman is a senior

software engineer at Microsoft and a published author on

Windows performance analysis. He is probably best known

as the creator of the Performance Analysis of Logs (PAL) tool

and regularly teaches the Windows architecture. 

xvi

Felipe Senso has worked in the integration space for more

than 18 years now. His main areas of expertise are BizTalk

Server and Azure Hybrid Integration, with a strong .NET

Development background. In 2012, he joined Microsoft

as Support Engineer, assisting many mission-critical hot

issues worldwide, making him a great resource within

complex reactive troubleshooting. In 2015, he moved to the

Premier Field Engineer Integration role in the EMEA region,

delivering proactive services such as stabilization and

optimization of the BizTalk Server platform, and BizTalk/

Azure training for developers and administrators. 

As the founder of BizTalk360, Saravana Kumar fulfills

the role of CTO, where he is responsible for the strategic

direction of the company and most importantly, the

clients. A Microsoft Integration MVP since 2007, Saravana

was awarded the “Integration MVP of the Year 2013” by

Microsoft. With more than a decade of experience handling

BizTalk customers across the world, Saravana was frustrated

seeing customers struggling with the same challenges again

and again when it came to BizTalk Server administration

and operations. The idea of BizTalk360 came to him over a cup of coffee with his fellow

MVPs, and therefore he started a pet project to address some of the challenges faced by

BizTalk administrators. This slowly turned out into full-blown commercial product that

helps customers across the world. 

Saravana is a very active member of the BizTalk Server community. A popular

speaker, he often presents at various BizTalk conferences, user groups, local colleges,

etc. across Europe, the United States, and India. If you are a BizTalk programmer or

administrator, it’s likely that you’ve read something from him or heard him speak on

BizTalk-related topics.

About the Technical Reviewers

xvii

Acknowledgments

I am sure I wrote half of the book in airplanes and trains, and during long hotel nights.

Time that I could not use if I were not working for a company that refreshed my life

completely. Thank you.

None of this would have been possible without the valuable help of my technical

reviewers, as I truly believe they made this book what it is today—Clint, Jean-Pierre,

Saravana, and especially Felipe, as he reviewed most of the code during his vacation—I

will not forget!

I also want to thank Smriti Srivastava, as she was the one who made me believe I

could actually complete this amazing journey with Apress; to Shrikant Vishwakarma,

for his patience when I got lost and delayed; and to my development editors, James

Markham and Siddhi Chavan.

Finally, I want to thank my wife, for being supportive and probably the most patient

person I ever met in my life.

xix

Introduction

A long time ago, in a datacenter far, far away, Microsoft BizTalk Server became to life. It

was back in 2000 when we saw it for the first time. Although it was not until version 2004

when it really transformed the integration landscape using Microsoft technologies, it

indeed changed my life completely.

The book that you have in your hands it is a journey that starts by revealing what is

under the hood of the product at a low level. Even though you have strong BizTalk Server

knowledge, I recommend you not skip it, because it provides base knowledge for the rest

of the chapters.

I wrote Chapters 2 and 3 to explain almost everything I know about performance

counters, analysis techniques, and public tools that are related to the scope of the book.

Chapter 4 is all about optimizing the BizTalk Server platform using essential

configurations that you can apply to a BizTalk environment, proactively and reactively.

If you expect a compilation of how to solve all the issues you can ever face, you will get

probably disappointed. The idea of the chapter is to create a solid foundation so that

you will be able design a BizTalk Server application thinking of a concept that I call:

application priority levels.

Especially for mission-critical solutions, and BizTalk Server usually handles them,

troubleshooting and fixing bugs on time is essential, as these applications frequently

require zero downtime. Therefore, efficient application instrumentation becomes crucial

to reduce the time of finding issues and to start working in the bug as soon as possible.

This topic is explained in Chapter 5, where you will learn how to implement Event Trace

for Windows and to leverage in the Business Activity Monitoring feature to log important

events and data related to the flow.

Chapter 6 will drive you to the most common actions you can take as a developer to

make sure your applications will help the production server run them smoothly. You will

learn how to improve your schemas definitions, maps, orchestrations, and pipelines. As

we consider that custom pipelines components are essential for low latency scenarios

(among others), you will also learn how to develop custom pipeline components.

Chapter 7 explains how take advantage of a Microsoft .NET Framework feature called

side-by-side versioning. You will learn how to use it in your BizTalk Server projects to

xx

reduce downtime at maximum. Additionally, it provides an introduction to business

rules and performance recommendations related to it. You might wonder why I have

decided to include business rules. Well, although it’s not a topic explicitly related to

performance, it provides huge benefits in terms of reducing application downtime and

orchestration complexity.

A mature BizTalk Server infrastructure should be able to proactively monitor every

aspect of BizTalk Server and for that propose I have decided to write about a fantastic

tool called BizTalk 360. This is all detailed in Chapter 8.

Successfully designing and evolving a BizTalk Server platform are tasks that

require including unit and performance testing procedures as part of the application

development lifecycle. Chapter 9 dives into these topics using Microsoft Visual Studio

Testing features.

Finally, Chapter 10 closes the journey with real-life scenarios explained through a

fictitious company called ACME corporation.

I hope you learn as much reading the book as I did while writing it.

�Who Is This Book For?
If this is the first contact you’ve had with BizTalk Server, I am not going to lie to you—you

are most likely going to get lost. This book assumes that you have already the following

knowledge:

•	 BizTalk Server administration and troubleshooting experience

•	 Strong development .NET Framework experience

•	 Familiarity with Microsoft Windows Communication Foundation

You will not learn about the BizTalk Server basic stuff. No. You will learn about the

techniques that make the difference.

If you are passionate about BizTalk Server and performance, it does not matter if you

are an architect, administrator, developer, or a TV presenter. This book is for you!

Introduction

xxi

Requirements and Source Code

Along the book you will find several walkthroughs that contain step-by-step instructions

to develop BizTalk Server solutions that are relevant to the discussed topic. The source

code is available on GitHub via the book’s product page, located at www.apress.com/

978-1-4842-3993-3.

To compile the code, you need the following system setup:

•	 Microsoft BizTalk Server 2016 Developer edition—The full

installation is recommended, as you will create solutions with BAM

as well (no need to install EDI as this book does not cover it). The

Enterprise edition of the product will work also.

•	 Microsoft Visual Studio Enterprise edition—Chapter 9 requires you

to have this edition because is all about testing features and those are

not available in the Microsoft Visual Studio version. The Community

edition is not supported.

•	 Microsoft Windows 10 or Microsoft Windows Server 2016
(preferred)—Windows 10 is fine for running the code, but if you

want to practice some of the optimizations detailed in Chapter 4, you

must have Windows Server 2016.

•	 Microsoft Internet Information Server—There is a lab in Chapter 9

that deploys a WCF service, so you will need to install IIS in your

machine.

BizTalk Server 2016 has several requirements that must be in place as well. I

recommend that you read the following Microsoft documentation:

https://docs.microsoft.com/en-us/biztalk/install-and-config-guides/

hardware-and-software-requirements-for-biztalk-server-2016

Good luck!

http://www.apress.com/978-1-4842-3993-3
http://www.apress.com/978-1-4842-3993-3
https://docs.microsoft.com/en-us/biztalk/install-and-config-guides/hardware-and-software-requirements-for-biztalk-server-2016
https://docs.microsoft.com/en-us/biztalk/install-and-config-guides/hardware-and-software-requirements-for-biztalk-server-2016

1
© Agustín Mántaras 2019
A. Mántaras, BizTalk Server 2016, https://doi.org/10.1007/978-1-4842-3994-0_1

CHAPTER 1

Revealing the Black Box
Most of the people who start their journey with BizTalk Server are usually not aware of

how BizTalk Server receives, process, and sends messages. They instinctively believe

that it is something that just happens, driven by a mysterious hidden force. While

at the beginning this can be something even pleasant, when you deploy a solution

to production and problems arise, troubleshooting BizTalk Server without knowing

how the engine works can create confusion, delays, and in the worst of the scenarios,

frustration. During my career as a premier field engineer, I have assisted customers

with several critical situations, and you would be surprised how many times I heard

the sentence:

“What is happening with this black box! I do not understand it!”

In this chapter, you learn how BizTalk Server works from an internal point of view.

This topic is crucial if you want to become an expert BizTalk Server developer or a

solution architect, but also if you want to master the tuning techniques required to adjust

your platform to every situation. The chapter reviews the following topics:

•	 Essential XML principles and how BizTalk Server uses them

•	 How BizTalk Server works internally

•	 Hosts and host instances

•	 Subscriptions

•	 Messages

•	 Publishers

•	 Subscribers

•	 The Message Box database

•	 Publication and dequeue processes

2

If you are a seasoned BizTalk Server user, you might notice some content

missing here, such as tracking and BAM. Although these topics are important from a

functionality point of view, they have been moved to further chapters of the book for

clarification and simplification proposes. This chapter focuses on the pieces of the

engine that BizTalk Server uses to process messages. Do not worry, the book covers

tracking and BAM functionalities in detail in Chapters 4 and 5.

Having a solid foundation of the topics discussed in this chapter allows you to create

robust BizTalk Server solutions. Hopefully, you will never say again: “What is happening

with this black box!”

�XML Language Premier
Although the book assumes you have a strong knowledge of XML, this section covers all

the XML topics that the engine uses to operate.

BizTalk Server works with messages encoded in XML format. The W3C (World Wide

Web Consortium) provides rules and guidelines for creating standard XML definitions.

Schemas created by BizTalk Server follow this specification, so you can import BizTalk

Server schemas to any other XML tools that follow this specification without too much

effort (and vice versa).

If you want to master your XML skills, you could visit the World Wide Web

Consortium web page at http://www.w3.org/.

�XML Schema Concepts Used by BizTalk Server
In this section, you learn about the XML elements that BizTalk Server uses to implement

a message definition.

�Attribute
An XML attribute is a data container used to save additional information related to an

XML element; they are like properties of an element. Attributes can be associated with

any of the simple data types but cannot be nested (elements can be nested when using

complex types though). Because of this restriction, you cannot create attributes as

complex types, only as simple data types.

Chapter 1 Revealing the Black Box

http://www.w3.org/

3

In the following example, Book is an element with a value of “La Perla Negra”. As you

can see, the ISBN is the attribute of the Book element and has a value of 00078743649332.

<Book ISBN="00078743649332">La Perla Negra</Book>

�Namespace
BizTalk Server uses the concept of NameSpace to avoid confusion between elements and

attributes names (see Figure 1-1). In this way, unique elements and attributes can be

granted for the same schema definition and provided in an XML instance. In addition to

this, the BizTalk engine uses this concept implemented as the targetNameSpace property

(tNS) in several ways:

•	 To identify the message within the message box database

•	 To create subscriptions based on particular properties called

promoted properties

•	 To publish the message along with the binary information

Figure 1-1.  Example of the namespace definition

�Element
Elements are the building blocks of an XML. They can behave as containers to hold text,

elements, and attributes. Elements classified as simple or complex (see Figure 1-2).

•	 Simple: Simple data types (such as integer, DateTime, and string)

•	 Complex: Elements that contain other elements and attributes (such

as include and import options)

Chapter 1 Revealing the Black Box

4

Note I t is crucial to note that element names are case sensitive. That implies
that, for the BizTalk Server engine, the element name price is different than
Price (because the first character is uppercase). You should pay attention to this
fact because if you provide the wrong element names, the BizTalk engine might not
identify the message, or the initial validation can fail.

As shown in Figure 1-2, the next elements are simple:

•	 ISBN (string)

•	 Title (string)

•	 Pages (integer)

•	 WrittenDate (DateTime)

However, the record Writer is complex.

�BizTalk and XML Namespaces in Detail
An XML document may contain elements or attributes from more than one XML

definition (more than one namespace declared in the document).

Figure 1-2.  Simple and complex elements

Chapter 1 Revealing the Black Box

5

For instance, imagine that you are dealing with an XML document designed to

define book information (see Figure 1-3). Every book has a field called ID that is used

to identify the book. Similarly, there is an ID field to identify the writer of the book, as

shown in Figure 1-3.

Figure 1-3.  XML definition example

As you can see, the schema definition has two IDs. To avoid confusion, you can

create two different schema definitions: The first one defines the whole schema, and the

second one defines only the writer structure (see Figure 1-4).

Figure 1-4.  Default and custom namespaces definition

�The Declaration
BookInformation xmlns="http://http://Books.com/BookInformation" is what is

called the default namespace, and it applies to all elements in the schema that do not

have a custom namespace definition.

On the other hand, xmlns:writer="http://Books.com/Writer" represents a custom

namespace.

Notice that the writer data has the prefix ":writer" and the default namespace does

not have such a definition. Using this prefix later in the XML document allows you to

identify all the elements in the custom namespace and not in the default one. As outlined

in the previous example, the writer element has its definition, shown in Figure 1-5.

Chapter 1 Revealing the Black Box

6

The custom namespace xmlns:writer=http://Books.com/Writer defines the

elements of the child record WriterData (Id, Name, and LastName).

As BizTalk Server implements custom functionality that is not used by any other

software, it can leverage the XML namespace technology to access this information.

BizTalk Server adds the following two namespaces in every BizTalk Server schema:

•	 Target Namespace. When you create a new schema using the BizTalk

Editor, a target namespace is added by default (see Figure 1-6). The

engine uses this information along with the root node name of the

document to identify the message. The identification is implemented

by the targetNameSpace property of the schema and by default is

constructed as shown here:

http://VisualStudioProjectName.NameOfTheSchema

Figure 1-5.  Custom namespace writer data

Figure 1-6.  Default name space definition

Chapter 1 Revealing the Black Box

7

•	 Extensions Namespace. If the schema is representing a flat file or an

EDI schema, BizTalk adds a reference to this namespace:

xmlns:b="http://schemas.microsoft.com/BizTalk/2003" (see Figure 1-7)

Figure 1-7.  Annotation definition under a custom namespace

BizTalk uses this prefix within the message to add the flat file extensions that contain

delimiter and positional information in the form of annotations.

The elements within the annotation are used during the disassembling stage at the

pipeline level to create the XML representation of a specific flat file.

�Identification of an Incoming Message
When BizTalk receives a message, the message engine extracts the default namespace

(target namespace) and the main root node name. These values are internally

concatenated (targetNamespace#rootNodeName) and written in the context of the

message as a property called Message Type. You will learn about message properties

later in the chapter.

The Message Type must be unique so that the BizTalk Server engine can determine

the correct schema and apply it to the received instance. If you deploy schemas with the

same message type, BizTalk Server always gets the same type (usually the one created

in the first place), and it ignores the rest. The consequences of this action could be very

unpredictable because the engine could publish messages into the wrong host queue

table, or raise a routing failure exception as subscribers might not exist for that message.

We will dig into this topic later in the message engine section.

Chapter 1 Revealing the Black Box

8

�BizTalk Server Schemas
A schema for BizTalk Server is like the definition of the message itself. It contains the

specification by adding elements, attributes, types, complex types, and more.

BizTalk schemas can be created by using third-party schema creation tools and the

BizTalk Schema Editor, shipped with the product and fully integrated into Microsoft

Visual Studio 2015. Developers should consider the use of the BizTalk Editor tool as the

preferred method for creating BizTalk Server schemas, since Microsoft guarantees that

the schemas created using this tool are fully supported.

�BizTalk Server Schema Types
As discussed previously, BizTalk Server 2016 can natively process structured messages

using the following formats:

•	 Flat file schemas

•	 XML schemas

•	 JSON (with a little help of JSON pipelines)

•	 Flat file schemas

There are two types of flat file schemas:

•	 Delimited—This is the case when a specific character separates

records or fields.

•	 Positional—The length of the elements itself identifies the field. In

other words, elements are constructed using the position in the file.

Because public XSD by the W3C does not natively support the flat file structure,

BizTalk uses the annotation capabilities (flat file extensions) of the XML technology

to provide all the required functionality. The example in Figure 1-8a shows flat file

annotations used in BizTalk schemas.

Figure 1-8a.  Flat file annotation

Chapter 1 Revealing the Black Box

9

�Delimited Flat Files
A delimited file contains one or more fields separated by a delimiter character. The most

common characters are:

•	 Comma (,)

•	 Semicolon (CSV files;)

•	 Pipe (|)

However, you can work with any desired character. It is important to note that if you

set up a separator, that character should not appear as part of the text, as BizTalk Server

considers that character a field separator. To overcome this problem, you can enclose the

text that contains the separator using double quotes.

For instance, consider the following flat file:

Agustin, Mantaras, Rodriguez, "BizTalk 2016, Developing" ¶«

In this scenario, you can see four columns because the double quotes enclose the

book title (see Figure 1-8b).

Figure 1-8b.  Flat file annotation

On the other hand, look at this one:

Agustin, Mantaras, Rodriguez, BizTalk 2016, Developing ¶«

You can see five columns, as BizTalk considers all the comma characters as column

separators (see Figure 1-8c).

Figure 1-8c.  Flat file annotation

Chapter 1 Revealing the Black Box

10

�Positional Flat Files
Usually, in this type of flat file, every line identifies a different record because at the end

of the line there is an end-of-record character. This character is considered the delimiter

character, and in most of the cases, it is represented by a carriage return (¶«). Fields are

identified within that record using a fixed length.

Look at the following message instance:

Agustin Mantaras Rodriguez BizTalk 2016, Developing ¶«

The length of the elements itself identify the individual columns within the record, as

shown in Figure 1-8d.

Figure 1-8d.  Flat file annotation

Four columns with a fixed length of 10 characters and one with 30. You can see the

record separator at the end (in this case ¶«).

�XML Schemas
An XML schema represents the definition of an XML message. XML documents are

formed in a typed hierarchical structure that is defined by the schema. BizTalk uses

schemas to validate the message and define the data associated with it. It is represented

physically by an XSD file.

Figure 1-9 shows the user-friendly view generated by the BizTalk Editor.

Figure 1-9.  Visual XML representation

Chapter 1 Revealing the Black Box

11

Figure 1-10 shows the pure XML representation.

Figure 1-10.  XML representation

�JSON Messages
Although JSON messages are not implemented using XML technology, I decided to

include them in this section as BizTalk Server, since version BizTalk 2013 R2 can receive

and send messages using JSON pipelines.

JSON is a lightweight data format, natural for humans to read and write. It’s widely

used in devices communication through modern API interfaces and client-side Java

scripts.

The main benefit of the JSON format and the reason why it became popular very

fast is the reduced data size. In XML messages, there are lots of repeating element and

attributes names.

Chapter 1 Revealing the Black Box

12

Figure 1-11.  Example of a JSON message

Figure 1-11 shows an example of a JSON message.

Chapter 1 Revealing the Black Box

13

�Envelope Schemas
You can use envelopes to wrap one or more XML instance documents into a single XML

instance message. You could usually find them in a typical batch file that contains one or

more child schemas.

�Property Schemas
BizTalk Server uses property schemas for property promotion. Property promotion is the

process of extracting field element values from a message and inserting them into the

message context. We will see this topic later in the book.

Now that you have learned how BizTalk Server uses the XML technology, it is time to

reveal what is happening under the hood of the black box.

�The Message Engine
What is it that makes BizTalk Server work? Before getting into the details of the BizTalk

Server engine, it is essential to understand the different parts that help the engine

provide the functionality of receiving, processing, and sending information. BizTalk

Server bases the engine in the publish and subscribe model (see Figure 1-12), where

incoming information is published to a central store and, in later stages, consumed by

subscribers. There are many publish and subscribe models, but BizTalk Server works

only by accessing the content of the publication itself. See Table 1-1.

Chapter 1 Revealing the Black Box

14

In this model, subscribers sign up for the types of publications that are of interest

to them by setting up several requirements that publications (messages) must meet.

The message is evaluated at the moment of publication, and all subscribers receive

a copy of it. It is crucial to note that BizTalk Server does not use the content of the

message only, but also uses additional information provided by the context of the

message. See Figure 1-13.

Table 1-1.  Relationship Between the Standard Publish and

Subscribe Model and BizTalk Server Elements

Publish and Subscribe Model BizTalk Server Concept

Publications Messages

Publishers Receive ports and orchestrations

Subscribers Send ports and orchestrations

Store Message Box database

Figure 1-12.  The publish and subscribe architecture

Chapter 1 Revealing the Black Box

15

In the next sections, you learn about these elements and how they relate to each other.

�Host and Host Instances
If you have a developer background, it might help to extrapolate the host and host

instance definitions with classes and object instances. In the object programming model,

developers create classes (with methods and properties) that define how the objects of

that class will behave when they are instantiated as object instances. You can think of

the same way for host and host instances. The host defines how an instance of that host

will behave regarding the execution model (32-bit or 64-bit), tracking functionality, and

much more. Once a host instance is created using the BizTalk administration console

or any other supported method such as WMI, PowerShell, or the OEMExplorer DLL,

Figure 1-13.  BizTalk Server implementation of the publish and subscribe architecture

Chapter 1 Revealing the Black Box

16

it inherits the host configuration to implement all the desired functionality and the

correspondent windows service is created. Therefore, in other words, a host instance can

be defined as the physical implementation of the host definition (through a windows

service).

The host instance is responsible for initiating most of the message engine

functionalities, and because it is a Windows service, it will do that by using its own set

of hardware resources. This is a very important topic to understand because if there is

a bottleneck related to hardware resources consumption, BizTalk Server functionality

will not work, or it will work but at a very slow pace. In Chapter 4, you learn more about

host and host instances and how to tune them to extract the maximum value out of your

hardware resources and configuration.

�Publications: The BizTalk Server Message
Publications are the central exchange element in all publish and subscribe architectures,

and BizTalk Server implements them by using the BizTalk message.

�What Is a BizTalk Server Message?

Internally, you can consider every BizTalk message as a multi-part message. The actual

content of the message, the information sent by the source system, is called the body

part of the message (see Figure 1-14).

Figure 1-14.  Message body part

Chapter 1 Revealing the Black Box

17

Note  Most BizTalk Server adapters create messages with only one part. However,
the POP3 adapter can create several parts to construct the message definition.

Messages are created at the receiving stage using streaming mechanisms provided

by the receiving adapter and pipelines and implementing the following interfaces:

Microsoft.BizTalk.Message.Interop.IBaseMessage

Microsoft.BizTalk.Message.Interop.IBasePart interfaces

Since at the moment of publishing messages to the database you could potentially

have more than one subscriber, the engine might not know the number of active

subscribers that are expecting that message.

Note A s all subscribers must receive a copy of the original untouched message,
messages are immutable. This means that as soon as a message gets published, it
cannot be modified using any method.

At this point, if you are an experienced BizTalk Server developer, you might think that it

is possible to modify messages in an orchestration by calling an external .NET component.

True. However, to accomplish this task, BizTalk Server forces you to insert a construct

shape in the orchestration and this action indeed publishes a new message into the

Message Box database. This is when orchestrations can also take the publisher role.

BizTalk Server uses the Message Box database to store all messages using the table

structure shown in Figure 1-15.

Figure 1-15.  BizTalk Messages structure

Notice that the uidMessageID is present in all tables. When a message gets published,

the engine assigns a unique MessageID property by generating a new GUID.

Chapter 1 Revealing the Black Box

18

The Spool table is probably the most important table in the Message Box database.

It contains references to all the published messages. We will see this table in more detail

later in the book, as it is related to several important areas.

All BizTalk messages are multi-part messages; this means that they are composed of

zero to n parts. The MessageParts table is used by the engine to store them.

Every part is composed of fragments. As soon as a message gets published, BizTalk

Server evaluates the size of the binary data and inserts several chunk fragments into

the fragment tables. The large message size setting regulates this process. You will learn

about this setting in Chapter 4.

�The Message Context

When a document is received, an important BizTalk Server artifact called adapter

attaches context data to the document. This data is called the message context, as shown

in Figure 1-16.

Figure 1-16.  Message context creation

Chapter 1 Revealing the Black Box

19

The message context is a container for several extended properties that BizTalk

Server uses internally to operate and for routing reasons. Each property in the message

context has four elements:

•	 Name: The actual name of the property.

•	 Value: Fulfilled by the adapter or the pipeline.

•	 Type: It could be Promoted or Not Promoted (detailed later in this

chapter).

•	 Namespace: When adapters fulfill properties, they assign them to a

specific namespace. For an in-depth dive into BizTalk namespaces,

see the previous section of this book.

We can classify properties into the following categories:

•	 System-related

•	 Distinguished properties

•	 User-related

•	 Adapter-related

Let’s review all of them.

System-Related Properties

BizTalk uses these properties to populate valuable information about system properties like:

•	 ReceivePortName: Name of the port that received the message.

•	 InboundTransportType: Name of the adapter used to receive the

message.

•	 ReceiveLocationName: Name of the location used to receive the

message through the port.

•	 MessageType: Probably the most important property of the BizTalk

engine. We discuss it in the following section.

Out-of-the-box adapters and the BizTalk engine promote properties into the context

to implement BizTalk Server functionality. All system promoted properties are created

using any of the following namespaces:

Chapter 1 Revealing the Black Box

20

•	 http://schemas.microsoft.com/BizTalk/2003/messageagent-properties

•	 http://schemas.microsoft.com/BizTalk/2003/messagetracking-

properties

•	 http://schemas.microsoft.com/BizTalk/2003/system-properties

There are tons of system-related properties and documenting all of them is out of the

scope of this book.

Distinguished Properties

All distinguished properties are written into the message context using the following

namespace:

http://schemas.microsoft.com/BizTalk/2003/btsDistinguishedFields

Developers can create custom distinguished properties (see Figure 1-17) to access

specific business data through orchestrations. BizTalk Server can create them at the

adapter or pipeline level using Microsoft Adapters (Swift is an excellent example of this).

Figure 1-17.  Distinguished properties

User-Related Properties

Developers can create custom context properties in two ways:

•	 Creating a custom adapter that creates custom properties.

•	 Creating a custom pipeline that adds or changes properties to the context.

All user-related properties use custom namespaces, and they usually appear

associated with the target namespace property of the incoming XML.

Chapter 1 Revealing the Black Box

http://schemas.microsoft.com/BizTalk/2003/messageagent-properties
http://schemas.microsoft.com/BizTalk/2003/messagetracking-properties
http://schemas.microsoft.com/BizTalk/2003/messagetracking-properties
http://schemas.microsoft.com/BizTalk/2003/system-properties
http://schemas.microsoft.com/BizTalk/2003/btsDistinguishedFields

21

Adapter-Related Properties

The adapter uses these properties to fulfill information related only to the adapter.

Examples of these properties are:

•	 FileCreationTime: Creation time of the actual file.

•	 ReceivedFileName: Full path and name of the file.

All adapter-related properties are created under the namespace:

http://schemas.microsoft.com/BizTalk/2003/adapterName-properties

Where adapterName changes based on the adapter used.

For a detailed list of all context properties generated by BizTalk engine and its

adapters, visit https://msdn.microsoft.com/en-us/library/aa562116.aspx.

�The Message Type Property
As mentioned previously, when BizTalk Server receives a document, it generates all

the context properties for the message. Among all of them, the pipeline constructs the

MessageType property. It is composed of the target namespace plus the main root node

name, as shown in Figure 1-18.

Figure 1-18.  MessageType property view

In Figure 1-18, the received message has the following target namespace property:

http://FlatFileWizard.BookOrdersCompleted

And the following XML Main Root node name:

BookOrdersCompleted

Chapter 1 Revealing the Black Box

http://schemas.microsoft.com/BizTalk/2003/adapterName-properties
https://msdn.microsoft.com/en-us/library/aa562116.aspx

22

Pipelines, within the disassembling stage, concatenate both values using the hash

character, #. As a result, the following MessageType property is generated:

http://FlatFileWizard.BookOrdersCompleted#BookOrdersCompleted

Notice two important things:

•	 The property type is promoted. This process will not only create and

insert this property into the context, but it will also promote it so that

it becomes accessible for routing and internal engine operations.

The XML and flat file disassemblers promote the message type on

the flight, as they are processing the message. If you are developing a

custom pipeline component, you should implement a disassembler

stage that promotes this property (ensuring proper routing).

•	 The namespace used is http://schemas.microsoft.com/

BizTalk/2003/sytem-properties. This namespace indicates that the

system has generated the property.

Note  Message type property is a crucial concept in BizTalk Server, as the engine
and developers use this property to identify a received message, for routing
proposes, advanced developer tasks, and even for troubleshooting issues.

Since the pipeline generates the message type property, what is happening when you

set up the receive location to use a pass-through pipeline? Well, in this case, the message

type property is not generated as no disassembling stage could be executed. This is the

typical scenario where BizTalk Server is receiving a binary chunk of data, and the logic

of accessing the content of the message is implemented using custom code (by calling a

.NET component or an expression shape in orchestrations).

�Message Properties

Message properties are the properties generated by the adapter and pipelines that

belong to the message context. As outlined in previous sections, properties can be

written to the context or promoted into the context. The message property type reflects

this concept. The type could be Promoted or Not Promoted, as shown in Figure 1-19.

Chapter 1 Revealing the Black Box

http://schemas.microsoft.com/BizTalk/2003/sytem-properties
http://schemas.microsoft.com/BizTalk/2003/sytem-properties

23

Note T he difference between these two types is that promoted properties can be
used as conditions in message routing, while written properties cannot.

Non-promoted properties can be distinguished, allowing orchestrations to access

them using expression shapes. As you have learned previously, these properties belong

to the following namespace:

http://schemas.microsoft.com/BizTalk/2003/btsDistinguisedFields

The adapter can promote properties directly from written properties. However, if you

want to add custom promoted properties, you can do so in two ways:

•	 Based on a schema definition. This is the situation when you want

to route based on an element in a specific message. In this case,

the promoted property is assigned to the Microsoft.XLANGs.

BaseTypes.MessageDataPropertyBase type.

•	 Any other property not based on a schema definition. This is the

situation when you want to create a custom promoted property

inside a custom pipeline component and access it later. In this

case, the promoted property is based on the Microsoft.XLANGs.

BaseTypes.MessageContextPropertyBase type.

Both procedures require that you a create a property schema that contains a

definition for the property. Also, you must deploy the property schema to BizTalk Server

management database.

Figure 1-19.  Types of message properties

Chapter 1 Revealing the Black Box

http://schemas.microsoft.com/BizTalk/2003/btsDistinguisedFields

24

�Distinguished Properties (fields)

As mentioned in the previous section, schema elements can be distinguished to be

accessible by orchestrations during design time and using expression shapes. Promoted

properties and distinguished properties are both written into the context, and that is why the

concept can be deceiving. However, you could easily understand the difference between the

two of them because distinguished properties differ from promoted properties in two ways:

•	 The property type is Not Promoted.

•	 They do not require the property schema file.

For these reasons, you cannot use distinguished properties for routing proposes as

the engine cannot access them at the moment of evaluating the subscription.

�Message Properties Design Considerations

You should take the following points into consideration while thinking of promoting and

writing properties into the message context:

•	 The maximum length of a promoted property is 256 characters.

This limitation exists to guarantee smooth performance. In the

POP3 adapter the part name could be created with a very long

name description. This will cause engine errors because message

properties can reference the part name.

Something similar can happen for the file adapter as the total

length of the file path, file mask, and filename cannot exceed 256

characters. Keep this limitation in mind.

•	 Record nodes cannot be distinguished.

•	 Record nodes can be promoted if they are non-repeated records

(single nodes).

Non-promoted properties have no length limitation, as you cannot use them in

context routing. Examples of written properties are:

•	 Distinguished fields

•	 Non-promoted system properties written to the context

•	 Custom properties added by developers through a custom pipeline

component or custom .NET adapters

Chapter 1 Revealing the Black Box

25

�Message Properties Performance Recommendations

The following is a list of performance recommendations that you should consider at

early stages of project development. Take all of them very seriously, especially if you are

developing a low latency solution.

•	 Reduce the number of written and promoted properties and

eliminate those that are not strictly necessary.

•	 XPath expressions can be very long, primarily when the element is

located very deep in the message. Therefore, the more distinguished

fields you have, the larger the context size. This situation affects the

overall performance of the platform. Whenever possible, consider

moving the deep elements at the beginning of the schema.

•	 It is recommended to reduce the property name length as much

as possible. Shorter names ensure that the engine consumes

less memory and still provides business functionality. This fact

is especially true for distinguished fields as they do not have

256-character limitation.

•	 If you are not planning to use the property for routing, do not

promote it! Just distinguish it. Promoted properties consume more

resources as the engine inserts them into the subscriptions table,

while distinguished properties are not inserted. Also, if you enable

property tracking, SQL Server process consumes more memory,

processor, and IO resources as it must insert the tracking information

into the tracking data tables within the message box and then to the

tracking database. These two facts might not be relevant while you

are coding, but when the solution goes live and must process millions

of instances per day, believe me: it matters!

•	 Especially for flat file scenarios, performance is affected by the

position of the promoted property within the schema definition.

Promoted properties are found faster if you position them at the

beginning of the schema.

Chapter 1 Revealing the Black Box

26

•	 If the messages are small (fewer than 100 kilobytes), you can de-

serialize the message into a .NET class object and access the public

static fields and properties (instead of using XPath). If the message

needs complex business rules, accessing data using the properties

exposed by an instance of a .NET object is faster than using XPath

expressions because XPath loads the full message into the memory

every time it executes.

The following code shows an example of a serialized message that exposes

distinguished properties:

using System;

using Microsoft.XLANGs.BaseTypes;

namespace NetClass

{

 [Serializable]

 public class MyBookNameSpace

 {

 public MyBook()

 {

 iSBN = "101928818910111";

 bookTitle = "BizTalk Server 2016 book";

 }

 [DistinguishedFieldAttribute()]

 public String iSBN;

 [DistinguishedFieldAttribute()]

 public int bookTitle;

 }

}

The code to create an instance of this object should be implemented within

the context of a construct shape because the properties are implementing the

DistinguishedFieldAttribute (defined in Microsoft.XLANGs.BaseTypes). The following

code is checking if the ISBN property equals "101928818910111" and if yes, it changes the

bookTitle property to "BizTalk 2016, performance tuning and optimization".

Chapter 1 Revealing the Black Box

27

msgMessageIn = new MyBookNameSpace.MyBook();

if (msgMessageIn.iSBN== "101928818910111"}

{

 �msgMessageIn.bookTitle ="BizTalk 2016, performance tuning and

optimization"

}

�Subscriptions
In the publish and subscribe architecture, subscriptions are the link between the

publication and subscribers. For BizTalk Server, a subscription is a set of conditions

statements called predicates. The BizTalk Server engine creates these statements based on:

•	 Values extracted from the message context

•	 Values related to the subscription itself

Predicates are saved in the Predicates tables within the Message Box database,

while subscription-related information like priority, order delivery sequence, and

convoy configuration is stored in a SQL Server table called Subscriptions. The action of

saving data to these tables is executed when the subscriber (normally a send port or an

orchestration) is enlisted. At this stage, the following two stored procedures are called by

the engine:

•	 Bts_CreateSubscription_HostName—Inserts data into the

Subscriptions table.

•	 Bts_InsertPredicate_HostName—Inserts data into the Predicates

table.

When you deploy BizTalk artifacts, like ports or orchestrations, and you do not enlist

them, the message engine does not insert the subscription information into the previous

tables. This means that the subscription is not active and because of that, the engine

will not forward messages to any subscriber (creating a routing failure report—RFR—

attached to the message context).

The following predicates tables can be found in Message Box database:

•	 LessThanPredicates

•	 GreaterThanPredicates

Chapter 1 Revealing the Black Box

28

•	 NotEqualsPredicates

•	 LessThanOrEqualsPredicates

•	 GreaterThanOrEqualsPredicates

•	 FirstPassPredicates

•	 ExistsPredicates

•	 EqualsPredicates2ndPass

•	 BitwiseANDPredicates

•	 EqualsPredicates

Using the information stored in this set of tables, the Message Agent and the End

Point Manager decide how to route messages to subscribers.

For instance, if you have a send port called sndPortSubscriptions and you create a

send port filter with the following expression:

BTS.ReceivePortName = rcvPortSubscriptions

After enlisting the send port, BizTalk Server inserts the information shown in

Figure 1-20 into the Subscription and EqualsPredicates tables (see Figure 1-21).

Figure 1-20.  Subscription table information

Chapter 1 Revealing the Black Box

29

The engine inserts the condition statement into the EqualsPredicates table because

you used the equals operator to build the filter expression (=).

BizTalk Server works with two types of subscriptions:

•	 Activation Subscriptions

•	 Instance Subscriptions

�Activation Subscriptions
These types of subscriptions activate a new instance of the subscriber when a specific

message is received. For instance, in the following cases you can find activation

subscriptions:

•	 Send ports with filters

•	 Send ports bound to an orchestration

•	 Orchestration receive shapes with the Activate property set to true

�Send Ports with Filters

The message engine evaluates subscriptions, and when a send port filtering expression

is met, the send port is activated and the message is sent out. See Figure 1-22.

Figure 1-21.  EqualsPredicates table

Figure 1-21 shows the EqualsPredicates table.

Chapter 1 Revealing the Black Box

30

This situation is very similar to the previous scenario, as the message engine

works in the same way, but in addition, the orchestration ID is part of the condition

that activates the send port, and it is automatically inserted into the EqualsPredicate

table. See Figure 1-23.

Figure 1-22.  Send port filter exampleSend ports bound to an orchestration

Figure 1-23.  Send port bound to an orchestration

Chapter 1 Revealing the Black Box

31

�Orchestration Receive Shapes with Activate Property Set to True

In this case, the BizTalk engine will start an orchestration instance when the receiving

ports receive a new message. Additionally, you can add filter expressions to the

subscription, as shown in Figure 1-24.

Figure 1-24.  Receive shape with activation and filter subscriptions

The previous orchestration is extending the subscription by picking up messages that

contain an error report structure within the context.

Chapter 1 Revealing the Black Box

32

�Instance Subscriptions
This type of subscription does not activate a new subscriber. Messages received

are routed to existing orchestrations instances that are already running or waiting

for a response using a Request/Response (receive port) scenario or an interchange

regulated by a correlation. If the corresponding subscribers are not running anymore,

subscriptions are automatically cleared.

�Request-Response Scenario
In the example shown in Figure 1-25, BizTalk Server activates the request-response port

when the orchestration sends the message back to the caller (response operation).

Figure 1-25.  Request-response port with the send activation

�Solicit-Response Scenario
In this case, BizTalk Server activates the orchestration when the solicit-response port

receives a new correlated message. See Figure 1-26.

Chapter 1 Revealing the Black Box

33

�Subscription Priority
When the engine generates a subscription, the creation process sets a priority level for

that subscription into the Subscriptions table, as shown in Figure 1-27.

Figure 1-26.  Solicit-response port with correlation

Figure 1-27.  Priority of subscriptions

Chapter 1 Revealing the Black Box

34

Priority values range from 1 to 10, 1 being the highest priority. Orchestration-related

subscriptions have a value of 7. While changing this value directly in the table is not

supported, it might be very interesting to test the behavior of orchestrations with a

different value.

At moment of writing this book, the only situation where users can change priority

levels is at the send port level. Physical send ports have an advanced transport section

where you can set up priority, as shown in Figure 1-28.

Figure 1-28.  Priority of send ports

This setting is very useful when you want BizTalk Server to send messages to a

specific destination system with a higher priority. For instance, if you change the

Send Port priority to 1, this action is reflected in the Subscriptions table, as shown

in Figure 1-29.

Chapter 1 Revealing the Black Box

35

From now on, every time BizTalk Server has to send messages using this port, it will

assign the highest priority as the stored procedures that query the host queue tables will

retrieve these operations first.

�Searching for Subscription Information
When troubleshooting, you might need to search for a specific subscription. You can use

the BizTalk Administration Console to query subscription information. To do that, follow

these steps:

	 1.	 Open the BizTalk Administration Console.

	 2.	 Click on BizTalk Group and Select the New Query tab, as shown in

Figure 1-30.

Figure 1-29.  Priority at Send port level changed to 1

Figure 1-30.  Accessing the New Query tab

Chapter 1 Revealing the Black Box

36

	 3.	 In the Search for option, choose Subscriptions, as shown in

Figure 1-31.

Figure 1-31.  Search for option

	 4.	 The query will list all subscriptions in the system, as shown in

Figure 1-32.

Figure 1-32.  Visualization of the Subscription type

Notice the Subscription Type column. It shows if the subscription is an Activation

or an Instance subscription. Let’s change the query now to filter Instance Subscriptions

only.

	 5.	 Add the Filter Subscription Type to the query, as shown in

Figure 1-33.

Chapter 1 Revealing the Black Box

37

	 6.	 Select Instance Subscription as the subscription type, as shown in

Figure 1-34.

Figure 1-33.  Subscription Type filter

Figure 1-34.  Subscription Type filter (Instance Subscription)

	 7.	 Click Run Query. All instance subscriptions will be shown, as you

can see in Figure 1-35.

Figure 1-35.  Instance Subscription results

	 8.	 You can now right-click any of the query results to access the

Subscription Details dialog box, as shown in Figure 1-36.

Chapter 1 Revealing the Black Box

38

Note  You can also obtain the subscription information using the BHM tool and
accessing the Subscriptions query. 

�Publishers
Publishers are BizTalk Server artifacts that publish messages to the Message Box

database. BizTalk Server works with the following publisher types:

•	 Receive ports: Usually, the main entry point for BizTalk messages.

•	 Orchestrations: Every time an orchestration creates a new

message using a construct shape, it publishes a new message to

the Message Box.

Note  Keep in mind that construct shapes are used in combination with message
assignment or transform shapes only.

Figure 1-36.  Subscription Details dialog box

Chapter 1 Revealing the Black Box

39

The publication process (Figure 1-37) is initiated mainly by the host instance process

that is running receive locations and/or orchestrations. It executes a set of SQL Server

stored procedures that evaluate the subscriptions and insert the message in the right

host queue table. This process is outlined in Figure 1-37.

Figure 1-37.  Message publication process

Chapter 1 Revealing the Black Box

40

Here are the detailed steps:

	 1.	 The message agent component that is running in the host instance

inserts the values of the promoted properties and predicates

values from the message context into the Message Box database.

By doing this, the message agent can take routing decisions in the

dequeue process explained later.

	 2.	 The BizTalk host instance process calls the stored procedure

int_evaluate_subscription. This stored procedure queries

subscriptions and predicate tables to verify subscriptions.

	 3.	 If a subscription with active subscribers is found, in other words, if

there are orchestrations or send ports enlisted and expecting that

specific message, the engine adds the message to the main queue

table of that host and calls the Insert_Spool stored procedure to

insert the message into the Spool table.

On the other hand, if no active subscribers are found, the message

is suspended and stored in the suspended queue of the same host.

	 4.	 Then, the insert_parts stored procedure inserts the binary data

into the parts, messageparts, and fragments tables.

	 5.	 Additionally, if message body tracking is enabled, the message

is tracked locally within the Message Box database tracking data

tables, and in later stages, a SQL Server job moves this data to

the trackingDTADB. We review the SQL Server infrastructure in

Chapter 3.

�Subscribers
In this section, you learn about all types of subscribers and how the message engine

retrieves messages from the Message Box database and routes them to subscribers.

As detailed previously, subscribers are BizTalk Server elements that process

publications (messages) based on a set of conditions called subscriptions. BizTalk Server

implements the following subscribers:

•	 Orchestrations. Orchestrations can be subscribed to messages using

the following approaches:

Chapter 1 Revealing the Black Box

41

•	 Receiving messages from a Receive shape.

•	 Receiving messages directly from the Message Box database.

•	 Receiving messages from nested orchestrations.

•	 Send ports. Send ports can be subscribed to messages in the

following ways:

•	 When they are bound to an orchestration.

•	 When they are not bound to orchestration, but they have filtering

conditions (message routing).

•	 System. The message engine creates a special internal subscription in

these situations:

•	 Correlation scenarios.

•	 Calling an inline pipeline inside an orchestration.

Subscribers receive their a copy of the message through a process called dequeue.

�The Dequeue Process
BizTalk host instances execute a stored procedure called bts_DeQueueMessages within

the Message Box database. The frequency at which these calls occur is regulated

by a host setting called the Messaging Polling Interval and by default is set to 500

milliseconds (twice per second).

As messages are published, host instances poll their respective queues within the

Message Box database to retrieve new messages.

Note  While there are rows in the host queue table, the Pooling Interval setting is
not used, but once the queue has zero rows, the host instance will poll the queue
at intervals based on this setting until more messages are published.

You can find this setting using the BizTalk Administration Console by clicking on

settings action, as shown in Figure 1-38.

Chapter 1 Revealing the Black Box

42

Note T here are two settings:

Messaging Frequency at which host instances poll the Message Box database to
retrieve new messages to subscribers.

Orchestrations Frequency at which host instances poll the Message Box database
to run new Orchestration instances.

By default, BizTalk Server is configured to perform under balanced latency
conditions (closer to high throughput scenarios rather than low latency).

Figure 1-38.  Pooling intervals for BizTalk Server hosts

Chapter 1 Revealing the Black Box

43

The best practice is to leave the default balanced setting of 500 milliseconds unless

the host has specific low latency requirements. In these circumstances, lowering this

value can reduce overall latency but, on the other hand, SQL Server and BizTalk Servers

can consume more resources as the host instances perform more round trips to the

Message Box database.

You will see how to adjust this setting for several scenarios in the book.

Warning!  Decreasing the value of pooling intervals may cause excessive CPU
utilization on the SQL Server computer that houses the Message Box database
instance.

When the bts_DeQueueMessages stored procedure is called, it analyzes the

Subscriptions, Instances, and HostMainQueue tables and loads batches of 20 messages

into the in-memory queue of the host instance. The EndPoint Manager Subservice sends

the messages to the original subscribers, designated by the Subscription table, and

subscribers deliver the appropriate message to the destination systems.

Once all the active subscribers use that message, the engine marks that message

as consumed, and it removes it from all the Message Box tables (calling a set of stored

procedures and SQL Server agent jobs).

Figure 1-39 outlines the full process.

Chapter 1 Revealing the Black Box

44

�Adapters
The adapter is used to exchange messages with source and destination systems. Most

of the adapters are .NET components that have the protocol knowledge to access and

transfer messages through an NTFS folder, a WCF service, a SQL Server database, and

many others. By design, BizTalk implements receiving and sending adapters. On top

of the apparent action of receiving messages, the receive adapter also adds properties

to the message context. Some of them are generic and exist in all adapters such as

ReceiveLocationName, receivingPortname, messageID, and processingServer. Others

are related to a specific adapter.

As outlined in previous sections, the receiving adapter also sends the message to the

engine to check for active subscriptions.

Figure 1-39.  BizTalk Server Dequeue process

Chapter 1 Revealing the Black Box

45

When all host instances start, all the receive adapters that have receiving locations

enabled are instantiated. However, send adapters work in an entirely different way: All

out-of-the-box BizTalk send adapters are not instantiated when host instances start; they

do this in a way that is called lazy creation. This means that the adapter starts when the

Message engine gets the first message from the internal message queue and delivers it

to the send port. By acting this way, BizTalk Server saves system resources when send

adapters are not configured in send ports.

In some scenarios, BizTalk applications require interaction with systems that cannot

be accessed using the out-of-the-box adapters. For this reason, third-party companies

have written adapters to support additional protocols. After you review all the available

adapters, you might reach a point in which you need to develop an adapter. Writing a

custom adapter is one of the most challenging things in BizTalk Server. The Adapter

Framework, in combination with the examples in the SDK, is meant to simplify the

creation process. This is out of the scope of this book; therefore, if you have a specific

need, you can search in MSDN, and you will find plenty of public resources related to

this task.

As BizTalk uses the publish and subscribe architecture, the engine needs to store

messages and subscription information. BizTalk Servers uses a SQL Server database

called the Message Box database.

�The MessageBox Database
While all BizTalk Server databases are essential, the Message Box database is the heart of

the engine and gives BizTalk Server the ability to store the following information:

•	 Subscriptions, which were detailed previously in the Subscriptions

section

•	 Binary message data

•	 Host queues

•	 Spool table

•	 Orchestration persistent points

•	 Debugging information

•	 Tracking temporary data

Chapter 1 Revealing the Black Box

46

�Host Tables
Host tables are a set of tables within the Message Box database that are created as part

of the process of adding a new host to a BizTalk Server group. These tables are used in

message publication, the dequeue process, orchestration states, and host throttling

mechanisms. They are classified into two categories: Queue tables and System tables.

�Queue Tables
These tables are used by the engine to access messages that are related to a specific host.

•	 Main queue—Contains references to messages that are pending to

deliver to a host and are not suspended. Ideally, this table should not

grow too large (the threshold for raising an alarm is directly linked to

performance service level agreements). The number of rows in this

table indicates the number of messages waiting to be processed for a

host.

•	 Suspended queue—Where references to suspended messages are

stored. This is important. When a message gets suspended it remains

in the Message Box until resume or terminate actions occur. So, if the

suspended queue is growing, performance is affected. A suspended

message can occur due to validating errors, failed transmissions, or

the impossibility to find an active subscription (among others).

•	 Scheduled queue—Contains documents that have been processed

and are waiting to be sent based on the service window that was

specified for the port.

•	 InstanceStateMessageReferences—The State queue table saves the

list of messages that have been processed by an instance but might

be needed later. This is used mainly in orchestrations when the

developer creates a BizTalk message using a construction shape.

Because the message might be used everywhere in the code, the

Message engine saves a reference to it in the State Queue table.

Chapter 1 Revealing the Black Box

47

�System Tables
These tables are used by the engine to create temporary information related to several

engine functionalities, like subscription generation, dequeue processing, and routing.

•	 MessageRefCountLog—When a message has more than one

subscriber, the BizTalk Server engine use this table to correlate this

information with the rest of reference tables. Every time a message

is used, the engine increments a reference counter within this table.

When this counter decreases to zero, the message is marked as “to be

purged” and SQL Server jobs will remove references to that message

so that subscribers will not pick them up again.

•	 DynamicStateInfo—Stores all orchestration persistent points. It is

saving real-time data, so if you query this table without having any

running orchestration, it will be empty. Dehydration and rehydration

processes will use this table to restore orchestrations to previous

states.

•	 DeQueueBatches—When a message is delivered to all the available

subscribers and it is not in the InstanceStateMessageReferences

table, it is inserted into this table, so the bts_DeQueue stored

procedure can delete all references to the message.

�Spool Table
The Spool table is an important BizTalk Server table because the engine uses it to hold all

the current references (binary data that’s saved in the fragment tables) to messages that

are still alive in the system (see Figure 1-40). Alive messages are:

•	 Messages that are being consumed in active service instances

(subscribers to that message are orchestrations and send ports

mostly).

•	 Messages that are queued because they need to be sent to a

scheduled send port.

•	 Messages that are being used by retrying send ports.

Chapter 1 Revealing the Black Box

48

�Knowing the Number of Messages in the Spool Table

There are two ways to gather the number of rows in the Spool table: by counting the

number of rows of the Spool table or by querying the Spool performance counter.

To count the number of rows of the Spool table, use the following:

SELECT COUNT(*) FROM Spool WITH (noLock)

The use of the WITH (NoLock) statement here prevents the query from affecting

locked data. It is essential to keep this in mind when performing SQL Server queries

against a BizTalk Server database. This is especially true for the Message Box database.

To query the Spool performance counter, choose BizTalk ➤ Message Box ➤ General

Counters. This counter tracks the size of the spool over a Message Box database on a

specific server. If the environment is using multiple Message Boxes, you should query

the Message Box that is acting as a publisher.

�Spool Table as a Performance Indicator

BizTalk Server can queue messages for several reasons. For instance, imagine that

destination systems are not available for an extended period. In this scenario, BizTalk

Server cannot send messages through those send ports. What would happen with the

Spool table in this scenario?

As you might have guessed, the Spool table will become larger since BizTalk Server is

keeping those messages as suspended, and it will not remove them until the user decides

what to do with them. In this case, you would typically also see that the average total

documents received per second performance counter is greater than the documents

processed per second performance counter (because BizTalk cannot dequeue messages

to the subscribers).

Figure 1-40.  Messages table structure and spool table relationship

Chapter 1 Revealing the Black Box

49

In this situation, the system might have a critical performance issue because BizTalk

Server cannot deal with the current load. In other words, the load is not considered

sustainable. This context can eventually induce a throttling condition (based on

database size) that causes BizTalk Server to perform slowly as message publication

is begin throttled. This is especially true if tracking is enabled, as the calculation for

message count in the database considers the number of messages in the Tracking Spool

tables within the Message Box database.

As you can see in the example in Figure 1-41, the Spool table could be used to detect

reactive problems and to monitor the platform for increasing trends over an extended

period. We cover these analysis techniques in Chapter 2.

Figure 1-41.  Messages queued in the Spool table

�Summary
In this chapter, you learned how BizTalk Server uses different XML technology elements

such as namespaces, attributes, and elements to create a solid foundation for message

definitions. You also learned about certain engine behaviors that ensure the functionality

of the product.

Also, the chapter went through most of the relevant topics to clarify how BizTalk

Server processes information using key elements of the engine, such as messages,

publishers, subscribers, and the Message Box database, and how it integrates all of

them by implementing the publish and subscribe architecture. Although most of this

Chapter 1 Revealing the Black Box

50

functionality is implemented by the publishing and dequeuing processes, there are

several aspects like subscription priority, large message size settings, and host and host

instances configurations that have a direct impact on how BizTalk Server integrates all

the pieces together.

Now that you have a deeper picture of what is happening under the hood of BizTalk

Server, is time to gain solid knowledge about performance analysis. In the next chapter,

you see how you can interpret performance information, a subject that is crucial to learn

how to assess your production environment and to interpret the output of your testing

procedures.

And remember, do not ever say again: “What is happening with this black box?”

Chapter 1 Revealing the Black Box

51
© Agustín Mántaras 2019
A. Mántaras, BizTalk Server 2016, https://doi.org/10.1007/978-1-4842-3994-0_2

CHAPTER 2

Performance Analysis
Analyzing performance data is not an easy task. There are dozens of performance

counters, and if you do not know how to analyze the information correctly, that can

mislead you in so many ways and eventually it will cause you get the wrong conclusion.

Additionally, hardware and features are rapidly evolving, and your performance testing

and analysis methodologies may need to evolve as well. However, as performance

counters are always based on samples over time, you can apply the concepts detailed

in this chapter to make your life easier when trying to find an issue or a bottleneck. In

this chapter, you will learn general analysis techniques that you can use to troubleshoot

performance issues. Although the examples used focus on BizTalk Server, you could

extrapolate them to any other software that exposes their performance counters.

In this chapter, you learn about the following topics:

•	 Performance analysis techniques

•	 Performance analysis guidelines in terms of the most used threshold

for specific counters

•	 How to interpret the latency counters

•	 BizTalk Server throttling

•	 Suspended messages

•	 Tracking

�Performance Analysis Techniques
In this section, you learn to use the most common performance analysis techniques that

will help you understand performance data.

52

�Increasing Trends Over Long Periods
Growing trends can often indicate resource leaks or data contention. This is especially

true for BizTalk Server counters that are related to queue information such as Spool,

number of instances, host queue counters, suspended messages, and all BizTalk Server

latency counters. On the contrary, some cumulative counters such as \TCP\Connection

Failures will increment indefinitely whenever failures occur, and the underlying problem

could not be related to data contention or resource leak.

To analyze these kinds of situations, you can trace an imaginary line that links all the

lower values. By doing so, you are detecting not only if a specific resource is leaking, but

also if that the leaking condition is getting worse over time.

If the imaginary lines increase the angle of the previous line, the leaking condition

gets worse over time. However, if the opposite occurs, it indicates that the situation is

getting better over time.

To illustrate this scenario, imagine that the Spool performance capture over a

24-hour period, as shown in Figure 2-1.

Figure 2-1.  Increasing trend over the Spool table

Chapter 2 Performance Analysis

53

As you can see, messages are getting queued in BizTalk as the Spool table is growing

over an extended period. On top of that, the situation is getting worse, because the

arrows A, B, and C have a more significant upward trend.

Note S ome performance counters are cumulative and show increasing trends as
they calculate values in the form of:

Counter Value = Counter value + n

The counter System Up Time is a perfect example of a cumulative counter.

Figure 2-2 shows server uptime in seconds. It does not indicate a resource leak.

Some of the BizTalk Server related counters that exhibit leaks or data contention with

increasing trends are:

•	 Spool

•	 Suspended messages

•	 Host queue length

•	 All the latency counters (inbound, outbound, and request-response)

Figure 2-2.  Increasing trend over the Spool table

Chapter 2 Performance Analysis

54

System counters:

•	 Thread count

•	 Working set

•	 Private bytes

•	 Decreasing trends over a long period

•	 Decreasing trends usually indicate resource exhaustion (see Figure 2-3)

Figure 2-3.  Decreasing trend over the Spool table

Examples of counters that exhibit resource exhaustion with reducing patterns are:

•	 Available MBytes

•	 Free System Page Table entries

Now, look at the following case for the Spool performance counter, shown in

Figure 2-4.

Chapter 2 Performance Analysis

55

What is happening here? The platform is keeping up very well with the current load

until the end of arrow A when something odd happens. The Spool counter shows a

downward trend until the end of B.

Two things could be happening here:

•	 The engine is processing messages faster than the rate of incoming

messages. As the Spool table holds all the messages that are being

processed at a given time, it could indicate that the engine is

processing messages very efficiently and, because of that, no backlog

is created in the Spool table.

•	 The platform is not receiving new messages and it is just sending

whatever was pending in the Spool. If the platform is usually

processing messages without interruptions, you should suspect that

all receive locations got disabled, or that IIS is not working (if the

platform is receiving most of the requests through IIS).

Figure 2-4.  Increasing trend over the Spool table

Chapter 2 Performance Analysis

56

�Crossing a Threshold

Several performance counters indicate a possible bottleneck when the majority of the

values cross a real or an imaginary line (a minimum value). Figure 2-5 shows the

\BizTalk:Messaging Latency\Inbound Latency (sec) capture for a 24-hour period. All

values are crossing the imaginary line created using 27 as the minimum value.

Figure 2-5.  System Queue length crossing threshold

That means that the engine takes more than 27 seconds to publish a message. On

later stages, you should investigate what resource could be causing the this issue.

�Inverse Relationships

In most scenarios, analyzing performance data is all about finding the right cause and

effect. Two or more performance counters often represent this inverse relationship.

For instance, look at the example in Figure 2-6.

Chapter 2 Performance Analysis

57

The dotted yellow line shows the documents received by a specific host instance

and the blue line represents the available memory on the server. As you can see, while

the platform is receiving messages, the amount of available memory also decreases until

the graph reaches the red circle. That is the moment when the host stops receiving new

messages (around 6:20 PM) and the available memory increases to 1050 MB.

Analyzing this kind of relationships is an excellent technique to find issues.

�Performance Counters Analysis Guidelines
In this section, you learn how to analyze an essential performance counter set that will

help you troubleshoot BizTalk Server performance issues more efficiently.

Keep in mind that this book provides you with a set of initial guidelines and

recommendations that for very specific scenarios might not be suitable. The idea is to

provide you with a preliminary set of information that you can use as a starting point

when it comes to BizTalk Server performance analysis.

Figure 2-6.  Inverse relationship with documents received and available memory

Chapter 2 Performance Analysis

58

�Processor
It is a common mistake to analyze the processor time performance counter alone.

If you analyze it in isolation, without checking the rest of processor counters, it does

not provide proper conclusions or even can lead you to the wrong ones.

When analyzing processor bottlenecks, you should consider the following

performance counters:

•	 \Processor Information (*)\% Privileged Time.

•	 \Processor Information (*)\% User Time.

•	 \Process (*)\ % Processor Time.

•	 \Processor Information (*)\ % Processor time.

•	 \Processor Information (*)\Interrupts/sec.

Another critical thing to keep in mind is that having a performance baseline of the

server is key to concluding that your server is running with performance degradation.

As a general rule, any standard tasks that drive the processor time to 100%, for an

extended period, should raise alarms.

Once you have identified a processor bottleneck at the BizTalk Server layer, you

can use the following actions as an inspiration for compensating the lack of processor

capacity:

•	 Add more servers (also known as scaling-out)—Adding another

server provides double the resources (not only CPU), which will

provide higher throughput.

•	 Add more processors (also known as scaling-up)—If you have

detected that the cause of the processor bottleneck hides within any

of the following factors, you should choose to scale-up instead of

scale-out:

•	 Large message transforms within the custom code, pipelines,

or maps.

•	 Large number of messages for an interchange.

Chapter 2 Performance Analysis

59

•	 Divide the workload in the BizTalk Server farm—If your BizTalk

Servers are running hosts that run all of the BizTalk Server

functionalities, you can optimize the resource consumption by

dedicating the servers to run only one functionality at a time

(receiving, processing, or sending). We will see host separation

recommendations later in the book.

•	 Schedule tasks—When the processor is idle or with low load, some

operations such offline batch scenarios, backups, and any other

unattended processes that don’t have to be completed immediately

can be rescheduled for later processing. By doing this, you will

be distributing the load during the day and that could alleviate

the processor usage under high load. BizTalk Server 2016 offers

advanced scheduling options at the port level, so you can enable this

setting to distribute the load along the day (of course, if the business

requirements allow you to do that).

�Percentage of Processor Privileged Time
This counter measures the percentage of time the processor runs in kernel mode.

Applications like BizTalk Server, SQL Server, or Notepad run in user mode while

operating system components run in kernel mode. Probably the essential difference

between kernel and user mode is that, in user mode, threads run under the context

of a process and because of that it has its own set of memory resources that are also

protected and cannot be accessed from other processes. In kernel mode, all components

share the same virtual address space. Therefore if a driver running in kernel mode

crashes, the entire operating system can crash as well.

Examples of Windows components that run in kernel mode are:

•	 File system

•	 Object manager

•	 Virtual memory management

As you can see, most of these components are related to hardware resource

management.

Chapter 2 Performance Analysis

60

For instance, if a BizTalk Server adapter access the network to stream data or if a host

instance writes messages into the in-memory queue, these functions call components

of the Windows operating system that runs in kernel mode. Imagine now that in a

particular scenario, the BizTalk platform is receiving one million messages at the same

time. Assuming that no BizTalk Server throttling conditions are raised, adapters will run

kernel functions thousands of times a second to access memory, disks, and network

resources. In this case, high privileged times can occur, and that indicates that the server

is busy calling operating system components to access those resources.

The following table can be used as a general guideline to interpret the percentage of

the privilege time performance counter.

Percentage Alert

<20 Acceptable value. The server is not busy.

>=20 and <30 Warning. This situation along with high user mode and high system queue

length or high context switching could be part of a processor bottleneck.

>= 30 Critical. Most likely the environment is suffering from a processor bottleneck

during the analyzed period if performance degradation is perceived.

Once you suspect you have a kernel mode issue, you can identify which process

is the primary cause by analyzing the percentage of \Process (*)\ % privileged time

(counter at process level).

�Percentage of User Time
This counter measures the percentage of time the processor runs in user mode. As you

saw in the Privileged Performance Counter section, applications such as Microsoft

BizTalk Server, Microsoft Word, and Microsoft SQL Server run in user mode.

All processes (not related only to a core Windows component) execute a mix of user

and kernel code.

Chapter 2 Performance Analysis

61

The following table can be used as a general guideline to interpret the percentage of

user time performance counter.

Percentage Alert

<50 Acceptable value. The server is not busy.

>=50 and <=80 Warning. This situation along with high privileged percentage could be part of

a processor bottleneck (especially if the load increases).

>= 80 Critical. Most likely the environment is suffering from a processor bottleneck

during the analyzed period (if performance degradation is perceived).

Now that you also learned about the user time counter, in general, it is easier to

diagnose user mode conditions than high privileged time.

Why? Identifying the issue related to user mode is always more manageable as, at the

end of the day, the responsible party is always a specific process. Moreover, if the server

is suffering from high privileged time, this situation will impact all running processes,

especially while they are accessing I/O resources.

�Percentage of Processor Time
Processor time shows the percentage of time where the server is processing threads. As

you learned previously, threads can run in user or kernel modes. Therefore, this counter

sums the counters % User Time and Privileged Time.

There is an unusual situation where hardware devices are failing and affect the

overall processor time by adding interrupt time. If a device in your server is working

abnormally, it can increase the processor usage. Unfortunately, you cannot determine

what device is causing the issue by analyzing performance counters, but you can use the

ETW tracing for that propose.

Note A lthough this issue can occur, it is recommended that you analyze interrupt
time only when the value for this counter is higher than 10%.

Chapter 2 Performance Analysis

62

The following table can be used as a general guideline to interpret the percentage of

processor time counter.

Percentage Alert

<50 Acceptable value. The processor is not causing an issue if system queue

length is under optimum values.

>=50 and <=80 Warning. This situation along high context switching could be part of a

processor bottleneck. If high context switching is observed, then reducing the

number of active threads could alleviate the condition.

>= 80 Critical. Most likely the environment is suffering from a processor bottleneck

during the analyzed period if performance degradation is perceived.

Based on this table, if the counter shows values higher than 50%, check the

privileged and user time counters to investigate the cause.

Keep in mind that high values for % Processor Time for the system process can

indicate a busy device driver (like a network card). In this case, you could usually see

a high percentage of DPC time. DPCs are interrupts that run at a lower priority than

normal interrupts (measured by % Interrupt Time).

�System Processor Queue Length
This performance counter shows the number of threads that are ready for execution,

but they are idle because processors are busy. However, it is not reliable especially on

virtualized servers.

When the server is physical, you can use this performance counter to compliment

the information, but it should not be used as the only source of information.

Number of Threads Alert

<2 x processor Acceptable value. The processor is not causing an issue

>=2 per processor Further Investigation required. Most likely the environment is suffering from

a processor bottleneck during the analyzed period if system percentage of

processor time is also high (caused by privileged or user time).

Chapter 2 Performance Analysis

63

The capture in Figure 2-7 shows 24 hours of performance logging and outlines

how the processor queue length counter grows with the processor time when there is a

processor bottleneck in the system.

Figure 2-7.  Processor queue length analysis combined with processor time

�Memory
The following issues usually cause a memory bottleneck:

•	 Insufficient RAM.

•	 A memory leak.

•	 System settings (BCDEdit.exe settings).

•	 BizTalk Server throttling unnecessary due to a memory condition

when the server has still enough available memory. This could be the

case of a 64-bit host where the memory threshold is set to the default

25%. In this scenario, the host can enter into a memory condition

even though there are still plenty of memory resources in the server.

Chapter 2 Performance Analysis

64

�Memory\% Committed Bytes in Use
This measures the ratio of committed bytes to the commit limit. In other words, the

amount of virtual memory in use. This indicates insufficient system committed memory

if the number is greater than 80%. The obvious solution for this is to add more memory,

but adding a page file or increasing the existing one could be also options.

You can use Table 2-1 as a guide.

