
Block Trace Analysis
and Storage System
Optimization

A Practical Approach with
MATLAB/Python Tools
—
Jun Xu

www.allitebooks.com

http://www.allitebooks.org

Block Trace Analysis
and Storage System

Optimization
A Practical Approach with

MATLAB/Python Tools

Jun Xu

www.allitebooks.com

http://www.allitebooks.org

Block Trace Analysis and Storage System Optimization: A Practical

Approach with MATLAB/Python Tools

ISBN-13 (pbk): 978-1-4842-3927-8 ISBN-13 (electronic): 978-1-4842-3928-5
https://doi.org/10.1007/978-1-4842-3928-5

Library of Congress Control Number: 2018964058

Copyright © 2018 by Jun Xu

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott
Development Editor: Laura Berendson
Coordinating Editor: Rita Fernando

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located at www.apress.com/9781484239278.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Jun Xu
Singapore, Singapore

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3928-5
http://www.allitebooks.org

To Grace, Alexander, and Arthur.

www.allitebooks.com

http://www.allitebooks.org

v

Table of Contents

Chapter 1: Introduction���1

Basics of Storage ��1

Storage Devices ��2

HDD ���2

SSD ��12

Hybrid Disk ��21

Tape and Disc ��24

Emerging NVMs ���25

Storage Systems ���30

Infrastructure: RAID and EC ���30

Implementation ���38

System Performance Evaluation ���43

Performance vs� Workload���45

Trace Collection and Analysis ��46

System Optimization��46

About the Author ���ix

About the Technical Reviewers ���xi

Acknowledgments ���xiii

Introduction ��xv

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 2: Trace Characteristics ��49

Workload Properties ��49

Basic Metrics ��53

LBA Distribution ���53

Read/Write Distribution ���56

Inter-Arrival and Inter-Completion Time ��57

IOPS and Throughput ���58

Response Time ��59

Queue Length/Depth ��60

Busy/Idle Time ���63

Advanced Metrics ���64

Sequence vs� Randomness ���65

Spatial Locality and Logical Seek Distance ���69

Temporal Locality and Logical Stack Distance ��71

Statistical Properties Visualization and Evaluation ��72

Read /Write Dependency ���74

Priority-Related Metrics ��78

Modeling Issues ��78

Typical Applications ��82

Traces in File- and Object-Levels ��85

Chapter 3: Trace Collection ���89

Collection Techniques ���89

Hardware Trace Collection ��90

Software Trace Collection ���94

Blktrace ���96

Dtrace, SystemTap, and LTTng ���96

Trace Warehouse ���97

Table of ConTenTsTable of ConTenTs

vii

Chapter 4: Trace Analysis ���101

Interactions with Components ��101

HDD Factors ���102

SSD Factors ���104

Interactions with Algorithms ���109

Interactions with Structure ���111

Interactions with Applications ���112

Chapter 5: Case Study: Benchmarking Tools ������������������������������������115

SPC-1C ��118

Workload Properties ��118

Synthetic Trace ��121

PCMark��124

Workload Properties ��129

Gain-Loss Analysis ��133

Chapter 6: Case Study: Modern Disks ��143

SSHD ���143

Cache Size ���146

Access Isolation ���152

SMR���156

Chapter 7: Case Study: RAID ���159

Workload Analysis ���160

System Settings ��161

Read-Dominated Trace ��161

Write-Dominated Trace ��168

Table of ConTenTsTable of ConTenTs

viii

Chapter 8: Case Study: Hadoop ��175

Hadoop Cluster ��178

Workload Metrics Evaluation ��181

Block-Level Analysis ��182

System-Level View ��201

Some Further Discussions ��205

Chapter 9: Case Study: Ceph ��209

Filestore IO Pattern ���211

Performance Consistency Verification ��217

Bottleneck Identification ���222

 Appendix A: Tools and Functions ��229

 MATLAB-Based Tool: MBPAR ���229

 Python-Based Tool: PBPAR ��238

 Interaction Between MATLAB and Python ���241

 Appendix B: Blktrace and Tools ��245

 Bibliography ���251

 Index ���263

Table of ConTenTsTable of ConTenTs

ix

About the Author

Jun Xu got his BS in Mathematics and a PhD in

Control from Southeast University (China) and

Nanyang Technological University (Singapore),

respectively. He is a Lead Consultant Specialist

at Hongkong-Shanghai Banking Corporation

(HSBC) and was a Principal Engineer at

Western Digital. Before that, he was with Data

Storage Institute, Nanyang Technological

University, and National University of

Singapore for research and development. He

has multi-discipline knowledge and solid experience in complex system

modeling and simulation, data analytics, data center, cloud storage,

and IoT. He has published over 50 international papers, 15 US patents

(applications), and 1 monograph. He is an editor of the journal Unmanned

Systems and was a committee member of several international conferences.

He is a senior member of IEEE and a certificated FRM.

xi

About the Technical
Reviewers

Yunpeng Chai received BE and PhD degrees in Computer Science and

Technology from Tsinghua University in 2004 and 2009, respectively. He

is currently an Associate Professor at the School of Information at Renmin

University of China and Vice Dean of the department of Computer

Science and Technology. His research interests include SSD/NVM-based

hybrid storage systems, distributed key-value stores, and cloud storage

virtualization. He regularly publishes in prestigious journals and

conferences (like IEEE Transactions on Parallel and Distributed Systems,

IEEE Transactions on Computers, MMST, etc.). He is a member of the

Information Storage Technology Expert Committee in the China Computer

Federation.

Li Xia is an Associate Professor at the Center for Intelligent and Networked

Systems (CFINS), Department of Automation, Tsinghua University, Beijing

China. He received his BS and PhD degrees in Control Theory in 2002 and

2007, respectively, both from Tsinghua University. After graduation, he

worked at IBM Research China as a research staff member (2007–2009)

and at the King Abdullah University of Science and Technology (KAUST)

in Saudi Arabia as a postdoctoral research fellow (2009–2011). Then he

returned to Tsinghua University in 2011. He was a visiting scholar at

Stanford University, the Hong Kong University of Science and Technology,

etc. He serves/served as an associate editor and program committee

member of a number of international journals and conferences.

xii

His research interests include the methodology research in stochastic

learning and optimization, queuing theory, Markov decision processes,

reinforcement learning, and the application research in storage systems,

building energy, energy Internet, industrial Internet, Internet of Things,

etc. He is a senior member of IEEE.

abouT The TeChniCal RevieweRsabouT The TeChniCal RevieweRs

xiii

Acknowledgments

A major component of this work came as a result of my 16 years of R&D

experience on data analytics and storage systems at Western Digital,

Temasek Labs, and Data Storage Institute. I would like to acknowledge

Western Digital for allowing me to publish some of my job-related work.

During the preparation of this book, I received support and advice from

many friends and colleagues. Here I only mention few: Dr. Jie Yu, Dr.

Guoxiao Guo, Robin O’Neill, Grant Mackey, Dr. Jianyi Wang, David Chan,

Wai-Ee Wong, Dr. Yi Li, Samuel Torrez, Shihua Feng, Jiang Dan, Terry

Wu, Allen Samuels, Gregory Thelin, William Boyle, David Hamilton,

John Clinton, Nils Larson, Karanvir Singh, Eric Lee, and Sang Huynh. In

particular, Junpeng Niu, my PhD student and colleague, also helped me

with a few paragraphs in Chapter 1 on hybrid disks.

I would also like to thank the technical reviewers, Yunpeng Cai and Li

Xia, for their very helpful comments. Deep appreciation also goes out to

the editors, Susan McDermott, Rita Fernando, Laura Berendson, Amrita

Stanley, Krishnan Sathyamurthy and Joseph Quatela for their hard work.

Last but not least, I am most grateful to my wife, Grace, for the love

and encouragement provided through my entire life, and to my two boys,

Alexander and Arthur, who remind me that there is a life beyond the work.

Without their great patience and enthusiastic support, I would not have

been able to complete this book.

xv

Introduction

In the new era of IoT, big data, and cloud systems, better performance

and higher density of storage systems become more crucial in many

applications.

To increase data storage density, new techniques have evolved,

including shingled magnetic recording (SMR), heat-assistant magnetic

recording (HAMR) for HDD, 3D Phase Change Memory (PCM) and

Resistive RAM (ReRAM) for SSD. Furthermore, some hybrid and parallel

access techniques together with specially designed IO scheduling and data

migration algorithms have been deployed to develop high performance

data storage solutions.

Among the various storage system performance analysis techniques,

IO event trace analysis (block-level trace analysis in particular) is one

of the most common approaches for system optimization and design.

However, the task of completing a systematic survey is challenging

and very few works on this topic exist. Some books provide theoretical

fundamentals without enough practical analysis in physical systems, and

others discuss the performance of some specific storage systems without

proposing a tool that can be applied widely.

To fill this gap, this book brings together IO properties and metrics,

trace parsing, and result reporting perspectives, based on MATLAB and

Python platforms. It provides self-inclusive content on block-level trace

analysis techniques, and it includes typical case studies to illustrate how

these techniques and tools can be applied in real applications such as

SSHD, RAID, Hadoop, and Ceph systems.

xvi

This book starts with an introduction in Chapter 1, which provides the

background of data storage systems and general trace analysis. I show that

the wide applications of block storage devices motivate the intensive study

of various block-level workload properties.

Chapter 2 gives an overview of traces, in particular, the block-level

traces. After introducing the common workload properties, I discuss the

trace metrics in two categories, the basic ones and the advanced ones.

In Chapter 3, I present the ways to collect the block-level trace in both

hardware and software tools. In particular, I show how the most popular

tool in Linux system, blktrace, works in a simple setting.

In Chapter 4, I investigate the design of trace analyzers. I discuss

the interactions of the workload with system components, algorithms,

structure, and applications.

Case study is the best way to learn the methodology and the

corresponding tools. This book will provide some examples to show how

the analysis can be applied to real storage system tuning, optimization,

and design. Therefore, from Chapter 5 to Chapter 9, I provide some typical

examples for trace analysis and system optimization.

Chapter 5 presents the properties of traces from some benchmark

tools, such as SPC and PCMarks. I show how to capture the main

characteristics and then formulate a “synthetic” trace generator. I also

show how the cache is affected by the workload, and how a proper

scheduling algorithm is designed.

Chapter 6 attempts to explain the mystery behind SSHD’s performance

boost in SPC-1C under WCD (write cache disabled). I show from the trace

how a new hybrid structure can help to improve system performance.

Chapter 7 discusses the trace under two RAID systems with different

read and write properties. I illustrate that the parity structure has a big

impact on the overall performance.

Chapter 8 first reviews the literature on Hadoop workload analysis. And

then I discuss the WD Hadoop cluster in a production environment. After

that, the workload properties are analyzed, in particular, for SMR drives.

inTRoduCTioninTRoduCTion

xvii

Chapter 9 analyzes the Ceph system performance. Storage and the

CPU/network/memory are discussed. I show that these components shall

be considered as a unified system in order to identify the performance

bottleneck.

The tools used in the book are introduced in the appendix. I first

introduce the tool based on MATLAB. Then, I show how this tool is

converted into the Python platform.

inTRoduCTioninTRoduCTion

1© Jun Xu 2018
J. Xu, Block Trace Analysis and Storage System Optimization,
https://doi.org/10.1007/978-1-4842-3928-5_1

CHAPTER 1

Introduction
The chapter provides the background of data storage systems and general

trace analysis. I will show that wide applications of block storage devices

motivate the intensive study of various block-level workload properties.

I will also list the objectives and contributions of this book in this chapter.

 Basics of Storage
In this information-rich world, data storage devices and systems are

fundamental for information preservation. There are so many different

types of storage devices available in the market, such as magnetic tape,

optical disc drive, hard disk drive (HDD), solid state drive (SSD), flash

memory, etc. Historically, there were even more types, like twister memory

and drum memory. To narrow the focus, I will cover the modern computer

storage/memory devices only. They can be generally divided into two

categories [1].

• Volatile

• The commonly used, such as DRAM (dynamic

RAM), SRAM (static RAM), etc.

• Those under development: T-RAM (thyristor RAM),

Z-RAM (zero-capacitor), etc.

2

• Non-volatile

• ROM (read-only memory), such as EPROM

(Erasable Programmable ROM), EEPROM

(Electrically E-PROM), MROM (Mask ROM), etc.

• NVRAM, such as flash memory, PCM (phase

change memory), ReRAM/RRAM (resistive

RAM), MRAM (magnetoresistive RAM), FeRAM

(ferroelectric RAM), etc.

• Mechanical devices like HDD, magnetic tape,

optical disc drives

When selecting a storage device or system, many factors must be

considered carefully, such as price, performance, capacity, power efficiency,

reliability, data integrity, durability, form factor, operating temperature,

connection types, and so on, depending on the application scenarios.

However, the performance of the devices is the major topic of this book.

 Storage Devices
In this section, I discuss several types of non-volatile storage devices, as

some volatile devices like RAM, will be used inside those non-volatile

devices as cache.

 HDD
HDD was first introduced by IBM in 1956. Soon it became the dominant

secondary storage device for general purpose computers. Even now, it is still

the mainstream storage device, in particular for data centers. Despite the fact

that disk drives are commodity products today, a disk drive is an extremely

complex electromechanical system encompassing decades of finely honed

research and development on an immense multitude of diverse disciplines,

Chapter 1 IntroduCtIon

3

although the main components of the modern HDD have remained

basically the same for the past 30 years. Figure 1-11 shows the components

as assembled, and Figure 1-2 illustrates the basic electronics blocks.

1 All figures are provided in the source code download file for this book. To access
the source code, go to www.apress.com/9781484239278 and click the Download
Source Code button.

Figure 1-1. Basic components of a HDD

Figure 1-2. Basic HDD electronics blocks

Chapter 1 IntroduCtIon

http://www.apress.com/9781484239278

4

In particular, the servo is one of the most precise mechanical systems

in the world. The disk head that reads and writes data to the medium

is only few nanometers above the disc media; this is similar to a Boing

737 plane flying a few meters above the ground. The HSA (head stack

assembly) is moved by applying a current to the wires wound around a

loop at its back end. This coil forms an electromagnet. The amount of

current used is calculated by servo electronics. By varying the current, very

precise acceleration and deceleration can be programmed, increasing IO

performance and servo head positioning accuracy.

HDD can be divided into two categories: consumer and enterprise.

Consumer HDDs are mostly used in desktop and mobile devices like a

notebook. Consumer electronics HDDs are often embedded into digital

video recorders, smart TVs, and automotive vehicles. Enterprise HDDs

usually have higher reliability than consumer HDDs, with higher quality

requirements for the media and head.

Disk drives have different spinning speeds (rotation per minute,

RPM). For example, desktop HDDs are usually in 3.5-inch form with 7200

RPM, while mobile HDDs are in 2.5-inch form with 5400 RPM. Each disc

surface is divided into different concentric zones. Inner zones (ID) have

less physical space and contain less sectors than outer zones (OD). As

the spinning speed is the same, the data transfer speed of OD is generally

faster than that in ID. For a typical 3.5-inch desktop HDD, the sequential

read speed in OD could be 1.5 to 2 times than that in ID.

For a typical HDD, the following formula calculates average access

time (Ta) [2, 3]:

 Ta
 = Ts + Tl + Tt + To (1.1)

Chapter 1 IntroduCtIon

5

where

• Seek time as Ts: Time required to move the heads a desired

distance. Typically specified at 1/3 the radius of the platter.

The settle time is generally included in this part.

• Rotational latency as Tl: Amount of time the drive must

wait before data is under the read/write head.

• Transfer time as Tt: Amount of time required to transfer

data to or from the host.

• Controller overhead as To: How long it takes the drive to

decode a command from the host.

Note that the read head is usually different from the write head, and

the internal firmware process for reads and writes is also different. So there

will be a slight variance for read and write seek times. Usually, write access

costs more because of the longer setting time of a write, which is caused

by PES (position error signal) requirement, which means write access

requires a stronger condition on PES than read access. By design, faster

RPM drives have faster average access times than slower RPM drives due

to shorter latency and seek times.

The response time (Tres) is a different concept from the access time.

In fact, since the conventional disk drive can only process one request at

one time, some incoming requests have to wait in a queue. For example,

some write requests may be buffered in DRAM write cache first and must

wait for the previous request to be completed. Note that although there are

many arms and heads per drive, the arms must move together since there

is only one VCM to drive them in general. Thus,

 Tres
 = Ta + Tw (1.2)

where Tw is the waiting or queueing time just after the request enters

the queue and before it is actually executed.

Chapter 1 IntroduCtIon

6

Owning to the influence of the command queue, cache has large

impact on the performance of both read and write. Thus, a large portion

of DRAM inside HDD is used for cache. Read cache and write cache

commonly share the same space, so that part of write cache segments may

be converted into read cache segments when necessary. However, some

HDDs may have dedicated read or write cache for different purposes. In

Chapter 4, I will show more details.

Conventional magnetic recording (CMR) is a relative concept.

The longitudinal magnetic recording (LMR) HDD was a conventional

concept to perpendicular magnetic recording (PMR) HDD in early 2000s.

Nowadays, PMR is the dominant structure and is still in evolution. For

example, SMR (shingled magnetic recording) is a new type of PMR already

available in the market, while HAMR (heat-assistant magnetic recording)

and MAMR (microwave-assistant magnetic recording) are emerging.

 SMR HDD

SMR is the emergent technique being deployed to increase areal density in

HDDs without drastic changes to the HDD mechanics [4, 5, 6, 7, 8]. Due to

its shingled nature, SMR tends to favor large sequential writes over random

ones. In this background section, I will give a general introduction to SMR

characteristics.

The most significant feature of a SMR drive is its sequential write

properties due to the shingled tracks. As shown in Figure 1-3, all physical

sectors are written sequentially in a particular direction radially and are

only rewritten after a wrap-around. Rewriting a previously written LBA will

cause the previous write to be marked invalid and the LBA will be written

to the next sequential physical sector.

Chapter 1 IntroduCtIon

7

Due to this log-structure-like sequential write feature (which is

beneficial for write performance), the conventional LBA-to-PBA mapping

(direct/static mapping) may not work well since any change in a block

results in a read-modify-write access to all its consecutive blocks in the

same zone, which can cause performance penalties. Therefore, indirect/

dynamic mapping is usually applied. When an update happens, instead of

an in-place rewrite, an out-of-place “new” write will be carried out, which

leads to write implications; in other words, the data in the previous place

becomes garbage and the new write claims additional space. In order to

reuse those garbage blocks, a garbage collection (GC) procedure must be

implemented.

Another concern of the out-of-place update is the potential harm to the

sequential read performance. If some LBA-continuous requests are written

into several different physical zones, the later LBA-continuous read request

in the same LBA range cannot gain the actual benefit of the “logically

sequential” read. The corresponding data management scheme can be

implemented in three levels: drive, middleware, or host side. Although a

few academic works have introduced in-place updates via a special data

layout design, the out-of-place policy remains the main approach.

Figure 1-3. Schematic of SMR

Chapter 1 IntroduCtIon

8

In general, a SMR drive expects the workload to be read/write sequentially,

with infrequent updates to the data. In addition, since garbage data will

generally occur at some points (unless data is never deleted or modified), idle

time should be sufficiently long as to allow GC to run periodically without

impacting external/user IO performance. Hence, the write-once-read-many

(WORM) workload (archival) is a natural extension to the characteristics of

SMR drives. Few other recent suggestions on SMR optimizations are available

in [9], e.g., hybrid strategy, parallel access and large form factor.

 Other HDDs

The PMR technique reached its theoretical limitation of areal density for

conventional design (1TB/in2) in recent years. The limiting factor is the

onset of the super-paramagnetic limit as researchers strive towards smaller

grained recording media. This levies a tradeoff between the signal-to-

noise ratio (SNR) and the thermal stability of small grain media and the

writability of a narrow track head, which restricts the ability to continue to

scale CMR technology to higher areal densities [10].

Several promising technology alternatives have been explored to

increase the areal density beyond the limit, such as two-dimensional

magnetic recording (TDMR), heat-assisted magnetic recording,

microwave-assisted magnetic recording [10], and bit-patterned magnetic

recording (BPMR). Table 1-1 provides a brief category and Figure 1-5

shows the trends of these techniques.

Table 1-1. New Techniques to Increase Areal Density

Approaches Reduce grain size
and make grains
harder to switch

Reduce bit width
and/or length

Increase areal density/
size, add heads and
disks

Solutions haMr, MarM SMr, haMr,

t-dMr

helium drive, advanced

mechanical designs, form

factor optimization

Chapter 1 IntroduCtIon

9

In BPMR technology, each recording bit is stored in a fabricated

magnetic island of around 10 nm. It has been proposed as a means

for extending the super-paramagnetic limit of current granular media

as illustrated in Figure 1-4 (a). The recording physics in BPMR are

fundamentally different from conventional PMR, as the write and read

scheme must be totally reestablished. A major shortcoming is the write

synchronization requirement in which the write field must be timed to

coincide with the locations of patterned islands. The total switching field

distribution in the writing process, including various interference fields,

must be less than the product of the bit length and the head field gradient

to attain a high areal density up to 5 TB/in2 theoretically.

Figure 1-4. Future options of HDD[10]

Chapter 1 IntroduCtIon

10

HAMR and MAMR are two implementations of energy-assisted

magnetic recording (EAMR). HAMR is proposed to overcome head

writability issues. The core components of proposed HARM and

MAMR technologies are a laser and a spin torque-driven microwave

oscillator, respectively. In HAMR, the media have to be stable at

much smaller grain sizes yet be writable at suitably elevated

temperatures. The integration of HAMR and BPMR enables an

extension of both technologies, with projected areal density up to

about 100 Tb/in2 based on the thermal stability of known magnetic

materials [10]. Both WDC and Seagate announced their roadmap for

EAMR. Seagate claimed that its HAMR- based HDDs will be due in

late 2018,2 while WDC declared that its MAMR will store 40TB on a

hard drive by 2025.3

TDMR still uses a relatively conventional perpendicular medium and

head, while combining shingled write recording (SWR) and/or 2D read

back and signal processing to promise particularly large gains. Recording

with energy assist on BPM or 2D signal processing will enable the areal

density beyond around 5 Tb/in2. However, there is no clear problem-free

solution so far.

2 www.anandtech.com/show/11315/seagate-ships-35th-millionth-smr-hdd-
confirms-hamrbased-hard-drives-in-late-2018

3 www.wdc.com/about-wd/newsroom/press-room/2017-10-11-western-digital-
unveils-next-generation-technology-to-preserve-and-access-the-next-
decade-of-big-data.html

Chapter 1 IntroduCtIon

http://www.anandtech.com/show/11315/seagate-ships-35th-millionth-smr-hdd-confirms-hamrbased-hard-drives-in-late-2018
http://www.anandtech.com/show/11315/seagate-ships-35th-millionth-smr-hdd-confirms-hamrbased-hard-drives-in-late-2018
http://www.wdc.com/about-wd/newsroom/press-room/2017-10-11-western-digital-unveils-next-generation-technology-to-preserve-and-access-the-next-decade-of-big-data.html
http://www.wdc.com/about-wd/newsroom/press-room/2017-10-11-western-digital-unveils-next-generation-technology-to-preserve-and-access-the-next-decade-of-big-data.html
http://www.wdc.com/about-wd/newsroom/press-room/2017-10-11-western-digital-unveils-next-generation-technology-to-preserve-and-access-the-next-decade-of-big-data.html

11

Note that for HAMR/MAMR HDDs, the sequential access properties

may be similar to SMR/TDMR. As the heater start-up/cool-down

requires time, sequential access to reduce the status change is

preferred.

One of other recent techniques to increase single device’s capacity

is the volumetric density scaling, such as adding more disc platters

into one Helium-filled drive (less turbulence, thinner disks, and higher

capacity) and designing a large form factor enclosure [9]. To further

increase the capacity of single drives, some interesting designs have

been suggested. For example, the dual-spindle design can access two

disk clusters with two arms [11]. In this direction, more arms and disks

are also possible, such as six arms and six disk spindles. Magnetic disk

libraries and cartridge designs make the disk media exchangeable,

similar to optical disks.