�Memory\Available MBytes
This measures the amount of physical memory, in megabytes, available for running

processes. If this value is less than 10% of the total physical RAM, that means there is

an insufficient amount of memory, and that can increase paging activity. To resolve

this problem, you should first investigate the root cause and later decide if adding more

memory will fix the issue.

You can use Table 2-2 as a guide.

Table 2-1.  Memory Committed Bytes in Use Thresholds

Percentage Alert

<70% Acceptable value. There is enough memory to handle the load.

>=70% and <80% Warning. You do not want your server to be here for an extended period

because if a peak load comes, applications can raise out of memory

conditions.

>=80% The amount of virtual memory in use might have reached the maximum.

Consider adding more memory to the server if adjusting the page file does

not solve the problem.

>90% If the page file is managed by the system, then it will automatically attempt

to increase the page file. Therefore, if this counter reaches 95%, then it

means that the page file is not being automatically increased or the page

file has been locked to a maximum size. Adjust the page file size, add a new

one, or increase server memory.

Chapter 2 Performance Analysis

65

�Disks
BizTalk not only stores data in a set of databases, but also elements such as configuration

files, Windows Registry, and temporary folders. For obvious reasons, a bottleneck

affecting disk performance can have a significant impact on the servers.

If the system is running with insufficient physical memory, the operating system can

make excessive use of the page file, and that could eventually affect disk performance (if

this condition lasts for an extended period).

You should use the following performance counters to check whether the disks are

performing under the expected thresholds:

•	 Logical Disk (*)\ % Free Space

•	 Logical Disk (*)\ % Idle Time

•	 Logical Disk (*)\ % \Avg. Disk Sec/Write

•	 Logical Disk (*)\ % Avg. Disk Sec/Read

•	 Logical Disk (*)\ %. Disk Write Queue Length

•	 Logical Disk (*)\ %. Disk Read Queue Length

What is the difference between physical and logical disks counters? A physical disk

is a LUN that is presented to the operating system, while a logical disk is a private unit

within a specific physical disk. Logical disks are presented as a volume with a drive letter.

You can see this relationship using the disk management tool, as shown in Figure 2-8.

Table 2-2.  Memory Available Mbytes Thresholds

Percentage Alert

>15% Acceptable value. There is enough memory to handle operating system load.

>=15% and <10% Warning. You do not want your server to be here for a long period because if

a peak load comes, applications can raise out of memory conditions.

< 10% Critical. Peaks under high load might be acceptable during small periods

of time. If this situation happens frequently and in increasing trends, you

should consider adding more memory to the server.

Chapter 2 Performance Analysis

66

Because the underlying hardware configuration for the disks can be very

complicated (virtual disks, new SAN hardware configurations, and more), if you do not

know the physical architecture, it’s better to start analyzing the LogicalDisk counter

sets. This is because it is the closest measurement to what the processes will use.

�LogicalDisk\% Free Space
This counter measures the percentage of free space of a logical drive within the physical

disk. See Table 2-3.

Figure 2-8.  Difference between physical and logical disk counters

Table 2-3.  Logical Disk Free Space Thresholds

Percentage Alert

>30% Acceptable value. There is enough disk space to handle the current

capacity.

=<30% and >15% Warning. You do not want your server to be here for a long period because if

a peak load comes, the server might run out of space on that drive.

< 15% Critical if performance degradation is observed. In the context of a single

physical drive, the performance can be impacted when low of free space.

However, servers often use a SAN, which divides the data among multiple

drives and may not suffer any performance degradation.

Chapter 2 Performance Analysis

67

Keep in mind that this threshold might change for drives holding the BizTalk

databases (especially under high load) because these databases are very transactional

and the LDF files can grow extremely fast.

�Disk Idle Time Percentage
This counter measures the percentage of time the disk had no outstanding IO requests

during the capture. It is more important than it seems because you can use it as an

indicator whether the disks are busy. See Table 2-4.

Table 2-4.  Disk Idle Time Percentage Thresholds

Percentage Alert

>20% An acceptable value.

<=20% and >10% Warning. If disks are idle between 20% and 10% for a long period, it

might indicate that the disks are getting very busy. Although performance

degradation is not perceived yet, you should pay attention.

< 10% Critical. If the disk is queuing transfers and latency is also high, most likely

the disk is overused.

As you can see, if the percentage of disk idle time is less than 10% over long periods,

you might need to check the disk queue length and read and writes latency to ensure

performance is not affected.

In Figure 2-9, we can see that when the BizTalk platform is processing more

messages the idle time for the disk that holds the BizTalk Message Box database is

trending to zero. That means that the disk is being used extensively.

Chapter 2 Performance Analysis

68

�Avg. Disk Sec/Read and Avg. Disk Sec/Write
These counters measure the average access time to perform the requested operation

(read or write).

The majority of the storage solutions of today implement very complex scenarios and

use a wide range of configurations. Unless you are part of the storage team, keeping in

mind elements such as LUN allocations, drive settings, and cabin distribution becomes a

very complicated task. On top of that, modern virtualization technologies, and especially

cloud environments, relay entirely in virtualized storage solutions where the relationship

between physical and logical drives is almost impossible to disguise. For those reasons,

these counters, also known as the disk response times, become an essential indicator of

the disk performance, as they measure latency as accurate at the disk driver level.

As a general rule, you can follow the thresholds listed in Table 2-5.

Figure 2-9.  Disk Idle time and the Spool table

Chapter 2 Performance Analysis

69

The previous recommendation works well for most of the non-aggressive BizTalk

loads. However, if your environment is extremely low latency or very high throughput,

especially for the disks holding the BizTalk databases, you might need to reduce these

thresholds, as outlined in Table 2-6.

Table 2-5.  Normal Load: Avg Disc Sec Read and Writes Thresholds

Response Time Alert

<=15 ms Acceptable value. Latency under optimum values

>15 ms and <=25 ms Warning. This situation, along with increasing trends over the Spool

table, could indicate that the system is getting very close to experiencing

a performance issue due to poor disk performance.

>25 ms Critical. Disk response times are very likely to be affected.

Table 2-6.  High Load: Avg Disc Sec Read and Writes Thresholds

Response Time Alert

<=10 ms Acceptable value. Latency under optimum values.

>10 ms and <=15 ms Warning. This situation, along with increasing trends over the Spool

table, could indicate that the system is getting very close to experiment

a bottleneck.

>15 ms Critical. Business latency can be affected.

Keep in mind that when the disks hosting the BizTalk Server databases perform with

reduced response times, BizTalk Server latency might also be affected, and because of

that, all BizTalk latency counters might show dilated values as well. In this situation, if

your business is being affected, then disks might be causing a bottleneck in your system.

The previous scenario is outlined in Figure 2-10.

Chapter 2 Performance Analysis

70

You can see that high read disk response is affecting BizTalk request-response latency.

�Avg. Disk Queue Length
Do not confuse this counter with Current Disk Queue Length as they are calculated in

completely different ways. Current Disk Queue length shows the number of requests

that are outstanding on the disk, whereas the Avg. Queue Length shows an estimated

calculation of (Disk Transfers/sec)*(Disk sec/Transfer).

Reads and writes are populated using the following two counters:

•	 Avg. Disk Read Queue Length

•	 Avg. Disk Write Queue Length

When no virtualization technology is used this counter is very reliable, and high

values on this counter might indicate a disk bottleneck. However, with modern cabin

and disk virtualization, the output of this counter can be very deceiving. In this scenario,

LUNS can share hardware queues, and the cache has a significant impact on the values

Figure 2-10.  Average disk reads per second and BizTalk request response

Chapter 2 Performance Analysis

71

of this counter. My recommendation is that you look for increasing trends over a period

where disk response times are also high. See Figure 2-11.

Figure 2-11.  Average disk queue length and write operations

In Figure 2-11, we can see that the Avg Queue Length shows increasing trends

in traces A, B, and C along with high writing latency (more than 15 ms and peaks of

around 50). However, look at Figure 2-12.

Chapter 2 Performance Analysis

72

In this case, you cannot identify a clearly increasing trend, and disk writing latency

is under normal values. Most likely there is no writing latency issue here because writes

are serviced on time. What you can do though is adjust the disk cache to improve the

throughput.

�Network
When a network bottleneck occurs, BizTalk will not be able to enlist new DTC

transactions against the destination SQL Server and that at the end, will prevent

processing messages. This situation can arise because of a malfunction of the

networking components, network outage, or because the network is saturated due to

outbound port exhaustion. You can analyze the following counters.

Figure 2-12.  Average disk queue length and write operations without issues

Chapter 2 Performance Analysis

73

�Network Interface(*)\Bytes Total/Sec
This counter shows the amount of data in bytes per second that go through the adapter.

It computes receiving and sending bytes. As a general rule, more than 60% of the

allocated bandwidth for that card should raise an alarm assuming that the network

adapter is set for full-duplex mode. Since the counter is showing the information in

megabytes, you can use the data in Table 2-7 as thresholds for different network card

bandwidth.

Table 2-7.  Network Bytes Total Per Second Thresholds

Bandwidth 60% Threshold

100 megabits/s 7.5 megabytes/second

1000 megabits/s 75 megabytes/second

10000 megabits/s 750 megabytes/second

If the network is using 60% of the available bandwidth or more during a long period,

then you should investigate what is happening with that specific network card.

�Network Interface\Output Queue Length
This counter measures the length of the output packet queue, in packets. In an ideal

situation, this value should not be greater than zero. You can use Table 2-8 as a guideline

when analyzing networking bottlenecks.

Table 2-8.  Network Output Queue Length Threshold

Number of Packets Effect

0 The network card is performing well.

<= 2 Warning: Delays can appear, and all BizTalk latency counters start to be

affected.

>2 Critical: Most likely BizTalk is being affected by high latency on all the

latency counters. Message publication and the dequeue process might

also be affected.

Chapter 2 Performance Analysis

74

The example in Figure 2-13 outlines the effect of poor network performance over

the BizTalk latency counters. As packets are getting queued, BizTalk latency increases

exponentially over time.

Figure 2-13.  Network output queue length and BizTalk output latency

�Latency
Measuring latency is probably one of the most important concepts when you want to

analyze the performance of a BizTalk solution. Latency counters measure the time taken

by all the BizTalk events since the adapter receives the message until the message is sent

out. All latency counters are at host level. That means that if you want to measure the

latency of a specific BizTalk element using these counters, you must isolate that element

into a specifically dedicated host.

As seen in Chapter 1, BizTalk comes with settings orientated for high throughput

scenarios. The following crucial concepts can change the engine behavior at message

publication, dequeue, and orchestration processing:

Chapter 2 Performance Analysis

75

•	 Polling intervals (default of 500 ms)—Decreasing this setting reduces

latency as BizTalk Server engine will consider this setting when there

are new messages or orchestrations to process for a particular host.

•	 Receiving batch setting of the adapter—Most of the BizTalk adapters

receive information in batches. Although all adapters behave

differently, this concept is very similar for all of them. The adapter

retrieves messages from receive locations until the batch size is

surpassed, or there are no more available messages at the source. At

this point, all messages of that batch are published to the Message

Box database. Increasing the receive batch setting will also increase

the latency of individual messages as the engine publishes messages

in a batch. On the other hand, setting the batch to 1 will decrease

latency, as messages are published individually, and that process will

be shorter than processing a larger batch. While there is not a specific

recommendation for this setting, you can follow the guidelines in

Table 2-9 to tune it.

Table 2-9.  Receiving Batch Adapter Setting Recommendation

Scenario Value Indication

Low latency >=min* (usually >= 1) Throughput can be affected.

Mixed Somewhere in between None. This is the ideal value for the majority of

scenarios.

High throughput < max* Latency can be affected.

The max and min values are obtained during the performance test phases of the

project—when either the Message Box database or BizTalk Servers become a bottleneck

due to the lack of hardware resources (or contention) and throttling based on database

size is not occurring unnecessary (or disabled).

•	 Large message threshold setting—As seen in Chapter 1 this setting

controls the number of fragments that are inserted in the Message

Box database. Setting a proper value reduces or increases the latency

of message publication.

Chapter 2 Performance Analysis

76

•	 Host separation policy—Isolating, receiving, processing, and

sending functionalities have a very positive effect on performance.

Even though the general recommendation is to isolate hosts by

functionality, you should only do it when latency is affecting your

performance target level agreements. In such a case, if your hosts are

running more than one BizTalk functionality and you detect that the

latency performance counters are showing delays, you can follow the

next isolation advice. See Table 2-10.

Note  Chapter 4 digs into host separation policy recommendations based on
several factors that are not related to latency itself, such as business requirements,
type of application, and load. You can combine both techniques.

Table 2-10.  Basic Host Separation Policy Recommendation

Counter Recommendation

High inbound latency You might consider creating a new host to dedicate all receive

locations to it.

High outbound and

adapter latency

You might consider adding a new host to dedicate all send ports to it.

High outbound but not

adapter latency

If there is no adapter latency, then the problem might be at the dequeue

stage. Decreasing the pooling interval for that host might reduce latency

while adding a new sending host might not be useful in this scenario.

High request-response

latency

You might consider creating a new host to dedicate all

orchestrations to it.

Important: As you learned previously, all latency counters are at the host level.

Therefore, you have to perform the changes only to the hosts that are showing the

specific behavior.

Chapter 2 Performance Analysis

77

Note A s every host instance consumes its own set of hardware resources, keep
in mind that if you add more hosts to the BizTalk group, the server that runs that
new host instance will consume more resources. As always, you have to test what
is the maximum number of hosts for your hardware configuration.

�Latency Factors
There are several factors that can affect the latency of your solution. The following

elements are the most common ones.

�Load
For obvious reasons, having a high load and peaks can increase the latency of your

solution, especially if hardware resource consumption has reached a level where BizTalk

start throttling conditions.

�Bad Disk Performance or Overused Disks
The BizTalk engine uses storage in areas such as message publication, dequeue process,

and configuration. Therefore, if disks are not performing efficiently, the BizTalk solution

will struggle to process messages on time and latency will be directly affected.

�Throttling
When throttling occurs, the engine applies a delay to the publishing and the dequeue

processes. You will also see that latency counters show higher latency values because

the engine is slowing down. The amount of extra time will be reflected by the following

throttling performance counters (BizTalk: Message Agent category):

•	 Message delivery delay (milliseconds)—Delay applied to the

dequeue process.

•	 Message publishing delay (milliseconds)—Delay applied to the

publishing process.

Chapter 2 Performance Analysis

78

�Complex Maps
As maps can run at receive port, orchestration, and send port level, the time taken to

execute has a direct relationship to the latency of the solution. You will see how you can

optimize map execution in Chapter 4.

�Complex Orchestrations and Custom Code.
Orchestrations can also increase the latency of the solution as they can process code that

it is out of the engine’s control. You will see how to optimize orchestrations on Chapter 6.

�Size of the Message
BizTalk uses messages in almost any components such as orchestrations, pipelines,

maps, business rules, BAM, and the message engine. Therefore, the message size has

substantial implications in all those areas. The BizTalk product does not have any

limitation by design, but you should consider the message size in initial stages of your

solution development because, as message size growths, the messages per second

rate decrease and general throughput declines (in some cases exponentially especially

when executing maps). Keep in mind also that the larger the message size, the larger the

latency you will observe across all the latency counters.

In Chapter 6, we will see how to optimize schemas for performance scenarios.

�Latency Performance Counters
Let’s review the latency performance counters:

•	 Request-response

•	 Inbound

•	 Outbound

•	 Outbound adapter

Chapter 2 Performance Analysis

79

�Request-Response Latency

This counter measures the latency in seconds since the message engine receives a

message from the adapter until the response message is redirected back to the message

engine, just before the message is sent to the original caller (this counter does not

measure the time of the final sending operation to the caller). See Figure 2-14.

Figure 2-14.  Understanding the request-response latency

This counter generates the data per host level. If you have more than one orchestration

running on that host, the counter calculates average numbers for all the orchestrations.

Therefore, if you want to get data related to a specific orchestration, you have to create a

new host and configure the orchestration to run under that dedicated host.

Since orchestrations can take the subscriber and publisher roles, the engine can start

a throttling condition that would affect both the message publication process and the

message dequeue process.

Chapter 2 Performance Analysis

80

Also, if the orchestration dehydration process is affected by SQL Server performance

or restriction settings, latency will also be increased. If you suspect that request-response

latency is high because of issues with the dehydration process, you can check the

Orchestrations: Dehydrating Orchestrations counter. This counter shows the number of

orchestrations that are currently in the process of dehydrating. If you see an increasing

trend over the period where request-response latency is detected, then you can

investigate if the bottleneck is on SQL Server side, as the database might not able to keep

up with the dehydration load.

�Inbound Latency

This counter measures the elapsed time since the engine receives a document from the

adapter until the time it is published to the Message Box. As you know, orchestrations can

also publish messages to the Message Box, but this counter does not reflect that time.

If the system initiates a throttling condition over the publishing stage, the inbound

latency counter will show higher latency values as the engine is putting pressure on the

publishing process. In this case, the Message Publishing Delay counter will reflect the

increased time.

�Outbound Latency

This counter measures the elapsed time in seconds to complete the following stages (for

an outbound operation):

	 1.	 The message is dequeued.

	 2.	 Pipeline and maps are executed.

	 3.	 The adapter picks up the message and sends it to the destination

system.

If the system initiates a throttling condition over the delivery stage, the outbound

latency counter will show higher latency values, as the engine is putting pressure on

the dequeue process. In this case, the Message Delivery Delay counter will reflect the

increased time.

Chapter 2 Performance Analysis

81

�Outbound Adapter Latency

This counter measures the elapsed time in seconds in an outbound operation since the

adapter picks up the message and sends it to the destination system.

Note that the difference between the previous counter is that outbound adapter

latency counter does not count the time spent during the Dequeue process while the

outbound latency counter does.

�Latency Thresholds
If you take latency as an essential indicator when the system performance is degraded,

what thresholds can you use for latency counters? That is not an easy question to answer,

as it depends on lots of external factors such as business requirements, peak loads that

can affect overall latency, and hardware configuration.

What is an optimal latency then?

•	 The one that can be obtained when the business flow is not affected?

All load within that specific flow is going in and out under the agreed

performance service level agreement (SLA).

•	 The one that can be obtained when there are no bottlenecks at

BizTalk and SQL Server layer?

In my experience, in most of the BizTalk environments where the personnel has

an awareness of the latency concept, they choose only the second option to define

the latency thresholds, as in most of the cases the business team has not provided the

performance requirements or in the best of the scenarios they are entirely obsolete.

Anyway, in both cases, the value should be gathered/verified from performance

testing. That is the best approach. Ideally, you will be stressing the testing platform until

one of the following conditions are met first:

•	 The SQL Servers become the bottleneck

•	 BizTalk become the bottleneck

•	 Business Performance SLA is not met for the flow

Chapter 2 Performance Analysis

82

If the business team provides you the required latency, you are lucky! That is it, you

got your latency thresholds, and you can size you BizTalk environment to perform within

those values. But if not, you need to reach a point where you get a server bottleneck

(BizTalk or SQL), gather the latency counter values, and fulfill Table 2-11.

Table 2-12.  An Example Implementation of Latency Thresholds

Seconds Alert

< 12 Acceptable value. Latency under optimum values.

>= 12 and < 16 Warning. This situation, along increasing trends over the Spool table, could

indicate that the system is getting very close to experiment a bottleneck.

>= 16 and < 18 Critical. Latency shows that the performance of the system is close to being

in a non-compliant scenario.

Table 2-11.  General Latency Thresholds

Seconds Alert

< x-40% Acceptable value. Latency under optimum values.

>= x-40% and < x-20% Warning. This situation, along with increasing trends over the

Spool table, could indicate that the system is getting very close to

experiment a bottleneck.

>= x-20% and <x-10% Critical. Latency shows that the performance of the system is close to

being in a non-compliant scenario. Where x is the latency value when

BizTalk or SQL Servers become the bottleneck.

Let’s illustrate this with an example: Imagine that you stress the testing server to

a point where BizTalk processor time counter is close to 80% for a long period. That is

indicating already a bottleneck at CPU level. You gather the request-response latency

counter, and you get a value of 20 seconds.

Now if you fulfill the latency table (x = 20), as shown in Table 2-12.

Chapter 2 Performance Analysis

83

You can use those latency thresholds to raise an alert when troubleshooting or

monitoring.

Important R emember that this procedure makes sense only when the business
team has not provided the performance thresholds. On the contrary, you should
use the provided ones and adjust the hardware resources to run under those
thresholds.

Keep in mind that when there are increasing trends in all the latency counters

related to outbound operations, you will also see that the Spool table is being affected

by this fact. The Spool table holds references to messages that are alive in the system.

As latency increases, those messages will remain in the Spool table for a longer time,

and that can eventually rise a throttling condition based on database size or slow down

the message engine as the Message Box database grows.

�Throttling
Without a doubt, the BizTalk throttling mechanism is one of the scariest topics for every

BizTalk administrator. No one wants to see business users panicking, arriving at your

desktop and saying in a solemn voice: “BizTalk is processing messages terribly slow! Can

you check what is happening?”

At first glance, this mechanism brings with it a negative conceptions since when

throttling enters into action, the system will process messages more slowly or will not

process them at all. However, Microsoft designed this mechanism to alleviate pressure

and prevent reaching a severe situation.

Note T hink of it this way: When this condition appears, something can still be
done to solve the problem. If the throttling mechanism were not implemented, the
system would undoubtedly reach a state without a solution.

If you are a seasoned BizTalk expert, one of the first things you should probably

check is the status of throttling, because this often is the most likely cause of the

slowness.

Chapter 2 Performance Analysis

84

�What Is Throttling?
Throttling is the mechanism that implements the BizTalk messaging engine to reduce

the rate at which messages are processed. That includes running any of the basic

functionalities of the engine such as receiving, processing, and sending messages.

Why does it need to slow down? When BizTalk is processing messages under high

load, to prevent the system from running out of processor, memory and disk resources

(on the database side), the message engine initiates a throttling condition. The engine

increases latency in two areas:

•	 Message publication—Messages stored in the Message Box

•	 Dequeuing process—Messages retrieved from the Message Box

This mechanism monitors the status of the following resources to verify if any of

them exceed the established usability threshold:

•	 Consumed memory—The memory that both the system and the host

instances are consuming.

•	 Number of in-process messages—Messages that are still not

processed by any subscriber. This number is directly related to the

current system load. The more subscribers with pending messages,

the more messages are in the in-process queue. Messages that are in

the internal memory queue are excluded from this calculation.

•	 Number of concurrent database connections established with the

SQL Server instance that holds the BizTalk databases—This number

is not accumulating over a host instance session.

•	 Number of threads—Processors assign tasks to threads. The throttling

algorithm ensures that the number of threads per processor does not

exceed an absolute limit.

•	 Rate of publishing, delivery, or processing—When the relationship

between the publishing and delivering rates is not balanced, BizTalk

initiates throttling and applies delay to the function with a higher

rate. This one is the most common of throttling conditions, as

systems usually receive and send messages in batches (or randomly).

Rate in this context indicates messages per second.

Chapter 2 Performance Analysis

85

•	 Message count in Message Box database tables—This number is

computed by counting the number of rows in these tables within the

Message Box database:

•	 Main queue tables for the host

•	 Spool

•	 Tracking tables

If any of these thresholds are reached, the throttling algorithm applies restraint to

the publication of messages or to the Dequeuing process, depending on whether the

message is received or sent. The severity varies depending on which condition has

exceeded its established threshold, as explained in Table 2-13.

Table 2-13.  Severity of the Most Common Throttling Conditions

Condition Severity

Memory threshold 5

In-Process threshold 4

Number of threads 3

Message count in database

Rest of Throttling conditions

2

1

A rating of 5 is the most aggressive severity and 1 is the least. The higher the severity,

the longer the delay that is applied by the engine.

Note T his severity classification based on numbers is not used internally by the
engine; it has been included for clarification reasons.

At the configuration level, you can change the throttling severity using the BizTalk

Administration Console, as shown in Figure 2-15.

Chapter 2 Performance Analysis

86

As you can see in Figure 2-15, if you leave the default settings, the most aggressive

throttling condition will be caused by memory situations. In this case, the engine applies

a pressure 500% higher than a normal throttling condition.

If you have disk space limitations, it might be interesting to change the severity for

the DB size.

Figure 2-15.  Severity customization for the throttling mechanism

Chapter 2 Performance Analysis

87

�Throttling Performance Counters
The throttling mechanism could be overly complicated to analyze. Luckily, the

engine uses a set of performance counters that can help you determine the following

information:

•	 If the engine has started a throttling condition

•	 How long it’s been doing throttling

•	 How aggressive the condition is

•	 Throttling vital information

When the engine throttles, it will populate several performance counters under the

BizTalk Message Agent category:

•	 Active instance count—Refers to the number of instances that are in

the in-memory queue.

•	 Database session—Number of opened connections to the Message

Box database.

•	 Database size—Sums the number of messages in all host queues and

the Spool and tracking data tables within the Message Box (not the

tracking database).

•	 High database session—If the engine enters into a throttling

condition based on database size, this counter will show a value of

one; otherwise, it shows zero.

•	 High in-process message count—If the engine enters into a throttling

condition based on in-process message count, this counter will show

a value of one, otherwise, it will show zero

•	 High message delivery rate—If the message delivery rate exceeds

the message processing rate this counter will show a value of one,

otherwise, it will show zero.

•	 High message publishing rate—If the message publishing rate

exceeds the message delivery rate this counter will show a value of

one, otherwise, it will show zero.

Chapter 2 Performance Analysis

88

•	 High process memory—One if process memory exceeds the process

virtual memory threshold, otherwise, it’s zero.

•	 High system memory—One if system memory exceeds the system

memory threshold, otherwise, it’s zero.

•	 High thread count—If the number of used threads for the host

instances of a specific host in the server exceeds the number of

threads per CPU setting, this counter will show a value of one,

otherwise, it will show zero.

•	 In-process message count—Number of in-memory messages for this

host.

•	 Message delivery delay (ms)—If throttling condition is raised, this is

the delay in milliseconds that the engine will apply to the dequeue

process.

•	 Physical memory usage (MB)—Physical memory used in the server.

This counts even non-BizTalk Server processes.

•	 Process memory usage (MB)—This is the maximum of the process

working set size and the total space allocated for the page file for the

process.

As you learned previously, the engine can apply throttling to the publishing or

dequeue processes. To reflect that situation, BizTalk populates the following state

performance counters:

•	 Message delivery throttling state

•	 Message publishing throttling state

�Message Delivery Throttling State

This counter indicates whether the engine is throttling the dequeue process. It can show

the following values:

Chapter 2 Performance Analysis

89

Value Description

0 The engine is not throttling

1 Input rate exceeds the output rate

3 High number of messages in the in-process queue

4 BizTalk host instance reaches the virtual memory threshold

5 System memory reaches the system memory threshold

9 The host instance reaches the number of used threads threshold

10 Throttling due to user override on delivery; occurs when you have changed the

message delivery throttling settings for that host

Input Rate Exceeds Output Rate (1)

This throttling condition can occur by high processing complexity, slow sending adapters,

or poor system resources such as processor, memory or I/O (disk and network).

This is the situation where the message incoming rate exceeds the message outgoing

rate using the following formula: Message publishing outgoing rate* the specified Rate

overdrive factor (percent) value.

The rate overdrive factor (percent) parameter is configurable on the Message Publishing

Throttling Settings dialog box and by default is set to 125%, as shown in Figure 2-16.

Figure 2-16.  Publishing rate overdrive factor setting

Chapter 2 Performance Analysis

90

For simplification, you can think that when the engine is publishing messages 125%

faster than delivering, this throttling condition starts.

	 1.	 The engine puts pressure on the publishing process.

	 2.	 High message publishing rate counter is set to 1.

	 3.	 The message publishing throttling state duration counter is reset

to reflect the new throttling condition. This counter is measured in

seconds.

	 4.	 The message publishing delay counter is updated with the delay

time induced per message (or message batch).

	 5.	 As the publishing process is delayed, you should see also that

the inbound latency and request-response latency counters are

affected.

High Number of Messages in the In-Process Queue (3)

In Chapter 1, you learned how the dequeue process works. In-process messages are

messages that have been retrieved from the in-memory queue and are not yet processed

by any subscriber (send ports or orchestrations).

The in-process messages are configurable on the Resource-Based throttling dialog

box and by default are set to 1000. See Figure 2-17.

Figure 2-17.  In-process message setting

Chapter 2 Performance Analysis

91

	 1.	 The engine puts pressure on the delivery process.

	 2.	 You can query the in-process message count counter for that

host to check the value and to look for increasing trends until the

condition has risen.

	 3.	 High in-process message count performance counter is set to 1.

	 4.	 The message delivery throttling state duration counter is reset to

reflect the new throttling condition. This counter is measured in

seconds.

	 5.	 The message delivery delay counter is updated with the delay time

induced per message (or message batch).

	 6.	 As the dequeue process is delayed, you should see also that all

BizTalk latency counters are affected but the incoming latency

that is related to publishing is not.

In my experience, you have to tune this setting in combination with the in-memory

queue setting. Let’s see an example.

Imagine that you are receiving 5,000 messages simultaneously and that your

business SLA is to process each request within one second. The first 1000 request will go

extremely fast but then BizTalk will start throttling as the in-process, and the in-memory

queue counters values, will cause BizTalk to start throttling. From message 1,001

latency is applied and it might happen that latency will decrease to a point where every

individual message takes more than one second to process (remember that the throttling

algorithm can apply up to 300 seconds to every message).

In this scenario and optimum value could be 5,000 for both queues. Memory

consumption will grow though so you need to increase the available memory of the

server because if not, a throttling condition due to available memory will occur, and this

condition is the most aggressive one.

Note I f the in-memory size of the incoming files is 500 KB, then 5,000 messages
means around 2.5 GB of memory consumption for this process only.

You can have a similar situation when processing large batch files (more than 1000

messages per file).

Chapter 2 Performance Analysis

92

BizTalk Host Instance Reaches the Virtual Memory Threshold (4)

This situation occurs when the BizTalk process reaches the threshold for virtual memory

consumption.

The process virtual memory setting is configurable on the Resource-Based throttling

dialog box and by default is set to 25%; see Figure 2-18.

Figure 2-18.  Process virtual setting

Figure 2-19.  Global Physical memory setting

If the host instance enters in this state, the BizTalk engine will apply the highest

severity condition, and the system will slow down perceptively.

If the hosts are 64-bit, host instances can address up to 128 TB of virtual address

space. In this case, it is recommended to increase this setting up to 100% which gives the

process the potential to add the majority of system physical memory into its working set.

Be aware though that in most scenarios, there will be more hosts and you do not want

to enter into a situation where this host takes all the memory of the servers, blocking the

access to memory resources for the rest of the hosts.

System Memory Reaches the System Memory Threshold (5)

This situation occurs when the BizTalk process reaches the threshold for global physical

memory consumption. The global physical memory setting is configurable on the

Resource-Based throttling dialog box, as shown in Figure 2-19.

Chapter 2 Performance Analysis

93

By default, it’s set to 0. This means that BizTalk will not evaluate the system memory

condition. If you change this setting and the host instance enters in this state, the

BizTalk engine will apply the highest severity condition, and the system will slow down

perceptively.

Do not change this setting unless all your host instances are 32-bit and you have

an extremely limited amount of memory. If your host instances are 64-bit, the global

physical and process virtual settings behave the same way, as 64-bit host instances can

potentially take up to 100% of the available memory of the server.

The Host Instance Reaches the Number of Used Threads Threshold (9)

Each process offers the resources needed to execute a program. A process has a virtual

address space, running code, and a base thread priority. Each process is started with a

single thread, but can create additional threads as is the case of BizTalk host instances.

BizTalk host instances load a minimum number of threads per CPU dedicated for IO

and the rest for operations. These settings can be tuned using the BizTalk Administration

Console, as shown in Figure 2-20.

Figure 2-20.  .NET CLR threads for host instance usage

Chapter 2 Performance Analysis

94

Reducing the number of threads that the BizTalk Server engine use can improve

performance when processors are showing a high amount of context switching.

Note T he actual CLR is the one owning this thread’s resources, but for the propose
of this concept, these threads will be also counted by the throttling algorithm.

You can think of these settings like a thread pool. When a host instance starts, it loads

25 threads for I/O (disk and network operations) and another 5 for the rest of the engine

tasks. That means that, by default, each host instance will reserve 30 threads “without

doing anything”.

You can control how BizTalk enters into a throttling condition by adjusting the

setting Threads, using the BizTalk Administration Console, as shown in Figure 2-21.

Figure 2-21.  Number of threads per CPU throttling threshold

By default, this setting is set to 0. That means that BizTalk will not enter into the

throttling state based on threads consumption. Whenever you adjust this setting, keep in

mind the host instances settings for the .Net CLR, because if you adjust the thread setting

for the host to a lower value than the minimum values specified for host instance, all the

host instances of that host will not process anything, and the engine will enter into the

throttling state as soon as the host instance loads.

Chapter 2 Performance Analysis

95

Throttling Due to User Override on Delivery (10)

If you change any of the settings related to rate-based throttling, BizTalk will enter into

this state.

Message Publishing Throttling State

This counter indicates whether the engine is throttling the publishing process. It can

show the following values:

Value Description

0 The engine is not throttling.

2 Output rate exceeds input rate.

4 BizTalk host instance reaches the virtual memory threshold.

5 System memory reaches the system memory threshold.

6 The number of messages in the Spool and tracking data tables exceeds the defined

threshold.

9 The host instance reaches the number of used threads threshold.

11 Throttling due to user override on delivery. This occurs when you changed the message

delivery throttling settings for that host.

Output Rate Exceeds Input Rate (2)

This throttling condition can occur by high processing complexity, slow sending

adapters, or poor system resources such as processor, memory, or I/O (disk and

network). This is the situation when the message output rate exceeds the message input

rate using the following formula: Message delivering outgoing rate* the specified Rate

overdrive factor (percent) value.

The Rate overdrive factor (percent) parameter is configurable on the Message

Publishing Throttling Settings dialog box and by default is set to 125% (see Figure 2-22).

Chapter 2 Performance Analysis

96

For simplification, you can think that when the engine is delivering messages 125%

faster than publishing, this throttling condition starts.

	 1.	 The engine puts pressure on the publishing process.

	 2.	 High message delivering rate counter is set to 1.

	 3.	 The message delivering throttling state duration counter is reset to

reflect the new throttling condition. This counter is measured in

seconds.

Figure 2-22.  Delivery overdrive factor for the rate-based throttling condition

Chapter 2 Performance Analysis

97

	 4.	 The message delivering delay counter is updated with the delay

time induced per message (or message batch).

	 5.	 As the delivering process is delayed, you should see also that the

outbound latency and request-response latency counters are affected.

BizTalk Host Instance Reaches the Virtual Memory Threshold (4)

The same behavior as the delivery condition, but BizTalk will apply throttling to the

publishing stage.

System Memory Reaches the System Memory Threshold (5)

The same behavior as the delivery condition, but BizTalk will apply throttling to the

publishing stage.

Throttling Due to Message Count in Databases (6)

The throttling mechanism is continuously monitoring the size of the following tables

within the Message Box database:

•	 Host message queue size—It contains references to messages that are

pending to deliver to a host and are not suspended.

•	 Host message state queue—The State Queue table saves the list

of messages that have been processed by an instance but might

be needed later. This is used mainly in orchestrations when the

developer creates a BizTalk message using a construction shape.

Because the message might be used everywhere in the code, the

message engine saves a reference to it in the state queue table.

•	 Host message suspended queue—The suspended queue is where

references to suspended messages are stored.

•	 Spool table size—As you learned in Chapter 1, this table contains

references for all messages in the BizTalk group.

•	 Tracking tables—The TDDS service (subservice loaded into the host

instance that has tracking enabled) moves tracking data and tracking

events to the tracking data tables within the Message Box database.

Later, the SQL Server job TrackedMessages_Copy_BizTalkMsgBoxDb

moves this data into the Tracking database.

Chapter 2 Performance Analysis

98

Three settings regulate how the throttling based on database size works:

•	 Message count in DB—BizTalk will enter into the throttling state

when any of the host message queues reaches this threshold. By

default, it’s set to 50,000.

•	 Spool multiplier—If the number of messages in the Spool table

reaches the message count DB * the Spool multiplier setting, BizTalk

will enter into the throttling state.

•	 Tracking multiplier—If the number of messages in the tracking data

tables reaches the message count DB * the tracking multiplier setting,

BizTalk will enter into the throttling state.

You can adjust these settings using the BizTalk Administration Console, as shown in

Figure 2-23.

Chapter 2 Performance Analysis

99

Figure 2-23.  Message count in database settings

The most common situations when BizTalk enters into a throttling state due to

database size are:

•	 TrackedMessages_Copy_BizTalkMsgBoxDb is not running or is

running slowly (the SQL Server Agent might be stopped).

•	 Subscribers are not processing messages from the in-memory queue

due to the lack of resources.

•	 The number of suspended messages is high.

•	 Maximum sustainable load for the BizTalk group has been reached.

Chapter 2 Performance Analysis

100

If the throttling condition has been raised due to Spool or tracking tables sizes, all the

hosts across the BizTalk group will enter into the throttling state, even though the host

responsible for throttling was just one. Why?

Since the Spool table is shared across all the hosts in the group, the system throttling

in this way could indicate that the maximum sustainable load for the system has been

reached. (Mixing data from all the host configured in the group; therefore, in this case, it

does not matter what host is causing the throttling and the system will reflect this fact by

entering throttling for all the hosts in the group.) The same concept applies to tracking

tables (which are shared across all hosts in the group).

The Host Instance Reaches the Number of Used Threads Threshold (9)

The same behavior as the delivery condition, but BizTalk will apply throttling to the

publishing stage.

Throttling Due to User Override on Delivery (11)

The same behavior as the delivery condition, but BizTalk will apply throttling to the

publishing stage.

�Suspended Messages
BizTalk stores messages in the Message Box database. If a failure occurs at the pipeline

or orchestration level, BizTalk suspends the instance. There are two types of suspended

service instances:

•	 Suspended instances that you can resume.

•	 Suspended instances that you cannot resume. For example, if an

instance is corrupt or there is a routing failure (RFR).

BizTalk does not automatically remove suspended instances. Therefore, you have to

resume or terminate them manually.

As reviewed in the “Message Engine” section, the engine creates a set of tables for

each host within the Message Box database. One of the tables is called the suspended

queue and is used to store all suspended messages.

Chapter 2 Performance Analysis

101

�Impact of Suspended Messages
Each suspended message is stored in the suspended queue for that host. This action has

several implications that can cause BizTalk to perform slowly:

•	 Spool table grows since it has references to those suspended

messages.

•	 Latency and throughput. Each internal stored procedure that the

BizTalk engine runs must “filter” and execute even more records

than usual, and within in a 100,000 execution, it will have a negative

impact, even more in a low latency scenario where pooling intervals

settings are aggressively reduced.

•	 Throttling due to message count in database threshold is also affected

since suspended messages are included in the message count in

database calculation (because of the Spool and Tracking Spool table

sizes). Throttling due to message publishing can occur even if BizTalk

is experiencing low or no load.

�Monitoring Suspended Messages
As suspended messages can impact performance negatively, implementing a solution to

monitor them becomes crucial. This can be done using the following methods:

•	 Performance counter data

•	 WMI classes

•	 BizTalk Health Monitor tool (BHM)

•	 External tools, such as system center operations manager and BizTalk

360 (both tools will be covered in the monitoring section)

The following methods are not detailed in the book, as I assume you have mastered

them:

•	 Reviewing the Windows EventLog

•	 BizTalk Administration Console

Chapter 2 Performance Analysis

102

�Performance Counters

The following performance counters could be used to monitor suspended messages:

•	 Host Queue – Suspended Msgs – Length and Documents suspended.

Tracks the total number of suspended messages for a specific Host.

•	 Documents suspended/Sec. Tracks the current number of suspended

messages per second for a specific host.

�Windows Management Instrumentation Classes

The MSBTS_MessageInstance WMI class can be used to monitor and solve suspended

messages instances. It loads message instances from the instances table within the

Message Box database. Its most relevant properties are listed in Table 2-14.

Table 2-14.  Properties of the MSBTS_MessageInstance WMI Class

Property Description

HostName Name of the host that published or consumed the message instance

MessageType Contains the MessageType property

Its most relevant methods are listed in Table 2-15.

Table 2-15.  Methods of the MSBTS_MessageInstance WMI Class

Property Description

SaveToFile Saves the message context and message body part to a location

The MSBTS_ServiceInstance class loads all service instances from the instances

table. The difference with the MSBTS_MessageInstance class is that it shows the

orchestration instances as well. Its most relevant properties are listed in Table 2-16.

Chapter 2 Performance Analysis

103

Its methods are listed in Table 2-17.

Table 2-16.  Properties of the MSBTS_ServiceInstance WMI Class

Property Description

ErrorId The exception number that raised the error.

ServiceStatus Status of the service. It can be

16 (Completed with discarded messages)32 (Suspended not

resumable)4 (Suspended resumable)

SuspendedTime Time that the service was suspended.

Table 2-17.  Methods of the MSBTS_ServiceInstance WMI Class

Method Description

Resume Resumes the suspended instance

Suspend Suspends an active instance

Terminate Terminates a suspended instance

�BizTalk Health Monitor Tool
Although the BHM tool will be covered in more detail in the monitoring chapter, I

include the suspended message section here for your reference.

Once the BHM tool is configured and after you run an analysis, navigate to the

Message Box Database section. If the platform has suspended messages, the tool shows

an alert like the one in Figure 2-24.

Chapter 2 Performance Analysis

104

In this case, the alert is marked as a warning, but if the number of suspended

messages reaches the 50,000 threshold, it would be marked as critical. You can

customize the default thresholds by changing the profile settings.

�Visual Basic Script to Deal with Suspended Messages
This script is intended to be as a tool to deal with BizTalk suspended messages,

especially if the environment is suffering from a massive number of suspended

messages.

You can view a full description and how to use it in the TechNet Wiki article I wrote,

called “Visual Basic Script to Deal with BizTalk Suspended Messages” and found at

http://social.technet.microsoft.com/wiki/contents/articles/28157.BizTalk-

script-to-deal-with-suspended-messages-vbs.aspx.

Or you can find it in my personal blog here: http://blogs.msdn.com/b/amantaras/

archive/2014/10/26/improved-visual-basic-script-to-deal-with-BizTalk-

suspended-messages.aspx.

The code is published in MSDN Code Gallery, and you can download it from

https://gallery.technet.microsoft.com/Visual-Basic-script-to-8542997.

Figure 2-24.  Suspended messages alert in the BHM tool

Chapter 2 Performance Analysis

http://social.technet.microsoft.com/wiki/contents/articles/28157.biztalk-script-to-deal-with-suspended-messages-vbs.aspx
http://social.technet.microsoft.com/wiki/contents/articles/28157.biztalk-script-to-deal-with-suspended-messages-vbs.aspx
http://blogs.msdn.com/b/amantaras/archive/2014/10/26/improved-visual-basic-script-to-deal-with-biztalk-suspended-messages.aspx
http://blogs.msdn.com/b/amantaras/archive/2014/10/26/improved-visual-basic-script-to-deal-with-biztalk-suspended-messages.aspx
http://blogs.msdn.com/b/amantaras/archive/2014/10/26/improved-visual-basic-script-to-deal-with-biztalk-suspended-messages.aspx
https://gallery.technet.microsoft.com/Visual-Basic-script-to-8542997

105

�Tracking
Tracking is the BizTalk feature that makes it possible to track everything that has

happened in the platform during a specified period. The tracking information can be

classified into two types:

•	 Data—BizTalk can track information related to the message

content, promoted properties, partner data, schemas, and routing

information (since tracking allows you to trace the path of a message

as it is routed through the BizTalk, enabling tracking can be useful for

troubleshooting errors). The Group Hub can display error codes and

routing states for a message so that you can troubleshoot errors in

real time.

•	 Events—This type of tracking is related to the time that the

information is tracked than the information itself. BizTalk can track

events such as:

•	 The start or end of a service

•	 When messages are sent or received

•	 When a pipeline starts or ends

•	 When an orchestration starts or ends

•	 The execution of each shape in an orchestration

The tracking feature is completely decoupled from the publishing and subscribe

mechanisms, so you can adjust it without affecting the business functionality.

Warning! I t is true that, from a functional viewpoint, this feature detaches
from the messaging engine. However, you have to be careful when changing the
tracking settings, because if you increase the amount of tracked information, the
level of performance requirements will increase, affecting to the SQL Server that
hosts the BizTalk databases. If the tracking database is not isolated in a separated
SQL Server instance, it could also affect the Message Box database.

Chapter 2 Performance Analysis

106

The tracking configuration is adjusted using the BizTalk Administration Console. You

can track the following types of data or events:

•	 Inbound and/or outbound event data—For example, message ID,

and start and stop times for the artifact.

•	 Inbound and/or outbound message properties—For example,

general and promoted properties for each message that the artifact

processes.

•	 Inbound and/or outbound message bodies and parts—For example,

body and parts for each message that the artifact processes.

•	 Orchestrations—Execution data for orchestration shapes

�Tracking Performance Counters
BizTalk exposes the following performance counters related to the Tracking feature:

•	 Tracking data size—This counter reflects the size of the tracking data

in the Message Box. As SQL Server’s purging jobs move data from

Message Box to tracking database, any increasing trend over a period

will indicate that there is probably a bottleneck in the tracking feature

and the Message Box database will grow. This will eventually raise a

throttling condition based on the database size and the system will

process messages very slowly.

•	 Tracked Msgs Copy (Purge Jobs) and Tracking Spool Clean Up

(Purge Jobs)—These two jobs show the time that it took both jobs to

complete the task during the last run. Increasing trends over a period

will also indicate that the system has a tracking bottleneck. If the

tracking data size counter is also growing exponentially while these

jobs are taking longer to complete, you should suspect a performance

issue on SQL Server (most likely due to IO contention and/or CPU

processing).

Chapter 2 Performance Analysis

107

�Summary
In this chapter, you learned several common performance analysis techniques that

will help you identify problems related to performance. Using these techniques, in

combination with all the knowledge detailed for the most common counters, should give

you a great toolset to start analyzing performance issues.

Several books about Windows performance can be written only on processor

performance analysis, so keep in mind that this book provides basic guidelines that will

orientate you along the right track.

Chapter 2 Performance Analysis

109
© Agustín Mántaras 2019
A. Mántaras, BizTalk Server 2016, https://doi.org/10.1007/978-1-4842-3994-0_3

CHAPTER 3

Performance Tools
In this chapter, you learn how to use the most common performance tools that will help

you find bottlenecks and resolve performance issues in your BizTalk Server environment.

The tools that you are going to learn about are:

•	 Performance Monitor

•	 Performance analysis of logs (PAL)

•	 LoadGen

�Performance Monitor
The Performance Monitor is an essential tool to analyze performance counters.

It is included in every Windows server installation and in Windows 10. Windows

Performance Monitor uses performance counters, event trace data, and configuration

information combined into Data Collector Sets for viewing performance data in real

time or offline. It will be your primary out-of-the-box tool to capture and analyze your

BizTalk Server platform. The Performance Monitor tool gathers the following data:

•	 Performance counters are measurements of system state or activity.

They can be included in the operating system or can be part of

individual applications. Windows Performance Monitor requests the

current value of performance counters at specified time intervals.

•	 Event trace data is collected from trace providers, which are

components of the operating system or of individual applications

that report actions or events. The output from multiple trace

providers can be combined into a trace session.

•	 Configuration information is collected from essential values in the

Windows Registry. Windows Performance Monitor can record the data

of a registry key at a specified time or in intervals as part of a log file.

110

�Setting Up a Performance Counter Capture
The best way to learn how to do this is practicing. In this section, you learn how to create

your performance capture using the Performance Monitor tool.

This exercise uses the BizTalk Server performance counters template that you can

find in the companion files for Chapter 2, located at C:\APRESS\Chapter2\Perfmon:

•	 Perfmon BizTalk Server template.xml

•	 Perfmon SQL Server template.xml

Follow the same instructions for the SQL Server template.

Note  The instructions provided in this section are meant to capture performance
data on an as-needed basis, in the case of a reactive scenario or to asses an
environment in a specific situation such as a health check or during application
performance testing. If you want to capture the performance data daily, you will
need to set up the performance logging for circular capture.

Prerequisites: If the current user is a member of the Performance Log Users security

group, then you will have access to the New Data Collector Set Wizard, but will not be

able to finish the wizard unless the user has administrator rights or if you specify an

account that has administrator rights.

Follow these steps:

	 1.	 Open Perfmon.exe by typing perfmon in the Windows Server

search box, as shown in Figure 3-1.

Chapter 3 Performance Tools

111

	 2.	 By default, you can find the tool in the following folder:

C:\ProgramData\Microsoft\Windows\Start Menu\Programs\

Administrative Tools

Figure 3-1.  Running the Performance Monitor tool

Chapter 3 Performance Tools

112

Figure 3-2.  Creating a new data collector set

	 3.	 Right-click User Defined Data Collector Sets and choose

New ➤ Data Collector Set. See Figure 3-2.

Chapter 3 Performance Tools

113

	 4.	 Type BizTalk performance as the name of the Collector Set. Then

select the Create From a Template option and click Next, as shown

in Figure 3-3.

Figure 3-3.  Setting the data collector set name

Chapter 3 Performance Tools

114

Figure 3-4.  Browsing for a template option

	 5.	 In the template selection window, click on the browse button and

locate the template files downloaded from the Apress site. This

is the BizTalkXMLTemplate.xml or SQLXMLTemplate.xml file. See

Figure 3-4. Click Next.

Chapter 3 Performance Tools

115

	 6.	 After you select the template files, the confirmation window in

Figure 3-5 appears. Click Next.

Figure 3-5.  Select the template confirmation

Chapter 3 Performance Tools

116

Figure 3-6.  Store location for a data collector set

	 7.	 Specify the location of the output BLG file. By default, it is using

%systemdrive%\PerfLogs\Admin\BizTalkPerformance. See

Figure 3-6. Click Next.

Chapter 3 Performance Tools

117

	 8.	 Click Finish. See Figure 3-7.

Figure 3-7.  Finishing the wizard for a data collector set

Chapter 3 Performance Tools

118

Figure 3-8.  Accessing the properties of the data collector set

	 9.	 Right-click the already created data collector set and select

Properties, as shown in Figure 3-8.

Chapter 3 Performance Tools

119

	 11.	 In the Folder Action window, specify the following values

(see Figure 3-10):

a.	 Beginning date: You have to decide the best starting date.

b.	 Expiration date: 2 Days after the beginning date.

c.	 Start time: Make sure to set up a high load time frame.

	 10.	 In the Properties window, go to the Schedule tab and click the Add

button, as shown in Figure 3-9.

Figure 3-9.  Adding a new schedule

Chapter 3 Performance Tools

120

	 12.	 Click the OK button.

	 13.	 Within the Properties window, go to Stop Condition tab and

enable the Overall Duration checkbox. Specify one as the value

and choose days as the unit. Click OK to Finish. See Figure 3-11.

Figure 3-10.  Schedule time frame

Chapter 3 Performance Tools

121

	 14.	 Adjust the right sample interval. This value controls how often the

tool captures the information of the selected counters. You can

establish the following intervals:

a.	 Seconds

b.	 Minutes

c.	 Hours

d.	 Days

e.	 Weeks

The interval setting is much more important than it seems since adjusting the

appropriate value depends directly on the scenario you want to capture.

Figure 3-11.  Stop condition by overall duration

Chapter 3 Performance Tools

122

These are the factors that you should take into account:

•	 Reason for the capture. If you want to analyze a specific issue, you

should specify seconds as you want to have the most data available

during the period when the problem is happening. If you are going to

measure the overall health of the platform, you should set this value

to minutes and capture the information during 24 hours minimum.

In this case, you can verify if your system is running under acceptable

thresholds.

•	 BizTalk Messages processed per interval. If your platform is handling

only one message per minute, you should set up 1 minute as the

sample interval. On the other hand, if the platform process 20

messages per second, you should choose seconds.

•	 Size of the output BLG file. The final size of the BLG data is directly

related to the system load, the interval value and the number of

instances that the counter has. The more load the system has and the

smaller the interval, the larger the resulting data. In my experience,

if you set the range to 2 minutes for a 24-hour capture, the output file

will have a length between 40 and 80 MB. Therefore, by reducing the

value to a few seconds, the output file will grow exponentially and the

analysis will become more complicated, as you will have to analyze a

larger volume of data.

Follow these steps:

	 1.	 Right-click the Performance counter capture, as shown in

Figure 3-12.

Figure 3-12.  Access to performance counter properties

Chapter 3 Performance Tools

123

	 2.	 In the Properties window, set the Sample Interval as required.

In this example, set it to capture performance data every two

minutes. See Figure 3-13.

Figure 3-13.  Sample Interval adjustment

	 3.	 Click OK.

	 4.	 View as report. In some scenarios, it is beneficial to present

performance information in report view. The first time you open

a BLG file, the Performance Monitor tool loads all the counters.

See Figure 3-14.

Chapter 3 Performance Tools

124

	 5.	 As you can imagine, the amount of the information displayed

makes it almost impossible to diagnose a specific issue. You can

switch to report view and then locate the counters that show

abnormal values, as shown in Figure 3-15.

Figure 3-14.  Dense Performance capture

Figure 3-15.  Report view representation of the counters

Chapter 3 Performance Tools

125

	 6.	 In this case, this environment is queuing lots of threads on

average. You can then select only this counter and analyze what

happens during the capture, as shown in Figure 3-16.

Figure 3-16.  Processor queue length graph detail

This server is queuing threads with very high peaks. You should investigate the issue

by adding processor usage counters.

To view the information as a report, follow these steps:

	 1.	 Select the report option view from the toolbox bar, as shown in Figure 3-17.

Figure 3-17.  Access to the report view

Chapter 3 Performance Tools

126

	 2.	 The tool switches to the report view. Look for abnormal values and

filter the log as desired.

�The Performance Analysis of Logs Tool
The performance analysis of log tool (PAL) helps you find performance issues in a

performance logging capture. The tool analyzes the captured data against a set of pre-

defined threshold files for the majority of Microsoft products. It has a user-friendly

interface that allows you not only to set up the analysis but also to edit or create your

threshold file with custom rules. The output of the analysis is an HTML report that

contains a list of alerts that are generated when a performance counter value reaches the

pre-defined thresholds.

The tool was originally maintained in Codeplex, but it has been recently moved to

GitHub. You can download the tool at https://github.com/clinthuffman/PAL.

The installation of the tool is a very straightforward process, so we are not getting

into the details. Download the tool and follow the Wizard.

�Creating a New Analysis Using PAL Tool
In this section, you learn how to use the PAL tool to analyze a BLG file that has been

captured previously using the perfmon tool. Although the instructions provided here

will suit the majority of the scenarios, it is recommended that you explore all the options

discussed.

Chapter 3 Performance Tools

https://github.com/clinthuffman/PAL

127

Figure 3-18.  The PAL tool welcome screen

Follow these steps:

	 1.	 Once the PAL tool loads, click Next on the welcome screen, as

shown in Figure 3-18.

Chapter 3 Performance Tools

128

Figure 3-19.  Counter log path

	 2.	 In the Counter Log section, browse for the location of the BLG

file that you have captured using the perfmon tool and click Next

(see Figure 3-19).

Chapter 3 Performance Tools

129

Notice that you have a Date and Time Selector. Sometimes the BLG files are

enormous, or you want to analyze what happened at a specific time range. You can use

this option to filter the captured data by a beginning time and an ending time.

	 3.	 In the Threshold file section, select the Microsoft BizTalk Server

2006/2009/2010 option from the drop-down box (see Figure 3-20)

and click Next.

Figure 3-20.  Selecting a threshold file

Chapter 3 Performance Tools

130

Do not worry if BizTalk Server 2016 is not listed. Most of the BizTalk performance

counters remain unchanged throughout all the product versions.

	 4.	 In the Questions section, navigate through all the available

questions and answer them according to the analyzed server

(not to the server where you are running the PAL tool). Click Next.

See Figure 3-21.

Figure 3-21.  Answering the platform questions

Chapter 3 Performance Tools

131

	 5.	 In the Output Options section, select the desired Analysis Interval.

AUTO is the default value, and it will create 30-time samples. If

you want a higher level of detail, you can increase this interval by

selecting a time using the drop-down box. Increasing this value

will cause the analysis to take longer to complete. See Figure 3-22.

Click Next.

Figure 3-22.  Selecting an analysis interval

	 6.	 Also, notice the Process All of the Counters in the Counter Log(s)

checkbox. This option is attractive if your BLG files contain

counters that do not have a threshold defined in the threshold

file. It could be especially useful if your BizTalk applications are

creating custom performance counters, and you want to include

them in the final report.

Chapter 3 Performance Tools

132

	 7.	 In the File Output section, locate the folder where you want the

tool to create the output HTML file. See Figure 3-23. Click Next.

Figure 3-23.  Setting the output options

	 8.	 Notice that there is the option to generate an additional XML file.

This is particularly useful if you have a custom tool that reads

those XML files.

Chapter 3 Performance Tools

133

	 9.	 Click Next in the Queue section. This section will show you the

analysis that the tool will run when you complete the wizard. As this

is the first analysis, you will get something similar to Figure 3-24.

Figure 3-24.  Viewing the queue

	 10.	 In the Execute section, you have three options:

Execute: It executes the current analysis and all of the queued

analysis now.

Add to Queue: It adds the current analysis to the queue and the

wizard will start again from the Counter Log section to add a new

analysis.

Execute and Restart: It executes the current analysis and will

restart the wizard again so you can run another analysis in

parallel. This option is the preferred one when you have a

compelling workstation, as PAL will run all the analysis in parallel.

Chapter 3 Performance Tools

134

	 11.	 Select the desired option and click Finish, as shown in Figure 3-25.

Figure 3-25.  Setting the execution options

	 12.	 Note the threading option. By default, the tool detects the number

of cores in your computer and runs using the same number of

threads.

Chapter 3 Performance Tools

135

	 13.	 Now the tool creates an inline PowerShell script that does all the

magic. The PowerShell window shown in Figure 3-26 appears.

Figure 3-26.  Status of the analysis

	 14.	 Here you can see the status of the analysis. When the tool is about

to complete the analysis, you will see the text “Generating HTML

Report…”. Depending on the size of the BLG, this operation can

take from a few seconds to several minutes. Once the report

is generated, the tool loads it automatically using your default

Internet browser.

Chapter 3 Performance Tools

136

�Understanding the PAL Output
The first area of the report contains an Alerts section. Here you can see all of the issues

found during the perfmon capture, as shown in Figure 3-27.

Figure 3-27.  Alerts by chronological order section

Chapter 3 Performance Tools

137

You can click in the links to go to a specific time frame. If you scroll down through

the report, you can see see all of the detailed analysis for BizTalk Server and the rest of

performance counters, as shown in Figure 3-28.

Figure 3-28.  The rest of the analysis

Chapter 3 Performance Tools

138

Any issues are highlighted, and you can click on them to see the details. For instance,

if you click on the spool table analysis, you will get the spool table analysis graph, as

shown in Figure 3-29.

Figure 3-29.  Spool table analysis graph

Chapter 3 Performance Tools

139

The associated alerts are shown in Figure 3-30.

Figure 3-30.  Spool table analysis alerts detail

�Using LoadGen to Test the Environment
In this section, you learn how to run the LoadGen tool in your environment. While in

Chapter 4, you will learn how to test your environment using Visual Studio, this tool

comes in handy when you are a BizTalk Server administrator, and you are not familiar

with Visual Studio testing tools.

You can download the tool at https://www.microsoft.com/download/details.

aspx?id=14925.

Installation of the tool is very straightforward, and it does not have different

dependencies than the BizTalk Server installation. Install the tool following the wizard.

Chapter 3 Performance Tools

https://www.microsoft.com/download/details.aspx?id=14925
https://www.microsoft.com/download/details.aspx?id=14925

140

�The LoadGen Configuration File
LoadGen uses an XML configuration file to simulate loading your environment.

<LoadGenFramework>

 <CommonSection>

 <LoadGenVersion>2</LoadGenVersion>

 <OptimizeLimitFileSize>20480000</OptimizeLimitFileSize>

 <NumThreadsPerSection>5</NumThreadsPerSection>

 <SleepInterval>200</SleepInterval>

 <LotSizePerInterval>25</LotSizePerInterval>

 <RetryInterval>10000</RetryInterval>

 <StopMode Mode="Files">

 <NumFiles>2000</NumFiles>

 <TotalTime>36000</TotalTime>

 </StopMode>

 <Transport Name="FILE">

 <Assembly>FileTransport.dll/FileTransport.FileTransport</Assembly>

 </Transport>

 </CommonSection>

 <Section Name="FileSection">

 <�SrcFilePath>C:\Users\Administrator\Documents\BOOK\BooksSolution\

FIles\FFBooksOrder.txt</SrcFilePath>

 <DstLocation>

 <Parameters>

 <�DstFilePath>C:\Users\Administrator\Documents\BOOK\BooksSolution\

Ports\IN\</DstFilePath>

 </Parameters>

 </DstLocation>

 </Section>

</LoadGenFramework>

Chapter 3 Performance Tools

141

Table 3-1.  LoadGen Configuration Settings

Setting Description Value

OptimizeLimitFileSize If the file is larger than the value here, LoadGen

will not use that file. This is to avoid out-of-

memory conditions.

20.480.000

NumthreadsPerSection The number of threads that the tool will use. The

best value here is to set it to the number of cores

in the running server.

5

SleepInterval Time in milliseconds between test cycles. 200

LotSizePerInterval Number of files copied per test. 25

RetryInterval If the test could not be done, LoadGen will retry

after 10.000 milliseconds.

10.000

StopMode You can choose the stoping condition of the test

cycle by assigning this setting. Supported stopping

modes are:

A) Files. LoadGen stops when the number files is

reached.

B) TotalTime. LoadGen stops when the test duration

reaches the total time value.

You can use both and LoadGen will stop where any

of those conditions are met.

Files

StopModeNumFiles Number of files to stop the test cycle. 2.000

StopModeTotalTime Total duration to stop the test cycle. 36.000

(continued)

Table 3-1 shows a list of all the most common configuration settings for a

performance load.

Chapter 3 Performance Tools

142

�Testing a Solution
In this scenario, you are going to test the book orders solution provided in the Chapter 2

folder.

Follow these steps:

	 1.	 Install the application using the MSI file located at C:\APRESS\

Chapter2\BooksSolution\BooksOrders\msi.

	 2.	 Start the application.

	 3.	 Test that the application works. Using the Windows Explorer,

navigate to the C:\APRESS\Chapter2\BooksSolution\Test folder

and run the Send1BookOrder.bat file.

Table 3-1.  (continued)

Setting Description Value

TransportName Transport used to test the scenario. Currently

LoadGen supports the following out-of-the-box

transports:

A) File

B) HTTP

C) MQSeries

D) MSMQ

E) SOAP

F) WSE

G) WCF

File

FileTransportDLL Location of the file transport DLL. LoadGen will

use this assembly to emulate the adapter protocol.

All the assemblies are located at C:\Program

Files (x86)\LoadGen\Bins.

ScrFilePath Instance that will be used to test. Test instance

DstFilePath Here is where the tool will drop the message

instances.

Receive

location path

Chapter 3 Performance Tools

143

Figure 3-31.  LoadGen output

	 4.	 If the application is installed successfully, you should have an

output file located at C:\APRESS\Chapter2\BooksSolution\

Ports\OUT.

	 5.	 Open a command prompt and navigate to the BINS folder where

you have installed the LoadGen tool. If you choose the default

location, it will be at C:\Program Files (x86)\LoadGen\Bins.

The bookOrders solutions comes already with a LoadGen pre-configured file, and it

is located at C:\APRESS\Chapter2\loadgen\Send2000Files.xml.

Type the following instruction at the command prompt:

C:\Program Files (x86)\LoadGen\Bins>LoadGenConsole.exe "C:\APRESS\Chapter2\

loadgen\Send2000Files.xml "

The process will start and the tool will show the screen in Figure 3-31.

Chapter 3 Performance Tools

144

	 6.	 Wait until the process finishes and review the output folder and

the BizTalk Administration console to check that everything runs

smoothly.

Now that you know how to use LoadGen tool, you can use Performance Monitor to

capture all the BizTalk Server relevant performance data. Then later, you can use the PAL

tool to analyze what happened during the test.

�Summary
In this chapter, you have learned about the most common tools you will need to

asses your BizTalk Server environment. First, you should capture the performance

counter information using the Perfmon tool and then you can pass through the output

BLG file to the PAL tool to accelerate the discovery of performance issues. PAL will

narrow the whole capture to the points of interests. If the PAL tool does not provide an

overwhelming conclusion, you can use perfmon again and open those specific moments

of the BLG file to drill down on the issue and apply the techniques gained in Chapter 2.

Congratulations, you are ready to jump into the BizTalk Server optimization

chapter, where you will learn how to optimize the BizTalk Server platform to boost its

performance and to adjust configuration settings for very specific situations.

Chapter 3 Performance Tools

145
© Agustín Mántaras 2019
A. Mántaras, BizTalk Server 2016, https://doi.org/10.1007/978-1-4842-3994-0_4

CHAPTER 4

Optimizing the BizTalk
Platform
Probably one of the most missed tasks when designing BizTalk Server solutions is the

specification phase. Most of the integration development focuses on providing the

business functionality without taking into consideration the impact on performance

once the application goes live.

This is especially true for BizTalk Server, as per design, the platform operates ruled by

the publishing and subscribe architecture thus, all BizTalk Server messages flow through

BizTalk Server message box database. Additionally, if you enable tracking and business

activity monitoring, performance factors such as hardware sizing, message size, and the

number of transactions (among others) becomes essential. Therefore, there is something

you must keep in mind before starting a BizTalk Server project: The solution you are

coding might not be the only one running in your production group. Applications

compete with available hardware resources. Consequently, this should be your mantra

when approaching a new project:

Performance! Performance! Performance!

Testing! Testing! Testing!

During the initial phases of the project proper design and formal testing procedures

will give you an initial idea of the hardware sizing. If you have vast experience in

designing BizTalk Server architectures, intuition could also guide you to an initial

hardware estimation. Unfortunately, no systematic process precisely estimates the

platform size for any BizTalk Server application. BizTalk Server is usually the core

integration system within the organization, and it can potentially integrate a large

variety of business implementations that run with their performance specifics.

146

So, while an estimate based on existing experience provides a good starting point for

planning purposes, the final size of the system will most certainly need to be adjusted

along the way through a very structured testing procedure and good design principles.

In this chapter, you learn how to:

•	 Categorize your applications based on a concept that is called

application priority levels.

•	 Optimize BizTalk and SQL Servers based on those levels.

•	 Use WMI and PowerShell to automate performance settings.

•	 Document application performance requirements.

•	 Use that documentation to size the Message Box and Tracking

databases.

�Assigning Application Priority Levels (APL)
It is good practice to categorize applications based on priority levels from a business

point of view and the rest of the BizTalk Server factors that are relevant to solution

architecture. By doing so, you will be taking crucial decisions during all phases of the

project. The values used in this book are based on personal experience, but you should

overwrite them to fit the project needs.

APL is calculated by combining five essential elements that are directly related to

SLA definitions:

•	 Release stage level (RSL)

•	 Business priority level (BPL)

•	 High availability level (HAL)

•	 Number of transactions level (NTL)

•	 Performance behavior level (PBL)

Chapter 4 Optimizing the BizTalk Platform

147

You can use the Description field in the application properties section to document

the application priority level and any other relevant information, as shown in Figure 4-1.

Figure 4-1.  Documenting the application priority level using the BizTalk
Administration Console

Chapter 4 Optimizing the BizTalk Platform

148

�Release Stage Level (RSL)
This level represents how mature the solution is, or in other words, how stable it is.

See Table 4-1.

Table 4-1.  Common Release Stage Levels

RSL Description

9 First release The application is in its first release version. New bugs can arise, and a

high number of suspended messages can occur.

8 Unstable release Applications are now performing for a while, but there are still some bugs

that are not fixed yet. Suspended messages can occur frequently.

7 Unstable release
(performance)

All known bugs are fixed. Tracking is enabled at the orchestration level to

find performance bottlenecks. No message body tracking is enabled at

this stage.

6 Stable release The application is now stable and running without known issues for a

while now. Tracking is disabled, and normal host settings are applied.

�Business Priority Level (BPL)
This level should be agreeable to the business decision makers, as they are the ones

who know the business. It is imperative that both parts understand the implications of

this level because it will have a significant impact on early stages of the project and can

increase the cost of the platform.

In BizTalk Server, we can define a mission-critical solution as an integrated system

where any of its components (equipment, personnel, process, procedure, software, and

so forth) are essential to the business operation. Failure of any of these elements usually

results in a severe impact on business operations that can even influence the image of

the organization.

Examples of mission-critical systems are

•	 An online banking system

•	 Aircraft operating

•	 Electric power systems

•	 Electronic bill applications

Chapter 4 Optimizing the BizTalk Platform

149

•	 Health care systems

•	 ATM systems

The majority of mission-critical solutions must run 24x7 without downtime.

Performance is especially vital, as these implementations operate under very restrictive

performance requirements for individual transactions.

Additionally, these systems should remain very secure to prevent malicious attacks

and to protect the data that goes through the BizTalk Server databases.

As BizTalk Server is usually deployed to host mission-critical solutions, you will need

a solid foundation on the performance factors that make a difference.

The definitions on this section are based on common customer deployments all

around the world. Use them as an inspiration when categorizing your own solutions. See

Table 4-2.

Table 4-2.  Common Business Priority Levels

BPL Example Definition

9 Mission-critical solution level 1. Organization operations are affected at a global scale.

Failure of this application causes significant failures to other applications. The application

has particular performance requirements. Zero downtime. Typically involves long running

processes and very low latency scenarios. Performance degradation is not accepted

(especially under high load). Usually, these applications are isolated in a dedicated BizTalk

Server group, since even the administration team is frequently dedicated to operate these

platforms.

8 Mission-critical solution level 2. The application is significant from the business point of

view, but failures do not affect other applications. The application has particular performance

requirements. Zero downtime. Performance degradation is not accepted (especially under

high load).

7 Important application level 1. Major failure it is an issue. Performance is still a fundamental

requirement; an application can have specific performance requirements. Zero downtime

6 Important application level 2. Functionality should be granted at any time but if the

application run below the performance SLA during certain times is not an issue. The importance

here is that all transactions are completed successfully. The business accepts downtime.

(continued)

Chapter 4 Optimizing the BizTalk Platform

150

�High Availability Level (HAL)
This level represents the high availability requirements for the solution. See Table 4-3.

Table 4-3.  Common High Availability Levels

HAL Description

9 High availability is required. Zero downtime.

8 High availability is required. Downtime is accepted to fix issues (debugging, stopping

instances).

7 High Availability is required. Downtime is also accepted for deployment.

6 Even though high availability is required, it cannot be applied due to platform restriction or

adapter behavior. Downtime is accepted.

5 High Availability is not required.

BPL Example Definition

5 Medium priority level. Intermittent failures are accepted as the consumer can resubmit

the message. The Destination system or the integration layer can handle duplicated/missed

transactions accordingly. The business accepts downtime. Performance degradation for a

standard period is accepted as usual (even under high load).

4 Low priority level. If the application fails, it will not impact the business operations. This

application does not have any specific performance requirement. The application can be

manually stopped/resumed without any consequences at any time. Performance degradation

is accepted as normal.

Table 4-2.  (continued)

�Transaction Levels (TL)
This definition is directly related to the business performance requirement. It is not

calculated based on specific hardware configuration. Once the business provides you

with the actual volume of transactions, you should design all the performance testing

scenarios to size your platform correctly and based on this definition.

Chapter 4 Optimizing the BizTalk Platform

151

Note K eep in mind that business transactions might not be equivalent to the
number of messages that BizTalk Server process per business flow, as usually this
relationship is one:many.

TL Volume Definition Number of Transactions Per Hour

9 Extremely high >=3,000,000

8 Very high >=1,000,000 and < 3,000,000

7 High >= 300,000 and < 1,000,000

6 Medium >=100,000 and < 300,000

5 Common >= 10,000 and < 100,000

4 Low < 10,000

�Performance Behavior Level (PBL)
This application priority level dictates how an application behaves performance wise. In

BizTalk Server, applications can be classified into the following categories:

PBL Name

9 Low latency

8 High throughput

7 Mixed

6 No specific

This is more important than it seems at first glance, as you will have to tune the

application based on its most common behavior.

Chapter 4 Optimizing the BizTalk Platform

152

�Service-Level Agreements Between the
Integrated Parties
A service-level agreement (SLA) is a contract between a service provider and a

consumer. Your BizTalk Server environment provides specific business functionalities

that must run below the defined SLA agreement. Although services can have very

specific custom SLA, for most BizTalk Server solutions your agreement should include

one or more of the following SLAs:

•	 Performance

•	 Availability

�Performance Service Level Agreement
For BizTalk Server, you define performance SLA at the business application level. The

concept of an application in integration world is probably quite deceiving as usually,

BizTalk Server connects to different services to provide the business functionality.

Additionally, mature BizTalk Server deployments have usually shared applications that

behave as a framework that provides internal functionality to the business applications

or acts as an enterprise service bus.

As most of the performance settings in BizTalk Server are applied at a host level, it is

essential that you define a host separation policy that matches the required performance

SLA. What does it mean exactly? For example, if you are developing an application that

behaves as low latency, the best option is to place all the BizTalk Server artifacts to run

in a dedicated set of hosts and apply specific host settings to improve latency. In other

words, you can create three hosts for that application: One for receive locations, another

one for orchestrations, and one more for sending ports.

In contrast, if the application is running only a few transactions per day, you do not

need to create additional hosts; you can have a set of standard hosts to run all the low

volume applications.

Adding unnecessary hosts can create overhead in the BizTalk and SQL Server boxes

when host instances are started. That is why you have to use common sense when

approaching a new BizTalk Server project. Do not just create a new set of receiving,

processing, and sending hosts because it is just the Microsoft best practice. Instead,

create a generic set of hosts that you will be using for low volume applications, and then

you move forward with the specific cases.

Chapter 4 Optimizing the BizTalk Platform

153

We will discuss the host separation policy in more detail in later sections.

To create a performance service level agreement, you have to agree with the

integrated parties in the following elements:

•	 A measure of time—Usually, business decision makers will state that

the solution must process a specific number of transactions during a

specific time range. An example could be this solution must process

one thousand transactions per minute, per second, or two million

monthly.

•	 Latency of individual transactions—Sometimes, especially for

low latency scenarios, individual transactions will also have a

performance SLA. We define the latency of an individual transactions

as the elapsed time since the consumer initiated the request and gets

the response from the integration layer (whatever the format of the

response is). This, of course, can vary across all of the cases you can

imagine but usually low latency scenarios will require an individual

transaction time of fewer than 5-2 seconds (down to milliseconds

even) If you receive a requirement like this, then you should be

automatically thought of a low latency scenario and because of that

you should consider applying low latency customizations. In some

other cases, the individual transaction time is not essential. What

matters in these cases, is the total number of transactions globally. In

other words, a high throughput scenario.

•	 Number of transactions—This is also very important. The number of

business transactions creates new BizTalk Server messages. However,

that does not necessary means that BizTalk Server will publish the

same number of messages as most of BizTalk Server solutions create

internal messages to drive the logic through the code. Additionally,

orchestrations will be consuming internal services, databases and

.Net components that can publish new messages to the Message Box.

So, how do we calculate the number of messages in BizTalk Server?

There is not an easy answer to that. However, the best thing you could

do as a developer is to document all the messages that your solution

is using per message flow. This action will become crucial later for

testing, sizing, troubleshooting and maintaining the BizTalk Server

solution.

Chapter 4 Optimizing the BizTalk Platform

154

•	 Maximum number of live instances—As messages are stored into

the message box database, it is a must that you define the maximum

number of transactions that can be running simultaneously. This

number is affected by two different aspects:

•	 Consumer requests—During the normal operation behavior, the

consumer of the service will send some transactions. However,

in the majority of the scenarios, those requests will arrive at

BizTalk Server at their pace, and it is very complicated to size

the environment based on that number. To avoid this problem,

consumer and provider must agree on the maximum number

of simultaneous transactions that the consumer can request.

By doing so, you will be sizing the environment based highest

performance business requirement.

•	 BizTalk Server engine behavior—This refers to the transactions

that are queued in BizTalk Server because of the engine features

such as throttling, pooling intervals, and in-memory and

processing queues. Getting a specific value for this is again

almost impossible. What you could do though is to increment the

number of maximum requests based on business priority levels:

BPL The increment of Maximum Transactions

<=5 No increment required

6 +20%

7 +25%

8 +30%

9 +35%

For instance, imagine that you are designing a BizTalk Server solution that you

categorized as priority 6. The business requirement is that the application must handle a

maximum of 200 transactions simultaneously. Therefore, if we applied the formula, you

will have to add 20% on top of the business requirement. That means that BizTalk Server

should be able to process 40 additional transactions caused by the engine behavior.

Chapter 4 Optimizing the BizTalk Platform

155

•	 Convoy patterns—Achieving some business functionalities will

eventually take you to implement convoy patterns. BizTalk Server

holds convoys, and the associated message instances, in a separated

set of tables within the message box. If the number of messages in

convoy is substantial (especially if they are using large messages),

you will have to size the Message Box accordingly to include the extra

space requirements. Additionally, convoy patterns can cause zombie

messages within the Message Box database.

•	 Recovery behavior—How would affect an error to the business?

In case of an error, will the caller system be able to resubmit the

transaction again? What about the destination system? Can it

handle duplicated transactions by discarding them? For obvious

reasons, this is very important for the solution design but also for

performance. Why? BizTalk Server has a great feature to recover

individual orchestrations from the latest service call in case of

a failure. When an orchestration is sending a request to service

or, in general, when it is waiting for something to happen (the

orchestration is idle), the orchestration engine will dehydrate that

orchestration into the Message Box. That means that will store the

orchestration state into the database waiting for the timed event to

occur. This is very useful too, first it saves hardware resources, and

second, it allows the engine to recover the orchestration in case the

failure. If the recovery behavior of the calling system is set to resubmit

the transaction again, then you do not need the dehydration BizTalk

Server feature, and you can disable it. This action alleviates SQL

Server resources as orchestrations will not perform extra round trips

to the message box. However, keep in mind that the BizTalk Server

host instance that runs orchestrations will consume more memory as

orchestrations will not be saved to the Message Box.

Chapter 4 Optimizing the BizTalk Platform

156

•	 Monitoring capabilities—Do the integrated parties need visibility of

the data processed by BizTalk Server? If yes, would it be enough by

saving the standard BizTalk Server tracking information or do they

require business data associated with the process as well? Proactively

monitoring performance data should be always considered.

Predicting when the system can potentially reach a performance

bottleneck will help you to create a healthy platform and to avoid

majority of performance problems related to bottlenecks on both,

BizTalk and SQL Server side. In Chapter 8, you will learn how to

monitor the BizTalk Server platform using BizTalk 360 tool.

•	 Organization or business data retention policies—Some

organizations, or even individual entities within the organization, will

have specific regulations to save tracking data during a period that is

far beyond the limit that should be used for troubleshooting. In this

situation, you might need to keep tracking data for more extended

periods of time. In this case, the Tracking database can become a

performance bottleneck over time. Therefore, you should be ready to

tune the SQL Server platform, so it has enough hardware resources

to deal with all the tracking feature. Unfortunately, at the moment

of writing this book, the configuration of the tracking purging job

applies globally to the whole BizTalk group and does not purge

specific application tracking data.

Out of-the-box, BizTalk Server can tune a specific host to improve its behavior within

the following areas:

•	 Message publication

•	 Message delivery

•	 Polling the Message Box database

•	 Dehydration behavior

These topics are discussed later in this chapter and in Chapter 6.

Chapter 4 Optimizing the BizTalk Platform

157

�Availability SLA
In information technology, high availability refers to a system or component that is

uninterruptedly operational for an appropriate length of time. Availability can be

measured relative to “100% operational” or “never failing.” A widely-held but difficult-to-

achieve standard of availability for a system or product is known as “five 9s” (99,999%)

availability. While from infrastructure point of view you can provide the majority of the

necessary considerations to provide high availability, it is also at development stage

where developers can use techniques to get the availability level closer to 99,999%. In

Chapter 7, you learn about these techniques.

This book does not focus on high availability, therefore, the recommendations in this

section should be taken as initial steps.

Within application priority levels, you must agree with the integration layers and the

high availability level. The following aspects should come up in this discussion:

•	 Recovery downtime—In case of a significant failure, do the business

accepts downtime for recovering?

•	 Troubleshooting SLA—What is the maximum downtime of the

service in case of troubleshooting?

•	 Deployment downtime—To fix bugs and to provide new

functionality, deployments might be quite frequent. This is very

dependent on the release stage level of the solution. If it is the case,

what is the maximum amount of time that the business accepts for

deployment situations?

•	 Adapter considerations—Depending on the adapters used to

integrate the systems involved, you will have to consider different

strategies to provide high availability.

The following elements in BizTalk Server are crucial regarding high availability

because if any of them fails, the system will not be able to process messages, in other

words, these elements are single point of failures in any BizTalk Server environment.

•	 Hosts Instances—Host instances initiate most of the activities related

to BizTalk Server engine:

•	 The End Point Manager—Hosts in-process and isolated

messaging (but not messages related to orchestrations).

•	 TDDS service, which implements the tracking and BAM features.

Chapter 4 Optimizing the BizTalk Platform

https://searchnetworking.techtarget.com/definition/availability
https://searchcio.techtarget.com/definition/99999

158

•	 Although message publication and dequeue processes are

implemented with SQL Server stored procedures, host instances

are initiating the process.

•	 Orchestrations—If hosts instances are running orchestrations,

a sub service called XLang engine loads into the host instance

windows service to provide all the orchestration functionality.

Therefore, you will need to provide high availability for the

host instances because if any of those elements are affected,

the BizTalk engine will not be able to process messages. As

host instances are windows services, the only way to provide

redundancy is by deploying at least two BizTalk Servers.

•	 Enterprise single sign-on service—This service is used in BizTalk

Server for the following reasons:

•	 To save adapter and ports configuration.

•	 To store custom application configuration data.

•	 To map a Windows user ID to non-Windows user credentials.

This data is stored in the Single Enterprise sign-on a database that is encrypted in

the moment of the BizTalk Server configuration stage. Within the whole BizTalk Server

group, one of the Single Enterprise sing-on services is marked as the master secret server.

This is the only one that has the encryption key in memory. The rest of the enterprise

single sign-on services need to ask for the key to the master.

If the master secret server becomes unavailable, BizTalk Server will stop processing

messages, and you will need to set the master secret server to another server manually.

Therefore, you will also need to provide high availability to the master secret server.

•	 Microsoft distributed transaction coordinator (MS DTC)—provides

the functionality to ensure complete transactions across a distributed

environment. If the distributed transaction coordinators become

unavailable, BizTalk Server will fail to enlist a new transaction and

it will stop processing messages. Later on, we will look at MSTDC in

more detail.

Chapter 4 Optimizing the BizTalk Platform

159

•	 BizTalk Server databases—BizTalk Server stores a significant amount

of information in the databases. If any of the core BizTalk Server

databases becomes unavailable, the platform will be able to process

service instances. Therefore, you should provide high availability for

the databases using one of the following methods:

•	 Implementing a Microsoft cluster in the SQL Server

•	 Implementing SQL Server Always-On and high availability

groups

•	 BizTalk Server maintenance jobs—When you configure BizTalk

Server, the process will create a set of SQL Server agent jobs that are

extremely important for the platform as they perform operations

such as backing up databases, maintaining integrity within the

Message Box and tracking, moving tracking data from the message

box to the Tracking database, and purging the Tracking database.

Therefore, you will need also to provide high availability to the SQL

Server agent service.

Designing a high availability will not cover all the scenarios as there are factors such as

the human mistakes and the lack of knowledge, that can cause a production environment

to become unavailable. For that reason, you should also consider the following important

aspects that will help you to provide an efficient high availability level:

•	 Application instrumentation—Covered in Chapter 5.

•	 Side-by-side versioning—Covered in Chapter 7.

•	 Proactive monitoring—Covered in Chapter 8.

�Factors That Are Important for BizTalk Performance
The number of factors that affect BizTalk Server performance is very large. In this section

we will review the most important ones, as detailing every specific performance setting

will take probably more than 500 pages, and most likely you are not going to face all the

situations at the same time.

Chapter 4 Optimizing the BizTalk Platform

160

You will learn about optimizations related to the following areas:

•	 Tracking

•	 Host separation policy

•	 Host performance settings

•	 Message size

•	 Message Box database

•	 Microsoft distributed transaction coordinator

•	 Windows communication foundation throttling

•	 Concurrent HTTP connections

Later, in Chapter 6 you learn about how to improve your developments, so the

development and administration team can work together to boost the BizTalk Server

platform.

�Message Size
The message size, along with the number of transactions, have an impact in the

following areas:

•	 Size of the Message Box database—BizTalk Server stores all live

messages in the Message Box database and uses a set of queue tables to

hold references to those messages. As message size increase, Message

Box database increases in size along with the number of live instances.

•	 Size of the Tracking database—If message body tracking is enabled

at any level, Tracking database grows exponentially along with the

message size.

•	 Pipeline CPU consumption—Pipelines use CPU resources to

loop through the streamed binary data, therefore as message size

increases, the pipeline needs to stream more information, and that

increases CPU utilization.

•	 Map execution—When extracting or setting values with a map

the document is loaded into memory and therefore memory

consumption increases.

Chapter 4 Optimizing the BizTalk Platform

161

•	 Orchestration dehydrated size in the Message Box database—Every

single time an orchestration dehydrates, it saves all the messages

that are part of the actual scope (messages that are not yet used will

not be persisted). Therefore, the size of Message Box database is also

affected because of the number of dehydrated orchestrations.

•	 Orchestration memory consumption—As all orchestration messages

are stored into the memory, the message size has a direct impact

on the server memory consumption. This is especially true if the

developer is using XPath expressions or XMLDocument classes because

these objects load the message into the memory.

•	 Orchestration CPU consumption—If the process is looping through

a very large message, the host instance is acting as a handler for that

orchestration and uses more threads per CPU.

•	 Overall throughput can be affected if the size of received message

increase above the initially defined thresholds.

•	 XPath and XMLdocument classes—As these objects load the whole

message into the memory, memory consumption increases along

with the size of the message when XPath or XMLDocument classes

are used.

•	 Number SQL Server locks—The larger the message, the more

significant the number fragments that the engine uses to save the

binary data into the Message Box. Each fragment creates one or more

SQL Server locks within the Message Box database. If the number of

messages is quite large, you can experiment with an out-of-lock error

in SQL Server.

Note K eep in mind that if the application receives or sends JSON and flat file
messages if you want to use that message for operations such as validation,
property promotion, and transformation services, they must be transformed into
XML (using a pipeline). The conversion itself can increase the size of the message
up to ten times the original size, since XML representation requires element names
specification.

Chapter 4 Optimizing the BizTalk Platform

162

While BizTalk Server does not impose any constraint on message size, practical

hardware limits might require that you design the BizTalk Server solution in a completely

different way to reduce message sizes, because large messages require more processing

resources. However, at the group level, you can control how BizTalk Server processes

large messages within the Message Box database.

�What Is the Large Message Size Setting?

If the size of an incoming message is larger than the number of Kilobytes specified for

this setting, the message is split into fragments of that size. If size is not exceeded, then

the entire message is committed as one part. In BizTalk Server 2016, the default value is

100 KB.

Let’s see this setting in action using an example:

Imagine that BizTalk receives a file of 1089 KB. The engine evaluates the message

data size against the large message size setting. In this case, since the setting is set to

100 KB, 11 fragments are inserted in the Fragments table:

•	 Ten fragments of 100 KB size

•	 One fragment of 89 KB size

Warning  Changing the large message size could have an adverse/positive
impact on the environment and the platform could suffer from one of the following
issues:

DTC Locks  Depending on the load, SQL Server could potentially get out of
transactions causing DTC Locks and will timeout message publication. If you face
this situation, it might be reasonable to increase the size of the large message, as
the number of locks decrease exponentially due to fewer fragments inserted in the
tables.

Out of Memory  On the other hand, increasing this setting could also raise the
amount of memory consumed by BizTalk and SQL Servers, as fragments will be
larger. In this case, you should do the opposite: decrease the size until the out-of-
memory condition disappears.

Chapter 4 Optimizing the BizTalk Platform

163

This setting is configurable using the BizTalk Administration Console, under the

BizTalk group settings, as shown in Figure 4-2.

Figure 4-2.  Large message size setting

As you can see, there is not a value that fits all scenarios. The recommendation is to start

with the default one (100 KB) and, if you experiment any of those issues, you could leverage

on the recommendation of an excellent BizTalk Server tool: the health monitor (BHM).

To check the recommendation value for the Large Message Size setting, once BHM

tool has generated your report you should navigate to section BT DBs Details and from

there locate the element BizTalk - All MsgBox Dbs: Large Message Fragment Size Tuning.

See Figure 4-3.

Figure 4-3.  Location of the Large Message element report

Chapter 4 Optimizing the BizTalk Platform

164

After you click on the element, you will see a report like the one in Figure 4-4.

Figure 4-4.  Location of the Large Message element report

Chapter 4 Optimizing the BizTalk Platform

165

Note T o retrieve this information, the BHM tool queries the Tracking database.
Therefore, if you want to rely on this recommendation, message body tracking
should be enabled while the tool is performing the analysis. As you will learn later,
enabling message body tracking is recommended punctually over the following
scenarios:

1. Troubleshooting issues related to message content.

2. �Executing BHM with the objective of getting a large message size
recommendation. Ideally, you should do this in a no-production environment by
simulating load in a testing server.

When you finish with either of these tasks, you should disable message body
tracking again (of course, only if data retention policies allow to do that).

The most important field on the report is the Suggested Large Message Size row,

as it gives you the most accurate recommendation based on the message sizes that are

currently published in your environment. In this case, the tool is recommending using

the default setting of 100 KB.

�Tracking
The general best practice for tracking is to not to enable it on production. However,

in real-world scenarios, tracking becomes essential when troubleshooting. This is

especially true for newly released applications, as they can raise exceptions that

were not considered during the design and development stages. The most important

considerations for tracking are:

•	 The size of the message

•	 The tracking level you want for your BizTalk Server artifacts

•	 Promoted properties

Chapter 4 Optimizing the BizTalk Platform

166

Additionally, the tracking feature involves a three-step process:

	 1.	 Tracked data will be first placed on the tracking data tables into

the Message Box database.

	 2.	 The TrackedMessages_Copy_BizTalkMsgBoxDb job moves

message body data to the Tracking database and it runs once per

minute by default.

	 3.	 The DTA Purge and Archive job will delete old tracking data based

on the job configuration. For instance, if you have set the job to keep

seven days of data, this is the amount of maximum tracking data that

the tracking database will keep for that specific business process.

Therefore, there are two important considerations to size tracking properly:

•	 Amount of tracking data per minute—As the TrackedMessages_Copy_

BizTalkMsgBoxDb runs every minute, the Message Box database will

keep tracking data for one minute also. This is the reason; tracking

can become a bottleneck that can affect the BizTalk Server runtime.

It is crucial that you consider this factor when designing the tracking

settings for a specific solution. Therefore, you must calculate the

size of the Message Box database based on the message size and the

number of instances per minute.

•	 Amount of tracking data that the purging job keeps—If you set

the purging job to keep seven days of data, you should calculate

the size of the Tracking database based on this number, the

message size, tracking data points, and the number of instances

for those seven days.

�Tracking Levels

Tracking can be customized at the following BizTalk Server artifacts:

•	 Receive locations

•	 Orchestrations

•	 Sending ports

•	 Schemas

Chapter 4 Optimizing the BizTalk Platform

167

•	 Pipeline

•	 Business rules

Orchestrations

At the orchestration level you have the following tracking options:

Tracking Point Observations Impact

Events-

Orchestration

start/end

This will track when the

orchestration starts and

ends.

It depends on the number of instances.

Events-Message

sent/receive

This will track an

event every time an

orchestration receives or

sends a message.

It depends on the number of instances.

Events Shape

start/end

Tracks when a

orchestrations shape

starts and ends.

It depends on the number of instances.

Track message

bodies before/

after

Saves the message

bodies before a and after

orchestration processing.

This is the most expensive configuration. Whenever

possible, try to avoid it and if you have to save the

content of the message, it’s better that you enable

it at receive or send port only. By doing so, you will

have more control because you will save specific

messages and not all the messages processed by

the orchestration. This setting is only useful when

you want to track a message that is not processed

by any port.

Track message

properties

Will track promoted

properties for incoming

and outgoing messages

The same principle as the track message body

setting, but related to promoted properties.

Chapter 4 Optimizing the BizTalk Platform

168

Receive Ports

The following tracking options are available at the receive port level:

Tracking Point Observations Impact

Track message

bodies before/after

port processing

Saves the message

bodies before and

after port processing.

This is the most expensive configuration. Whenever

possible, try to avoid it.

Track message

properties

before/after port

processing

Will track promoted

properties before and

after port processing

The same principle as the track message body setting,

but related to promoted properties. For the majority of

scenarios, you will not need to track properties on the

incoming side. Only when you want to troubleshoot

based on a promoted property in the incoming

message.

Sending Ports

The following tracking options are available at the receive port level:

Tracking Point Observations Impact

Track message

bodies before/after

port processing

Saves the message

bodies before and after

port processing.

This is the most expensive configuration. Whenever

possible, try to avoid it.

Track message

properties

before/after port

processing

Will track promoted

properties before and

after port processing

The same principle as the track message body

setting, but related to promoted properties. For the

majority of scenarios, you will not need to track

properties in the sending side. Only when you want

to troubleshoot based on a promoted property in the

sending message.

Chapter 4 Optimizing the BizTalk Platform

169

Schemas

For schemas, there is only one tracking configuration setting:

Tracking Point Observations Impact

Always track all

properties

Will track promoted

properties every time a

message based on this

schema is sent or received.

If you need ever to track properties, it should be

explicitly done at orchestration or port level. This

should be used only in the development stage

where you want to troubleshoot and find bugs in

early stages of the project.

Pipelines

At the pipelines level you have the following tracking options:

Tracking Point Observations Impact

Events-port start

and end

This will track

when the pipeline

starts and ends.

It depends on the number of instances.

Events-Message

sent/receive

This will track an

event every time an

pipeline receives or

sends a message.

It depends on the number of instances.

Track message

bodies before/

after

Saves the message

bodies before a

and after pipeline

processing.

This is the most expensive configuration. Whenever

possible, try to avoid it and if you must save the

content of the message, it’s better that you enable it

at receive or send port only. By doing so, you will have

more control because you will save specific messages

and not all the messages processed by the pipeline.

Additionally, pipelines can be used in several ports;

therefore, if you want to enable a specific pipeline to

track information, it’s better that you set tracking only at

the port level.

Chapter 4 Optimizing the BizTalk Platform

170

�Assigning Tracking Configuration Based on the
Release Stage (RS) Level

If the business does not require a heavy data retention policy, you use the following

guidelines to enable tracking:

RSL Level Description

9 First release Message body tracking at sensible points can be enabled. Orchestration

events must be enabled to allow developers to troubleshoot

orchestration issues. At this stage, you can enable also tracking for

promoted properties if that is used for troubleshooting. All in all, tracking

can be enabled in all areas.

8 Unstable release Applications is now performing for a while but there are still some bugs

that are not fixed yet. Partial tracking is enabled to help developers

fixing issues.

7 Unstable release

(performance)

All known bugs are fixed. Tracking is enabled at orchestration level

to find performance bottlenecks only. No message body tracking is

enabled at this stage.

6 Stable release The application is now stable and running without known issues for a

while now. Tracking is disabled at all artifact levels, and standard host

settings are applied.

�Dedicate a Host for Tracking

As discussed previously, tracking is a feature that uses many resources of BizTalk and

SQL Servers, thus you should isolate the tracking functionality to run in a dedicated

host, so that the tracking functionality does not need to compete with the rest of BizTalk

Server functionalities (receiving, processing, and sending).

Chapter 4 Optimizing the BizTalk Platform

171

High availability is also essential because if the host instance performing the tracking

functionality fails, the following areas of BizTalk Server will be also affected:

•	 Tracked data will not be moved from the Message Box to the Tracking

database.

•	 BAM tracking data will not be moved to the BAM primary import

database, so all your activities will not reflect current data. There is an

exception for this situation where developers write BAM data directly

to the BAMPrimaryImport database using the DirectEventBuffer

API, and that data is not stored previously in the Tracking database.

As you can see, both situations can cause the Message Box to grow over time, and

that could initiate a bottleneck to the message publication and the dequeue processes.

Therefore, the tracking host should be running in at least two servers by creating two

host instances.

When adding more Message Boxes (see the section Message Box database later

in this chapter), the recommendation is to have the same number of tracking host

instances plus one more, for high availability reasons. Imagine that you have two

Message Boxes, so the total number should be three. If you do not add more tracking

host instances, you will have only one that has to move data from the three Message

Boxes and, depending on the tracking settings, that could also cause a bottleneck on the

Message Box, as the tracking data could not be moved efficiently to the tracking DTA and

BAM databases.

�Purging the Tracking Database

As BizTalk Server is processing messages, Tracking database grows along with the load (if

tracking is enabled for the BizTalk Server artifacts involved in the process) and the maximum

sustainable load can be affected, especially if the Tracking and Message Box databases are

placed on the same SQL Server instance or if the database files are on the same disk.

The tracking feature is very transactional, and it performs many modification queries

to the tracking data files. Thus, the transactional data and log files for the Tracking

database can grow very quickly. This is not a good thing from SQL Server performance

point of view. The larger the file, the greater the chances of entering into a disk

contention issue (along with a high number of write and read operations).

Chapter 4 Optimizing the BizTalk Platform

172

When you configure BizTalk Server for the first time, a SQL Server job called DTA

Purge and Archive (BizTalkDTADb) is created. This job is used to purge the BizTalk

Server database, and as it requires that the user configure all the settings. It is disabled by

default.

This job performs the following tasks:

•	 Purges the Tracking database following specific criteria.

•	 It can archive the deleted data to an archiving server.

To delete all the data, the job can call on the following stored procedures:

•	 dtasp_BackUpAndPurgeTrackingDatabase: It performs a backup of

the data that will be purged.

•	 Parameters explanation:

•	 @nHours—All completed instances data, older than the number of

hours, will be purged.

•	 @nDays—all completed instances data, older than the number of

days, will be purged.

•	 @nHardDays—All data (completed or not) older than the

number of @nHardDays days, will be purged if

@fHardDeleteRunningInstances is set to 1.

•	 @nvcFolder—Folder where you want to create the backup files.

•	 @nvcValidatingServer—Server name that will be used to archive

the purged data. This server should be added to the linked

servers of the SQL Server instance holding the Tracking database.

•	 @fHardDeleteRunningInstances—If this parameter is set to 1,

the stored procedure will delete all the running service instances

older than hard delete days.

•	 dtasp_PurgeTrackingDatabase—Purges the database without

performing a backup first. Performance wise, this is the most efficient

option as depending on the tracking size, the backup operation

can take a long time. if you do not have data retention policies, you

should use this option whenever possible.

Chapter 4 Optimizing the BizTalk Platform

173

•	 Parameters explanation:

•	 @nHours—All completed instances data, older than the number of

hours, will be purged.

•	 @nDays—All completed instances data, older than the number of

days, will be purged.

•	 @nHardDays—All data (completed or not) older than the number

of @nHardDays days, will be purged.

•	 @dtLastBackup—The stored procedure uses this date to ensure

that the process does not delete data that was not in the last

backup. If you pass through the date and time value of the

moment of running the job (using getUTCDate()), the stored

procedure will delete all the corresponding data. This parameter

is used internally to make sure the date of the execution is older

than the date calculated by nHardDays, nDays, and nHours.

•	 @fHardDeleteRunningInstances—If this parameter is set to 1,

the stored procedure will delete all the running service instances

older than hard delete days.

Important T he parameter @fHardDeleteRunningInstances for both stored
procedures is not exposed by the SQL Server job default call definition. You must
manually add it to the call and set it up to 1, as the default value is 0. If you do
change it the stored procedure will not delete all the running instances that are
older than the @nHardDays parameter.

Editing the job using the SQL Server job interface is usually not clear, as the editing

window does not provide IntelliSense. What you can do, though, is to copy the default

job step configuration and then, using SQL Server management studio, paste it in a new

SQL Server query. Figures 4-5 and 4-6 show you the difference.

Chapter 4 Optimizing the BizTalk Platform

174

The same code is shown in the SQL Server Management Studio Query Editor in

Figure 4-6.

Figure 4-6.  Viewing the job configuration using the Query Editor

Figure 4-5.  Viewing the job configuration using the job properties

�Host Architecture
As you learned in Chapter 1, host instances are implemented as Windows services.

These processes run on the server using their own set of hardware resources such as

memory, threads (CPU), and I/O (networking and disk).

Chapter 4 Optimizing the BizTalk Platform

175

By default, the BizTalk Server configuration creates only two hosts: The

BizTalkServerApplication, which is used as an in-process host, and the

BizTalkServerIsolatedHost, which controls all the requests received by external

processes (IIS in the majority of scenarios of today). With this configuration, you have all

that you need to start developing and deploying BizTalk Server solutions to production.

However, the initial configuration is not optimum for a real production scenario, as all

BizTalk processing artifacts such as receive locations, orchestrations, and send ports will

be using the same in-process host configuration (BizTalkServerApplication) and that

will eventually cause queuing situations into the Message Box database.

For instance, imagine that you have a solution that receives 1,000 large messages.

In this scenario, message publication process uses all the available memory and CPU

usage before the default throttling condition arises. If the host instance is busy at message

publication stage, neither processing nor delivering functionalities will take place, because

the host instance does not have resources to start both operations. The same applies to

tracking functionality; if the host instance is busy performing the rest of the operations

it might not have threads, memory or IO to allocate resources and perform the tracking

operation (inserting tracking messages to the Message Box and Tracking databases).

If you decide, however, to separate hosts based on BizTalk Server functionality, even

though the publishing host enters in throttling condition, your orchestrations and send

ports will still send messages, as they will not be affected by the same throttling condition.

Additionally, as most of the performance settings in BizTalk server are applied

at a host level, it is essential that you define a host separation policy that matches

the required performance SLA. What does it mean exactly? For example, if you are

developing an application that behaves as low latency (performance behavior 9), the

best option is to place all the BizTalk Server artifacts to run in a dedicated set of hosts. In

other words, you can create three hosts for that application: One for receive locations,

another one for orchestrations, and one more for sending ports.

On the other hand, if the application is running only a few transactions per day, you

do not need to create additional hosts; you can have a set of standard hosts to run all the

low volume applications.

Keep in mind that adding unnecessary hosts can create overhead in the BizTalk and

SQL Servers when host instances are started. That is why you have to use common sense

when approaching a new BizTalk Server project. Do not just create a new set of receiving,

processing, and sending hosts because it is the Microsoft best practice. Instead, create

a generic set of hosts that will be used for low volume applications, and then you move

forward with the specific cases.

Chapter 4 Optimizing the BizTalk Platform

176

As you can see, choosing the right host separation policy is not easy. Without a

doubt, it is one of the most relevant decisions that you will be taking. A good starting

point is to leverage on the application priority levels and start from there.

In the following sections, you learn about an optimal initial configuration

and general recommendations based on the different application priority levels.

The recommendations detailed in the next sections should not be taken as flat

recommendations because testing will confirm the best optimum configuration.

�Initial Host Separation Policy

As you learned in the previous section, the default BizTalk Server host separation policy

is not optimal for the majority of scenarios. You can use the following table as a starting

point. Further customization can be applied based on the application priority levels in

combination with performance testing.

Host Name Description

Tracking Performs the tracking functionality. Also, it is the only host with tracking enabled.

It should be 64-bit.

Receiving32 This host is designed to run all the receive locations that handle adapters that

only work in a 32-bit mode, such as FTP, POP3, and the old SQL Server adapter

(deprecated).

Receiving64 This host is designed to run all of the receive locations that handle adapters that

can work in a 64-bit modes, such as File, HTTP, MSMQ, MQSeries, SFTP, SMTP,

SOAP, and WCF.

Sending32 This host is designed to run all of the receive locations that handle adapters that

only work in a 32-bit mode, such as FTP, POP3, and non-WCF SQL Server adapter

(deprecated).

Sending64 This host is designed to run all of the receive locations that handle adapters that

can work in a 64-bit mode, such as File, HTTP, MSMQ, MQSeries, SFTP, SMTP,

SOAP, and WCF.

Processing32 This host will run orchestrations that for any reason has 32-bit requirements. This

is usually required when a custom .NET component can run in 32-bit mode only.

Processing64 The rest of the non 32-bit orchestrations should run under this hosts.

Chapter 4 Optimizing the BizTalk Platform

177

Note I f the BizTalk Server group does not require 32-bit adapters, you should
not create 32-bit hosts. Also, you should set the Show Performance Counters to
orchestrations if the host is dedicated to orchestrations.

�Host Separation Policy Based on Application Priority Levels

In this section you will learn how to use the application priority levels to design an

optimal host separation policy.

Host Separation Guidance for Release Stage Level (RSL)

The release stage level reflects how mature is an application from the issues point

of view. Because of that, it may be interesting to isolate applications that are not yet

stable. You can follow the following suggested recommendations based on the release

stage levels:

RSL Level Suggested Recommendation

9,8 First or early

releases

The application should have its own set of hosts due to the number of

deployments required to fix the upcoming issues. By doing so, the rest of

the applications will not be affected by deployments, as in the majority of

the scenarios you will have to restart host instances or terminate running

instances (if no side-by-side version is enabled, of course).

7 Unstable release

(performance)

At this stage, application functionality is granted. However, performance

is still an issue, and new deployments can occur frequently. Additionally,

hosts might have temporary settings to overcome the performance

issues caused by inappropriate development decisions.

6 Stable release The application is now stable and running without known issues for a

while now. Tracking is disabled at all artifact levels, and standard host

settings are applied. RSL should not be considered as a reason to isolate

this application into a different set of hosts.

Chapter 4 Optimizing the BizTalk Platform

178

Host Separation Guidance for Business Priority Level (BPL)

The business priority level reflects the application importance from the business point of

view. You can use the following suggested recommendations to apply a host separation

policy that matches the business priority level.

BPL Suggested Recommendation

9–7 Applications must have their own set of dedicated hosts for receiving, processing, and

sending functionalities.

6 As business accepts downtime, applications with the same BPL (6) can be assigned to the

same set of hosts if they share similar performance requirements. Creating a set of hosts

per BizTalk functionality might be required if performance for one of the applications in the

BPL level is significant, but the application is not considered mission-critical.

5 Applications should be placed in only one host to handle all operations, but this host cannot

be shared with the rest of the applications (no host separation based on BizTalk Server

functionality is required).

4 Applications can be running in a shared unique host (no host separation based on BizTalk

Server functionality is required).

Host Separation Guidance for Transaction Levels (TL)

The transaction level shows the number of transactions that the application process.

You can follow these recommendations for an optimal host separation policy based on

this level:

(continued)

TL Volume
definition

Number of transactions
Per Hour

Host Separation Recommended

9 Extremely

high

>=3,000,000 Yes

8 Very High >=1,000,000 and <

3,000,000

Yes

7 High >= 300,000 and <

1,000,000

Yes

Chapter 4 Optimizing the BizTalk Platform

179

TL Volume
definition

Number of transactions
Per Hour

Host Separation Recommended

6 Medium >=100,000 and <

300,000

It depends. You can put in the same set of hosts

applications that have similar TL requirements.

6 Common >= 10,000 and < 100,000 No

7 Low < 10,000 No

Host Separation Guidance for Performance Behavior Level (PBL)

The performance behavior level reflects the normal behavior of the application

regarding latency and throughput. To apply the right host separation policy, you can

follow these recommendations.

PBL Description Suggested Recommendation

9 Low latency Yes

8 High

throughput

By default, hosts are configured for high throughput. This should suit the

majority of the scenarios, but if the application needs unique host settings,

then you need to separate hosts per functionality also.

7 Mixed These are the most challenging one as only testing will give you the right

configuration. Use common sense: If you cannot reach your performance SLA

using the default settings, then you need to split hosts by functionality.

�Host Performance Settings
Especially when I am delivering BizTalk Server performance review services, I frequently

hear the following question: How can I give priority to a specific application or even to

an artifact within the application?

BizTalk Server has only one setting to control priority at the logical level, and it has

been reviewed in Chapter 1, priority at the sending port level. If you adjust this setting,

it guarantees that the dequeue process for that send port puts those instances on top of

the queue, but not for all of the instances. Even though this feature is there, it does not

ensure priority under peak, or high load, as the BizTalk Server engine can eventually rise

throttling conditions that can impact priority.

Chapter 4 Optimizing the BizTalk Platform

180

However, it is an excellent practice to decrease priority for all the send ports of the

applications that rank higher in the following application priority levels:

•	 Business priority level (BPL)

•	 Transaction levels (TL)

•	 Performance behavior level (PBL)

Keep in mind that if you change priority on all the send ports (or the majority of them),

the improvement becomes closer to none because all send ports will have the same

priority. Remember that you can adjust this setting to a value that ranges from 1 to 10.

In BizTalk Server, you give priority to applications by allowing them to use more

hardware resources. This is a very efficient way to assign priority because, if the host

instance takes more “dedicated” resources, it will perform faster than the rest of the

host instances as it will not be competing constantly for those resources. Additionally,

when the high priority application runs under a high volume of data, it will throttle with

specific throttling thresholds that will guarantee its performance SLA, and the rest of

applications can still use the common amount of resources without getting impacted.

This is another reason that the host separation policy becomes extremely important.

Thanks to the flexibility of the BizTalk Server configuration layer, you can take

the host separation policy as far as to dedicate servers to run specific functionalities

(receiving, processing, and sending) or even specific orchestrations or ports.

BizTalk Server allows you to change the host performance behavior for the following

categories:

•	 General host settings.

•	 Resource-based throttling. These settings have been explained in

Chapter 2.

•	 Rate-based throttling. These settings have been explained in Chapter 2.

•	 Orchestration throttling.

The recommendations in this section should be considered as initial adjustments

only. At the end of the day, only performance testing will drive you to the right

configuration settings and hardware sizing.

Chapter 4 Optimizing the BizTalk Platform

181

�General Host Settings

In this section you will learn about the general host settings and how you can adjust

them based on the performance behavior level (PBL). This level reflects the normal

behavior of the application in terms of latency and throughput.

You can access the host performance settings using the BizTalk Administration

Console and selecting a specific host, as shown in Figure 4-7.

Figure 4-7.  Accessing the host settings

Move Tracking Data to DTADB

This setting enables the host to move data from the Message Box to the Tracking

database. Only the host that is dedicated to tracking functionality should have this

setting enabled. If the host is running artifacts that provide application functionality

such as orchestrations, the receive and send ports it must be disabled.

Chapter 4 Optimizing the BizTalk Platform

182

32-Bit Only

This setting regulates whether the host is running as a 32-bit or 64-bit process. The only

situations where you will be adjusting this setting to 32-bit are:

•	 32-bit hardware or 32-bit version of Windows.

•	 Some adapters, such as FTP, POP3, and the old SQL Server adapter

are not supported to run in the 64-bit.

•	 When you are consuming a custom .NET component that only works

with 32-bit. Remember that you can consume .NET components in

the following areas:

•	 Orchestrations

•	 Maps

•	 Pipelines

Assuming that hardware and operating system are 64 bits, you should always disable

this setting for the host that is doing the tracking functionality, as it must run in the 64

version.

Allow Multiple Responses

By default, host instances cannot process more than one subscription for a response

message that is being received through a request/response port. When the engine

receives multiple messages, you will get the following error:

Error details: The message found multiple request-response subscriptions.

A message can only be routed to a single request-response subscription

Enable this setting if you want to enable receiving multiple responses in a two-way

port scenario.

Response Timeout in Minutes

This is the default timeout for all the ports of this host. Developers can overwrite this

setting by code in dynamic ports or by setting the properties at the adapter level in

the port configuration. The default configuration is set to 20 minutes, which in most

scenarios is very high. As this setting is per host, consider adjusting this setting to more

suitable value based on the maximum response time for the consumed service.

Chapter 4 Optimizing the BizTalk Platform

183

Maximum Engine Threads

This setting controls the maximum number of threads per CPU that the host instances of

that host will allocate to process messages. The engine load threads based on the current

load of messages, up to the maximum engine threads setting.

Note  Do not confuse this setting with the .NET CLR settings at the host instance level,
as they control how host instances access CPU resources to perform I/O operations.

For instance, imagine that your server has 16 cores. If you leave the default value, the

message engine will allocate a maximum of 20 * 16 (320) threads for that specific host.

Changing this setting can have a negative or positive impact on performance. You

can follow this advice:

Situation Suggested Recommendation

Message Box database servers show high CPU

utilization, and it is affecting BizTalk Server

performance by increasing latency. Usually, SQL

Lock times are higher than 500 milliseconds.

Decrease if scaling SQL Servers is not an option.

SQL Server holding Message Box and BizTalk

Servers are under the CPU utilization stated by

the maximum sustainable load.

Increase if the system requires more throughput

or if you want to make more use of CPU

resources.

Show Performance Counters For

This setting controls how BizTalk Server populates the performance counter

information. It is more important than it seems because if you do not set it up correctly,

performance counters could not be populated with data.

Value Applicable To

Messaging Hosts that are not running orchestrations.

Orchestration Hosts that are dedicated to orchestration processing.

Active service For hosts that are running more than one functionality (receiving, processing, and

sending).

Chapter 4 Optimizing the BizTalk Platform

184

Pooling Intervals

As you learned in Chapter 1, messages are stored in the Message Box. As BizTalk Server

creates a set of queue tables related to a specific host, host instances will access those

tables to check whether there are new messages associated with that host. While

messages exist, the interval settings are ignored, and the host instance starts working on

the pending messages at maximum speed using the available host instance resources.

When the queue tables are empty, the host instance will access the queues using the

interval defined by the polling interval setting.

If the host instances are processing a few service instances a day, you should not

decrease the pooling interval because that will increase CPU utilization on SQL Server,

as most of the time the host queue tables are empty. Moreover, you should consider

increasing it.

Setting Default Value Applicable To

Messaging 500ms Hosts running ports

Orchestrations 500ms Host running orchestrations

Suggested Pooling Intervals Based on Application Performance Behavior

The performance behavior level reflects the normal behavior of the application

regarding latency and throughput. In order to apply the right host pooling interval

settings, you can follow these suggested recommendations:

(continued)

PBL Description Suggested Recommendation

9 Low latency Decrease to the point where MST is granted. A good starting point will be to

decrease this setting by 50% for every testing cycle. First, you can decrease it

to 250 and test. If performance is improved and MST is still granted, then move

to decrease 50% more. Repeat testing until MST is exceeded.

8 High

throughput

BizTalk Server is shipped for high throughput scenarios. Therefore, the default

500 milliseconds should fit the majority of needs. If your application needs to deal

with a very large number of messages where the load occurs in very specific

times (not all along the day), you should test whether increasing this value will

have a positive impact. Otherwise, leave the default of 500 milliseconds.

Chapter 4 Optimizing the BizTalk Platform

185

PBL Description Suggested Recommendation

7 Mixed These are the most complicated applications to tune. Only testing will give you

the actual picture, and proactive changes most likely will not help.

6 No specific Leave the default 500 milliseconds if the application is running under the

performance SLA.

Let’s review these recommendations with a few examples.

Scenario 1: High Throughput (I)

A BizTalk Server application receives 1,000 messages through a receive port. Pooling

interval settings are set to the default values:

•	 Messaging interval set to 500

•	 Orchestrations interval set to 500

	 1.	 The host instance is running, and because the load did not start

yet (there are zero records in the host queue tables), it will poll the

host queue tables every 500 milliseconds (two times per second)

to retrieve the new messages when they arrive.

	 2.	 A receive location publishes 1,000 messages to that host.

	 3.	 The message engine stores those 1,000 messages into the host

queue tables of that host after message publication.

	 4.	 Now, because there are 1,000 records in the host queue table, the

host instance will not poll the tables until the host queue tables

become empty. In other words, until the host instance processes

all messages.

	 5.	 When all queues are empty, if receive locations are not publishing

more messages, the host instance will start polling based on the

pooling interval period until new messages arrive.

This scenario is a typical high throughput scenario where you are receiving a large

number of messages most likely in a batch scenario. When a batch is received, host

instances will process everything without checking if there are new messages until the

end of the process.

Chapter 4 Optimizing the BizTalk Platform

186

Scenario 2: Low latency

A BizTalk Server application receives 50 messages per second through a receive port.

Pooling interval settings are set to these values:

•	 Messaging interval set to 50

•	 Orchestrations interval set to 50

	 1.	 The host instance is running, and because the load did not

start yet (there are zero records in the host queue tables),

it will poll the host queue tables every 50 milliseconds

(twenty times per second) to retrieve the new messages

when they arrive.

	 2.	 The consumer application starts sending messages one by one

but at a rate of 50 messages per second. You can imagine that

consumers are retreating money from ATMs and that process

will work 24x7.

	 3.	 The message engine stores those 50 messages into the host

queue tables of that host.

	 4.	 Now, because there are 50 records in the host queue tables,

the host instance will not poll the tables until the host queue

tables become empty. In other words, until the host instance

process all messages.

	 5.	 The consumer sends another 50 messages while the host

instance is still working so the queue increases over time, each

time the consumers request new ATM operations.

	 6.	 As consumers can work the whole day, the host queue tables

might not become empty again, but if they do, host instances

will poll them 20 times per second to ensure new instances are

processed extremely fast.

	 7.	 When all queues are empty, if the receive locations are not

publishing more messages, the host instance will start polling

again until new messages arrive.

Chapter 4 Optimizing the BizTalk Platform

187

Scenario 3: High Throughput (II)

You developed a solution that receives one large file daily at midnight. The file contains a

collection of transactions that should be processed during the night. The application can

receive up to 10,000 transactions each time.

As this application will be initiated only at midnight, you enable scheduling at

receive port just to guarantee that even though new files arrive during the day, it is only

at midnight when the process starts.

Additionally, you increase the pooling intervals to 200,000 (200 seconds) for the

hosts dedicated to this application, so that the message engine does not continuously

polls the Message Box database.

Conclusions:

•	 Decreasing these values will guarantee that newly published

messages are processed faster, as host instances will pool the

database more frequently when the queues are empty.

•	 By Increasing these values, the BizTalk Server engine will not detect

new messages with the same frequency. Thus, CPU consumption and

IO on SQL Server will improve when there is no load for those host

instances. This is ideal for applications that work punctually during

the day.

Note A s always, keep in mind that changing these settings is intrinsically linked
to the type of application and the performance SLA requirements. You should
always test the changes— especially this one, because it has a significant impact
on SQL Server CPU utilization and I/O.

�Orchestration Throttling

You can control the dehydration behavior of orchestrations by accessing the following

settings using the BizTalk Administration Console at the host level, as shown in Figure 4-8.

Chapter 4 Optimizing the BizTalk Platform

188

•	 Dehydration Behavior

•	 Never—This option disables the dehydration feature for all the

orchestrations running under that specific host. That means

that when an orchestration is consuming a service or waiting for

another event to occur, the orchestration engine will keep the

orchestration into memory. This option will alleviate SQL Server

CPU, memory, and IO, as the amount of data that SQL Server has

to process decreases, and networking usage when SQL Server is

in a separated box. But it will cause the BizTalk Server machine to

consume a larger amount of memory, and CPU threads might be

busy waiting for an activation event to occur.

Figure 4-8.  Orchestration throttling settings at the host level

Chapter 4 Optimizing the BizTalk Platform

189

•	 Always—Dehydration will always occur. While this option will save

memory resources to the BizTalk machine, it can potentially cause

an overhead to the SQL Server hosting the Message Box database.

•	 Custom—Dehydration will take place based on the time based or

subscriptions thresholds.

•	 Time Based

•	 Maximum threshold—Idle orchestrations will be held into the

host instance memory, for a maximum number of seconds

specified by this setting. After that, the orchestration engine

forces the dehydration of the orchestration (if it is still idle). The

default value is 1800 seconds (30 minutes).

•	 Minimum threshold—Orchestrations are considered for

dehydration when they are idle for at least the number of seconds

specified in this threshold. The default value is 1 second.

For example, if you set the Minimum Threshold to 1 second, and all the

orchestrations of that host are completed in less than 1 second, the orchestration engine

will never dehydrate those orchestrations. On the other hand, if some orchestrations

instances are idle for more than 1 second, the orchestration engine considers those

orchestrations for dehydration (depending on the internal algorithm based on elements

like number of instances running and resource utilization).

If, for some reason, there are orchestration instances taking longer than the maximum

threshold, the orchestration engine will force dehydration if orchestrations are idle.

•	 Subscriptions

•	 Pause At—Orchestrations have subscriptions to messages that

are stored to the main host queue tables. When the number

of messages in this queue (associated with the orchestration

subscription) is equal or higher than the Pause At threshold, the

messages are not delivered to orchestrations instances until the

number of messages in the host queue decreases to the Resume

At threshold.

•	 Resume At—As explained in the Pause At setting, this threshold

controls whether the message engine starts to deliver new

message instances to orchestrations.

Chapter 4 Optimizing the BizTalk Platform

190

For example, if you set the Pause At threshold to 1,000, the message engine will stop

delivering messages to the orchestrations running under that host when the number of

associated messages to that orchestration reaches 1,000.

If Resume At is set to 600, the message engine will resume delivering messages to

those orchestrations when the number of pending messages decreases to 600 or below.

�Automating Host Settings
The best way to optimize the BizTalk Server platform, and any other Windows platform,

is by automating all settings using PowerShell scripts or the out-of-the-box BizTalk

Server features to import and export the settings.

In the previous sections, you learned the most essential BizTalk Server settings. This

section focuses on automation, and you will learn how to implement automated scripts

to improve the BizTalk Server and the platform environment. As the majority of the

techniques detailed in these sections use the PowerShell, this section requires strong

PowerShell knowledge.

Since most of the settings are applied at the host level, it is crucial that you

understand the WMI classes that BizTalk Server exposes.

�What Is WMI?

Windows Management Instrumentation (WMI) is a collection of classes for management

data and operations in the Windows world. You can develop your WMI scripts to

automate tasks on servers and to access product functionality. At the moment of writing

this book, BizTalk Server exposes 31 classes that expose the majority of BizTalk Server

administrative actions. These classes are defined in the following table.

Chapter 4 Optimizing the BizTalk Platform

191

Class Description

MSBTS_AdapterSetting Registers new adapters

MSBTS_BTSObject This member supports the BizTalk Server

internal infrastructure. You should not be using

this in your code, as it is not supported.

MSBTS_DeploymentService Encapsulates BizTalk assemblies for deployment

or undeployment and bindings export or import.

MSBTS_GroupSetting Represents a BizTalk Server group associated

with a specific management database.

MSBTS_Host Represents a BizTalk server host.

MSBTS_HostInstance Represents a host instance.

MSBTS_HostInstanceSetting Used to read and update the host instance

settings.

MSBTS_HostQueue Represents the main queue of a specific host.

MSBTS_HostSetting Used to represent the settings for a host.

MSBTS_MessageInstance Represents a message instance.

MSBTS_MessageInstanceSuspendedEvent Represents a suspended event for a BizTalk

message instance.

MSBTS_MsgBoxSetting Represents a single Message Box setting in the

BizTalk Server group.

MSBTS_Orchestration Represents an instance of an orchestration.

MSBTS_ReceiveHandler Represents a receive handler.

MSBTS_ReceiveLocation Represents a receive location.

MSBTS_ReceiveLocationOrchestration Represents receive locations that are linked to

orchestrations.

MSBTS_ReceivePort Represents a receive port .

MSBTS_SendHandler Represents a send handler.

MSBTS_SendHandler2 Represents an extended individual send handler.

(continued)

Chapter 4 Optimizing the BizTalk Platform

https://msdn.microsoft.com/en-us/library/aa560016.aspx
https://msdn.microsoft.com/en-us/library/aa559387.aspx
https://msdn.microsoft.com/en-us/library/aa578176.aspx
https://msdn.microsoft.com/en-us/library/aa578341.aspx
https://msdn.microsoft.com/en-us/library/aa561438.aspx
https://msdn.microsoft.com/en-us/library/aa560660.aspx
https://msdn.microsoft.com/en-us/library/aa577852.aspx
https://msdn.microsoft.com/en-us/library/aa559246.aspx
https://msdn.microsoft.com/en-us/library/aa560307.aspx
https://msdn.microsoft.com/en-us/library/aa559119.aspx
https://msdn.microsoft.com/en-us/library/aa577626.aspx
https://msdn.microsoft.com/en-us/library/aa561943.aspx
https://msdn.microsoft.com/en-us/library/aa560904.aspx
https://msdn.microsoft.com/en-us/library/aa559071.aspx
https://msdn.microsoft.com/en-us/library/aa561991.aspx
https://msdn.microsoft.com/en-us/library/aa547083.aspx
https://msdn.microsoft.com/en-us/library/aa561166.aspx
https://msdn.microsoft.com/en-us/library/aa561662.aspx
https://msdn.microsoft.com/en-us/library/aa560809.aspx

192

Class Description

MSBTS_SendPort Represents a send port.

MSBTS_SendPortGroup Represents a group of send ports.

MSBTS_SendPortGroup2SendPort (WMI) Same as the previous one.

MSBTS_Server Represents computers within a group that have

BizTalk Servers installed.

MSBTS_ServerHost Reflects mappings between BizTalk Servers and

BizTalk Hosts.

MSBTS_ServerSetting Represents specific computers within the same

BizTalk group.

MSBTS_Service This member supports the BizTalk Server

internal infrastructure. You should not be using

this in your code, as it is not supported.

MSBTS_ServiceInstance Provides an instance of a service, with a start

and stop methods.

MSBTS_ServiceInstanceSuspendedEvent Represents a suspended event for a service

instance.

MSBTS_Setting Supports the BizTalk Server internal

infrastructure. You should not be using this in

your code, as it is not supported.

MSBTS_TrackedMessageInstance Represents a message instance.

MSBTS_TrackedMessageInstance2 (WMI) Represents a message instance.

Chapter 4 Optimizing the BizTalk Platform

https://msdn.microsoft.com/en-us/library/aa559751.aspx
https://msdn.microsoft.com/en-us/library/aa559617.aspx
https://msdn.microsoft.com/en-us/library/aa577403.aspx
https://msdn.microsoft.com/en-us/library/aa561154.aspx
https://msdn.microsoft.com/en-us/library/aa561095.aspx
https://msdn.microsoft.com/en-us/library/aa560278.aspx
https://msdn.microsoft.com/en-us/library/aa547234.aspx
https://msdn.microsoft.com/en-us/library/aa578129.aspx
https://msdn.microsoft.com/en-us/library/aa547324.aspx
https://msdn.microsoft.com/en-us/library/aa559031.aspx
https://msdn.microsoft.com/en-us/library/aa546797.aspx
https://msdn.microsoft.com/en-us/library/aa560495.aspx

193

�Exploring WMI Classes Using WMI Explorer

This open source tool is great tool to explore all of the WMI classes registered in your

computer. You can download it from https://github.com/vinaypamnani/wmie2/

releases.

How to Use WMI Explorer

Executing WMI queries requires administrator privileges. Therefore, you must run the

application as an administrator.

	 1.	 Type the server name or leave it as the default if you are

connecting to a local server. Click the Connect button, as shown in

Figure 4-9.

Figure 4-9.  Connecting to a BizTalk Server environment

If your user has the proper rights, the tool will list all available namespaces, as shown

in Figure 4-10.

Chapter 4 Optimizing the BizTalk Platform

https://github.com/vinaypamnani/wmie2/releases
https://github.com/vinaypamnani/wmie2/releases

194

	 2.	 Double-click the ROOT\MicrosoftBizTalkServer namespace, not
ROOT\MicrosoftBizTalkServer\ms_409. The tool will show all

available classes for the BizTalk Server namespace, as shown in

Figure 4-11.

Figure 4-10.  Selecting the BizTalk Server WMI namespace

Chapter 4 Optimizing the BizTalk Platform

195

Figure 4-11.  Listing the available WMI classes for BizTalk Server

Chapter 4 Optimizing the BizTalk Platform

196

	 3.	 Double-click the MSBTS_HostSetting class. The tool will populate

the instances.

	 4.	 Notice that are several tabs related to the class:

	 a.	 Instances—Lists all instances related to the class, as shown in

Figure 4-12.

Figure 4-12.  Listing the available instances

	 b.	 Properties—Lists all available properties for those instances,

as shown in Figure 4-13.

Chapter 4 Optimizing the BizTalk Platform

197

	 c.	 Methods—The class MSBTS_HostSetting does not

expose any methods. But if you explore the class MSBTS_

ServiceInstanceSuspendedEvent, you will see that the tool

lists all available methods, as shown in Figure 4-14.

Figure 4-13.  Listing the available properties

Figure 4-14.  Listing the available methods

Chapter 4 Optimizing the BizTalk Platform

198

If you explore the MSBTS_HostSetting class using WMI Explorer, you can find that the

following members are associated to each BizTalk Server host, as shown in Figure 4-15.

Figure 4-15.  WMI Explorer host setting members

These members directly represent all of the host settings exposed in the BizTalk

Administration Console.

Chapter 4 Optimizing the BizTalk Platform

https://msdn.microsoft.com/en-us/library/aa560307.aspx

199

If you explore the MSBTS_HostSetting, you might notice that this class does not have

any methods. There is not create, delete, or update so you cannot perform any actions

accessing the class directly. However, luckily for us, WMI has standard operations to

default actions to all WMI classes. These operations are called PutType options, and the

definition is as follows:

[-PutType {None | UpdateOnly | CreateOnly }]

Where:

•	 UpdateOnly updates an existing WMI instance.

•	 CreateOnly creates a new WMI instance.

Using PowerShell to Optimize the Environment

Sandro Pereira, an integration MVP, published a great script to provide the initial BizTalk

host separation policy. The script uses the MWI classes presented in this book and

PowerShell.

You can download it from here:

https://gallery.technet.microsoft.com/PowerShell-to-Configure-0cee83e8

In Sandro Pereira’s words, the following hosts will be created:

•	 BizTalkServerTrackingHost—A BizTalk Host that hosts tracking

and is responsible for moving the DTA and BAM tracking data from

the Message Box database to the BizTalk Tracking (DTA) and BAM

Primary Import databases. This movement of tracking data has an

impact on the performance of other BizTalk artifacts that are running

in the same host that is hosting tracks. Thus, you should use a

dedicated host that does nothing but host tracking.

Only the Allow Host Tracking option must be selected because we

only will use this host for tracking.

•	 BizTalkServerReceiveHost—All options (Allow Host Tracking, 32-bits

only, or Make This Default Host in the Group) should be unselected.

This host will be responsible for processing messages after they are

picked up in a receive location. When a host contains a receiving item,

such as a receive location (with a pipeline), the message decoding and

decrypting occurs in a pipeline within this host.

Chapter 4 Optimizing the BizTalk Platform

https://msdn.microsoft.com/en-us/library/aa560307.aspx
https://msdn.microsoft.com/en-us/library/aa560307.aspx
https://gallery.technet.microsoft.com/PowerShell-to-Configure-0cee83e8

200

All receive handlers, except the isolated ones like SOAP, HTTP,

WCF-BasicHttp, WCF-WsHttp, or WCF-CustomIsolated, and the

32-bit adapters (FTP, SQL, and POP3) will be configured for this

host. This will mean also that all receive locations will run in this

host instance.

•	 BizTalkServerReceive32Host—Has the same goal as the previous

one; however, this must have the 32-bits only option selected so that

we can run the 23-bits adapters.

The receive handlers for the FTP, SQL, and POP3 adapters will be

configured for this host.

•	 BizTalkServerSendHost—All options (Allow Host Tracking, 32-bits

only or Make This Default Host in the Group) should be unselected.

This host will be responsible for processing messages before they

are sent out to the send port. When a host contains a sending item,

such as a send port, the message signing and encryption occurs in a

pipeline within this host.

All send handlers, except 32-bit adapters like native SQL and FTP

adapter, will be configured for this host. This will mean also that

all send ports will run in this host instance.

•	 BizTalkServerSend32Host—Has the same goal as the previous one;

however, this must have the 32-bits only option selected so that we

can run the 32-bit adapters.

The Send handlers for the FTP and SQL adapters will be

configured for this host.

•	 BizTalkServerApplication—Only the 32-bits only option should

be select in this host. This host will be responsible for processing

messages based on the instructions in orchestrations that need to run

in 32-bit.

•	 BizTalkServerApplication64Host—Only the Make this Default

Host in the Group option should be select in this host. This host will

be responsible for processing messages based on the instructions in

all or the most common orchestrations.

Chapter 4 Optimizing the BizTalk Platform

201

�Using the BizTalk Host Configuration Settings File

The XML BizTalkLowLatencyHostSettings.xml file, located in the Chapter 4 source

code file, contains the host configuration and associated host instance that you can reuse

in your environment to import this configuration to any of your hosts.