Figure 1-5. Predicated density of future techniques[10]

Chapter 1 IntroduCtIon

12

 SSD
A solid-state drive/disk (SSD) is a solid-state storage device to store data

persistently that utilizes integrated circuit assemblies as memory [12].

Electronic interfaces compatible with traditional HDDs, such as SAS

and SATA, are primarily used in SSD technology. Recently, PCIe, SATA

express, and M.2 have become more popular due to increased bandwidth

requirements.

The internal memory chip of a SSD can be NOR-flash, NAND-flash,

or some other emerging NVM (non-volatile memory). Most SSDs have

started to use 3D TLC (tri-layer ceil) NAND-based flash memory as of

2017.

SSD is changing the storage industry. While the maximum areal

storage density for HDDs is only 1.5 Tbit/in, the maximum for flash

memory used in SSDs is 2.8 Tbit/in in laboratory demonstrations as of

2016. And SSD’s overall areal density increasing ratio of flash memory

is over 40% per year, which is larger than 10-20% of HDD. And the price

decreasing ratio of SSD ($ per GB) is dropping faster than that of HDD.

Table 1-2 gives a comparison of SSD and HDD, where the SSD mainly

refers to NAND-based devices, while HDD is conventional PMR devices.4

4 Revised source from wiki and latest industry updates.

Chapter 1 IntroduCtIon

13

5 Usually, it ranges from 0 (sequential), ~ 0.5ms (1 track), ~ 0.2ms (head switch) to
10+ ms (long seek).

Table 1-2. Comparison of HDD and SSD

Attribute SSD HDD

Start-up time almost no delay because there

is no requirement to prepare

mechanical components (some

μs to ms). usually a few ms

to switch from an automatic

power-saving mode.

up to several seconds for disk

spin-up. up to few hundred

million seconds to wake up from

idle mode.

random

access time

typically less than 0.1 ms. not

a big performance bottleneck

usually.

typically from 2.5 (high-end

server/enterprise drives) to 12

ms (laptop/mobile drives) mainly

owing to seek time and rotational

latency.

read latency

time

usually low due to the direct

data access from any location.

For applications constrained

by the hdd’s positioning time,

SSd has no issue in faster boot

and application launch times

(see amdahl’s Law). a clean

Windows oS may spend less

than 6 seconds to boot up.

Generally much larger than

SSds. the time is different for

each seek due to different data

locations on the media and the

current read head position.5 a

clean Windows oS may spend

more than 1 minute to boot up.

(continued)

Chapter 1 IntroduCtIon

14

Table 1-2. (continued)

Attribute SSD HDD

data transfer

rate

relatively consistent Io speed

for relatively sequential Io.

performance is reduced when

the portion of random smaller

blocks is large. typical value

ranges from around 300MB/s

to 2500MB/s for consumer

products (commonly speed

around 500MB/s at 2017).

up to multi-gigabyte per second

for enterprise class.

heavily depends on rpM, which

usually ranges from 3,600 to

15,000 (although 20,000 rpM

also exists). typical transfer

speed at about 200 MBps for

3.5- inch drive at 7200

rpM. Some high-end drives

can be faster, up to 300 MBps.

tpI and Spt are also influential

factors.

read

performance

Generally independent on the

data location in SSd. In few

cases, sequential access may

be affected by fragmentation.

random seek is expensive.

Fragmented files lead to the

location of the data in different

areas of the platter; therefore,

response times are increased by

multiple seeks of fragments.

Write

performance

Write amplification may occur.6

Wear leveling techniques are

implemented to get this effect.

however, the drive may

unavoidably degrade at an

observable rate due to SSd’s

nature.

CMr has no issue with write

amplification. however, SMr may

have an issue due to the out-of-

place-update. GC is also required.

(continued)

6 A performance degradation phenomenon where the NAND cells display a
measurable drop in performance and may continue degrading throughout the
SSD life cycle.

Chapter 1 IntroduCtIon

15

7 A practical limit on the number of fragmentation exists in a file system for
sustainment. In fact, subsequent file allocations may fail once that limit is
reached. Therefore, defragmentation may still be needed to a lesser degree.

8 Normally, the noise is high when the disk starts to spin up. The noise level of
HDD is generally much lower than that of the cooling fans.

9 When moving HDDs from a warm condition to a cold condition before operating
it (or vise verse), a certain amount of acclimation time is required. Otherwise,
internal condensation may occur and immediate operation may lead to damage
of its internal components. In addition, the sudden atmospheric pressure change
may also crash the head into the disc media.

Table 1-2. (continued)

Attribute SSD HDD

Impacts of

file system

fragmentation

relatively limited benefit to

reading data sequentially,

making fragmentation

not significant for SSds.

defragmentation would cause

wear with additional writes.7

Many file systems get fragmented

over time if frequently updated.

optimum performance

maintenance requires periodic

defragmentation, although this may

not be a problem for modern file

systems due to node design and

background garbage collection.

noise

(acoustic) and

vibration

SSds are basically silent without

moving parts. Sometimes, the

high voltage generator (for

erasing blocks) may produce

pitch noise. Generally insensitive

to vibration.

the moving parts (e.g., heads,

actuator, and spindle motor)

make characteristic sounds of

whirring and clicking. noise levels

differ widely among models,

and may be large.8 Mobile disks

are relatively quiet due to better

mechanical design. Generally

sensitive to vibration.9

(continued)

Chapter 1 IntroduCtIon

16

Table 1-2. (continued)

Attribute SSD HDD

data tiering hot data may move from slow

devices to fast devices. It usually

works with hdds, although in

some implementations, fast and

slow SSds are mixed.

hdds are usually used as a slow

tier in a hybrid system. Some

striped disk arrays may provide

comparable sequential access

performance to SSds.

Weight and

size

essentially small and

lightweight due to the internal

structure. they usually have

the same form factors (e.g.,

2.5-inch) as hdds, but thinner,

with plastic enclosures. the

M.2 (next Generation Form

Factor) format makes them even

smaller.

hdds are usually heavier than

SSds, since their enclosures

are made of metal in general.

2.5-inch drives typically weigh

around 200 grams while 3.5-inch

drives weigh over 600 grams

(depending on the enclosure

materials, motors, disc magnets/

number, etc.). Some slim designs

for mobile could be less than

6mm thin.

(continued)

Chapter 1 IntroduCtIon

17

Table 1-2. (continued)

Attribute SSD HDD

reliability and

lifetime

no mechanical failure.

however, the limited number

of write cycles for each block

may lead to data loss.10 a

controller failure can lead to an

unusable SSd. reliability differs

quite considerably depending

on different manufacturers,

procedures, and models.11

potential mechanical failures

from the resulting wear and

tear. the storage medium itself

(magnetic platter) does not

essentially degrade from r/W

accesses.12

Cost per

capacity13

Consumer-class SSd’s nand

chip pricing has dropped rapidly:

uS$0.60 per GB in april, 2013,

uS$0.45, $0.37 and $0.24

per GB in april 2014, February

2015, and September 2016,

respectively. the speed has

slowed down since late 2016.

prices may change after 3d

nand becomes common.14

Consumer hdds cost about

uS$0.032 and $0.042 per GB

for 3.5-inch and 2.5-inch drives

in May 2017. the price for

enterprise hdds is generally

more than 1.5 times over that

for consumers. relatively stable

prices in 2017 may be broken

after MaMr/haMr release.

(continued)

10 A non-common SSD, which is based on DRAM, does not have a wearing issue.
11 Leading SSDs have lower return rates than mechanical drives as of 2011, although

some bad design and manufacturing results in return rates reaching 40% for specific
drives. Power outage is one of the main SSD failure types. A survey in December
2013 for SSDs showed that survive rate from multiple power outages is low.

12 Carnegie Mellon University conducted a study for both consumer-and
enterprise-class HDDs in 2007 and SSD in 2015 [13, 14]. HDDs’ average failure
rate is 6 years, with life expectancy at 9-11 years.

13 https://pcpartpicker.com/trends/internal-hard-drive/
14 https://pcpartpicker.com/trends/price/internal-hard-drive/

Chapter 1 IntroduCtIon

https://pcpartpicker.com/trends/internal-hard-drive/
https://pcpartpicker.com/trends/price/internal-hard-drive/

18

Table 1-2. (continued)

Attribute SSD HDD

Storage

capacity

Sizes up to 60tB by Seagate

were available as of 2016. 120

to 512GB models were more

common and less expensive.

hdds of up to 10tB and 12tB

were available in 2015 and 2016,

respectively.

read/write

performance

symmetry

Write speeds of less costly SSds

are typically significantly lower

than their read speeds. (usually

≤1/3). Similar read and write

speeds are expected in high-

end SSds.

Most hdds have slightly longer/

worse seek time for writing than

for reading due to the longer

settle time.

Free block

availability

and trIM

command

Write performance is

significantly influenced

by the availability of free,

programmable blocks. the trIM

command can reclaim the old

data blocks no longer in use;

however, fewer free blocks

cause performance downgrade

even with trIM.

CMr hdds do not gain

benefits from trIM because they

are not affected by free blocks.

however, SMr performance is

also restricted by the available of

free zones. trIM is required for

dirty zones sometimes.

(continued)

Chapter 1 IntroduCtIon

19

Attribute SSD HDD

power

consumption

high performance flash-based

SSds generally require 1/2 to

1/3 of the power of hdds.

emerging technologies like

pCM/rraM are more energy-

efficient.15

2.5-inch drives consume 2 to

5 watts typically, while some

highest-performance 3.5-inch

drives may use around 12 watts

on average, and up to about 20

watts. Some special designs for

green data centers send the disk

to idle/sleep when necessary.

1.8- inch format lower-power

hdds may use as little as 0.35

watts in idle mode.16

Table 1-2. (continued)

15 High-performance DRAM-based SSDs generally require as much power as
HDDs, and a power connection is always required even when the system is idle.

16 Disk spin-up takes much more power than that a normal operation. For a system
with many drives, like a RAID or EC configured structure, staggered spin-up is
needed to limit the peak power overload.

In summary, here is a SWOT analysis for NAND SSD:

• Strength

• A mature technology widely employed by

industries

• Large scale/density, applicable for 3D techniques

• A single drain contact per device group is required

compared with NOR.

• Relatively cheaper than other emerging NVM types

for dollar/GB

Chapter 1 IntroduCtIon

20

• Weakness

• Asymmetric performance (slower write than read)

• Program/erase cycle (block-based, no write-in-

place)

• Data retention (retention gets worse as flash scales

down)

• Endurance (limited write cycle compared with

HDD and other emerging NVMs) 100-1000 slower

than DRAM

• 10-1000 slower than PCM and FeRAM

• Usually, the higher the capacity, the lower the

performance.

• Opportunity

• Scaling focused solely on density; density is higher

than magnetic HDD in general.

• Decreased cost, which will be comparable with

HDD in the near future

• 3D schemes exist despite of complexity

• Durability is improved to a certain degree together

with fine-tuned wearing leverage algorithms.

• Replacement for HDD in data centers as a

mainstream choice (in particular, an all-flash

array), although hybrid infrastructures will remain

for some years.

Chapter 1 IntroduCtIon

21

• Threat

• The extra connections used in the NOR architecture

provide some additional flexibility when compared

to NAND configuration.

• The active development of MRAM/ReRAM may

shake NAND flash’s dominate position.

The real question is the market share of the two technologies. It is

important how you measure the market share. By money gets you a

very different answer than by bit. In the money arena, SSDs will rapidly

overtake HDDs spend in the very near future, while by bit, HDDs will still

dominate for some years.

There are some other storage devices using flash memory. Flash

thumb drives are similar to SSD but with much lower speed and they are

commonly used for mobile applications. Kingston Digital released 1TB

capacity drives with an USB 3.0 interface (data transfer speeds up to

240 MB/s read and 160 MB/s write) in early 2017 and 2TB drives (up to

300 MB/s read and 200 MB/s write) in late 2017, which is similar to

HDD’s speed.

Small form size memory cards are also widely used in electronic

devices, such as smartphones, tablets, cameras, and so on. Some common

formats include CompactFlash, Memory Stick, SD/MicroSD/MiniSD, and xD.

SanDisk introduced up to 1TB size of Extreme Pro series SD products in

September 2016 and MicroSD up to 400GB in August 2017.

 Hybrid Disk
A hybrid drive is a logical or physical storage device that integrate a fast

storage medium such as a NAND/NOR flash SSD into a slow medium such

as a HDD [15]. The fast device in a hybrid drive can act either as a cache

for the data stored on the HDD or as a tier peering to HDD. In generally,

the purpose is to improve the overall performance by keeping copies of

Chapter 1 IntroduCtIon

22

the most frequently used data (hot data) on the faster component. Back in

the mid-2000s, some hard drive manufacturers like Samsung and Seagate

theorized the performance boost via SSD inside HDD. In 2007, Samsung

and Seagate introduced the first hybrid drives using the Seagate Momentus

PSD and Samsung SpinPoint MH80 products.

There are generally two types of hybrid disks. One is of a dual-drive

structure (the tiering structure) where the SSD is the fast tier and HDD

is the slow tier. Usually, the OS will recognize the devices with two sub-

storage devices. Western Digital’s Black2 products introduced in 2013 and

TarDisk’s TarDisk Pear in late 2015 are two examples of dual-drive devices.

The other is an integrated structure (solid-state hybrid drive, SSHD) where

the SSD acts as cache [16]. Users or OSs may see one storage device only

without specific operations.

The hybrid disk drive can operate in either self-optimized (self-

learning) mode or host-optimized mode. In the self-optimized mode of

operation, the SSHD works independently from the host OS, so device

drives determine all actions related to data identification and migration

between the HDD and SSD. This mode lets the drive appear and operate

to a host system exactly like a traditional drive. A typical drive is Seagate’s

Mobile and Laptop SSHD. Host- optimized mode is also called host- hinted

mode, so the host makes the decision for the data allocations in HDD and

SSD via SATA interface (since SATA version 3.2). This mode usually requires

software/driver support from the OSs. Microsoft started to support the

host-hinted operations in Windows 8.1 (a patch for version 8 is available),

while patches for the Linux kernel have been developed since October

2014. Western Digital’s first generation of SSHDs is in this category.

The market of hybrid disk drives may be narrow due to some inherited

limitations:

• The performance is heavily application/workload

dependent usually. But the drive may not be smart

enough to be constrained by its resource.

Chapter 1 IntroduCtIon

23

Table 1-3. Comparison of Some NVMs

STT-MRAM PCMS 3D
Xpoint

ReRAM Flash NAND

read latency < 10ns < 100ns < 10ns 10–100us

Write latency 5ns > 150ns 50ns > 100us

power consumption Medium Medium Medium high

price (2016) 200−3000/ Gb ≤ 0.5/Gb 100/Gb ≤ 0.05/Gb

endurance(nb

cycles)

1012 to

unlimited

108−109 105−1010 105−106

• Block level optimization is no better or worse than file/

object level optimization due to less information on the

workload. Thus it is not recommended to optimize the

workload in the drive level.

• It is not well suited for a data center infrastructure’s

general purpose due to relatively static configurations

of hybrid disks.

For the write path, some hold-up capacitors are used to simulate SCM

(see the “Storage Devices” section of this chapter) with DRAM in some

high-end SSDs. This essentially solves the write back problem. For the read

path, customers generally prefer to manage different speed tiers of storage

by themselves. They are very concerned with the access latency variance,

and hybrid systems are very poor in this area. There is virtually no uptake

of infrastructure-managed hybrid storage in Hyperscale or public cloud

infrastructure. There are lots of deployments of hybrid structures. It is just

managed at higher layers, not in the infrastructure itself. Table 1-3 provides

more details.

Chapter 1 IntroduCtIon

24

 Tape and Disc
Magnetic tape was first used to record computer data in 1951. It usually

works with some specific tape drives only. Despite its slow speed, it is still

widely used for cold data archiving. IBM and FujiFilm demonstrated a

prototype BaFe Tape with 123 Gb/in2 areal density and 220TB cartridge

capacity in 2015. Sony and IBM further increased this number to

201 Gb/in2 and 330TB into a tiny tape cartridge in 2017.17 Instead of

magnetic materials painted on the surface of conventional tape, Sony used

a “sputtering” method to coat the tape with a multilayer magnetic metal

film, which is thinner with narrower grains using vertical bits. Note that

tape and HDD share many similarities in the servo control, such as servo

pattern and nanometer precision.

An optical disc is a flat, usually circular disc that encodes binary data

(bits) in the form of pits. An early optical disc system can be traced back to

1935. Since then, there have been four generations (a CD of about 700MB

in the first generation, a DVD of about 4.7GB in the second generation, a

standard Blu-ray disc of about 25GB in the third generation, and a fourth

generation disc with more than 1TB data).

Both magnetic tapes and optical discs are usually accessed

sequentially only. Some recent developments use robot arms make the

change of tape/disc automatically. It is expected that tape and optical

disc may still be active in the market for some years. In particular, due to

much lower price per GB than other media, the tape seems to have a large

potential market for extremely cold storage.

17 https://arstechnica.com/information-technology/2017/08/
ibm-and-sony-cram-up-to-330tb-into-tiny-tape-cartridge/

Chapter 1 IntroduCtIon

https://arstechnica.com/information-technology/2017/08/ibm-and-sony-cram-up-to-330tb-into-tiny-tape-cartridge/
https://arstechnica.com/information-technology/2017/08/ibm-and-sony-cram-up-to-330tb-into-tiny-tape-cartridge/

25

 Emerging NVMs
There are also many types of emerging NVMs on the way to mature or

under an early stage of development [17, 10]:

• Phase-change memory (PCM), such as 3D X-point

• Magnetoresistive RAM (MRAM), such as STTRAM and

Racetrack memory

• Resistive RAM (RRAM/ReRAM), such as Memristor,

Conductive-bridging RAM (CBRAM), Oxy-ReRAM

• Ferroelectric RAM (FeRAM), such as FeFET

• Others, such as conductive metal oxide (CMOx),

solid electrolyte, NRAM (nano RAM), ZRAM (zero-

capacitor), quantum dot RAM, carbon nanotubes,

polymer printed memory, etc.

STT-MRAM [18] (spin-transfer torque MRAM), using electron spin-

induced change in magnetic moment, can replace low-density SRAM

and DRAM, particularly for mobile and storage devices. Phase-change

memory (PCM), making thermally induced physical phase changes

between amorphous and crystalline states, has the ability to achieve a

number of distinct intermediary states, thereby having the ability to hold

multiple bits in a single cell. PCMS 3D Xpoint, announced by Intel and

Micron in 2015, is based on changes in the resistance of the bulk material

faster and is more stable than traditional PCM materials. ReRAM/CBRAM

(conductive- bridging RAM) uses a metallic filament formation in electrolyte

to storage, and FeRAM uses a ferroelectric layer instead of a dielectric layer

to achieve nonvolatility [1]. Table 1-3 shows a simple comparison of them

with NAND. A few of them could be in mass production within the next few

years [19], although it might be still early to confirm which NVM technique is

a winner in the competition, as they have their advantages and disadvantages.

For example, let’s use PCM as an example for its SWOT analysis.

Chapter 1 IntroduCtIon

26

• Strength

• Relatively mature (large-scale demos and products)

compared with other emerging NVMs

• Industry consensus on materials, like GeSbTe

or GST

• Large resistance contrast, which leads to analog

states for MLC

• Much longer endurance than NAND Flash

• High scalability (still works at ultra-small F) and

back- end- of-the-line compatibility

• Potential very high speed (depending on material

and doping)

• Weakness

• RESET step to high resistance requires melting − >

power-hungry and thermal crosstalk?

• To keep switching power down − > sub-

lithographic feature and high-current access device

• To fill a small feature − > atomic layer deposition or

chemical vapor deposition techniques − > difficult

now to replace GST with a better material

• MLC strongly impacted by relaxation of amorphous

phase − > resistance drift

• 10-year retention at elevated temperatures

(resistance drafts with time) can be an issue − >

recrystallization

Chapter 1 IntroduCtIon

27

• Device characteristics change over time due to

elemental segregation − > device failure

• Variability in small features broadens resistance

distributions

• Opportunity

• An order of magnitude lead over FeRAM, MRAM, etc.

• NOR-replacement products now shipping − > if

yield-learning successful and MLC (3-4 bits per cell

successfully implemented in PCM technologies

despite R-drift phenomenon in 2016)

• Good for embedded NVM for SoC, Neuromorphic

• Drift-mitigation and/or 3D access devices can

offer high-density (i.e., low-cost), which means the

opportunity for NAND replacement. Finally S-type,

and then M-type SCM may follow.

• Projected to reach 1.5B USD with an impressive

CAGR of almost 84% by 2021

• Threat

• Attained speed in practice is much slower than the

theoretical speed; slow NOR-like interfaces

• The current PCM SSD is only several times

faster than SLC SSD, which is far away from the

projection.

• DRAM/SRAM replacement may be challenging due

to fundamental endurance limitation.

• PCM as a DRAM segment accounted for the major

shares and dominated the market during 2016,

which means a long way for S-SCM.

Chapter 1 IntroduCtIon

28

• A key challenge is to reduce reset (write) current;

contact dimension scaling will help, but will slow

progress.

• Engineering process

NAND techniques are also under active development, in particular,

the 3D NAND. Compared with these emerging NVMs, NAND is relatively

mature, dense, and cheap. However, it could be much slower than PCM

and ReRAM. Meanwhile, its durance may be significantly lower than PCM,

MRAM, and FeRAM in general.

Based on these NVMs, a special category called SCM (storage

class memory) is introduced to fill the IO gap between SSD and DRAM

(although it was initially for the gap between HDD and DRAM from IBM).

It is further divided into storage-type SCM and memory-type SCM,

depending on whether their speed is in magnitudes of microseconds or

nanoseconds. Improved flash with 3D techniques, PCM, MRAM, RRAM,

and FeRAM are some major techniques applied to SCM. This wide

deployment of SCM to the computer/network systems and IoT systems

will reshape the current architectures. In the very near future, we can

see the impact of SCM to in-memory computing (e.g., application in

cognitive computing), hyper-converge infrastructure, hybrid storage/cloud

infrastructure (with remote direct memory access), etc. A brief outlook of

these NVMs is illustrated in Figure 1-6, which is modified from the IBM’s

prediction.18 In fact, the commercial version of Optane P4800X using 3D

PCM-like techniques by Intel released in Nov 2017 has 750GB in capacity,

550K in IOPS, and 2.4/2.0 GB/ps in R/W throughput, while Z-NAND,

a variant of 3D NAND by Samsung released in Jan 2018, has 800GB in

capacity, 750K/150K in R/W IOPS, and 3.2 GB/ps in throughput.

18 IBM Almaden Research Center, Storage Class Memory, Towards a disruptively
low-cost solid-state non-volatile memory, 2013

Chapter 1 IntroduCtIon

29

Figure 1-6. Competitive outlook among emerging NVMs

According to Yole Development’s recent estimation,19 the emerging

NVM market will reach USD 4.6 billion by 2021, exhibiting an impressive

growth of +110% per year, although the market size in 2015 was USD

53 million only. SCM will be the clear go-to market for emerging NVM

in 2021. Marketsandmarkets20 also predicts that the global non-volatile

memory market is expected to reach USD 82.03 billion by 2022, at a CAGR

of 9.50% between 2017 and 2022.

19 www.yole.fr/
20 www.marketsandmarkets.com/Market-Reports/non-volatile-memory-
market-1371262.html

Chapter 1 IntroduCtIon

http://www.yole.fr/
http://www.marketsandmarkets.com/Market-Reports/non-volatile-memory-market-1371262.html
http://www.marketsandmarkets.com/Market-Reports/non-volatile-memory-market-1371262.html

30

 Storage Systems
This section discusses the system level storage infrastructure and

implementation. RAID (redundant array of independent/inexpensive

disks) and EC (erasure code) systems are mainly used for failure tolerance.

Hybrid storage systems intend to achieve relatively high performance at

low cost. Microserver and Ethernet drives have been employed in some

object storage systems. Software-define systems separate the data flow

and control flow. Some large-scale storage system implementations, like

Hadoop/Spark, OpenStack, Ceph, are also introduced.

 Infrastructure: RAID and EC
RAID as a data storage virtualization technology combines multiple

physical drive components into a single logical unit or pool for the

purposes of data redundancy, performance improvement, or both [20].

The Storage Networking Industry Association (SNIA) standardized RAID

levels and their associated data formats from RAID 0 to RAID 6: “RAID 0

consists of striping, without mirroring or parity. RAID 1 consists of data

mirroring, without parity or striping. RAID 2 consists of bit-level striping

with dedicated Hammingcode parity. RAID 3 consists of byte-level

striping with dedicated parity. RAID 4 consists of block-level striping with

dedicated parity. RAID 5 consists of block-level striping with distributed

parity. RAID 6 consists of block-level striping with double distributed

parity.” RAID 2-4 are generally not for practical usage. RAID levels can be

nested, as in hybrid RAID. For example, RAID 10 and 50, which is RAID 1

and 5 based on RAID 0.

RAID can be implemented by either hardware or software. Hardware

RAID controllers are expensive and proprietary, and usually used in

enterprise environments. Software-based implementations have gained

more popularity recently. Some RAID software is provided by modern

Chapter 1 IntroduCtIon

31

OSs and file systems, such as Linux, ZFS, GPFS, and Btrfs. Hardware-

assisted RAID software implements RAID mechanisms in a standard drive

controller chip with embedded proprietary firmware and drivers.

Nowadays, RAID systems are widely used in SMEs. Even in some data

centers, RAID is still used as a fundamental structure for data protection.

However, RAID is limited by its data reliability level, so only up to two

disk failures can be tolerated by RAID 6, which is not secure enough for

some critical applications. Thus, the erasure coding scheme emerged

as an alternative to RAID. In EC, data is broken into fragments that are

expanded and encoded with a configurable number of redundant pieces

and are stored across different locations, such as disks, storage nodes,

or geographical locations. Theoretically, EC can tolerate any number of

disk failures, although up to four are used in a group practically. EC may

also encounter some performance issues, particularly when the system is

operated in downgraded or recovery mode.

 Hybrid Systems

Although all-flash arrays are gaining in popularity, hybrid structures

remain the mainstream in data centers, due to the trade-offs between

cost, reliability, and performance. In early days, the hybrid storage system

contained a HDD as the fast tier and tape as the backup tier [21] [22].

Later, fast access speed HDDs (such as 15kRPM and 10kRPM) acted

as the performance tier, and slow speed HDDs (such as 7200RPM and

5400RPM) acted as the capacity tier [23]. With the development of non-

volatile memory (NVM) technologies, such as NAND Flash [24], PCM [25],

STTMRAM [18], and RRAM [19], the performance cost ratio of NVMs is

increasing. Table 1-3 lists the performance and price comparison of some

well-known NVMs. These NVMs with fast accessing speed can be used

as the performance tier [17] [26] or cache [27] [28] [29] [30] in a modern

hybrid system. Nowadays, SSD is the first choice of performance tier, and

the high capacity shingled magnetic recording (SMR) drive is used often as

the back-up tier [31].

Chapter 1 IntroduCtIon

32

When designing a hybrid storage system, the algorithms for the

tier and cache storage architectures are slightly different, although the

general framework is similar (see Figure 1-7). Fundamentally, tier storage

architecture moves data to the fast storage area instead of copying the

data in the cache storage architecture. But both have four important

steps to accomplish. Firstly, data allocation policies are needed to control

the data flow between different devices. Secondly, there should be an

efficient address mapping mechanism between the SSD cache address

and the main storage address. Thirdly, due to the size limitation of SSD

cache compared with main storage HDDs, only the frequently and

recently accessed data, which is called hot data, can be stored in the SSD

cache/tier to improve the system efficiency. Therefore, a suitable hot

data identification algorithm should be applied to identify the hot/cold

data. When the hot data is detected, the data needs to be promoted when

necessary. Thus a data migration algorithm is needed to control the hot/

cold data flow to improve the future access efficiency. Lastly, a caching

scheduling algorithm is employed for queuing behaviors, such as the

queue size, synchronization, execution sequence.

Figure 1-7. General algorithms for hybrid storage system

Data allocation: Data allocation is conducted by the host or

device controller to allocate the incoming data to the most suitable

storage location, such as hot data to SSD or cold data to HDD. Besides

the properties of the data, the status of the devices is also considered

during the allocation process, such as the queue length, capacity usage,

bandwidth, etc.

Chapter 1 IntroduCtIon

33

Address mapping: Address mapping is required in a hybrid storage

system because the capacities of the faster devices and slower devices are

different. Due to the different address ranges, the accessing location of the

incoming data needs to be translated to the actual address when the data

is allocated to a different device. An address translation table is required to

keep all these translation entries. If the address range is big, the memory

consumption of the translation table is huge and the translation speed is

reduced, which may affect the system performance.

Data migration (promotion/demotion): The data promotion is to

migrate the data from the slower devices to the faster devices, and the

data demotion is to migrate the data from the faster devices to the slower

devices. This is called data migration. The data migration is usually

conducted when the data in slower devices is identified as hot data or the

data in faster devices is identified as cold data. In some research, the data

migration is also done to balance the IOPS between the faster devices and

slower devices.

Hot data identification: Hot data identification is important for the

data migration to select the suitable data to promote and demote. It uses

the properties of historical data to classify the incoming data as hot or cold.

The classification is done by checking the accessing frequency and time

of the data. Most frequently accessed and most recently accessed data are

identified as hot data.

The hybrid storage architectures can be roughly classified into four

categories, which are shown in Figure 1-8: (1) SSDs as a cache (caching

method) of HDDs, (2) SSDs as a (high) tier (tiering method) to HDDs,

(3) SSDs as the combination of tier and cache, and (4) HDDs with special

purposes, such as HDDs utilized as the cache of SSDs. There are also some

hybrid storage systems incorporating other types of NVMs into design

consideration.

Chapter 1 IntroduCtIon

34

 Microservers and Ethernet Drives

A microserver is a server-class computer which is usually based on a

system on a chip (SoC) architecture. The goal is to integrate most of the

server motherboard functions onto a single microchip, except DRAM, boot

FLASH, and power circuits. Ethernet Drive is one of its various forms.

In October 2013, Seagate Technology introduced its Kinetic

Open Storage platform with claims that the technology would enable

applications to talk directly to the storage device and eliminate the

traditional storage server tier. The company shipped its first near-line

Kinetic HDDs in late 2014. The Kinetic drive is described as a key-value

server with dual Ethernet ports that support the basic put, get, and delete

semantics of object storage, rather than read-write constructs of block

storage. Clients access the drive through the Kinetic API that provides

key-value access, third-party object access, and cluster, drive, and security

management.

Introduced in May 2015, Toshiba’s KVDrive uses the key-value API that

Seagate open sourced rather than reinventing the wheel. Ceph or Gluster

could run directly on Toshiba’s KVDrive.

WDC/HGST’s converged microserver based on its Open Ethernet

architecture supports any Linux implementation. Theoretically, any

network operating system can run directly in such a microserver.

Figure 1-8. The overall categories of the hybrid storage
architectures

Chapter 1 IntroduCtIon

35

Ceph and OpenStack Object Storage system have been demonstrated

together with Red Had server. For example, in early 2016, WDC

demonstrated a large scale Ceph distributed storage system with 504

drives and 4PB storage size.21

 Software-Defined Storage

Software-defined storage is an emerging concept that is still in evolution.

There are many different definitions from different organizations, such as

the following:

• TechTarget:22 SDS is an approach to data storage in

which the programming that controls storage-related

tasks is decoupled from the physical storage hardware

(which places the emphasis on storage-related services

rather than storage hardware).

• Webopedia:23 SDS is storage infrastructure that is

managed and automated by intelligent software as

opposed to the storage hardware itself. In this way,

the pooled storage infrastructure resources in a SDS

environment (which can provide functionality such

as deduplication, replication, thin provisioning,

snapshots, and other backup and restore capabilities

across a wide range of server hardware components)

can be automatically and efficiently used to match the

application needs of an enterprise.

21 https://ceph.com/geen-categorie/500-osd-ceph-cluster/
22 http://searchsdn.techtarget.com/definition/software-defined-storage
23 www.webopedia.com/TERM/S/software-defined_storage_sds.html

Chapter 1 IntroduCtIon

https://ceph.com/geen-categorie/500-osd-ceph-cluster/
http://searchsdn.techtarget.com/definition/software-defined-storage
http://www.webopedia.com/TERM/S/software-defined_storage_sds.html

36

• Wikipedia:24 SDS is computer data storage software to

manage policy-based provisioning and management

of data storage independent of hardware. Software-

defined storage definitions typically include a form

of storage virtualization to separate the storage

hardware from the software that manages the storage

infrastructure. The software enabling a software-

defined storage environment may also provide policy

management for feature options such as deduplication,

replication, thin provisioning, snapshots, and backup.

• Vmware:25 SDS is the dynamic composition of storage

services (such as snaps, clones, remote replication,

deduplication, caching, tiering, encryption, archiving,

compliance, searching, intelligent logics) aligned on

application boundaries and driven by policy.

Despite of these different views, there are some common factors and

features, which are summarized in Table 1-4 and Figure 1-9. Table 1-4 actually

shows the three steps for SDS. First, the hardware should be decoupled

from the software, such as the abstraction of logical storage services and

capabilities from the underlying physical storage systems. Second, the storage

resource is virtualized, such as pooling across multiple implementations.

Third, automation mechanism is created with policy- driven storage

provisioning with service-level agreements replacing technology details.

Typical SDS products include GlusterFS, Ceph, and VMwareVirtual SAN.

Figure 1-9 further gives the features in five aspects: data organization, scaling,

persistent data store, storage service, and delivery model.

24 https://en.wikipedia.org/wiki/Software-defined_storage
25 www.vmware.com/files/pdf/solutions/VMware-Perspective-on-software-
defined-storage-white-paper.pdf

Chapter 1 IntroduCtIon

https://en.wikipedia.org/wiki/Software-defined_storage
http://www.vmware.com/files/pdf/solutions/VMware-Perspective-on-software-defined-storage-white-paper.pdf
http://www.vmware.com/files/pdf/solutions/VMware-Perspective-on-software-defined-storage-white-paper.pdf

37

SDS also leads to some other concepts, such as a software-defined data

center (SDDC). Based on the report by IDC and IBM,26 a SDDC is a loosely

coupled set of software components that seek to virtualized and federate

datacenter-wide hardware resources such as compute, storage, and

network resources. The objective for a SDDC is to make the data center

available in the form of an integrated service. Note that an implementation

of SDS and SDDC may not be able to leave the support of another software

defined concept, such as software-defined networking (SDN), which

provides a fundamental change to the network infrastructure.

Table 1-4. Common Features of SDS

Level Steps Consequence

data plane,

Control plane

abstract (decouple/standardization, pooling/

virtualization), automation (policy-driven)

Faster, more

efficient simpler

Figure 1-9. The overall features of SDS

26 www-05.ibm.com/de/events/solutionsconnect/pdfs/SolCon2013IBMDietmar
NollTrendsimBereichStorage14062013.pdf

Chapter 1 IntroduCtIon

http://www-05.ibm.com/de/events/solutionsconnect/pdfs/SolCon2013IBMDietmarNollTrendsimBereichStorage14062013.pdf
http://www-05.ibm.com/de/events/solutionsconnect/pdfs/SolCon2013IBMDietmarNollTrendsimBereichStorage14062013.pdf

38

 Implementation
I focus on some most recent software implementations for large scale

systems with distributed storage components in this section.

 Hadoop

Apache Hadoop,27 an open-source implementation of MapReduce

originating at Google, provides a software framework used for distributed

storage and processing of big data sets. It consists of computer clusters

built from commodity hardware. All the modules in Hadoop are designed

under a fundamental assumption that hardware failures commonly occur

and should be automatically handled by the framework.

The base Apache Hadoop framework is composed of the following four

major modules:

• Hadoop Common has the fundamental libraries and

utilities required by other Hadoop modules.

• Hadoop Distributed File System (HDFS) is a distributed

file-system written in Java that stores data on

commodity machines, providing very high aggregate

bandwidth across the cluster.

• Hadoop YARN is a resource-management platform

responsible for managing computing resources in

clusters and using them for scheduling of users’

applications.

• Hadoop MapReduce processes large scale data, as

an implementation of the MapReduce programming

model.

27 http://Hadoop.apache.org/

Chapter 1 IntroduCtIon

http://hadoop.apache.org/

39

HDFS stores large files (typically in the range of gigabytes to

terabytes) across multiple machines. It achieves reliability by a replication

mechanism, such as replicating the data across multiple hosts, and

hence theoretically does not require RAID storage on hosts (some RAID

configurations are still useful, like RAID 0). Data is stored on three nodes

with the default replication value, 3. Data nodes can communicate with

each other to rebalance data, to move copies around, and to keep the

replication of data high. HDFS is not fully POSIX-compliant because the

requirements for a POSIX file-system differ from the target goals for a

Hadoop application. The trade-off of not-full compliance is increased

performance for data throughput and support for non-POSIX operations

such as Append. Although HDFS is the default distributed file system,

it can be replaced by other file systems, such as FTP file systems, Ceph,

Amazon S3, Windows Azure storage blobs (WASB), and others.

Nowadays, Hadoop is a large ecosystem with tens of different

components. Figure 1-1028 shows a simplified Hadoop ecosystem with an

active expansion. In 2014, an in-memory data processing engine named

Spark29 was released to speed the MapReduce processing. These two

projects share many common components.

28 http://hadoopecosystemtable.github.io
29 https://spark.apache.org/

Chapter 1 IntroduCtIon

http://hadoopecosystemtable.github.io/
https://spark.apache.org

40

 OpenStack

OpenStack30 is an open-source and free software platform for cloud

computing, mostly deployed as an infrastructure-as-a-service (IaaS). It

consists of interrelated components that control diverse, multi-vendor

hardware pools of computing, storage, and networking resources

throughout a data center. Therefore, the components can be basically

divided into the categories of compute, storage, networking, and interface.

For example, Nova is the cloud computing fabric controller as the main

component of an IaaS system. Neutron is the component for managing

networks and IP addresses. Figure 1-11 shows the overall architecture [32].
Coordinate
(ZooKeeper)

W
orkflow

 & Scheduling
(Oozie)

Cluster m
onitoring

(Apache Am
ari, Ganglla)

NoSQL Database
(Hbase)

In m
em

ory
(Spark)

Data Integration
(Sqoop, REST, ODBC)

Scripting
(Pig)

Machine Learning
(Mahout, Spark MLlib)

Query
(HUE Hive, Apache Drill)

Distributed processing
(MapReduce)

Distributed resource management
(YARN) + Common

Distributed storage
(HDFS)

Figure 1-10. Hadoop ecosystem

30 www.openstack.org/

Chapter 1 IntroduCtIon

41

OpenStack contains the block storage component called Cinder and

an Object storage component called Swift. The Cinder system manages

the creation, attaching, and detaching of the block devices to servers.

Block storage volumes are fully integrated into Nova and the Horizon

Dashboard, allowing cloud users to manage their own storage needs. Block

storage is appropriate for performance-sensitive scenarios in both local

server storage and storage platforms (e.g., Ceph, GlusterFS, GPFS, etc.).

Swift is a scalable redundant storage system.

 Ceph

Ceph,31 an open-sourced and free distributed storage platform, provides a

unified interfaces for object-, block-, and file-level storage [33, 34]. Ceph was

initially created by Sage Weil for his doctoral dissertation. In 2012, Inktank

Storage was founded by Weil for professional services and to support for Ceph.

Figure 1-11. Openstack architecture [32]

31 https://ceph.com

Chapter 1 IntroduCtIon

https://ceph.com

42

Ceph applies replicates and erasure code to make it fault-tolerant,

using commodity hardware and requiring no specific hardware support.

As a consequence, the system is both self-healing and self-managing,

aiming to minimize administration time and other costs. A general

architecture is illustrated in Figure 1-12. The reliable autonomic

distributed object store (RADOS) provides the foundation for unified

storage. The software libraries of Ceph’s distributed object storage provide

client applications with direct access RADOS system. Ceph’s RADOS Block

Device (RBD) automatically stripes and replicates the data across the

cluster and integrates with kernel-based virtual machines (KVMs). The

Ceph file system (CephFS) runs on top of LIBRADOS/RADOS that provides

object storage and block device interfaces.

Figure 1-12. Ceph architecture

Chapter 1 IntroduCtIon

43

 System Performance Evaluation
Many metrics are used to indicate the specification of storage devices

or systems, in both static and dynamic sense. Table 1-5 gives a list of

commonly used ones. When discussing performance, we usually refer to

the dynamic specifications. In particular, IO performance is among the

most important metrics.

Table 1-5. Common Metrics for Storage Devices

Metrics Unit

Capacity GB

areal density (tpI, Spt) GB/inch

Volumetric density tB/liter

Write/read endurance times/years

data retention time Years

Speed (latency of Io access time; rand.) Million seconds

Speed (bandwidth of Io access; seq.) MB/second

power consumption Watts

reliability (MtBF) hours

power on/off transit time Seconds

Shock and vibration G-force

temperature resistance °C

radiation resistance rad

Chapter 1 IntroduCtIon

44

Performance evaluation is an essential element of experimental

computer science. It can be used to tune system parameters, to assess

capacity requirements when assembling systems for production use, to

compare the values of some different designs, and then provide guidance

for the new development. As pointed out in [35], the three main factors

that affect the performance of a computer system are

• The system’s design

• The system’s implementation

• The system’s workload

These three factors influence and interact with each other. It is common

for a system to perform well for one workload, but not for another. For a given

storage system, its hardware design is usually fixed. However, it may provide

some tuning parameters. If the parameters are also fixed in one scenario, the

performance is usually “predictable” for a particular application. By running

enough experiments, it is possible to obtain some patterns for the parameters

related to the application’s general workload properties. Then you may

further tune the parameters. Sometimes, due to design limitations, the range

of tuning parameters may be too narrow. Then you must redesign the system.

The most important three basic performance indexes are input/output

operations per second (IOPS), throughput (TP), and response time (RT) [12].

• Throughput, also named bandwidth, is related to the

data transfer rate and is the amount of data transferred

to or from the storage devices within a time unit.

Throughput is often measured in KB/sec, MB/sec,

or GB/sec. For disk drives, it usually refers to the

sequential access performance.

• IOPS means the IO operation transfer rate of the device

or the number of transactions that can occur within

a time unit. For disk drives, it usually refers to the

random access performance.

Chapter 1 IntroduCtIon

45

• Response time, also named latency, is the time

cost between a host command sent to the storage

device and returned to the host, so it’s the time cost

of an IO request for the round trip. It is measured in

milliseconds (ms) or microseconds (μs) and is often

cited as an average (AVE) or maximum (MAX) response

time. In a HDD specification, the average seek time and

switch time are usually provided.

And the most important three access patterns are

• Block size, which is the data transfer length

• Read/write ratio, which is the mix of read and write

operations

• Random/sequential ratio, which is the random or

sequential nature of the data address requests

In addition, when considering consumer/client or enterprise devices/

systems, the focus may be different. For example, in some client use cases,

IOPS and bandwidth may be more critical than response time for HDD/

SSD devices, as long as the response times are not excessively slow, since the

typical client users would not usually notice a single IO taking a long time

(unless the OS or software application is waiting for a single specific response).

While client SSD use cases may mostly be interested in average response

times, the enterprise use cases are often more concerned with maximum

response times and the frequency and distribution of those times [12].

 Performance vs. Workload
Workload can be categorized in several ways. From the domain point of

view, the workload can be imposed to the CPU, memory, bus, network,

etc. The level of details required in workload characterization relies on the

goal of the evaluation. It can be in the computer component level or in the

Chapter 1 IntroduCtIon

46

system application level. In the sense of applications, workload may be

extracted from database, email, web service, desktop, etc.

An important difference among workload types is their rate [35], which

makes the workload either static or dynamic. A static workload is one with

a certain amount of work; when it is done, the job is completed. Usually,

the job is several combinations of small sets of given applications. On the

other hand, in a dynamic workload, work continues to arrive all the time; it

is never done. It requires an identification of all possible jobs.

From practical point of view, the workload is divided into three

categories: file-level, object-level, and block-level. In this book, I focus on

block-level because most underlying storage devices are actually block

devices, and the techniques applied to block-level analysis can be also

used for file-level and object-level analysis.

 Trace Collection and Analysis
Workload trace can be collected using both software and hardware tools,

actively or passively. The inherited logging mechanism of some systems,

which usually runs as background activates, is one of passive trace sources.

Actively, you may require specific hardware (e.g., a data collection card,

bus analyzer, etc.) and software (e.g., dtrace, iperf, blktrace, etc.) to collect

traces purposely. These traces may be at different precision and detail

levels. Sometimes you may also require the aid of benchmark tools when

the environments of real applications are not available or inconvenient to

obtain. Chapter 5 will discuss this in detail.

 System Optimization
One of the main purposes of trace analysis is to identify the system

performance bottleneck in various levels (e.g., component vs. system, user

vs. kernel vs. hardware, etc.), and then optimize the overall system [36].

Chapter 1 IntroduCtIon

47

Take a simple IO stack as an example (Figure 1-13).32 Access patterns

generated by software applications must traverse the IO stack in order to get

from the user space to the storage devices and back again. This movement

indicates that the IOs will be impacted by the file system and various drivers

as they pass them up or down the IO stack, such as coalescing small IO data

transfers into a fewer larger IO data transfers, splitting large sequential IO

data transfers into multiple concurrent random IO data transfers, and using

the faster file system cache while deferring IO commits to the SSD.

Figure 1-13. IO stack

32 A detailed Linux storage stack diagram can be found at www.thomas-krenn.com/
en/wiki/Linux Storage Stack Diagram. The latest version, 4.10, was created at
March 2017. [12]

In this book, I will provide some practical examples, ranging from

single devices to complex systems, to show how the workload analysis can

be applied to system optimization and design.

Chapter 1 IntroduCtIon

http://www.thomas-krenn.com/en/wiki/Linux
http://www.thomas-krenn.com/en/wiki/Linux

49© Jun Xu 2018
J. Xu, Block Trace Analysis and Storage System Optimization,
https://doi.org/10.1007/978-1-4842-3928-5_2

CHAPTER 2

Trace Characteristics
Trace is usually classified as three levels: block level, file level, and object

level. They share many common metrics, although each has its own

unique properties. In this chapter, I will discuss block-level trace metrics in

detail since the block-level trace provides more fundamental information

on storage systems than other two levels. For simplicity of representation,

I divide the metrics into two categories: the basic ones and the advanced

ones. The meanings and performance impacts of these metrics are

explained in detail.

 Workload Properties
Workload can be collected and viewed in different abstract levels. Usually,

there are three different levels, as show in Figure 2-1 [37]. The functional

view indicates the users’ behaviors, which aim to facilitate comparison

between, say, a relational database system and a MapReduce system that

serves the equivalent functional aims of some enterprise data warehouse

management workload. It enables a large range of equivalent systems

to be compared. It lacks tracing capabilities for large-scale, data-centric

systems. The system view captures workload behavior at the highest level of

abstraction that we can trace in large-scale data-centric systems currently.

For example, this translates to the jobs steam and job characteristics in

MapReduce. For enterprise network storage, this is the data accesses stream

at the application, session, file, and directory levels. The physical view

50

describes a workload in terms of hardware component behaviors, such as

the CPU, memory, disk, and network activities during workload execution.

It depends on hardware, software, or even configuration changes.

Figure 2-1. Typical workload abstraction level

Table 2-1. Examples of Basic Metrics

Basic Metrics

Read to write ratio Request size

distribution

LBA range/ randomness Inter-arrival

time

The ratio between

read and write

operations in

command number

or total size

Request size,

usually further

count for total,

read, and write

In a virtual volume, LBA

can be used to represent

the randomness in space.

Otherwise, specify the

device number.