<?xml version="1.0" encoding="utf-8"?>

<Settings xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <ExportedGroup>BIZTALK2016:BIZTALKMGMTDB</ExportedGroup>

 <GroupSettings>

 <Setting Name="AllowTrackingSettingsImport">True</Setting>

 <Setting Name="ConfigurationCacheRefreshInterval">60</Setting>

 <Setting Name="GlobalTrackingOption">1</Setting>

 <Setting Name="LMSFragmentSize">102400</Setting>

 <Setting Name="LMSThreshold">1000000</Setting>

 <Setting Name="PerfCounterCacheRefreshInterval">60</Setting>

 </GroupSettings>

 <HostSettings>

 <Host Name="BizTalkLowLatencyHost">

 <Setting Name="AllowMultipleResponses">True</Setting>

 <Setting Name="AuthTrusted">False</Setting>

 <Setting Name="DBQueueSizeThreshold">100000</Setting>

 <Setting Name="DBSessionThreshold">0</Setting>

 <Setting Name="DehydrationBehavior">1</Setting>

 <Setting Name="DeliveryQueueSize">1000</Setting>

 <Setting Name="GlobalMemoryThreshold">0</Setting>

 <Setting Name="HostTracking">False</Setting>

 <Setting Name="InflightMessageThreshold">5000</Setting>

 <Setting Name="IsHost32BitOnly">False</Setting>

 <Setting Name="LegacyWhitespace">False</Setting>

 <Setting Name="MessageDeliveryMaximumDelay">300000</Setting>

 <Setting Name="MessageDeliveryOverdriveFactor">125</Setting>

 <Setting Name="MessageDeliverySampleSpaceSize">100</Setting>

 <Setting Name="MessageDeliverySampleSpaceWindow">15000</Setting>

 <Setting Name="MessagePublishMaximumDelay">300000</Setting>

 <Setting Name="MessagePublishOverdriveFactor">125</Setting>

Chapter 4 Optimizing the BizTalk Platform

202

 <Setting Name="MessagePublishSampleSpaceSize">100</Setting>

 <Setting Name="MessagePublishSampleSpaceWindow">15000</Setting>

 <Setting Name="MessagingMaxReceiveInterval">50</Setting>

 <Setting Name="MessagingReqRespTTL">3</Setting>

 <Setting Name="MsgAgentPerfCounterServiceClassID">0</Setting>

 <Setting Name="ProcessMemoryThreshold">100</Setting>

 <Setting Name="SubscriptionPauseAt">0</Setting>

 <Setting Name="SubscriptionResumeAt">0</Setting>

 <Setting Name="ThreadPoolSize">40</Setting>

 <Setting Name="ThreadThreshold">0</Setting>

 <Setting Name="ThrottlingBatchMemoryThresholdPercent">1</Setting>

 <Setting Name="ThrottlingDeliveryOverride">2</Setting>

 <Setting Name="ThrottlingDeliveryOverrideSeverity">100</Setting>

 <Setting Name="ThrottlingLimitToTriggerGC">80</Setting>

 <Setting Name="ThrottlingPublishOverride">2</Setting>

 <Setting Name="ThrottlingPublishOverrideSeverity">100</Setting>

 <Setting Name="ThrottlingSeverityDatabaseSize">1</Setting>

 <Setting Name="ThrottlingSeverityInflightMessage">75</Setting>

 <Setting Name="ThrottlingSeverityProcessMemory">500</Setting>

 <Setting Name="ThrottlingSpoolMultiplier">10</Setting>

 <Setting Name="ThrottlingTrackingDataMultiplier">10</Setting>

 <Setting Name="TimeBasedMaxThreshold">1800</Setting>

 <Setting Name="TimeBasedMinThreshold">1</Setting>

 <Setting Name="UseDefaultAppDomainForIsolatedAdapter">False</Setting>

 <Setting Name="XlangMaxReceiveInterval">50</Setting>

 </Host>

 </HostSettings>

 <HostInstanceSettings>

 <Host Name="BizTalkLowLatencyHost">

 <Server Name="BizTalk2016">

 <Setting Name="CLRMaxIOThreads">250</Setting>

 <Setting Name="CLRMaxWorkerThreads">250</Setting>

 <Setting Name="CLRMinIOThreads">25</Setting>

 <Setting Name="CLRMinWorkerThreads">25</Setting>

 <Setting Name="PhysicalMemoryMaximalUsage">85</Setting>

 <Setting Name="PhysicalMemoryOptimalUsage">70</Setting>

Chapter 4 Optimizing the BizTalk Platform

203

 <Setting Name="VirtualMemoryMaximalUsage">85</Setting>

 <Setting Name="VirtualMemoryOptimalUsage">65</Setting>

 </Server>

 </Host>

 </HostInstanceSettings>

</Settings>

How to Import a Host Configuration File Using the Administration Console

Follow these steps to import a host setting configuration file:

	 1.	 Using the BizTalk Administration Console, access the Settings

window of any hosts or by using the right pane of the console and

clicking on the Settings option.

	 2.	 Click on the Import button, as shown in Figure 4-16.

Figure 4-16.  Importing host settings from a file

Chapter 4 Optimizing the BizTalk Platform

204

	 3.	 On the Import Settings Wizard, browse to the template file

BizTalkLowLatencyHost.xml and click Next, as shown in

Figure 4-17.

Figure 4-17.  Selecting the file settings location

	 4.	 The Import Wizard will now show a screen like the one in

Figure 4-18.

Chapter 4 Optimizing the BizTalk Platform

205

	 5.	 The Destination-Host column is showing all the hosts of the

current environment. The idea here is that you are going to

select the host configuration for the low latency host contained

in the configurations file. The BizTalkLowLatencyHost does

not necessary exist in your environment; you are just using its

configuration as a template for any other host that needs to

behave as low latency.

For instance, imagine that in your case you want to

apply all the low latency customizations to the host

BizTalkServerApplicationHost. To do that, select the

BizTalkServerApplicationHost, then click the Add button and

select the BizTalkLowLatencyHost configuration host from the

Select Source Entity window and click OK.

Figure 4-18.  Host mapping window

Chapter 4 Optimizing the BizTalk Platform

206

	 6.	 Now the Host Mapping window will look something similar to

Figure 4-19.

Figure 4-19.  Linking the destination host to the source host

Here you can see that you are going to assign the low latency

settings to the BizTalkServerApplication host only. Click Next.

	 7.	 The configuration file also contains low latency settings for host

instances, therefore, it’s time to do the same for the host instances

of the host BizTalkServerApplication.

Chapter 4 Optimizing the BizTalk Platform

207

	 8.	 On the Host Instance Mapping window, click on Add button

and select the BizTalkLowLatencyHost configuration host from

the Select Source Entity window. Click OK. The Host Instance

Mapping window should look something like Figure 4-20.

Figure 4-20.  Mapping host instances

Click Next.

	 9.	 Now the wizard shows the Import Summary window where you

can see all the changes, as shown in Figure 4-21.

Chapter 4 Optimizing the BizTalk Platform

208

	 10.	 Click the Import button and wait until the wizard completes the

import task. Once the process finishes, the Import Results window

will be shown. If there are any errors, you will see a red cross

instead of a green check. See Figure 4-22.

Figure 4-21.  Import summary

Chapter 4 Optimizing the BizTalk Platform

209

	 11.	 Now go to the BizTalk Administration Console. Click F5 to

refresh the data and access the host settings window. Locate the

BizTalkServerApplication host and check that the changes are

applied.

�Message Box Database
As you learned in Chapter 1, the Message Box is used by the engine to store information

such as messages, host queues, instances, subscription information, promoted

properties, and temporary tracking data. Because of this, it becomes vital when it comes

to performance. Depending on the hardware resources on SQL Server, single Message

Box database environments can impose limitations on the number of transactions that

your BizTalk group can process.

Figure 4-22.  Import results

Chapter 4 Optimizing the BizTalk Platform

210

Especially for solutions where application priority levels are defined with the

highest ranks for transactions levels, you should consider adding more Message Boxes

proactively. That does not mean that you are going to add Message Boxes whenever

a demanding application comes up. You need to keep in mind that there might be

the possibility that after adding that application, bottlenecks caused by Message Box

processing can occur. Luckily, BizTalk Server offers the option to add more Message Box

databases so all of them can work together to balance the load across of all databases.

Message Box databases have two roles:

•	 Master—The master Message Box database evaluates and routes

subscriptions to all Message Box databases in the BizTalk Server group.

•	 Publisher—The logic for publishing messages learned in Chapter 1.

After you configure BizTalk Server, as there is only one Message Box database, it

is automatically marked as master and publisher. When the Message Box becomes

a bottleneck, it is usually because the publication role is causing that performance

issue. The idea of adding more Message Boxes will be to distribute the publication role

across several databases. If you add only one, it will not have an impressive impact

on performance because the second Message Box will be the only one doing message

publication. Therefore, to scale the Message Box layer, you will have to add a minimum

of two Message Boxes. You will be disabling message publication to the original one, and

now the BizTalk Server engine will distribute the load across the new databases.

�Situations to Consider Additional Message Boxes

An essential consideration when planning a BizTalk Server environment should be

to determine the maximum sustainable throughput (MST) of the system. The MST of

a BizTalk Server system is calculated as the highest load of messages that the BizTalk

environment can process. When load exceeds MST, messages are queued in the Message

Box and transaction latency can increase.

If the MST is continuously exceeded over time, most likely you will see that

the Spool, Host Queue, and Tracking data tables within the Message Box will show

increasing trends during the time MST is exceeded. That can eventually raise a throttling

condition based on database size and the BizTalk Server engine will put pressure to

the message publication and the dequeue process. (Review Chapter 2 to extend the

information about BizTalk Server throttling.) It is crucial here to compare the previous

indicators along with hardware resource utilization, especially on SQL Server.

Chapter 4 Optimizing the BizTalk Platform

211

If BizTalk Server enters into the throttling state based on database size and CPU and

disk utilization in SQL Server are under normal values, this does not mean that MST

has been exceeded, as it could be due to an increase in the load that does not cause a

bottleneck yet. In this case, you should consider tuning the threshold for message

count in the database to allow SQL Server to process more messages. As discussed in

Chapter 2, you have three options to update this setting:

•	 Message count in DB—BizTalk Server will enter the throttling state

when any of the host message queues reach this threshold. By

default, it is set to 50,000.

•	 Spool multiplier—If the number of messages in the Spool table

reaches the message count DB * the Spool multiplier setting, BizTalk

Server will enter the throttling state.

•	 Tracking multiplier—If the number of messages in the tracking data

tables reaches the message count DB * the tracking multiplier setting,

BizTalk Server will enter the throttling state.

Keep in mind that by increasing this threshold, the disk usage for Message Box

database will also increase. Additionally, the engine will perform slower regarding

transaction latency as all the stored procedures that the engine is calling will take longer

to retrieve the data (high CPU usage on SQL Server could also be observed).

Performance Indicators of an Exceeded MST

The following performance counters will show increasing trends during the time the

Message Box is causing a bottleneck when the MST has been exceeded (or is about to).

•	 BizTalk: Messaging Latency performance counters—If the Message

Box is performing slowly, usually you will also see that all latency

performance counters show increasing trends during the same

period.

•	 BizTalk: Message Box: General Counters Spool Size and host queue

counters—If the system is not able to keep up with the load, the Spool

and Host Queue tables will show increasing trends as well.

Chapter 4 Optimizing the BizTalk Platform

212

•	 BizTalk: Message Box: General Counters Tracking data size—As

tracking information it is first saved to the Message Box, you will

see also an increasing trend in this performance counters because

messages can be queued up in the Message Box when there is a

processing bottleneck.

•	 Disk: Average Disk Queue Length—When this counter repeatedly

shows a value of 3 or more for the Message Box database, it can

indicate that there is a bottleneck on the Message Box, as disk

contention is most likely to happen.

Adding Two or More Message Box Databases

After you analyze the data and you are sure that the Message Box database is causing a

bottleneck, you can follow these steps to add a new database.

Requirements:

•	 The account used to perform the following steps must be part

of the BizTalk Server Administrators groups and SQL Server

Administrator role.

•	 As you should disable message publication in the primary Message

Box, no active subscriptions should be present at the moment of

adding a message box. You will need to un-enlist all orchestrations

and send ports before moving forward so this action requires

downtime. For simplification, you can entirely stop all BizTalk Server

applications. Keep in mind that stopping host instances does not un-

enlist subscribers.

Follow these steps:

	 1.	 Open the BizTalk Administration Console.

	 2.	 Under Platform Settings, click Message Boxes.

	 3.	 Right-click Message Boxes and select New ➤ Message Box, as

shown in Figure 4-23.

Chapter 4 Optimizing the BizTalk Platform

213

	 4.	 In the Message Box Properties dialog box, type the Server name

of the SQL database in the SQL Server field and then type the

name of the new Message Box in the Database field. You can

use MessageBoxPublisher1 as these databases will be used for

publishing role only. See Figure 4-24. Click OK.

Figure 4-23.  Adding a new Message Box database option

Chapter 4 Optimizing the BizTalk Platform

214

Figure 4-24.  Setting the properties for the new Message Box

	 5.	 Repeat Steps 2-4 to add the a second Message Box database (you

can use MessageBoxPublisher2 as the name for the second one).

	 6.	 Now, go to the original Message Box and disable message

publication. By doing this, you are distributing the message

publication feature across the new databases. See Figure 4-25.

Click OK.

Chapter 4 Optimizing the BizTalk Platform

215

Now the original Message Box will be responsible for routing messages, and the

other two will distribute the message publication.

�Optimizing Message Box Databases

In previous sections, you learned that BizTalk Server uses Message Box database

intensively and how you can add more Message Boxes when there is a processing

bottleneck. As this database is the most important one regarding performance, you

should proactively optimize it for BizTalk Server.

When you configure BizTalk Server, the configuration wizard will set the Message

Box database with the following settings:

•	 Max Degree of Parallelism—This configuration option controls the

number of processors that are used for the execution of a query in

a parallel plan. The BizTalk Server engine uses lots of SQL Server

stored procedures that are developed in a way that if you change the

default max degree of parallelism to a setting different than 1, several

Figure 4-25.  Disable message publication for the original Message Box

Chapter 4 Optimizing the BizTalk Platform

216

locks and performance issues can arise (especially under high load).

Therefore, do not change this value at all. This recommendation can

be quite deceiving for most of SQL Server DBAs as the general best

practice is to increase this setting based on the number of logical

processors.

•	 Auto Update and Create Statistics—Statistics for query optimization

data that contain statistical information about the distribution of

values in one or more columns of a table or indexed view. This

information is used by the query optimizer to design a quality query

plan. Again, the stored procedures used by the BizTalk Server engine

are optimized for best results and changing these settings is not

supported.

The most common actions to improve Message Box databases are:

•	 Adding a minimum of two more message boxes, a topic covered in

the previous section

•	 Separating the data files and log files

•	 Creating distributed file groups

•	 Using 64 KB NTFS allocation unit size

Separating the Message Box Databases Data and Log Files

Note T he recommendation in this section can be also applied to tracking and
business activity monitoring databases.

The first time you configure BizTalk Server, using the Configuration Wizard, all the

BizTalk Server databases are created with the default settings. Regarding the data and

transaction log files, the Configuration Wizard stores them in the same drive. Placing

both data and log files on the same drive can cause contention for that drive, resulting

in bad performance (especially for BizTalk Server, as it is relaying fully on the Message

Box database for processing messages). Placing the files on isolated drives allows the

I/O writes and reads to occur in parallel for both the data and the log files. Try to spread

the disk I/O across as many LUN as possible so that the storage hardware also performs

parallel processing.

Chapter 4 Optimizing the BizTalk Platform

217

Note T o change the file locations, you need to bring the database offline.

You can use this code to move the Message Box database files to a new location:

USE master;

GO

-- Return the logical file name.

SELECT name, physical_name AS CurrentLocation, state_desc

FROM sys.master_files

WHERE database_id = DB_ID(N'BizTalkMsgBoxDb')

 AND type_desc = N'LOG';

GO

ALTER DATABASE BizTalkMsgBoxDb SET OFFLINE;

GO

-- Physically move the file to a new location.

-- In the following statement, modify the path specified in FILENAME to

-- the new location of the file on your server.

ALTER DATABASE BizTalkMsgBoxDb

 MODIFY FILE (NAME = BizTalkMsgBoxDb_Log,

 FILENAME = 'C:\NewLocation\BizTalkMsgBoxDb.ldf');

 MODIFY FILE (NAME = BizTalkMsgBoxDb_data,

 FILENAME = 'H:\NewLocation\BizTalkMsgBoxDb.mdf');

GO

ALTER DATABASE BizTalkMsgBoxDb SET ONLINE;

GO

--Verify the new location.

SELECT name, physical_name AS CurrentLocation, state_desc

FROM sys.master_files

WHERE database_id = DB_ID(N'BizTalkMsgBoxDb')

 AND type_desc = N'LOG';

Chapter 4 Optimizing the BizTalk Platform

218

Creating File Groups

Since the default BizTalk Server configuration creates the Message Box database using a

single file in the default file group, if adding additional Message Boxes does not solve the

disk contention problem, you should consider improving the file group distribution. You

can add more SQL Server files and file groups to improve database performance because

this functionality allows splitting database files across different disks. This will enable

parallel read and write operations that eventually mean more transactions per second

for BizTalk Server. Changing the default file group distribution has the benefit also of

dedicating highs speed disks for the Spool table or the Host Queue tables of applications

that have higher ranks of transaction priority levels (TL).

Creating File Groups for the Message Box Database

You can follow these steps to create a new file group distribution for the Message Box

database:

	 1.	 Stop all BizTalk Server host instances, the Internet information

server, and the SQL Server agent.

	 2.	 Open SQL Server Management Studio and connect to the instance

holding the Message Box database.

	 3.	 Using the Object Explorer, locate the Message Box database.

Right-click it and select Properties.

	 4.	 On the Database properties page, select the Filegroups option.

	 5.	 Click on the Add Filegroup button. See Figure 4-26.

Chapter 4 Optimizing the BizTalk Platform

219

Figure 4-26.  Adding a file group using the Database Properties window

	 6.	 Repeat this operation for the number of files you want to create.

	 7.	 Click the OK button.

	 8.	 Using the Object Explorer, locate the Message Box database.

Right-click it and select Properties.

Chapter 4 Optimizing the BizTalk Platform

220

	 10.	 Set the logical name to MessageBoxFile1 and select the file group

from the Filegroup dropdown box, as shown in Figure 4-28.

	 9.	 On the Database properties page, select the Files option and click

on the Add button. See Figure 4-27.

Figure 4-27.  Adding a file using the Database Properties window

Chapter 4 Optimizing the BizTalk Platform

221

Figure 4-28.  Adding a file and assign the file group

	 11.	 Select and appropriate initial size for the file. You can use 520 (MB).

	 12.	 Set the Auto Growth setting to 100 MB.

	 13.	 Set the location to a different disk than the primary Message Box

database file (whenever possible).

	 14.	 Repeat Steps 9-13 to add the second file.

	 15.	 Click OK.

Chapter 4 Optimizing the BizTalk Platform

222

NTFS Allocation Unit Size

As BizTalk Server is very transactional, it writes the data to SQL Server databases in a

sequential way. For this reason, the best configuration is to set the NTFS allocation unit

setting to 64 KB.

You can change the unit allocation size when setting up a new disk partition using

the disk management tool. In the New Volume Wizard, select 64 KB and click on the Next

button and then on Finish. See Figure 4-29.

Figure 4-29.  Setting the allocation unit size to 64 KB

Trace Flag 1118

If your BizTalk Server environment is using SQL Server 2016, you do not need to enable

the trace flag 1118, as the new default behavior of SQL Server is to use uniform extent

allocation for first eight data pages.

If SQL Server 2014 is used, then you should implement this trace flag, as it helps to

reduce data contention, especially for the Message Box and Tracking databases.

To enable the trace flag, open the SQL Server Configuration Manager, select the SQL

Server instance, and type the trace flag under the Startup Parameters tab, as shown in

Figure 4-30.

Chapter 4 Optimizing the BizTalk Platform

223

Figure 4-30.  Setting the trace flag 1118

SQL Server Process Affinity

SQL uses all CPUs available from the operating system. It creates schedulers on all the

CPUs to make the best use of the resources for any given workload. When multitasking,

the operating system or other apps on the SQL Server can switch process threads from

one processor to another. SQL is a resource intensive app and so performance can be

impacted when this occurs. To minimize, we can configure the processors in a way that

all the SQL load will be directed to a pre-selected group of processors

Chapter 4 Optimizing the BizTalk Platform

224

For instance, if your environment has four cores, use this:

ALTER SERVER CONFIGURATION

SET PROCESS AFFINITY CPU = 0 to 2

Note: CPU = 0, is the first CPU.

By doing so, SQL Server will be using only the first three processors, leaving one for

the rest of the applications and operating system. This will ensure that SQL Server will

not be affected by threads being switched among the rest of processors.

You can set this setting using the SQL Server Management Studio as well. Go to the

properties of the SQL Server instance, and under the processor’s category, uncheck the

Automatically Set Processor Affinity Mask for All Processors checkbox. Then, select the

processors you want to use in your environment and click the OK button, as shown in

Figure 4-31.

Figure 4-31.  Setting the processor affinity

Chapter 4 Optimizing the BizTalk Platform

225

Fixing Database Inconsistencies

Database inconsistencies can occur in BizTalk Server for the following reasons:

•	 Unknown product bugs

•	 Known issues

•	 Convoys leaving zombie messages

When these problems arise, performance can be affected, as internal tables within

the Message Box and Tracking databases can grow because the SQL Server management

jobs cannot clean messages that are inconsistent.

The Monitor BizTalk Server (BizTalkMgmtDb) job alerts you when these

inconsistencies occur. This job runs weekly on Sundays and it will generate an error

when database inconsistencies are found.

Figure 4-32 shows an example of the output when the job finds database

inconsistencies.

Figure 4-32.  Viewing the monitor job history

Chapter 4 Optimizing the BizTalk Platform

226

Figure 4-33.  Running the default profile

For the latest BizTalk Server versions, you can fix these inconsistencies using the

BizTalk health monitor tool.

Follow these steps:

	 1.	 Open the BizTalk Health Monitor tool.

	 2.	 Right-click at the default profile level (if you do not have a custom

profile) and select Analyze Now, as shown in Figure 4-33.

Chapter 4 Optimizing the BizTalk Platform

227

	 3.	 The tool will check the BizTalk Server environment.

	 4.	 Wait until the process finishes.

	 5.	 In the dashboard report, click on the Message Box database group

and locate the MsgBox database integrity section, as shown in

Figure 4-34.

Figure 4-34.  Looking for database inconsistencies Message Box

	 6.	 If the tool finds any inconsistencies, they will be listed here.

	 7.	 Click on the Maintenance section on the left pane and select the

default profile on the dropdown box, as shown in Figure 4-35.

Chapter 4 Optimizing the BizTalk Platform

228

Fixing database inconsistencies requires the following actions from

your side:

•	 Generate a backup of the BizTalk Server databases.

•	 Stop all BizTalk Server host instances.

•	 Stop the SQL Server agent.

	 8.	 Once you check all the confirmation checkboxes, click on

Connect button and wait until the connection to BizTalk Server is

established.

	 9.	 From the task type dropdown box, select the From the Latest BHM

Report option, as shown in Figure 4-36.

Figure 4-35.  Connecting to the BizTalk Server Management database to fix
database inconsistencies

Chapter 4 Optimizing the BizTalk Platform

229

	 10.	 The tool will look for all of the inconsistencies found in the

previous report and it will populate the Task List dropdown box.

	 11.	 Select a task from the Task List dropdown box and click the

Execute Task button, as shown in Figure 4-37.

Figure 4-36.  Selecting inconsistencies from the latest BHM Report

Figure 4-37.  Executing a task list using BHM tool

	 12.	 Repeat the Step 11 until you have fixed all the inconsistencies

provided by the BHM tool.

Chapter 4 Optimizing the BizTalk Platform

230

�Scaling the BizTalk Server Group
You can scale the BizTalk system by adding hardware resources to the existing BizTalk

Server or adding more servers to the group. Adding more servers to the BizTalk group

should be done only in the cases where the Message Box database server is performing

efficiently, because you are going to create more host instances that will increase the

load on the Message Box database.

For instance, imagine that your environment has two BizTalk Server nodes and you

decide to add two more to increase the throughput of the system. You perform all the

testing and you find out that the throughput has increased by 30%. Your production

environment is now able to process more messages. After a while, you have a new

requirement and you decide to add two more BizTalk Servers. However, this time you

observe that throughput has indeed decreased by 15%. What could be causing this issue?

•	 Message Box has become a bottleneck.

•	 SQL Server resources consumption is over acceptable thresholds.

•	 The network is saturated with the new load.

The previous example is based on real customer scenarios. The takeaway here is

that whenever you want to increase the processing power of the BizTalk Server layer by

scaling or tuning host performance settings, you should proactively monitor your SQL

Server environment and pay attention to any of the performance indicators that will

tell you whether or not SQL Server is performing efficiently with the new architecture/

configuration. Review the Message Box section to learn how to detect a bottleneck on the

Message Box database.

�Microsoft Distributed Transaction Coordinator
MSDTC is the Microsoft Distributed Transaction Coordinator. MSDTC provides the

functionality to ensure complete transactions across a distributed environment, which

means across two or more networked computers.

It may help to think in a typical database transaction to imagine what is happening

under the hood:

BEGIN TRANSACTION

DO SOMETHING across several DIFFERENT MACHINES (MAY USE LOCAL TRANSACTIONS)

COMMIT TRANSACTION (OR ROLLBACK)

Chapter 4 Optimizing the BizTalk Platform

231

In this way, database and distributed transactions enforce the ACID properties—

Atomicity, Consistency, Isolation, and Durability.

By default, network DTC access is disabled. Without network DTC access on the

server, applications can only use transactions that stay on the local computer. For

instance, transactions cannot flow from a local computer to a database that runs on a

separate computer. Since BizTalk leverages several different databases, and in most of

the cases spans multiple servers, MSDTC is used extensively to communicate with SQL

Server, especially if using adapters supporting transactions, such as classic SQL Server,

WCF SQL Server, and MQSeries.

�How DTC Works

The basic concept is that Server A initiates work in a transactional context (initiates a

transaction). To complete the operation, it must do something in a SQL Server database

running on Server B. It then connects to Server B hosting the SQL Server database

and does some work. Imagine the operation on the SQL Server machine fails due to

a problem so that the transaction initiated on the SQL Server machine must be rolled

back, as well as the operations on Server A.

Each computer, in a distributed transaction, has its resources and participates as

an element in the global transaction that must be committed or aborted across all the

servers involved. MSDTC performs the coordination role for the components (and

machines) and decides if a global transaction is successfully committed or must be

rolled back.

In general, DTC uses a protocol based on two phases:

	 1.	 Applications call the transaction manager (DTC) to begin a

transaction. At this point, the transaction is no longer local, and

DTC coordinates the state. As BizTalk Server inserts fragments

in the context of a new DTC transaction, it is imperative that you

understand this concept because if you increase the number of

fragments, SQL Server will use more resources to allocate the

transaction.

	 2.	 When the application has prepared its changes, it asks the

transaction manager to commit the transaction. The transaction

manager keeps a sequential transaction log, so its commit or

abort decisions are durable. The transaction log is a physical log

file on disk.

Chapter 4 Optimizing the BizTalk Platform

232

This log file is more important than it seems since it can become a disk bottleneck

in BizTalk Server systems. If your platform is receiving 100 messages per second 24

hours per day, that means 8,640,000 messages per day. Now, imagine that all messages

are the same size and that every message is split into 10 fragments. If the disk used to

store the DTC log is not dedicated and, for instance, shared with the Windows system

drive, the disk could potentially experiment high writing-latency, affecting overall disk

performance. In this scenario, the Windows operating system could perform slow IO

operations, and that would affect performance globally (especially under a high load

scenario).

Note T he DTC log file should be dedicated in an isolated disk to prevent
serious performance issues. If DTC fails to enlist a new transaction because of
performance issues, it will timeout, and BizTalk Messages will not be published
(if fragmentation is in place).

�Number of Simultaneous Connections of HTTP Adapters
By default, all the HTTP based adapters will establish only two simultaneous

connections from each server with BizTalk Server installed. This specification provides

clear limitations, especially for low latency or high throughput applications.

Note T his setting conforms to the IETF RFC for the HTTP 1.1 specification. It is
not a BizTalk Server limitation, and although it is suitable for user scenarios, it is
not optimized for high load scenarios.

To change the default behavior, you can add the connectionManagement section to

the BizTalk Server configuration file:

<configuration>

 <system.net>

 <connectionManagement>

 �<add address="http://www.YourDestiationServiceURL.com"

maxconnection="12" />

Chapter 4 Optimizing the BizTalk Platform

233

Figure 4-38.  Retrieving the Send port URI

 �<add address="http://www.YourDestiationServiceURL2.com"

maxconnection="12" />

 <add address="*" maxconnection="8" />

 </connectionManagement>

 </system.net>

</configuration>

You can add the URI of the consumed services that use the HTTP protocol. You can

access the adapter configuration at the send port level to retrieve the URI of the service,

as shown in Figure 4-38.

Chapter 4 Optimizing the BizTalk Platform

234

Note that the setting:

 <add address="*" maxconnection="8" />

Uses an asterisk as the destination URI. You will use this section so that BizTalk

Server will use this number of concurrent connections per BizTalk Server to send

messages for the rest of the non-specified locations.

Warning I ncreasing this setting can flood the destination system. This situation
is undesired because the consumed service might not have enough resources
to respond on time and frequent timeouts can occur. In this case, the number of
suspended messages can increase exponentially.

�Windows Communication Foundation Throttling
WCF services can implement a behavior that is called service throttling. This behavior

allows you to throttle WCF requests to save hardware resources and to avoid flooding

destination systems.

The throttling behavior has the following configurable thresholds:

•	 maxConcurrentCalls—This threshold is used to establish the

maximum number of messages that the WFC service will process.

When that number is reached, the next WFC calls are queued, and

new calls will be executed only when the throttling condition is

alleviated.

•	 maxConcurrentSessions—This setting controls the number of

maximum concurrent sessions that WCF will allow before starting a

throttling condition.

•	 maxConcurrentInstances—Similar to BizTalk Server, WFC

sessions and messages has a context associated with it, and it

is called InstanceContext. You can use this threshold to limit

the number of simultaneous InstanceContext objects that the

WCF service will process. The default value should be the sum of

maxConcurrentSessions and maxConcurrentCalls.

Chapter 4 Optimizing the BizTalk Platform

235

The following table shows the recommended values for BizTalk Server:

Threshold Recommended Value

maxConcurrentCalls 16*number of cores

maxConcurrentSessions 16*number of cores

maxConcurrentInstances maxConcurrentCalls +

maxConcurrentSessions

To enable this behavior, you need to edit the WFC configuration file and add the

serviceThrottling section to the ServiceBehaviors section.

 <behaviors>

 <serviceBehaviors>

 <behavior name="Throttled">

 <serviceMetadata httpGetEnabled="true"/>

 <serviceDebug includeExceptionDetailInFaults="false"/>

 �<serviceThrottling maxConcurrentCalls="200"

maxConcurrentSessions="200" maxConcurrentInstances ="400" />

 </behavior>

 </serviceBehaviors>

 </behaviors>

�Documenting Applications
In this section you learn about documenting your BizTalk Server solutions, which is a

topic that provides a framework not only to understand the solution itself but also to size

the BizTalk Server databases accordingly.

The idea is that every time you start a new BizTalk Server project, you should have

a documentation template that should be fulfilled and maintained throughout all the

phases of the project.

A proper BizTalk Server solution documentation should include this information:

•	 General application information, such as the name, development

creation time, documentation version, changes, etc.

•	 Application priority level definitions

Chapter 4 Optimizing the BizTalk Platform

236

•	 Performance SLA definitions

•	 Business flows

•	 Deployment and troubleshooting instructions

This book uses Excel as an example of how you can document this information. I have

chosen Excel, because the document is more of a calculator that will help you size a new

BizTalk application properly. The idea is that every time you start a new project you will

have to fulfill this document until you completely finish the development. It exposes a clear

picture of the application performance requirements, so you can apply specific settings

and development techniques in order to achieve the performance SLA. Additionally, it

calculates the growth of the Message Box and Tracking databases when you enable tracking

for the specific artifacts. Even though calculations are not exact, it will give you a good idea

whenever you have to allocate more disk resources to your production SQL Server databases.

�The Excel Sheet
The Excel file is divided into the following sheets:

•	 Application form

•	 Flows

•	 Sizing Message Box and Tracking DTA

•	 Data source

�Application Form
This sheet is designed to specify all the application configuration, as shown in Figure 4-39.

Figure 4-39.  Examining the application general configuration

Chapter 4 Optimizing the BizTalk Platform

237

Figure 4-40.  Examining the application priority levels

�Application Priority Levels Section

As discussed in this chapter, application priority levels can be used for sizing and to

adjust BizTalk Server performance settings. In this section of the application form, you

should classify your application using these concepts, as shown in Figure 4-40.

�Performance Data Section

This section is designed to document the relevant performance data that has an impact

when sizing the BizTalk Server databases.

The following information is included:

•	 Number of transactions—These definitions should be agreeable to

the business decision makers during the initial phases of the project

and it is directly related to the performance SLA definitions.

•	 Number of incoming business transactions—This value

represents the number of incoming business transactions under

normal load.

•	 Number of outgoing business transactions—This value

represents the number of outgoing business transactions under

normal load.

•	 Max number of live transactions—This value represents the

maximum number of incoming business transactions under

high load.

•	 Number of hosts—This definition represents the number of hosts that

this BizTalk Server application is using. Refer to the Host Architecture

section in this book.

Chapter 4 Optimizing the BizTalk Platform

238

•	 Number of subscriptions—The number of active subscriptions

has an impact on the Message Box sizing. This tool calculates the

maximum size possible per subscription, so you have to provide

the number of subscriptions that the application is using. The book

includes a SQL Server script to get this information. Unzip the APRESS

folder and navigate to Chapter 4\scripts\Number of active

subscriptions. Then open the Number of Active Subscriptions

per application.sql file

Change the application name to the one you want to get the

number of subscriptions, detailed in bold in the following code:

USE BizTalkMsgBoxDb

SELECT count(*) as [Number of active subscriptions]

FROM Services s WITH(NOLOCK)

LEFT OUTER JOIN Modules m WITH(NOLOCK) ON s.nModuleID =

m.nModuleID

LEFT OUTER JOIN Subscription sub WITH(NOLOCK) ON s.uidServiceID =

sub.uidServiceID

LEFT OUTER JOIN PredicateGroup pg WITH(NOLOCK) ON sub.

uidPredicateGroupID = pg.uidPredicateORGroupID

LEFT OUTER JOIN FirstPassPredicates fp WITH(NOLOCK) ON

pg.uidPredicateANDGroupID = fp.uidPredicateGroupID

LEFT OUTER JOIN EqualsPredicates eq WITH(NOLOCK) ON

pg.uidPredicateANDGroupID = eq.uidPredicateGroupID

LEFT OUTER JOIN EqualsPredicates2ndPass eq2 WITH(NOLOCK) ON

pg.uidPredicateANDGroupID = eq2.uidPredicateGroupID

LEFT OUTER JOIN BizTalkMgmtDb.dbo.bt_DocumentSpec ds WITH(NOLOCK)

ON eq.uidPropID = ds.id

LEFT OUTER JOIN BizTalkMgmtDb.dbo.bts_Orchestration o WITH(NOLOCK)

ON s.uidServiceId = o.uidGUID

where m.nvcName = 'BookOrdersApplication'

•	 Maximum number of scheduled transactions—If the application has

receive or sending ports with schedules enabled, then you will need

to specify the maximum number of scheduled message instances.

Chapter 4 Optimizing the BizTalk Platform

239

Figure 4-41.  Examining the performance data

•	 Convoy pattern implemented—Convoys have their own set of tables

within the Message Box and depending on the size, they can have a

significant impact on the database sizing.

•	 Maximum number of instances of the convoy—This is the maximum

number of instances that the convoy will handle.

Figure 4-41 shows an example of the performance data section for the BookOrders

application.

Figure 4-42.  Examining the performance message flows

�Documented Flows Section

In this section of the application form, you should name all the business flows that the

application is dealing with. Later, you will have to add an Excel sheet per business flow so

that everything gets document properly. See Figure 4-42.

Chapter 4 Optimizing the BizTalk Platform

240

�Flow Forms
You should create detailed documentation of the flows that your BizTalk Server

application is using. You have to insert a sheet per every flow documented in the

Application Form sheet.

Figure 4-43 shows the flow call to CRM, which is the only flow implemented in the

application.

Figure 4-43.  Examining a message flow definition

�Sizing Message Box and DTA
It is very important that you define all messages, with message types and orchestrations,

because you will have to populate the Sizing Message Box and DTA sheet with this

information.

Chapter 4 Optimizing the BizTalk Platform

241

�Configuration Item Section

You can find the configuration item section on the top-left corner of the Excel sheet, as

shown in Figure 4-44.

Figure 4-44.  Examining the configuration item section

It contains these settings:

•	 Purging cycle days—This is the number hard days that the purging

job is used to keep data. Refer to the Purging Tracking Job section in

the book.

•	 Size of promoted properties—This is the average size in KB of the

promoted properties. Do not change this value unless you have very

large promoted properties.

•	 Size of orchestration shapes—This setting should not be changed

as it is the internal average size of orchestration shapes within the

Message Box.

•	 Events size—This setting should not be changed as it is the internal

average size of pipeline and orchestration events within the

Message Box.

Calculated Sizing Data Section

The calculated sizing data section shows the data sizes that your application will use and

retrieves this information by calculating all the options specified in the elements table.

Figure 4-45 shows an example of calculated data for the BookOrders application.

Chapter 4 Optimizing the BizTalk Platform

242

Extra Size Tracking data:

•	 MessageBox (MB)—This is the number of megabytes required to

hold all the tracking data within the Message Box. Remember that

the tracking feature inserts first tracking data to the Message Box

database and then moves it to the Tracking database.

•	 Tracking DTADB (GB)—This is the number of gigabytes that your

application will generate in the Tracking database (based on the

purging cycle specified in the purging job).

Extra Size for messaging (MB)

These fields calculate the maximum size of the following elements when the application

is running under the maximum load possible. The maximum load possible is obtained

from the application form sheet called Max Number of Live Transactions:

•	 Max load for all hosts—This is the maximum size of the host queue

tables.

•	 Max load for subscriptions—This is the maximum size of the

subscription tables.

Figure 4-45.  Examining the calculated sizing data

Chapter 4 Optimizing the BizTalk Platform

243

•	 Max number of suspended—This is the maximum size of suspended

messages.

•	 Max load for Spool—The maximum size of the Spool table.

•	 Max load for instances—The maximum size of the instances table.

•	 Max load for scheduled—The maximum size of the scheduled

instances.

•	 Max load for binary message data—The maximum binary size of the

messages tables.

•	 Max load convoy—The maximum size of a convoy.

Element Definitions

In this table you define messages, orchestrations, and pipelines per flow.

Steps for Adding Messages

Note that here you have to add messages or send through ports and messages that are

processed within the orchestrations.

	 1.	 Type the message name in the Element Name field.

	 2.	 Specify the transactions per minute.

	 3.	 Specify the transactions per purging cycle. By default, this field

is calculated by multiplying the number of transactions per

minute by the number of purging cycle days (considering that the

application will work only eight hours per day). You can overwrite

this value with the number you want. For instance, imagine in

a particular flow, BizTalk can process 100 instances per minute.

Seven days of tracked data, for eight hours of messages processed

per day means 336,000 tracked messages for those seven days.

	 4.	 Select Message as the type of artifact.

	 5.	 Do not fill in the #Receive and #send shapes columns, as those are

for orchestrations.

	 6.	 Fill in the size of the message in KB.

Chapter 4 Optimizing the BizTalk Platform

244

	 7.	 Set the maximum number of suspended messages related to this

message.

	 8.	 Set the number of promoted properties.

	 9.	 Do not fill in the number of shapes, as those are for orchestrations.

	 10.	 If the message is received or sent through a receive port, specify if

the port has the following tracking properties enabled:

•	 Message Body Before

•	 Message Body After

•	 Properties Before

•	 Properties After

	 11.	 If the message is used in an orchestration, specify these values

when the orchestration is tracking message bodies and properties:

•	 Message Body Before ➤ Orchestration tracking settings for track

message bodies before orchestration processing.

•	 Message Body After ➤ Orchestration tracking settings for track

message bodies after orchestration processing.

•	 Properties Before ➤ Orchestration tracking settings for track

message properties incoming messages.

•	 Properties After ➤ Orchestration tracking settings for track

message properties outgoing messages.

	 12.	 Do not fill in the Events Tracking section, as those are for pipelines

and orchestrations.

	 13.	 Observe how the calculated data section changes along with the

introduced data.

	 14.	 Set the name of the flow this message is involved with.

Chapter 4 Optimizing the BizTalk Platform

245

Steps for Adding Orchestrations

Follow these steps to add an orchestration to the documentation:

	 1.	 Type the orchestration name in the Element Name field.

	 2.	 Specify the transactions per minute.

	 3.	 Specify the transactions per purging cycle. By default, this

field is calculated multiplying the number of transactions per

minute per the number of purging cycle days (considering that

the application will work only eight hours per day). You can

overwrite this value with the number you want. For instance,

imagine in a particular flow, BizTalk can start 100 orchestration

instances per minute. Seven days of tracked data, for eight

hours of orchestration processed per day means 33,600 tracked

orchestrations for those seven days.

	 4.	 Select Orchestration as the type of artifact.

	 5.	 Fill in the #Receive and #send shapes. These are the number of

receive and send shapes executed by the orchestration.

	 6.	 Set the maximum number of suspended orchestrations that the

application can generate.

	 7.	 Do not fill in the number of promoted properties, as this is for

messages.

	 8.	 Within the orchestration, count the number of shapes and fill in

the number of shapes with that value.

	 9.	 Do not fill in the Data Tracking section, as those settings are for

messages.

	 10.	 Set Events Tracking section when the orchestration has tracking

enabled for these options:

•	 Orchestration start/end

•	 Messages send and receive

•	 Shape start/end

Chapter 4 Optimizing the BizTalk Platform

246

	 11.	 Observe how the calculated data section changes along with the

introduced data.

	 12.	 Set the name of the flow this orchestration is involved with.

Follow these steps to set up a pipeline:

	 1.	 Type the pipeline name in the Element Name field.

	 2.	 Specify the transactions per minute.

	 3.	 Specify the transactions per purging cycle. By default, this field

is calculated multiplying the number of transactions per minute

per the number of purging cycle days (considering that the

application will work only eight hours per day). You can overwrite

this value with the number you want. For instance, imagine in

a particular flow, BizTalk can start 100 pipeline instances per

minute. Seven days of tracked data, for eight hours of pipeline

processed per day means 360,000 tracked pipelines for those

seven days.

	 4.	 Select Pipeline as the type of artifact.

	 5.	 Do not set the #send and #receive shapes, as this is for

orchestrations.

	 6.	 Do not fill in the size of the message in KB, as this property is only

for messages.

	 7.	 Ignore the maximum number of suspended.

	 8.	 Do not set the number of promoted properties, as those are

related to messages.

	 9.	 Do not fill in the number of shapes, as those are for orchestrations.

	 10.	 Set Events Tracking section when the pipeline has tracking

enabled for these options:

•	 Port start and event ➤ Start/end

•	 Messages send and receive events ➤ Messages send and receive

•	 Shape start/end. Not applicable to pipelines, only to

orchestrations

Chapter 4 Optimizing the BizTalk Platform

247

	 11.	 Observe how the calculated data section changes along with the

introduced data.

	 12.	 Set the name of the flow that this pipeline is involved with.

After you document all the flows, with all messages, orchestrations, and pipelines,

Excel will calculate the total extra size required in the Message Box and Tracking

databases so that you can size the adequate size for both databases. See Figure 4-46.

Figure 4-46.  Examining the required extra size for the databases

�Summary
In this chapter you learned how to categorize application based on application priority

levels. This action will enable you to decide how the application will behave in terms of

business requirements, number of transactions, high availability, performance behavior,

and the maturity of the application.

Once you have adjusted the application priority levels to your own needs or based

on your experience, you can use this concept to create a solid host separation policy,

tracking, and performance settings.

Chapter 4 Optimizing the BizTalk Platform

248

There are hundreds of BizTalk Server performance settings and, in this chapter,

you go through the ones that you can certainly use proactively to reduce the chances of

running into performance issues within your BizTalk and SQL Server platform.

In the next chapter, you learn how to use the most common techniques to

instrument your BizTalk Server solutions. This topic is essential to reducing

troubleshooting time and therefore, decreasing application downtime, as you can find

bugs faster.

Chapter 4 Optimizing the BizTalk Platform

249
© Agustín Mántaras 2019
A. Mántaras, BizTalk Server 2016, https://doi.org/10.1007/978-1-4842-3994-0_5

CHAPTER 5

Instrumenting BizTalk
Solutions
In software development, instrumentation refers to the ability of an application to

monitor business processes, diagnose issues by revealing debugging information, and

expose performance indicators.

The BizTalk Server product extensively covers all these requirements by:

•	 Exposing performance counters

•	 Revealing debugging information thought ETW Traces

•	 Writing events to the Event Log

•	 Creating raw BizTalk Engine traces

•	 DTA tracking (operational information)

•	 Custom Business Activity Monitoring (business tracking)

To achieve complex business processes requirements, the majority of BizTalk

Server applications of today run custom code that, by default, is not implementing any

instrumentation. As detailed in previous chapters, developers can create custom code in

any of the following BizTalk elements:

•	 Custom pipeline components

•	 Orchestrations

•	 Custom components

•	 Maps

•	 Business rules

250

Therefore, you as a developer should instrument your BizTalk applications by

inserting trace statements in relevant areas of your custom code.

Efficiently implementing custom tracing mechanisms for BizTalk Server could be

very complicated, as the engine might be distributed across several BizTalk Servers and,

apart from particular cases like orchestrations with a correlated interchange or order

delivery convoys, you will never know in which server a particular service instance is

running. Unless your environment has only one BizTalk Server, all tracing and debugging

technologies like writing debugging information to local drives, become overly

complicated to analyze because the engine is based on a distributed architecture.

Additionally, depending on several factors like BizTalk load, number of issues and

concurrent services per second, the cost of implementing custom tracing mechanisms

could be potentially remarkably high regarding CPU, memory, and IO consumption.

Luckily for us, BizTalk Server is using already several tracing capabilities from Event

Tracing for Windows (ETW) to track what is happening under the hood of most of the

BizTalk Server Engine elements, like the End Point manager, the Message Agent, and

most of the Transport Adapters.

�Instrumenting Using Event Tracing for Windows
Event Tracing for Windows (ETW) is a fabulous, efficient tracing system used by

Windows Operating Systems. It exposes an API that is divided into the following

components:

•	 Controllers can be custom applications that define the location of the

output log file and can also start and stop event tracing sessions.

•	 Providers are the ones providing events to the tracing sessions. There

are several types of event providers but, the most important ones for

you, as a BizTalk Developer, are TraceLogging providers since BizTalk

server implements tracing using this method.

•	 Consumers are the components that read data from memory or the

defined log.

Chapter 5 Instrumenting BizTalk Solutions

251

Figure 5-1 illustrates the relationship among these three components.

Does this sound familiar to you? If you read the Chapter 1, you can also see that the

ETW is based on a publish/subscribe model. The same as BizTalk Server!

BizTalk Server encapsulates the ETW functionality in two assemblies:

•	 Microsoft.BizTalk.Diagnostics.dll

•	 Microsoft.BizTalk.Tracing.dll

It uses the TraceProvider class to access most of the methods to interact with the

ETW engine.

Figure 5-1.  Diagram of the ETW architecture

Chapter 5 Instrumenting BizTalk Solutions

252

A long time ago the Microsoft BizTalk CAT Team had tested this solution and compared

to other mechanisms like Enterprise Library, log4net, or System.Diagnosis.Trace.

The ETW showed meaningfully better performance. The study was blogged in the MSDN

Blog post: “Best Practices for Instrumenting High-Performance BizTalk Solutions.”

https://blogs.msdn.microsoft.com/asgisv/2010/05/11/best-practices-for-

instrumenting-high-performance-biztalk-solutions/

�The BizTalk CAT Framework for ETW
Back in 2010, the Windows Server AppFabric Customer Advisory Team created a

Solution framework that enables BizTalk Server custom code to start new trace sessions

in the ETW engine. You can access the solution projects from the companion ZIP file.

Once extracted, you will see it under C:\Appres\Chapter5\CATFramework4ETW.

Unfortunately, at the moment of writing this book, the solution projects have not

been updated to run in 4.6x.Net framework versions. Luckily, the updating process it is

quite easy if you perform the following steps:

	 1.	 Extract the provided Zip file at C:\APRESS\Chapter5\

CATFramework4ETW\CATOriginal.zip.

	 2.	 All files are read-only so you must remove the Read Only attribute

to all files. If you miss this step, Visual Studio will not be able to

migrate the solution in a later step.

	 3.	 Find the solution file Best Practices for Instrumenting High-

Performance BizTalk Solutions.sln and open it in Notepad.

	 4.	 Locate the lines shown in Figure 5-2.

Chapter 5 Instrumenting BizTalk Solutions

253

And delete all of it, because if not, the Upgrade Wizard will fail (as the original

solution was linked to a local TFS server).

	 5.	 Save the file.

	 6.	 Now you can open the solution file with Visual Studio 2015.

On the Review project and solution changes screen, check all projects

and click OK. See Figure 5-3.

Figure 5-2.  Locating the TFS settings

Chapter 5 Instrumenting BizTalk Solutions

254

	 7.	 The Visual Studio migration wizard will update the solution.

Depending on your machine configuration, you could potentially have different

issues, as shown in Figure 5-4.

Figure 5-3.  Review project and solution changes screen

Figure 5-4.  Possible migration issues

Projects are pointing to Framework 2.0 and 3.5. If you have these

versions installed, you might not get any warnings. However, BizTalk

Server 2016 works only with 4.6x versions so we will need to change

the target for the three projects.

	 8.	 Remove the Microsoft.BizTalk.CAT.BestPractices.Samples.

UnitTests project from the solution.

	 9.	 For each project, change the Target Framework property to 4.6, as

shown in Figure 5-5.

Chapter 5 Instrumenting BizTalk Solutions

255

	 10.	 Choose Save All and rebuild the solution.

	 11.	 You can get the following error:

Error CS0535 'ComponentTraceProvider' does not

implement interface member 'IComponentTraceProvider.

TraceInfo(Func<string>)' (new interface on framework 4.6)

	 12.	 Double-click the error. Visual Studio will take you to the

ComponentTraceProvider definition.

	 13.	 Right-click on ComponentTraceProvider and choose Quick

Actions and Refactorings. See Figure 5-6.

Figure 5-5.  Changing the target framework version

Figure 5-6.  Quick actions and refactorings

Chapter 5 Instrumenting BizTalk Solutions

256

	 14.	 Select the Implement interface option, as shown in Figure 5-7.

Figure 5-7.  Implementing the missing interface

	 15.	 Choose Save All and rebuild the solution. The rebuild action will

succeed now.

	 16.	 At the project level, sign the assembly by creating a strong name

key. Access the project properties, go to the signing section, and

enable the checkbox Sign the Assembly. Create a new one and set

the key file name. Then click OK button, as shown in Figure 5-8.

Chapter 5 Instrumenting BizTalk Solutions

257

�Enabling an Existing BizTalk Solution to Work with ETW

Now that you have a compatible version for BizTalk Server 2016, you can use the

instrumentation framework by referencing the assembly Microsoft.BizTalk.CAT.

BestPractices.Framework.dll to your project. As this framework assembly uses

BizTalkTracing.dll, you must manually deploy it to your BizTalk Server environment

also. The BizTalk Server tracing component is installed into the GAC, and you can find a

reference to it here:

C:\Windows\Microsoft.NET\assembly\GAC_MSIL\Microsoft.BizTalk.Tracing

In this case, we are going to use the BookOrders application and it includes a

reference to the BizTalk tracking assembly already. For your future projects, remember to

reference this assembly also; otherwise, the application will not work.

Figure 5-8.  Generating a strong file name for the project

Chapter 5 Instrumenting BizTalk Solutions

258

Follow these steps:

	 1.	 Once the solution is deployed, add the assembly as a resource, as

shown in Figure 5-9.

Figure 5-9.  Adding the tracing component to the application

�Using the CAT Framework to Trace Orchestrations

In this section, you will go through a step-by-step guide to enable ETW in orchestrations.

Follow these steps:

	 1.	 If you went through previous exercises, you will have a

BookOrdersApplication. Remove it manually, otherwise you will

get unexpected errors.

	 2.	 This walkthrough uses the base book order solution contained in

the companion source code folder for Chapter 5. Before moving

forward, create a back copy of the original file so you can revert

the solution to the original state in case something goes wrong.

Using Windows Explorer, navigate to C:\APRESS\Chapter5 and

make a copy of the BookOrdersSolutionBase folder.

	 3.	 Start Visual Studio with elevated privileges (run as Administrator,

otherwise the deployment will fail) and open the C:\APRESS\

Chapter5\BookOrdersSolutionBase\BookOrdersSolution.sln

solution.

	 4.	 Open and explore the orchestration orcProcessBookOrders,

located in the orchestrations folder. See Figure 5-10.

Chapter 5 Instrumenting BizTalk Solutions

259

The orchestration receives a book order and checks whether the

customer is a VIP. If affirmative, the process sends a congratulation

message.

	 5.	 The first thing you have to do is, at project BookOrdersSolution,

add a reference to the CAT Framework assembly that has been

built in the previous section. Add the Microsoft.BizTalk.CAT.

BestPractices.Framework.dll by navigating to the following

location: C:\Apress \Chapter5\CATFramework4ETW\CATVS2015\

BizTalkCATInstrumentationFrameworkV1_4Original\Microsoft.

BizTalk.CAT.BestPractices.Samples.Framework\bin\Release

Alternatively, you can add the CAT Framework Visual Studio

project to the solution and add a by-project reference.

Figure 5-10.  General view of the orchestration ProcessBookOrders

Chapter 5 Instrumenting BizTalk Solutions

260

	 6.	 Add the BizTalk Server tracing component reference to the project.

It is installed into the GAC, and you can find a reference to it here:

C:\Windows\Microsoft.NET\assembly\GAC_MSIL\Microsoft.BizTalk.Tracing

	 7.	 Go back to the orchestration designer and, in the Orchestration

View Explorer, add a new variable called callToken and specify

System.Guid as the Type, as shown in Figure 5-11.

Figure 5-11.  Declaring the callToken variable as System.Guid

Chapter 5 Instrumenting BizTalk Solutions

261

	 9.	 Open the initTrace shape and type the following code to start a

new trace session:

//trace session starts into the orchestration

//callToken will be used during the orchestration to generate

events associated to that tracing session.

callToken = Microsoft.BizTalk.CAT.BestPractices.

Framework.Instrumentation.TraceManager.WorkflowComponent.

TraceIn("Orchestration starts");

	 10.	 Just before the End Orchestration shape, add a script shape and

name it closeTrace, as shown in Figure 5-13.

	 8.	 Just after the Activation Receive Shape, add a Expression shape

and rename it initTrace, as shown in Figure 5-12.

Figure 5-12.  Insert the InitTrace expression shape

Figure 5-13.  Insert the closeTrace expression shape

	 11.	 Open the closeTrace shape and add the following code:

//trace session is closed using the callToken

Microsoft.BizTalk.CAT.BestPractices.Framework.Instrumentation.

TraceManager.WorkflowComponent.TraceOut(callToken,

"Orchestration End");

Chapter 5 Instrumenting BizTalk Solutions

262

	 12.	 Using the orchestration viewer, locate the Scope_Main and add

two variables at the local scope level (see Figure 5-14):

scopeName: Type:System.String. Initial Value: Scope_Main

scopeStarted: Type: System.int64 Initial Value: 0

Do not forget to add the "" characters to the value of the scopeName

variable! If you miss this step, the build action will fail.

Figure 5-14.  Creating scopeName and scopeStarted variables

	 13.	 Right after the Scope_Main starts, insert a new script shape called

TraceMainScopeStart. See Figure 5-15a.

Figure 5-15a.  Creating the traceMain expression shape

Figure 5-15b.  Creating the traceMainClose expression shape

	 14.	 Open the TraceMainScopeStart and add the following code:

//Sending a new Starting Scope event to the trace.

Microsoft.BizTalk.CAT.BestPractices.Framework.Instrumentation.

TraceManager.WorkflowComponent.TraceStartScope(scopeName,

callToken);

	 15.	 Just before the Scope_Main finishes, insert a new script shape

called TraceMainScopeClose, as shown in Figure 5-15b.

Chapter 5 Instrumenting BizTalk Solutions

263

	 16.	 Open the TraceMainScopeClose and add the following code:

//Sending a new End Scope event to the trace.

Microsoft.BizTalk.CAT.BestPractices.Framework.Instrumentation.

TraceManager.WorkflowComponent.TraceEndScope(scopeName,

scopeStarted,callToken);

	 17.	 Now, on the left branch of the decide shape, insert a new script

shape called TraceVipCustomer, as shown in Figure 5-16.

Figure 5-16.  Inserting the traceVIPCustomer expression shape

	 18.	 Add the following code to the TraceVipCustomer script shape:

//Send a new event to show that the customer is a VIP Customer

Microsoft.BizTalk.CAT.BestPractices.Framework.Instrumentation.

TraceManager.WorkflowComponent.TraceInfo("Customer has been

detected as VIP");

	 19.	 Now, on the right branch of the Decide shape, insert a new script

shape called TraceNonVipCustomer. See Figure 5-17.

Chapter 5 Instrumenting BizTalk Solutions

264

	 20.	 Add the following code to the TraceNonVipCustomer script shape,

as shown in Figure 5-18.

//Send a new event to show that the customer is a not VIP Customer

Microsoft.BizTalk.CAT.BestPractices.Framework.Instrumentation.

TraceManager.WorkflowComponent.TraceInfo("Customer has been

detected as non-VIP");

Figure 5-17.  Inserting the traceNonVIPCustomer expression shape

Chapter 5 Instrumenting BizTalk Solutions

265

What would the output trace be if you run the application?

As you can see, each expression shape within the orchestration creates a trace line in

the ETL stack. In the next section, you see how to start and read traces. We are not ready

yet to test the solution because you need to learn how to control and examine the traces.

�Using TraceLog to Control Trace Sessions

TraceLog is a tool designed to start and stop trace sessions. By default, it is not included

in any Windows installation. You can install the TraceLog tool from the Visual Studio

Installation, as it is included as part of the Windows 10 SDK, as shown in Figure 5-19.

Figure 5-18.  ETW enabled orchestration view

Chapter 5 Instrumenting BizTalk Solutions

266

A trace session is a period where a trace provider, such as BizTalk Server, is

generating trace messages. The trace engine maintains a set of buffers for the trace

session to store trace messages until they are flushed to a TraceLog or to a trace

consumer.

There are three basic types of trace sessions:

•	 Non-real time—Trace messages directly in a log file. This is the

default behavior.

•	 Real-time—Instead of using a log file, real-time sessions send trace

messages to a trace Consumer like DebugView, TraceView, or

TraceFmt tools.

•	 Buffered—Keep messages in memory and does not send messages

to any log file or consumer. This is very useful when trying to capture

very long running issues as it runs in circular mode, overwriting

messages when a maximum size is reached.

With the CAT Framework, our custom BizTalk artifacts will act as providers logging

new trace messages to a trace session.

Figure 5-19.  Installing the Windows app development tool

Chapter 5 Instrumenting BizTalk Solutions

267

Starting a New Circular Trace Session for BizTalk Server

To start a new BizTalk Server trace session, you can use the following command in the

Visual Studio command prompt environment:

First, create a folder where you want to save traces. This book uses

C:\BizTalkTraces.TraceLog.exe -cir 100 -start BizTalkServerTrace -flags

0x7FFFFFFF -f c:\BizTalkTraces\BizTalkServer.etl -guid #D2316AFB,414B,42e4,

BB7F,3AA92B96A98A -b 128 -max 100 -rt

To see real-time traces, open DebugView.exe after running this traceLog.exe command.

Note A t this stage you do not have any BizTalk solution working with ETL traces,
so attempting to run that command will generate nothing. Later, you will deploy the
BookOrders solution and you could test it.

Parameters explanation:

•	 -cir MaxFileSize—Specifies circular logging in the event TraceLog

file. It expects a parameter called MaxFileSize that specifies the

maximum size of the file in MB. In this case, we are using 100.

Therefore, when the size of the TraceLog file reaches 1000 MB, new

added trace messages will replace the oldest ones. TraceLog will be

captured in this loop until you stop the session.

•	 -Start SessionName—Starts a new trace session using the

SessionName parameter to identify the session. In this case, we call

the session BizTalkServerTrace.

•	 -flags TraceLevel—Used to specify a trace level. At the moment of

writing this book, the following trace levels are available:

•	 "none" set TraceLevel value =0x0

•	 "low" set TraceLevel value =0x1

•	 "medium" set TraceLevel value =0x3

•	 "high" set TraceLevel value =0x7

•	 "all" set TraceLevel value =0x7FFFFFFF

Chapter 5 Instrumenting BizTalk Solutions

268

In this example, we are using 0x7FFFFFFF as the trace level (all). Depending on the

selected value, the engine will generate more or less data.

•	 -f LogFile—Used to provide a file in where all trace messages will

be stored. In our case, it’s c:\BizTalkTraces\BizTalkServer.etl.

•	 -guid TraceComponentGuid—You can use this parameter to tell the

engine to filter for a specific provider. The CAT Framework sends

trace messages using the following providers:

•	 Pipelines: #691CB4CB,D20C,408e,8CFF,FD8A01CD2F75

•	 Workflow (Orchestrations): #D2316AFB,414B,42e4,BB7F,

3AA92B96A98A

•	 DataAccess (used internally):

#2E5D65D8,71F9,43e9,B477,733EF6212895

•	 Transform (BizTalk maps): #226445A8,5AF3,4dbe,86D2,

73E9B965378E

•	 Service (used internally): #E67E8346,90F1,408b,AF40,222B6E3C5ED6

•	 Rules (Business Rules): #78E2D466,590F,4991,9287,3F00BA62793D

•	 Tracking (BAM): #5CBD8BA0,60F8,401b,8FF5,C7F3D5FABE41

•	 Custom (custom .NET components): #6A223DEA,F806,4523,BAD0,

312DCC4F63F9

•	 In our case we are filtering for Orchestration providers: 2316AFB,

414B,42e4,BB7F,3AA92B96A98A.

•	 -b BufferSize—Specifies the size, in KB, of each buffer allocated for

the trace session. If you do not pass this parameter, a default value

will be generated based on system hardware resources.

•	 -max NumberOfBuffers—Specifies the maximum number of

buffers used.

•	 -rt Starts a real-time trace session—This is very important

if we want to use DebugView to see the trace information in

real-time mode.

Chapter 5 Instrumenting BizTalk Solutions

269

Stopping a BizTalk Server Trace Session

First, you must flush the session using the following command:

TraceLog.Exe -flush BizTalkServerTrace

When engine receives a flush request, events in the buffers are delivered to

the TraceLog or trace consumer immediately (DebugView is an example of a trace

consumer).

As flush does not stop the providers, you need to call the -Stop command:

TraceLog.exe -stop BizTalkServerTrace

Examining the ETL File

You can use the TraceLog format tool to convert the ETL file to flat file.

tracefmt.exe TraceLogFileName -o OutputTraceLogFileName -tmf DefaultTMFFile

Unfortunately, at the moment of writing this book, the CAT team did not update

the ETW Framework, and the tracefmt.exe version has a dependency in a DLL called

traceprt.dll. Without it is not possible to format the output ETL file. You can find this

DLL in the companion TracingTools folder located here:

C:\APRESS\Chapter5\CATFramework4ETW\CATVS2015\BizTalkCATInstrumentationF

rameworkV1_4Original\TracingTools

Therefore, change to this path when you want to format the ETL file to TXT.

�Using the BizTalk CAT Instrumentation Controller Control
Trace Sessions

The BizTalk CAT Instrumentation Framework Controller is an easy-to-use GUI designed

for the BizTalk CAT Instrumentation Framework. The tool works as a ETW controller and

allows you to start and stop a trace, adjust filter options, log to a file, and/or enable real-

time tracing to DebugView. You can download it from here:

https://github.com/tfabraham/BizTalkCATIFController,

Chapter 5 Instrumenting BizTalk Solutions

270

You can install it from the companion folder:

C:\APRESS\Chapter5\CATFramework4ETW\BizTalkCatInstrumentationControllerV1_0_0

Just run the BizTalkCATInstrumentationControllerSetup.msi file and follow the

instructions.

Once installed, start the tool from the Windows program menu (or from installation

folder, by default at C:\Program Files (x86)\BizTalk CAT Instrumentation

Framework Controller 1.0). The user interface is shown in Figure 5-20.

Figure 5-20.  BizTalk Instrumentation Framework controller user interface

The first thing you should do is to set up the paths for DebugView and the Notepad

text editor (consumers of the traces). You can do this by clicking on the File menu and

selecting Options, as shown in Figure 5-21.

Chapter 5 Instrumenting BizTalk Solutions

271

DebugView is included in the companion folder at C:\APRESS\Chapter5\DebugView.

Testing the BookOrdersSolution and Exploring ETL Traces

In this section, you learn how to use the CAT Framework Controller to see the ETL traces

generated by the BookOrders solution.

Follow these steps:

	 1.	 Remove the BookOrdersSolution using the BizTalk

Administration console (if it exists).

	 2.	 Using the BizTalk Server administration console, import the

BookOrdersSolution MSI file, located here:

C:\APRESS\Chapter5\BookOrdersSolution\BookOrdersSolution\MSI

	 3.	 Install the MSI, either by checking the “Run the Application

Installation Wizard to Install the Application at the Local

Computer” option at Import MSI wizard (the previous step), or by

double-clicking on the .msi file from Windows Explorer.

	 4.	 Refresh the BizTalk Server administration console and start the

BookOrdersSolution BizTalk application.

	 5.	 Locate the CAT Framework Controller application using the

Windows Start button, as shown in Figure 5-22.

Figure 5-21.  Configuring the trace consumers

Chapter 5 Instrumenting BizTalk Solutions

272

Figure 5-22.  Start the CAT Framework Controller

	 6.	 Once the tool starts, type the trace name. In this case, type

BizTalktrace.

	 7.	 Choose the Select All option from the Detail Level dropdown box.

	 8.	 Set the Trace Output by selecting Trace to a File and Trace to

DebugView (real-time).