Request

arrival rate,

idle time,

busy time

With system-level information, queue depth, average response time, bus time, etc.

can be also included.

The basic workload metrics are generally explicit and easily observed

directly or calculated with very simple formulations. Some examples are

listed in Table 2-1. However, the advanced ones are implicit and formulated

in relatively complex forms/rules. See Table 2-2 for few advanced metrics.

More details will be described in the next two sections of this chapter.

ChApTeR 2 TRACe ChARACTeRIsTICs

51

Note that the meaning of “block” in HDD and SSD is different.

However, the definition of one sector as one block in HDD is used here. In

addition, there are some different formats for sectors, such as 512, 512e, 4k,

4kn, etc. Without particular comments, assume that one sector is equal to

512 bytes for representation simplicity.

A block-level trace usually contains some common fields, like arrival

time, completion time, LBA (first or last LBA), request size, operational

mode (read or write, sync or async), etc. Some other fields, like bus time

and merge time, depend on the trace collection tools. Table 2-3 gives an

example of trace. For the ith request, ri, denotes its arrival and completion

action time as Di and Ci. Usually, we arrange all N requests in sequence of

Di, i.e. (r1,. . . , ri, . . . ,rn).

Table 2-2. Examples of Advanced Metrics

Advanced Metrics

spatial locality Temporal locality Read/write

dependency

priority-related

metrics

The small distance

of two requests

means that soon

after referencing ri
you find a reference

to the nearby

address rj

The same address

is referenced again

after d steps.

A concept closely

related to

temporal locality

is popularity.

Three categories:

true (read on

write), output

(write on write),

and anti (write on

read)

Request priority

determines the

execution sequence;

it also includes

the properties of

synchronized vs.

asynchronous.

In most cases, cache-related, cluster-related, and/or networked-related metrics

should be included.

ChApTeR 2 TRACe ChARACTeRIsTICs

52

Table 2-3. An Example of Block Trace

Order Arrival time (s) Completion time (s) First LBA Size Mode

1 0.026216 0.027506 902553856 1024 0

2 0.026790 0.027719 197306368 8 0

3 0.036680 0.039502 902554880 1024 0

4 0.039618 0.044770 197306368 16 1

5 0.039654 15.079936 197306368 16 1

6 0.044542 0.046394 902555904 1024 0

7 0.044865 0.046513 197306376 8 0

8 0.054996 0.055265 2657576 8 0

9 0.059638 0.059905 197306376 16 0

10 0.081950 0.083162 902556928 1024 0

11 0.089740 0.089960 197306384 8 1

12 0.092741 0.093955 902558976 1024 0

13 0.093261 0.095268 902557952 1024 0

14 0.112958 0.114461 902560000 1024 0

15 0.113097 0.115717 902561024 1024 0

16 0.114820 0.115926 197306384 8 0

17 0.135434 0.136744 902562048 1024 0

18 0.136436 0.136963 197306384 16 1

19 0.150173 0.151625 902563072 1024 0

20 0.150260 0.152809 902564096 1024 0

ChApTeR 2 TRACe ChARACTeRIsTICs

53

 Basic Metrics
Basic metrics are usually simple and easy for observation. But this does not

mean they contain less information than advanced metrics. In some cases,

basic metrics are good enough to interpret the workload properties.

 LBA Distribution
From the curve of LBA distribution vs. time, you can easily observe the

randomness/sequence of IO access. Figure 2-2 gives two examples of the

write-only requests’ LBA distribution. The left plot shows a sequential

access from LBA 6.7 ∗ 108 to 6.8 ∗ 108. The right plot mixes with sequential

and random write accesses. Figure 2-3 shows that the IO pattern is

combined with random read accesses and mixed write accesses. It’s

clear that write access is more sequential than read access, as the write

access contains several sequential streams. Note that there may exist a

small gap between two continuous requests sometimes, although it may

look sequential visually from the plot. However, these near sequential IO

patterns can be accessed sequentially in most cases.

Figure 2-2. LBA distribution from a Ceph node

ChApTeR 2 TRACe ChARACTeRIsTICs

54

 Size Distribution

In general, the drive (whatever HDD or SSD) is in favor of sequential

access, so the sequential access has much higher throughput than the

random access, in particular for HDD. And the request size also matters

especially when the disk queue is short, which will be clearly illustrated in

Chapter 4 in Figures 4-2 and 4-3.

Figure 2-4 plots the request frequency and CDF (cumulative density

function) vs. request size. For the distribution of write requests, you can

see that the percentage of the requests with size 1024 blocks are almost

50% in this case, which usually means the IO pattern is dominated by

large size requests. Note that due to OS/FS and disk drive limitation, the

maximum request size is usually 1024 blocks, so even if the user requests a

1MB size file, it will be divided into two IO requests internally (assume 512

bytes per block).

Figure 2-3. LBA distribution from a Hadoop node

ChApTeR 2 TRACe ChARACTeRIsTICs

55

Figure 2-4. Size distribution from a Hadoop node

If you further need to know the size distribution with respect to (wrt)

LBA range, you may have plots like Figure 2-5, from which you can learn

more about the hot range with size information. Since you know that the

transfer speed of different location in a HDD (e.g., ID vs. MD vs. OD) is

different, the LBA can roughly tell the relative speed with the request size

information.

ChApTeR 2 TRACe ChARACTeRIsTICs

56

 Read/Write Distribution
Read and write accesses may have different performance in drives. For

HDD, the difference may be slight. However, for SSD, the gap could be

large for the consumer class. In addition, read and write access may

have dependencies on each other. For example, when a new write is just

completed, the data may be still in the cache. An immediate read may

access the data from the cache directly, instead of a media operation. Thus

the visualization of distribution time can provide an intuitive view on the

dependency. You can plot the data in a single figure or in two separate

figures, as in Figure 2-3.

Figure 2-5. Combined LBA and size distribution

ChApTeR 2 TRACe ChARACTeRIsTICs

57

Table 2-4. Required Fields for Metrics Calculation

Arrival
time

Completion
time

LBA Request
size

Mode
operation

LBA distribution Y (or) Y (or) Y

size distribution Y

IOps Y Y (or)

Throughput Y Y (or) Y

Queue length/depth Y (or) Y (or)

Busy/idle time Y Y

Read/write distribution Y (or) Y (or) Y

Inter- arrival time

distribution

Y

Inter- completion time

distribution

Y

 Inter-Arrival and Inter-Completion Time
Inter-arrival time is defined as the time interval between two sequentially

arrived requests: δti = Di − Di−1. Similarity, inter-completion time is defined

as δt̄ i = C̄ i − C̄ i−1, where C̄ i is reordered Ci based on a completion time

sequence. δti is a direct indictor of the workload burstiness [38], together

with the supposed-to-be average completion time of requests. When the

average δti is much smaller than δt̄ i, it usually means the system is under a

stressed workload, which may be beyond the storage device’s capability.

In a sense, these two indictors are closely related to IOPS.

ChApTeR 2 TRACe ChARACTeRIsTICs

58

 IOPS and Throughput
IOPS is usually defined as the IO number ∆n per unit time ∆t seconds,

such as IOPS
n

t
=
D
D

. The unit time is preset by users, at perhpas 1 second.

Similarly, throughput is the request size ∆S per unit time, so TP
s

t
=
D
D

. Note

that they are in a sense average values within a given unit time/time-

window. For different ∆t, IOPS and throughput may have different values.

Usually, a larger ∆t leads to a smoother curve. Figure 2-6 shows an example

with data collected from a HDD node of a Ceph cluster. You can see that the

IOPS ranges from 60 to 160 in the figure of ∆t=1 second, while it is 80–120

when ∆t=6 seconds. In particular, when the workload contains many bursts,

the maximum and minimum IOPS values for different ∆t may vary largely.

Figure 2-6. Average IOPS and throughput with different time window

The curves of the two metrics vs. time can be used to observe the

workload burst visually. However, choose ∆t carefully. A too-large ∆t may

ChApTeR 2 TRACe ChARACTeRIsTICs

59

smooth the curve but remove the IO burst. A practical choice is related to

the average inter-arrival time, so ∆t may be a few times the average inter-

arrival time, but not too much.

Alternatively, you can fix ∆n. For example, you may set ∆n=20, and let

∆t be various.

A complex setting is that you may let both ∆t and ∆n various. For

example, let ∆n≤ 10 and ∆t = 1 second as the constraint. If within ∆t = 1

second, there are ∆n within the range, do the average. Otherwise, if ∆n > 10,

choose a time window that ∆n = 10, and then do the average.

Another trivial issue when drawing the curve is the time, so the average

value happens at the beginning, middle, or end of ∆t. For example, if you

choose the end of ∆t, you may have the following formulations:

• IO(tj) = the total number of IOs based on the range

calculated by Di, so IO(Di), where Di is within an

interval [tj−1 tj]

• R(tj) = the summation of request size of IO(Di)

• Average IOPS at tj = IO(tj−1)/∆t

• Average request size at tj = R(tj−1)/IO(tj−1)

• Average throughput at tj = R(tj−1)/∆t

You can also apply moving average techniques here; there is an overlap

between two continuous “average” metrics.

 Response Time
Response time is generally combined by the waiting (or queuing) time Tw

and access (or service) time Ta, i.e., Tres = Ta + Tw . The service time is the

time cost in service, such as disk access time. The queuing time is the cost

when the request waits in the queue before it is sent for actual execution.

When the trace is collected from the external bus (IO driver), such as

SATA/SAS, the response time of ri is calculated by Ci − Di.

ChApTeR 2 TRACe ChARACTeRIsTICs

60

 Queue Length/Depth
There are at least two queues in HDDs. One is along with the IO driver,

which is influenced by the OS and FS, so the OS and/or FS may change the

order of IOs to send to the disk drive based on some schedulers. The length

is usually up to a trace collected externally only reflects the length in the

IO driver. You can estimate the queue depth based on either arrival time or

complete time of requests. They may have slightly differences. Let’s denote

one queue’s D and C as Di and Ci in sequence.

• IO driver queue depth just before command arrived (Qd1)

• The queue depth just before Di (instant queue

depth Q(Di)) = the number of requests whose

C time >= Di and D time < Di

• IO driver queue depth just after command

completed (Qd2)

• The queue depth just after Ci (instant queue depth

Q(Ci)) = the number of requests whose C time >= Ci

and D time < Ci

• Average queue depth

• Estimated average queue depth during non-idle

period: ∑i((Qd1+Qd2)/2 ∗ (Di − Ci))/∑i(Di − Ci)

• Effective average queue depth in time interval:

Sampling at ∆t seconds

Figure 2-7 gives an illustration of Qd1 and Qd2, where blue signs with

arrows show the IO requests in time order. It also illustrates a few Qd1 and

Qd2 for these requests. Table 2-5 further gives an example to show how the

queue depth is calculated based on Qd1. Figure 2-8 shows the estimated

ChApTeR 2 TRACe ChARACTeRIsTICs

61

queue depth from a Hadoop node. It looks like the average queue depth is

quite high, which means a high workload. However, zoom into the plot to

check the intervals in-between the queues. In this example, the scale of the

x-axis is 100 instead of 12000 to show more information.

Figure 2-7. Illustration of queue length

Table 2-5. Estimated queue depth and idle time

Arrival time Completion time Queue depth Idle time

0.00007 0.00036 0 -

0.01130 0.01157 0 1.09e–02

0.01134 0.01288 1 0

0.02622 0.02751 0 1.33e–02

0.02679 0.02772 1 0

0.03668 0.03950 0 8.96e–03

0.03962 0.04477 0 1.17e–04

(continued)

ChApTeR 2 TRACe ChARACTeRIsTICs

62

Arrival time Completion time Queue depth Idle time

0.03965 15.07994 1 0

0.04454 0.04639 2 0

0.04486 0.04651 2 0

0.05500 0.05526 1 0

Table 2-5. (continued)

Figure 2-8. Queue depth using arrival and completed time from a
Hadoop node

The other is the HDD internal queue for actual execution with

mechanical parts. Some scheduling algorithms, such as SCAN and RPO

(rotational positioning optimization), are applied here to attempt to

minimize a given operation time. Vender special commands (VSCs) can be

used to collect the internal queue information. RPO tries to minimize the

summation of seek time and rotational latency of requests in the queue.

Theoretically, a longer queue means the scheduler has more events to

select, and the overall operational time can be reduced further (for a pure

random access). However, in practice, when the queue length reaches a

certain level, the performance does not increase, which is illustrated in

Figures 4-2 and 4-3. Without VSC, we may only use the external IO queue

ChApTeR 2 TRACe ChARACTeRIsTICs

63

status to approximate the internal queue status. This is reasonable in a

sense because a HDD can only handle one request per time.1 However, for

SSD, the situation is much more complex due to parallel processing.

 Busy/Idle Time
When a disk is under an IO operation (including both foreground and

background activities), the disk is busy; otherwise, it is in idle mode.

These two metrics are useful when you intend to design some background

operations for disks, such as defragmentation, address remapping,

sector scanning, etc. As some of these operations require over hundred

milliseconds to complete, the estimated busy or idle time will be estimated

to show whether the performance will be affected by background

operations.

However, without VSC to extract the drive internal trace log, you

may not get the busy/idle time directly. Thus we may only approximate

the time from the external trace when the internal trace is unavailable.

The basic idea is to compare the completion time of requests in the

queue with the new requests’ arrival time. If the completion time is

later than the new arrival time, it means the drive is still busy at this

arrival time. Otherwise, it is counted as idle time (although there may

be some background activities inside disk drives; but you can assume

that the user/external requests have higher priority than background

activities). In other words, the calculation of idle time is heavily related

to the queue depth, so only when queue depth is zerois there a chance

to exist an idle interval.

Let’s consider the trace in Table 2-3. The completion time 0.027506s

of the first request is later than the arrival time of 0.026790s of the second

request, so the disk is busy at 0.026790s. However, the completion time

1 This may be not true for some modern disks with new architectures, such as
MBC, SMR, and Egress, where write requests may be accessed in batch.

ChApTeR 2 TRACe ChARACTeRIsTICs

64

0.027719s of the second request is earlier than the arrival time 0.036680s

of the third request, you may estimate that the drive have the idle time of

0.036680–0.027719=0.009s. Table 2-5 shows the result.

Figure 2-9 has the same data set as Figure 2-8. Although the queue

depth is high in Figure 2-8, you can still observe many idle intervals for

the disk.

Figure 2-9. Estimated idle time from a Hadoop node

 Advanced Metrics
The workload from the real world is usually complex. Even for those

claimed as sequential workloads, such as a Hadoop HDFS write or Ceph

Bluestore write, the actual IO pattern in the block level is mixed with

sequence and randomness, as well as read and write. The advanced

metrics attempt to provide insights into these traces.

ChApTeR 2 TRACe ChARACTeRIsTICs

65

 Sequence vs. Randomness
The sequence and randomness of a workload are somehow subjective in

some engineers’ view, as it is not easy to clearly state whether a workload

is more sequential or random when it is mixed. In addition, the “feeling”

of sequence is also different in different cases. For example, some requests

with very small gaps among them may be also considered as (near)

sequential.

In my view, it may be quantified under different scenarios, such as

the scheduler algorithm, queue length, etc. That means this property is

objective when all the conditions are fixed. For example, consider a burst

workload of write requests within a small LBA range. Some of the requests

are actually continuous in LBA, although they do not arrive in order. If a

FIFO scheduling policy is applied, this workload is random, as the disk

has to seek to different locations for each request. When a simple SCAN or

RPO scheduling algorithm is applied, the requests will be reordered and

some will become sequential, if there is a long enough queue. Assume that

there are N requests. So there are up to N−1 seeks (in a strict definition, a

request is considered as a random one, if there is a seek in term of LBA).

Let the random access number as Nr and sequential access as Ns, so you

can obtain a ratio of randomness vs. sequence for a given workload under

a fixed scenario.

 Sequential and Near Sequential Streams

This metric directly indicates the sequence degree of the workload. In

general, a command is sequential when it comes after a similar command

whose requested block LBAs just prior to this new command. Hence,

sequential reads follow read commands and sequential writes follow

write commands; but there are some subtleties to this definition. (Strictly)

sequential stream means that the current and previous commands are of

the same type (r/w) and the new command’s starting LBA immediately

ChApTeR 2 TRACe ChARACTeRIsTICs

66

follows the previous one. Near sequential stream means that there must

be an earlier command of the same type (read or write) whose LBA range

comes before and near the start of this new command. For a sequential

stream, multiple streams may interleave with each other. There are user

settings to affect these subtleties, allowing us to describe the variations of

sequential command situations.

Queued sequence stream: In a time-order request stream, some are

adjacent to each other (possible within a time window), such that last

LBA(ri)+1 = first_LBA (rj), where i < j, Dj − Di < δt and δt > 0 is an aging

time.

In this way, j ≥ i + 1 is possible because of interleaved sequence streams.

However in practice, a command queue with queue length N is required

to identify the sequence, instead of only checking the exactly adjacent

requests wherein. Once a new request enters the queue, it searches the

queue to check the sequence match. If a match is found, it’s merged into

the queue; otherwise, it adds a new entry to the queue. If the queue is full,

it removes the entry using a replacement rule (e.g., FIFO or LRU).

Generally, the larger N, the larger number of sequence requests

detected (M2) in each stream, and the smaller number of sequence

streams (M1). The key is to find a large enough N such that the number

of sequence streams detected is stable.

Queued sequence stream with constraint: In practice, a large block

request S (e.g., S ≥ 1024) is also counted as a sequential request. Hence

an alternative method in considering the stream i is to determine the

total size of a stream Si together with M2, so if Si ≥ S and M2 ≥ M , then i is

considered a sequence stream, where S and M are thresholds.

Queued near-sequence stream: Finally, it is possible that a small gap

between LBA requests exists such that in a time-ordered request stream,

some requests are near to each other within a time window. Once a new

request is considered near-sequential to the previous one, the stream’s last

LBA is updated as the new request’s last LBA (hole is filled for simplicity),

ChApTeR 2 TRACe ChARACTeRIsTICs

67

so last LBA(ri) +1≤ first LBA(rj) and last LBA(ri) +δd ≥ first LBA(rj),

where i < j and 0<Dj –Di < δt. δd > 0 is a small integer in blocks, such as 64.

A command queue is required to detect the interleaved streams and the size

constraints are also applicable to near-sequence streams. See Figure 2-10.

Figure 2-10. An example of near sequence stream

Let’s look at an example in Table 2-6. Assume that these requests arrive

in a t-seconds time window. It is obvious that all requests are random by

comparing the last LBA of the pervious request and first LBA of the current

request in terms of FIFO. In this case, there are seven times of seeks and

Nr =8 and Ns =0. In this sense, the workload is random because there is

no sequential stream. However, if you reorder the requests with the aid of

queue in term of LBA, so the request order < 263158(7)4 >, you have Nr =3

and Ns =4, in terms of (strict) sequential streams. Note that the request

number 7 is absorbed by the request number 8 during the reordering. So

M2=2 (< 2631 > and < 58(7) >) for (strictly) sequential stream. With two

constraints, S = 1024 and M2 = 2, you have (< 58(7) > and < 4 >). The stream

of < 2631 > is removed due to small size.

When considering a near sequential stream with ∆d=64 and 512,

you have M2=3 (< 2631 > and < 58(7) > and < 4 >) and 1 (< 263158(7)4 >),

respectively, under strictly sequential stream.

ChApTeR 2 TRACe ChARACTeRIsTICs

68

From this example, here are the following variables:

• Ns1: The number of requests with sequential access

• Ns2: The number of requests with near sequential access

and LBA gap

• Nr : The number of the remaining requests

These variables have strong connection with the logical seek defined in

the next section.

The practical gap size ∆d in a real application is usually determined

by the system performance tolerance. Usually, it is up to few track sizes.

For example, if an acceptable tolerance is 5ms, then ∆d can be up to 1536

blocks based on disk model of 10K RPM drive with track/head switch time

at 1ms and average track size at 1.5MB. For random access, the average

rotational latency is 3ms. Assume a 50% chance of the new request in the

same track and 50% chance in next track (the actual probability is coupled

with ∆d). Then you have 5-(3+1)*50%=3ms for further rotation, which is

about half a track size, so 1536 blocks.2

2 This calculation is for a conventional HDD. For SMR or MBC drives, it may be
different.

Table 2-6. An Example of LBA Sequence and Randomness

Order First LBA Last LBA Order First LBA Last LBA

1 128 135 5 256 511

2 0 7 6 8 63

3 64 127 7 640 647

4 1536 2047 8 512 1279

ChApTeR 2 TRACe ChARACTeRIsTICs

69

Sequential ratio: Due to the different views on the sequence, the

definition of sequential ratio is also varied. Below, few examples are listed.

• DEF1: The summation of sequential commands

detected with S and M2 thresholds / total commands

• DEF2: (The summation of sequential commands

detected with S and M2 thresholds - total sequential

streams) / total commands

• DEF3: The summation of the request size of sequential

commands detected with S and M2 thresholds / total

request size of all commands

• DEF4: (The summation of the request size of sequential

commands detected with S and M2 thresholds -

the summation of the size of the first command in

sequential streams) / total request size of all commands

If you remove size constraint S, you get another four definitions.

 Spatial Locality and Logical Seek Distance
Locality, as a special case of correlation of a variable with itself over short

to medium ranges, can be visualized as a 2D probability surface p(s, d),

showing the probability that the first time an address s bytes away will be

referenced in exactly d cycles. There are generally two types of locality:

spatial locality and temporal locality. For spatial locality, if the distance

s = |xi − xj | is small, it implies that not long after referencing address xi you

will discover a reference to the adjacent address xj . Temporal locality will

be discussed in the next subsection.

ChApTeR 2 TRACe ChARACTeRIsTICs

70

Note that only LBAs are provided in most traces, not the physical

block address (PBA). Because different HDDs may not have exactly same

data layouts (such as serpentine), identical LBA layouts between different

HDDs can result in different PBAs. However, the difference is usually very

small if their data layout is similar. Therefore, analyzing logical distance is

also meaningful.

Below I discuss two distances to indicate spatial and temporal

localities, respectively [35].

 Logical Seek Distance

This metric is an indicator for spatial locality. It defines the logical block/

LBA distance between “consecutively” device-received IOs.

• Non-queued next: The simplest case, which calculate

the distance between two exactly consecutive IOs.

• Non-queued closest: The absolute closest distance =

min (||last_LBA(rj−1)– first_LBA(rj) ||, ||last_LBA(rj) –

first_LBA(rj+1)||), where rj is the current IO. The closest

distance is the signed value of the absolute close

distance, where || · || indicates the absolute value.

• Queued next: Simulates a queue with certain rules such

that the absolute closest distance = min (||last_LBA(ri)–

first_LBA(rj)||), i=1,. . . ,ni ≤ N , where ni ≤ N is the

current queue length, and ri is the IO in the queue.

• Queued closest: Simulates a queue such that the

absolute closest distance = min(||last_LBA(ri) – first_

LBA(rj) ||i=1,...,ni, ||last_LBA(rj) – first_LBA(rj+1)||).

In general, ||Queued closest ||≤ ||Non-queued closest ||≤||Non-queued

next||. For the distance, you can further define three values: mean, median,

mode. Mode indicates the most frequent number such that the larger the

counter for mode = 0, the better the sequence.

ChApTeR 2 TRACe ChARACTeRIsTICs

71

 Temporal Locality and Logical Stack Distance
Temporal locality means that the same address is referenced again after d

steps. Popularity is a terminus that is closely related to temporal locality.

 Logical Stack Distance

If an LBA in ri is referred to again after some time by another request rj ,

the command distance between the two requests is defined as (simplified)

the logical stack distance, an important temporal locality index. Let’s take

write requests as an example. If the distance is small enough (e.g., smaller

than the HDD’s DRAM cache queue size), it might be a hit in the DRAM

cache; otherwise, a disk update is required for the write. If the frequency

of the write for a certain range of distance is high, it means the update

frequency is high.

Unlike the case in [35], we are more interested in queued stack

distance with consideration of cache. Therefore, let’s also look into read/

write dependency. The details will be discussed in later in this chapter.

 Burstiness and Self-Similarity

I/O requests almost never occur singly but tend to arrive in groups

because, if there were long intervals without arrival, there were intervals

that had far more arrivals than their even share. They are generally

related to queue depth and request arrival rate and inter-arrival time.

This phenomenon is often called long-range dependence and is

typically explained as (stochastic) self-similarity because that is the

only explanation that avoids non-stationarity. The phenomenon of self-

similarity describes how a property of an object is preserved while scaling

in space and/or in time. In other words, in addition to the long-range

dependence property, the scale invariance property holds at any different

time scale, like in a fractal shape.

ChApTeR 2 TRACe ChARACTeRIsTICs

72

 Statistical Properties Visualization
and Evaluation
Besides the statistical properties mentioned in previous sections, there

are several other properties of both the marginal and the joint probability

distributions of the interested attributes that may strong influence the

quantitative analysis of the system behavior [35]:

• Normality: A probability distribution can be accurately

approximated by a normal distribution. Although

perfect normal distribution is rare in reality, it is often

used a reference model.

• Nonstationary: In a stationary process, the outputs

(job size, inter-arrival time) vary, but the stochastic

process that produces them does not.

• Long-tailness and power-law: Some regions far from

the mean or the median of the probability distribution,

like the extreme values in the tails of the probability

distribution, are assigned relatively high probabilities

following a sub-exponential or polynomial law,

contrary to what happens to the family of normal

distributions, where the tails fall exponentially.

• Heavy-tailness: The long tails of the distribution fall

polynomially and the self-similarity property holds.

• Cyclic behavior and seasonal variations: They are an

indication of a non-stationary workload and must be

treated separately.

• Autocorrelation, cross-correlation, and short-range
dependence: Autocorrelation is also known as serial

correlation or short-term/range memory, where the

ChApTeR 2 TRACe ChARACTeRIsTICs

73

autocorrelation at short time scales is significant and

long-range dependence is also known as long-term

memory, where the autocorrelation at long time scales

is significant.

These properties can be possibly visualized via graphical plotting. The

empirical cumulative distribution function (EDF) and the complementary

EDF (CEDF) are often used to observe the sample distribution. In

particular, the log-log EDF and log-log CEDF plots are usually applied

to compare the body and the tails of the sample probability distribution,

respectively. Similarly, the Q-Q plot (a plot of the quantiles of the first

data set against the quantiles of the second data set) can be employed

for evaluating possible differences, especially in the tails, between the

empirical probability distribution and another reference probability

distribution, either theoretical or empirical.

The mass-count disparity plot and the Lorenz curve can be used to

look for evidence of the power-law property. The mass-count disparity

plot displays the “mass” probability distribution (given by the probability

that a unit of mass belong to an item smaller than a predefined x) against

the “count” probability distribution (given by the CDF) in order to show

possible disparities between these two probability distributions. The

Lorenz curve is an alternative way to illustrate the relationship between the

“count” distribution and the “mass” distribution; it is generated by pairing

percentiles that correspond to the same value (i.e. a point (pc, pm) in the

curve is such that p F x F F pm m m c c= () = ()()-1 where Fm(·) and Fc(·) are the

cumulative distribution functions of the “mass” and “count” distributions,

respectively, and Fc
- ×()1 is the inverse of Fc(·).

The run-sequence plot and the autocorrelation plot for investigating

for the presence of both short-range and long-range dependence as

long as for periodic patterns and trends. The run-sequence plot displays

observed data in a time sequence; it is constructed by plotting values of the

interested (univariate) attribute according to the temporal order as they

ChApTeR 2 TRACe ChARACTeRIsTICs

74

appear; this plot is particularly useful for finding both shifts in location

and scale, for locating outliers and, in general, for getting insights about

the trend of observed data. The autocorrelation plot (also known as a

correlogram) is a plot of the sample autocorrelation function (ACF),

which is of the sample autocorrelation at increasing time lags; it is used

for checking for randomness in a sequence of observations of the same

attribute. If random, such autocorrelations should be near to 0 for any and

all time-lag separations; conversely, if non-random, then one or more of

the autocorrelations will be significantly different from 0.

Some hypothesis-testing techniques can be used for quantitative

evaluations of these properties, such as F-test, T-test, K-S (Kolmogorov-

Smirnov) test, Mann-Whitney U-test, and H-test. These tests can compare

the differences between two empirical distribution functions/samples.

The Pearsons r and the Spearmans ρ correlation coefficients are utilized

to discover linear and generic correlations, respectively, among the

interested attributes. Both coefficients are within the range of [–1,+1],

where +1 means a strong positive correlation, while –1 means a strong

negative correlation. 0 means no significant correlation. More details will

be described in Chapter 9.

 Read /Write Dependency
Dependencies are generally classified into four categories [39]:

• Read-on-write (ROW), or read after write (RAW), or

true dependencies

• Write-on-write (WOW) or write after write (WAW) or

write update, or output dependencies

• Write-on-read (WOR), or write after read (WAR), or

anti-dependencies

• Read-on-read (ROR) or read cache hit, or input-

dependencies

ChApTeR 2 TRACe ChARACTeRIsTICs

75

Within a certain time window, ROR and ROW are directly related to

the cache replacement algorithm and read hit performance, while WOR

and WOW are related to the cache update policy. The existence of a ROW

between two operations relies on the situation that if the first operation

writes a block that is later read by the other operation and there is no

intervening operation on the block. WOW and WOR are similarly defined.

ROR is a very common property to check read cache efficiency. ROW can

check if the so-called “write once read many (WORM)” is possible, which

is an important value for SMR (the higher the better).

 Write Update (Write on Write)

A high WOW ratio generally means high block update ratio. Therefore,

when replicate blocks exist, it might be better to update one of the

copies and invalidate the remainder rather update all the copies, if the

WOW ratio is quite high within a short time window, for IO performance

consideration. By comparing ROW and WOW, you can conclude the

likelihood of blocks getting updated vs. being read or not. SMR generally

expects less write update, resulting in smaller write amplification. If an

out-of-place policy is applied for write updates, you can expect better

spatial efficiency.

In order to have a better view on WOW, I define three different types of

update ratios below. Their different purposes are shown in Table 2-7.

Table 2-7. Comparison of Write Update Ratios

Frequented Timed/ordered Stacked

Total updated blocks/commands Yes Yes Yes

Timing issue No Yes No

Update frequency Yes No No

Memory stack No No Yes

ChApTeR 2 TRACe ChARACTeRIsTICs

76

Frequented update ratio: During a time period, record the update

frequency of each LBA. Any write hit is counted. If its frequency is larger

than 1, the LBA is rewritten in the observation period. You can therefore

provide a curve of x-axis vs. y-axis, where

• x is the maximum update frequency (≤1 no rewritten;

otherwise rewritten)

• y is the percentage of blocks updated (updated blocks

at a specified-frequency value / total updated blocks

of write commands) or its cumulated distribution

function (CDF).

This process gives a quick, coarse grain analysis of how LBAs are

updated in a workload of conventional PMR drives. However, it may not

reflect the actual ratio for SMR drives. In fact, due to the indirect mapping

and log nature of SMR, it misses the actual write update; for example, a

rewrite with an out-of-place update actually is “new” write to SMR drives.

Timed/ordered update ratio: During a time period, record the

total blocks of updated write request (repeated or not). An update is

an operation to rewrite a block that was previously written during the

observation period. You can provide a curve of x = time or command

IDs vs. y = total size of updated blocks or percentage of blocks updated

(updated blocks at frequency x / total blocks of commands), so the percept

is the percentage of total blocks that were updated. Note that a similar

definition to frequented update ratio and timed/ordered update ratio are

given in [4, 40].

Stacked update ratio: During a time period, record the update

frequency of each write command (partial or full hit). Once a rewrite

happens, it is counted as a new command (update frequency is always ≤1).

You can provide a curve of x = logical stack distance vs. y = percentage of

updated write commands (updated write commands/total commands),

or a curve of x = logical stack distance vs. y = percentage of updated write

ChApTeR 2 TRACe ChARACTeRIsTICs

77

size (updated write size/total commands). It shows the actual update size/

commands and tells if an update in SSD/DRAM cache is necessary. Note

that the stack distance can be also replaced by time interval.

 Read on Write (ROW)

This metric is used to check if “write once read many (WORM)” is possible.

In general, the higher the ROW ratio, the better the WORM property of the

workload.

Frequented ROW ratio: During a time period record the read hit

frequency of each LBA after a write command. You can then plot a curve

of x = maximum hit numbers or frequency (<1 not updated, otherwise

updated) vs. y = percentage of blocks or commands hit (updated blocks at

frequency x / total number of HDD blocks).

Timed ROW ratio: During a time period, record the hit blocks of

each read command since last write. You can provide a curve of x = time

or command ID vs. y = percentage of blocks or commands of read hit

commands (blocks of hit read commands/blocks of total commands).

Stacked ROW ratio: During a time period, record the hit frequency of

each read command (partial or full hit) since last write. You can provide a

curve of x = logical stack distance vs. y = percentage of read hit command

(hit read commands/total read commands) or y = percentage of blocks of

read hit command.

Beyond the material presented here, other qualities, such as self-

similarity (for burst IO) and workload dependence among of nodes

(i.e. how the tasks are distributed among nodes) [35, 39], are interesting

metrics to be studied further. In the spirit of brevity, I include a targeted

presentation of workload metrics, omitting these analyses.

ChApTeR 2 TRACe ChARACTeRIsTICs

78

 Priority-Related Metrics
Requests have priority during execution. Usually, the foreground activities

have higher priority than background activities. In some cases, such

as synchronization in RAID5/6 and EC operations, these marked as

synchronized requests may have higher priority due to time-out policies.

Other metrics may be related to cluster, multi-threads, network and

so on [41]. For example, the network factors (I/O bandwidth distribution,

channel utilization, instructions, packet sizes, source or destination of

packets, page reference pattern, various forms of delay like transfer time

and queuing delays, etc.) will also influence the final device performance.

 Modeling Issues
There are two regular approaches to evaluating a system design. One

employs the traced workload directly to drive a simulation. The other

builds a model from the trace and uses the model for either analysis

or simulation. Although the numerical trace-based approach is

straightforward, the workload models may have some advantages over

traces, such as adjustment with controlled modification, repetitions,

stationarity, generalization, avoiding noise, increased understanding,

added features, efficiency, etc. Therefore, it is important to understand

the metrics via mathematical models. In the previous section, I pointed

out that the hypothesis tests are based on some assumptions of statistical

models. Tables 2-8 and 2-9 list few common sense details on the modeling

issues of some basic and advanced metrics. For more details, refer to [35].

ChApTeR 2 TRACe ChARACTeRIsTICs

79

Table 2-8. Mathematical Models for Basic Metrics

Metrics Modeling issues

Throughput Commonly used distributions: pareto distribution

Queuing time Commonly used distributions: exponential distribution,

erlang distribution

Service time Commonly used distributions: exponential distribution,

erlang distribution

Response time Commonly used distributions: exponential distribution,

erlang distribution

Disk seek time May be modeled by data fitting using a piecewise function

Read to write ratio No obvious distribution, depends on read/write

dependency

Request size
distribution

Commonly used distributions: logarithmic distribution,

trunked- normal distribution, pareto distributions,

exponential distribution, power-law distribution, log-

uniform

LBA range/
randomness

see spatial locality

Inter-arrival time Commonly used distributions: poisson distribution,

exponential distribution, lognormal distribution

ChApTeR 2 TRACe ChARACTeRIsTICs

80

A general procedure to generate an analytical model is as follows:

• First, decide the formulation: the characterization level

and the workload basic component.

• Second, collect the parameters of the workload to be

modeled while it is executed.

• Third, statistically analyze the measured data with

some statistical distribution (e.g., logarithmic

distribution, trunked-normal distribution, Pareto

distributions, exponential distribution, power-law

distribution, log-uniform distribution) and stochastic

model (e.g., Markov models), including the sampling

procedure and static/dynamic analysis.

Table 2-9. Mathematical Models for Advanced Metrics

Metrics Modeling issues

Locality Commonly used distributions: Zipf distribution (Independent

Reference Model).

Other models: LRU stack model, Markovian models, fractal model

Spatial locality The simplest way is by counting unique substrings of the

reference stream. Formally measured by the size of the

working set.

Temporal locality The simplest measure is to look at the reference stream

through a pinhole or using a simulation of an LRU stack.

Read/write
dependency

Models: state machine, Markov chain, clustering

Priority-related
metrics

They are completely determined by the Os/Fs rules. A model

can be built based on Markov chain with

Burstiness and
self-similarity

Auto-covariance and covariance matrices are often used to

describe self-similarity.

ChApTeR 2 TRACe ChARACTeRIsTICs

81

An example using Markov chain can be stated in the following steps.

 1. Assuming the workload is approximately periodic

with s states, model the IO trace of each data

storage unit in one cycle as a specific Markov chain.

Otherwise, all the corresponding Markov chain

parameters should be time-varying.

 2. Given a historic workload trace L, represented as a

D × T matrix:

X

x x x

x x x

x x x

T

T

D D D T

=

¼
¼

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

1 1 1 2 1

2 1 2 2 2

1 2

, , ,

, , ,

, , ,

� � � �
�

where D is the total number of data storage units

and T is the total number of time intervals. xd,t is the

IO intensity for any chosen data unit d at time t.

xd,t ∈ {1, 2, 3, ..., s}.

 3. Each Markov chain can be represented by its s by s

state transition probability matrix:

P

p p p

p p p

p p p

T

T

s s s s

=

¼
¼

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

1 1 1 2 1

2 1 2 2 2

1 2

, , ,

, , ,

, , ,

� � � �
�

where pi,j is the probability of the data unit IO

intensity state change to j at next time interval under

the condition that its current IO intensity state is i,

and i, j ∈ {1, 2, 3, ..., s}

ChApTeR 2 TRACe ChARACTeRIsTICs

82

 4. To simplify data allocation in the tiered storage

system, you also need to classify the thousands of

data units into a dozen of data clusters according to

their dynamic IO intensities, such as a K-means

algorithm using the state transition probability

matrices as well as the residual time for each state s

of every data units. By combining the initial state of

the cluster S, you can obtain the predicted IO

intensity of all the clusters in a whole period,

represented as the following N × T matrix:

S

s s s

s s s

s s s

T

T

N N N T

=

¼
¼

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

1 1 1 2 1

2 1 2 2 2

1 2

, , ,

, , ,

, , ,

� � � �
�

,

where sl,t is the IO intensity of the lth data cluster at

the tth time interval.

Refer to [7, 8] to see the difference between simulation and modeling

approaches. For more complex cases, you may use the so-called multiple-

level process models. And, in these cases, the correlation must be

considered.

 Typical Applications
In this section, you will take a look at several trace metrics of some typical

applications in order to get a quick view. Table 2-10 lists some typical

applications, where only block size, read/write percentage, and random/

sequential percentage are provided with some rough values. The dominant

factors, IOPS or MBPS (throughput), actually show that whether the

workload is random request dominant or sequential request dominant.

ChApTeR 2 TRACe ChARACTeRIsTICs

83

IO workload characteristics are generally application-dependent

nature. Many access patterns, such as read/write proportions and

handling of writes differ by particular applications. Nevertheless,

the majority of characteristics vary only by environments (operating

conditions). Environment-dependent characteristics include the length of

idle intervals, request arrival rate, workload randomness and sequentially,

read and write performance, disk service time and response time of

request, request size, etc. More importantly, there are characteristics of

the overall IO workload that do remain consistent through applications

Table 2-10. Typical Application IO Workload Profiles

Application IO profile

Application size (Byte) R/W Rand./seq. Dominant

Web file server 4KB, 8KB,

64KB

95%/5% 75%/25% IOps

Database online transaction

processing (OLTp)

8KB 70%/30% 100%/0% IOps

exchange email 4KB 67%/33% 100%/0% IOps

Os drive 8KB 70%/30% 100%/0% IOps

Decision support systems (Dss) 1MB 100%/0% 100%/0% IOps

File server 8KB 90%/10% 75%/25% IOps

Video on demand 512KB 100%/0% 100%/0% IOps

Web server logging 8KB 0%/100% 0%/100% MBps

sQL server logging 64KB 0%/100% 0%/100% MBps

Os paging 64KB 90%/10% 0%/100% MBps

Media streaming 64KB 98%/2% 0%/100% MBps

ChApTeR 2 TRACe ChARACTeRIsTICs

84

and environments. A particular note here is workload burstiness (i.e.

long-range dependence). The block-level workloads, in particular, request

inter-arrival times and request seek distances, are long-range–dependent

in general. As a measure of temporal locality in a time series, long-range

dependence has a variety of consequences specifically with regards to

predict overall system and particular resource saturation. Consequently,

burstiness shall be taken into consideration when designing new storage

systems, and resource management policies at various layers of the

IO path. As a result, there is no universally good configuration for all

workloads due to large difference in various applications [42].

For file system performance, keeping the file system block size

close to the workloads I/O size can increase the efficiency of the system

significantly [43].

Web traffic volume is increasing rapidly. Some researchers argue

that there have been no dramatic changes in web server workload

characteristics in the last 10 years [44]. They consist of one-time

referencing behaviors, heavy-tailed file size distributions, non-Poisson

aggregate request streams, high concentration of references, Poisson per-

document request streams, and the dominance of remote requests.

A database usually has a significant inter-transaction locality, showing

that real workloads transactions are generally dependent of each other.

Another observation is that significant use of sequential accesses allows

a prefetch policy to be applied. Sequentiality is a consequence of long-

running queries that examine a large number of records, such as a join

operation.

OLTP (online transaction processing) workloads are characterized by

a large memory footprint, joined with a small critical working set, and by

their reduced benefit from micro-architectural optimizations. In addition,

index searching in OLTP workloads require a different cache design.

ChApTeR 2 TRACe ChARACTeRIsTICs

85

Let’s further look into two workloads with more details.3 Table 2-11

show the metrics values of the two traces. You can see that their properties

have large differences. Sometimes, only two or three major metrics are

used in the simple synthetic trace generators, although the applications’

actual trace is much more complex.

 Traces in File- and Object-Levels
The other two types of traces generally share many common properties

with block-level traces. However, they have their unique features in some

scenarios. Table 2-12 gives some metrics of file-level traces, which are

different from those of block-level traces.

3 OLTP is from Financial1.spc and search engine from WebSearch1.spc of UMASS
Trace Repository at http://traces.cs.umass.edu/index.php/Storage/Storage

Table 2-11. Basic Metrics for Two Typical Workloads

Trace Duration(s) Traffic
(G-B)

Total
requests
(×106)

Avg. R/W
size (KB)

R/W
traffic
ratio

Random
read
(×106)

Random
write
(×106)

OLTp 43712 18.491 5.335 3.466 0.1820 0.955 2.99

search

engine

3151.3 16.369 1.055 15.509 8762.9 0.994 2.08e-4

ChApTeR 2 TRACe ChARACTeRIsTICs

http://traces.cs.umass.edu/index.php/Storage/Storage

86

Table 2-12. Some Metrics for File-Level Traces

Metrics Explanation

File types A file system is utilized in one of several ways: as a

long term storage for persistent data, as a repository

for data too large to fit in the main memory, as the

site of storage for executables, and for storing logs

of system usage for accounting and monitoring. The

metadata to user data ratio is an important index

File age The age is defined as the time from its last reference.

File access duration The time from open to close

User behavior model Users generate the references that constitute the

workload.

Process and state model several aspects are included, such as how a process

makes file service requests during its existence; the

conditional activation table for access dependency;

and the ratio of different operations, such as open,

close, write, read, seek, etc. It may be molded as a

closed Markov chain.

Reference model how the requests are distributed among the files in

the system

As mentioned, the metrics to be considered may be different based

on different abstract levels. For example, in the system level, we usually

consider the attributes listed in Table 2-13, where most of them could be in

file or object-levels.

ChApTeR 2 TRACe ChARACTeRIsTICs

87

Table 2-13. Workload in System Level

Workload
in systems
views

Load arrival pattern Data access pattern Computation
pattern

MapReduce The time arrival of

sequence of jobs

hDFs input and output

paths, the data size for

the input, shuffle, and

output storage

Input data size,

shuffle data size,

output data size,

job duration, map

task time, reduce

task time

enterprise

network

storage

The time arrival

sequence of

application instances

or user sessions

Read/write, sequential/

random, single/repeated

access, file sizes, file

types

N.A.

In this chapter, I presented some trace metrics for performance

evaluation and design of storage systems. Some typical applications were

given to provide a quick impression on these metrics. In fact, due to the

large difference of some applications, there is no one-for-all system design

in general. I will discuss more details in the later chapters.

ChApTeR 2 TRACe ChARACTeRIsTICs

89© Jun Xu 2018
J. Xu, Block Trace Analysis and Storage System Optimization,
https://doi.org/10.1007/978-1-4842-3928-5_3

CHAPTER 3

Trace Collection
Trace quality is one of the essential requirements for analysis. Low quality

traces may lead to complex, wrong conclusions for trace analysis. There

are two main issues in trace quality. One is timing drift, which is when

the actual event arrival time is earlier than the collected arrival time.

The other is a missing event, such as when the tool cannot capture all

the required events. Thus, proper tools shall be applied to guarantee the

correctness of the traces. Both software tools and hardware devices are

introduced in this chapter.

 Collection Techniques
Many techniques have been proposed to monitor and capture system or

component traces. There are four techniques generally:

• Hardware-based monitoring entails the modification of

the testbed hardware so that as a program is executed,

a record of all instructions and/or data addresses is

created.

• Software-based tracing can achieve similar goals as

hardware to a certain degree, but instead of altering the

system hardware, software is modified or inserted.

90

• Emulation-based tracing constructs a layer between

the host machine and the OS under evaluation, like

QEMU1 and SimOS.2 The layer only emulates enough

components to allow the OS to run correctly. While

this system provides a flexible interface to collect

operating system-dependent traces, the accuracy of the

captured trace is dubious sometimes. Since emulation

is performed, execution will be perturbed.

• Microcode-based tracing utilizes microcode

modification to capture trace information, introducing

minimal slowdown, like PALcode (Privileged

Architecture Library code).3

However, the third and fourth techniques are not popular due to high

complexity and dubious accuracy. Therefore, only hardware and software

based techniques are discussed in this chapter.

 Hardware Trace Collection
We refer the hardware method to the trace collection approach that uses

a particular hardware device/system capturing the IOs other than the

targeted storage devices, although some software may be still required to

manage the traces [38, 45]. There are many types of hardware to collect

the block-level trace. One of the most common devices is a bus analyzer,

although it is not limited to block-level IOs for disk drives, such as network

traffic, DDR/CPU caching/stall/latency/throughput/etc. Some products

can capture rather accurate traces, such as the Xgig 6G SAS/SATA analyzer

from Viavi solution, the BusXpert Micro II Series SAS/SATA analyzer from

1 www.qemu.org/
2 http://simos.stanford.edu/
3 http://download.majix.org/dec/palcode_dsgn_gde.pdf

Chapter 3 traCe ColleCtion

http://www.qemu.org/
http://simos.stanford.edu/
http://download.majix.org/dec/palcode_dsgn_gde.pdf

91

SerialTek, the Trace and analyzer from TI, the protocol analyzer from

LeCroy, the Eumulator XL-100 from Arium, and the SuperTrace Probe

from Green Hills Software.

The bus analyzers often provide multiple communication interfaces

for users. Take the devices in Figure 3-1 as an example. They provide USB,

Ethernet, SCSI, etc. These devices usually achieve reliable and accurate

linkups via multiple mechanisms, with higher resolution (e.g., time

precision and capture frequency) and more information captured than

software-based tools.

Figure 3-1. Bus analyzers from LeCropy, XGIG, and SerialTek

Chapter 3 traCe ColleCtion

92

Figure 3-2. Plentiful protocol information from BusXpert

Figure 3-2 shows an example of SAS IO access in BusXpert, which

provides almost all basic information related to SAS protocols. The users

can easily trace the command status from the detailed logs, such as the

response time, connections, etc.