	 9.	 Select Orchestration/Workflow Component for the Trace Filter.

	 10.	 Click the Start Trace button. The screen should look Figure 5-23.

Figure 5-23.  Overview of the tool settings

Chapter 5 Instrumenting BizTalk Solutions

273

	 11.	 Click the Launch DebugView button to start the tool. At this stage,

all the BizTalk Server ETL trace activity will be captured in real

time by the DebugView tool.

	 12.	 Now it’s time to test the BookOrdersSolution. Using Windows

Server Explorer, locate and execute the testing file:

C:\APRESS\Chapter5\BookOrdersSolution\BookOrdersSolution\Ports\

Send10VIPBookOrder.bat

	 13.	 Observe the DebugView window, as shown in Figure 5-24.

Figure 5-24.  Exploring the DebugView output

You can see how the tool shows the BizTalk Server trace information.

	 14.	 Using the CAT Framework Controller, click the Stop Trace button

to finish the capture.

	 15.	 Now click on the Open Log in Text Editor button to see the trace

information using notepad.exe.

Chapter 5 Instrumenting BizTalk Solutions

274

�Instrumenting Using Business Activity Monitoring
BAM can also be used to gather and monitor sensitive operations data related to the flow

of a business process. The following milestones and data are typically implemented for

this objective (among others):

•	 Starting and finishing times of orchestrations and custom pipeline

components—By doing this, you can track the duration of the whole

process.

•	 A point of time when orchestrations send and receive

messages—This is remarkably interesting as you can gather the

duration of your request-response and solicit-response processes.

Although this information can be gathered if tracking events are

enabled, storing this information into the BAM databases could be

of immense value when you are troubleshooting latency problems

related to complex business scenarios that cannot be quickly

unraveled by querying the existing tracking information.

•	 Error information—Whenever orchestrations, pipelines, or custom

components raise exceptions, you can get the exception code

and description and attach it to the current activity definition.

This technique can also be used to store errors related to business

processes.

�Business Activity Monitoring
Business Activity Monitoring (BAM) is a tool for monitoring and analyzing data. The data

is presented in a real-time view of business state presenting the information in the BAM

portal site.

The BAM portal provides users with a web interface for viewing the data collected by

BAM, as shown in Figure 5-25.

Chapter 5 Instrumenting BizTalk Solutions

275

BAM exposes a .NET API that can be used to gain visibility into data external to

BizTalk processes, such as .NET Windows Form applications, ASP.NET, Workflow

Foundation, and more. At the moment of writing this book, the following interfaces were

available:

•	 OES: OrchestrationEventStream—Insert data into the BAM tables

asynchronously, and as it participates in orchestration transactions, it

should be called from an orchestration.

•	 DES: DirectEventStream—This class inserts data synchronously.

This is typically used when real-time data is required, as it does not

introduce latency. On the other hand, it could affect throughput, as it

consumes more resources.

•	 BES: BufferedEventStream—Designed for high-throughput

scenarios, it buffers the information and asynchronously inserts the

data into the BAM databases.

Figure 5-25.  BAM portal view

Chapter 5 Instrumenting BizTalk Solutions

276

Although BizTalk pipelines do not implement formal BAM API classes, they expose

the IPipelineContext interface that you can also use to insert data into the BAM

databases through the messaging event stream class implementation.

�BAM Components

BAM includes the following components (see Figure 5-26):

•	 BAM interceptors—The collection of data (message context

properties and message data) from orchestrations and pipelines is

implemented as BAM interceptors. These interceptors monitor the

data as it is being processed and collect information that has been

identified, as necessary. The Tracking Profile Editor (TPE) is used to

create these interceptors. Although developers can create custom

interceptors by implementing WCF interceptor configuration files, if

you use TPE, coding is not required.

•	 BizTalk Primary Import database—This is where interceptors save

the essential data. This database contains stored procedures, tables,

triggers, and views that are dynamically generated when deploying a

BAM Definition. Data is kept in this database while the information

is within defined Windows time and is then moved to the BAM

Archiving database by the BAM Archiving Job.

•	 BAM activity aggregations and OLAP cubes—Developers and

business analysts can generate aggregations to present the

information in a grouped way. These aggregations are maintained

represented by cubes within the SQL Server Analysis Service and

generated by integration packages run under the control of the SQL

Server Integration services.

Chapter 5 Instrumenting BizTalk Solutions

277

�Designing the Instrumentation Activities for a BizTalk
Server Solution
The first step to implement successful instrumentation using the BAM feature is to

review the business process and design the BAM activity definitions based on that.

You can use Table 5-1 for guidance.

�Creating the Book Orders Approvals Activity Definition

In this step-by-step guide, you will create an activity that will generate all the elements

detailed in the previous section (see Table 5-1).

Figure 5-26.  BAM portal components view

Chapter 5 Instrumenting BizTalk Solutions

278

Table 5-1.  Activity Definitions Example

Item Name Description Type

StartTime Time stamp when the process initiates. Milestone

TransactionCode Code of the process. Gathered from the

incoming message.

Text (max length 10)

TransactionDate Date of the transaction. Gathered from the

incoming message.

Text (max length 10)

TransactionOK True if the process completes without errors.

False if there was an error.

Integer

TransactionError Error description in case of a failure. Empty if

no errors found.

Text (max length 255)

CRMSoliticTimeStamp Time stamp to store when the CRM request

happened.

Milestone

CRMRequestTimeStamp Time stamp to store when the CRM response

arrived.

Milestone

EndTime Time stamp when the process finishes. Milestone

Follow these steps:

	 1.	 Open the Excel BAM template located here:

C:\Program Files (x86)\Microsoft BizTalk Server 2016\ExcelDir\Bam.xla

	 2.	 Once Excel opens the sheet, go to the Add-ins toolbar option and

select the BAM ➤ BAM Activity option.

	 3.	 The BAM activity wizard will load.

	 4.	 On the Business Activity definition window, click the New Activity

button, as shown in Figure 5-27.

Chapter 5 Instrumenting BizTalk Solutions

279

	 5.	 In the new activity window, type BookOrdersApprovals and click

on the New Item button, as shown in Figure 5-28.

Figure 5-27.  Creating a new business activity definition

Figure 5-28.  Creating a new activity Item

Chapter 5 Instrumenting BizTalk Solutions

280

	 6.	 Set the Item name to StartTime and select Business Milestones as

the type item type. Then Click OK. See Figure 5-29.

Figure 5-29.  Creating a new activity Item

	 7.	 Repeat Step 6 for all of the items detailed in Table 5-2.

Table 5-2.  List of Elements to Define for the Activity

Item Name Description Type

TransactionCode Code of the process. Gathered from the

incoming message.

Text (max length 10)

TransactionDate Date of the transaction. Gathered from the

incoming message.

Text (max length 10)

TransactionOK True if the process completes without errors.

False if there was an error.

Integer

TransactionError Error description in case of a failure. Empty if

no errors found.

Text (max length 255)

CRMSoliticTimeStamp Time stamp to store when the CRM request

happened.

Milestone

CRMRequestTimeStamp Time stamp to store when the CRM response

arrived.

Milestone

EndTime Time stamp when the process finishes. Milestone

Chapter 5 Instrumenting BizTalk Solutions

281

Once you finish adding the elements, your screen should look Figure 5-30.

Figure 5-30.  List of the items of the activity

	 8.	 Click OK to close the New Activity dialog box.

	 9.	 Click OK in the Activity Definition dialog box.

	 10.	 Now that the activity definition has been created, it’s time to

create the BAM view that will be used to populate the BAM portal.

The wizard for view creation will load the welcome screen.

Click Next.

	 11.	 On the View Creation dialog box, select Create a New View and

click Next.

	 12.	 In the New View Creation window, type BookOrdersView

as the view name and select the previously created activity,

BookOrdersApprovals. See Figure 5-31. Click Next

Chapter 5 Instrumenting BizTalk Solutions

282

	 13.	 In the View Items dialog box, select All Items and click Next.

See Figure 5-32.

Figure 5-31.  Creating a new BAM view

Figure 5-32.  Selecting all view items from the activity definition

Chapter 5 Instrumenting BizTalk Solutions

283

	 14.	 Take a moment to review the Monitoring View Creation dialog

box. You have three main option buttons here:

•	 New Alias—You use this option to provide an alias to an

item view. This is useful when the activity elements have a

nondescriptive name. In this scenario, you will not create an alias

as the activity elements are quite clear.

•	 New Duration—This option will enable you to create duration

fields in the view. You will use two milestones, and the BAM

feature will calculate the duration by subtracting both values.

This is very useful if you want to know the duration of activities.

•	 New Group—You can use a milestone group to set related

milestones together; for example, the beginning and end

milestones that define how long a book order is valid.

	 15.	 Click on the New Duration button and set following properties

(see Figure 5-33):

Duration Name: OrchestrationDuration

Start Business milestone: StartTime (BookOrdersApproval)

End Business milestone: EndTime (BookOrdersApprovals)

Time Resolution: Second

Click OK.

Chapter 5 Instrumenting BizTalk Solutions

284

	 16.	 Repeat Step 15 to create a duration name called CRMCallDuration:

Duration Name: CRMCallDuration

Start Business milestone: CRMSolicitTimeStamp

(BookOrdersApproval)

End Business milestone: CRMRequestTimeStamp

(BookOrdersApprovals)

Time Resolution: Second

	 17.	 On the NewBAM View:View items window, click Next. In this

scenario, you will not create dimensions and measures. This

option is very interesting to create aggregation data in the BAM

reports.

	 18.	 Click Next on the View Summary window.

	 19.	 Click the Finish button to finish the process.

	 20.	 The wizard will show the Excel view of the activity.

	 21.	 Go to the BAM menu and select the Export XML option.

	 22.	 Choose a folder location and set the file name to

BookOrdersActivityDefinition.xml.

Figure 5-33.  Setting the duration properties

Chapter 5 Instrumenting BizTalk Solutions

285

�Deploying the BAM Definition XML File

BizTalk Server administrators and developers use the Deploy All BAM Management

utility command to deploy a BAM definition from the XML definitions file exported from

the Excel sheet.

The BAM utility creates the necessary elements within the SQL Server databases so

the BAM feature can populate the business data associated with the activity definition.

Follow these steps:

	 1.	 Open a command prompt as follows: Click Start, click Run, type

cmd, and then click OK.

	 2.	 Navigate to the tracking folder by typing C:\Program Files

(x86)\Microsoft BizTalk Server 2016\Tracking and at the

command prompt. Press Enter.

	 3.	 Type the following instruction:

bm.EXE deploy-all -DefinitionFile:"C:\APRESS\Chapter5\

BookOrdersSolutionBAM\BookOrdersSolution\BAM\

BookOrdersActivityDefinition.xml"

	 4.	 Press Enter.

	 5.	 If everything runs successfully, you will see the screen in Figure 5-34.

Figure 5-34.  Viewing the BAM.exe output

Chapter 5 Instrumenting BizTalk Solutions

286

Now if you explore the BAMPrimaryImport database, you will see that

the BAM.exe tool created the tables shown in Figure 5-35.

Figure 5-35.  Exploring the BAMPrimaryImport created tables

Figure 5-36.  Exploring the BAMPrimaryImport created views

As well as the views shown in Figure 5-36.

Chapter 5 Instrumenting BizTalk Solutions

287

�Configuring and Deploying the Tracking Profile

Now that everything is ready from an infrastructure point of view, it’s time to define how

the activity tables are going to be populated. For that purpose, you will use the tracking

profile editor tool (TPE) that will link orchestration interesting points and data to the

BAM activity definition.

Follow these steps:

	 1.	 Remove the BookOrdersSolution using the BizTalk

Administration console (if it exists).

	 2.	 Using the BizTalk Server administration console, import the

BookOrdersSolution MSI file, located here:

C:\APRESS\Chapter5\BookOrdersSolutionBAM\BookOrdersSolution\msi\

	 3.	 Install the MSI, either by checking Run the Application

Installation Wizard To Install The Application At The Local

Computer at the Import MSI wizard (previous step), or by double-

clicking on the .msi file from Windows Explorer.

	 4.	 Refresh the BizTalk Server administration console and start the

BookOrdersSolution BizTalk application.

	 5.	 Locate and launch the Tracking Profile Editor tool (TPE) in the

BizTalk Server 2016 Windows Start menu.

	 6.	 Click on the link Click Here to Import a BAM Activity Definition,

as shown in Figure 5-37.

Chapter 5 Instrumenting BizTalk Solutions

288

	 7.	 In the Import Activity Definition window, locate

BookOrdersApprovals and click OK. See Figure 5-38.

Figure 5-37.  Importing a BAM activity definition

Figure 5-38.  Selecting the BookOrdersApprovals activity definition

Chapter 5 Instrumenting BizTalk Solutions

289

	 8.	 TPE will now show all the item definitions created for the activity

BookOrdersApprovals, as shown in Figure 5-39.

	 9.	 Click on the Select an Event Source link, as shown in Figure 5-40.

Figure 5-39.  Exploring the BookOrdersApprovals activity

Figure 5-40.  Selecting an event source

Chapter 5 Instrumenting BizTalk Solutions

290

	 10.	 Locate the orchestration BookOrdersSolution and click the Next

button. See Figure 5-41.

Figure 5-41.  Locating the BookOrdersSolution application as an event source

	 11.	 Select the orchestration BookOrdersSolution.

orcProcessBookOrders and click the OK button.

	 12.	 TPE will show you now the selected orchestration with the

associated activity items, as shown in Figure 5-42.

Chapter 5 Instrumenting BizTalk Solutions

291

It’s time to link the events of the orchestration to the activity definition.

	 13.	 Drag and drop the receive shape Receive_BookOrders to the

StartTime milestone of the activity definition, as shown in

Figure 5-43.

Figure 5-42.  Exploring the whole TPE profile

Figure 5-43.  Linking orchestration events to the activity definition milestones

Chapter 5 Instrumenting BizTalk Solutions

292

	 14.	 Do the same for the EndTime milestone (see Figure 5-44).

	 15.	 Do the same for the Request Response CRM activities, as shown in

Figure 5-45.

Figure 5-44.  Linking the sendToCRM send port to the activity definition milestone

Figure 5-45.  Linking the CRM Request Response send port to the activity
definition milestone

Chapter 5 Instrumenting BizTalk Solutions

293

With these actions, the BAM feature will be able to track orchestration

events to the BAM activity and insert the right data to the BAM

Primary Import tables.

It’s time now to assign the data elements to the activity definition

	 16.	 Right-click the first receive shape of the orchestration and select

the option Message Payload schema, as shown in Figure 5-46.

Figure 5-46.  Selecting the Incoming message data to link items to the activity definition

TPE will show you the list of available fields.

	 17.	 Now drag and drop the OrderId and OrderDate fields

corresponding to the activity definitions, as shown in Figure 5-47.

Figure 5-47.  Linking orchestration data to the activity definition data milestones

Chapter 5 Instrumenting BizTalk Solutions

294

	 18.	 Right-click the receive_Approvals receive shape of the

orchestration and select the Message Payload Schema option, as

shown in Figure 5-48.

	 19.	 Now link the Approved element from the response schema to the

activity definition, as shown in Figure 5-49.

Figure 5-48.  Selecting the incoming message data to link the approval data

Figure 5-49.  Linking orchestration data to the activity definition data milestones

Chapter 5 Instrumenting BizTalk Solutions

295

	 20.	 Save the tracking profile using the File menu.

	 21.	 Go to the Tools menu and select the Apply Tracking Profile option.

	 22.	 TPE will inform you that the profile was successfully applied.

The binding between the business process and BAM is applied,

which will make BAM events be triggered when the message

arrives in the orchestration and populate the proper data in BAM

Primary Import database.

Now you can test the solution and check if the BAM primary

import table for book orders contains the BAM data, as shown in

Figure 5-50.

Figure 5-50.  Observing the associated BAM data

Alternatively, you can log in to the BAM portal and perform a query

in the activity search section, as shown in Figure 5-51.

Chapter 5 Instrumenting BizTalk Solutions

296

Figure 5-51.  Observing the associated BAM data using the BAM portal

�Instrumenting Creating Custom Performance Counters
As most of the out-of-box BizTalk Server counters are at host level, it might be very

interesting to create your own performance counters from business or operational

point of views. You could develop performance counters in the following BizTalk Server

elements:

•	 Custom pipeline components

•	 Custom components (BizTalk and external assemblies)

•	 Orchestrations

•	 Custom adapters

For example, if you create custom performance counters for a specific orchestration,

counter data will be fulfilled only when that orchestration executes. Ideally, all

performance counters should be reset when host instances start and stop.

You could use these counter information later in performance reports. It will save

you a huge amount of time. Examples of useful performance counters are:

•	 Messages received by an orchestration

•	 Messages sent by an orchestration

Chapter 5 Instrumenting BizTalk Solutions

297

•	 Number of errors by orchestration

•	 Number of errors at pipeline level

In addition, you could also use this technique to monitor your BizTalk Server

platform because if those counters remain static for long period of time, that usually

means that BizTalk Server is not processing messages (for that particular orchestration

application, of course).

�Developing Custom Performance Counters
In this scenario, you have an orchestration called orcProcessBookOrders

that will receive book orders requests. This orchestration is bound to the host

BizTalkServerApplication and, therefore, will run under the context of

BizTalkServerApplication host instance process.

When the orchestration receives a new message, it will use the component

PerformanceCounterHelper in an attempt to create the following Performance Counter

Category, BizTalkOrchestrations_ProcessBookOrders, with these performance

counters:

•	 #Received Messages

•	 #Sent messages

If the category already exists, it will not be created. This is very useful because you

do not have to create counters manually as the component will check it for you every

time the BizTalk Server engine is creating a new orchestration instance (it implements a

constructor to overwrite categories upon creation though).

The component has an overload method for categories creation. If the orchestration

is using side-by-side versioning, you have the option to create the category with the

following format:

BizTalkOrchestrations_VersionNumber_ProcessBookOrders

Figure 5-52 shows that the component is creating a performance counter category

called BizTalk Orchestrations_2.0_ProcessBookOrders. The number 2.0 identifies

the orchestration version. In this way we could have counters associated to specific

orchestration versions.

Chapter 5 Instrumenting BizTalk Solutions

298

Figure 5-52.  Observing the custom performance counters

�How Does It Work?
When the orchestration has been activated by a specific host instance, the component

will attach both performance counters to the HostInstance process by creating a new

performance counter instance called BizTalkServerApplication:BizTalkMsgBoxDb:

BizTalk2016. This information is automatically gathered by the component using the

following BizTalk Server WMI classes:

•	 MSBTS_Orchestration. To get the HostName.

•	 MSBTS_MsgBoxSetting. To get the MsgBoxDb database name.

Chapter 5 Instrumenting BizTalk Solutions

299

By picking up the current process server name. This is very important as the

Orchestration can potentially run in all of your servers. For example, if you have two

BizTalk Servers, ServerA and ServerB, and the host for that orchestration has host

instances running in all of them, counters will be generated locally in both servers by

creating the following counter instances:

•	 BizTalkServerApplication:BizTalkMsgBoxDb:ServerA

•	 BizTalkServerApplication:BizTalkMsgBoxDb:ServerB

You might be wondering why counters instances are attached to the BizTalk Server

process. Well, if you do not attach counters to a process, they will be gathering data

until the server reboots and you will need to implement a mechanism to reset counter

instances values somehow.

After testing the BizTalk Server application, you can see counter values by opening

Windows perfmon tool, as shown in Figures 5-53 and 5-54.

Figure 5-53.  Examining the performance output using perfmon tool

Chapter 5 Instrumenting BizTalk Solutions

300

Figure 5-54.  Examining the performance output in report format

Figure 5-54 shows the report view.

�Book Orders Orchestration Flow Diagram
First, the orchestration receives a book order message. As the message gets into the

orchestration, perf helper component is called to increment the value of the #Received

messages counter by one. Then the orchestration sends the message and after that, the

value of the #Sent messages counter is increased by one. See Figure 5-55.

Chapter 5 Instrumenting BizTalk Solutions

301

�Examining PerformanceCounterHelper Component
This is the component that implements all the performance counter logic. You can

find the Visual Studio solution in the companion code file at C:\APRESS\Chapter5\

PerformanceCounters\BookOrdersSolution\PerformanceCounterHelper.

Figure 5-55.  Book orders orchestration diagram

Chapter 5 Instrumenting BizTalk Solutions

302

Figure 5-56 outlines the class definition for the component.

�The createCategory Method

This method will create the Performance counter category within the Server

performance counter repository. Users can force the recreation of categories by setting

the parameter bforce to True. Go through the code and read the comments as the code

is self-explanatory.

public bool createCategory(string slCategoryName, bool bforce = false)

 {

 �//returns true if the category can be created. This is just

creating the category and the draft counters.

 �//as Counters are declared as multiInstance, they will be

created and assigned every time a BizTalk HostInstance

 �//process an orchestration of this type.

 //if force, the category will be deleted first and then recreated

 Boolean r = false;

 try

 {

 if (bforce) //if user is forcing re-creation

 {

 //we delete the category first

Figure 5-56.  Examining the performance counter helper class diagram

Chapter 5 Instrumenting BizTalk Solutions

303

 if (PerformanceCounterCategory.Exists(slCategoryName))

 {

 �PerformanceCounterCategory.Delete(slCategoryName);

//we delete the category

 }

 }

 if (!PerformanceCounterCategory.Exists(slCategoryName))

 {

 //this is creating a collection of data counters.

 �//We will use it at the end of the If to create Counter

metadata configuration associated with the category.

 �CounterCreationDataCollection counters = new

CounterCreationDataCollection();

 //we create the counter #received messages

 �CounterCreationData receivedMessages = new

CounterCreationData();

 receivedMessages.CounterName = "# Received Messages";

 �receivedMessages.CounterHelp = "Total number of

received messages";

 �receivedMessages.CounterType = PerformanceCounterType.

NumberOfItems64;

 counters.Add(receivedMessages);

 //we create the counter #sent messages

 �CounterCreationData sendMessages = new

CounterCreationData();

 sendMessages.CounterName = "# Sent Messages";

 �sendMessages.CounterHelp = "Total number of sent

messages";

 �sendMessages.CounterType = PerformanceCounterType.

NumberOfItems64;

 counters.Add(sendMessages);

 �//Create a new category with the new orchestration

performancecounters

 �//We set up the counters as multiInstances

(PerformanceCounterCategoryType.MultiInstance)

Chapter 5 Instrumenting BizTalk Solutions

304

 //so we could add them later to the Host instance

 �PerformanceCounterCategory.Create(slCategoryName,

slCategoryName + " counters",

PerformanceCounterCategoryType.MultiInstance, counters);

 }

 r = true;

 }

 catch (Exception)

 {

 r = false;

 throw;

 }

 return r;

 }

When this method completes, if you open the perfmon tool, you will see that the

category BIzTalkOrchestrations_ProcessBookOrders has been created, with their

respective performance counters attached to it. See Figure 5-57.

Figure 5-57.  Examining the expected output using perfmon tool

Chapter 5 Instrumenting BizTalk Solutions

305

There is an override with the following definition:

public bool createCategory(string slCategoryName, string sVersion,bool

bforce = false)

This override will add a version token to the category (if you are using

side-by-side versioning, you should have different performance counters per version of

orchestration).

�The addValueToACounter Method

This method performs the following actions:

•	 Creates counter instances.

•	 Attaches that counter instance to the BizTalk process. By doing this,

counter data will be reset when host instances stop.

•	 Increments by 1 the value of counter (received or sent messages).

Here is the code:

public bool addValueToACounter(string sCounterFamilyName,string

counterName,string realOrchestrationName)

 {

 bool r = false;

 string sCounterFullName = "";

 try

 {

 sCounterFullName = sCategoryName + sCounterFamilyName;

 �System.Diagnostics.PerformanceCounter p = new

PerformanceCounter();

 p.CategoryName = sCategoryName;

 p.CounterName = counterName;

 //we build the instance name.

 �p.InstanceName = returnHostInstanceNameForProcess(realOrche

strationName);

 �//the following line will attach the counter to the BizTalk

Process. If you want the counters to be independent of the

host instance,

Chapter 5 Instrumenting BizTalk Solutions

306

 //Choose PerformanceCounterInstanceLifetime.Global.

 �p.InstanceLifetime = PerformanceCounterInstanceLifetime.

Process;

 p.ReadOnly = false;

 p.Increment(); //we increment the counter by 1.

 r = true;

 }

 catch (Exception ex)

 {

 r = false;

 throw ex;

 }

 return r;

 }

After the method execution, the performance monitor tool will show the associated

instances as well, as shown in Figure 5-58.

Figure 5-58.  Examining the instances of the custom performance counters

Chapter 5 Instrumenting BizTalk Solutions

307

�Consuming the Component in an Orchestration

The orchestration orcProcessBookOrders receives orders and verifies if the customer is

a VIP customer. If that is the case, the component creates the output message inserting a

congratulations message.

Follow these steps:

	 1.	 Using Visual Studio Open the Solution BookOrdersSolution,

located here: C:\APRESS\Chapter5\PerformanceCounters\

BookOrdersSolution\BookOrdersSolution.sln\.

	 2.	 Once loaded, open the Orchestration orcProcessBookOrders.

The orchestration has two main scripting shapes that call the PerformanceCounter

Helper, as shown in Figure 5-59.

Figure 5-59.  Points where the component is called to populate the custom counters

Chapter 5 Instrumenting BizTalk Solutions

308

	 3.	 Double-click the first script shape SetPerfCounters. See Figure 5-60.

Figure 5-60.  Setting up the performance counter helper component

Figure 5-61.  Incrementing the sent messages counter to 1

The first line calls the default constructor for the PerformanceCounterHelper to

create the performance category with all of the associated counters.

The second one increments by 1 the value of the #Received Messages Counter, as the

orchestration has just received the incoming message.

	 4.	 Now open the Expression shape SetSentPerfCounter.

See Figure 5-61.

Chapter 5 Instrumenting BizTalk Solutions

309

This script block increments by 1 the value of the #Sent Messages Counter since the

orchestration has just sent the output message in the previous step.

	 5.	 Using the File Explorer, navigate to the folder: C:\APRESS\

Chapter5\PerformanceCounters\BookOrdersSolution\Setup.

	 6.	 Run the SetUp.cmd command file as an administrator. This will

deploy and test the solution by dropping 10 messages in the

input folder.

	 7.	 Open perfmon and add the following performance counters

BizTalkOrchestrations_ProcessBookOrders (see Figure 5-62):

a.	 #Recevied messages

b.	 #Sent messages

Figure 5-62.  Adding the custom performance counters to a perfmon view

	 8.	 Open the perfmon console and explore the results. You should get

something similar to Figure 5-63.

Chapter 5 Instrumenting BizTalk Solutions

310

�Summary
In this chapter, you learned how to take advantage of the event traces for Windows

to implement efficient traces for BizTalk Server. Although you could create your own

custom components to consume the BizTalk tracing assembly, this book showed you

how to migrate the old BizTalk CAT Framework to the 4.6 framework version, thus you

can use it with your BizTalk Server 2016 solutions and enable high performance traces in

your projects.

This book assumes that you already have experience logging information to the

Windows event log and extends that capability by using BAM to instrument business

and system important milestones. All of this can be enriched by creating custom

performance counters that can populate business or system data.

In the next chapter, you learn how to use development techniques to proactively

improve how BizTalk Server applications run in production.

Figure 5-63.  Viewing the populated data

Chapter 5 Instrumenting BizTalk Solutions

311
© Agustín Mántaras 2019
A. Mántaras, BizTalk Server 2016, https://doi.org/10.1007/978-1-4842-3994-0_6

CHAPTER 6

Developing High-
Performance Solutions
In previous chapters, you learned how to optimize the BizTalk Server environment based

on application priority levels and performance SLA definitions. Additionally, in Chapter 5,

you learned how to instrument your BizTalk Server solutions using ETW, customer

performance counters, and BAM to enhance system monitoring. Now it’s time to discuss

the most common optimizations that you, as a developer, will need to know to develop

robust BizTalk Server solutions.

You can improve the performance of a BizTalk Server solution by using the following

elements:

•	 Schemas

•	 Orchestrations

•	 Maps

•	 Pipelines

�Improving Schema Definitions
In this section, you learn how to improve the schema definitions. This topic is more

important than it seems as BizTalk Server engine uses schema definitions to represent

messages, and as you have learned previously, messages are the center of all the

information that goes through BizTalk Server. Follow the recommendations detailed

in this section to simplify schemas because as the complexity increases, overall

performance decreases. This is especially true for large files and unclear schemas with

several optional elements and nodes.

The idea for schema optimization is to reduce the time that the BizTalk Server engine

takes to retrieve messages for further processing.

312

�Length of the Element Names
If you ever worked with the swift adapter, EDI, or HL7 specifications, you probably

noticed that the element names look like weird codes. Most of those schemas definitions

have a huge number of elements and nodes, and if they were using very descriptive

names, the size of the final message instance would be very large.

When you are developing a new solution, especially for applications that rank high

on the application transaction levels, you should consider reducing the length of the

name for the nodes and elements, because the final size of the message will be also

decreased. This is especially true for the nodes that have repeating records or for very

large messages.

Note  Keep in mind also that using deceptive names can complicate
troubleshooting and developing, especially in maps, where non-specific names
can become quite deceiving. Therefore, you need to find a balance between
performance and clarity. Use common sense. For instance, if you are working with
a schema that has an element name called CustomerCode, consider reducing
it to CxId. If the root node name is called CustomerInformation, rename it
CxData or CxInfo.

Do not reach a point where maps or code become a nightmare to understand.

�Message Properties Performance Recommendations
Whenever using promoted or distinguished properties, you should keep in mind the

following performance factors and recommendations:

•	 Reduce the number of written and promoted properties and

eliminate those that are not needed.

•	 Warning using XPath expressions. XPath expressions can be very

long, primarily when the element is located very deep in the message.

Therefore, the more distinguished fields you have, the larger the

context size. This situation affects the overall performance of the

platform. Whenever possible, consider moving the deep elements at

the beginning of the schema.

Chapter 6 Developing High-Performance Solutions

313

•	 Property name length. In the same way that reducing the size

of the element names also reduces the size of the message, it is

recommended to reduce the length of the properties as much

as possible. Shorter names ensure that the engine consumes

less memory and still provides business functionality. This fact

is especially true for distinguished fields as they do not have

256-character limitation.

•	 Routing. If you are not planning to use the property for routing

or correlation, do not promote it! Just distinguish it. Promoted

properties consume more resources as the engine inserts them into

the subscriptions table, while distinguished properties are not. Also,

if you enable property tracking, SQL Server process consumes more

memory, processor, and IO resources, as it must insert the tracking

information into the tracking data tables within the Message Box and

then to the tracking database. These two facts might not be relevant

while you are coding, but when the solution goes live and must

process millions of instances per day, believe me: it matters!

•	 Promoted property location. Especially for flat file scenarios,

performance is affected by the position of the promoted property

within the schema definition. Promoted properties are found faster if

you position them at the beginning of the schema.

•	 Extremely Low latency environments. If messages are small (fewer

than 100 kilobytes), you can de-serialize the message into a .NET

class object and access the public static fields and properties (instead

of using XPath). If the message needs complex business rules,

accessing data using the properties exposed by an instance of a .NET

object is faster than using XPath expressions because XPath loads the

full message into the memory every time it executes.

The following code shows an example of a serialized message that exposes

distinguished properties:

using System;

using Microsoft.XLANGs.BaseTypes;

Chapter 6 Developing High-Performance Solutions

314

namespace NetClass

{

 [Serializable]

 public class MyBookNameSpace

 {

 public MyBook()

 {

 iSBN = "101928818910111";

 bookTitle = "BizTalk Server 2016 book";

 }

 [DistinguishedFieldAttribute()]

 public String iSBN;

 [DistinguishedFieldAttribute()]

 public int bookTitle;

 }

}

The code to create an instance of this object should be implemented within

the context of a construct shape because the properties are implementing the

DistinguishedField attribute (defined in Microsoft.XLANGs.BaseTypes). The following

code checks if the ISBN property equals "101928818910111" and, if yes, it changes the

bookTitle property to "BizTalk 2016, performance tuning and optimization".

msgMessageIn = new MyBookNameSpace.MyBook();

if (msgMessageIn.iSBN== "101928818910111"}

{

 msgMessageIn.bookTitle ="BizTalk 2016, performance tuning and optimization"

}

�Canonical Schemas
Canonical schemas are message definitions used to encapsulate the internal logic of

your processes. The idea is to decouple the schema definitions of the integrated parties

from the ones used by the BizTalk application. They are extremely powerful, especially

when receiving information from entirely different sources.

Chapter 6 Developing High-Performance Solutions

315

As an example, imagine that you are developing a BizTalk application that

consolidates customer data to a CRM application. Customer information can be received

from four different systems and it must be sent to three CRM solutions. As the solution

requires advanced business process and granular exception handling, you develop an

orchestration that will receive and send canonical messages. By implementing it in this

way, you avoid the creation of one orchestration per source system. See Figure 6-1.

Figure 6-1.  Canonical integration example

In the previous example, customer data is received through four different receive

locations. Receive port executes then the corresponding map that transforms the

incoming message into the canonical message used by the orchestration. After the

business rules are executed within the orchestration, send port will transform the

canonical message to the right destination system format.

Benefits of canonical schemas include:

•	 Schema changes from the source and destination systems will

not affect orchestration received/sent messages, as these will use

canonical schemas from receiving and sending information. This will

reduce the number of deployments.

•	 New parties can be added to the solution without implementing

global changes at the orchestration level, by creating new receive

location/send ports and developing new maps.

•	 Performance increases. As complexity of the solution is reduced, this

approach can have a positive impact on performance (depending on

the number of instances). In the previous example, instead of having

four dedicated orchestrations per source system, you develop only

one that interacts directly with canonical messages.

Chapter 6 Developing High-Performance Solutions

316

�Improving Orchestrations
The following sections discuss relevant techniques and topics related to orchestrations

that you should consider at early stages of the project.

�To Orchestrate or Not To Orchestrate, That Is the Question
Orchestrations are not always the best option for all integration scenarios because

they consume more resources than message routing. You should consider the use of

orchestrations when you have any of the following requirements:

•	 Transaction support

•	 Granular exception handling

•	 Dehydration and rehydration to save resources

•	 Persistent points to recover from failures

•	 Correlation

•	 Convoy patterns

•	 Business activity monitoring at the business process level

If none of these techniques and features are required, then consider avoiding

orchestrations and move business logic using a combination of custom pipeline

components and ports. This technique diminishes the overhead to the Message Box

database and consequently reduces latency.

�Using Orchestrations When Transaction Support Is Required

BizTalk orchestrations offer a transactional programming model that includes support for

recovery from failed transactions using compensation and exception handling. All orches-

trations expose a property called Transaction Type that can have the following values:

•	 Atomic—Enables a transaction to automatically roll back to a

previous state in case the transaction does not successfully complete.

•	 Long running—You use this type of transaction when the

implemented business process can span longer time durations (years

even), contain nested transactions, and use exception handling to

recover from error scenarios.

Chapter 6 Developing High-Performance Solutions

317

•	 None—If you just want to catch exceptions without transaction

support, you should set the scope or the whole orchestration to None.

You can set the transaction type property using the orchestration viewer and

accessing the orchestration properties, as shown in Figure 6-2.

Figure 6-2.  Available transaction types for orchestrations

�Using Orchestrations to Benefit from Dehydration

Especially for applications where application priority levels or performance behavior

rank higher, the use of hardware resources can increase exponentially. Orchestrations

typically consume services that take some time to deliver the response. The BizTalk

Server engine will not ever know when the response is going to get back to the flow

because what is happening under the hood of the service is completely out of the scope

of the BizTalk Server engine. Now, imagine that at some point an application has an

orchestration that executes 1000 instances simultaneously. If the total in-memory

representation of that orchestration is 300 KB, the 1.000 instances will consume

300.000 KB (292 MB) of the process memory.

Chapter 6 Developing High-Performance Solutions

318

While orchestrations are idle, ready to run or waiting for something to happen, the

BizTalk Server engine will store the orchestration state to the Message Box database to

save hardware resources related to the BizTalk Server machine. In the previous example,

if all orchestrations wait for the response at the same time, 292 MB of memory will be

released as all orchestration states are stored into the Message Box database.

When orchestrations get activated again, the orchestration loads the orchestration

state from the latest point and resumes the flow of the orchestration. This process is

formally called rehydration.

Note  Dehydration may take place whenever the engine estimates that an
orchestration is idle for an extended period. The only exception to this rule is
when the flow of an orchestration enters an atomic scope. Actions taken within
an atomic scope do to initiate a dehydration situation because these types of
transactions persist the orchestration state only once, at the end of the scope.

While the orchestration engine oversees the dehydration feature, you can control its

behavior by changing the orchestration throttling settings at the host level.

Orchestration Throttling Settings Related to Dehydration at the Host Level

You can control the dehydration behavior of orchestrations by accessing the settings

shown in Figure 6-3 using the BizTalk Administration console at the host level.

Chapter 6 Developing High-Performance Solutions

319

Dehydration behavior:

•	 Never—This option is disabling the dehydration feature for all the

orchestrations running under that specific host. That means that

when an orchestration is consuming a service or waiting for another

event to occur, the orchestration engine will keep the orchestration

into memory. This option will alleviate SQL Server CPU, memory and

IO, but puts strain on memory consumption.

•	 Always—Dehydration will occur always. While this option will save

memory resources to the BizTalk machine, it can potentially cause an

overhead to the SQL Server hosting the Message Box database.

•	 Custom—Dehydration will take place based on the Time Based or

Subscriptions thresholds.

Figure 6-3.  Accessing orchestrations throttling settings at the host level

Chapter 6 Developing High-Performance Solutions

320

Time Based:

•	 Maximum threshold—Idle orchestrations will be held into the host

instance memory for a maximum number of seconds specified

by this setting. After that, the orchestration engine forces the

dehydration of the orchestration (if it is still idle). The default value is

1800 seconds (30 minutes).

•	 Minimum threshold—Orchestrations are considered for dehydration

when they are idle for at least the number of seconds specified in this

threshold.

For example, if you set the minimum threshold to one second, and all the

orchestrations of that host are completed in less than one second, the orchestration

engine will never dehydrate those orchestrations. On the other hand, if some

orchestration instances are idle for more than one second, the orchestration engine

considers those orchestrations for dehydration.

If, for some reason, there are orchestration instances taking longer than the

maximum threshold, the orchestration engine will force dehydration if orchestrations

are idle.

Subscriptions:

•	 Pause at—Orchestrations have subscriptions to messages that are

stored to the main host queue tables. When the number of messages

in this queue (associated with the orchestration subscription) is

equal or higher that the Pause at threshold, the messages are not

delivered to orchestrations instances until the number of messages in

the host queue decreases to the Resume At threshold.

•	 Resume at—As explained in the Pause At setting, this threshold

controls whether the message engine starts to deliver new message

instances to orchestrations.

For example, if you set the Pause At threshold to 1.000, the message engine stops

delivering messages to the orchestrations, running under that host, when the number of

associated messages to that orchestration, reaches 1.000.

If the resume at is set the Resume At threshold to 600, the message engine will

resume delivering messages to those orchestrations when the number of pending

messages decreases to 600 or below.

Chapter 6 Developing High-Performance Solutions

321

�Reducing the Impact of Persisted Data
BizTalk Server engine stores the orchestration state within the Message Box in the

following situations:

•	 End of a transactional scope (atomic or long running)

•	 At debugging breakpoints

•	 At a Start Orchestration shape

•	 At the Send shape (except in an atomic transaction)

•	 When an orchestration is suspended

•	 When the system shuts down in a controlled manner

•	 When dehydration occurs

•	 When an orchestration completes

Therefore, reducing the number of persistent points is all about making the right use

of transactional scopes and send shapes because the rest of situations are out of reach

(the engine controls orchestration events that cannot be modified).

�Reduce the Number of Persistent Points in Exception handling

If in a section of your orchestration you want to catch exceptions, but compensation or

timeout control is not required, then set the transaction type of that scope to none. This

technique will eliminate a persistent point from the whole process as the BizTalk Server

engine will not save the state of the orchestration when that scope finishes.

�Reduce the Number of Persistent Points in Sending Operations

If an orchestration needs to send multiple messages using a send shape per operation,

try these approaches instead:

•	 Encapsulate all the send operations with a send port group when the

outgoing message is the same one. With this action the engine will

persist the information only once because you are using only one

send shape.

Chapter 6 Developing High-Performance Solutions

322

•	 If the first option is not possible, then try to wrap up all the send

shapes within an atomic scope because atomic scopes generate only

one persistent point at the end of the scope.

For instance, imagine that you have an orchestration that has to send three messages

to three different destination systems, as shown in Figure 6-4.

Figure 6-4.  Orchestration with three persistent points

If you develop the orchestration by adding three subsequent send shapes, the

orchestration engine will persist the orchestration state three times. If the application

ranks high in the application priority levels for the number of transactions, the amount

of persisted data per second will be large.

Therefore, as discussed, you can decrease the number of persistent points by

wrapping up all the send shapes within an atomic scope, as shown in Figure 6-5.

Chapter 6 Developing High-Performance Solutions

323

Figure 6-5.  Orchestration with one persistent point using an atomic scope

Chapter 6 Developing High-Performance Solutions

324

�Size of Persisted Data

Try to keep the size of an orchestration as small as possible by declaring variables and

messages at the most optimum level possible. In BizTalk Server you can declare variables

and messages at orchestration or at scope level, as shown in Figure 6-6.

Figure 6-6.  Declaration of variable and messages at different levels

Variables and messages declared at orchestration level are always stored in the

Message Box in each persistent point, while the ones declared at scope level will be only

stored if the scope has not been completed yet. This small action will reduce the time

spent by the host instance when storing and retrieving persisted data from the Message

Box database. This is essential for all BizTalk Server applications, but it is especially

crucial for solutions where application priority levels rank higher for the transaction

levels.

Chapter 6 Developing High-Performance Solutions

325

For instance, imagine that an orchestration needs to process 100 transactions per

second and it is using a message of 10 KB size that is declared at orchestration level.

Making some quick calculations, you get the following data: 100 KB * 100 = 10.000 KB

per second to store that message per orchestration persistent point.

If the orchestration has 10 persistent points, you get a total size of 100.000 KB

(around 97 MB) of persisted information, and only for that message!

Declaring that message at scope level, if only two persistent points are occurring at

that scope, that will reduce the size of the persisted data to 20% because now, only two

persistent points out of 10 will store that message.

�Improving Orchestration Latency
The following sections discuss the most common techniques to reduce orchestration

latency.

�Loading and Unloading Assemblies Into Memory

When host instances start, they load all the assemblies into the memory associated to

the host instance process. The first request can take up to 15 seconds to start processing

messages. If an orchestration is idle for a long time (ready to run or dehydrated) or if The

BizTalk host instances has not process a new orchestration instance for more than 30

minutes, assemblies will be unloaded from the host instance until a new request arrives.

You can control the way host instances load and unload assemblies by adding a

configuration setting to the BizTalk configuration file that is called AppDomain.

This setting allows you to define profiles with shared settings so that you can assign

BizTalk Server assemblies to load with those profile configuration settings. If you do not

specify custom profiles, in other words if you do not want specific settings per BizTalk

Server assembly, there is a default profile called DefaultSpec that will be used to load all

the configuration.

<AppDomains AssembliesPerDomain ="10">

<DefaultSpec SecondsIdleBeforeShutdown="-1"

SecondsEmptyBeforeShutdown="1800">

</AppDomains>

Chapter 6 Developing High-Performance Solutions

326

•	 SecondsIdleBeforeShutdown—BizTalk Server host instances will

unload all the assemblies in this domain when all orchestrations are

idle for a period of time specified by the SecondsIdleBeforeShutdown

setting. Idle orchestrations are the ones that have the status as ready

to run or dehydrated. Specify -1 to when a domain should never

unload when idle.

•	 SecondsEmptyBeforeShutdown—BizTalk Server host instances will

unload all the assemblies in this domain when it is empty for a period

of time specified by the SecondsEmptyBeforeShutdown setting. This

is the number of seconds that an app domain is empty (does not

contain any orchestration instances) before being unloaded. Setting

it to -1 will cause the AppDomain to never unload, even when it’s

empty.

In the previous example, SecondsIdleBeforeShutdown is set to -1. Therefore,

BizTalk host instances will not unload assemblies that have idle orchestrations.

SecondsEmptyBeforeShutdown is set to 1800, and that means that when a domain gets

empty, the BizTalk Server engine will wait 30 minutes to unload all the assemblies

within the host instance and it will not load them until a new orchestration instance is

activated.

Note  When an idle but non-empty domain is unloaded, all the contained
orchestration instances are dehydrated first.

If you want to create a custom profile based on specific assemblies, with different

configuration than the default one, you have to add the AppDomainSpec section to the

AppDomainSpecs section.

For instance, imagine that you have a mission-critical application called

BookOrdersApplication and you want the BizTalk host instance processes to not unload

the BookOrders application assemblies (even when they are empty for an extended

period).

Chapter 6 Developing High-Performance Solutions

327

First, you have to create the custom AppDomain by adding the AppDomainSpec section

to the AppDomainSpecs section:

<AppDomainSpecs>

 �<AppDomainSpec Name="DomainForBookOrdersAppplication"

SecondsIdleBeforeShutdown="-1" SecondsEmptyBeforeShutdown="-1">

 �</AppDomainSpec>

</AppDomainSpecs>

And now you just need to tell the BizTalk Server engine which assemblies should be

considered as part of the custom domain “DomainForBookOrdersAppplication”. To do

that, you need to create an ExactAssignmentRules and include all the assemblies for the

custom domain:

<ExactAssignmentRules>

 �<ExactAssignmentRule AssemblyName="BookOrdersSolution,

Version=1.0.0.0, Culture=neutral, PublicKeyToken=9c7731c5584592ad"

 AssemblyName_0=""" AppDomainName="

DomainForBookOrdersAppplication =""" />AppDomainName_1" />

�Replacing Send Shapes by Custom Code

Especially for applications where application transaction or performance behavior levels

rank higher, consider removing the send shapes and implementing the send operation

using a custom .NET component.

This technique will reduce latency of the orchestration, because the custom code

evades the BizTalk messaging engine, and provides the following benefits:

•	 It will reduce the number of round trips to the Message Box database.

•	 As you are eliminating a send shape, the orchestration will have a

persistent point less.

However, by implementing a custom send operation, you are not accessing the

following BizTalk Server features:

•	 Pipeline features such as recovery interchange, message validation,

disassembling and decoding/encoding, party resolution

•	 Send port retries

Chapter 6 Developing High-Performance Solutions

328

•	 Send port scheduling options

•	 Correlation

•	 Backup transports

•	 Tracking

•	 Integrated monitoring and troubleshooting using the BizTalk

administration console

�Creating Static Classes

Whenever you are developing a custom .NET component to provide additional functionality

to orchestrations, consider creating them as static because they provide the following

benefits:

•	 Hardware resources—Since static classes have no internal state, the host

instance will reduce hardware resources such as memory and CPU.

•	 Decreasing the orchestration state size—This is very important because

the orchestration engine will not have to save the status of the

component on every persistent point or whenever it needs to dehydrate.

•	 Avoiding atomic scopes—Since components that require serialization

must me placed under an atomic scope, .NET components

exposing static classes or methods will not require to implement

the serializable attribute and can be consumed everywhere in the

orchestration without the need of using an atomic scope. This will

reduce the number of persistent points per orchestration because

atomic scopes generate a persistent point at the end of the scope.

To create a class or method as static, you just need to add the static modifier to the

declaration. The following example outlines how to achieve this:

public static class BizTalkServerHelper

{

 public static string GetConnectionString(string connectionString)

 {

 return _connectionString;

 }

Chapter 6 Developing High-Performance Solutions

329

 public static GetProperty (string itemProperty)

 {

 return _itemProperty;

 }

}

�Controlling Orchestration Memory Consumption
Especially for large messages scenarios where orchestrations consume large amounts of

memory, you might have the need of tuning the default throttling behavior of memory

consumption at the host instance level.

You can access these settings using the BizTalk Administration console at the host

instance level, as shown in Figure 6-7.

Figure 6-7.  Accessing orchestrations throttling settings at the host instance level

Chapter 6 Developing High-Performance Solutions

330

As you can see, there are two sections—Physical and Virtual. The first one refers

thresholds related to physical memory consumption while the second one refers to

virtual process memory consumption. Both sections have Optimal and Maximal usage

thresholds that behave the same way, but specifically dedicated for the type of memory

that they are related to. The threshold explanation is as follows:

•	 Optimal usage—When the consumed physical/virtual memory for

that host instance is below this threshold, the engine does not throttle

orchestrations. On the other hand, if it reaches this threshold, the

orchestration engine will start throttling orchestrations instances to

save physical/virtual memory resources.

•	 Maximal usage—If the consumed physical/virtual memory reaches

this value, the throttling condition becomes very aggressive and the

host instance will not load new orchestrations until the consumed

memory decreases to a value close to the optimal usage. Maximum

usage should be equal or greater than the optimal usage threshold.

For instance, imagine that you have one BizTalk Server with 16 GB of available

memory.

You are developing a high throughput application that process a 5 MB file within an

orchestration. Because you are creating two messages of that schema type to perform

transformations and temporary operations, BizTalk Server loads 10 MB into memory per

orchestration instance.

Additionally, you are using four XPath expressions to access the content of specific

elements within the message. As XPath expressions load the full message into memory,

you must add another 20 MB per orchestration instance.

Now, imagine that the number of concurrent orchestrations could potentially reach

to 400.

Performing a quick calculation, you get: 400 orchestration instances * (10 MB

message size + 20MG of XPath expressions) = 12.000 MB (12 GB) of memory used by the

host instance in the orchestration scenario.

Note  For simplification reasons, calculations do not include any extra data
related to the orchestration itself such as variables, objects, and intrinsic
orchestration state.

Chapter 6 Developing High-Performance Solutions

331

As the server has 16 GB, a consumption of 12 GB means a 75%. In this scenario the

orchestration engine will start throttling orchestrations because the consumed memory

exceeds the default 70% for the Optimal Usage threshold.

�Reducing Orchestration Complexity
As orchestration complexity increases, performance decreases, as most likely the

following elements will also increase:

•	 Number of shapes that the orchestration executes

•	 Number of persistent points

•	 Number of messages and variables

•	 Dehydration cycles

•	 Consumed memory

•	 Access to I/O (network and disk)

•	 CPU resources

Try to design business processes using a modular style by using the same concept

of canonical schemas but applied to orchestrations. Create orchestrations that you can

reuse for several scenarios or try to segment orchestrations to isolate functionalities into

different orchestrations.

For example, imagine that you have developed several Web API services that exposes

business functionality through REST. You have an orchestration that is calling those

REST services seven times during the flow. To consume those REST services within the

orchestration, you have inserted seven request/response ports. The solution works fine,

but the orchestration looks huge and complex. Deployment is also complicated as you

must bind seven extra logical ports to physical ports. This is a perfect situation to isolate

the REST service call in a separated orchestration. The new orchestration will use the

canonical schema technique, so that changes at REST services level will not affect the

business orchestration. The business orchestration will call the nested orchestration,

providing the name of the service and the operation to execute, and it will do that

sending and receiving canonical messages through the child orchestration.

Chapter 6 Developing High-Performance Solutions

332

�Improving Maps Execution
Adjusting the temp folder location and using the XslCompiledTransform class will speed

up map processing, especially if a fast disk is deployed in the local server.

�BizTalk Host Instance Temp Folder Location
BizTalk Server engine uses the host instance account temp folder to stream files to disk

when maps are executed. You should consider placing the temp folder in a separated

disk to reduce the chances of disk contention. This is especially true when maps are

executed under the following conditions:

•	 Processing large messages or complex schemas.

•	 Complex maps with hundreds of links or more.

�Using the XslCompiledTransform Class
BizTalk 2016 introduces the use of the XslCompiledTransform class. This class is used to

compile and execute XSLT transformations. In most cases, the XslCompiledTransform

class significantly outperforms the XslTransform class in terms of the time needed to

execute the same XSLT against the same inbound XML document.

There is only one performance limitation with this new class: Because the XSLT is

compiled to MSIL, the first time the transform is executed, there is a performance delay

because the map need to be compiled first. However, following executions are much

faster than using XslTransform.

You can decide whether to use the XslCompiledTransform class by accessing the

map property called Use XSL Transform, as shown in Figure 6-8.

Chapter 6 Developing High-Performance Solutions

http://msdn.microsoft.com/en-us/library/0610k0w4.aspx
http://msdn.microsoft.com/en-us/library/system.xml.xsl.xsltransform.aspx

333

When you create a new map, the property is set to Undefined by default (same as

true). That means that the map will be executed using the old non-compiled version.

If you want to use the compiled version, you must set the property to false.

Note  The recommendation is that you test the application with both settings and
choose the one that gives you the best performance.

�Improving Pipelines
There are several techniques to improve custom pipeline processing, but probably the

most relevant ones are related to efficient memory management. In this section, you

learn about using passthru pipelines, disposing objects efficiently, and how to avoid

loading the full message into memory using streaming technology.

Figure 6-8.  Examining the Use XSL Transform property

Chapter 6 Developing High-Performance Solutions

334

�Use the PassThru Pipelines
The default passthru pipelines for receiving and sending do not use any pipeline

component in the pipeline stages. Because of that, they just treat the message as a chunk

of data. Therefore, if your solution does not require accessing the data of the message,

you can set up the PassThruReceive pipeline.

The same concept can be used in the sending layer. If the message to be sent

is already prepared for the destination system, you should consider setting up the

PassThruTransmit pipeline. In this scenario, message validation will be done by the

destination system, not by the sending layer.

�Disposing of Objects
Although this is a general best practice for any kind of development, this is especially

true for pipelines that are part of applications that rank higher in the transaction

application priority levels. You should consider disposing your objects such as helpers,

database connections, or any other unmanaged resources. Failure to do this could cause

a memory leak in the server, preventing BizTalk Server host instances from accessing

memory resources that could have been released before.

In your .NET custom components, you can provide explicit control by implementing

the IDisposable interface and override the declaration by adding custom code that will

release external resources such as database connections, network drives, and so on.

Then, you can call this method to make sure everything is released.

BizTalk Server message engine uses the concept of resource tracker to add to

it references of objects that must be released at a specific moment of time. Custom

pipeline components can add objects to this tracker through an instance of an

IPipelineContext object and then the engine will release them just when the pipeline

execution has completed successfully.

For instance, in the Execute method of a custom pipeline component (explained

deeply in further sections), you can load the message into a memory stream object and

then add this instance to the resource tracker so that the message engine will terminate

it when the pipeline completes.

Chapter 6 Developing High-Performance Solutions

335

public IBaseMessage Execute(IPipelineContext pContext, IBaseMessage pInMsg)

{

 MemoryStream messageData = new MemoryStream();

 //code to load the content of the message into the memoryStream

 . . .

 //�We add the memory stream to the resource so it gets disposed by the

message engine.

 pContext.ResourceTracker.AddResource(messageData);

 //rest of the code

 . . .

 return outMessage;

}

�Avoid Using XMLDocument Objects
Frequently, once a custom pipeline component receives a message, the application has

a requirement to read the receiving message to act based on the content by creating

context properties, validate the message or any custom activity. In such scenarios you

should avoid loading the message into an XMLDocument object because it will load the full

message into memory and its representation will cost up to 10 times the original data.

Instead of using the XMLDocument, consider creating an XMLTextReader that can

retrieve data from one of the following classes exposed by the Microsoft.BizTalk.

Streaming.dll assembly:

•	 VirtualStream

•	 ReadOnlySeekableStream

•	 SeekAbleReadOnlyStream

You can find an implementation of these techniques in the SDK installation folder of

BizTalk Server:

C:\Program Files (x86)\Microsoft BizTalk Server 2016\SDK\Samples\

Pipelines\ArbitraryXPathPropertyHandler.

Chapter 6 Developing High-Performance Solutions

336

An explanation of the scenario is detailed here:

https://docs.microsoft.com/en-us/biztalk/core/arbitrary-xpath-property-

handler-biztalk-server-sample?redirectedfrom=MSDN

�Developing Pipeline Components to Improve
Performance
When orchestrations are not required or can be avoided, consider implementing

advance processing at the pipeline level. This will improve performance as there will not

be added latency due to the orchestration engine (persistent points, dehydration, and

hardware resources).

Pipeline components are used in the pipeline phases to perform the following tasks:

•	 In receive pipelines—Decode, disassemble, validate, and party resolution.

•	 In send pipelines—Pre-assemble, assemble, and encode.

Custom pipeline components can be dragged and dropped to pipeline stages using

the Visual Studio toolbox. By default, BizTalk Server includes the pipeline components

outlined in Figure 6-9.

Figure 6-9.  Examining the BizTalk pipeline components in the toolbox

Chapter 6 Developing High-Performance Solutions

https://docs.microsoft.com/en-us/biztalk/core/arbitrary-xpath-property-handler-biztalk-server-sample?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/biztalk/core/arbitrary-xpath-property-handler-biztalk-server-sample?redirectedfrom=MSDN

337

You can create custom pipeline components to provide extended capabilities

that are not provided by all default pipelines. For example, you might have business

requirements to:

•	 Receive messages that are zipped.

•	 Send zipped messages.

•	 Look for a database setting and insert it into the message context

before the message gets published to the Message Box database.

•	 Improve the performance of the application by implementing the

orchestration functionality within the pipeline.

This section guides you through the process of custom pipeline component creation.

�Types of Pipeline Components
You can develop the following pipeline components:

•	 General—Designed to get one message (no batch), execute relevant

code, and return to BizTalk Server. See Figure 6-10.

Figure 6-10.  General custom pipeline component

Chapter 6 Developing High-Performance Solutions

338

•	 Assembling—Designed to receive several messages and send one

message to the engine. See Figure 6-11.

Figure 6-11.  Assembling custom pipeline component

•	 Disassembling—Designed to receive several messages and send one

message to the engine. See Figure 6-12.

Figure 6-12.  Disassembling custom pipeline component

Chapter 6 Developing High-Performance Solutions

339

�Custom Pipeline Interfaces
At the pipeline stage, the BizTalk Server engine executes several specific methods

to access the data stream that is going through the pipeline. Thus, your pipeline

components should implement those methods so that the BizTalk Server engine can

receive or send messages. The way to provide those methods is to implement several

interfaces that will help you send and receive messages to the BizTalk Messaging Engine.

Depending on the type of component you want to create (general, assembling, or

disassembling), you need to implement different interfaces.

Available interfaces:

•	 IBaseComponent—Provides standard information to the BizTalk

Engine and to the designer like Description, Name, and Version. It

is shared across the three types of components (general, assembling

and disassembling).

•	 IComponent—This interface is implemented only in general pipeline

components. It is exposing a method called Execute that is used to:

•	 Receive messages from the engine.

•	 Send processed messages back to the engine.

•	 IPipelineContext—Implements all document processing related

interfaces by providing the following main functionalities (among

others).

•	 Retrieves pipeline and stage configuration settings.

•	 Provides the mechanism to interpret XSD schemas and BizTalk

Server annotations.

•	 IPropertyBag—Used to store custom settings for the pipeline.

Developers will use them to regulate how a pipeline process

documents. It is exposes two methods:

•	 Read, which reads a custom setting.

•	 Write, which saves a custom setting.

•	 IPersistPropertyBag—Provides a mechanism to persist the

properties identified by the IpropertyBag interface.

Chapter 6 Developing High-Performance Solutions

340

•	 IDisassemblerComponent—Used only in disassembling custom

components and can be associated only with receive pipelines. It will

receive only one document and will produce one or more messages.

It is the typical scenario in which a batch message is received and

contains one or more child messages with the same structure. It

exposes two methods:

•	 Disassemble—It will disassemble the incoming message.

•	 GetNext—The disassemble method will create a set of messages.

You need call the GetNext method to loop through them. When

this method returns null, that means that you have reached the

end of the set.

•	 IAssemblerComponent—Used only in assembling custom

components. Therefore, it can be used only in sending pipelines.

it will receive multiple messages and will generate only one output

message. It exposes two methods:

•	 AddDocument—Creates a lest of messages that will be included in

the process of creating the individual output batching file.

•	 Assemble—Takes all the messages included in the previous list

and creates the batch message.

•	 IDocumentSpec—Used to perform actions to the message content,

such as:

•	 Writing properties into the message context.

•	 Removing properties from the message context.

•	 Changing the message body part.

•	 Adding or changing the target nameSpace property.

•	 IComponentUI—Used to display the icon in the Visual Studio toolbox

and to validate configuration properties.

•	 ICustomTypeDescriptor—Used to provide user friendly names and

descriptions of properties used in pipelines.

Chapter 6 Developing High-Performance Solutions

341

�Attributes of Pipeline Components
All custom pipeline components can behave in many ways. You can define custom

attributes to specify how the pipeline should be interpreted by the BizTalk Server engine

and use it in the right pipeline stage.

Here, you can see all the available attributes:

CATID_Any—Specifies a component with no specific category. Like

general components.

CATID_AssemblingSerializer—The component is an assembling

serializer.

CATID_Decoder—The component is a decoder.

CATID_DisassemblingParser—The component is a disassembling

parser.

CATID_Encoder—The component is an encoder.

CATID_Parser—The component is a parser.

CATID_PartyResolver—The component is a party resolver.

CATID_PipelineComponent—The component is a pipeline.

CATID_Receiver—The component is a receiver.

CATID_Serializer—The component is a serializer.

CATID_Streamer—The component is a streamer.

CATID_Transmitter—The component is a transmitter.

�Developing a General Custom Pipeline Component
As an example on how to use pipeline components to avoid orchestration scenarios, in

this section you are going to learn how to develop a general custom pipeline component

that writes a custom promoted property into the message context. The application uses

that promoted property later for a message routing scenario.

Figure 6-13 outlines what will you achieve.

Chapter 6 Developing High-Performance Solutions

342

�Solution Overview
The solution will be implemented by developing three BizTalk Server projects:

•	 The BizTalk project that will contain the schema used for property

promotion

•	 The Custom pipeline component

•	 The Testing BizTalk project

�Developing the Property Schema Project
This project will contain a schema file that implements the promoted property.

Follow these steps:

	 1.	 Using Visual Studio, create a new BizTalk project called

BookPromotedPropertiesSchema.

Figure 6-13.  Understanding the scenario

Chapter 6 Developing High-Performance Solutions

343

	 2.	 Add a new schema file called BookPromotedProperties.

	 3.	 Rename the main root name to PromotedProperties.

	 4.	 Go to the property schema file. Examine the Target Namespace

property. You use this schema to promote the properties later

in the pipeline code. https://BookPromotedProperties.

PropertySchema

	 5.	 Add the following Child Field elements:

•	 BookTrackId

•	 BookSystemId

	 6.	 Right-click the BookTrackId element and select Quick Promotion.

With this action, the BizTalk Editor creates the PropertySchema

schema that will be used to store all of the promoted properties.

	 7.	 Right-click the BookSystemId element and select Shows

Promotions.

	 8.	 Select the Property Fields tab.

	 9.	 In the Promote Properties dialog box, select BookSystemID and

click on the Add button. Click OK.

	 10.	 Choose Save All.

	 11.	 Sign the output assembly by accessing the project properties.

Right-click at the Project level and choose to deploy. The

schemas will be deployed on the default application.

Using Visual Studio, create a new BizTalk project called

BookPromotedPropertiesSchema.

�Developing the Custom Pipeline Component Project
In this section, you create a fully functional general custom pipeline component that will

be used to write the properties created previously to the message context.

The idea is that the pipeline will expose the properties outlined in Figure 6-14 in the

pipeline user interface.

Chapter 6 Developing High-Performance Solutions

344

So that whenever a message goes through the pipeline, the BookTrackId property

will be filled with the custom PropertyValue 1234.

�Creating the Visual Studio Project for the Custom Pipeline
Component
All general custom pipelines components should implement the following interfaces:

•	 IBaseComponent

•	 IComponent

•	 IComponentUI

•	 IPersistPropertyBag

Figure 6-14.  Examining the custom pipeline properties

Chapter 6 Developing High-Performance Solutions

345

Follow these steps:

	 1.	 Open Visual Studio as an administrator and create a new Visual

Studio project.

	 2.	 From the Templates menu, choose Visual C#, select Class Library,

and navigate to the location where you want to save it.

	 3.	 Type PropertyGeneratorPipeline in the Name and click OK.

	 4.	 Rename the default CS class file to PropertyGeneratorPipeline.cs.

	 5.	 Add the following references to the project as they will be used by

the BizTalk Server Engine:

•	 Microsoft.BizTalk.Pipeline, located in C:\Program Files

(x86)\Microsoft BizTalk Server 2016\Microsoft.BizTalk.

Pipeline.dll

•	 Microsoft.XLANG.BaseTypes, located in C:\Program Files

(x86)\Microsoft BizTalk Server 2016\Microsoft.XLANGs.

BaseTypes.dll

•	 Microsoft.XLANG.BizTalk.Engine, located in C:\Program

Files (x86)\Microsoft BizTalk Server 2016\Microsoft.

XLANGs.BizTalk.Engine.dll

•	 Microsoft.XLANG.BizTalk.ProcessInterface, located in C:\

Program Files (x86)\Microsoft BizTalk Server 2016\

Microsoft.XLANGs.BizTalk.ProcessInterface.dll

•	 Microsoft.XLANG.Engine, located in C:\Program Files (x86)\

Microsoft BizTalk Server 2016\Microsoft.XLANGs.Engine.dll

•	 System.Drawing, located in C:\Program Files (x86)\Reference

Assemblies\Microsoft\Framework\.NETFramework\v4.5\

System.Drawing.dll

	 6.	 Once you’ve added these, set the Copy Local property to True for

all references but System.Drawing (it should be done by default).

	 7.	 Go to the project settings and sign the assembly with a new strong

name key file.

Chapter 6 Developing High-Performance Solutions

346

	 8.	 Go to the Application category under the project settings and

change the target Framework to point to .NET Framework 4.6.

	 9.	 In the Application Category, click the AssemblyInformation button.

	 10.	 Enable the Make Assembly COM Visible setting.

	 11.	 Save all your changes.

	 12.	 Open the PropertyGeneratorPipeline file and add the following

using statements to the namespace:

 namespace PropertyGeneratorPipeline

{

 using System;

 using System.Resources;

 using System.Drawing;

 using System.Collections;

 using System.Reflection;

 using System.ComponentModel;

 using System.Text;

 using System.IO;

 using Microsoft.BizTalk.Message.Interop;

 using Microsoft.BizTalk.Component.Interop;

	 13.	 Now it’s time to tell to the BizTalk engine that our component

is a general custom pipeline component. You do that by adding

the ComponentCategory attribute and setting it to CATID_

PipelineComponent so that it can be used in the Validate stage of

the pipeline (it could act as a validator).

	 14.	 Type the following code just before the

PropertyGeneratorPipeline class definition:

//the component is a pipeline

[ComponentCategory(CategoryTypes.CATID_PipelineComponent)]

//the component is a general component

[ComponentCategory(CategoryTypes.CATID_Any)]

//it can be used in the validate stage at the pipeline component.

[ComponentCategory(CategoryTypes.CATID_Validate)]

Chapter 6 Developing High-Performance Solutions

347

	 15.	 Navigate to the PropertyGeneratorPipeline class definition and

insert the following private variable declarations:

public class PropertyGeneratorPipeline

 {

 private string customPromotedPropertyName = null;

 private string customPromotedPropertyNameSpace = null;

 private string customPromotedPropertyValue = null;

You use these variables to save the local properties defined in the pipeline user

interface.

Namespaces Warning! A s with every .NET application, custom pipeline
components elements (methods, properties, interfaces, and so on) are accessible
through namespaces. It is very important that you set up the namespaces properly.
If you do not, you cannot add the pipeline component to Visual Studio toolbox and
you will get the following error:

"You have selected an invalid pipeline component assembly.
Please check security settings for the assembly if you are
loading it from an UNC path"

To prevent this issue, you must check that your class namespace specification is
the same as the project nameSpace.

In this scenario, the class namespace is:

namespace Microsoft.BizTalk.Pipelines.CustomComponent.
PropertyGeneratorPipeline

{

Go to the project settings and verify that the default namespace property is
identical.

Chapter 6 Developing High-Performance Solutions

348

�Adding a Resource File

You use resources to save the literal strings you use in the pipeline user interface and to

store pipeline properties (such as Namespace, Name, and Value). See Figure 6-15.

Figure 6-15.  Examining the custom pipeline properties

Follow these steps:

	 1.	 In Visual Studio, right-click at the project level, choose Select

New Item, Navigate to the Visual C# Items, and go to the General

section. Select Resource File and type the following name:

PropertyGeneratorResourceFile.rex

	 2.	 Add the following string resources:

	 a.	 Containers for user settings:

•	 customPromotedPropertyNameProp

•	 customPromotedPropertyNameSpaceProp

•	 CustomPromotedPropertyValueProp

Chapter 6 Developing High-Performance Solutions

349

Leave the three of them with empty values, as they will be filled in later by the user

using the pipeline user interface.

	 b.	 Containers to show the caption that the pipeline interface shows:

•	 customPromotedPropertyNameSpaceText. Value: Custom

namespace

•	 customPromotedPropertyNameText. Value: Name of the

property to promote

•	 customPromotedPropertyValueText. Value: Value of the

promoted Property

	 3.	 Now you are going to create the icon that will be shown in the

Visual Studio toolbox. Click the Add Resource menu, go to New

Image, and select BMP Image, as shown in Figure 6-16.

Figure 6-16.  Adding a new image to a resource file

Chapter 6 Developing High-Performance Solutions

350

The Image designer tool will now load. Create your own icon; be creative!

	 4.	 Go back to the PropertyGeneratorPipeline class and below the

local variables declarations, add a resource manager object to

access the pipeline design properties:

private string customPromotedPropertyName = null;

private string customPromotedPropertyNameSpace = null;

private string customPromotedPropertyValue = null;

static ResourceManager resManager = new

ResourceManager("Microsoft.BizTalk.Pipelines.CustomComponent.

PropertyGeneratorPipeline", Assembly.GetExecutingAssembly());

[System.Runtime.InteropServices.Guid("48BEC85A-20EE-40ad-

BFD0-319B59A0DDBC")]

Note  You should paste the GUID generated in the GetClassID method of the
Interface IPersistPropertyBag. Leave it like this for the moment, as it will be
discussed again when the time comes.

�Adding the MsgDescriptionClass.cs

This already created class provides the required functionality to deal with Resource

Manager properties. As it is not BizTalk Server related, it has been included in the book

for reference.

You can visit https://msdn.microsoft.com/en-us/library/system.resources.

resourcemanager(v=vs.110).aspx to get more Information about Resource Manager

implementations.

	 1.	 Right-click the Visual Studio Project and choose Add Exiting Item.

Navigate to Module 6 source code folder and locate the class file

called MsgDescription.cs.

	 2.	 Choose Save All.

Chapter 6 Developing High-Performance Solutions

https://msdn.microsoft.com/en-us/library/system.resources.resourcemanager(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.resources.resourcemanager(v=vs.110).aspx

351

�Implementing the custom Interface BaseCustomTypeDescriptor

The MsgDescriptionClass.cs class defines a custom interface called

BaseCustomTypeDescriptor. It contains all the logic to access the Resource Manager

Information and retrieve and set properties in the resource file. In this section, you

enable this implementation in the PropertyGeneratorPipeline class so that the custom

pipeline component can access the user interface properties.

	 1.	 Add the implement BaseCustomTypeDescriptor to the the

PropertyGeneratorPipeline class:

public class PropertyGeneratorPipeline : BaseCustomTypeDescriptor

	 2.	 Select the BaseCustomTypeDescriptor statement and auto-

generate the constructor by selecting the Implement Interface

Code Generator.

Notice that Visual Studio will generate all the implementation

code for us. It is recommended that you use regions, so the code

will be clearer later. Change the constructor and adapt it to the

following, assigning the already created resManager object:

public PropertyGeneratorPipeline() : base(resManager)

 {

 }

Let’s define now all the properties that will help us to interact with

the user defined properties in the pipeline:

	 3.	 Add the implementation for the PropertyName property.

[MsgPropertyName("customPromotedPropertyNameProp"),

 MsgDescription("customPromotedPropertyNamePropText")]

 public string PropertyName

{

 get { return customPromotedPropertyName; }

 set { customPromotedPropertyName = value; }

}

Chapter 6 Developing High-Performance Solutions

352

	 4.	 Add the implementation for the NameSpace property.

 [

MsgPropertyName("customPromotedPropertyNameSpaceProp"),

MsgDescription("customPromotedPropertyNameSpaceText")

]

 public string NameSpace

 {

 get { return customPromotedPropertyNameSpace; }

 set { customPromotedPropertyNameSpace = value; }

 }

	 5.	 Add the implementation for the PropertyValue property.

[MsgPropertyName("customPromotedPropertyValueProp"),

 MsgDescription("customPromotedPropertyValueText ")

]

 public string PropertyValue

 {

 get { return customPromotedPropertyValue; }

 set { customPromotedPropertyValue = value; }

 }

�Implementing the IBaseComponent Interface

The IBaseComponent interface provides standard information to the BizTalk Engine and

to the designer like Description, Name, and Version. It is shared across the three types of

components (general, assembling, and disassembling).

Follow these steps:

	 1.	 Add the implement IBaseComponent to the class

PropertyGeneratorPipeline:

public class PropertyGeneratorPipeline : IBaseComponent

	 2.	 Select the IBaseComponent statement and auto-generate the

implementation by selecting the Implement Interface Code

Generator. See Figure 6-17.

Chapter 6 Developing High-Performance Solutions

353

	 3.	 Notice that Visual Studio will generate all the implementation

code for us. In this case, we will be using a region called #region

IBaseComponent.

Let’s write the code to implement all the interface properties.

	 4.	 Navigate to the property Name and type the following code:

get { return "Property Generator Component"; }

This property will be used to show the name of the component in the Visual Studio

toolbox.

	 5.	 Navigate to the Description property and type the following code:

get { return "This pipeline will insert a custom promoted property"; }

This property will be used to show the description of the component in the Visual

Studio toolbox.

	 6.	 Navigate to the Version property and type the following code

get { return "0.99"; }

This property will be used to show the version of the component in the Visual Studio

toolbox.

	 7.	 Choose Save All.

Figure 6-17.  Implementing the interface declaration

Chapter 6 Developing High-Performance Solutions

354

�Implementing the IComponent Interface

This interface is implemented only in general pipeline components. It is exposing a

method called Execute that is used to:

•	 Receive messages from the engine

•	 Send processed messages back to the engine

Follow these steps:

	 1.	 Add the Microsoft.BizTalk.Component.Interop.IComponent

interface. We need the full BizTalk Server namespace notation

here because if not, Visual Studio will interpret we are trying to

use the System.ComponentModel.IComponent interface and not

the one provided by BizTalk Server.

public class PropertyGeneratorPipeline : IBaseComponent,

Microsoft.BizTalk.Component.Interop.IComponent

 {

	 2.	 As you did for the IBaseComponent interface, auto-generate the

implementation. Notice that Visual Studio will generate all the

implementation code for us. It is recommended that you use

regions, so the code will be clearer later. In this case, we will be

using a region called #region IComponent.

	 3.	 Navigate to the method InitNew and delete all the generated code

inside the method.

public void InitNew()

 {

 }

Note  If you do not delete the code, the pipeline properties will not be populated
because, by default, the code is throwing an exception.

Chapter 6 Developing High-Performance Solutions

355

	 4.	 Navigate to the Execute method and type the following code:

try

 {

 IBaseMessageContext msgContext = pInMsg.Context;

 �msgContext.Write(customPromotedProperty

Name, customPromotedPropertyNameSpace,

customPromotedPropertyValue);

 �msgContext.Promote(customPromotedPropert

yName, customPromotedPropertyNameSpace,

customPromotedPropertyValue);

 }

 catch (Exception ex)

 {

 if (pInMsg != null)

 {

 pInMsg.SetErrorInfo(ex);

 }

 throw ex;

 }

 return pInMsg;

The Execute method will be called by the BizTalk Engine to get the full incoming

message and publish it later to the Message Box database. As we want to write a new

promoted property to the context, we have first to get the context itself. The object

IBaseMessageContext has two methods to interact with the message context:

•	 Write—Used to write properties into the context.

•	 Promote—Used to promote a property into the context. Basically it is

changing the type from non-promoted to promoted.

Both methods are expecting the following parameters:

•	 NameSpace—Namespace in which the property will be written to the

context (customPromotedPropertyNameSpace)

•	 Name—Name of the promoted property (customPromotedPropertyName)

Chapter 6 Developing High-Performance Solutions

356

•	 Value—Value of the promoted property

(customPromotedPropertyValue)

In this pipeline, these properties are assigned by the user using

the pipeline user interface.

	 5.	 Choose Save All.

�Implementing the IPersistPropertyBag Interface

This interface is used to store custom settings for the pipeline. Developers use them to

regulate how a pipeline processes documents. It is exposes two methods:

•	 Read, which reads a custom setting.

•	 Write, which saves a custom setting.

Follow these steps:

	 1.	 Add the Microsoft.BizTalk.Component.Interop.

IPersistPropertyBag interface. We need the full BizTalk Server

namespace notation here because if not, Visual Studio will

interpret we are trying to use the System.ComponentModel.

IPersistPropertyBag interface.

public class PropertyGeneratorPipeline : IBaseComponent,

 Microsoft.BizTalk.Component.Interop.IComponent,

 Microsoft.BizTalk.Component.Interop.IPersistPropertyBag

	 2.	 As we did for the IBaseComponent Interface, auto-generate

the implementation. Notice that Visual Studio will generate all

the implementation code for us. It is recommended that you use

regions, so the code will be clearer later. In this case, we will be

using a region called #region IPersistPropertyBag.

	 3.	 We need no to create two methods for writing and reading values

from the properties assigned to the pipeline (in the user interface).

	 4.	 Create a new static method in the region IPersistPropertyBag

called ReadPropertyBag and type the following code:

Chapter 6 Developing High-Performance Solutions

357

private static object ReadPropertyBag(Microsoft.BizTalk.Component.

Interop.IPropertyBag pb, string propName)

 {

 object val = null;

 try

 {

 pb.Read(propName, out val, 0);

 }

 catch (ArgumentException)

 {

 return val;

 }

 catch (Exception ex)

 {

 throw new ApplicationException(ex.Message);

 }

 return val;

 }

	 5.	 Create a new static method in the region IPersistPropertyBag

called WritePropertyBag and type the following code:

private static void WritePropertyBag(Microsoft.BizTalk.Component.

Interop.IPropertyBag pb, string propName, object val)

 {

 try

 {

 pb.Write(propName, ref val);

 }

 catch (Exception ex)

 {

 throw new ApplicationException(ex.Message);

 }

 }

Chapter 6 Developing High-Performance Solutions

358

	 6.	 Navigate to the GetClassID method and type the following code:

classID = new System.Guid("48BEC85A-20EE-40ad-BFD0-319B59A0DDBC");

Generate a new GUID with the Visual Studio and paste it there. This GUID will be

referenced at the beginning of the class definition.

The method GetClassID will return the class ID of the component for usage from

unmanaged code.

	 7.	 Navigate to the Load method and type the following code:

string val = (string)ReadPropertyBag(propertyBag, "NameSpace");

if (val != null) NameSpace = val;

val = (string)ReadPropertyBag(propertyBag, "PropertyName");

if (val != null) PropertyName = val;

val = (string)ReadPropertyBag(propertyBag, "PropertyValue");

if (val != null) PropertyValue = val;

This method reads all property bags from the store. The BizTalk Engine will call the

Load method in two phases:

•	 When the pipeline initializes

•	 When the pipeline reads the data from a specific pipeline instance

	 8.	 Navigate to the Save method and type the following code:

object val = (object)customPromotedPropertyNameSpace;

WritePropertyBag(propertyBag, "NameSpace", val);

val = (object)customPromotedPropertyName;

WritePropertyBag(propertyBag, "PropertyName", val);

val = (object)customPromotedPropertyNameSpace;

WritePropertyBag(propertyBag, "PropertyValue", val);

This method writes all values to the property bag’s store. The administration console

will invoke the Save method when the user changes the values in the pipeline user

interface.

Chapter 6 Developing High-Performance Solutions

359

�Implementing the IComponentUI Interface

This interface is used to display the icon in the Visual Studio toolbox and to validate

configuration properties.

Follow these steps:

	 1.	 Add the IComponentUI Interface.

public class PropertyGeneratorPipeline : IBaseComponent,

 Microsoft.BizTalk.Component.Interop.IComponent,

 Microsoft.BizTalk.Component.Interop.IPersistPropertyBag,

 IComponentUI

	 2.	 As we did for the IBaseComponent Interface, auto-generate the

implementation. Notice that Visual Studio will generate all the

implementation code for us. It is recommended that you use

regions, so the code will be clearer later. In this case, we will be

using a region called #region IComponentUI.

	 3.	 Navigate to the Validate method and type the following code:

IEnumerator enumerator = null;

ArrayList strList = new ArrayList();

if ((customPromotedPropertyNameSpace != null) &&

(customPromotedPropertyNameSpace.Length >= 256))

{

 strList.Add("Invalid Name Space");

}

if ((customPromotedPropertyName != null) &&

(customPromotedPropertyName.Length >= 100))

{

 strList.Add("Invalid property Name");

}

 if ((customPromotedPropertyValue != null) &&

 (customPromotedPropertyValue.Length >= 256))

 {

Chapter 6 Developing High-Performance Solutions

360

 strList.Add("Invalid property value");

}

if (strList.Count > 0)

{

 enumerator = strList.GetEnumerator();

}

return enumerator;

This method will validate that the pipeline properties are not null and have the

appropriate size. If not, the user will get validation messages.

�Installing the Custom Pipeline Component

	 1.	 Deploy the assembly into the global assembly cache. Use the

Gacutil /I tool or any other preferred method.

	 2.	 Copy the output assembly to the BizTalk Server pipelines folder,

located by default in:

C:\Program Files (x86)\Microsoft BizTalk Server 2016\

Pipeline Components

BizTalk Server uses this folder to load all the pipeline components.

	 3.	 Using Visual Studio, right-click over the toolbox and select the

Choose Items option. Visual studio will show the component

loader tool.

	 4.	 Select BizTalk Pipeline Components tab and click on the Browse

button, as shown in Figure 6-18.

Chapter 6 Developing High-Performance Solutions

361

	 5.	 Navigate to C:\Program Files (x86)\Microsoft BizTalk

Server 2016\Pipeline Components and select the

PropertyGeneratorPipeline.dll file.

If everything went well, you should see now your brand new

pipeline component available in the toolbox when designing new

pipelines. See Figure 6-19.

Figure 6-18.  Adding the custom pipeline component to the toolbox

Chapter 6 Developing High-Performance Solutions

362

�Creating the Test Routing Application

Follow these steps to create a test routing application:

	 1.	 Using Visual Studio, create a new BizTalk Server project and call it

CustomPipelineTesting.

	 2.	 Add to the project a new receive pipeline.

	 3.	 Visual Studio will open the Pipeline Designer, as shown in

Figure 6-20.

Figure 6-19.  Adding the custom pipeline component to the toolbox

Chapter 6 Developing High-Performance Solutions

363

	 4.	 Now, using the toolbox, drag and drop the new custom pipeline

component into the validate stage of the pipeline and choose Save All.

	 5.	 Add a new Schema file and call it TestSchema.xsd.

	 6.	 Rename the main root name Book.

	 7.	 Add the following two field elements:

•	 ISBN

•	 Title

	 8.	 Choose Save All.

	 9.	 Sign the assembly using the Project properties.

	 10.	 Deploy the solution.

Figure 6-20.  Examining the pipeline designer

Chapter 6 Developing High-Performance Solutions

364

	 11.	 Ignore all warnings.

	 12.	 It is time now to create the receive port.

	 13.	 Open to the BizTalk Administration Console, go to BizTalk

Application 1, right-click at Receive port level, and select add new

One-way Receive Port.

	 14.	 Under the receive port properties, go to the receive locations

section and add a new receive location.

	 15.	 Type the desired name and select the adapter type to FILE.

	 16.	 Click on the Configure button and set the folder you want BizTalk

to receive messages from.

	 17.	 Go to Receive pipeline and choose our custompipelineTesting

pipeline from the dropbox.

	 18.	 Click on the ellipsis button and set the following values for the

custom properties:

•	 �NameSpace: https://BookPromotedProperties.

PropertySchema

•	 PropertyName: BookTrackId

•	 PropertyValue: 1234

•	 It should look similar to Figure 6-21.

Chapter 6 Developing High-Performance Solutions

365

	 19.	 Now we will create Send ports. Using the BizTalk Administration

Console, go to the Send ports section of BizTalk Server Application 1.

	 20.	 Create a new static one-way send port.

	 21.	 Rename it SendPortALL.

	 22.	 Select File as the adapter type and configure it to point to the

folder you want to Send All messages.

	 23.	 Go to the Filters section and create a new filter. This send port will

send all messages received by the receive port you have previously

configured. Create this filter expression:

BTS.ReceivePortName = ReceivePort1 (Go to step 19 and

verify the port name)

	 24.	 Click OK.

	 25.	 Create a new static one-way send port.

Figure 6-21.  Examining the pipeline properties

Chapter 6 Developing High-Performance Solutions

366

	 26.	 Rename it SendPort1234.

	 27.	 Select File as the adapter type and configure it to point to the

folder you want to send messages with BookTrackID = 1234.

	 28.	 Go to Filters section and create a new filter. This send port will

send all messages received by the receive port you have previously

configured. Create this filter expression:

BookPromotedProperties.PropertySchema.BookTrackId = 1234

	 29.	 Click OK.

	 30.	 Restart all host instances. This step is very important. Since we

have deployed a new pipeline, BizTalk host instances need to load

the new assemblies into the memory again.

	 31.	 Start the application and drop valid Book XML file instances on

the receiving folder (generate a new instance using the Generate

Instance tool in BizTalk Editor). The output send folders will have

all routed files.

�Summary
In this chapter you learned how to improve your BizTalk Server solutions from the basic

building blocks of the schemas to maps, orchestrations, and pipelines.

In general, you should develop your solutions to avoid or reduce the complexity

of the orchestrations involved. This is when the use of custom pipeline components

can boost your solution. In this scenario, pipelines can become crucial, especially for

applications that rank higher in the application priority levels.

In the next chapter, you learn two techniques that will enable you to reduce

application downtime.

Chapter 6 Developing High-Performance Solutions

367
© Agustín Mántaras 2019
A. Mántaras, BizTalk Server 2016, https://doi.org/10.1007/978-1-4842-3994-0_7

CHAPTER 7

Decreasing Downtime
In the previous chapter, you have learned how to develop solutions to improve schemas

definitions, orchestrations, and pipelines.

Another important factor of developing robust BizTalk Server solutions is to reduce

application downtime. If the application has a high availability level (HAL) of 9, high

availability is required. You will have to think of a strategy to provide high availability

with zero downtime (especially for long-running processes that cannot be stopped).

This chapter covers two techniques that help you reduce the downtime of BizTalk

Server applications:

•	 Side-by-side versioning

•	 Business rules

Although security is not a performance requirement, you will also learn how

to secure data using the Enterprise Single Sing-On database to protect application

configuration settings in a secured store.

�Side-by-Side Versioning
Most BizTalk Server applications provide functionality to mission-critical solutions

that must run 24x7 with no downtime. The complexity of these applications is usually

tremendous, as they interact with lots of different components and could potentially be

involved in long-running processes, that can remain active for days, months, or even

years. As you can guess, the deployment process of such applications becomes a very

delicate task, since you cannot stop them while they are processing instances.

Frequently, BizTalk developers and administrators deploy applications using the

BizTalk Administration Console or PowerShell scripts. If new installation binary files

include changes to orchestrations that are already running and processing instances,

the BizTalk administration console will not update the orchestration until the person

368

performing the change terminates/suspends active instances. The same will happen

to pipelines and schemas. Because of this, it is very important to develop a robust

deployment procedure.

�How Can You Solve this Problem?
There is a technique in .NET Framework called side-by-side versioning and it applies

to any kind of .NET assembly. Luckily for us, all BizTalk Server Solutions create .NET

assemblies, which means BizTalk Server is fully compatible with this technique, at the

application level only.

Side-by-side execution is the ability to run multiple versions of an application on

the same computer. You can have multiple versions of the CLR, and multiple versions of

applications that use a specific version of the runtime, all on the same computer at the

same time. See Figure 7-1.

Figure 7-1.  CLR side-by-side execution diagram

The .NET Framework extensively uses this feature to allow a server to run different

versions of the CLR engine. In most scenarios today, servers can run different .NET

Framework versions, such as 2.0, 3.5, 4.0, and 4.6x, and consumer applications decide

which engine the version will use by pointing to the right Global Assembly Cache store.

Chapter 7 Decreasing Downtime

369

Note  BizTalk Server 2016 does not support side-by-side execution at the CLR
Engine level, as Microsoft has tested the product in 4.6x versions of the .NET
Framework only.

�Component Version Side-by-Side Execution
This is the when BizTalk Server uses its full potential. Since the BizTalk Server

leverages the .NET Framework to execute applications at runtime, it uses assemblies to

encapsulate all BizTalk artifacts. Therefore, you could have different assembly versions

where orchestrations, pipelines, custom code, and whatever you want to include, also

have different versions.

In the diagram shown in Figure 7-2, Application 1 is using component Version 1

only. Applications 2 and 3 are using the same component but with Version 2. That will

allow BizTalk Server to simultaneously run different artifact versions within the same

BizTalk Server application. The idea is that you will be adding new functionalities to

the new version, while the old version will be still up and running and processing old

version flows.

Figure 7-2.  Component side-by-side execution diagram

Chapter 7 Decreasing Downtime

370

And there is more! By applying versioning to your BizTalk solutions, you can deploy

side-by-side without having to stop the old version. Therefore, old subscribers will be

still processing instances. It is recommended though that you create a new host for all

the new deployments because you will not have to restart the old host instances. As soon

as the old systems are no longer using the old version, you can un-deploy the previous

version of the orchestration.

�Applying Side-by-Side Versioning to a BizTalk
Server Project
In this section you learn how to apply side-by-side versioning to the book orders

solution.

Follow these steps:

	 1.	 Open File Explorer and go to C:\APRESS\Chapter7\SideBySide\.

	 2.	 Copy and paste the BookOrdersSolution to folder the same

location and rename it to BookOrdersSolutionVersion1.

Note I n an enterprise environment, instead of performing this action, you will label
your solution in TFS as version 1. As this book is not covering source code control
technologies, you are simulating labeling by creating a copy of the original folder.

	 3.	 In File Explorer, run the following setup command: C:\APRESS\

Chapter7\SideBySide\BookOrdersSolution\Setup\SetUp.cmd.

This script will deploy, start, and test BookOrdersApplication (you will

consider it version 1). The application will be running continuously,

even while you are deploying version 2; therefore, old instances will

not be affected since they will be running with version 1.

	 4.	 Open the solution C:\APRESS\Chapter7\SideBySide\

BookOrdersSolution\BookOrdersSolution.sln.

You will simulate a new version (version 2) of BookOrdersSolution by

performing the changes detailed in the following steps.

Chapter 7 Decreasing Downtime

371

	 5.	 Open the schema IncomingBookOrders.xsd and add a new

Element Field called OrderStatus. The idea here is that you

are forcing a change in the incoming message so that original

consumers can still send the old messages and new consumers

will initiate the process by sending the new format of the message.

See Figure 7-3.

Figure 7-3.  Examining the OrderStatus element

Figure 7-4.  Examining the CRMOrderState element

	 6.	 Change the minOccurs and MaxOccurs properties of Orderstatus

to 1. By implementing this change, this field must be present in

the incoming message; otherwise, message validation at pipeline

level will fail.

	 7.	 Open the schema CRMIncomingBookOrders.xsd and add new

Element field called CRMOrderState. This action will wrap the

OrderStatus into the simulated CRM application. See Figure 7-4.

	 8.	 Change the minOccurs and MaxOccurs properties to 1. Now the

field is mandatory.

	 9.	 Open the map Map_IncomingMessage_To_CRM_

CongratulationMessage.btm and create a new link button for the

two new Element fields. See Figure 7-5.

Chapter 7 Decreasing Downtime

372

	 10.	 Open the Map_IncomingBookOrders_To_CRMFormat.btm map

and create a new link button for the two new Element fields. See

Figure 7-6.

Figure 7-5.  Examining the OrderStatus map link

Figure 7-6.  Examining the Order status new map link

	 11.	 Open the orchestration and, just after the script shape

SetPerfCounters, add a new script shape and name it WriteLog.

Add the following code:

System.Diagnostics.EventLog.WriteEntry("Orchestration

Version 2", "new Message Received in orchestration version 2")

Chapter 7 Decreasing Downtime

373

This action will add a new log entry in the Windows Application Event

log so you can later see that the orchestration version 2 is processing

messages.

	 12.	 It is time to change the assembly version. Go to Project properties,

select the Application tab, and click on Assembly Information

button. Choose version 2 for the assembly and file versions and

click OK. See Figure 7-7.

Figure 7-7.  Examining the assembly and file versions

	 13.	 Choose Save All.

	 14.	 Build the solution.

	 15.	 Deploy the solution without stopping the old

BookOrdersSolution.

�Observing Both Versions

To understand how BizTalk Server side-by-side execution works, let’s examine the

differences after deploying application version 2.

Open the BizTalk Server Administration Console and refresh. As a result, you still

have only one BookOrdersApplication. However, if you explore all the application

sections you will notice some differences. Go to the Resources section and observe the

changes shown in Figure 7-8.

Chapter 7 Decreasing Downtime

374

There is a new resource for the BookOrdersSolution assembly, and the

version is 2.0.0.0.

Explore now the Maps section also, as shown in Figure 7-9.

Figure 7-8.  Examining the Resources section

Figure 7-9.  Examining the maps section

Chapter 7 Decreasing Downtime

375

You can see now version 1.0.0.0 and 2.0.0.0 in the same application.

Explore the schemas section, as shown in Figure 7-10.

Figure 7-10.  Examining the Schemas section

Figure 7-11.  Examining the Orchestrations section

The Property schema and the two business schemas have a new version deployed.

Next, explore the Orchestrations section, as shown in Figure 7-11.

Chapter 7 Decreasing Downtime

376

There is a new version of the orchestration. Notice that the version 1 is still up and

running. That means that existing running instances will not be affected by the changes.

Now, open Performance Monitor and look for the new version of the counters. You

have applied versioning also at performance counter level, as shown in Figure 7-12.

Figure 7-12.  Examining the versioned performance counters section

Orchestration version 2 is creating versioned counters, as the

PerformanceCountersHelper class supports that feature.

�Enabling Both Orchestrations to Run Side by Side

As soon as you deploy the new version, like business rules, BizTalk Server will invoke the

latest assembly version available. That means that once the application receives a new

transaction, the BizTalk Server engine will parse the message as version 2.0.0.0. This will

be a problem for the old orchestration, as it is linked to use version 1 of the assembly.

Chapter 7 Decreasing Downtime

377

At first glance, this behavior might look wrong, but it makes all the sense of the world,

as the idea is that new instances will be redirected to the new version only. If you need

the old version to work with new instances, you must adjust the documentSpecNames

property of the receiving pipeline.

Follow these steps to change the documentSpecNames property. First, set the

DocumentSpecNames property of the receiving pipeline to the old schema version. Then,

to generate a valid documentSpecNames property, do the following:

	 1.	 Using the BizTalk Administration console, go to the application

schema section and locate the assembly containing version 1. See

Figure 7-13.

Figure 7-13.  Locating the assembly with the older version

	 2.	 Right-click the schema and choose Properties.

	 3.	 Copy the content of name and assembly information into a

notepad, as shown in Figure 7-14.

Chapter 7 Decreasing Downtime

378

	 4.	 Concatenate both values into one, separated by a coma, like this:

BookOrdersSolution.schemas.IncomingBookOrders,BookOrders

Solution, Version=1.0.0.0, Culture=neutral, PublicKey

Token=e82fb5e911d58f5b

	 5.	 Using the BizTalkAdministration console, go to

BookOrdersApplication, locate the receive location

rlBookOrdersApp, and access the properties.

	 6.	 Go to the receive pipeline section and click on the ellipsis button.

	 7.	 Set the DocumentSpecNames property to the content you created

using Notepad (see Figure 7-15):

BookOrdersSolution.schemas.IncomingBookOrders,BookOrders

Solution, Version=1.0.0.0, Culture=neutral, PublicKeyTok

en=e82fb5e911d58f5b

Figure 7-14.  Obtaining the schema and assembly names

Chapter 7 Decreasing Downtime

379

	 8.	 Click OK.

Note I f the OK button is not enabled, change the cursor to any other property and
the button will be enabled again.

	 9.	 Test the solution, now dropping a file for version 1. To do it,

run this BAT file: C:\APRESS\Chapter7\BookOrdersSolution\

BookOrdersSolution\Ports\Send1VIPBookOrder.bat

Figure 7-15.  Setting the DocumentSpecNames property

Chapter 7 Decreasing Downtime

380

�What Happened?

The orchestration version 1 worked perfectly, but you get an error in version 2 saying

that it is expecting version 2:

Received unexpected message type 'BookOrdersSolution.schemas.

IncomingBookOrders, BookOrdersSolution, Version=1.0.0.0, Culture=neutral,

PublicKeyToken=e82fb5e911d58f5b' does not match expected type

'BookOrdersSolution.schemas.IncomingBookOrders, BookOrdersSolution,

Version=2.0.0.0, Culture=neutral, PublicKeyToken=e82fb5e911d58f5b'.

You are now getting this error because, in the previous action, you told BizTalk Server

to parse the incoming message as version 1. So, version 1 of the orchestration can still be

running and picking up messages. If you drop a version 2 message now, you will get the

same error because both messages have the same message type property.

�How Do You Fix This Situation?

If you want to maintain the same targetnamespace property for both versions of the

schema, the only solution is to create a new receive port with a different receive location

for orchestration version 2. With this approach, you will have both versions running in

parallel. Therefore, you will need to inform your source systems that the old version of

the application will be available until a certain point of time only. After that, you will

disable the original receive location and the system will only work with version 2.

�Using Business Rules to Reduce Deployment
To reduce the number of deployments, you can always consider using the Business

Rules Engine to separate certain business functionalities from orchestration processing.

The Business Rules Engine allows policies to be changed in real time. That means

that any orchestrations that consume those business rules do not need to be adjusted

when the business policy changes. Developers will change business rules by creating

new versions, and orchestrations, by default, will consume the latest version available

without the need to redeploy the application again.

Developers can create business rules using a tool called the Business Rules

Composer (or using Business Rule APIs). Once published, the policy cannot be

modified directly. To perform a change, a new version of the policy must be created.

Chapter 7 Decreasing Downtime

381

Once deployed, the policy can be called from a BizTalk orchestration and all the policy

evaluations will take place.

Business rules are put together into a single policy definition. That means that a

policy can have one or more rules. A rule is composed of a condition and an action.

Conditions are evaluated, and if they return true, a collection of actions are considered

for later execution.

Note  Keep in mind that in business rules there is no else option available.
Therefore, if you want to also perform an action when the condition is not met,
you have to add a new rule and create a new condition that encapsulates the else
situation.

Actions are not executed immediately after the condition is evaluated. Instead, the

Business Rules Engine will add that action to a temporary agenda and, when all rules are

evaluated, all actions within the agenda are executed based on priority.

Important P riority is designed to sort the actions by priority, not by the condition.

The source of information for a business rule is called a fact and developers define

them into vocabulary definitions. Using the Business Rules Composer, you can create the

following types of facts:

•	 A constant value, a range of values, or a set of values

•	 A .NET class or class member

•	 An XML document element or attribute

•	 A database table or column

�Policy Execution Steps
The Business Rules Engine follows these steps to execute a policy.

	 1.	 All facts are obtained.

	 2.	 All rules are evaluated.

Chapter 7 Decreasing Downtime

382

	 3.	 Actions of the rules that evaluate to true are added to the list of

actions to execute.

	 4.	 Actions are executed in descending order by priority. That means

that the higher-priority actions are executed first.

	 5.	 Facts are disposed.

Note I f an action changes a fact that is used as a condition of a rule, the rule will
be evaluated again.

�Business Rules Performance Recommendations
There are several recommendations and best practices that you should be aware of to

implement business rules successfully.

�Fact Types

The Business Rules Engine uses more resources to access XML and database facts.

Therefore, whenever possible, use .NET facts to improve performance.

�Database Types

To access a data from a database, developers usually create database facts within a

vocabulary by adding a new database definition to it.

You can follow these steps to create a fact that accesses database information:

	 1.	 Using the Facts Explorer, select the Add New Definition option, as

shown in Figure 7-16.

Chapter 7 Decreasing Downtime

383

Figure 7-16.  Adding a new vocabulary definition

Chapter 7 Decreasing Downtime

384

	 2.	 The Vocabulary wizard will appear. Select Database Table or

Column, as shown in Figure 7-17.

Figure 7-17.  Adding database vocabulary definitions

Chapter 7 Decreasing Downtime

385

	 3.	 The wizard will now show the data Binding Type options, as

shown in Figure 7-18.

	 4.	 To access a database to retrieve data, the Business Rules Engine

provides the following database types:

•	 DataConnection—Represents a table in a database accessed

through a database connection.

•	 TypedDataRow—This type is based on the ADO.NET DataRow object.

•	 TypedDataTable—Represents a collection of TypedDataRow objects.

Figure 7-18.  Setting the binding type

Chapter 7 Decreasing Downtime

386

The TypedDataTable type loads all data into the memory of the server, which can

cause a memory problem if the polled data is large. Therefore, you should avoid the use

of TypedDataTable in scenarios where the Business Rules Engine needs to retrieve a

large amount of data. For that propose, use the DataConnectionType, as it works more

efficiently.

�Caching Settings

The Business Rules Engine caches policies to improve performance. The first time a

policy is requested, the policy object is stored in the cache. BizTalk Server then loads

that object into memory and executes it. The subsequent policy requests are using the

cache object that is saved into the memory, reducing the execution time. The maximum

number of objects in the cache is controlled by a setting called CacheEntries and by

default is set to 32. If the number of frequent policies is higher than 32, you can increase

this setting to improve performance.

By default, the Business Rules Service checks for changes to the rule every 60

seconds. If there are changes, the service will update the cache object to reflect the

changes. The time of the checking cycle is regulated by the PollingInterval setting.
If your policies don’t change at all or change every other month, you should consider

increasing the PollingInterval value. This will save CPU resources as the Business

Rules Service will check for updates with less frequency.

If after one hour, a policy is not requested anymore, the Business Rules Service

removes it from the cache. This can be tuned by changing the CacheTimeOut setting.

You can adjust these settings by adding the Microsoft.RuleEngine section under the

configSections section:

<configuration>

 <configSections>

 �<section name="Microsoft.RuleEngine" type="System.Configuration.

SingleTagSectionHandler" />

 </configSections>

 <Microsoft.RuleEngine

 CacheEntries="120"

 CacheTimeout="1860"

 PollingInterval="30"

 />

</configuration>

Chapter 7 Decreasing Downtime

387

�Securing Application Configuration Settings
Enterprise applications usually have to access configuration data that, in most cases, is

very sensitive. Eventually, you will need to store connection strings, user information,

passwords, and settings that change the behavior of your applications like debugging

modes, performance analysis, and things like that. In today’s world, protecting this

information in a secure storage system decreases the chances of undesired attacks.

BizTalk Server relies on the Enterprise single sign-on database to store all the sensitive

data related to the engine configuration, such as adapters, ports, and application-related

settings. This database is already encrypted with a very strong key, and the good news is

that you can use it to store applications settings.

Figure 7-19 illustrates the Enterprise single sign-on database and shows how you can

use it by developing a custom .NET component that will access the store.

Figure 7-19.  Understanding the SSO database to store settings

Chapter 7 Decreasing Downtime

388

�The SSO MMC Snap-In Tool
Around 2009, the BizTalk Server product group team released an SSO Configuration

Application MMC snap-In that can be used to create the configuration values within

the store. You can download it at https://www.microsoft.com/en-us/download/

confirmation.aspx?id=14524.

Once you have downloaded it, you will see the following files:

•	 SSOMMCSnapInSetup.zip—Contains the installation files.

•	 SSOConfigurationApplicationMSBuildImportTask—If you want to

integrate the tool with MSBuild, you could reuse the script and the

DLL provided.

•	 SSOConfigurationApplicationClientHelper—It contains a C# class

that will help you build your helper to access SSO database config

settings.

Follow these steps:

	 1.	 Add your user to the SSO Administrators group.

	 2.	 Unzip the SSOMMCSnapInSetup.zip file.

	 3.	 Run Setup.exe.

	 4.	 Type your company name. This value will be used by the tool to

create the default application.

	 5.	 Click Next and then Finish.

�Using the Assembly Binding Redirect Feature to Point
to the Right Assembly

Unfortunately, at the moment of writing this book, the tool has not been updated to

work with the latest BizTalk Server versions. The Enterprise single sign-on feature uses

the assembly called Microsoft.EnterpriseSingleSignOn.Interop.dll, and for BizTalk

2016, the current version is 10.0.1000.0. However, the SSO MMC Snap-in uses an old

version 5.0.1.0, which is for BizTalk 2009, and if you attempt to run the tool without any

modification, it will fail.

Chapter 7 Decreasing Downtime

https://www.microsoft.com/en-us/download/confirmation.aspx?id=14524
https://www.microsoft.com/en-us/download/confirmation.aspx?id=14524

389

Luckily there is a .NET Framework feature called Assembly Binding Redirect. By

using this option, you can redirect an assembly to a different version. You can change

the MMC snap-in config file to use the latest Microsoft.EnterpriseSingleSignOn.

Interop.dll version.

Follow these steps to do so:

	 1.	 Using the File Explorer, go to C:\Program Files (x86)\

Microsoft Services\SSO Application Configuration and edit

the SSOMMCSnapIn.dll.config file.

	 2.	 Under the Configuration setting, add the setting shown in

Figure 7-20.

Figure 7-20.  Enabling the assembly redirect option

	 3.	 Save the file.

Chapter 7 Decreasing Downtime

390

�Adding New Keys to the SSO Store
This section shows you how to add new keys to the SSO store. The key concept is very

similar to C# hash tables, where elements are defined with a key and a value.

Follow these steps:

	 1.	 Open the SSO Application Configuration Tool, located by default here:

C:\Program Files (x86)\Microsoft Services\SSO Application

Configuration\SSO Application Configuration.msc.

	 2.	 Right-click at the main root level, in our case that’s

DevelopingBizTalk2016Solutions, and choose Add Application,

as shown in Figure 7-21.

	 3.	 The tool will set the default name to newApplication. Right-click it

and choose Rename. Set the name to BookOrdersApplication.

Figure 7-21.  Adding an SSO application

Chapter 7 Decreasing Downtime

391

	 4.	 Right-click at BookOrdersApplication level and select the Add

Key Value Pair option, as shown in Figure 7-22.

	 5.	 Set the key to ForceCountersCreation and the value to 0, as

shown in Figure 7-23. Click OK.

Figure 7-22.  Adding a key value pair

Figure 7-23.  Setting the value for the key

Chapter 7 Decreasing Downtime

392

	 6.	 Create a new key called CongratulationMessage and set the value

to “Congratulations, you are a VIP Customer”. You will use this

later in the VIP customer map.

	 7.	 After the creation of these two keys, your screen should look

something like Figure 7-24.

�Importing and Exporting Application Configuration
You can also import and export your configuration settings through different

environments using a secure mechanism.

Follow these steps to export the SSO application settings:

	 1.	 Right-click the application you want to export.

	 2.	 Click on the Export Application menu item.

	 3.	 The Enter Key for Export dialog will appear. Type BookOrdersKey

as the encryption key, as shown in Figure 7-25.

Figure 7-24.  Examining the SSO application with the related values

Chapter 7 Decreasing Downtime

393

This key is used to encrypt the configuration data that is written to

the hard drive. You must use this same key when you import this

application.

	 4.	 Choose a location for the export file. If you open it, you will see the

encrypted data.

Follow these steps to import the SSO application settings:

	 1.	 Right-click at the root level.

	 2.	 Choose Import Application.

	 3.	 Locate the SSO file that contains the application settings you want

to import.

	 4.	 Type the key used when exporting the settings (see Figure 7-26).

	 5.	 Click OK.

Figure 7-25.  Examining the SSO application with the related values

Chapter 7 Decreasing Downtime

394

Note I f that application already exists, you will see new key/pairs added to the
existing application.

�Creating an SSO Helper Component
The tool comes with a C# class that you can reuse to create your own custom SSO helper

component. In this section, you learn how to incorporate this component in your BizTalk

Server solutions to access secure configuration data.

Follow these steps:

	 1.	 Open the BookOrders solution located at C:\APRESS\Chapter7\

SSOConfigStore\BookOrdersSolution\BookOrdersSolution.sln.

	 2.	 Add a new class library Visual C# project called SSOClientHelper.

	 3.	 Using File Explorer, locate the SSOClientHelper class file that

comes with the tool you downloaded previously.

	 4.	 Copy the class implementation from the SSOClientHelper class

and replace it in the default class1.cs file in the new solution.

	 5.	 Rename the class1.cs file to SSOClientHelper.

Figure 7-26.  Importing the encryption key

Chapter 7 Decreasing Downtime

395

	 6.	 Add the following references to the project:

•	 C:\Program Files\Common Files\Enterprise Single Sign-

On\Microsoft.BizTalk.Interop.SSOClient.dll

•	 C:\Program Files\Common Files\Enterprise Single Sign-

On\Microsoft.EnterpriseSingleSignOn.Interop.dll

	 7.	 Add the following using statements to the SSOClientHelper class file:

using System;

using System.Collections.Specialized;

using Microsoft.BizTalk.SSOClient.Interop;

	 8.	 Locate the SSOClientHelper class definition, add the serializable

attribute, and remove the static statement so you can use it in a

BizTalk Sever map:

Serializable]

 public class SSOClientHelper

 {

	 9.	 Sign the assembly using the project properties.

	 10.	 Choose Save All.

	 11.	 Build the project.

�Using the SSO Client Helper Component to Access SSO Data

In this example, you are going change BookOrdersApplication so the map will use the

SSOClientHelper component to access the BookOrders application SSO keys. This will fill

the Observations Element field with the text specified by the CongratulationMessage key.

	 1.	 Open the BookOrders solution located at C:\APRESS\Chapter7\

SSOConfigStore\BookOrdersSolution\BookOrdersSolution.sln.

	 2.	 Add a reference to the SSOClientHelper project created in the

previous section.

	 3.	 Open the orchestration called orcProcessBookOrders.

	 4.	 Open the Map_IncomingMessage_To_CRM_

CongratulationMessage.btm map.

Chapter 7 Decreasing Downtime

396

	 5.	 Delete all the existing links and functoids related to the

CRMObservations element field. See Figure 7-27.

Figure 7-27.  Changing the map to retrieve the SSO configuration values

	 6.	 Add a new scripting functoid and set up and configure it as follows.

In the Functoid Inputs tab, add two Input parameters (see

Figure 7-28):

	 a.	 Input[0]: Value BookOrdersApplication

	 b.	 Input[1]: Value CongratulationMessage

In the Script Functoid Configuration tab, set the following values:

	 a.	 Script Assembly: SSOClientHelper, version=1.0.0.0

	 b.	 ScriptClass: SSOClientHelper.SSOClientHelper

	 c.	 ScriptMethod: Read.

	 7.	 Choose Save All.

	 8.	 Choose Build All.

	 9.	 Run the command file C:\APRESS\Chapter7\SSOConfigStore\

BookOrdersSolution\Setup\SetUp.cmd to deploy and test the

application. If you did not go through all the previous steps, this

CMD file will just deploy the book orders base solution, which

does not contain SSO functionality. Additionally, if your solution

does not compile, this CMD file will also fail.

Chapter 7 Decreasing Downtime

397

�Summary
Decreasing downtime is a major issue when developing mission-critical solutions that

require processing messages 24x7, 365 days a year. In this chapter, you learned how to

decrease application downtime using side-by-side versioning and business rules to

derive the business flow from orchestration to the rule's engine.

Even though this book does not focus on security, this topic is a recurrent

requirement for the majority of BizTalk Server applications that rank higher on the

application priority levels, thus I decided to include the topic about storing configuration

data in the SSO database.

In the next chapter, you learn how to test your BizTalk Server solutions.

Figure 7-28.  Calling the SSO helper component in a map

Chapter 7 Decreasing Downtime

399
© Agustín Mántaras 2019
A. Mántaras, BizTalk Server 2016, https://doi.org/10.1007/978-1-4842-3994-0_8

CHAPTER 8

Monitoring Using
BizTalk 360
This chapter is focused on using the BizTalk 360 tool to monitor the BizTalk Server

platform. Once your BizTalk solutions are deployed into the production environment, it

is important that the BizTalk Server team be aware of the issues that are occurring on a

daily basis to proactively increase the health of the platform. For instance, you need to be

notified if a receive location or host is down.

The BizTalk experts at BizTalk 360 have identified challenges that customers have

faced in the past 10+ years. BizTalk Server customers usually build custom management

solutions on top of BizTalk to address all these challenges. Well, in this case, you do not

have to reinvent the wheel, as BizTalk 360 extends BizTalk Server monitoring to a point

where most scenarios are efficiently covered.

�Understanding Monitoring in BizTalk 360
In this section, you learn which types of monitoring exist in BizTalk 360 and how they

can be set up.

�Different Types of Monitoring
There are several different ways to monitor using BizTalk 360 and they are discussed in

this section. These possibilities are:

•	 Threshold monitoring—Used when a condition is violated, for

example, a receive location that’s expected to be enabled is disabled

due to a temporary failure.

400

•	 Health Check monitoring—Used, for example, to perform a daily

check at 9AM every business day.

•	 Data monitoring—Used, for example, to set up monitoring whether

specific workloads are really being processed, BAM milestones are

achieved, or alarms are raised based on suspended messages.

�Threshold Monitoring

When a threshold parameter is exceeded, BizTalk 360 can be configured to redirect

immediate alerts. If you want to monitor only during business hours, you can tell BizTalk

360 to send alerts only during a specific time of the day. When the situation comes back

to normal, you can set up the alert so that you will receive notification stating that the

original condition has been solved. If the issue happens frequently, it might overload

your inbox, so BizTalk 360 provides a mechanism to limit the number of notifications

that will be sent.

�Health Check Monitoring

It is common practice in supporting a BizTalk environment for support people to

maintain daily/weekly routines to check the health of the environment. You can use

BizTalk 360 to automate the daily health check process by creating a health check/status

alarm that checks at specific times (for example, Mon-Fri, 7AM).

�Data Monitoring

BizTalk 360 provides you with query builders that will help you access special BizTalk

Server information, such as the message box database to look for suspended service

instances, latency information, and active instances. If your solution is implementing the

business activity-monitoring feature, you can create queries to monitor BAM activities to

create specific alerts when a certain condition is met.

Chapter 8 Monitoring Using BizTalk 360

401

�Setting Up an Alarm
To configure an alarm, you need to follow these steps:

•	 Basic settings: Provide information such as name, email recipients,

and template email to use.

•	 Set the alarm type: The following options are available:

•	 Threshold,

•	 Health

•	 Data Monitoring

•	 Alarm mappings: Define the elements to monitor in this alarm.

�Configuring the Basic Settings

Follow these steps to configure the basic settings for an alarm.

	 1.	 Log in to the BizTalk 360 application as a Super User.

	 2.	 Access the Navigation panel on the left side of the screen and click

the Monitoring tab.

	 3.	 Click the Manage Alarms tab.

	 4.	 In the toolbar, click New Alarm and select the alarm type from the

drop-down.

•	 Threshold

•	 Health

•	 Data Monitoring

The Alarm - Basic section appears, as shown in Figure 8-1.

Chapter 8 Monitoring Using BizTalk 360

402

Fill in these fields:

•	 Alarm Name (required): A descriptive name of the alarm.

•	 Description: A detailed description on the purpose of this alarm.

•	 Disable Alarm for Maintenance: This allows you to temporarily

disable the alarm. As long as the alarm is disabled, you won’t

receive notifications

Figure 8-1.  Basic alarm settings

Chapter 8 Monitoring Using BizTalk 360

403

•	 Email IDs (required): The email addresses of the people who

need to receive the email notifications.

•	 Email Template: Select one of the available templates.

•	 Enable Email High Priority: This option allows you to enable/

disable high-priority emails. Based on this configuration, the

email notification priority is set. By default, high priority is

enabled.

•	 Configure Email Template: By clicking on this button, you will be

redirected to a screen where you can create new templates, make

changes to a template, or delete existing email templates.

•	 Custom Notification Channels: Besides receiving notifications by

email, you can receive notifications by other channels. Configure

them here to receive notifications from this alarm.

	 5.	 The Next button navigates you to the next screen. Click Next twice

until you reach the Alarm – Advanced pane (see Figure 8-2). The

Alert - Threshold and Alert - Health panes are discussed in later

sections.

Figure 8-2.  Examining the advanced options for an alarm

Chapter 8 Monitoring Using BizTalk 360

404

The Alarm – Advanced pane has the following fields:

•	 Send Notification SMS—Enter a mobile number (without 00

or the +- sign to receive SMS Notifications). Note: BizTalk 360

uses the Azure Gateway for sending SMS messages. If you want

to receive more than five (free) messages per day, you need a

subscription to that gateway.

•	 Enable HP Operations Manager Integration—Select this field

if you have an HP Operations Manager and want to receive

notifications there. Note: HP Operations Manager Integration has

to be configured under Settings/Monitoring and Notification/HP

Operations Manager.

•	 Log Events to Event Viewer—Select this if you want to write

events from this alarm to the Event Log. If the Event Log option

is enabled, down and up alert notifications are written to the

BizTalk 360 Monitor source in the application log.

•	 EventId—Once the previous field is selected, this field is enabled

and a numeric value is required. When a notification from the

alarm is sent, an event log entry is written in the Application log,

with the EventId configured here.

•	 Enable Test Mode—Select this field to run this alarm once per

minute. If applicable, notifications will be sent.

•	 Previous—Navigates back to the previous screen.

•	 OK—Stores the alarm in the BizTalk 360 database.

	 6.	 Enter/select any of the optional fields and click OK to save the

alarm.

�Threshold Alert

Follow these steps to set up a threshold alert:

	 1.	 Locate an existing alert and click on the Edit button.

	 2.	 Enable the Alert on Threshold Violation option. Otherwise, the

threshold options are not enabled.

Chapter 8 Monitoring Using BizTalk 360

405

	 3.	 Use the Violation Persist Duration setting to tell BizTalk 360 that

you want to receive notifications only when the issue has been

happening for a period of time. For instance, you can receive

notifications if the violation persists for 10 minutes.

	 4.	 The Limit Alerts per Violation parameter limits the alerts sent

about a specific violation. For instance, if you set it to 3, BizTalk

360 will send a maximum of three notifications per violation

persist duration period.

	 5.	 The Notification When Situation Becomes Normal setting tells you

when the situation becomes normal after a violation is over.

	 6.	 Set alerts on set day(s) and time(s) only to restrict the threshold

violation alerts.

	 7.	 Save the alarm information. See Figure 8-3.

Figure 8-3.  Examining the threshold alarm options

Chapter 8 Monitoring Using BizTalk 360

406

�Health Monitoring Alert

To set up a Health Monitoring alert, follow these steps:

	 1.	 Follow the steps as mentioned in the Basic Settings section.

	 2.	 On the Alarm - Health page, you have option to choose the days

and times you want to receive periodic update about the health of

your environment.

	 3.	 You can click OK or Next to move to the last screen to add

some Advanced Settings like SMS configuration and advanced

configuration.

Once you finish, the alarm will be set, and the BizTalk 360 user interface will take you

to the Manage Alarms page. This page lists all the alarms that you have created in your

environment. See Figure 8-4.

Figure 8-4.  Examining the health monitoring alarm options

Chapter 8 Monitoring Using BizTalk 360

407

�Data Monitoring Alert

Follow these steps to create an alert for Data Monitoring:

	 1.	 Follow the steps mentioned in the Basic Settings section.

	 2.	 On the Alarm - Data Monitoring section, enable the Use This

Alarm for Data Monitor Alerts checkbox.

	 3.	 Select the Notify on Success As Well checkbox if you want BizTalk

360 to send a notification when the query runs successfully.

�What Do You Monitor?
As you are now aware what kinds of monitoring exist, you can start thinking about what

kind of artifacts you want to monitor. At a high level, this can be separated into a few areas:

•	 BizTalk Platform monitoring

•	 BizTalk Application monitoring

•	 Data monitoring

•	 Endpoint monitoring

For each of these categories, BizTalk 360 contains multiple capabilities, most of

which are explained in the following sections.

�BizTalk Platform Monitoring
Your BizTalk solutions run on the BizTalk Server platform. So, when something is wrong

with the BizTalk platform, that might affect how your BizTalk solutions run and, as a

result, damage your business processes. Therefore, it is important to constantly have a

good understanding of the health of your BizTalk Server platform.

When you want to monitor your BizTalk environment, there are several things you

should be aware of, and you can use monitoring to watch these things. Consider these

examples:

•	 BizTalk host instances

•	 BizTalk Server’s SQL Server jobs

Chapter 8 Monitoring Using BizTalk 360

408

•	 Availability of the BizTalk Servers

•	 Certain Windows NT services

•	 Host throttling

BizTalk 360 can help you monitor all these different artifacts and of course, when

something is wrong with any of these components, you can become notified. In many

cases, BizTalk 360 will try to automatically bring the components back to the expected

state.

�Monitoring Host Instances

As you learned in the previous chapters, host instances are the Windows services that

encapsulate most of the BizTalk Server functionality. Providing a proactive monitoring

mechanism to ensure that all relevant host instances are started becomes crucial to the

health of the platform. BizTalk 360 enables you to monitor host instances by creating

monitoring rules that check whether the service is started, stopped, or disabled.

Additionally, if you have clustered host instances, BizTalk 360 can check if the host

instance is active in more than one server.

Setting Up Monitoring for Host Instances

To set up monitoring for host instances, follow these steps:

	 1.	 Log in to the BizTalk 360 application.

	 2.	 Click Monitoring in the navigation panel.

	 3.	 Click the expand button of the Manage Mapping tab and select the

BizTalk Environment link.

	 4.	 Select an Alarm name from the drop-down for which you would

like to associate the alerts.

	 5.	 Select the Host Instances tab.

	 6.	 Select the host instances you want to monitor.

	 7.	 Set the value of Expected State. For instance, if you want to receive

a notification when a specific host instance starts (because it

should be always stopped, like a FTP host instance), you need to

set the value to Started. See Figure 8-5.

Chapter 8 Monitoring Using BizTalk 360

409

Note  From the Platform Health alarm, the BizTalkServerApplication host instance
needs to be monitored to be in the Started state. In case the host instance is
stopped, BizTalk 360 should automatically try to start the host instance, so Auto
Correct needs to be Enabled.

The Auto Correct Feature

This is a very useful feature, as it will allow you to set a specific state when the artifact

current state differs from the expected state.

For instance, imagine that you have a host instance monitor that checks whether the

status of the host instance is started or stopped. If you created the monitor to expect a

Started state, and if you enable the auto-correct functionality, BizTalk 360 will attempt to

start the host instance if the current state is Stopped.

To enable auto-correct for a host instance, just follow these steps:

	 1.	 Select the desired host instances.

	 2.	 Select Started in the Auto Correct drop-down.

	 3.	 Save your changes.

Figure 8-5.  Creating a host instance alarm

Chapter 8 Monitoring Using BizTalk 360

410

Monitoring Host Instances That Are Clustered

To provide high availability for FTP adapters, for instance, Microsoft recommends

clustering them. BizTalk 360 has the capability to monitor clustered host instances.

The difference with non-cluster host instances from BizTalk 360’s point of view is that a

clustered host instance should be marked with a state of AtleastOneActive. BizTalk 360

will check if the host instance is started in only one instance. See Figure 8-6.

Figure 8-6.  Monitoring clustered host instances

�Monitoring SQL Server Jobs

As you have learned in the book, BizTalk Server uses SQL Server jobs to make sure tables

within the Message Box and Tracking DTA databases are consistent. If any of these

jobs fail, the engine will start behaving unexpectedly and most likely performance will

decline, as internal tables will grow over the time.

Luckily, BizTalk 360 enables you monitor all SQL jobs by paying attention to two

important thresholds:

•	 The Job State, which is used to check if a job is running or not.

•	 The Last Run State, which is used to diagnose the latest

execution state.

Chapter 8 Monitoring Using BizTalk 360

411

All BizTalk Server jobs must run successfully but these:

•	 MessageBox_Message_Cleanup_BizTalkMsgBoxDb—This job should

be disabled because is being called from within the MessageBox_

Message_ManageRefCountLog_BizTalkMsgBoxDb logic.

•	 MessageBox_Message_ManageRefCountLog_BizTalkMsgBoxDb—Can

show an execution error if the job or SQL Server Agent has been

manually or unexpectedly stopped. The job calls a stored procedure

that runs in an infinite loop. This behavior is by design and cannot

be changed. Because of this, DBAs usually disable this job so it does

not raise any errors, which is a practice not supported in the BizTalk

product support information.

Therefore, keep this in mind when creating monitoring for these jobs and act

accordingly:

•	 The Expected Job state for the MessageBox_Message_Cleanup_
BizTalkMsgBoxDb job should be disabled.

•	 The Last Run state for the job MessageBox_Message_

ManageRefCountLog_BizTalkMsgBoxDb should be error.

Establishing Monitoring for SQL Jobs

Follow these steps:

	 1.	 Select SQL Server Instances in the Manage Mapping section.

	 2.	 Select the SQL Server instance that runs the SQL Server job you

want to monitor.

	 3.	 Select an educated alarm.

	 4.	 Select the desired SQL jobs.

	 5.	 Set the value of the Expected Job state and the Expected

Last Run state.

Chapter 8 Monitoring Using BizTalk 360

412

�Monitoring the Availability of the BizTalk Servers

In a real-world scenario, large enterprises will typically have one or more sets of

deployed BizTalk environments. To handle such scenarios with BizTalk 360, you can set

up monitoring on specific components of BizTalk Server such as BizTalk applications

and their associated Send Ports, Receive Locations, Orchestrations, Service Instances,

Disks, Event Logs, NT Services, System Resources (CPU, Memory), SQL Jobs, Web

Endpoints, BizTalk Health Monitor Errors, and Warnings and Host instances (normal,

clustered). See Figure 8-7. In addition to these existing monitoring features, BizTalk 360

has the capability to monitor the BizTalk Server availability.

Figure 8-7.  Monitoring the servers of the group

Why BizTalk Server Availability Monitoring in BizTalk 360?

Say that ACME Corp has a highly complex BizTalk Server group with five BizTalk Servers

running 24/7 operations. Typically, these complex BizTalk Server groups are configured

for high availability and scalability, keeping in mind the high volume of traffic. With such

a setup, administrators will be under a lot of pressure to make sure all the BizTalk Servers

are up and running and can process all the messages at the expected level. In any

complex BizTalk Server group configuration, there is a high likelihood that, for various

Chapter 8 Monitoring Using BizTalk 360

413

reasons, one or more servers will go down. It becomes a daunting task for the BizTalk

administrators to continuously monitor the server availability and react to downtime

quickly. To help administrators overcome this challenge, BizTalk 360 provides the

BizTalk Server Availability Monitoring functionality. See Figure 8-8.

Figure 8-8.  BizTalk Server Availability Monitoring

Important Points to Remember in BizTalk Server Availability Monitoring

While setting up BizTalk Server Availability Monitoring, there are a few things to be

aware of:

•	 Choose the ICMP or Telnet protocol. To check the BizTalk Server

availability, administrators need to reach (ping) the servers. BizTalk

360 supports Ping and Telnet; therefore, one of these protocols needs

to be enabled on the BizTalk Servers.

•	 BizTalk administrators can choose when to receive the alert—when

one of the BizTalk servers in the group has gone down or only when

all the servers in the group have gone down.

•	 In BizTalk 360, BizTalk Server availability can be configured for only

one alarm per environment.

Chapter 8 Monitoring Using BizTalk 360

414

•	 When a gateway proxy is configured in BizTalk 360 (under BizTalk 360

Settings), Telnet uses the proxy details to bypass the firewall.

•	 BizTalk 360 also gives you the option to modify the existing

configured server availability monitoring at any time,

Configuring BizTalk Server Availability Monitoring in BizTalk 360

Follow these steps to set up BizTalk Server Availability Monitoring:

	 1.	 Log in to BizTalk 360.

	 2.	 Click the Monitoring section from the top of the left Navigation menu.

	 3.	 Click the + button (the Expand button) next to Manage Mapping

and select the BizTalk Servers option.

	 4.	 Click on Configure BizTalk Server Availability Monitoring on the

top right. By doing this, it will automatically list all the configured

BizTalk Servers.

	 5.	 Select the alarm name from the drop-down that you would like to

associate with the BizTalk Server for monitoring.

	 6.	 When there is no BizTalk Server configured for monitoring, the

value of Monitor Status will be be to Not Configured.

	 7.	 By default, the ICMP protocol and Any One Server Are Down

options will be selected.

	 8.	 Select the BizTalk Server that you want to monitor and click

Enable Monitoring to start monitoring the BizTalk Server.

When the settings are configured, BizTalk 360 will start monitoring the BizTalk

Servers for any state-based violations. Once a violation occurs for the configured alarm,

BizTalk 360 will notify the users via the configured notification channels.

�Monitoring Windows NT Services

As you have seen throughout the book, BizTalk Server uses these Windows services:

•	 The Enterprise single sign-on service

•	 The BAM Alerts service, if BAM alerts are enabled

Chapter 8 Monitoring Using BizTalk 360

415

•	 The Rule Engine Update service, if business rules are installed and

implemented

•	 Internet information server service to expose and consume services

You can monitor those NT services for the following two different states:

•	 Running

•	 Stopped

Follow these steps to set up monitoring for your Windows NT services:

	 1.	 Log in to the BizTalk 360 application.

	 2.	 Click Monitoring in the navigation panel.

	 3.	 Click the expand button next to the Manage Mapping tab and,

depending on your requirement, select the BizTalk Servers or the

SQL Servers link.

	 4.	 Select the BizTalk or SQL Server for which you want to set up

monitoring on NT services.

	 5.	 Select the alarm name you want to use.

	 6.	 Select NT Services tab at the top of the page.

	 7.	 Select the relevant NT services.

	 8.	 Select the checkbox on the NT services to activate the alert.

	 9.	 Set the expected state (started or stopped) by selecting the value

from the drop-down.

�Viewing and Monitoring Host Throttling

The idea behind the BizTalk 360 Throttling Analyzer is to simplify the complexity in

understanding the BizTalk Throttling mechanism and provide a simple dashboard

view. The purpose of host throttling monitoring is to notify the customers if there is any

throttling happening in their environment.

Chapter 8 Monitoring Using BizTalk 360

416

The BizTalk 360 Throttling Analyzer

The BizTalk 360 helps solve the following problems:

•	 As you learned in Chapters 2 and 4, throttling situations can

become complicated to analyze even for seasoned BizTalk Server

professionals.

•	 BizTalk Server only provides performance counter data. You have to

use external tools, such as performance monitor or PAL, to analyze

the raw information.

The objective of BizTalk 360 is to provide a visual representation of what is occurring

in the environment in a near real-time situation.

The Throttling Performance Counters Collection Service

BizTalk 360 provides a monitoring service that collects throttling performance counter

data and stores it into the BizTalk 360 database. The default collection interval is 15

seconds. The data is persisted for seven days, and users cannot modify it.

The throttling analyzer is in the Analytics tab. The service status of the Throttling

Analyzer can be accessed from Settings ➤ Analytics Health ➤ Analytics Service Status.

Setting Up Monitoring for Host Throttling

Follow these instructions to set up monitoring for host throttling (see Figure 8-9):

	 1.	 Log in to the BizTalk 360 application

	 2.	 Click Monitoring in the navigation panel.

	 3.	 Expand the Manage Mapping tab and select BizTalk Environment.

	 4.	 Select an alarm name.

	 5.	 Select the relevant hosts. For instance, if you want

to monitor BizTalkServerApplication, select the

BizTalkServerApplication checkbox and click Enable

Monitoring.

	 6.	 BizTalk 360 will automatically start monitoring the host and

looking for throttling events.

Chapter 8 Monitoring Using BizTalk 360

417

	 7.	 Click the Edit button and configure the threshold alert for

publishing and delivery throttling.

	 8.	 Click the Save Configuration button.

Figure 8-9.  Setting up monitoring for host throttling

Note  From the Platform Health alarm, the BizTalkServerApplication Host needs to
be monitored for throttling. In case of throttling due to publishing, a warning should
be sent if the duration of the throttling condition is longer than 60 seconds.

�BizTalk Application Monitoring
A BizTalk environment usually contains several BizTalk applications that use most of the

BizTalk Server artifacts and elements, such as receive locations, orchestrations, ports,

and business rules. At any given time, an issue related to these artifacts can occur, which

leads to business process interruptions.

To prevent you from monitoring all these elements reactively and manually, BizTalk

360 allows you to monitor all these artifacts in a proactive way. The following sections

guide you through the process of enabling monitoring for all these BizTalk Server

elements.

Chapter 8 Monitoring Using BizTalk 360

418

�Receive Locations, Orchestrations, and Send Ports

In BizTalk 360, you can monitor these BizTalk Server artifacts by checking whether the

status is disabled or enabled. You also can choose to not monitor the artifact at all.