Chapter 3 traCe ColleCtion

93

Figure 3-3 provides another example of SATA command analysis. You

can see that the host issued the command COMWAKE after around 5

seconds. The drive almost immediately acknowledged COMWAKE. At time

5.59 seconds, SMART READ DATA was transferred to the host.

Figure 3-3. SATA command analysis

Chapter 3 traCe ColleCtion

94

Although there is no difficulty in capturing almost all the essential

protocol information, no advanced metrics of IO properties are included

in the software used to analyze the trace.

 Software Trace Collection
In term of accuracy, a software trace collector may be not as good as

hardware devices. In particular, for these applications with time precision

in nanoseconds or less, software may not work well. For example, a disk

feature debug related to the SAS/SATA protocol may be applicable to

the bus analyzer since it may involve the disk drive’s SoC clock issues.

However, for disk drive IO performance, it is generally operated at the

millisecond level (precision), which is generally within the capability of

the modern processors and operating systems inside a common server or

workstation.

There are many IO tools available [45, 35]:

• Linux/Unix: Dtrace[46], LTTng, BCC,4 iostat, dstat,

tracefs,5 iotop, hdparm, ionice, Ctrace,6 iogrind, POSIX

Test Suite, ioprofile, SystemTap, IOR, PCP, and swtrace

4 https://github.com/iovisor/bcc
5 www.usenix.org/conference/fast-04/tracefs-file-system-trace-them-all.
It is a thin stackable file system used to capture file system traces in a portable
way. Tracefs can capture uniform traces for any file systems without modifying
the file systems being traced. It can also capture traces at various degrees of
granularity: by users, groups, processes, file operations, files and file names, etc.
In addition, it can transform trace data into aggregate counters, compressed,
checksummed, encrypted, or anonymized streams; and it can buffer and direct
the resulting data to various destinations (e.g., sockets, disks, etc.).

6 http://ctrace.sourceforge.net/. CTrace is a fast and lightweight trace/debug
library designed specifically for multi-threaded applications. It is coded in C and
employs POSIX threads.

Chapter 3 traCe ColleCtion

https://github.com/iovisor/bcc
http://www.usenix.org/conference/fast-04/tracefs-file-system-trace-them-all
http://ctrace.sourceforge.net/

95

• Windows: Xperf,7 TraceWPP/TraceView/Tracelog/

Logman,8 Vtrace, Oracle trace collector, Bus analyzer

module,9 and PatchWrx10

However, not all of these tools can provide event details. In fact, the

general purpose monitoring tools, like iostat and iotop, cannot provide

detailed information on a per-IO basis.

These tools can be divided into two classes: static and dynamic.

Static tools view the binary image of a program as a black box that is

never modified. Dynamic tools instead rely on binary-level alterations to

facilitate the gathering of statistical data from an application. For example,

all the Windows tools and iotop/iostat/dstat/hdparm/ionice/iogrind/

ioprofile are static tools, while SystemTap, Dtrace, and LTTng are dynamic

tools. In particular, Dtrace and LTTng use a mechanism called probing that

is able to selectively activate instrumentation routines that are embedded

within software at all levels of abstraction, so that performance-related

statistics can be obtained from not only an application but also the various

libraries and kernel routines associated with its execution.

7 http://xperf123.codeplex.com/. Xperf is built on top of the ETW (Event
Tracing for Windows) infrastructure, which provides the capability to capture
event traces for user and kernel mode drivers.

8 http://msdn.microsoft.com/en-us/library/windows/hardware/
ff552961(v=vs.85).aspx. These Windows tools enable WPP tracing in a trace
producer and controlling trace sessions (trace controllers).

9 www.scsitoolbox.com/products/BusAnalyzerModule.asp. BAM is a software
bus analyzer that can capture, display, and analyze trace data from any peripheral
bus, including SCSI, Fiber Channel, IDE, ATA, SATA, and SAS. BAM offers
complete versatility as far as choice of phases that are captured and displayed,
capture modes to minimize IO impact, buffer size and capture size, and device(s)
to capture trace data from.

10 http://studies.ac.upc.edu/doctorat/InstProf/PatchWrx.pdf. PatchWrx is a
static binary-rewriting instrumentation tool to capture full instruction and data
address traces on the DEC Alpha platform running Microsoft NT. The toolset
modifies the binary image before execution.

Chapter 3 traCe ColleCtion

http://xperf123.codeplex.com/
http://msdn.microsoft.com/en-us/library/windows/hardware/ff552961(v%3Dvs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff552961(v%3Dvs.85).aspx
http://www.scsitoolbox.com/products/BusAnalyzerModule.asp
http://studies.ac.upc.edu/doctorat/InstProf/PatchWrx.pdf

96

 Blktrace
Blktrace is a static tool that has been embedded into the Linux kernel

since version 2.617-rc1. This tool is lightweight and easy to use. It only

considers device access after OS/FS cache. When IO enters to block an IO

layer (request queue), the relay channel per CPU gets events emitted, and

blktrace then captures the events from the channels. More details can be

found in Appendix B.

 Dtrace, SystemTap, and LTTng
As mentioned, dynamic tracing tools embed tracing code into working

user programs or kernels, without the need of recompilation or reboot.

Since any processor instruction may be patched, it can virtually access any

information you need at any place. I will discuss several dynamic tracing

tools next.

DTrace [47] originated from Solaris.11 Its development was begun in

1999, and it became part of the Solaris 10 release. Nowadays, DTrace is

open-sourced as a part of OpenSolaris, although it has not merged into

the Linux kernel due to license incompatibility. There exist several ports

without proper support. A toolkit based on Dtrace for simplification of use

has been developed by B. Gregg.12 But the essential limitation has been

solved. A few attempts led to the development of another clone of DTrace

called DProbes, but it seems to be unsuccessful.

Therefore, three major Linux players, Red Hat, Hitachi and IBM,

presented another dynamic tracing system for Linux called SystemTap.13

SystemTap is one of the most powerful tracers so far. However, it has

to generate a native module for each script it runs, which is a huge

11 www.solarisinternals.com/wiki/index.php/DTraceTopics
12 https://github.com/opendtrace/toolkit
13 http://sourceware.org/systemtap/langref/

Chapter 3 traCe ColleCtion

https://www.solarisinternals.com/wiki/index.php/DTraceTopics
https://github.com/opendtrace/toolkit
http://sourceware.org/systemtap/langref/

97

performance penalty. Ktap14 was further developed to reduce the overhead

using Lua and LuaJIT internally. Another similar implementation is

sysdig,15 which is scriptless.

LTTng16 is also a widely used open source tracing framework for Linux.

It used static tracing and required kernel recompilation until version 2.0;

it currently utilizes ftrace and kprobe subsystems in the Linux kernel.

It makes the users understand the interactions among multiple system

components, like the Linux kernel, using either existing or user-defined

instrumentation points, C/C++ applications, Java applications, Python

applications, or any other user space application with the LTTng logger. It

may outperform other tracers because it has optimized event collection. It

also supports numerous event types, including USDT (user-level statically

defined tracing).

When identifying the overall system performance instead of only

storage IO, these tools will play a significant role. In Chapter 9, you will use

Ceph as an example to find the performance bottleneck from an overall

system view.

 Trace Warehouse
Mainly for research purposes, there are some real/synthesis traces

available online for download. The following are few examples:

• SNIA at http://iotta.snia.org. It provides block

IO trace (e.g., the block traces on a virtual desktop

infrastructure and Microsoft Production Servers), NFS

trace, system call trace, etc.

14 https://github.com/ktap/ktap
15 www.sysdig.org/
16 http://lttng.org/

Chapter 3 traCe ColleCtion

http://iotta.snia.org/
https://github.com/ktap/ktap
http://www.sysdig.org/
http://lttng.org/

98

• Sandia National Laboratories at www.cs.sandia.gov/

Scalable_IO/SNL_Trace_Data/. S3d I/O kernel trace

data was collected during runs on 6400 clients of

Redstorm.

• Los Alamos National Laboratory at http://institute.

lanl.gov/data/. Few traces, like MPI/HPC, are

categorized.

• Google at https://github.com/google/cluster-data.

It provides cluster workload trace on Google compute

cells.

• Facebook at https://github.com/SWIMProjectUCB/

SWIM/wiki/Workloads-repository. A number of

1-hour segments from Facebooks Hadoop traces were

published as part of UC Berkeley AMP Labs SWIM

project.

• Dartmouth University at www.cs.dartmouth.edu/

dfk/nils/workload.html. It provides some traces

from parallel file systems (e.g., Intel’s CFS, Thinking

Machines SFS).17

• Harvard University at www.eecs.harvard.edu/sos/

traces.html. It provides some NFS traces.

• UMassAmherst at http://traces.cs.umass.edu/

index.php/Main/Traces. OLTP and search engine

traces are archived.

17 Most of these traces have been designed under the assumption that scientific
applications running on parallel computers would exhibit behavior similar
to that of the same applications running on uniprocessors and vector
supercomputers.

Chapter 3 traCe ColleCtion

http://www.cs.sandia.gov/Scalable_IO/SNL_Trace_Data/
http://www.cs.sandia.gov/Scalable_IO/SNL_Trace_Data/
http://institute.lanl.gov/data/
http://institute.lanl.gov/data/
https://github.com/google/cluster-data
https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository
https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository
http://www.cs.dartmouth.edu/dfk/nils/workload.html
http://www.cs.dartmouth.edu/dfk/nils/workload.html
http://www.eecs.harvard.edu/sos/traces.html
http://www.eecs.harvard.edu/sos/traces.html
http://traces.cs.umass.edu/index.php/Main/Traces
http://traces.cs.umass.edu/index.php/Main/Traces

99

• Hebrew University at www.cs.huji.ac.il/labs/

parallel/workload/index.html. Multiple parallel

workloads are collected.

• OpenCloud at http://ftp.pdl.cmu.edu/pub/

datasets/hla. These traces were taken from a Hadoop

cluster managed by CMU’s Parallel Data Lab. They

provide very detailed insights into the workload of a

cluster used for scientific workloads during a 20-month

period, including timestamps, slot counts, and more.

Together with the source code for the analysis tool, I also provide trace

sample data in GitHub.

This chapter discussed both hardware and software tools for trace

collection. Note that the former generally offer higher precision and more

information than the latter, although they are more expensive. However,

in many scenarios, the precision is only required at the millisecond level.

Therefore, software-only tools are widely applied in both industries and

academics. Note that there exist various tools for different purposes.

In order to identify the overall system performance, you shall employ

multiple tools or some integrated tool sets.

Chapter 3 traCe ColleCtion

http://www.cs.huji.ac.il/labs/parallel/workload/index.html.
http://www.cs.huji.ac.il/labs/parallel/workload/index.html.
http://ftp.pdl.cmu.edu/pub/datasets/hla
http://ftp.pdl.cmu.edu/pub/datasets/hla

101© Jun Xu 2018
J. Xu, Block Trace Analysis and Storage System Optimization,
https://doi.org/10.1007/978-1-4842-3928-5_4

CHAPTER 4

Trace Analysis
Trace analysis provides insights into workload properties and IO patterns,

which are essential for storage system tuning and optimizing. This

chapter discusses how the workload interacts with system components,

algorithms, structures, and applications.

 Interactions with Components
As discussed in Chapter 1, different storage devices may have large

different properties. In addition, their internal structures and algorithms

also have significant impacts on the final performance. For example, write

cache of HDDs can gain benefits from data locality:

• Write cache hits can avoid some disk mechanical

writes; instead, the dirty blocks in DRAM cache are

overwritten. It is a benefit of temporal locality.

• Larger cache space means longer write queue:

physically contiguous dirty blocks can be grouped into

a single IO operation. It is a benefit of spatial locality.

• An advanced replacement policy efficiently places cold

data onto a disk while keeping the hot data in cache via

exploring both spatial and temporal locality.

102

• The cache can temporarily absorb the write burst and

distribute the write load evenly over time to minimize

the impact to concurrent IOs.

For HDD with MBC, write cache can provide log access for write burst,

and thus give a better arrangement for grouped I/O access. In this section,

I mainly discuss the HDD and SSD factors that influence the performance.

 HDD Factors
For HDD, the performance varies with respect to (wrt) the disk drive’s

features (e.g., RPM, TPI/SPT, location [OD, MD or ID], head quality, servo

control mechanism, cache structure/algorithm, queue length, and so on) and

workload properties (e.g., sequence, request size, queue depth, and more).

First, look at drive’s features. For example, the throughput of the OD

side of HDDs can be double that of the ID side, as shown in Figure 4-1. A

10K RPM enterprise drive may be over two times faster than a 5400 RPM

desktop drive. The fast RPM drives generally have a quicker response time

than the slow RPM ones.

Figure 4-1. Throughput difference in different HDD locations

Chapter 4 traCe analysis

103

Second, consider the workload properties. Figure 4-2 provides an

example that IOPS changes wrt request size (0.5, 1, 2,..., 2014KB) and

queue depth (1, 2, 4, 8, 16, 32) for write cache enabled (WCE) or disabled

(WCD). You can see that without cache/buffer, WCD gives similar

performance for different queue depths under the same request size.

However, when write cache is enabled, the performance for queue depth

as 1 has a significant difference from that for 16. Figures 4-2 and 4-3

illustrate the performance difference wrt buffer size under WCE and WCD.

Figure 4-2. IOPS difference wrt queue depth and request size under
WCE and WCD (random write via IOMeter)

Chapter 4 traCe analysis

104

 SSD Factors
For SSD, the performance also varies wrt the disk drive’s features (e.g.,

die number, block size, parallel access, flash management algorithm

(wear-leveling), address mapping policy, trim condition, cache structure/

algorithm, queue length, IO driver interface, and more) and the workload

properties (e.g., fragmentation, sequence/randomness, write update, read/

write ratio, request size, queue depth, request intensity/throttling, etc.).

Different from HDD, a consumer-class NAND SSD may show

artificially and unsustainably high performance temporarily during

initial measurements. It may also display unacceptable performance in

bad conditions. Thus I shall have a proper condition for SSD in order to

demonstrate sustained solid-state performance. The well-known starting

point is a completely new SSD or a low-level formatted SSD (to wipe the

Figure 4-3. Throughput difference wrt to buffer size for WCE and
WCD (sequential write via IOMeter)

Chapter 4 traCe analysis

105

contents and restore it to its original state). Run some random writes for

a while, depending on the SSD capacity. Then the SSD is put in a “used”

state. When the performance levels settle down to a sustainable rate, we

have the true performance value. Figure 4-4 illustrates this phenomenon,

where D1-D6 are MLC and D7-D8 are SLC.1 Note that this situation has

been alleviated since 2017.

NAND SSDs generally use a virtual address mapping scheme, whereby

LBAs are mapped to PBAs for some reason [12]. For instance, wear leveling

algorithms allocate updated data to new cell locations to promote evenly

distributed wear on the memory cells and thus improve the memory cell

life or endurance. As a result, the SSD must keep track of the LBA-PBA

affiliations. Similar to HDD, sequential operation may also be faster than

random access when the data in the physical location is less fragmented.

1 http://searchsolidstatestorage.techtarget.com/feature/
The-truth-about-SSD-performance-benchmarks

Figure 4-4. SSD performance states [12]

Chapter 4 traCe analysis

http://searchsolidstatestorage.techtarget.com/feature/The-truth-about-SSD-performance-benchmarks
http://searchsolidstatestorage.techtarget.com/feature/The-truth-about-SSD-performance-benchmarks

106

Similar to HDD, the queue depth (i.e., the number of the outstanding

IOs) has a deep impact to the IOPS performance. Figure 4-5 illustrates

the IOPS trends for four different models of SSDs under two applications:

database and file server. You can see that the resulting IOPS are largely

different. In addition, SSD2 performs better than SSD3 in the database,

while worse in the file server. This indicates that the internal architecture

and algorithm of a SSD is sensitive to the applications.

Figure 4-5. SSD IOPS vs. queue depth

Block alignment is also a performance issue. When blocks are aligned

with the NAND flash memory cell boundaries, they are more efficiently

stored in an SSD. For instance, an 8KB block will fit precisely in an 8KB

NAND page size. If all things are equal, more small block IOs can be

accessed in a given period of time than large block IOs, although the

Chapter 4 traCe analysis

107

amount of data might be the same, such as 64 IOs of 8KB data transfer

length vs. 4 IOs of 128KB data transfer length. In any case, the minimum

granularity of access to NAND flash depends on the design of the

underlying NAND flash. Figure 4-6 shows the throughput under sequential

requests with different sizes. You can see that when the size is less than

32KB, the transfer speed is significantly influenced by the size. However,

when the size is larger than 128KB, the throughput is relatively stable.

Figure 4-6. SSD sequential throughput vs. request size

The read/write ratio has larger impact to the SSDs than CMR HDDs.

First, the “new” write generally needs more time than read, so more steps

of the write operation than that of the read operation. Second, for a write-

in- place update, an “erase” access is required. Therefore, the number of

write steps relies on how full the drive is and whether the SSD controller

shall erase the target cell (or even relocate some data by performing a more

time-costly RMW access) before writing the new data.

Although the performance ratio of sequential to random access is not

so high as the HDDs, sequentiality is still important because it contributes

in minimizing erase operations via grouping write requests by blocks,

optimizing both lifetime and I/O performance by reducing the number of

erasures, and so on.

Chapter 4 traCe analysis

108

In sum, there are many major differences between SSD and HDD,

besides those listed in the summary table in Chapter 1. Here, I further

extend it to general NVM:

• Access location: It significantly matters for HDD due to

positioning time, while it doesn’t determine latency in

NVM generally, although the access order matters.

• Access size: Large and sequential requests are

significantly faster than small and random requests.

However, it has less impact to NVM. In fact, larger IO

may pay an additional cost due to internal structures,

although sequential access is still generally faster than

random access in NVM.

• Access type: HDD is usually either block- or file-based.

Some object-based devices still use internal mapping

between block and object. However, some NVMs can

be byte-level. The object-level mapping is also more

native than that of HDD. Read and write performances

are likely to be different in many NVMs.

• Content: Some techniques, such as compression and

reduplication, are content-dependent. They are not

necessary for HDD due to the additional computational

and IO resource usage, which may downgrade the

HDD performance largely. Compared with the space

saving, they may not be worthwhile. However, for NVM,

these techniques can reduce the cost and improve the

storage efficiency.

• Timing: HDD usually caps at 300 IOPS, while some

NVM devices may be 100 to 10000 times faster. The

cache scheduler therefore has large difference.

Chapter 4 traCe analysis

109

There are many testing and benchmarking tools with different

measurement conditions. People may be confused by the results from these

different tools. SNIA developed standard testing tools called SSSI Reference

Test Platform (RTP) and the Performance Test Specification (PTS).2

 Interactions with Algorithms
The algorithms and policies utilized in the hybrid storage systems actually

determine the performance of the overall storage system when the

hardware is fixed. In this section, the most important algorithms, such as

data allocation, hot data identification, data migration, and scheduling

algorithm, are surveyed. For easy of representation, I list some main

factors considered in these algorithms in Tables 4-1 and 4-2, where access

frequency and interval are the most important two factors in hot data

identification and data migration algorithms.

2 www.snia.org/forums/sssi/rtp

Table 4-1. Two Most Important Factors

Items Description Typical Algorithms

access

frequency

(r/W) (F),

access

interval (t)

the access time within a given time

period. Due to the different performance

in r/W, we may also consider them

separately.

some argue that the least recently used

data may have higher probability to be

re-accessed in the near future; some

deny it; now an acceptable tradeoff is

that it depends on iO pattern/workload.

lFU (least frequently used)

[48], GDsF (Greedy-Dual

size Frequency) [49]

lrU (least recently used),

MrU (most recently used),

lFUDa (lFU with dynamic

aging) [48], lrU-K(least

recently used k)[50], GDs [51]

Chapter 4 traCe analysis

http://www.snia.org/forums/sssi/rtp

110

Table 4-2. Other Performance Factors

Items Description

Data size Generally, only hot data with small size is

required to move to a higher tier. the small

degree depends on the read/write speed rate

of ssD and hDD, and the migration speed

between them, etc.

Cache total/remaining size

Device total/remaining bandwidth

the cache size decides how much hot data

can be stored in the cache. hence it decides

the threshold of hot degree.

the bandwidth decides if the migration is

proper at current time. an approximated

function may be built to predict the remaining

bandwidth with respect to r/W ratio, iO

intensity, etc.

r/W ratio since the r/W access time and pattern are

different, this ratio gives different performance

(e.g., the write amplification).

r/W granularity and iO intensity the value represents the data amount ratio

relating to an r/W iO to a fixed size data block.

average r/W granularity is the average ratio

of all the iOs in a predefined time interval.

Commonly, the larger the value, the more

important the data is to users.

(continued)

Chapter 4 traCe analysis

111

 Interactions with Structure
The fundamental structure of the storage device or system also has a large

impact on the system performance. For example, RAID- and EC-based

systems have the functionality of data protection. However, it increases

the internal IO burden to the disks due to the additional parity data. In

particular, during the system recovery from a critical disk failure, the internal

workload eats large portion of disk bandwidth, and therefore the overall

system performance to the external users is significantly downgraded.

Chapter 7 will analyze the impact of RAID structure to the IO pattern.

Table 4-2. (continued)

Items Description

Data correlation One data may be related to another, so the

iO operations in a data block have some

characteristics in a predefined period of time,

and another may have similar properties,

hence they are associated. this value can be

used for iO predication.

iO range/amount/distribution iO distribution represents the statistical

accessing information, such as the accessing

address range and the accessing frequency in

a given accessing period.

Grain size the minimum size for each page/block to be

replaced/migrated

tier contrast/compensation (device

value)

it values the difference between two different

storage tiers/caches for direct data migration,

including device status, accessing speed, etc.

Others Data loss/error, etc.

Chapter 4 traCe analysis

112

For a hybrid storage system, although it has the potential to improve

the performance of hot data, the internal data migration may also occupy

some additional resources. Improper IO scheduler and data migration

algorithms will definitely lower the overall performance. In addition, the

so-called cache structure and tiering structure may have large difference

in data allocation and IO scheduling, which leads to performance diversity

under different scenarios. Chapter 6 will use a small-scale hybrid device as

an example. Furthermore, the inter-connection structure, such as bus and

bridge, could also be the performance bottleneck in some cases.

 Interactions with Applications
As discussed in Chapter 2, the metrics of different applications may have

large differences [35]. Table 4-3 provides a simple comparison of typical

requirements among some common applications.3 Due to the significant

variation of requirements from one to another, it imposes different

demands on the storage systems. Chapter 8 will illustrate the IO pattern of

a Hadoop system with HDFS for big data applications, while Chapter 9 will

discuss one of the most popular distributed storage systems, Ceph.

3 For space saving, the words “sequential,” “performance,” and “throughput” are
shortened as “seq.”, “perf.” and “TP”, respectively. Jie Yu and Grant Markey also
contributed this table.

Chapter 4 traCe analysis

113

Ta
bl

e
4-

3.
 T

yp
ic

al
 R

eq
u

ir
em

en
ts

 fo
r

So
m

e
A

pp
li

ca
ti

on
s

HP
C

da
ta

st

or
ag

e
Cl

ou
d

St
or

ag
e

HD
FS

/M
ix

ed
Ar

ch
iv

e/
Ba

ck
up

HP
C

ch
ec

k
po

in
tin

g
da

ta
Da

ta
ba

se

at
tri

bu
te

ne
ar

 te
rm

 d
at

a

st
or

ag
e:

 s
eq

.,

hi
gh

- t
p

W
Or

M

op
er

at
io

ns

tr
ad

iti
on

al
ly

ba
tc

h
iO

 s
eq

.

re
ad

/w
rit

e

tr
ad

iti
on

al
ly

ba
tc

h
iO

 s
eq

.

re
ad

/w
rit

e

W
rit

e
on

ce
, r

ea
d

in
fre

qu
en

tly

Ch
ec

kp
oi

nt

op
er

at
io

ns
:

Bu
rs

ty
, h

ig
h-

tp

op
er

at
io

ns

tr
an

sa
ct

io
na

l:

sm
al

l i
O

re
ad

,

m
od

ify
 w

rit
e

la
te

nc
y

si
m

ila
r d

em
an

ds

of
 c

lo
ud

 s
to

ra
ge

.