Configuring Alerts for BizTalk Artifacts

Follow these steps to monitor BizTalk Server artifacts:

	 1.	 Click on the Monitoring panel.

	 2.	 Expand the Manage Mapping tab and select the Applications link

	 3.	 Select the application that owns the artifact.

	 4.	 Select an alarm name.

	 5.	 Select all relevant artifacts, such as orchestrations, receive

locations, or send ports.

	 6.	 Set the value of the Expected State.

	 7.	 Enable the Auto Correct functionality for the receive location if

you want BizTalk 360 to change the status of the receive location

when they are in a state that’s different than the expected one.

Figure 8-10 shows how the interface looks when setting receive locations.

Figure 8-10.  Monitoring receive locations view

Chapter 8 Monitoring Using BizTalk 360

419

Figure 8-11 shows the Orchestrations alarm view.

Figure 8-12 shows the Send Ports Alarm view.

�Service Instances

For a healthy BizTalk environment, it is important to keep an eye on the number of

service instances in the environment. As you have seen in previous chapters, service

instances and messages are stored in the Message Box database with a specific state that

can vary along the life of the instance.

Figure 8-11.  Monitoring orchestrations view

Figure 8-12.  Monitoring send ports view

Chapter 8 Monitoring Using BizTalk 360

420

The BizTalk administration console will display the following service states:

•	 Ready to Run

•	 Scheduled

•	 Dehydrated

•	 Suspended, Resumable

•	 Suspended, Non-resumable

•	 Active

•	 In Breakpoint

Using BizTalk 360, you can monitor those states and set up different threshold levels

based on the instances count.

Setting Up Alerts for Service Instances

Follow these steps to set up monitoring of service instances:

	 1.	 Click Monitoring in the navigation panel.

	 2.	 Expand the Manage Mapping tab and select the Applications link.

	 3.	 Select the application that work with the service instances you

want to monitor.

	 4.	 Select an alarm name.

	 5.	 Select the service instance states that you want to receive

notifications.

	 6.	 You can edit the warning and the error thresholds level by clicking

the Edit link, as shown in Figure 8-13.

Chapter 8 Monitoring Using BizTalk 360

421

�What Is Data Monitoring?
The best way to understand this feature is to go through an example. Imagine that every

day, early in the morning, you expect a batch of at least 100 messages from a specific

location. If the messages do not arrive, business operations are adversely affected. If

you have tracking enabled for that receive location, BizTalk 360 can access the tracking

database to check whether the messages have arrived to your BizTalk Server or not.

BizTalk 360 can access data from the following integration layer elements:

•	 Tracking Data

•	 Message Box

•	 Business Activity Monitoring

•	 Electronic Data Interchange (out of the scope of the book)

•	 Enterprise Service Bus (out of the scope of the book)

•	 Logic Apps (out of the scope of the book)

•	 Event Log

Figure 8-13.  Monitoring services instances view

Chapter 8 Monitoring Using BizTalk 360

422

�Setting Up a Tracking Data Monitor

Follow these steps to create a tracking-data monitoring alarm:

	 1.	 Go to Data Monitoring in the left pane and navigate to tracking

data.

	 2.	 Select the Add New option.

	 3.	 Choose the alarm you want to use.

	 4.	 Use a meaningful monitor name. In the scenario described at the

beginning of the section, you could use something like: Check if

the 100 Message batch arrived.

	 5.	 Select Tracked Service Instances for Query Type.

	 6.	 You can filter the tracked service instances to get a specific

instance as you can do using the BizTalk Server administration

console. The following options are available:

•	 Assembly name

•	 Assembly version

•	 Error code

•	 Error description

•	 Host name

•	 Service class

•	 Service instance ID

•	 Service name

•	 State

	 7.	 The Warning Threshold setting configures when BizTalk 360

should send the notification as a warning. For instance, if the

number of tracked service instances is greater than 100, throw a

warning.

	 8.	 The Error Threshold setting is similar to the warning section, but it

sends an Error notification.

Chapter 8 Monitoring Using BizTalk 360

423

	 9.	 In terms of frequency, decide if you want to monitor the host

instances daily, weekly, or monthly.

	 10.	 Select the time to execute the alarm.

	 11.	 Set an specific time of the day (detailed frequency option) or the

end of the business day (end of business day option).

	 12.	 Review all the advanced scheduling options available in this tool.

This book does not cover the advanced section because it is very

specific and designed for more complex scenarios.

	 13.	 Decide how do you want BizTalk 360 to validate the output data.

You can base the analysis using the following options:

•	 Query result count (no date/time filter): The query will return a

record count that you can use to set up the thresholds.

•	 Query result with date/time range: You can filter the output data

to check if the records are generated on a specific time frame.

	 14.	 Review the summary information just in case you missed

something.

	 15.	 Click Save and Close.

�Message Box

As you learned in Chapters 1 and 4, the number of suspended messages can impact

negatively the performance of your BizTalk Server group. You can use BizTalk Server 360

to automatically archive and/or terminate suspended instances.

Archive and Terminate Suspended Service Instances

If you want to archive suspended messages for further investigation or just as a backup

before automatic termination occurs, you have to configure the Archiving folder.

Follow these steps to set up the Archiving folder:

	 1.	 Navigate to BizTalk 360 Settings.

	 2.	 Choose the System Settings option from the left menu.

Chapter 8 Monitoring Using BizTalk 360

424

	 3.	 Edit the Archive Location for data monitoring setting to specify

the Archiving folder.

	 4.	 Click Save.

You can now create a Message Box Data Monitor to terminate the

suspended messages. Follow these steps:

	 5.	 Go to Data Monitoring in the left pane and navigate to the

Message Box.

	 6.	 Select the Add New option.

	 7.	 In the Set Actions section, select the Is Action Required checkbox.

	 8.	 Depending on the requirement, select the When To Action option.

	 9.	 In the What Action option, choose Terminate.

	 10.	 Click Save and Close.

�Business Activity Monitoring (BAM)

The BAM portal in BizTalk 360 allows business users to query BAM views and perform

activity searches. The concept of this feature is similar to BAM alerts, as you can create

advanced filters based on the content of the BAM activity. This is extremely helpful if

you want to receive alerts based on certain criteria when the Activity Completed table is

populated within the BAM primary import database. For instance, you can create a data

monitor alert when a book order has been denied or when an error occurred during the

whole business flow (of course, only if the BAM activity is tracking errors).

�Event Log

BizTalk 360 can monitor the event logs of your BizTalk and SQL Server boxes. This

feature is useful not only to detect undesired BizTalk errors, but also to monitor custom

event logs raised by applications.

Chapter 8 Monitoring Using BizTalk 360

425

�Endpoint Monitoring
Besides monitoring BizTalk artifacts, server resources, Azure services, and so on, you

can also monitor resources like web services and FTP sites, which are part of your

integration. BizTalk 360 allows you to monitor the following endpoints:

•	 Folder locations

•	 FTP, FTPS, and SFTP sites

•	 HTTP web endpoints

•	 MSMQ

•	 IBM MQ

•	 Azure services

Refer to the BizTalk 360 documentation to get more information about these topics.

�How Are You Notified?
When a threshold is exceeded, the tool will rise a notification. BizTalk 360 exposes

several functionalities to notify you when these situations arise. Let’s look at the different

options:

•	 Dashboards

•	 Operations Dashboard

•	 Monitoring Dashboard

•	 Data Monitoring Dashboard

•	 Notification channels

•	 Email

•	 Other Notification channels

•	 Custom Notification channels

Chapter 8 Monitoring Using BizTalk 360

426

�Dashboards
BizTalk 360 has dashboards that show an overview of the platform’s health. These

dashboards are:

•	 Operations Dashboard

•	 Monitoring Dashboard

•	 Data Monitoring Dashboard

�Operations Dashboard

The Operations Dashboard provides access to key functionalities of the product that you

will be using more frequently (see Figure 8-14). When the Dashboard loads, it shows a

set of default widgets that will give you important insights on the environment.

Figure 8-14.  The Operations Dashboard view

Chapter 8 Monitoring Using BizTalk 360

427

Dashboards are customizable and you can add your custom widgets to redirect how

users see the information.

�Monitoring Dashboard

The Monitoring Dashboard is used to populate all the alarms of the platform. The

information displayed on this dashboard can be abundant, so it is recommended to have

a big monitor to deal with the alerts efficiently. To access the monitoring dashboard,

follow the steps below:

	 1.	 Click the Monitoring tab in the Navigation panel.

	 2.	 Select the relevant alarm.

	 3.	 Examine the alerts.

Graphical Hierarchy View Structure

The Monitoring Dashboard provides a tree view representation of all the configured

sections within an alarm and implements the following functionalities (see Figure 8-15):

•	 Clicking on element of the tree representation takes you to the

associated element.

•	 You can click on the Toggle Fit to Screen option to adjust the

visualization to your screen size. If you have many alerts set up, it

might be handy to display the information on a large monitor.

•	 The tool draws the information using these colored patterns:

•	 Red: The monitor returned an error.

•	 Amber: The monitor returned a warning.

•	 Green: The monitor did not find any error or warning.

Chapter 8 Monitoring Using BizTalk 360

428

�Data Monitoring Dashboard

The Data Monitoring Dashboard populates the monitoring elements using a calendar

view that helps you to understand which data monitoring took place and when. It’s

shown in Figure 8-16.

Figure 8-15.  The graphical tree view

Chapter 8 Monitoring Using BizTalk 360

429

The tool will draw the information using the following color pattern:

•	 Red: A data monitor returned an error.

•	 Amber: A data monitor returned a warning.

•	 Green: All data monitors ran successfully during that period.

Viewing Execution Details

If you want to extend information on a particular day and time, you can click on any area

of the calendar and you will see what happened with much more detail, as shown in

Figure 8-17.

Figure 8-16.  The monitoring dashboard view

Chapter 8 Monitoring Using BizTalk 360

430

Figure 8-17.  Execution detail view

�Automated Recovery
BizTalk 360 has quite an extended set of artifacts that can be monitored and that can

send notifications. Besides that, it also has a number of automated recovery features.

These features are:

•	 Auto-correct state bound artifacts: For example, bringing a Host

Instance, which did not start after a reboot, back to the Started state

•	 Auto-resume: For example, resuming service instances that were

suspended due to a network glitch.

•	 Auto-terminate: For example, terminating routing failure reports.

Chapter 8 Monitoring Using BizTalk 360

431

�Summary
In this chapter, you learned how to use the BizTalk Server 360 tool to extend the out-of-

the-box monitoring features of BizTalk Server, not only from the availability and health

points of view, but also by creating custom alerts that will help you monitor tracking, live,

or even external data sources.

In the next chapter, you read a BizTalk Server tale about a company that starts with

BizTalk Server and evolves to a mature architecture by facing and solving problems.

Chapter 8 Monitoring Using BizTalk 360

433
© Agustín Mántaras 2019
A. Mántaras, BizTalk Server 2016, https://doi.org/10.1007/978-1-4842-3994-0_9

CHAPTER 9

Testing BizTalk Server
Solutions
BizTalk Server solutions frequently integrate highly critical business processes where

the integrated parties define very restricted service level agreements. Most of these

applications rank high on the application priority level and must run 24x7 with

downtime. In this situation, developing a successful testing architecture will make

a huge difference in finding application bugs, performance bottlenecks, issues with

new application versions, and in detecting problems when scaling the BizTalk Server

platform.

In this chapter, you learn the performance methodology required to assess a BizTalk

Server environment and how to include unit and performance testing as part of your

application development cycle.

�Unit Testing
Unit testing is used to develop and execute testing applications to verify that your code

is running as expected. It is called unit testing because the idea is that you break down

the functionality of the BizTalk Server solution into discrete testable pieces of code that

you can test as separate units. In BizTalk Server, those units are usually identified by an

individual message flow.

If you include unit testing as part of your development strategy, the quality of

the application can increase by reducing the chances of bugs. Once you finish the

development of a business flow, you should create unit tests to verify that the behavior

of the application, with all the possible messages involved, is expected in terms of the

business functionality. Furthermore, unit tests can be used later for performance testing.

434

When developing .NET custom components, you can quickly produce test projects

and test methods from your code, or you manually create the tests as required.

You can leverage the following technologies to perform BizTalk unit testing:

•	 Using the Unit Testing feature—At the moment of writing this book,

only the following BizTalk artifacts are available for unit testing:

•	 Schemas

•	 Pipelines

•	 Maps

Unfortunately, orchestrations cannot be unit tested using the Unit Testing feature

because they require the BizTalk Server engine to be executed. However, you could test

the end-to-end process by creating a general Visual Studio unit testing project, a topic

that will be covered in the section “Assessing the Performance of a BizTalk Application”

later in this chapter.

•	 General Visual Studio Unit Testing Project—If you have Visual

Studio Unit and Load Testing experience, this is probably the most

convenient way to automate BizTalk Server Solutions testing.

•	 BizUnit—BizTalk BizUnit it is a declarative XML framework designed

to create unit tests for BizTalk Server projects. BizUnit Test Cases have

three phases: Stage, Execution, and CleanUp. Every test is defined in

a typed XML document that the BizUnit Engine will execute. BizUnit

has been used frequently over the past few years and it will not be

covered in this book. You can review BizUnit documentation in the

MSDN Microsoft page here: https://docs.microsoft.com/en-us/

biztalk/technical-guides/using-bizunit-to-facilitate-

automated-testing.

�Creating Unit Testing for a .NET Component
The fastest way to create unit testing for .NET components is generate the unit test

project from your code. This action creates the blueprint for the testing project and

accelerates your development.

Chapter 9 Testing BizTalk Server Solutions

https://docs.microsoft.com/en-us/biztalk/technical-guides/using-bizunit-to-facilitate-automated-testing
https://docs.microsoft.com/en-us/biztalk/technical-guides/using-bizunit-to-facilitate-automated-testing
https://docs.microsoft.com/en-us/biztalk/technical-guides/using-bizunit-to-facilitate-automated-testing

435

Note T he following sections provide a step-by-step guide to implement unit
testing to a .NET component. You can locate the full generated code in this location
if you do not want to go through the guide:

C:\APRESS\Chapter9\BooksOrderHelperCompleted

Follow these steps:

	 1.	 Using Visual Studio, open the project located here: C:\APRESS\

Chapter9\BooksOrderHelper\BooksOrderHelper.sln

	 2.	 Open the class file BooksOrderHelper.cs.

	 3.	 Right-click at the BooksOrderHelper class level and select the

Create Unit Tests option, as shown in Figure 9-1.

Figure 9-1.  Creating the unit tests option

	 4.	 Visual Studio shows the default properties for the unit tests. You

can change these values if you want to create the unit test cases

with specific names and output folders. Leave the default values

for now. See Figure 9-2.

Chapter 9 Testing BizTalk Server Solutions

436

	 5.	 Visual Studio generates a unit testing project and adds it to the

solution, as shown in Figure 9-3.

Figure 9-2.  The Create Unit Tests dialog box

Figure 9-3.  Examining the generated test project

Chapter 9 Testing BizTalk Server Solutions

437

	 6.	 Open the BooksOrderHelperTests.cs file and observe that Visual

Studio has created the BooksOrdersHelperTests class and added

the [TestClass()] attribute:

namespace BooksOrderHelper.Tests

{

 [TestClass()]

 public class BooksOrderHelperTests

 {

 [TestMethod()]

 public void returnTotalAmountTest()

 {

 Assert.Fail();

 }

 }

}

	 7.	 Additionally, the test method returnTotalAmountTest() has been

added using the [TestMethod()] attribute.

Note T he Add New Unit Test feature creates a sample test method for each
method in the custom .Net component.

�Adding Testing Code

The generated code for the testing methods is Assert.Fail():

{

 [TestClass()]

 public class BooksOrderHelperTests

 {

 [TestMethod()]

 public void returnTotalAmountTest()

 {

 Assert.Fail();

Chapter 9 Testing BizTalk Server Solutions

438

 }

 }

}

The fail method forces the test method to fail, so you will need to write the custom

code to test this method.

To help developing clean and structured code, the AAA (Arrange-Act-Assert) pattern

has become a standard across the development industry when it comes to testing

projects. It recommends that you divide your test method into three sections: arrange,

act, and assert. Each section is responsible for a small part:

•	 The Arrange section initializes variables used during the method.

•	 The Act section invokes the method with the variables initialized in

the Arrange section.

•	 The Assert section verifies that the method under the Act section test

behaves predictably.

To test the returnTotalAmount method of the BooksOrdersHelper component, you

can write two tests:

•	 One that verifies a valid amount (<=10.000)

•	 One that sets the amount to a value bigger than 10.000. The objective

of this test will be to evaluate the returnTotalAmount when the price

is bigger than 10.000.

Follow these steps to create the valid amount test:

	 1.	 Open the BooksOrderHelperTests.cs file of the

BooksOrderHelperTests.csproj project.

	 2.	 Add a reference to the BooksOrderHelper solution.

	 3.	 Locate the test method returnTotalAmountTest(). You are going

to use this method to validate the amount.

	 4.	 Replace the content of the function with the following code:

#region Arrange

 int price = 1000;

 int units = 9;

Chapter 9 Testing BizTalk Server Solutions

439

 int expectedValue = 9000;

 int iReturn = 0;

#endregion Arrange

#region act

 iReturn = BooksOrderHelper.returnTotalAmount(price, units);

#endregion act

#region Assert

 Assert.AreEqual(expectedValue, iReturn);

#endregion Assert

As you can see in the code:

•	 The Arrange region sets the price, units, and the expected output of

the method returnTotalAmount.

•	 The Act region calls the method returnTotalAmount() using the

price and units set in the Arrange region.

•	 The Assert region evaluates whether the output of the

returnTotalAmount method returns the expectedValue using the

static method AreEqual of the assert object.

Note T he assert object is available for use in all testing projects. It contains a
set of static methods that evaluate a logical condition. If this condition evaluates
to true, the assertion passes. Otherwise, it fails. To learn about all the static
methods that this class provides, visit https://msdn.microsoft.com/en-us/
library/microsoft.visualstudio.testtools.unittesting.assert.
aspx?f=255&MSPPError=-2147217396.

Follow these steps to create the invalid amount test:

	 1.	 Copy the returnTotalAmountTest and paste it later in the

BooksOrderHelperTests class.

	 2.	 Name the new method returnTotalAmountTestHighAmount().

	 3.	 Add the [TestMethod()] attribute to the method if you did not

copy it.

Chapter 9 Testing BizTalk Server Solutions

https://msdn.microsoft.com/en-us/library/microsoft.visualstudio.testtools.unittesting.assert.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/library/microsoft.visualstudio.testtools.unittesting.assert.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/library/microsoft.visualstudio.testtools.unittesting.assert.aspx?f=255&MSPPError=-2147217396

440

	 4.	 Examine the BooksOrdersHelper.returnTotalAmount method:

if (_amount >= 10000)

 {

 �throw new ArgumentException(_amount.ToString(),

"amount not valid!");

 }

	 5.	 In the code, if the total amount is greater than 10.000, the

component will throw an argument exception. Therefore, to assert

the output of the method instead of calling the Assert object, you

are going to add the attribute [ExpectedException(typeof(Arg

umentException))] to the returnTotalAmountTestHighAmount

testing method and Visual Studio will automatically assert the

output using this ExpectedException attribute.

	 6.	 Insert the following code for the

returnTotalAmountTestHighAmount method.

[TestMethod()]

 [ExpectedException(typeof(ArgumentException))]

 public void returnTotalAmountTestHighAmount()

 {

 #region Arrange

 int price = 1000;

 int units = 20;

 int iReturn = 0;

 #endregion Arrange

 #region act

 iReturn = BooksOrderHelper.returnTotalAmount(price, units);

 #endregion act

 #region Assert

 //assertion is managed by the ExpectedException attribute.

 #endregion Assert

 }

Chapter 9 Testing BizTalk Server Solutions

441

As you can see in the code:

•	 The Arrange region sets the price, units, and the expected output

of the method returnTotalAmount.

•	 The Act region calls the method returnTotalAmount() using the

price and units set in the Arrange region.

•	 The Assert region is managed by the ExpectedException

attribute.

	 7.	 Choose Save All.

	 8.	 Build the solution.

	 9.	 Install the BooksOrdersHelper assembly into the GAC.

�Running the Tests

When you build the test project, the tests will appear in Test Explorer. If Test Explorer is

not shown, choose Test from the Visual Studio menu, select Windows, and then click on

Test Explorer. See Figure 9-4.

Figure 9-4.  Examining the tests using the Test Explorer

Chapter 9 Testing BizTalk Server Solutions

442

To run all the tests, click the Run All command, as shown in Figure 9-5.

Figure 9-5.  Running all tests using the Test Explorer

Once the tests are complete, the Test Explorer will show the output, as shown in

Figure 9-6.

Figure 9-6.  Examining the output of the test

Chapter 9 Testing BizTalk Server Solutions

443

�Creating Unit Testing for a BizTalk Project
In this section, you are going to use the Visual Studio Unit Testing feature to enable unit

testing for the following BizTalk server elements:

•	 Maps

•	 Schemas

•	 Pipelines

Note T he following sections provide a step-by-step guide to implement unit testing
to BizTalk Server projects. You can locate the full generated code in this location:

C:\APRESS\Chapter9\BizTalkUnitTestingFeatureCompleted

�Adding a Unit Testing Project to the Book Orders Solution

Follow these steps to add a unit testing project to the BookOrders solution:

	 1.	 Using Visual Studio, open the sample solution located here:

C:\APRESS\Chapter9\BizTalkUnitTestingFeature\

BizTalkUnitTestingFeatureProject\

BizTalkUnitTestingFeatureProject.sln

	 2.	 Go to Project properties and, in the Deployment section, verify

that Enable Unit Testing is set to True. See Figure 9-7.

Figure 9-7.  Enabling unit testing at the project level

Chapter 9 Testing BizTalk Server Solutions

444

	 3.	 Choose Save All and rebuild the solution. As you enabled unit

testing, now you have to rebuild the solution in order to tell Visual

Studio to call the unit testing interfaces. If you miss this step, you

cannot add new testing projects to the solution.

	 4.	 Right-click at the solution level and add a new unit test project

(under Visual c#\Test). Double-check that :Net Framework 4.6

is selected. See Figure 9-8.

Figure 9-8.  Adding a unit testing project to the BizTalk solution

	 5.	 Add the following references to the project:

•	 Microsoft.BizTalk.TestTools.dll located at C:\Program Files

(x86)\Microsoft BizTalk Server 2016\Developer Tools

•	 Microsoft.XLANG.BaseTypes.dll located at C:\Program Files

(x86)\Microsoft BizTalk Server 2016

•	 BizTalkUnitTestingFeatureProject.btproj which is a reference to

the BizTalk Sample project. By doing this, the testing project will have

access to schemas, maps, and pipelines from the BizTalk project.

Chapter 9 Testing BizTalk Server Solutions

445

•	 Microsoft.BizTalk.Pipeline.dll located at C:\Program Files

(x86)\Microsoft BizTalk Server 2016\Microsoft.BizTalk.

Pipeline.dll

	 6.	 Open the UnitTest1.cs class and add the following using

statements, so you will be able to create objects based on the

BizTalk project and use the Visual Studio testing features:

using System;

using Microsoft.VisualStudio.TestTools.UnitTesting;

using BizTalkUnitTestingFeatureProject;

using System.IO;

using System.Collections.Specialized;

using System.Collections.Generic;

Note A ll the test methods detailed in the following sections use the AAA
(Arrange-Act-Assert) pattern, so you will see this reflected by #region statements.

�Creating Test Methods to Validate Schemas

BizTalk Server schemas have a method called ValidateInstance that behaves in the

same way as when you right-click the schema at design time and select the Validate

Instance option. In this section, you are going to create two test methods:

•	 One to validate a valid instance.

•	 One to validate an invalid instance.

Follow these steps:

	 1.	 Open the UnitTest1.cs class and declare a string variable called

IncomingBookOrdersInstance that will be used to save the path of

the incoming message instance.

public class UnitTest1

{

 //Used to save the message example instances

 public string IncomingBookOrdersInstance = "";

Chapter 9 Testing BizTalk Server Solutions

446

	 2.	 Open the UnitTest1.cs class and add a Test method to test a

valid message instance. Delete the default TestMethod and add

this one:

 [TestMethod]

 public void ValidTestIncomingBookOrderSchema()

 {

 //example test method that provides a valid message

 #region Arrange

 bool boolTestOK = false;

 �BizTalkUnitTestingFeatureProject.IncomingBookOrders

IncomingBookOrdersSchema = new IncomingBookOrders();

 //replace the IncomingBookOrdersInstance with your instance file

 �IncomingBookOrdersInstance = @"C:\APRESS\Chapter9\

BizTalkUnitTestingFeature\BizTalkUnitTestingFeatureProject\

BizTalkUnitTestingFeatureProject\MessageInstances\

IncomingBookOrders\ValidMessages\ValidIncomingBookOrders_1_

Book.xml";

 #endregion Arrange

 #region Act

 �boolTestOK = IncomingBookOrdersSchema.ValidateInstance(Inco

mingBookOrdersInstance, Microsoft.BizTalk.TestTools.Schema.

OutputInstanceType.XML);

 #endregion Act

 #region Assert

 Assert.IsTrue(boolTestOK);

 #endregion Assert

 }

This TestMethod will evaluate the IncomingBookOrders schema against a valid

message instance.

	 3.	 Add a Test method to test for a wrong message instance:

[TestMethod]

public void WrongTestIncomingBookOrderSchema()

 {

Chapter 9 Testing BizTalk Server Solutions

447

 //example test method that provides a wrong message

 #region Arrange

 bool boolTestOK = false;

 �BizTalkUnitTestingFeatureProject.IncomingBookOrders

IncomingBookOrdersSchema = new IncomingBookOrders();

 �//replace the IncomingBookOrdersInstance with your

instance file

 �IncomingBookOrdersInstance = @"C:\APRESS\

Chapter9\BizTalkUnitTestingFeature\

BizTalkUnitTestingFeatureProject\

BizTalkUnitTestingFeatureProject\MessageInstances\

IncomingBookOrders\WrongMessages\

WrongIncomingBookOrders_1_Book.xml";

 #endregion Arrange

 #region Act

 �boolTestOK = IncomingBookOrdersSchema.ValidateInsta

nce(IncomingBookOrdersInstance, Microsoft.BizTalk.

TestTools.Schema.OutputInstanceType.XML);

 #endregion Act

 #region Assert

 Assert.IsTrue(boolTestOK);

 #endregion Assert

 }

This TestMethod will evaluate the IncomingBookOrders schema against a wrong

message instance.

	 4.	 Choose Save All.

�Creating Test Methods to Validate Maps

BizTalk Server maps have a method called TestMap that behaves the same way that

right-clicking the map at design time and selecting the Validate Map option does. In this

section you are going to create two test methods:

•	 One to validate a map that receives a valid message instance.

•	 One to validate a map that receives an invalid instance.

Chapter 9 Testing BizTalk Server Solutions

448

The testMap method is different from the ValidateInstance of schemas:

•	 When the testMap method executes, an output file is generated.

•	 The test method does not return True or False, so you have to

evaluate whether the output file exists. If it does exist, that means that

the map executed without raising exceptions. (The map could still be

executed incorrectly from business point of view.)

•	 Checking the existence might not be enough, so you also check if the

output file is empty. In that case, that means that the map worked

from a validation point of view but it did not generate any output

because something went wrong at the transformation level that did

not raise an exception.

Let’s now implement our test method to test the Map_IncomingBookOrders_To_

CRMIncomingBookOrders map.

Follow these steps:

	 1.	 Add a new test method called ValidInstanceMap and type the

following code:

 [TestMethod]

 public void ValidInstanceMap()

 {

 //example test method that provides a wrong message

 #region Arrange

 bool boolTestOK = false;

 //replace the sOuputInstance with your output instance file

 �string sOuputInstance = @"C:\APRESS\Chapter9\

BizTalkUnitTestingFeature\BizTalkUnitTestingFeatureProject\

BizTalkUnitTestingFeatureProject\MessageInstances\

OutputInstances\ValidatedMapMessage.xml";

 //deleting the output instance

 �if (File.Exists(sOuputInstance)) { File.

Delete(sOuputInstance);}

 �BizTalkUnitTestingFeatureProject.Map_IncomingBookOrders_To_

CRMIncomingBookOrders map = new Map_IncomingBookOrders_To_

CRMIncomingBookOrders();

Chapter 9 Testing BizTalk Server Solutions

449

 //replace the IncomingBookOrdersInstance with your instance file

 �IncomingBookOrdersInstance = @"C:\APRESS\Chapter9\

BizTalkUnitTestingFeature\BizTalkUnitTestingFeatureProject\

BizTalkUnitTestingFeatureProject\MessageInstances\

IncomingBookOrders\ValidMessages\ValidIncomingBookOrders_1_

Book.xml";

 #endregion Arrange

 #region Act

 �map.TestMap(IncomingBookOrdersInstance, Microsoft.BizTalk.

TestTools.Schema.InputInstanceType.Xml, sOuputInstance,

Microsoft.BizTalk.TestTools.Schema.OutputInstanceType.XML);

 //in this case we will check if the out put file exists:

 var vFileInfo = new FileInfo(sOuputInstance);

 if (vFileInfo.Exists) { boolTestOK = true; }

 #endregion Act

 #region Assert

 Assert.IsTrue(boolTestOK);

 #endregion Assert

 }

	 2.	 Add a new test method called WrongInstanceMap and type the

following code:

[TestMethod]

 public void WrongInstanceMap()

 {

 //example test method that provides a wrong message

 #region Arrange

 bool boolTestOK = false;

 //replace the sOuputInstance with your output instance file

 �string sOuputInstance = @"C:\APRESS\

Chapter9\BizTalkUnitTestingFeature\

BizTalkUnitTestingFeatureProject\

BizTalkUnitTestingFeatureProject\MessageInstances\

OutputInstances\ValidatedMapMessage.xml";

Chapter 9 Testing BizTalk Server Solutions

450

 //deleting the output instance

 �if (File.Exists(sOuputInstance)) { File.

Delete(sOuputInstance); }

 �BizTalkUnitTestingFeatureProject.Map_

IncomingBookOrders_To_CRMIncomingBookOrders map = new

Map_IncomingBookOrders_To_CRMIncomingBookOrders();

 �//replace the IncomingBookOrdersInstance with your

wrong instance file

 �IncomingBookOrdersInstance = @"C:\APRESS\

Chapter9\BizTalkUnitTestingFeature\

BizTalkUnitTestingFeatureProject\

BizTalkUnitTestingFeatureProject\

MessageInstances\IncomingBookOrders\WrongMessages\

WrongIncomingBookOrders_1_Book.xml";

 #endregion Arrange

 #region Act

 �map.TestMap(IncomingBookOrdersInstance, Microsoft.

BizTalk.TestTools.Schema.InputInstanceType.Xml,

sOuputInstance, Microsoft.BizTalk.TestTools.Schema.

OutputInstanceType.XML);

 �//in this case we will check if the out put file

exists or if the File is empty

 var vFileInfo= new FileInfo(sOuputInstance);

 �if (!vFileInfo.Exists || vFileInfo.Length < 4) {

boolTestOK = false; }

 #endregion Act

 #region Assert

 Assert.IsTrue(boolTestOK);

 #endregion Assert

 }

	 3.	 Choose Save All.

Chapter 9 Testing BizTalk Server Solutions

451

�Creating Test Methods to Validate Pipelines

BizTalk Server pipelines have a method called TestPipeline that behaves the same way

that executing the Pipeline.Exe tool does. In this section you are going to create a test

method that executes a pipeline that receives a valid message instance.

Follow these steps:

	 1.	 Add a new test method called FFReceivePipelineUnitTest() and

type the following code:

[TestMethod()]

 public void FFReceivePipelineUnitTest()

 {

 #region Arrange

 �//loading the flat file pipeline rcvPipBookOrdersFF

from the BizTalk server project

 �BizTalkUnitTestingFeatureProject.rcvPipBookOrdersFF

target = new rcvPipBookOrdersFF();

 �//the testpipeline method is expecting the incoming

message as a stringCollection//

 StringCollection documents = new StringCollection();

 �IncomingBookOrdersInstance = @"C:\APRESS\

Chapter9\BizTalkUnitTestingFeature\

BizTalkUnitTestingFeatureProject\

BizTalkUnitTestingFeatureProject\MessageInstances\

IncomingBookOrders\ValidMessages\FFBooksOrder.txt";

 Assert.IsTrue(File.Exists(IncomingBookOrdersInstance));

 documents.Add(IncomingBookOrdersInstance);

 �//Only a body part for this test

message so an empty collection will be

passed. ===//

 StringCollection parts = new StringCollection();

 �//The testpipeline method expects the schemas in a

dictionary.

Chapter 9 Testing BizTalk Server Solutions

452

 �Dictionary<string, string> schemas = new

Dictionary<string, string>();

 �string SchemaFile = @"C:\APRESS\

Chapter9\BizTalkUnitTestingFeature\

BizTalkUnitTestingFeatureProject\

BizTalkUnitTestingFeatureProject\BookOrdersCompleted.

xsd";

 Assert.IsTrue(File.Exists(SchemaFile));

 �schemas.Add("BizTalkUnitTestingFeatureProject.

BookOrdersCompleted", SchemaFile);

 #endregion Arrange

 #region Act

 �//=== Test the execution of the pipeline using the

inputs ===//

 target.TestPipeline(documents, parts, schemas);

 �//=== Validate that the pipeline test produced the

message ===//

 �//=== which conforms to the

schema. ===//

 #endregion Act

 #region Assert

 �//Checking for the output file existence. If it exists

that means that the pipeline executed successfully

 �string[] strMessages = Directory.GetFiles(@"C:\

APRESS\Chapter9\BizTalkUnitTestingFeature\

BizTalkUnitTestingFeatureProject\UnitTestProject\bin\

Debug", "Message*.out");

 Assert.IsTrue(strMessages.Length > 0);

 �BizTalkUnitTestingFeatureProject.BookOrdersCompleted

BookOrdersValidationSchema = new BookOrdersCompleted();

 foreach (string outFile in strMessages)

 {

 �//for every output file we check if the message is

valid calling the validateInstance method.

Chapter 9 Testing BizTalk Server Solutions

453

 �Assert.IsTrue(BookOrdersValidationSchema.

ValidateInstance(outFile, Microsoft.BizTalk.

TestTools.Schema.OutputInstanceType.XML));

 }

 #endregion Assert

 }

	 2.	 Click on Save All.

�Running the Tests

To run the tests cases you created previously, just follow these steps:

	 1.	 In the Visual Studio menu, navigate to the Test menu, select Run,

and click on All Tests. See Figure 9-9.

Figure 9-9.  Running all tests using the Test menu

	 2.	 All unit tests will be executed. When it’s finished, Visual Studio

will show the output window shown in Figure 9-10 with the test

results.

Chapter 9 Testing BizTalk Server Solutions

454

As expected, all the “wrong” test methods failed.

�Performance Testing
As discussed in previous chapters, sizing a BizTalk Server environment properly it is all

about performance testing, experience, and good design principles. Thus, you should

include performance testing as part of your application lifecycle.

Implementing a successful performance testing requires you to deploy a testing

environment that is nearly identical to the production environment. There are variables

such as network, storage, Server IP, and DNS names that would be different, of course,

but hardware sizing and components should be very similar. This fact must be a priority

at the architecting phase because if production and testing environments are not nearly

identical, you will have to extrapolate the gathered performance data in an attempt to

represent that the test scenarios have run with production hardware resources, and that,

at the end of the day, you will generate output that is not based on real sizing.

Additionally, there are two actions that you should consider when testing BizTalk Server:

•	 Assessing the production environment.

•	 Assessing the performance of individual BizTalk Server applications.

Figure 9-10.  Exploring the test output

Chapter 9 Testing BizTalk Server Solutions

455

�Performance Testing Methodology
Every single time you plan to deploy a new application to production you should follow

this process:

	 1.	 Assessing the performance status of the production environment.

	 2.	 If the production performance assessment does not reveal a

bottleneck, you can move to the stage of performing individual

performance test for the new BizTalk application (in the testing

environment).

	 3.	 Evaluate the performance of the application against the defined

SLA.

	 4.	 If the individual performance tests show that the new application

does not reach the target SLA, you have the following options:

	a.	 Whenever possible, try to identify the elements within

the application that cause prevents the application to run

under the agreed performance SLA. Evaluate whether

the application will improve its behavior by applying the

optimizations discussed in Chapter 4.

	b.	 Improve orchestration processing by applying the techniques

explained in Chapter 6.

	c.	 Scale the production environment to fix the performance

problem by adding more resources.

	 5.	 If the application performs under the defined SLA, you need

to analyze the output test data to decide whether or not the

application will impact production performance negatively.

	 6.	 If that analysis reveals that the application can impact the

production environment to a point of exceeding the Maximum

Sustainable Throughput (MST), then you should again evaluate

whether or not to scale the production platform.

	 7.	 If the analysis reveals that the application will not impact the

production environment, you can go ahead and deploy the

application. Figure 9-11 shows this whole process.

Chapter 9 Testing BizTalk Server Solutions

456

�Assessing the Production Environment
If your production environment is already running applications, it is essential that you

know how it’s performing before you test a new solution. This information is crucial to

know the current status of the system regarding resource utilization.

In Chapters 1 and 2, you learned how to interpret the most important BizTalk Server

performance counters and, in Chapter 3, you learned how to use the performance

monitor and PAL tools to analyze the performance of a BizTalk Server platform.

As you learned in Chapter 6, an essential consideration when planning a BizTalk

Server environment should be to determine the maximum sustainable throughput

(MST) of the system. The MST of a BizTalk Server system is calculated as the highest

Figure 9-11.  Performance methodology flow

Chapter 9 Testing BizTalk Server Solutions

457

load of messages that the BizTalk environment can process. When load exceeds MST,

messages are queued in the Message Box and transaction latency can increase.

Now is the time to apply all these concepts and techniques to assess the production

environment and to evaluate whether the system is running under an optimum MST. By

doing this you will know if there is enough room to add a new application based on the

performance data gathered for that solution on the testing environment.

To assess the production environment, follow these steps:

	 1.	 Set up a 24 hour performance log. This topic is detailed in Chapter 3.

	 2.	 Process the captured data using PAL tool. This topic is detailed in

Chapter 3.

	 3.	 Analyze the PAL report using the thresholds and techniques

detailed in Chapter 2 as a guide.

	 4.	 Pay special attention to the analysis combination of the following

performance counters:

•	 BizTalk: MessageBox: General Counters: Spool Size

•	 BizTalk: Messaging: Documents received-processed-sent /sec

•	 Processor: %Processor Time

•	 Physical Disk: Idle Time

•	 Processor: %Processor time has been covered extensively

in Chapter 2, but we need at this time to analyze all of them

together.

�BizTalk: Message Box: General Counters: Spool Size

This is probably the most important one. As you learned in Chapter 1, this performance

counter gives you an idea of how the system is processing messages. If during the

analyzed period there are increasing trends for this performance counter, there is a

processing bottleneck that prevents the system from processing messages under the MST.

In the other hand, if the Spool Size counter shows no increasing trends, that means

that the system is performing efficiently and is keeping up with the current load (of

course, if performance degradation is not observed).

Chapter 9 Testing BizTalk Server Solutions

458

�Physical Disk: Idle Time

If the Physical disk: Idle Time performance counter is high, especially for the SQL Server

hosting the Message Box database, it is a good indicator that disks are processing writes

and reads very efficiently. The disk is not busy most of the time and the loads that enter

are being processed very quickly. On the other hand, if disks are not idle frequently

means that they are busy and disk contention can appear. This condition can have a

negative impact on the Message Box database. Review the section about the Message

Box database in Chapter 4.

�BizTalk: Messaging: Documents Received-Processed-Sent/Sec

Under the BizTalk Messaging category, you can find these performance counters:

•	 Documents received/sec

•	 Documents processed/sec

•	 Documents sent/sec

These performance counters by themselves do not provide any information

related to the MST. However, if you analyze them in combination with the Spool Size

performance counter, you can discover the area of the engine causing the performance

bottleneck. If the BizTalk: MessageBox: General Counters: Spool Size performance

counter shows increasing trends during the evaluating period, check whether any of

the messaging counters show increasing trends also. You can experiment the following

scenarios, individually or combined:

•	 Documents Received/sec increase—That means that your

production system is receiving more messages than usual.

If spool increases along with this counter but Documents Sent

and Documents Processed/sec remain stable, that could means

that the bottleneck is at the receiving layer.

•	 Documents Processed/sec increase—That means that your

production system is processing more messages in orchestrations

than usual. If the spool increases along with this counter but

Documents Received/s and Documents Sent/sec remain stable, that

could mean that the bottleneck is more likely at the processing layer.

Chapter 9 Testing BizTalk Server Solutions

459

•	 Documents Sent/sec increase—That means that your production

system is sending more messages than usual. If the spool increases

along with this counter, but Documents Received/s and Documents

Processed/sec remain stable, that could mean that the bottleneck is

at the sending layer because sent messages are getting suspended or

they are retrying ports.

�Example Scenarios of Evaluating the MST

Let's review a few examples to understand spool counters versus the messaging

performance counters and CPU usage. This topic is crucial when assessing the

production environment.

Scenario (I) Processing Messages Under the MST

Figure 9-12 shows a performance diagram for a 24-hour capture period.

Figure 9-12.  Environment processing messages under the MST

Chapter 9 Testing BizTalk Server Solutions

460

The Spool Size counter does not show increasing trends during the whole capture

and Documents Received/sec does not show extreme peaks. When the number of

received messages increases, the spool table also grows, but then it gets decreased

quickly, indicating that the system is processing messages efficiently and that it can keep

up with the current load.

The % Processor time range for the whole capture (36%-67%) indicates that there is

still room for receiving more messages.

In this situation, you could add a new application if the load test in the testing

environment does not show an excessive processor usage for that application.

Scenario (II) Processing Messages Above the MST

Figure 9-13 shows a different performance diagram for a 24-hour capture period.

Figure 9-13.  Environment processing messages above the MST

The Spool Size counter shows a clear increasing trend during the whole capture.

The % Processor time range for the whole capture (88%-100%) indicates that the server

is very busy processing the requests. However, Documents Received/sec does not show

extreme peaks.

Chapter 9 Testing BizTalk Server Solutions

461

What could be happening in this scenario? Most likely there is a processing

bottleneck caused by orchestration processing (assuming that the sending layer is

processing smoothly), as the documents received per second do not provide a clue.

Now you can analyze the Documents Processed/second along with the spool size and

%Processor time, as shown in Figure 9-14.

Figure 9-14.  Environment processing messages above the MST due to messages
processed by orchestrations

In situation outlined here, when the number of processed messages increases, the

spool table also grows, and it increases exponentially along with the processed messages.

This indicates that the system is not processing messages efficiently and it cannot keep

up with the load caused by messages processed by orchestrations.

Under this circumstance you cannot add a new application to the environment

because it is already a processing bottleneck. It is time to evaluate the following options:

•	 Whenever possible, try to locate the application that causes the issue

and evaluate whether the application will improve its behavior by

applying the optimizations discussed in Chapter 4.

Chapter 9 Testing BizTalk Server Solutions

462

•	 Scale the production environment to fix the performance problem by

adding more resources.

•	 Improve orchestration processing by applying the techniques

explained in Chapter 6.

�Assessing the Performance of a BizTalk Application
In previous sections, you learned how to develop unit testing projects to test the BizTalk

Server solutions from a functionality point of view and how to assess the production

environment, so you will now consider if there are enough hardware resources to run the

new application.

In this section, you are going to learn how to test a BizTalk Server solution end to

end, and how to create a load test, so you can evaluate if the application is running under

the agreed performance SLA.

For this example, you are going to use a BizTalk application that receives messages

using the WCF-Custom Receive Adapter with custom NETTCP binding. A receive port is

listening to net.tcp//localhost:8888/btsloadtest. Once the messages are published,

a send port will write them to an output folder.

Figure 9-15 illustrates the testing scenario.

Figure 9-15.  The testing scenario diagram

Chapter 9 Testing BizTalk Server Solutions

463

	 1.	 The Load Test Visual Studio project will execute, in a loop for one

minute, the following BizTalk Unit tests:

•	 BTSMessaging

•	 BTSMessaging2

•	 BTSOrchestration

	 2.	 Each loop iteration creates a new WFC message that is sent to a

netTcp WCF Channel.

	 3.	 A BizTalk Server Receive Port is listening to that URI,

net.tcp://localhost:8888, and receives the WCF request

through the receive location.

	 4.	 The Send port sndTestMessaging is subscribed with a filter

expression to the ReceivePort and sends all received messages to

the output folder.

	 5.	 To simplify the scenario, the BizTalk application will not send a

response back to the original WCF request.

�Prerequisites

The coded solutions have the following requirements.

	 1.	 Visual Studio load tests requires Visual Studio Enterprise.

	 2.	 TCP Activation. The example uses WCF Net TCP bindings and

because of that you need a Windows service called Net TCP

Listener Adapter.

	 3.	 In Windows Server 2016, you can add the TCP Listener Adapter by

adding the Tcp Activation feature, as shown in Figure 9-16.

Chapter 9 Testing BizTalk Server Solutions

464

Once it’s installed, make sure the following Net TCP services are running:

•	 Net.Tcp Listener Adapter

•	 Net.Tcp Port Sharing Service

�Installing the BizTalkWCFnetTCP Sample Application

BizTalkWCFnetTCP receives the messages from the WFC channel and sends the

messages to an output folder. Follow these steps to install it:

	 1.	 Using the File Explorer, navigate to: C:\APRESS\Chapter9\

BizTalkWCFnetTCPApplication

	 2.	 Locate the following MSI file: C:\APRESS\

Chapter9\BizTalkWCFnetTCPApplication\MSI\

BizTalkWCFnetTCPApplication.msi

Figure 9-16.  Adding the TCP Activation feature using the Add Roles and Features
wizard

Chapter 9 Testing BizTalk Server Solutions

465

	 3.	 Install the MSI.

	 4.	 Import the MSI to the BizTalk Server database using the BizTalk

Administration Console.

	 5.	 Start the BizTalkWCFnetTCPApplication application.

�Creating a New Visual C# Test Project

Follow these steps to create a new test project:

	 1.	 Using Visual Studio, create a new project. Click to expand Visual

C#, and click Test. At the bottom of the New Project dialog box,

specify the following options:

•	 Template: Visual C# -Test - Unit Test Project (.Net 4.6)

•	 Name: BizTalkUnitTest

•	 Location: Choose a location

•	 Solution name: BizTalkUnitTest

	 2.	 Click OK.

	 3.	 Once the project loads, add the following references:

•	 System.XML

•	 System.ServiceModel

•	 System.ServiceModel.Channels

•	 System.Configuration

•	 System.RunTime.Serialization

	 4.	 Add a new item to the project. Go to Visual C# Items, navigate to

General, and choose Application Configuration File.

	 5.	 Double-click the App.Config file and replace the content with the

following code. The original file is located in

C:\Apress\Chapter9\BizTalkUnitTest\BizTalkUnitTest\

BizTalkUnitTest.

Chapter 9 Testing BizTalk Server Solutions

466

<?xml version="1.0" encoding="utf-8"?>

<configuration>

 <system.serviceModel>

 <!-- Bindings used by client endpoints -->

 <bindings>

 <netTcpBinding>

 �<binding name="netTcpBinding" closeTimeout="01:10:00"

openTimeout="01:10:00" receiveTimeout="01:10:00"

sendTimeout="01:10:00" transactionFlow="false"

transferMode="Buffered" transactionProtocol="OleT

ransactions" hostNameComparisonMode="StrongWildca

rd" listenBacklog="100" maxBufferPoolSize="1048576"

maxBufferSize="10485760" maxConnections="400"

maxReceivedMessageSize="10485760">

 �<readerQuotas maxDepth="32" maxStringContentLength="8192"

maxArrayLength="16384" maxBytesPerRead="4096"

maxNameTableCharCount="16384" />

 �<reliableSession ordered="true"

inactivityTimeout="00:10:00" enabled="false" />

 <security mode="None">

 �<transport clientCredentialType="Windows" protectionLe

vel="EncryptAndSign" />

 <message clientCredentialType="Windows" />

 </security>

 </binding>

 </netTcpBinding>

 </bindings>

 <client>

 �<!-- Client endpoints used to exchange messages with WCF

Receive Locations -->

 <!-- BTSMessagingEP -->

 �<endpoint address="net.tcp://<BizTalk Server Name>:8888/

btsloadtest" binding="netTcpBinding" bindingConfiguratio

n="netTcpBinding" contract="System.ServiceModel.Channels.

IRequestChannel" name="BTSMessagingEP" />

Chapter 9 Testing BizTalk Server Solutions

467

 �<endpoint address="net.tcp://<BizTalk Server Name>:8888/

btsloadtest" binding="netTcpBinding" bindingConfiguration

="netTcpBinding" contract="System.ServiceModel.Channels.

IRequestChannel" name="BTSMessagingEP2" />

 <!-- BTSOrchestrationEP -->

 �<endpoint address="net.tcp://<BizTalk Server Name>:9999/

btsloadtest" binding="netTcpBinding" bindingConfiguration

="netTcpBinding" contract="System.ServiceModel.Channels.

IRequestChannel" name="BTSOrchestrationEP" />

 </client>

 </system.serviceModel>

 <appSettings>

 <!-- Folder containing test messages -->

 �<add key="testMessageFolder" value="C:\APRESS\Chapter9\

BizTalkTestingSolution\TestMessages" />

 <add key="ClientSettingsProvider.ServiceUri" value="" />

 </appSettings>

</configuration>

This is the configuration file where you set the netTcpBinding properties and the

location of the test messages used by the test case:

•	 netTcpBinding properties—Send messages through using

the netTCPbinding on ports 8888 and 9999. Since our receive

locations will be listening on those ports, BizTalk Server will pick

up messages from there.

•	 Location of the test messages—Locate the test message folder

using the TestMessageFolder key.

	 6.	 Visual Studio created an empty UnitTest1.cs file. Open it and

replace the content with the already generated class, located here:

C:\APRESS\Chapter9\BizTalkUnitTest\BizTalkUnitTest\

BizTalkUnitTest\UnitTest1.cs

Chapter 9 Testing BizTalk Server Solutions

468

This class implements the load test interfaces that will be called by

Visual Studio test engine.

	 7.	 In the Visual Studio menu, navigate to the Test menu, select Run,

and click on All Tests. See Figure 9-17.

Figure 9-17.  Running all tests using the Test menu

	 8.	 Choose Save All.

�Adding a Load Test to the Project

Now it’s time to simulate a load against the united test you created previously. Follow

these steps to add a load test to the project:

	 1.	 Create a new folder called LoadTests. You will use this folder to

save the LoadTest cases data.

	 2.	 Right-click at the LoadTests folder level, select Add ➤ New Item, and

choose the Load Test option under Visual c# items\Test. The Create

New Load Test Wizard window will be shown. See Figure 9-18.

Chapter 9 Testing BizTalk Server Solutions

469

	 3.	 From the welcome screen, select On-Premise Load Test and

click Next.

	 4.	 On the Review and Edit Run settings for a load test window, take

the following actions (see Figure 9-19):

Figure 9-18.  Selecting the on-premise version of the load test

Chapter 9 Testing BizTalk Server Solutions

470

Figure 9-19.  Selecting the load test duration mode

•	 Select the Load Test duration option.

•	 Specify 30 seconds for the Warm-Up Duration setting.

•	 Change the Run Duration to 1 minute or leave it at 5 (five minutes

will load more than 4.000 instances into BizTalk Server).

•	 Set the Sampling Rate setting to 5 seconds.

•	 Invoke validation rules marked Low as the Validation level.

	 5.	 Click Next.

	 6.	 On the Edit Settings for a load test scenario, type TestWCFNetTcp

as the name of the scenario and choose the Do Not Use Think

Times option. See Figure 9-20.

Chapter 9 Testing BizTalk Server Solutions

471

	 7.	 Click Next.

	 8.	 From the Edit Load Pattern settings window, choose Step Load

and assign the following values to configuration step settings

(see Figure 9-21a):

•	 Start user count: 10 users

•	 Step duration: 60 seconds

•	 Step user count: 10 users

•	 Maximum user count: 80

Figure 9-20.  Entering the name of the load test scenario

Chapter 9 Testing BizTalk Server Solutions

472

	 9.	 Click Next.

	 10.	 From the Test Mix Model window, select Based on the Total

Number Of Tests and click Next, as shown in Figure 9-21b.

Figure 9-21a.  Setting the load pattern for the load test

Chapter 9 Testing BizTalk Server Solutions

473

	 11.	 You now select the unit test cases you created previously. From

the Add Tests window, click Add. Then add the following test cases

to the scenario:

•	 BTSMessaging

•	 BTSMessaging2

•	 BTSOrchestration

	 12.	 Use the sliders to set the BTSMessaging unit test to a 60%

distribution. See Figure 9-22.

Figure 9-21b.  Setting the mix model for the load test

Chapter 9 Testing BizTalk Server Solutions

474

	 13.	 Click Next.

	 14.	 Leave the LAN settings at the defaults and click Next.

	 15.	 From the Specify Computers to Monitor window, add Localhost.
In the next section you will be adding BizTalk Server performance

counters, so you do not need to add counters at this stage.

	 16.	 Click Finish.

�Create a BizTalk Server Counter Set

While the load test runs, you should capture all the BizTalk Server relevant counters

for that scenario. Visual Studio does not come with a counter set for BizTalk Server.

Therefore, you will have to create one. Use the counters referenced throughout all the

book, especially in Chapter 2.

Figure 9-22.  Selecting the unit test scenarios and load distribution

Chapter 9 Testing BizTalk Server Solutions

475

Follow these steps:

	 1.	 Using the Visual Studio Solution Explorer, double-click the

LoadTest1.loadtest file. See Figure 9-23.

Figure 9-23.  Opening the load test file

	 2.	 Locate the Counter Sets node. Right-click and select the option

Add Custom Counter Set. See Figure 9-24.

Chapter 9 Testing BizTalk Server Solutions

476

	 3.	 Notice that an empty Custom1 CounterSet is created.

	 4.	 Right-click the Custom1 counter set, select the Properties option,

and change the name to BizTalk Server.

	 5.	 Locate the new BizTalk Server counter set, then right-click and

select the Add Counters option. See Figure 9-25.

Figure 9-24.  Adding a custom counter set

Chapter 9 Testing BizTalk Server Solutions

477

	 6.	 Add the following BizTalk Server performance counters:

•	 Processor: Select only %Privileged Time and %Processor Time

•	 BizTalk: Message Box: General Counters: Select all counters, all

instances

•	 BizTalk: Messaging: Select all counters, all instances

•	 BizTalk: Message Agent: Select all counters, all instances

•	 XLANG/s Orchestrations: Select all counters, all instances

Figure 9-25.  Adding counters to a counter set

Chapter 9 Testing BizTalk Server Solutions

478

As a result, you should see something like Figure 9-26.

Figure 9-26.  Exploring the added performance counters

Figure 9-27.  Accessing the counter set mappings

	 7.	 Right-click at the Counter Set Mappings root level and select the

Manage Counter Sets option. Make sure that only BizTalk Server is

selected and click OK. See Figure 9-27.

Chapter 9 Testing BizTalk Server Solutions

479

	 9.	 Choose Save All.

�Running the Load Test

Let's run the load test:

	 1.	 Open the LoadTest1.loadtest file.

	 2.	 Right-click at the root level and choose Run Load Test.

See Figure 9-29.

	 8.	 Check the BizTalk Server Counters checkbox and click OK. See

Figure 9-28.

Figure 9-28.  Selecting BizTalk Server performance counter set

Chapter 9 Testing BizTalk Server Solutions

480

	 3.	 The load test will now enter the warming up phase. Visual Studio

will show the remaining warming up time, as shown in Figure 9-30.

Figure 9-29.  Running the load test

Figure 9-30.  Showing the warming up progress

	 4.	 Wait until warming up time finishes. Visual Studio will run the

load test scenario. It will show you the remaining time, as shown

in Figure 9-31.

Figure 9-31.  Showing the remaining time for the load test

	 5.	 Once it’s finished, Visual Studio will show the Load Test Summary

screen.

Chapter 9 Testing BizTalk Server Solutions

481

�Examining the Load Test Results

Let’s now review all the data generated by the load test. This information is crucial to

understanding whether the new application will affect production performance.

Note K eep in mind that, along with the load test output data, you could also set
up a performance log using the performance monitor tool and then analyze the
data by running the PAL tool. You can then include the PAL report as part of the
load test result by copying the PAL output files to the test folder.

Load Test Summary Dashboard

The Summary dashboard is accessible from the Load test menu, as shown in Figure 9-32.

Figure 9-32.  Accessing the load test summary section

Generated data:

	 1.	 General information: Overall Test Run Information, Max User

Load forced, Tests Run Per Second, Number of Failed Tests, and

the Top 5 slowest tests. See Figure 9-33.

Figure 9-33.  Examining the load test summary data

Chapter 9 Testing BizTalk Server Solutions

482

	 2.	 The overall results are shown in Figure 9-34.

Figure 9-34.  Examining the overall results data

	 3.	 For each unit test, Visual Studio shows the number of executed

tests, number of failed tests, and the average individual test time

in seconds, as shown in Figure 9-35.

Figure 9-35.  Examining test results data

	 4.	 It also shows overall physical resource consumption—Processor

Time and Available Memory—as shown in Figure 9-36.

Figure 9-36.  Examining the resource utilization

	 5.	 It also shows the errors that occurred during the load test

execution, grouped by error type, as shown in Figure 9-37.

Chapter 9 Testing BizTalk Server Solutions

483

Figure 9-37.  Exploring the list of errors generated during the test

Graphs Dashboard

Graphs view is accessible from the Load Test menu, as shown in Figure 9-38.

Figure 9-38.  Accessing the graph summary section

Generated data:

	 1.	 In the Default Graph view, there is a pane on the left that shows all

the counter categories you have access to, as shown in Figure 9-39.

Figure 9-39.  Exploring the graph information

Chapter 9 Testing BizTalk Server Solutions

484

This view is dynamic, so if you select a different category, the graphs and

performance counters views will change accordingly.

Note N otice the Error symbol at the Counters Category Computers. This icon
appears when any of the studied performance counters are not within the default
thresholds.

	 2.	 Navigate to Computers\<BizTalk Server Name>\MessageBox

General Counters. Locate the Spool Size counter, right-click, and

select Show Counters on Graph option. See Figure 9-40.

Figure 9-40.  Accessing the Spool counter data

Chapter 9 Testing BizTalk Server Solutions

485

The graph view will change to display the Spool Size performance counter data, as

shown in Figure 9-41.

Figure 9-41.  Examining the Spool counter data

Generating an Excel Report

This feature allows you to crate Excel reports with the analyzed data, so you will be

able to share the output results. This feature requires Microsoft Excel installed in your

computer. Otherwise, it will not be available.

Follow these steps to create an Excel report.

	 1.	 At the Load Test results, click on the Generate Excel Report

toolbox icon, as shown in Figure 9-42.

Figure 9-42.  Accessing the Excel exporting tool

	 2.	 The generate report wizard will start.

	 3.	 Choose Create a Trend Report and click Next.

	 4.	 Type the following name for the report: BizTalk Trend Report.

Click Next.

Chapter 9 Testing BizTalk Server Solutions

486

	 5.	 Select the latest load test results. Click Next.

	 6.	 Under the Message Box Agent category, select only the following

performance counters:

•	 Message Delivery Throttling State

•	 Message Publishing Throttling State

	 7.	 Under the Processor category, select only the %Processor Time

performance counter.

	 8.	 Under the BizTalk: Message Box: General Counters category,

select only the Spool Size Counter.

	 9.	 Under the Memory category, select only the Available Mbytes

performance counter.

	 10.	 Click Finish. Visual Studio will generate the Output Report. It

should look something like Figure 9-43.

Figure 9-43.  Examining the Excel report

	 11.	 Navigate through the report to access the performance data.

Chapter 9 Testing BizTalk Server Solutions

487

�Creating a Web Test for BizTalk WCF Service HTTP Binding
In this section, you are going to learn how to test a BizTalk Server application that has an

orchestration exposed as a WCF service, so you can evaluate if the application is running

under the agreed performance SLA.

In this example, a BizTalk application called WebServiceBookOrders receives

messages using the WCF-BasicHttp receive adapter.

Follow these steps:

	 1.	 Install and import the WebServiceBookOrders MSI file

located here:

C:\APRESS\Chapter9\WebServiceBookOrders\MSI

	 2.	 The MSI file will create a WCF service called

WebServiceBookOrders and a BizTalk Server application with the

same name.

	 3.	 Using Internet Information Server, change the application pool to

BAMAppPool.

	 4.	 Start the BizTalk application called WebServiceBookOrders.

Otherwise, the WCF service will fail.

	 5.	 Once it’s installed, use your preferred Internet browser to navigate

to the following URI: http://localhost/WebServiceBookOrders/

WebServiceBookOrders_orcBookOrders_Port_WebBookOrders.svc

Warning N ote that troubleshooting IIS and WCF services are out of the scope
of the book. If you do not see the service description and the WSDL, the steps will
fail. Troubleshoot your local Internet information server until you are able to see the
service definition.

	 6.	 Using Visual Studio, create a new web load test project.

See Figure 9-44.

Chapter 9 Testing BizTalk Server Solutions

488

	 7.	 Visual Studio creates the test project and adds an empty web test.

	 8.	 Double-click the Webtest1.webtest file.

	 9.	 Right-click at the web test level and select the Add Web Service

Request option. See Figure 9-45.

Figure 9-44.  Adding a web performance and load testing Visual C# project

Figure 9-45.  Adding a web service request

	 10.	 Visual Studio creates a default local host request.

Chapter 9 Testing BizTalk Server Solutions

489

	 11.	 Click on the default local host request and, in the Properties

window, set the URL property to http://localhost/

WebServiceBookOrders/WebServiceBookOrders_orcBookOrders_

Port_WebBookOrders.svc. See Figure 9-46.

Figure 9-46.  Setting the destination URL property of the web test

	 12.	 Right-click at the test level and select the Add Header option, as

shown in Figure 9-47.

Figure 9-47.  Adding a header to the web request

Chapter 9 Testing BizTalk Server Solutions

490

	 13.	 Visual Studio adds a header section and a body string parameter

that will be used to send the request to the service.

	 14.	 Expand the Headers folder, select the default header, and right-

click and select Properties. See Figure 9-48.

Figure 9-48.  Accessing the header properties

Figure 9-49.  Setting up the SoapAction for the service request

	 15.	 Set the Name field to SoapAction. Set the Value field based on

your web service action name. The SoapAction value can be

obtained from your web service’s WSDL. In this case the BizTalk

Server application exposed the service with WebBookOrders as the

SoapAction. See Figure 9-49.

Chapter 9 Testing BizTalk Server Solutions

491

	 16.	 Right-click on String Body and choose Properties. See Figure 9-50.

Figure 9-50.  Accessing the properties of the body string request parameter

	 17.	 Set text/xml to Content Type. Set a valid request XML into the

string body. In this case, I generated the request using the Soap

UI, but you can leverage any other software for that objective:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.

org/soap/envelope/" xmlns:web="http://WebServiceBookOrders.

BookOrderRequest">

 <soapenv:Header/>

 <soapenv:Body>

 <web:BookOrderRequest>

 <OrderDate>21/04/1977</OrderDate>

 <CustomerId>777888</CustomerId>

 <TotalAmount>345666</TotalAmount>

 <Description>test</Description>

 <isVIP>0</isVIP>

 <OrderId>453453433</OrderId>

 </web:BookOrderRequest>

 </soapenv:Body>

</soapenv:Envelope>

	 18.	 Choose Save All.

	 19.	 Click the Run Test button (see Figure 9-51) to test your service call.

Make sure that it is successful and fix it if the test failed.

Chapter 9 Testing BizTalk Server Solutions

492

	 20.	 You should get a response from the service, as shown in Figure 9-52.

Figure 9-51.  Running the test

Figure 9-52.  Examining the response from the service

	 21.	 Now you can add a load test to run the web test. Follow the steps

detailed in the previous section, entitled “Adding a Load Test to

the Project”.

�Providing a Dynamic Data Source
For most of the performance testing labs, you should include dynamic data sources that

will help you test all possible scenarios for the business flow.

Chapter 9 Testing BizTalk Server Solutions

493

At the moment of writing this book, Visual Studio provides the following options to

retrieve data from a dynamic data source:

•	 Database

•	 CSV file

•	 XML file

Follow these steps to add a CSV file as the data source for a load test project:

	 1.	 Select the web test and click the Add Data Source button. See

Figure 9-53.

Figure 9-53.  Adding a data source to the web test project

Chapter 9 Testing BizTalk Server Solutions

494

Figure 9-54.  Selecting the type of the data source

	 2.	 Visual Studio will load the wizard for data source selection. Type

BookOrders as the data source name, select CSV file as the data

source type, and click Next. See Figure 9-54.

Chapter 9 Testing BizTalk Server Solutions

495

	 3.	 Select C:\APRESS\Chapter9\LoadTestWebServiceBookOrders\

DataSource\WebServiceBookOrdersRequests.csv as the CSV file

and click Finish. See Figure 9-55.

Figure 9-55.  Selecting the CSV file and exploring the data

Chapter 9 Testing BizTalk Server Solutions

496

	 5.	 Right-click the WebServiceBookOrdersRequests#csv table and

select Properties. See Figure 9-57.

	 4.	 Click Yes if Visual Studio asks you if you want to include the CSV

file as part of the project. See Figure 9-56.

Figure 9-56.  Including the CSV file as part of the testing project

Figure 9-57.  Selecting the table properties

Chapter 9 Testing BizTalk Server Solutions

497

	 7.	 Right-click at the String Body section of the web test request and

click on Properties. See Figure 9-59.

	 6.	 Change the Access Method to Random so that Visual Studio will

randomly access the CSV file. See Figure 9-58.

Figure 9-59.  Accessing the properties of the string body request property

Figure 9-58.  Selecting the Access Method

Chapter 9 Testing BizTalk Server Solutions

498

	 8.	 Edit the string body property to the following and replace it with

the following text:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.

org/soap/envelope/" xmlns:web="http://WebServiceBookOrders.

BookOrderRequest">

 <soapenv:Header/>

 <soapenv:Body>

 <web:BookOrderRequest>

 �<OrderDate>{{BookOrders.WebServiceBookOrdersRequests#csv.