Ge
ne

ra
lly

et
he

rn
et

,

so
m

et
im

es
 iB

.

Be
tw

ee
n

10

an
d

10
0m

s

Be
tw

ee
n

10

an
d

10
0m

s

hi
gh

 la
te

nc
y

ex
pe

ct
ed

 (¿
=

10
s)

;

am
az

on
 g

la
ci

er
 a

t

3-
5

ho
ur

s

1-
2

m
s;

 u
p

to

45
us

 fo
r >

1k
b

da
ta

 tr
an

sf
er

s

Fa
st

er
 th

e
be

tte
r,

0-
10

m
s

bu
t c

an

be
 9

0m
s

be
fo

re

is
su

es (c
on

ti
n

u
ed

)

Chapter 4 traCe analysis

114

Ta
bl

e
4-

3.
 (

co
n

ti
n

u
ed

)

HP
C

da
ta

st

or
ag

e
Cl

ou
d

St
or

ag
e

HD
FS

/M
ix

ed
Ar

ch
iv

e/
Ba

ck
up

HP
C

ch
ec

k
po

in
tin

g
da

ta
Da

ta
ba

se

iO
ps

/t
pu

t
M

an
y

di
ffe

re
nt

of
fe

rin
gs

.

Ve
nd

or
- s

pe
ci

fic

st
or

ag
e

sp
ec

s

va
ry

.

10
0s

 to
 1

0k

iO
ps

 d
ep

en
di

ng

on
 s

iz
e

of

in
st

an
ce

Di
sk

 p
er

f.

de
pe

nd
en

t,

lit
tle

ob
se

rv
ab

le

ov
er

he
ad

 to

im
pe

de
 h

W

pe
rf.

lt
O4

 ta
pe

 is

12
0M

B/
s

w
ith

 2
2s

la
te

nc
y

10
K+

 iO
ps

 p
er

4U
 u

ni
t s

ys
te

m

pe
rfo

rm
an

ce

us
ua

lly
;

Us
ua

lly
 1

K-
30

K

iO
ps

, u
p

to

1-
10

M
+

 le
ve

l;

im
pl

em
en

ta
tio

n

is
 p

la
tfo

rm
-

sp
ec

ifi
c;

Ot
he

r
Us

ua
lly

 fo
r

sc
ie

nt
ifi

c
da

ta

an
al

ys
is

, n
ot

su
pe

r c
om

pu
te

r

ch
ec

kp
oi

nt

st
or

ag
e.

hi
gh

 a
va

ila
bi

lit
y

(4
/5

 o
f 9

);
hi

gh

da
ta

 d
ur

ab
ili

ty

(9
/1

1
of

 9
)

in
-p

la
ce

da
ta

 a
na

ly
si

s

ca
pa

bi
lit

y

hi
gh

 d
at

a
du

ra
bi

lit
y

is
 e

xp
ec

te
d

w
ith

in
fre

qu
en

t d
at

a

ac
ce

ss

Co
m

m
un

ic
at

es

ov
er

 d
ed

ic
at

ed
 iB

84
.8

tB
 p

er
 s

he
lf

su
pp

or
ts

 a
Ci

D

se
m

an
tic

s

Chapter 4 traCe analysis

115© Jun Xu 2018
J. Xu, Block Trace Analysis and Storage System Optimization,
https://doi.org/10.1007/978-1-4842-3928-5_5

CHAPTER 5

Case Study:
Benchmarking Tools
Benchmark tools are useful to provide some “standard” performance

indexes for storage systems with specific requirements. This chapter shows

how to identify the access pattern of benchmark results. The first tool is

SPC-1C from the Storage Performance Council (SPC). After capturing the

pattern, I developed a synthetic emulator to match the real traces. The

second tool is PCMark from FutureMark. I illustrate how to use gain-loss

analysis to improve cache algorithm efficiency.

Storage performance benchmarks assess the relative performance

of storage systems by running a number of standards tests and trails, via

a tool or a set of programs with or without specific hardware equipment

supported. Below are some benchmark tools that are often used for active

trace collection:

• Synthetic trace

• The user can specify test scenarios for queue depth,

request size, transfer rate, sequence, etc. It is good

to determine corner case behavior.

• Examples: IOMeter, VDBench, fio, IOzone, iorate,

sqlio, diskspd1.

1 https://gallery.technet.microsoft.com/DiskSpd-a-robust-storage-6cd2f223

https://gallery.technet.microsoft.com/DiskSpd-a-robust-storage-6cd2f223

116

• Application-based trace

• The user can choose specific applications with

predefined workload patterns. It is good to illustrate

real world cases.

• Examples: SysMark,2 PCMark, SPC (Storage

Performance Council, e.g., SPC-1, SPC-2), TPC

(Transaction Processing Council, e.g., TPC-A/B/C/

D/H/W),3 SPEC (Standard Performance Evaluation

Corporation, e.g., HPC/SFS/JVM/SDM),4 Jetstress,5

COSbench6.

• Real trace

• The user can input the real-world trace directly.

It is useful when the user attempts to test similar

applications in different systems.

• Example: AnandTech Storage Bench7.

Table 5-1 gives a simple comparison of some commonly used tools,

where the letters W, L, and U in the OS column indicate Windows, Linux,

and Unix, respectively.

2 https://bapco.com/products/sysmark-2014/
3 www.tpc.org/
4 www.spec.org/
5 www.microsoft.com/en-us/download/details.aspx?id=36849
6 http://lbs.sourceforge.net/
7 www.anandtech.com/

Chapter 5 Case study: BenChmarking tools

https://bapco.com/products/sysmark-2014/
http://www.tpc.org/
http://www.spec.org/
http://www.microsoft.com/en-us/download/details.aspx?id=36849
http://lbs.sourceforge.net/
http://www.anandtech.com/

117

For large-scale systems, the traditional tools may be insufficient

(e.g., lack of measurement metrics) or inconvenient (e.g., no integrated

user interface) enough. Therefore, some dedicated tools are proposed,

such as HiBench,8 Berkely BDB,9 BigDataBench,10 and BigBench11 for big

data benchmarks, in particular, the Hadoop/Spark systems.

A general benchmark procedure is shown in Table 5-2 [52]. Note

that there exist other classification methods. For example, three types

are named as micro-benchmark in lower-level system operation (e.g.,

evaluating HDFS operations on modern cluster), functional/components

benchmarks in high-level functions (e.g., Terasort, basic SQL), application-

level benchmarks (e.g., overall system performance for a given application

scenario). For more details, refer to [41, 35].

8 https://github.com/intel-hadoop/HiBench
9 https://amplab.cs.berkeley.edu/benchmark/
10 http://prof.ict.ac.cn/BigDataBench/
11 https://github.com/intel-hadoop/Big-Data-Benchmark-for-Big-Bench

Table 5-1. A Comparison of Some Common Benchmark Tools

Block File Posix OS S/C Open Latest

iometer y - - Wlu s/C y 1.1.0/

2014

iozone y y y Wlu s y 2006

Bonnie++ y lu s y (gpl2) 1.0.1

dbench y y y lu s/C y (gnu) 2008

Filebench y y y lu s y 2011

Chapter 5 Case study: BenChmarking tools

https://github.com/intel-hadoop/HiBench
https://amplab.cs.berkeley.edu/benchmark/
http://prof.ict.ac.cn/BigDataBench/
https://github.com/intel-hadoop/Big-Data-Benchmark-for-Big-Bench

118

 SPC-1C
The Storage Performance Council (SPC) provides several benchmarking

tools under different levels. SPC-1C [53] is designed to be vendor/platform

independent and is applicable for a wide range of storage component

products, such as disk drives, host bus adapters (HBAs), intelligent

enclosures, and storage software such as logical volume managers.

 Workload Properties
Two important concepts related to the workload intensity are the BSU

(business scaling unit) and ASU (application storage unit). Each BSU

is composed of three ASUs: ASU1 for a data store with a weight of 45%,

ASU2 for a user store with 45%, and ASU3 for a log with 10%, which totally

corresponds to five IOPS per ASU.

Table 5-2. Five Steps for General Benchmarks

Steps Remarks

Choose

the proper

configuration.

select the proper type of benchmark, such as macro- benchmark

(overall test for the full system), micro-benchmark (few

operations to check partial changes), or trace-based.

Choose

the correct

environment.

Consistent hardware and software settings, and some factors,

such as cache status, hdd zoned constant angular velocity, file

system aging, nonessential processes, etc.

run the

benchmark.

identical run for repeatability, multiple rounds for accuracy with

small standard deviations or high confidence level, sufficient

running time for steady state, automatic run via suitable scripts.

present the

results.

statistical results with small confidence-interval and near

normal distribution

Validate the

results.

reproduce/confirm the results or compare with other similar

ones.

Chapter 5 Case study: BenChmarking tools

119

There are three types of access patterns: random (uniform

distribution), sequential, and (random walking access) pattern. The details

can be found in Table 5-3, which is further summarized in Table 5-4.

Table 5-5 indicates that the small size requests (8 and 16 blocks) are over

85%. Random walk is an important model of Markovian Chain. Table 5-6

shows the main characteristics of this model.

Table 5-3. Decomposition of SPC-1C Workload

ASU 1-1 1-2 1-3 1-4 2-1 2-2 2-3 3-1

intensity 0.035 0.281 0.07 0.21 0.018 0.07 0.035 0.281

r/W 0.5 0.5 1 0.5 0.3 0.3 1 0

random 1 0 0 0 1 0 0 0

pattern 0 1 0 1 0 1 0 0

seq. 0 0 1 0 0 0 1 1

ratio 1-1 1-2 1-3 1-4 2-1 2-2 2-3 3-1

r rand. 0.0175 0 0 0 0.0054 0 0 0

r seq. 0 0 0.07 0 0 0 0.035 0

r pattern 0 0.1405 0 0.105 0 0.021 0 0

W rand. 0.0175 0 0 0 0.0126 0 0 0

W seq. 0 0 0 0 0 0 0 0.281

W pattern 0 0.1405 0 0.105 0 0.049 0 0

Chapter 5 Case study: BenChmarking tools

120

Table 5-4. SPC-1C Workload Ratio

Workload ratio ASU1 ASU2 ASU3

asu i/total 0.596 0.123 0.281

read rand. in asu i 0.02936 0.0439 0

read seq. in asu i 0.11745 0.28455 0

read pattern in asu i 0.41191 0.17073 0

Write rand. in asu i 0.02936 0.10244 0

Write seq. in asu i 0 0 1

Write pattern in asu i 0.41191 0.39837 0

Table 5-5. Size Distribution

Size distribution Probability Size distribution Probability

8 0.7684 64 0.03088

16 0.09264 128 0.03088

32 0.0772

Table 5-6. SPC-1C Random Walk Pattern

ASU 1-1 1-2 1-3 1-4 2-1 2-2 2-3 3-1 Sum

Read 0 0.1405 0 0.105 0 0.021 0 0 0.2665

Write 0 0.1405 0 0.105 0 0.049 0 0 0.2945

Chapter 5 Case study: BenChmarking tools

121

You can also find from Table 5-7 that the write accesses and pattern

access are dominate, which shows the importance of self-similarity and

write cache in the benchmarking test.

Table 5-7. Basic IO Pattern Distribution

R/W Ratio Mode Ratio

read 0.3944 random 0.053

Write 0.6056 sequential 0.386

pattern 0.561

 Synthetic Trace
With all these parameters, you can actually write your own synthetic trace

generator. Thus more flexibility is provided to change any parameters

you are interested in, such as disk size, BSU, simulation times, even the

configuration of SPC-1C, like ASU, IOPS per BSU, distribution patterns,

etc. For example, you can separate ASU from BSU to see the influence of

different applications (data store, user store, and log./seq. write) instead

of mixed workload, and change the distribution (e.g., inter-arrival time,

request size, etc.) to fit more specific requirements. In addition, you

may integrate the generator to another toolkit, such as Disksim [54] and

IOMeter, as a synthetic generator component. Figures 5-1, 5-2, and 5-3

show the comparison of a real trace captured by bus analyzer and the

synthetic trace generated by the MATLAB-based tool in Appendix A.

Chapter 5 Case study: BenChmarking tools

122

Figure 5-1. Inter-arrival time histogram

Chapter 5 Case study: BenChmarking tools

123

Figure 5-2. SPC-1C spatial distribution

Chapter 5 Case study: BenChmarking tools

124

From Figure 5-1, you can see that the inter-arrival time is approximately

an exponential distribution. As you know, the workload is mixed by

eight different types of IO streams from three ASUs. Some high intensity-

streams are visible in this spatial distribution of Figure 5- 2. Generally, the

generated random R/W IO streams are consistent with the real workload,

but the sequential ones are not very close in a light workload. One possible

reason is the real workload was not generated by the exact parameters as

those in the random walking model. In fact, it is hard to align the temporal

distribution well. However, the result in Figure 5-3 is fairly acceptable.

 PCMark
PCMark Vantage [55] is a widely used benchmark tool that is not limited

to disk performance. It can provide application-level traces in eight

categories, as shown in Table 5-8, where a particular trace is decomposed

into the number of write and read commands. Figure 5-4 further shows the

traces in the plot of LBA vs time.12

12 Junpeng Niu helped part of coding work in this section.

Figure 5-3. SPC-1C trace temporal distribution

Chapter 5 Case study: BenChmarking tools

125

Table 5-8. Eight Applications in PCMark

Order Eight Apps Total CMD Write Read

1 Windows defender 6755 300 6455

2 gaming 11040 62 10978

3 importing pictures 2806 4 2802

4 Vista startup 7418 1327 6091

5 Video editing 8204 3711 4493

6 Windows media Center 5011 3309 1702

7 adding music 3336 1506 1830

8 application loading 11155 2660 8495

Figure 5-4. Eight applications in PCMark

Chapter 5 Case study: BenChmarking tools

126

Now you can use this trace as an example for the read cache

performance analysis. Some early research shows that the common

differentiator between drives is read cache hit rate, with reasonable pre-

and/or post-read data. For easy of notation, I define a prefetch action as

both a pre-read and post-read request, as shown in Figure 5-5. A common

case is that some later read requests hit the data in the cache due to

prefetch data, if the trace has a strong locality. Three types of prefetch

accesses are commonly used: prefetch always (PA), prefetch on a miss (PoM),

prefetch on a hit (PoH).

Figure 5-5. Cache prefetch

Figure 5-6. Hole types

As mentioned, a gap between requests is allowed for near sequential

streams. This gap can be a “hole” in the prefetch data, which is harmful to

the overall performance. As shown in Figure 5-6, there are three types of

holes:

• Post hole: The first LBA of the incoming command has

a distance (> 0) within a threshold to the last LBA of the

queued commands in the cache.

• Pre hole: The last LBA of the incoming command has

a distance within a threshold to the first LBA of the

queued commands in the cache.

• Pre and post hole: Both post and pre holes exist.

Chapter 5 Case study: BenChmarking tools

127

To formally define the hole, consider the following two cases:

• Constant: If the range between two close regions in the

cache is less than the constant Hs blocks, this range is

viewed as a hole.

• Adaptive: The hole size is related to DRAM and SSD

cache (most likely monotone increasing to the total/

remaining

H

H a S a S H

H a S a S H

a S a S Oth
S

S T T R R S

S T T R R S

T T R R

,

,

, eerwise

where ST and SR are the total and remaining cache

size, respectively, and aT and aR are coefficients for

ST and SR. An example for 64MB of DRAM cache is

defined as

H

a S a S H

a S a S H

a S a S Ot
S

T T R R S

T T R R S

T T R R

16

256

,

,

, hherwise

where a aT R= =
1

2

15

213 13
, .The actual Hs and Hs

are decided by trace, such as the median size of

requests within a time window. More specifically,

consider if the hole is in the same track/cylinder.

A background task shall be implemented to monitor the LBA regions

in cache and the hit density on these regions. This process is also tasked

to look for gaps in regions of data with some level of hit density and to

generate self-induced read commands to fill in these holes with data from

main store.

Chapter 5 Case study: BenChmarking tools

128

To connect the cache algorithm to the trace properties, use the

following hypothesis:

• If two regions of a certain range within a time-frame

have a high enough correlation, the gap between them

is likely to be accessed.

• The pre-fetch should not affect the overall performance

much, so the benefits gained from the additional cache

hit ratio should be larger than the additional cost due

to pre-fetch.

• The up-bound of the hole size to be fetched is decided

by multiple factors, such as the total/remaining cache

size, workload size, cache type, access time, etc.

Now we have some questions to answer.

• What is the benefit from a hole filling policy? The key is

to get the increased cache hit ratio (hit ratio with hole

filling v.s. hit ratio without hole filling).

• What is the additional cost from a hole filling policy?

The key is to find how many self-induced commands

are generated to fill the hole. The time of the user

workload must be considered.

• Since the similarity exists between hole filling and

the prefetch policy, is it possible to merge hole filling

to prefetch policy (integration)? The key is to find the

overlapped cache hit between two policies; if the overlap

rate is high, prefetch may include hole filling as part of it.

• When and where to apply the two policies (or

integrated policy) with balanced benefit and cost? The

key is to reduce the additional mechanical access cost

and cache pollution.

Chapter 5 Case study: BenChmarking tools

129

 Workload Properties
Let’s look at the think time and completion time first, as shown in

Figures 5-7 and 5-8, respectively. You can see the large difference for their

distributions of various applications. Table 5-9 further gives the mean and

standard derivative values together with IOPS. Figure 5-9 and Table 5-10

provide the size distribution. You may also find the relation between the

size and completion time.

Figure 5-7. PCMark: Think time distribution

Chapter 5 Case study: BenChmarking tools

130

Figure 5-8. PCMark: Completion time

Chapter 5 Case study: BenChmarking tools

131

Table 5-9. PCMark: Think/Completion Time (ms) and IOPS

App IOPS Think-time
mean

Std. Completion-time
mean (blk)

Std.

1 120.57 8.29 46.04 3.43 5.49

2 189.29 5.28 9.20 10.24 47.4

3 48.70 20.54 21.25 1.99 3.44

4 311.30 3.21 8.25 3.59 5.84

5 122.47 8.17 16.68 0.76 2.64

6 59.56 16.79 22.58 1.2 3.22

7 145.65 6.87 14.87 2.78 5.86

8 204.29 4.90 16.37 16.41 29.87

Chapter 5 Case study: BenChmarking tools

132

Figure 5-9. PCMark: Size distribution

Chapter 5 Case study: BenChmarking tools

133

Based on a sequential stream, you can observe some obvious

sequences in general. Importing pictures has the most sequence, while

application loading has less sequence. Except for application loading

(mixed streams), queue length 10 is good enough to detect most streams.

Application loading has relatively more mixed sequential streams. Also

note that for read-only cases, most streams have only two commands. In

Apps 2, 3, and 4, the average stream length is longer than others, which

provides more chance for infinity read mode.

 Gain-Loss Analysis
With the prefetch policy, the gain is from the increased hit ratio due to

the cache policy (e.g., hole filling, prefetch), while the loss is from the

additional disk access (e.g., pre-/post read attached to the user commands;

the self-induced non-attached commands) due to the cache policy.

Table 5-10. PCMark: Size Distribution (Blocks)

App Mean -all std. Mean -read std. Mean -write std.

1 98.67 87.55 102.78 87.4 10.22 7.3

2 86.92 56.39 87.36 56.24 8 0

3 175.09 82.28 175.33 82.1 8 0

4 71.92 54.86 83.12 49.32 20.48 49.35

5 60.77 63.68 59.18 25.42 62.69 90.43

6 173.36 115.82 255.16 13.43 131.29 122.52

7 43.01 61.43 60.39 70.63 21.89 38.54

8 36.23 37.58 41.31 37.47 20.04 33.11

Chapter 5 Case study: BenChmarking tools

134

Two methods can be used to analyze the gain and loss. One simple

method considers frequency only, so it counts the number of the hit

frequency and additional disk access frequency. The self-induced

commands’ cost is generally smaller than non-attached commands. If the

hit increases due to self-induced commands, the gain is large; otherwise, it

is small. This method can provide a rough estimation. The other method is

the so-called mixed simulation and modeling approach; it uses simulation

to get the hit ratio and additional command frequency, while using the

analytical model to obtain the average response time, which is relative

complex and quantitative. Let’s only consider the first one.

Let’s define gain and loss quantitatively:

• Gain: The additional cache hit obtained (a2) = the

cache hit ratio at hole length x (a3) - the cache hit ratio

without hole filling (a0)

• Loss: The additional self-induced commands

occurrence / the total read command (a1)

• Gain-loss-ratio a = a2/a1: The higher, the better to

estimate a, but there are a few basic considerations:

• The queue depth (Qd) in the cache: which has

significant influence on the LRU algorithm. By

observing the largest a vs. Qd, you will see that the

optimal Qd. Qd for different applications may be

various.

• The time interval (dT) between commands: Only if

the interval is larger than a certain value, the system

has chance to handle self-induced command, such

as finding the ratio a for different dT .

Chapter 5 Case study: BenChmarking tools

135

• The hit frequency of each hole: When using a

correlation method to select the hole to fill, the

hit frequency must be higher than 1. If the hit

frequency is generally larger than 1, then this

method is meaningful; otherwise, it is meaningless.

Let’s start to verify whether a self-induced hole filling policy is

beneficial. Take the following steps:

 1. Check a1, a2, and a for all read commands (write

commands also fill the cache).

 2. If a1 is much larger than a2 (e.g., a < 0.2), it is not

economic for hole filling; then check if a2 is too

small to be worthy. Otherwise, hole filling is useful;

and check the selective self-induced commands

based on workload.

 3. If the time-interval between two commands is large

enough (e.g., > 15ms), the self-induced command

may not cost additional resources. If so, any increased

cache hit ratio is beneficial. Repeat Steps 1-2.

Table 5-11 provides the results where Qd = queue depth and fs = filling

hole size. You can see that App 2 is most significant for hole filling, while

App 6 is least significant. Hole filling is generally suitable for Apps 2, 3, 5,

and 8. If you only consider the commands with a think time larger than

10ms, you have the results listed in Table 5-12. You can see that the general

trend is similar to the case without time-interval constraints. App 5 is most

significant for hole filling for fs = 128 and App 3 for fs = 256; while App 6 is

less significant. In sum, a is generally smaller than 1 for short queue depth.

When hole size is very small, a is very small (<< 1). When both queue

length and hole size are short, hole filling policy is generally useless. Based

on the value of a, you can say that this policy is generally useless for App 6

and may be useful for Apps 2, 5, and 8. Further conclusion should be made

after comparing with prefetch policy.