OrderDate}}</OrderDate>

 �<CustomerId>{{BookOrders.WebServiceBookOrdersRequests#cs

v.CustomerId}}</CustomerId>

 �<TotalAmount>{{BookOrders.WebServiceBookOrdersRequests#cs

v.TotalAmount}}</TotalAmount>

 <Description>TestDescription</Description>

 �<isVIP>{{BookOrders.WebServiceBookOrdersRequests#csv.

isVIP}}</isVIP>

<OrderId>{{BookOrders.WebServiceBookOrdersRequests#csv.OrderIs}}

</OrderId>

 </web:BookOrderRequest>

 </soapenv:Body>

</soapenv:Envelope>

	 9.	 Notice that instead of providing a fixed value, you are now

retrieving the data from the CSV file, using the format

{{DataSourceName.TableName.ColumnName}} for instance in our

example. If you want to provide the CustomerId parameter, you

should use this format:

{{BookOrders.WebServiceBookOrdersRequests#csv.CustomerId}}

Now run the test several times and you will see how Visual Studio is

using data from the CSV file.

Chapter 9 Testing BizTalk Server Solutions

499

�Summary
In this chapter, you learned how to use all the knowledge acquired in previous

chapters of the book to include testing procedures as part of your normal application

development lifecycle.

Performance testing is very important for BizTalk Server environments as usually,

BizTalk Server integrates applications that are part of the core business within the

organization. That is why implementing the unit and performance testing techniques

discussed in this chapter will increase the quality of the code you write. It does this by

reducing the chances of bugs and ensuring that the production environment will be able

to keep up with the load that new applications will generate.

You also learned about the preferred performance methodology that mature

customers are applying to their mission-critical BizTalk Server environments.

In Chapter 9, you read a BizTalk Server tale that will help you put into practice

several advanced topics discussed in this book.

Chapter 9 Testing BizTalk Server Solutions

501
© Agustín Mántaras 2019
A. Mántaras, BizTalk Server 2016, https://doi.org/10.1007/978-1-4842-3994-0_10

CHAPTER 10

A BizTalk Server Tale
In this chapter, I am going to tell you a story. This is the story about a fictitious customer

(ACME corporation) that decides to start with BizTalk Server as its integration system.

Because at the beginning they start only with one non-mission critical application,

the sizing of the initial environment is small. Gradually, they add more and more

applications, so they have to figure out a way to improve the platform. Even though this

is an imaginary exercise, the situations described here are quite common with each

evolving BizTalk server customer.

Additionally, you will learn about the most common architectures that customers

are using all over the world and how they provide high availability to the single point of

failure areas.

�Chapter 1: The One with the Baby BizTalk Server
ACME corporation started using BizTalk Server to move customer data from an Excel

file to the internal CRM application. If this solution fails, business operations will not be

affected, as this application is mainly used for internal reporting; the core solutions are

currently operated by custom .NET services and applications.

Because of the light availability and performance requirements, they decided to start

with a small BizTalk Server deployment using BizTalk Server Standard edition, which has

the following limitations:

•	 Access to CPU is restricted by two cores

•	 Only one BizTalk Server is possible

•	 Maximum of five BizTalk Server applications

As they do not need high availability, BizTalk and SQL Server are on the same box to

reduce hardware and licensing costs.

502

Architecture:

•	 Number of total servers: 1

•	 Number of SQL Servers: 1

•	 Standard edition, 2 CPU, 8 GB of memory

•	 Number of BizTalk Servers: 1

•	 Standard edition, 2 CPU, 8 GB of memory

�Chapter 2: The One with New Applications
After using BizTalk Server for a while, the team saw the great value of the mapping

feature and how BizTalk Server could convert flat files to XML. The development team

wanted to create more applications and deploy them to BizTalk Server. However, they

realized that they would need to upgrade the BizTalk Server version to the Enterprise

edition because now they would need eight applications to provide the business

functionality. Additionally, upon testing, they realized that the CPU was above 70% most

of the time, so they decided to scale up the server to four cores. SQL and BizTalk are still

on the same standalone server.

New Architecture:

•	 Number of Total servers: 1

•	 Number of SQL Servers: 1

•	 Standard edition, 4 CPU, 8 GB of memory

•	 Number of BizTalk Servers: 1

•	 Enterprise edition, 4 CPU, 8 GB of memory

�Chapter 3: The One with Performance Problems (I)
After a few months, the DBA observes that the SQL Server process is using high CPU

and is preventing the BizTalkServerApplication host instance from accessing CPU

resources. Applications are slow. To fix this problem, the team decides to move SQL

Server to a dedicated server.

Chapter 10 A BizTalk Server Tale

503

After some testing in the testing environment, they observe that the SQL Server

process CPU consumption is still high, but the BizTalk Server host instance performs

smoothly, so they decide to apply this new architecture to production.

The team will now monitor CPU consumption in both servers.

New Architecture:

•	 Number of total servers: 2

•	 Number of SQL Servers: 1

•	 Standard edition, 4 CPU, 16 GB of memory

•	 Number of BizTalk Servers: 1

•	 Enterprise edition, 4 CPU, 8 GB of memory

�Chapter 4: The One with Performance Problems (II)
One of the most commonly used applications starts processing more messages than the

original performance definition. BizTalk Server administrators now observe that CPU

consumption during business hours increases to 90%, so they decide to add more CPU

resources to the BizTalk Server.

Upon testing, they realize that even by adding more CPU to the BizTalk Server, they

are not able to increase the rate. After further investigations they observe that SQL Server

CPU usage is also increasing, so they decide to increase the number of CPUs that SQL

Server utilizes. After this change, the platform runs efficiently.

The team will now monitor CPU consumption in both servers.

New Architecture:

•	 Number of total servers: 2

•	 Number of SQL Servers: 1

•	 Standard edition, 8 CPU, 8 GB of memory

•	 Number of BizTalk Servers: 1

•	 Enterprise edition, 8 CPU, 8 GB of memory

Chapter 10 A BizTalk Server Tale

504

�Chapter 5: The One with the Disaster (I)
Over a weekend, for some unknown reason, the SQL Server stops working. This causes

one of the most important BizTalk Server applications, which is preparing data for the

working week, to not process files on time. The business operations were therefore

delayed until the DBA could fix the issue on Monday. The SQL Server was down due to a

failure related to the local disks.

The DBA suggests to the project manager that if this application had become that

important, it might be time to add a second server and provide high availability to the

SQL Server layer by implementing a Microsoft cluster.

The project manager approves the budget and the team implements a cluster in an

active/ passive configuration with only one SQL Server instance.

New Architecture:

•	 Number of total servers: 3

•	 Number of SQL Servers: 2 in a cluster configuration

•	 Standard edition, 8 CPU, 8 GB of memory

•	 Number of BizTalk Servers: 1

•	 Enterprise edition, 8 CPU, 8 GB of memory

�Chapter 6: The One with the Disaster (II)
This time, around 2AM during a normal work week, BizTalk administrators receive alerts

because the environment is not processing anything. They go onsite, and they detect

that the BizTalk Server is down. Upon investigation, they notice the same disk issue that

caused SQL Server to stop the previous month is happening again, but this time in the

local BizTalk Server disk.

As there is an application that, during the night, processes important information for

the business, the BizTalk Server administrator suggests that providing high availability to

the BizTalk Server layer will ensure that this issue will not happen again.

The project is approved again by the project manager and the team adds another

BizTalk Server box.

Upon testing, they realize that the platform can process even more messages than

before, and that BizTalk Server CPU consumption has decreased by 20%.

Chapter 10 A BizTalk Server Tale

505

The DBA raises a warning, because overall SQL Server CPU usage has increased by

15%. This is because there are now two host instances polling the databases.

New Architecture:

•	 Number of total servers: 4

•	 Number of SQL Servers: 2 in a cluster configuration

•	 Standard edition, 8 CPU, 8 GB of memory

•	 Number of BizTalk Servers: 2

•	 Enterprise edition, 8 CPU, 8 GB of memory

�Chapter 7: The One with the Big File that Changes
Everything
A new application comes onto the scene. This application needs to process a 1 GB flat

file daily, apply some transformations to it, and send the output to the CRM application.

Developers start coding the solution with a small sample file that contains all the

possible message definitions.

When they test the solution with a real file, BizTalk Server starts processing messages

extremely slow, to the point that it takes more than five hours to complete the whole

process. Additionally, while the system is busy processing the flat file, the rest of

applications are processing extremely slowly.

As they do not know what is happening, they decide to open a Microsoft Support

case. After a few days of investigation, the support engineer comes back with the

following explanation:

•	 BizTalk is entering a throttling state due to memory pressure and that is

most likely the reason why the process is taking so long to complete.

•	 The rest of the applications do not have enough resources to process

messages at an acceptable rate, because orchestrations and receive

and send ports are running under the same host, and when the large

file comes, the host instance is busy (consuming most of the server

resources) in the disassembling stage.

•	 The XML representation of the flat file allocates around 8 GB of

memory to the BizTalk Server process.

Chapter 10 A BizTalk Server Tale

506

To fix this problem, the engineer recommends the following plan:

•	 Create a set of hosts for receiving, processing, and sending, and have

the non-large flat file applications run under these new hosts.

•	 Create a new set of hosts dedicated exclusively to process the large

file and increase the process virtual memory threshold to 50% so

that all the host instances of this application can take up to 50% of

available memory on the server.

•	 Increase the BizTalk Server memory so it will have enough resources

to process the large file.

•	 Isolate the DTC log file into a dedicated disk (BizTalk and SQL

Server).

The BizTalk team at ACME corporation implements all the suggested changes and,

upon testing, they realize that the process completes in a reasonable period, from the

business point of view. Additionally, the rest of the applications are still processing

messages without entering a throttling state.

From now on, the team will consider the host separation policy as an important

subject.

New Architecture:

•	 Number of total servers: 4

•	 Number of SQL Servers: 2 in a cluster configuration

•	 Standard edition, 8 CPU, 32 GB of memory

•	 Number of BizTalk Servers: 2

•	 Enterprise edition, 8 CPU, 32 GB of memory

•	 There is now a new set of hosts (receiving, processing, and sending)

that process the large-file application.

•	 There is also a new set of hosts split by BizTalk Server functionalities

to deal with the rest of applications.

Chapter 10 A BizTalk Server Tale

507

�Chapter 8: The One with Web Service
At this point, BizTalk Server applications were receiving messages only from shared

folders over the network. ACME corporation was changing fast, though, and was

evolving to a more service-oriented architecture. Part of this transformation creates the

need to expose several applications as rest services.

Developers attend a Microsoft course and they learn the right steps to publish

orchestrations as Web Services. However, when they test the solution, they realize that

only one BizTalk Server is receiving all the requests. The CPU on that server rises to 80%,

while the other one stays stable with an average consumption of 20%. They contact the

networking team and together they come to the conclusion that they need to implement

a network load-balancing mechanism that will distribute the load across both BizTalk

Servers.

New Architecture:

•	 Number of total servers: 4

•	 Number of SQL Servers: 2 in a cluster configuration

•	 Standard edition, 8 CPU, 32 GB of memory

•	 Number of BizTalk Servers: 2 implemented using a Hardware NLB

solution to distribute the load

•	 Enterprise edition, 8 CPU, 32 GB of memory

•	 There is now a new set of hosts (receiving, processing, and sending)

that are processing the large-file application.

•	 There is also a new set of hosts split by BizTalk Server functionalities

to deal with the rest of applications.

�Chapter 9: The One with the Disk Performance Issue
Developers are creating applications and deploying them into production on a monthly

basis. With the new architecture, no performance issues have been detected and the

platform is up and running efficiently.

Chapter 10 A BizTalk Server Tale

508

One afternoon, the DBA observed that SQL Server disks are performing very

slow and that the read and write latency for the disk holding all of the BizTalk Server

databases has increased to the point that, on average, write and reads operations are

taking more than 25 milliseconds. The DBA contacts the storage team and they discard

configuration problems on SAN level, as they are following the vendor best practices. It

just seems that the disks holding the BizTalk Server databases are quite busy.

At this stage, several business areas start complaining about the performance of the

BizTalk Server applications because they observe that overall throughput is affected.

The DBA raises the issue and recommends that they separate data and transaction

files into different LUNs in the SAN. The storage team then dedicates several LUNs to

allocate all the required disks to BizTalk Server.

They come up with the recommendation outlined in Table 10-1.

Table 10-1.  Data Files Distribution

Database File Drive

MessageBox data F

MessageBox log G

BizTalk tracking data H

BizTalk Tracking log I

BizTalk BAM primary import data J

BizTalk BAM primary import log K

Business application data L

Business application log M

Rest of databases data N

Rest of databases log O

After the team applies the changes, the disks performance turn back to acceptable values.

New Architecture:

•	 Number of total servers: 4

•	 Number of SQL Servers: 2 in a cluster configuration

•	 Standard edition, 8 CPU, 32 GB of memory

Chapter 10 A BizTalk Server Tale

509

•	 Number of BizTalk Servers: 2 implemented using a Hardware NLB

solution to distribute the load

•	 Enterprise edition, 8 CPU, 32 GB of memory

•	 There is now a new set of hosts (receiving, processing, and sending)

that are processing the large-file application.

•	 There is also a new set of hosts split by BizTalk Server functionalities

to deal with the rest of applications.

•	 A new disk infrastructure is provided that guarantees BizTalk Server

database isolation.

�Chapter 10: The One with the New Application (I)
A new business application comes that requires processing 500 messages per second

during the entire day. Developers develop the application and when they test it in the

testing servers, they realize that they are not getting even close to that number and the

available memory on BizTalk and SQL Server decreases into the danger zone.

To fix the issue, the BizTalk administrator recommends they create a new set of hosts

for receiving, processing, and sending and dedicate them to the new application so the

team can test this separately and adjust all of the required performance values.

After several days of testing, the team comes to the following conclusions:

•	 Pooling intervals—Reduce to 50 milliseconds for all of the

application hosts. By doing so, new messages and orchestrations are

processed earlier by the engine (almost as soon as they are assigned

to the host queues).

•	 Disabling orchestration dehydration—If a failure occurs in the

middle of a Web Service call, the consumer of the service will send

the request again so there is no need to dehydrate orchestrations.

•	 As dehydration is disabled, orchestrations will not be stored in the

MessageBox while they are consuming a service; they will be held on

memory. BizTalk Servers now have to have more memory to keep up

with the load.

Chapter 10 A BizTalk Server Tale

510

•	 Maximum engine threads—By increasing this setting to 40 it seems

that the BizTalk engine can increase the rate of documents processed

per second. However, SQL Server CPU rises exponentially, so they

decided that they have to scale up SQL Server by adding more CPUs.

•	 .NET CLR host instance settings—They also observed that the

receiving and sending host instances are processing more messages if

they decrease the value of the maximum IO threads to 100.

With all these customizations, they reach a rate of 400 messages per second, but the

platform enters in throttling state because of the database size.

They tune then the Message Count in Database setting to 100.000 so that the engine

enters the throttling condition later. As SQL Server needs to process more messages,

they contact the DBA team to ensure there is enough backlog for the drives that hold

BizTalk Server databases. The DBA evaluates the new situation and changes the SAN

distribution to add more space to the BizTalk Server database drives.

Developers now test the solution and they get very close to the performance

requirement of 500 messages per second. However, DBA detects that the MessageBox

database is growing very fast and disk latency increases exponentially over 30

milliseconds.

After several hours of investigation, they do not find root cause of the issue, so they

decide to open a support case.

Once the engineer reviews all the data, analyzes all the BizTalk traces, and runs

several troubleshooting tools, he delivers an explanation and an action plan:

•	 The reason that the platform is slow is because the MessageBox

database has become a bottleneck. To fix this situation, you should

test the solution with the following changes:

•	 Add two more message boxes to distribute the message

publication between them.

•	 Isolate all MessageBoxes to run in a separated SQL Server

instance in a dedicated server.

The team implements all the suggested changes in the testing environment. The

solution can now achieve the performance target of 500 messages per second while the

latency is stable for the rest of the applications. SQL disk performance is not an issue

anymore.

Chapter 10 A BizTalk Server Tale

511

New Architecture:

•	 Number of total servers: 4

•	 Number of SQL Servers: 2 in a cluster configuration. MessageBoxes

are running on server A and server B has the rest of databases.

•	 Standard edition, 12 CPU, 64 GB of memory

•	 Number of BizTalk Servers: 2 implemented using a Hardware NLB

solution to distribute the load.

•	 Enterprise edition, 12 CPU, 64 GB of memory

•	 There is now a new set of hosts (receiving, processing, and sending)

that are processing the large-file application.

•	 There is also a new set of hosts split by BizTalk Server functionalities

to deal with the rest of applications.

�Chapter 11: The One with FTP Server
A new application that needs to retrieve files from a FTP server arrives. Developers

create the application and test it. Everything looks fine, so the solution goes live. A few

months later, the business responsible for that application complains that from time to

time they receive duplicated requests.

Developers analyze the code, looking for bugs, but they cannot find anything. Using

the BizTalk administration console, they detect those duplicated message instances

by enabling message body tracking, but they cannot still figure out why the duplicated

messages are being generated. They seriously consider that there might be a bug in the

product. They install the latest BizTalk Server 2016 service pack, but as the issue is still

there, they decide to open a support case.

During the initial call, the engineer comes up with a solution right away:

•	 The FTP protocol does not block the file while a process is accessing

it. It is not like an NTFS folder. This is by design and this behavior is

out of the scope of BizTalk Server. In this case, as you have two host

instances accessing the FTP server, it might happen that eventually

both processes will access the same file at the same time. The receive

location will pick up those messages and the engine will publish

them as if they were different messages.

Chapter 10 A BizTalk Server Tale

https://doi.org/10.1007/978-1-4842-3994-0_11

512

•	 Therefore, there are two options:

a.	 You can disable one host instance from starting on one of the

servers. With this action, you will ensure that no duplicated

messages are published, but you will lose high availability for the

FTP host.

b.	 You can cluster the receiving FTP host, so only one host instance

is started at a time. However, you are using NLB and clustering

at the same time is not supported. To solve this situation, you

have to add two BizTalk Servers to the group and cluster them.

Then you could dedicate those servers to run only the receiving

FTP hosts. These two new servers will be outside of the NLB.

The ACME team evaluates the options and, as this application is not mission-critical

and there are budget restrictions at this time, they decide to create a new host and put

the FTP receive location under it. They will start the associated host instance on server A

and they will disable the host instance on server B. If there is an issue with the running

host instance, they will manually start the second one and they will deal with all the

associated issues reactively.

�Chapter 12: The One that Sends Files Too Fast
Business users of one of the applications that sends a file to a destination system ask

the BizTalk administrator if it is possible to send the files slower, like 20 messages per

minute. The system that receives the files needs to consume a service (per file) that takes

hours to complete and cannot handle more than a few files per minute, because it is

a legacy system that cannot be scaled or changed as they do not own the source code

anymore.

The BizTalk administrator automatically thinks of the maxConnection setting in the

BizTalk Server configuration file, but then she realizes that the setting applies only to

communications based on HTTP based adapters and, in this scenario, will not have any

effect because the application is sending the files using the FILE adapter.

She wonders now if by adjusting the host throttling settings, they can reduce the

frequency of the sending operations. She contacts then the developer team and explains

the situation. The developer lead states that they can modify the rate-based throttling

settings to delay the message publication or the message delivery. In both cases, the

destination system will receive messages in a slower fashion.

Chapter 10 A BizTalk Server Tale

https://doi.org/10.1007/978-1-4842-3994-0_12

513

The BizTalk administrator suggests that is better to slow down message publication.

In this scenario, the files will not be stored to the MessageBox because they would

remain in the file system.

The developer team agrees on that argument and starts to test the application with

different host throttling configurations. After a few attempts, they get to a configuration

where the BizTalk Server is picking up messages from the source folder at a rate of one

every three seconds.

•	 Minimum number of samples—Default value: 100, changed to 1.

By changing to this value, the host throttling algorithm will start the

throttling condition in every sample (instead of 100 occurrences).

•	 Sampling window duration—Default value: 15 seconds, changed

to 1 second. By changing this setting now every sample will last only

one second. The throttling algorithm will consider the throttling

condition every second.

•	 Rate overdrive factor—Default value: 125%, changed to 100%. By

changing this threshold to 100%, the throttling condition will be

raised when the number of delivered and published messages are the

same.

•	 Maximum throttling delay—Default value: 300 seconds; changed to

3 seconds. The BizTalk Server engine will induce a delay of 3 seconds

for every message received through this port.

•	 Throttling override—Default value: Do not override, change to a

Initiate throttling condition. The throttling condition will always rise

if the rate overdrive factor is reached.

However, this configuration requires you to add a new host to the environment

because they need to isolate the host settings for this specific receive port.

The BizTalk Server administrator approves all the changes and decides that a

production assessment is not required because this host will process messages as per the

requirement now.

The application goes live, and the destination system starts receiving around 20

messages per minute.

Chapter 10 A BizTalk Server Tale

514

�Chapter 13: The One That Floods a Destination
System
Business users start complaining about the performance of one of the web applications.

They say that during peak times, the application does not return the data and they get

lots of timeout errors.

The BizTalk administrator starts performance logging during the high load time,

between 8AM and 10AM. Once the logging finishes, she opens the result performance

monitor BLG file and starts analyzing the information. Upon examination, she notices

that the following performance counters behave abnormally:

•	 BizTalk: Messaging Latency—Outbound Adapter Latency (sec).

Latency increases exponentially between 8 and 10AM.

•	 BizTalk: Messaging—Documents suspended/Sec. The number of

suspended messages per second increases during the whole period

to 12,000 messages.

She opens the BizTalk administration console and filters suspended messages by

destination URI. She notices that all the suspended messages are related to the same

destination, a Web Service that is hosted internally by a different team. She contacts

the administrator of that service and together they realize that the server that hosts that

Web Service shows 100% CPU and it is out of memory. The administrator of that system

checks the IIS logs and he sees thousands of requests with errors.

The BizTalk administrator suggests that it seems that the server is not able to deal

with the load that BizTalk Server is sending. So, she decides to adjust the maxConnection

setting for that URI.

She opens the BizTalk Server configuration and checks the maxConnection setting:

 <system.net>

 <connectionManagement>

 <add address="*" maxconnection="25" />

 </connectionManagement>

 </system.net>

She notices that every BizTalk Server destination is sending 25 messages, and that is

probably the reason the destination system is flooded. She changes the maxConnection

setting to open only two connections to the affected service:

Chapter 10 A BizTalk Server Tale

https://doi.org/10.1007/978-1-4842-3994-0_13

515

 <system.net>

 <connectionManagement>

 <add address="*" maxconnection="25" />

 <add address="http://ACMEWebService" maxconnection="2" />

 </connectionManagement>

 </system.net>

The day after, business users say that the system is not generating timeout errors

anymore and the administration of the Web Service confirms that the CPU and memory

usage went back to normal during the whole day.

�Chapter 14: The One with the New Application (II)
The ACME integration environment is growing. There is a new requirement to

implement a new low latency application that needs to process 100 messages per

second, with peaks of 200 messages.

As part of the application lifecycle, the development team introduced performance

testing. The development team tests the solution in the testing environment and they get

the values shown in Table 10-2 for the performance counters.

Table 10-2.  Performance Counter Data

Performance Counter Value

Processor: %Processor Time

Spool Size
Available Memory *

SQL Server Disk Idle Time

SQL Processor: % Processor Time

32%

No increasing trends detected

28 GB

68%

26%

BizTalk Server Disk Idle Time 75%

Documents Received /Sec 244

Documents Processes /Sec 420

Documents Sent /Sec 244

*Note, the production environment has 30 GB of physical memory.

Chapter 10 A BizTalk Server Tale

https://doi.org/10.1007/978-1-4842-3994-0_14

516

All in all, it seems that the application can perform under the agreed performance

SLA with the hardware that is used in the testing and production environments.

However, this test was executed while the testing servers were idle because the other

applications were not tested at the same time. For this reason, the development team

asks the BizTalk administrator to assess the production environment, so they can

evaluate if there is enough room to run the new application on production.

The BizTalk administrator starts the performance logging for a period of 24 hours.

The day after, he processes the output BLG file using the PAL tool and gets the values

shown in Table 10-3 for the selected performance counters.

Table 10-3.  New Performance Counters Data

Performance Counter Value

BizTalk Processor: % Processor Time

Spool Size
Available Memory *

SQL Server Disk Idle Time

SQL Processor: % Processor Time

45%

No increasing trends detected

10 GB

58%

51%

BizTalk Server Disk Idle Time 45%

Documents Received /Sec 355

Documents Processes /Sec 598

Documents Sent /Sec 442

*Note, the production environment has 30 GB of physical memory.

The ACME team compares the results to estimate the maximum resource utilization in

production, if they deploy the new application. The comparison is shown in Table 10-4.

Chapter 10 A BizTalk Server Tale

517

Based on this comparison, the team comes to the conclusion that adding this

application to the platform would not be safe, as most of the estimated calculations show

that there will be a good chance that the environment would start processing messages

above the MST continuously. Both BizTalk and the SQL Server show high CPU and

memory consumption. The whole team gathers together to discuss the current situation,

with these conclusions:

•	 The performance SLA for the new application has been established

to 100 messages per second, with peaks of 200. The team designed

the load tests to reach the maximum load and the testing platform

responded smoothly to the worst load scenario, showing that it can

process up to 244 messages per second continuously. Would it be

acceptable to the integrated parties if BizTalk Server slows down the

application under high load?

•	 If the integrated parties accept this, they can tune the BizTalk

Server application hosts to enter the throttling state for memory

consumption when the number of received messages per second is

higher than 110. This situation that will not arise frequently.

•	 If this is not acceptable, then they will need to scale the environment

by adding more hardware resources.

Table 10-4.  Performance Counters Data Comparison

Performance Counter Testing Production Estimation

BizTalk Processor: % Processor Time

Spool Size

Available Memory

SQL Server Disk Idle Time

SQL Processor: % Processor Time

32%

No increasing trends

detected

28 GB

68%

26%

45%

No increasing trend

detected

10 GB

58%

51%

77%

Unknown

8 GB

26%

77%

BizTalk Server Disk Idle Time 75% 45% 15%

Documents Received /Sec 244 355 599

Documents Processes /Sec 420 598 1018

Documents Sent /Sec 244 442 686

Chapter 10 A BizTalk Server Tale

518

The integrated parties confirm that it would be acceptable to slow down processing

under high load. Now the question is, how do they get the right memory threshold?

The BizTalk Server administrator suggests the following procedure:

	 1.	 Isolate the receiving location into a separated host.

	 2.	 Design a load test that will send 150 messages per second for one

hour.

	 3.	 Gather the following performance counters:

•	 BizTalk: MessageAgent: Process Memory Usage (MB)

•	 BizTalk Messaging: Documents received/sec

	 4.	 Run the load test.

	 5.	 Analyze the Process Memory Usage (MB) counter during the full

capture and perform an average calculation. This is the threshold

that should be used to tune the host. So, when host instances

consume this amount of memory, it is because the received

documents per second is around 150.

The whole team loved this idea and proceed as suggested by the BizTalk

administrator. Upon testing, they got an average value for the Process Memory Usage

(MB) counter of 2.166 MB (around 2 GB of memory). That means that the host instances

are consuming 6.6% of the available memory of the server (30 GB).

Using the BizTalk administration console, they set the Process Virtual threshold

of the receiving host to 7 and they perform the original load test again. As the host

enters the throttling state due to memory pressure, messages take longer to complete,

but the processor and memory utilization of BizTalk and the SQL Servers decrease

exponentially.

They approve all the changes and the application is deployed to production. The

BizTalk administrator performs daily performance assessments to production and

confirms that the platform is still running under the MST.

Chapter 10 A BizTalk Server Tale

519

�Chapter 15: The One with the High Throughput
Application
A new application is ready for production. The development team has tested the solution

on the testing environment and came to the conclusion that there is room for this

application in production. The deployment is done over the weekend and everything

works normally during the initial integration tests.

On Monday though, users complain about slowness of the platform and open an

internal ticket.

The BizTalk administrator runs the BizTalk health monitor tool and finds out that

the transaction log for the MessageBox database is around 40 GB (with actual data). He

sends that information to the DBA and the SQL Server administrator confirms that the

transaction log file for the MessageBox is growing to 40 GB. He recommends configuring

the BizTalk Back Up so that the jobs run every five minutes, rather than leaving the

default 15 minutes configuration. The BizTalk administrator approves the change and,

upon testing, finds out that with the new job configuration, the transaction log for the

MessageBox does not grow beyond 15 GB.

�Summary
This chapter went through several BizTalk Server problems that frequently occur

around the world. Some of them were very simple and were fixed just by adding more

hardware resources to the platform. However, in my experience, it is usually better to

spend time analyzing the issue to find the root cause and use the flexibility that BizTalk

Server provides to customize the platform. Eventually, especially if the number of new

applications is growing, you will face a situation where the only solution is to scale the

platform. But because you have been squeezing the platform settings to the maximum,

your BizTalk Server environment will use resources efficiently.

Chapter 10 A BizTalk Server Tale

https://doi.org/10.1007/978-1-4842-3994-0_15

521
© Agustín Mántaras 2019
A. Mántaras, BizTalk Server 2016, https://doi.org/10.1007/978-1-4842-3994-0

Index

A
Adapters, 44–45
Application Priority Levels (APL)

BPL, 148–150
HAL, 150
PBL, 151
RSL, 148
SLA, 146
TL, 150–151

Arrange-Act-Assert (AAA) pattern, 438
Atomicity, Consistency, Isolation, and

Durability (ACID), 231

B
BizTalk 360

alarm configuration
advanced pane, 403–404
basic settings, 401–402
data monitoring, 407
fields, 402–403
health monitoring alert, 406
settings, 401
threshold alert, 404–405
type, alarm, 401

automated recovery, 430
data monitoring, 400
data monitoring dashboard, 428–430
health check monitoring, 400

monitoring dashboard, 427–428
operations dashboard, 426
threshold monitoring, 400

BizTalk application
BizTalk Server counter set

counters option, 476–477
custom counter set, 475–476
mappings, 478
performance counters, 477–478
Visual Studio Solution Explorer, 475

BizTalkWCFnetTCP, 464
load test

BTSMessaging, 473–474
duration, 470
Excel reports, 485–486
graphs view, 483, 485
load pattern, 471–472
mix model, 472–473
on-premise, 469
remaining time, 480
run load test, 479–480
Spool counter data, 484–485
summary dashboard, 481–483
TestWCFNetTcp, 470
warming up phase, 480

monitoring (see Monitoring,
BizTalk application)

netTcpBinding properties, 467
TCP listener adapter, 463–464

https://doi.org/10.1007/978-1-4842-3994-0

522

testing, 462
test Visual Studio project, 463
Visual C# test project, 465–466, 468
WFC message, 463

BizTalk CAT Instrumentation
Framework Controller

DebugView, 270–271
ETL traces, 271–273
ETW controller, 269
user interface, 270

BizTalk health monitor (BHM)
tool, 103, 519

BizTalk performance factors
automating host setting

BizTalkLowLatencyHostSettings.
xml file, 201–202

import, host configuration file, 203
MSBTS_HostSetting, 196–197
MWI classes, 199
PowerShell, 190, 199–200
PutType options, 199
WMI classes, 195
WMI, defined, 190–192
WMI Explorer, 198
WMI namespace, 194
WMI queries, 193

connectionManagement section, 232
host architecture, 175–176
host performance (see Host

performance settings)
host separation policy, APL

BPL, 178
PBL, 179
RSL, 177
TL, 178–179

HTTP adapters, 232–234
import, host configuration file

BizTalk Administration console, 203
destination host, 205–206
host mapping, 205–207
results, 208–209
settings, 204
summary, 208

Message Box
(see Message Box database)

message size
BHM, 163, 165
DTC Locks, 162
fragments table, 162
large size setting, 163–164
map execution, 160
orchestration, 161
out of memory, 162
pipelines, 160
SQL Server locks, 161
XMLdocument, 161
XPath, 161

MSDTC (see Microsoft
Distributed Transaction
Coordinator (MSDTC))

scaling BizTalk Server group, 230
service throttling, 234
tracking (see Tracking

BizTalk performance)
WCF throttling

maxConcurrentCalls, 234
maxConcurrentInstances, 234
maxConcurrentSessions, 234
ServiceBehaviors, 235
values, BizTalk Server, 235

BizTalk platform monitoring
BizTalk environment, 407
BizTalk server, 311

ACME Corp, 412
availability monitoring, 413

BizTalk application (cont.)

Index

523

BizTalk administrators, 413
BizTalk applications, 412
configuring availability

monitoring, 414
groups, 412
ICMP protocol, 414
monitor status, 414

host instances
alarm, 409
auto-correct, 409
clustered, 410
manage mapping, 408
proactive monitoring

mechanism, 408
SQL server jobs, 410–411
throttling analyzer

counter data, 416
host throttling, set up, 416–417
throttling mechanism, 415–416
visual representation, 416

Windows NT services, 414–415
BizTalkServerApplication host, 200, 502
BizTalkServerApplication64Host, 200
BizTalk Server message, 16–18
BizTalkServerReceiveHost, 199
BizTalkServerReceive32Host, 200
BizTalkServerSendHost, 200
BizTalkServerSend32Host, 200
BizTalk Server standard edition, 501–502
BizTalkServerTrackingHost, 199
BookPromotedPropertiesSchema, 343
BookTrackId property, 344
BufferedEventStream (BES), 275
Business activity monitoring (BAM), 424

activity definitions
all view items, 282
BAM view, 282

book orders approvals, 277–284
CRMCallDuration, 284
Excel BAM template, 278
export XML, 284
guidance, 278
XML file, 285–286

BES, 275
BizTalk primary import

database, 276
components, 277
defined, 274
DES, 275
interceptors, 276
.NET API, 275
OES, 275
OLAP cubes, 276
portal view, 275
TPE (see Tracking profile

editor tool (TPE) tool)
Business functionality

maxConnection setting, 512
MessageBox database, 510, 513
NET CLR host instance settings, 510
New Architecture, 502, 511
orchestration dehydration, 509
PAL tool, 516
performance counters, 515–517
pooling intervals, 509
procedures, 518
threads, 510

Business priority level (BPL), 148, 180
Business rules technique

performance recommendations, 382
caches policies, 386
database types, 382, 384–385

policy execution steps, 381
to reduce deployment, 380–381

Index

524

C
Canonical schemas, 314–315
CAT framework

BizTalk CAT Instrumentation
Framework controller, 269–273

BizTalk Server tracing
component, 257–258

error, 255
implement interface, 256
migration issues, 254
name key, 256–257
orchestrations, ETW

callToken variable, 260
closeTrace shape, 261
initTrace, 261
orcProcessBookOrders, 258
output trace, 265
scopeName variable, 262
TraceMainScopeClose, 262
TraceMainScopeStart, 262
TraceNonVipCustomer, 263
trace session, 261
TraceVipCustomer, 263
Visual Studio, 258

target version, 255
TraceLog, 265, 267–269
updating process, 252

Configure Email template, 403
Counter System Up Time, 53
CustomerCode, 312
Custom notification channels, 403

D
Database inconsistencies

BHM report option, 229
BizTalk health monitor tool, 226
database integrity section, 227

default profile, BHM, 226
executing, BHM, 229
maintenance section, 227–228
Monitor BizTalk Server

(BizTalkMgmtDb), 225
reason, 225

Data monitoring, 400
BAM, 424
endpoints, 425
event log, 424
integration layer, 421
message box, 423–424
tracking data

creation, alarm, 422
error threshold, 422
options, 422
query result, 423
warning threshold, 422

Dehydration, 318
Dequeue, 41–44
Destination system, 514
Disaster

DBA, 504
New Architecture, 504–505

Disk performance issue, 507–509
DistinguishedField attribute, 26, 314
Distinguished properties, 20, 24
Documentation, BizTalk Server solutions

application form
application priority

levels section, 237
configuration, 236
convoy pattern, 239
documented flows section, 239
flow forms, 240
hosts, 237
performance data section, 237–239
scheduled transactions, 238

Index

525

subscriptions, 238
transactions, 237

business flows, 236
Excel file, 236
Message Box, 236
performance SLA, 236
sizing Message Box and DTA sheet

calculated sizing data
section, 241–242

extra size, database, 247
extra size tracking data, 242
item section configuration, 241
maximum size, 242–243
max number of live

transactions, 242
pipeline, 246–247
steps, add messages, 243–245
steps, add orchestration, 245–246

tracking databases, 236
DPCs, 62
DTC log file, 232

E
Element, 3–4
Enable Email high priority, 403
Enable HP operations manager

integration, 404
Envelope schemas, 13
EventId, 404
Event Tracing for Windows (ETW)

architecture, 251
BizTalk CAT Framework

(see CAT framework)
consumers, 250
controllers, 250
Microsoft.BizTalk.Diagnostics.dll, 251

Microsoft.BizTalk.Tracing.dll, 251
providers, 250
TraceProvider class, 251

F
Flat file

application
architecture, 506
engineer, recommends, 506
engineer, support, 505

schemas
delimited, 8–9
positional, 8, 10

FTP server, 511–512

G
GetClassID method, 350, 358

H
Health check monitoring, 400
High availability

level (HAL), 150
High throughput application, 519
Host instances

definition, 16
MessageType property, 22–23

design consideration, 24
distinguished, 24
performance

recommendations, 25–26
view, 21

publications, 16
BizTalk Messages structure, 17
message context, 18–21

Index

526

Host performance settings
application priority levels, 180
32-bit, host setting, 182
CPU utilization, 184
dehydration behavior, 188
DTADB, host setting, 181
high throughput, 185, 187
host separation policy, 180
host settings, 181
low latency, 186–187
maximum threshold, 189
maximum engine threads, 183
minimum threshold, 189
multiple responses, 182
orchestration throttling, 187, 189–190
PBL, 181
performance SLA, 180
pooling interval, 184–185
response timeout, 182
show performance counters for, 183
throttling thresholds, 180

I
IAssemblerComponent, 340
IBaseComponent, 339
IComponent, 339
IComponentUI, 340
ICustomTypeDescriptor, 340
IDisassemblerComponent, 340
IDocumentSpec, 340
Instrumentation

BAM (see Business activity
monitoring (BAM))

ETW (see Event Tracing for
Windows (ETW))

performance counter helper
addValueToACounter

method, 305–306

class diagram, 302
createCategory Method, 302–305
messages counter, 308–309
orcProcessBookOrders, 307–308
perfmon, 309
populated data, 310
SetPerfCounters, 308
SetSentPerfCounter, 308

performance counters
BizTalk Server elements, 296
book orders orchestration, 300–301
create, 297
HostInstance process, 298
instances, 299
monitor, 297
overload method, 297
report view, 300
Windows perfmon tool, 299
WMI class, 298

Interface code generator, 352
IPersistPropertyBag, 339
IPipelineContext, 339
IPropertyBag, 339

J
JSON messages, 11–12

K
Kernel mode, 59

L
Latency factors

disks, 77
load, 77
maps, 78
message size, 78

Index

527

orchestrations, 78
performance counters

inbound, 80
outbound, 80
outbound adapter, 81
request-response, 79–80

SLA, 81
Spool table, 83
thresholds, 82–83
throttling, 77

LoadGen tool, 139
configuration settings, 141–142
output, 143
testing a solution, 142–144
using configuration file, 140–141

Log events to event viewer, 404
Logical disks, 65

M
Maps execution, improving

host instance temp folder, 332
XslCompiledTransform

class, 332–333
Maximum sustainable

throughput (MST), 210, 456
Message Box database, 45

auto update, 216
bottlenecks, 210
configuration, 215–216
create file groups

database properties, 218–219
filegroup, 221
files option, 220
object explorer, 218
Spool table, 218

create statistics, 216

fixing inconsistencies
(see Database inconsistencies)

data files, 216
dequeue process, 210
exceeded MST, 211–212
host queue, 210
host tables, 46
information, 45
I/O writes and reads, 216
location, code, 217
log files, 216
master, 210
max degree of parallelism, 215
message count, 211
MST, 210
new database, adding

BizTalk Administration
console, 212

Message Box, 213–214
message publication

feature, 214–215
requirements, 212

NTFS allocation unit size, 222
publisher, 210
queue tables, 46
Spool multiplier, 211
SQL Server, 209, 211
SQL Server process affinity, 223–224
system tables, 47
throttling state, 211
trace flag 1118, 222–223
tracking data tables, 210
tracking multiplier, 211

Message context, 18
Message engine, 13, 15
Message properties, 22–23
Message Type property, 7, 21

Index

528

Microsoft Distributed Transaction
Coordinator (MSDTC), 158, 230

ACID properties, 231
database transaction, 230
global transaction, 231
IO operations, 232
log file, 232
phases, 231
SQL Server, 231
working, 231
writing-latency, 232

Monitoring, BizTalk application
BizTalk server artifacts, 418

manage mapping, 418
orchestrations view, 419
receive locations view, 418
send ports view, 419

service instances
alert, set up, 420–421
service states, 420

N
Namespaces, 3, 4
.NET Framework, 368

O
Optimization, BizTalk platform

Application priority levels (APL), 146
availability SLA

adapter, 157
application instrumentation, 159
downtime deployment, 157
downtime recovery, 157
five 9s, 157
hosts instances, 157
master secret server, 158–159

proactive monitoring, 159
side-by-side versioning, 159
single sign-on service, 158
troubleshooting, 157

documentation (see Documentation,
BizTalk server solution)

performance factors (see BizTalk
performance factors)

performance SLA
business applications, 152
business data

retention policies, 156
consumer requests, 154
convoy patterns, 155
dehydration, 156
engine behavior, 154
host level, 152
latency, 153
live instances, 154
measure of time, 153
Message Box database, 156
message delivery, 156
message publication, 156
monitoring, 156
orchestration, 155
overhead, 152
recovery behavior, 155
transactions, 153

OrchestrationEventStream (OES), 275
Orchestrations, improving

complexity, 331
dehydration, 317–318
dehydration behavior, 319
latency

AppDomain, 325
AppDomainSpecs section, 326
assemblies, memory, 325
DefaultSpec, 325

Index

529

ExactAssignmentRules, 327
send shape, replace, 327
server features, 327
static modifier, 328
static class, benefits, 328

memory consumption
maximal usage, 330
optimal usage, 330
throttling behavior, 329
XPath expressions, 330

pause at, 320
persisted data

atomic scope, 322–323
exception handling, 321
Message box database, 324
scope level, 325
sending operations, 321
send shapes operation, 322
state, message box, 321
variables and messages, 324

requirements, 316
REST, 331
resume at, 320
throttling settings, 318–319
time based, 320
transaction type values, 316–317

P, Q
Performance analysis

disk
Avg Disc Sec Read and Writes, 69
Avg. Disk Read Queue

Length counter, 70
Avg. Disk Write Queue

Length counter, 70
Avg queue length, 71–72
current disk queue length, 70

idle time, 67–68
latency counters, 69
logical disk free

space thresholds, 66
LUNS, 70
virtualization technology, 70
write operations, 71–72

disk performance, 65
factors (see Latency factors)
latency

adapter, 74
batch adapter, 75
dequeue, 74
host separation policy, 76
Message Box database, 75
message threshold, 75
orchestration, 74
polling intervals, 75

LogicalDisk counter, 66
network bytes, 73
network output queue length, 73, 74
suspended message

BHM tool, 103–104
instances, 100
message engine, 100
monitor, methods, 101
MSBTS_MessageInstance

WMI class, 102
MSBTS_ServiceInstance

WMI class, 103
performance counters, 102
Spool table, 101
suspended queue, 101
techniques (see Performance

analysis techniques)
throttling, 101
Visual Basic Script, 104
WMI classes, 101

Index

530

throttling mechanism (see Throttling)
tracking

data, 105
events, 105
performance counters, 106

Performance analysis of
log tool (PAL), 126

analyze BLG file, 126, 128–129
output, 136–139
selecting analysis interval, 131
selecting threshold file, 129
setting execution options, 134
setting output options, 132
status analysis, 135
viewing queue, 133

Performance analysis techniques
counters, BizTalk Server, 53
crossing threshold, 56
imaginary lines, 52
inverse relationship, 56–57
reducing patterns, 54
Spool table, 52–55

Performance behavior
level (PBL), 151, 180

Performance counters analysis
DPC, 62
memory

available Mbytes, 64–65
bottleneck, 63
committed bytes, 64

processor
bottlenecks, 58
kernel mode, 59
privilege time, guidelines, 60
queue length, 62–63
scaling-out, 58
scaling-up, 58

scheduling options, 59
throttling, 60
time, guidelines, 62
user mode, 59
Windows components, 59

user time, guidelines, 61
Performance monitor, 109

new data collector set, 112–113
overall duration, 121
performance capture, 110, 124
performance counter properties, 122
processor queue length, 125
properties, data collector set, 118, 119
report view, 124, 125
running, 111
schedule time frame, 120
store data collector set, 116
template confirmation, 115
template option, browsing, 114
wizard, data collector set, 117

Performance problems
BizTalkServerApplication

host, 502–503
CPU consumption, 503
New Architecture, 503

Performance testing
BizTalk application, accessing

(see BizTalk application)
dynamic data source

access method, 497
CSV file, 493–496
database, 493
string body request, 497
Visual Studio, 498
WebServiceBookOrdersRequests#c

sv table, 496
XML file, 493

methodology, 455–456

Performance analysis (cont.)

Index

531

MST
bottleneck, 461
messages processing, 459–460
orchestrations processing, 461–462
processor time, 460
Spool Size counter, 460

production environment, 454
assess, 457
documents processed/sec, 458
documents received/sec, 458
documents sent/sec, 458–459
general counters, 457
Message Box, 457
PAL tool, 457
performance counters, 457
physical disk:idle time counter, 458
Spool Size counter, 457

testing environment, 454
WCF (see WCF service)

Performance tools
LoadGen, 109
PAL, 109, 126
performance monitor, 109

Physical disk, 65
Pipeline components

assembling, 338
attributes, 341
custom, general, 341
custom, properties, 344
custom, Visual Studio Project

(see Visual Studio project)
disassembling, 338
general, 337
improving

default passthru pipelines, 334
Execute method, 334
IDisposable interface, 334
IPipelineContext object, 334

pipeline components, developing
(see Pipeline components)

XMLDocument object, 335–336
XMLTextReader, 335

interfaces, 339–340
in receive pipelines, 336
in send pipelines, 336
schema project, 342–343
Visual Studio toolbox, 336

Platform health alarm, 409
Predicates, 27
Privileged performance counter section, 60
Processor time, 61
PropertyGeneratorPipeline, 345–346
Property schemas, 13
Publish and subscribe model, 13
Publishers, 38

process, 39
types, 38

R
Rehydration, 318
Release stage level (RSL), 148
Request response, 32

S
Schema, improving

distinguished properties, 313–314
element length, 312
latency, 313
property location, 313
property name length, 313
retrieve messages, 311
routing, 313
XPath expressions, 312

SecondsEmptyBeforeShutdown, 326

Index

532

SecondsIdleBeforeShutdown, 326
Send notification SMS, 404
Service level agreement (SLA), 81, 152
Side-by-Side versioning

CLR engine, 368
component, 369
solution

BookOrdersSolution, 370
assembly, file versions, 373
CRMOrderState element, 371
maps section, 374
orchestrations, 375–379
OrderStatus element, 371
OrderStatus map link, 372
performance counters, 376
resources section, 374
schemas section, 375
targetnamespace property, 380

Side-by-side versioning technique, 367
Solicit response, 32
Spool table, 18, 47–49
Spool performance counter, 54
Single Sing-On (SSO) database, 367

add new keys, 390–391
assembly Binding Redirect, 389
helper component, 394–395, 397
export configuration, 392–393
import configuration, 393–394
MMC Snap-In tool, 388
related values, 392
retrieving configuration values, 396
setting value for the key, 391
storage setting, 387

Subscribers, 40–41
Subscriptions, 27, 33, 35

activation
orchestration instance, 31
send port filter, 30

instance
orchestrations, 32
priority, 33–34
request-response port, 32
solicit-response port, 33

predicates, 27, 29
searching information, 35–36, 38

System counters, 54

T
Target namespace, 6
Testing, BizTalk Server solutions

performance testing
(see Performance testing)

unit testing (see Unit testing)
Testing code

act section, 438
arrange section, 438
assert object, 439
Assert.Fail(), 437
assert section, 438
invalid amount, 439, 441
returnTotalAmount method, 438–439
test explorer, 441–442
valid amount, 438

Threshold monitoring, 399
Threshold violation option, 404
Throttling

conditions, 85
database, 84, 87
defined, 84
delivering rates, 84, 87
dequeuing, 84
instance count, 87
memory, 84, 88
message agent, 87
Message Box, 85

Index

533

message count, 87
message delivery throttling

state counter
dequeue process, 88
global physical memory, 92
in-process queue, 90–91
message publishing rate, 90
.NET CLR threads, 93–94
overdrive factor, 89
rate-based, 95
threads threshold, 93–94
virtual memory, 92

message publication, 84
message publishing throttling

state counter
database size, 98–99
faster, condition, 96–97
Message Box database, 97–98
message count, 99
publishing process, 95
rate overdrive factor, 95–96
Spool table, 100
system memory, 97
threads, 100
user override, 100
virtual memory, 97

messages, 84
physical memory, 88
process memory, 88
publishing rate, 84, 87
severity customization, 86
thread count, 84, 88

TraceLog
buffered, 266
CAT Framework, 266
ETL file, 269
non-real time, 266
parameters, 267–268

real time, 266–267
-Stop command, 269
trace sessions, 266
Visual Studio, 265
Windows 10 SDK, 266

Tracking BizTalk performance
BizTalkDTADb, 172
database, 171–174
data per minute, 166
disk contention issue, 171
dtasp_BackUpAndPurge

TrackingDatabase, 172
dtasp_PurgeTrackingDatabase, 172–173
host dedicate, 170–171
log files, 171
Message Box databases, 171
message size, 165
orchestration level, options, 167
pipelines, options, 169
process, 166
receive port level, options, 168
RS level, 170
schemas, options, 169
sending port level, options, 168
SQL Server, 171
SQL Server query, 173–174

Tracking profile editor tool (TPE) tool, 287
activity definition data, 293
approved element, 294
BAM activity definition, 287–288
BAM data, 295
BookOrdersApprovals

activity definition, 288
BookOrdersSolution

BizTalk application, 287
event source, 289–290
message payload schema, 293–294
MSI, 287

Index

534

orchestration, 290–291
query, 295–296
request response, 292

Transaction levels (TL), 150–151, 180
Transaction type

property, 316–317

U
Unit testing

BizUnit, 434
BookOrders solution

BizTalk solution, 444
interfaces, 444
.Net Framework, 444
references, 444
Visual Studio, 443, 445

code testing (see Testing code)
create, .NET components

BooksOrdersHelperTests class, 437
create unit tests dialog box, 436
TestMethod() attribute, 437
unit tests option, 435
Visual Studio, 435

maps, 434
.NET components, 434
orchestration, 434
pipelines, 434
schemas, 434
test menu, 453
test result, 453–454
validate maps

TestMap method, 447
ValidInstanceMap method, 448
WrongInstanceMap method,

449–450
validate pipelines

FFReceivePipelineUnitTest()
method, 451, 453

TestPipeline method, 451
validate schemas

invalid instance, 446–447
IncomingBookOrders, 446–447
ValidateInstance method, 445
valid instance, 445–446

V
Visual Studio project

BaseCustomTypeDescriptor, 351
create test routing application

custompipelineTesting
pipeline, 364–365

filter expression, 366
pipeline designer, 362–363
project properties, 363
TestSchema.xsd, 363
XML file, 366

custom, pipeline component, 360–361
Execute method, 354–355
IBaseComponent interface, 352–353
IBaseMessageContext,

methods, 355–356
IComponent interface, 354–355
IComponentUI interface, 359–360
InitNew method, 354
IPersistPropertyBag interface

GetClassID method, 358
GUID, 358
Load method, 358
Read method, 356
ReadPropertyBag, 356
Save method, 358
Write method, 356
WritePropertyBag, 357

Tracking profile editor tool (TPE) tool (cont.)

Index

535

namespace class, 347
pipeline interfaces, 344
pipeline component, toolbox, 361–362
PropertyName property, 351
resource

add image, 349
BaseCustomTypeDescriptor, 352
image designer tool, 350
pipeline properties, 348
string resources, 348

steps, 345–347
validate method, 359

W
WCF service

header option, 489
header properties, 490
response, 492
run, test, 492
SLA, 487
SoapAction, 490

string body properties, 491
URL property, 489
Visual C# project, 488
WCF-BasicHttp receive adapter, 487
WebServiceBookOrders, 487
Web Service request option, 488
XML, 491

Web service, 507
Windows Management

Instrumentation
(WMI), 102, 190–193

X, Y, Z
XML

attribute, 2–3
namespaces

custom, 6
default, 5–6
Message type, 7

schema, 2–4, 10–11
XSL transform property

Index

	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Requirements and Source Code
	Chapter 1: Revealing the Black Box
	XML Language Premier
	XML Schema Concepts Used by BizTalk Server
	Attribute
	Namespace
	Element

	BizTalk and XML Namespaces in Detail
	The Declaration
	Identification of an Incoming Message

	BizTalk Server Schemas
	BizTalk Server Schema Types
	Delimited Flat Files
	Positional Flat Files
	XML Schemas
	JSON Messages
	Envelope Schemas
	Property Schemas
	The Message Engine

	Host and Host Instances
	Publications: The BizTalk Server Message
	What Is a BizTalk Server Message?
	The Message Context
	System-Related Properties
	Distinguished Properties
	User-Related Properties
	Adapter-Related Properties

	The Message Type Property
	Message Properties
	Distinguished Properties (fields)
	Message Properties Design Considerations
	Message Properties Performance Recommendations

	Subscriptions
	Activation Subscriptions
	Send Ports with Filters
	Orchestration Receive Shapes with Activate Property Set to True

	Instance Subscriptions
	Request-Response Scenario
	Solicit-Response Scenario
	Subscription Priority
	Searching for Subscription Information

	Publishers
	Subscribers
	The Dequeue Process
	Adapters

	The MessageBox Database
	Host Tables
	Queue Tables
	System Tables
	Spool Table
	Knowing the Number of Messages in the Spool Table
	Spool Table as a Performance Indicator

	Summary

	Chapter 2: Performance Analysis
	Performance Analysis Techniques
	Increasing Trends Over Long Periods
	Crossing a Threshold
	Inverse Relationships

	Performance Counters Analysis Guidelines
	Processor
	Percentage of Processor Privileged Time
	Percentage of User Time
	Percentage of Processor Time
	System Processor Queue Length
	Memory
	Memory\% Committed Bytes in Use
	Memory\Available MBytes

	Disks
	LogicalDisk\% Free Space
	Disk Idle Time Percentage
	Avg. Disk Sec/Read and Avg. Disk Sec/Write
	Avg. Disk Queue Length

	Network
	Network Interface(*)\Bytes Total/Sec
	Network Interface\Output Queue Length

	Latency
	Latency Factors
	Load
	Bad Disk Performance or Overused Disks
	Throttling
	Complex Maps
	Complex Orchestrations and Custom Code.
	Size of the Message
	Latency Performance Counters
	Request-Response Latency
	Inbound Latency
	Outbound Latency
	Outbound Adapter Latency

	Latency Thresholds

	Throttling
	What Is Throttling?
	Throttling Performance Counters
	Message Delivery Throttling State
	Input Rate Exceeds Output Rate (1)
	High Number of Messages in the In-Process Queue (3)
	BizTalk Host Instance Reaches the Virtual Memory Threshold (4)
	System Memory Reaches the System Memory Threshold (5)
	The Host Instance Reaches the Number of Used Threads Threshold (9)
	Throttling Due to User Override on Delivery (10)
	Message Publishing Throttling State
	Output Rate Exceeds Input Rate (2)
	BizTalk Host Instance Reaches the Virtual Memory Threshold (4)
	System Memory Reaches the System Memory Threshold (5)
	Throttling Due to Message Count in Databases (6)
	The Host Instance Reaches the Number of Used Threads Threshold (9)
	Throttling Due to User Override on Delivery (11)

	Suspended Messages
	Impact of Suspended Messages
	Monitoring Suspended Messages
	Performance Counters
	Windows Management Instrumentation Classes

	BizTalk Health Monitor Tool
	Visual Basic Script to Deal with Suspended Messages

	Tracking
	Tracking Performance Counters

	Summary

	Chapter 3: Performance Tools
	Performance Monitor
	Setting Up a Performance Counter Capture
	The Performance Analysis of Logs Tool
	Creating a New Analysis Using PAL Tool
	Understanding the PAL Output

	Using LoadGen to Test the Environment
	The LoadGen Configuration File

	Testing a Solution
	Summary

	Chapter 4: Optimizing the BizTalk Platform
	Assigning Application Priority Levels (APL)
	Release Stage Level (RSL)
	Business Priority Level (BPL)
	High Availability Level (HAL)
	Transaction Levels (TL)
	Performance Behavior Level (PBL)

	Service-Level Agreements Between the Integrated Parties
	Performance Service Level Agreement
	Availability SLA

	Factors That Are Important for BizTalk Performance
	Message Size
	What Is the Large Message Size Setting?

	Tracking
	Tracking Levels
	Orchestrations
	Receive Ports
	Sending Ports
	Schemas
	Pipelines

	Assigning Tracking Configuration Based on the Release Stage (RS) Level
	Dedicate a Host for Tracking
	Purging the Tracking Database

	Host Architecture
	Initial Host Separation Policy
	Host Separation Policy Based on Application Priority Levels
	Host Separation Guidance for Release Stage Level (RSL)
	Host Separation Guidance for Business Priority Level (BPL)
	Host Separation Guidance for Transaction Levels (TL)
	Host Separation Guidance for Performance Behavior Level (PBL)

	Host Performance Settings
	General Host Settings
	Move Tracking Data to DTADB
	32-Bit Only
	Allow Multiple Responses
	Response Timeout in Minutes
	Maximum Engine Threads
	Show Performance Counters For
	Pooling Intervals
	Suggested Pooling Intervals Based on Application Performance Behavior
	Scenario 1: High Throughput (I)
	Scenario 2: Low latency
	Scenario 3: High Throughput (II)

	Orchestration Throttling

	Automating Host Settings
	What Is WMI?
	Exploring WMI Classes Using WMI Explorer
	How to Use WMI Explorer
	Using PowerShell to Optimize the Environment

	Using the BizTalk Host Configuration Settings File
	How to Import a Host Configuration File Using the Administration Console

	Message Box Database
	Situations to Consider Additional Message Boxes
	Performance Indicators of an Exceeded MST
	Adding Two or More Message Box Databases

	Optimizing Message Box Databases
	Separating the Message Box Databases Data and Log Files
	Creating File Groups
	Creating File Groups for the Message Box Database
	NTFS Allocation Unit Size
	Trace Flag 1118
	SQL Server Process Affinity
	Fixing Database Inconsistencies

	Scaling the BizTalk Server Group
	Microsoft Distributed Transaction Coordinator
	How DTC Works

	Number of Simultaneous Connections of HTTP Adapters
	Windows Communication Foundation Throttling

	Documenting Applications
	The Excel Sheet
	Application Form
	Application Priority Levels Section
	Performance Data Section
	Documented Flows Section

	Flow Forms
	Sizing Message Box and DTA
	Configuration Item Section
	Calculated Sizing Data Section
	Extra Size for messaging (MB)
	Element Definitions
	Steps for Adding Messages
	Steps for Adding Orchestrations

	Summary

	Chapter 5: Instrumenting BizTalk Solutions
	Instrumenting Using Event Tracing for Windows
	The BizTalk CAT Framework for ETW
	Enabling an Existing BizTalk Solution to Work with ETW
	Using the CAT Framework to Trace Orchestrations
	Using TraceLog to Control Trace Sessions
	Starting a New Circular Trace Session for BizTalk Server
	Stopping a BizTalk Server Trace Session
	Examining the ETL File

	Using the BizTalk CAT Instrumentation Controller Control Trace Sessions
	Testing the BookOrdersSolution and Exploring ETL Traces

	Instrumenting Using Business Activity Monitoring
	Business Activity Monitoring
	BAM Components

	Designing the Instrumentation Activities for a BizTalk Server Solution
	Creating the Book Orders Approvals Activity Definition
	Deploying the BAM Definition XML File
	Configuring and Deploying the Tracking Profile

	Instrumenting Creating Custom Performance Counters
	Developing Custom Performance Counters
	How Does It Work?
	Book Orders Orchestration Flow Diagram
	Examining PerformanceCounterHelper Component
	The createCategory Method
	The addValueToACounter Method
	Consuming the Component in an Orchestration

	Summary

	Chapter 6: Developing High-Performance Solutions
	Improving Schema Definitions
	Length of the Element Names
	Message Properties Performance Recommendations
	Canonical Schemas

	Improving Orchestrations
	To Orchestrate or Not To Orchestrate, That Is the Question
	Using Orchestrations When Transaction Support Is Required
	Using Orchestrations to Benefit from Dehydration
	Orchestration Throttling Settings Related to Dehydration at the Host Level

	Reducing the Impact of Persisted Data
	Reduce the Number of Persistent Points in Exception handling
	Reduce the Number of Persistent Points in Sending Operations
	Size of Persisted Data

	Improving Orchestration Latency
	Loading and Unloading Assemblies Into Memory
	Replacing Send Shapes by Custom Code
	Creating Static Classes

	Controlling Orchestration Memory Consumption
	Reducing Orchestration Complexity

	Improving Maps Execution
	BizTalk Host Instance Temp Folder Location
	Using the XslCompiledTransform Class

	Improving Pipelines
	Use the PassThru Pipelines
	Disposing of Objects
	Avoid Using XMLDocument Objects

	Developing Pipeline Components to Improve Performance
	Types of Pipeline Components
	Custom Pipeline Interfaces
	Attributes of Pipeline Components
	Developing a General Custom Pipeline Component
	Solution Overview
	Developing the Property Schema Project
	Developing the Custom Pipeline Component Project
	Creating the Visual Studio Project for the Custom Pipeline Component
	Adding a Resource File
	Adding the MsgDescriptionClass.cs
	Implementing the custom Interface BaseCustomTypeDescriptor
	Implementing the IBaseComponent Interface
	Implementing the IComponent Interface
	Implementing the IPersistPropertyBag Interface
	Implementing the IComponentUI Interface
	Installing the Custom Pipeline Component
	Creating the Test Routing Application

	Summary

	Chapter 7: Decreasing Downtime
	Side-by-Side Versioning
	How Can You Solve this Problem?
	Component Version Side-by-Side Execution
	Applying Side-by-Side Versioning to a BizTalk Server Project
	Observing Both Versions
	Enabling Both Orchestrations to Run Side by Side
	What Happened?
	How Do You Fix This Situation?

	Using Business Rules to Reduce Deployment
	Policy Execution Steps
	Business Rules Performance Recommendations
	Fact Types
	Database Types
	Caching Settings

	Securing Application Configuration Settings
	The SSO MMC Snap-In Tool
	Using the Assembly Binding Redirect Feature to Point to the Right Assembly

	Adding New Keys to the SSO Store
	Importing and Exporting Application Configuration
	Creating an SSO Helper Component
	Using the SSO Client Helper Component to Access SSO Data

	Summary

	Chapter 8: Monitoring Using BizTalk 360
	Understanding Monitoring in BizTalk 360
	Different Types of Monitoring
	Threshold Monitoring
	Health Check Monitoring
	Data Monitoring

	Setting Up an Alarm
	Configuring the Basic Settings
	Threshold Alert
	Health Monitoring Alert
	Data Monitoring Alert

	What Do You Monitor?
	BizTalk Platform Monitoring
	Monitoring Host Instances
	Setting Up Monitoring for Host Instances
	The Auto Correct Feature
	Monitoring Host Instances That Are Clustered

	Monitoring SQL Server Jobs
	Establishing Monitoring for SQL Jobs

	Monitoring the Availability of the BizTalk Servers
	Why BizTalk Server Availability Monitoring in BizTalk 360?
	Important Points to Remember in BizTalk Server Availability Monitoring
	Configuring BizTalk Server Availability Monitoring in BizTalk 360

	Monitoring Windows NT Services
	Viewing and Monitoring Host Throttling
	The BizTalk 360 Throttling Analyzer
	The Throttling Performance Counters Collection Service
	Setting Up Monitoring for Host Throttling

	BizTalk Application Monitoring
	Receive Locations, Orchestrations, and Send Ports
	Configuring Alerts for BizTalk Artifacts

	Service Instances
	Setting Up Alerts for Service Instances

	What Is Data Monitoring?
	Setting Up a Tracking Data Monitor
	Message Box
	Archive and Terminate Suspended Service Instances

	Business Activity Monitoring (BAM)
	Event Log

	Endpoint Monitoring

	How Are You Notified?
	Dashboards
	Operations Dashboard
	Monitoring Dashboard
	Graphical Hierarchy View Structure

	Data Monitoring Dashboard
	Viewing Execution Details

	Automated Recovery
	Summary

	Chapter 9: Testing BizTalk Server Solutions
	Unit Testing
	Creating Unit Testing for a .NET Component
	Adding Testing Code
	Running the Tests

	Creating Unit Testing for a BizTalk Project
	Adding a Unit Testing Project to the Book Orders Solution
	Creating Test Methods to Validate Schemas
	Creating Test Methods to Validate Maps
	Creating Test Methods to Validate Pipelines
	Running the Tests

	Performance Testing
	Performance Testing Methodology
	Assessing the Production Environment
	BizTalk: Message Box: General Counters: Spool Size
	Physical Disk: Idle Time
	BizTalk: Messaging: Documents Received-Processed-Sent/Sec
	Example Scenarios of Evaluating the MST
	Scenario (I) Processing Messages Under the MST
	Scenario (II) Processing Messages Above the MST

	Assessing the Performance of a BizTalk Application
	Prerequisites
	Installing the BizTalkWCFnetTCP Sample Application
	Creating a New Visual C# Test Project
	Adding a Load Test to the Project
	Create a BizTalk Server Counter Set
	Running the Load Test
	Examining the Load Test Results
	Load Test Summary Dashboard
	Graphs Dashboard
	Generating an Excel Report

	Creating a Web Test for BizTalk WCF Service HTTP Binding
	Providing a Dynamic Data Source

	Summary

	Chapter 10: A BizTalk Server Tale
	Chapter 1: The One with the Baby BizTalk Server
	Chapter 2: The One with New Applications
	Chapter 3: The One with Performance Problems (I)
	Chapter 4: The One with Performance Problems (II)
	Chapter 5: The One with the Disaster (I)
	Chapter 6: The One with the Disaster (II)
	Chapter 7: The One with the Big File that Changes Everything
	Chapter 8: The One with Web Service
	Chapter 9: The One with the Disk Performance Issue
	Chapter 10: The One with the New Application (I)
	Chapter 11: The One with FTP Server
	Chapter 12: The One that Sends Files Too Fast
	Chapter 13: The One That Floods a Destination System
	Chapter 14: The One with the New Application (II)
	Chapter 15: The One with the High Throughput Application
	Summary

	Index