Chapter 5 Case study: BenChmarking tools

136

Table 5-11. Gain-Loss Analysis for Hole Filling

Qd =128;fs =128

1 2 3 4 5 6 7 8

a2 0.026 0.024 0.007 0.001 0.049 0.000 0.051 0.079

a1 0.328 0.060 0.041 0.183 0.099 0.020 0.293 0.192

a 0.078 0.399 0.165 0.007 0.494 0.000 0.175 0.413

Qd =128;fs=256

1 2 3 4 5 6 7 8

a2 0.045 0.044 0.017 0.003 0.061 0.000 0.109 0.118

a1 0.362 0.058 0.028 0.225 0.106 0.026 0.265 0.235

a 0.124 0.760 0.620 0.015 0.580 0.000 0.412 0.505

Qd =256;fs =128

1 2 3 4 5 6 7 8

a2 0.029 0.034 0.007 0.003 0.048 0.000 0.051 0.102

a1 0.338 0.065 0.042 0.183 0.099 0.031 0.295 0.206

a 0.084 0.520 0.160 0.014 0.490 0.000 0.174 0.493

Qd =256;fs =256

1 2 3 4 5 6 7 8

a2 0.048 0.057 0.017 0.006 0.062 0.000 0.110 0.154

a1 0.375 0.061 0.030 0.225 0.104 0.042 0.282 0.242

a 0.128 0.930 0.590 0.027 0.593 0.000 0.390 0.637

Chapter 5 Case study: BenChmarking tools

137

Table 5-12. Gain-Loss Analysis for Hole Filling (Constrained)

Qd =128;fs =128

1 2 3 4 5 6 7 8

a2 0.015 0.023 0.006 0.001 0.023 0.000 0.031 0.058

a1 0.205 0.043 0.016 0.025 0.028 0.009 0.174 0.146

a 0.073 0.548 0.364 0.026 0.811 0.000 0.176 0.396

Qd =128;fs =256

1 2 3 4 5 6 7 8

a2 0.026 0.035 0.015 0.002 0.034 0.000 0.050 0.094

a1 0.252 0.045 0.006 0.041 0.037 0.014 0.196 0.184

a 0.105 0.778 2.389 0.060 0.923 0.000 0.253 0.512

Qd =256;fs =128

1 2 3 4 5 6 7 8

a2 0.018 0.033 0.006 0.001 0.023 0.000 0.031 0.080

a1 0.209 0.047 0.016 0.027 0.029 0.019 0.189 0.162

a 0.088 0.697 0.364 0.025 0.773 0.000 0.162 0.495

Qd =256;fs =256)

1 2 3 4 5 6 7 8

a2 0.031 0.049 0.015 0.002 0.035 0.000 0.050 0.127

a1 0.259 0.048 0.006 0.042 0.039 0.025 0.211 0.196

a 0.119 1.028 2.389 0.058 0.908 0.000 0.235 0.648

Chapter 5 Case study: BenChmarking tools

138

Next, let’s consider the gain and loss for the prefetch policy. Let’s

define the terms:

• Prefetch: Includes post-read and pre-read. Post-

read means an additional size is attached to the last

LBA; pre-read means an additional size is attached to

the first LBA. For example, assume that the original

command is to read LBA 10-20 and the pre-read size is 8.

Then the extended command is to read LBA 2-20.

• Gain: The additional cache hit obtained (b2) = the

cache hit ratio at fetch length x (b3) - the cache hit ratio

without prefetch (b0)

• Loss: The prefetch commands occurs / the total read

command (b1)

• Gain-loss-ratio b = b2/b1: The higher, the better

For this case, let’s also consider the number of sequential streams

and each stream’s length, besides the queue depth and the time interval.

The procedure is similar to the previous case. Table 5-13 shows the

result. You can see that App 5 is most significant for post-read; while App

6 is less significant. b is generally smaller than 1 for short queue depth.

When prefetch size is very small (< 64), b is very small (<< 1). When

the queue length and hole length is long, a prefetch policy is generally

useful. Based on the value of b, you may say that this policy is generally

useless for App 6, most significant for App 5 with post-read, and may be

useful for Apps 2, 4, 7, and 8.

Chapter 5 Case study: BenChmarking tools

139

Table 5-13. Gain-Loss Analysis for Prefetch Policy

Qd =128;fs =128

1 2 3 4 5 6 7 8

b2 0.179 0.140 0.063 0.119 0.462 0.000 0.220 0.224

b1 0.818 0.859 0.937 0.880 0.528 1.000 0.769 0.764

b 0.219 0.163 0.067 0.136 0.875 0.000 0.286 0.294

Qd =128;fs =256

1 2 3 4 5 6 7 8

b2 0.307 0.417 0.197 0.383 0.607 0.000 0.398 0.321

b1 0.690 0.582 0.803 0.616 0.382 1.000 0.591 0.668

b 0.444 0.717 0.245 0.621 1.589 0.000 0.674 0.480

Qd =256;fs =128

1 2 3 4 5 6 7 8

b2 0.183 0.147 0.063 0.120 0.461 0.000 0.220 0.239

b1 0.814 0.851 0.937 0.879 0.527 1.000 0.769 0.748

b 0.225 0.173 0.067 0.137 0.875 0.000 0.286 0.319

Qd =256;fs =256

1 2 3 4 5 6 7 8

b2 0.310 0.427 0.197 0.384 0.607 0.000 0.398 0.342

b1 0.687 0.572 0.803 0.615 0.381 1.000 0.591 0.645

b 0.452 0.746 0.245 0.625 1.593 0.000 0.674 0.530

Chapter 5 Case study: BenChmarking tools

140

You may also analyze the relationship between post-read and

sequential stream by counting 1) the stream numbers (c) and the ratio

c1 = c/total read numbers; 2) each streams hit frequency c2; 3) the cache hit

as b2 (only consider post read, redefine b2). This test can help to check if the

infinity sequence read takes effect, such as only when the sequence length

is long enough, the cache enters into infinity mode. In infinity mode,

post-read is automatic. However, if it is not in infinity mode, you still need

to consider the benefit of the post-read, after detecting a two-command

sequential stream, like the possibility of three or more commands attached

to the stream.

You can further find the relation between prefetch and hole filling by

defining

• Gain: The additional cache hit obtained (d2) = the

cache hit ratio at fetch length x and hole length y (d3) -

the cache hit ratio without prefetch and hole filling (d0)

• Loss: The additional commands occurs / the total read

command (d1)

• Gain-loss-ratio d = d2/d1: The higher, the better

Two comparison methods are conducted here:

• Two queues, one for prefetch (Q1) and other for hole

filling (Q2), both under LRU. Consider the overlapped

hit ratio, i.e., if a command hits in Q1, it also hits in Q2

and vice versa.

• Two queues, one for prefetch (Q1) and other for hole

filling + prefetch (Q3); both under LRU. Consider the

additional hit ratio of Q3 over Q1.

Chapter 5 Case study: BenChmarking tools

141

Define x0 as the hit number without prefetch and hole filling policies,

x̄1 = x1 + x0 as the hit with prefetch, x̄2 = x2 + x0 as the hit due to hole filling,

and x̄3 as the hit due to combined prefetch and hole filling. Now if x0 is

much larger than x1 and x2, it shows that there is not much difference

between prefetch and hole filling; otherwise, check the difference between

x1 and x2. If x1 is much larger than x2, it shows that the benefit of fetch

is much larger than hole filling; otherwise, it is reasonable to do hole

filling instead of prefetch. If x3 − x0 is much larger than x1, it indicates that

the hole filling gained benefits from refetch; otherwise, prefetch is not

beneficial.

Without post-read fetch, you can observe that x̄ 1 is generally higher

than x̄2, and x1 and x0 are generally larger than x2. Except for Apps 5 and 6,

x2 is generally smaller than 1% (Apps 4 and 8 are around 1% when queue

length and fetch size are 256). This means that if post-read takes effect,

then the hole filling’s influence is very small. The overlap between two

policies (post only) are much higher than x1 and x1 + x2; x0 /(x1 + x2) is

generally larger than 10 when prefetch size is over 128 (various prefetch

size; fixed hole filling size 256). Now the key problem is whether it is

worthy to do the hole filling for the additional 2% (queue length =128,

fetch size =256/128) cache hit ratio at the cost of additional self-induced

access (~ 10%).

Observe that b1 is generally larger than a1. However, the cost of

each prefetch is generally smaller than that of a self-induced hole filling

command. Note that this direct comparison may be unfair. An indirect

method is to estimate the average service time for the prefetch policy and

hole filling policy (WCD), so for prefetch, define the response time as write

ratio ∗write access time + read ratio ∗(b3 ∗cache access time + (1–b3)∗ read

access time), and for hole filling, define the response time as write

ratio ∗write access time + read ratio ∗(a3 ∗cache access time + (1–a3)∗ read

access time). However, I omit the details here.

Chapter 5 Case study: BenChmarking tools

142

In sum, you can see that hole filling policy can improve the cache ratio

by introducing self-induced background filling commands.

• The benefit (increased hit frequency) and the cost

(additional self-induced commands) ratio of (post)

hole filling is generally less than 1 if filling any hole

within a certain distance; the average is 0.47 (queue

depth = 256; hole size = 256 blks).

• The benefit and the cost ratio of prefetch (post-read)

is generally less than 1 if prefetching any non-hit

command with a certain prefetch size; the average

is 0.68 (queue depth = 256; prefetch size = 256 blks),

which is better than a (post) hole filling policy,

considering that some hole filling commands may need

more recourses than prefetch commands.

• If further applying (post) hole filling policy to the

prefetch policy, the additional benefit/cost ratio is

generally less than 0.2 (queue depth = 256; prefetch size =

256 blks, hole size = 256 blks). Unless a well-designed

hole filling policy (e.g., based on data-correlation) is

applied, it is not very useful for overall performance

improvement.

Due to the similarity of hole filling and prefetch, the data-correlation

methods may be applied to both hole filling and prefetch; thus the two

policies might be merged.

Chapter 5 Case study: BenChmarking tools

143© Jun Xu 2018
J. Xu, Block Trace Analysis and Storage System Optimization,
https://doi.org/10.1007/978-1-4842-3928-5_6

CHAPTER 6

Case Study:
Modern Disks
Modern disks implement many different features, such as media-based

cache (e.g., using a portion of disk space to log some random write

accesses), DRAM protection (e.g., using a small-size NVM to temporarily

store some data in DRAM cache during a power loss such that write-

cache can be always enabled), hybrid structure (e.g., migrating hot data

to high-speed devices and cold data to low-speed devices so that the

overall access time is reduced), etc. A hybrid disk (e.g., SSHD), one of the

hybrid structures, has advantages in some scenarios where data hotness

is significant. Some emerging and future techniques like SMR, HAMR,

and BPR favor sequential access in order to diminish garbage collection,

reduce energy consumption, and/or improve the device life. This chapter

shows how trace analysis can help to identify these mechanisms via

workload property analysis using two examples: SSHD and SMR drives.

 SSHD
In this section, let’s explore the mystery behind SSHD’s performance

enhancement in SPC-1C [53] under WCD: SSD/DRAM cache and the

self-learning algorithm [56, 57, 16]. I collected data from the XGIG

144

bus analyzer and monitored the response from LeCroy Scope, with a

workload generated by the SPC-1C tool. Some techniques, such as pattern

recognition, curve fitting, and queue theory, are applied for analysis.

From Figure 6-1, you can see that the IOPS jumps to two times the

traditional HDDs for WCD, so the IOPS of SSHD is around 570, while the

traditional HDDs (two models: one is Savvio from Seagate, and the other

is Sirius from WD) can only reach around 200 IOPS when the response

time is less than or equal to 30ms. The task here is to find the reasons for

the performance improvement of hybrid structure via trace analysis. The

basic idea is to compare several drives with a certain level of similarity: to

inject the same workloads to the similar drives, isolate the similarity, and

compare the differences. For example, similar CMR models are selected

in Table 6- 1.

Figure 6-1. SSHD performance comparison with traditional HDDs

Chapter 6 Case study: Modern disks

145

You know from the previous chapter that the write (random) access

dominates the IO requests in SPC-1C, which means the write cache

actually plays an important role. However, write cache is supposed to

be disabled for WCD. Is it true for this SSHD? To verify it, you can do a

simple test by injecting random write requests to SSHD and calculating

the CCT/qCCT/TtoD time. If write cache is actually disabled, all requests

will be written to media directly, which cost roughly 10ms response time.

However, from the trace, you can observe that there are many requests

with response times of less than 1ms at the beginning. Therefore, write

cache actually is active even for the WCD setting. This benefits from the

technique of NAND-backed DRAM cache protection, so part of cached

data can be written to NAND just after system power loses.

Now let’s start some analysis for two essential problems: the cache size

and access isolation.

Table 6-1. Similar Models Chosen for Comparison

SSHD CMR A CMR B CMR C

Capacity (GB) 600 900 600 900

RPM 10.5k 10.5k 10k 10.5k

Bytes per sector 512, 520, 524, 528 512 512 512

Discs 2 3 2 3

Average latency (ms) 2.9 2.9 3 2.9

DRAM cache 128MB 64MB 32MB 64MB

NAND 16GB eMLC none none none

Interface 6Gbps sas 6Gb/s sas 6Gb/s sas 6Gb/s sas

Chapter 6 Case study: Modern disks

146

 Cache Size
We begin with the question of “how much DRAM is used as write cache

during WCD?” First, let’s make sure that the test is repeatable (or the result

is consistent). In order to verify this, perform the following procedure.

 1. Connect SSHD to the XGIG bus analyzer and power

off/on SSHD.

 2. Send 100 random write 8K requests to SSHD using

IOMeter or another tool, and repeat the same

requests 10 times.

 3. Repeat Steps 1-2 for 4 times with the same requests.

 4. Compare and find the access pattern for the XGIG

traces via a trace analyzer tool.

 5. Repeat Steps 1-4 with the request number changed

to 200 and 400.

 6. Do the same test on a different SSHD with the same

IO pattern.

In Step 4, a similar access pattern (LBA vs. CCT) should be observed.

Note that you are checking DRAM write cache in this case, so only a

random write request is used. For a full cache check, you may also try

random read, mixed read/write, and mixed random/sequential patterns.

If a similar pattern is observed, you may conclude that the result is

consistent and useful to identify some inside information. Otherwise, you

shall find out the reasons. One is that the SSD/DRAM cache is not cleaned

before a new test. Therefore, you need some cache flush commands or disk

initialization commands to force it empty. Also note that:

Chapter 6 Case study: Modern disks

147

• R/W DRAM cache may share the same space.

• The SSD mapping table may share the same space with

R/W DRAM cache (a good case: SSD mapping table

uses a dedicated DRAM space).

• The SSD reboot self-learning procedure may take

DRAM space.

Second, implement the following procedure to make sure each test

starts with a clean cache:

 1. Power off/on SSHD (make sure the DRAM write

cache is cleared).

 2. Send 1000 random 8K write requests to SSHD with

queue depth=1 using IOMeter.

 3. Repeat Steps 1-2 for 10 times each with different

request sizes, such as 16K, 32K, 64K, 128K, ..., 2048K.

Once you capture the traces, some post-processes shall be made:

 1. Count the write DRAM hit number at the first

portion of the total accesses for each run by isolating

DRAM accesses from others (DRAM CCT/qCCT is

generally much smaller than others).

 2. Choose the maximum number of each count.

 3. Calculate the hit numbers and the corresponding

actual cache size.

 4. Find the turning point, which provides a hint of the

cluster size.

 5. Refine the turning point by narrowing the

region. For example, if the turning point is within

[256K-512K], then some more points, such as 300K,

400K, and 500K, may be used.

Chapter 6 Case study: Modern disks

148

Note that this model of SSHD has read-cache only SSD so that DRAM

access will not be mixed with SSD write access, which simplifies the analysis

in Figures 6-2-6-5. Figure 6-2 shows the traces from IOmeter random write

tests (request size from 1K to 1M). Assume that the write cache is empty.1

Then the first portion of each run could be the DRAM write cache hit.

1 Even if you follow the instruction here to clean the DRAM, it may not completely
true; thus you can also judge it by the fact that no seek is heard.

Figure 6-2. IOmeter traces for SSHD

Chapter 6 Case study: Modern disks

149

Zoom into the system to find out the hit. Figures 6-3, 6-4, and 6-5

give three examples where the request sizes are 1KB, 512KB, and 1MB,

respectively. In Figures 6-3 and 6-4, you can observe obvious write cache

hits, and the total hit number for 1KB is much larger than that of 512KB

due to limited cache size. However, when the size is increased to 1MB, no

obvious write cache is observed, or it means that one threshold between

512K and 1M is set as the turning point for different size requests. This also

indicates that large size requests will go directly to the media. With the

same steps, you can actually get the required values for WCD and WCE, as

shown in Tables 6-2 and 6-3.

Figure 6-3. 1K request trace details

Chapter 6 Case study: Modern disks

150

Figure 6-4. 512K request trace details

Figure 6-5. 1024K request trace details

Chapter 6 Case study: Modern disks

151

Table 6-2. Comparison Under WCE

SSHD CMR A

size Counted number size size Counted number size

1k 98 0.1M 1k 98 0.1M

4k 98 0.4M 4k 98 0.4M

16k 97 1.5M 16k 99 1.5M

64k 102 6.4M 64k 102 6.4M 2

128k 103 12.9M 128k 104 12.9M

256k 111 27.8M 256k 110 27.8M

512k 115 57.5M 512k 66 33M

520k - - 880k 35 30M

900k - - 900k 42 36.9M

1024k n.a. - 1000k 36 36M

Table 6-3. Two Cases Under WCD of SSHD

SSHD (WCD) test1 test2

size Counted number size Counted number size

1k 98 0.1M 101 101k

4k 100 0.4M 100 400k

16k 99 1.5k 100 1600k

64k 101 6.3k 101 6464k

128k 54 6.75M 54 6.75M

256k 26 6.5M 26 6.5M

512k 12 6.0M 13 6.5M

520k - - 12 6.1M

Chapter 6 Case study: Modern disks

152

From the turning point, you may also guess the cache cluster/segment

size. For example, SSHD’s cluster size is around 64K for write during WCD,

and CMR A is around 256KB. SSHD uses up to 60MB DRAM space as write

cache when WCE, while only around 8MB is used for WCD with some

100 segments.

 Access Isolation
You saw in the previous chapter that SPC-1C has a large portion of local

accesses. This property brings the possibility that some data can be cached

into DRAM or SSD and be accessed quickly later. Then the second question

is “how many accesses are actually directed to DRAM or SSD?” It is generally

a difficult task. However, as the access times of DRAM, SSD, and HDD are

significantly different, you may isolate the possible commands in different

places roughly. The basic idea is to observe the behaviors of the different

accesses and then apply data classification and pattern recognition methods

to find the access pattern, and do repeated random read tests to finally find

the turning points. Although the procedure is similar to the previous case,

you need to change the number of requests to SSHD in this case:

 1. Send 100/200/256/257/etc. pieces of 8K requests

to SSHD, repeat 20- 100 times for each number,

and refine the number of commands to be sent

according to the access pattern.

 2. Suppose the turn point is X. Send X random read

commands with size 16K,32K,..., and 1024K to SSHD

and find the cluster size according to the turning point.

To verify if the repeat number is high enough, check the steady states

of response time. Figure 6-6 provides an example where 100 rounds are

run. You can see that since the third round, the average value and standard

derivatives of response times are almost constant. Thus 10 times of repeats

should be enough in this case.

Chapter 6 Case study: Modern disks

153

Figure 6-6. Steady state of response time

Figure 6-7 shows a case where 100 random read requests with 8KB size

were sent to SSHD 20 times. In the first round, all reads went to media.

After several rounds, the read requests become hot and eventually all

cached in DRAM. Slowly increase the number of requests to check how

many requests the DRAM read cache can hold.

Figure 6-7. 100 8K random reads, repeated 20 times

Figure 6-8 illustrates the results for 250 requests repeatedly. You can

see that DRAM cache can fully hold at least 250 segments. However, when

you slightly increase it to 257, destage starts. When further increase to 260,

Chapter 6 Case study: Modern disks

154

DRAM destage to SSD happens obviously at a relatively high speed, which

is illustrated in Figure 6-9. The destage has a certain adaptive steps, so

when the hit number (access frequency) of the data is increased, destage

becomes more frequent.

Figure 6-8. 250 8K random reads, repeated 100 times

Figure 6-9. 260 8K random reads, repeated 100 times

Chapter 6 Case study: Modern disks

155

Thus, you may guess that 256 could be the maximum read segment

number, as no destage happens if this maximum segment number is not

exceeded. Note that you can find the destage pattern via different time

intervals and sizes.

I leave an issue on request access identification on devices here. Take

a look at Figure 6-10, where repeated 260 8KB read requests were sent to

SSHD 100 times. As the number is over DRAM’s capacity, some requests

will go to SSD. The response time of the 1st, 3rd, 14th, 20th and 50th runs

is shown. You can see that the very first run all went to disk. Starting at the

second round, some went to DRAM and some to media. In the 20th round,

the accesses to DRAM, SSD, and media all existed. However, around 50

rounds, most requests went to DRAM and SSD. In fact, you can see a clear

gap of response time for these read requests. Basically, you may say that

those below 0.1ms are DRAM accesses, and those above 0.2ms are most

from SSD. Now you can get the statistical values for the response time of

SSD and DRAM in an estimated sense, as shown in Table 6-4.

Figure 6-10. Read response time pattern over repeated rounds

Chapter 6 Case study: Modern disks

156

 SMR
This section will discuss the main characteristics of SMR [4, 5] and the

interaction between these characteristics and particular workloads. The

industry has two approaches for SMR generally:

• The drive manages all data accesses, and data

management is complicated similar to the FTL (flash

translation layer) of SSD, so the management of

metadata, GC (garbage collection), over-provisioning,

variable performance, etc, is all inside the drive.

However, there are no host-side changes, so the drive is

used as a normal one. Currently, all major SMR drives

available in the market fall in this category.

• The host manages most data-related accesses via a

SMR-specific file system similar to flash file system.

Data management is complicated but can leverage

mature file systems that write sequentially. A few

examples are SFS [58], HiSMRfs [59], and Shingledfs

[5]. Although mixed drive-host management is also

possible, it is really rare.

Table 6-4. Statistics on Response Time (Based on 40-90 Rounds)

260 Average CCT qCCT TtoD

overall Mean 0.227 0.227 0.212

std. 0.096 0.096 0.096

ssd Mean 0.279 0.279 0.264

std. 0.031 0.031 0.032

draM Mean 0.063 0.063 0.048

std. 0.001 0.001 0.001

Chapter 6 Case study: Modern disks

157

Many particular design issues are considered for SMR drives, such as

data layout management (layout, data placement, defragmentation, GC,

pointer to bands), mixed zones (combine shingled and unshingled part in

same disk), SMR algorithms, and structure for specific applications, etc.

Table 6-5 lists some main expected workload characteristics for SMR so that

those applications with designed metrics can work perfectly in SMR drives.

Table 6-5. SMR Characteristics vs. Workload Metrics

SMR char SMR expectation Workload metrics SMR impact

sequential

write

Good for large size

sequential write

requests

average write request

size and distribution

seek distance (LBa)

sequential stream and

near-sequential stream

the larger size, the

better

the smaller seek

distance, the more

sequential

the more streams, the

more sequential

Write once

read-many

Good for less

updates and more

reads

read/write ratio

read on write (roW) hit

ratio

Write update ratio

the higher read/write

ratio (roW ratio), the

better

the smaller the write

update ratio, the better

Garbage

collection

(GC)

smaller write

amplification

and less GC

device utilization,

device idle time

distribution, queue

length

iops, throughput

Frequented/timed/

stacked write update

ratio (Wur)

Write on write (WoW) hit

distribution and ratio

Long and frequent idle

time for GC

Low write update ratio

indicates that less GC

is required

(continued)

Chapter 6 Case study: Modern disks

158

SMR char SMR expectation Workload metrics SMR impact

sequential

read to

random

write

Less read

performance impact

due to indirect

mapping, such as

sequential LBa read

requests in random

physical address

read on write (roW)

hit/size distribution and

ratio

the higher the small

(large) read to small

(large) write ratio, the

better

in-place or

out-of-place

update

Frequent and recent

updates need

random access

zone (raZ)/ssd/

large draM buffer

to hold write data

stacked write update

ratio

the higher ratio in

shorter stack, the

more necessary to

have an in-place

update buffer

Table 6-5. (continued)

Chapter 6 Case study: Modern disks

159© Jun Xu 2018
J. Xu, Block Trace Analysis and Storage System Optimization,
https://doi.org/10.1007/978-1-4842-3928-5_7

CHAPTER 7

Case Study: RAID
RAID is one of the most widely applied data-protection strategies in the

world [23, 60, 61, 62, 63]. It has unique features compared with single disk

access, such as file synchronization, recovery, etc. Therefore, it leads to

some unique IO patterns compared with others. This chapter analyzes

two examples based on RAID 5 from two application scenarios. Large

differences are observed between two traces. This chapter also analyzes

whether the workloads are suitable for SMR drives. In addition, some

suggestions are provided in order to improve system performance.

The concept of a RAID was introduced to harness the potential of

commodity hard drives in 1987. Patterson et al. [64] officially established

the RAID taxonomy in 1988. RAID overcomes the capacity limitations

of commodity disks by exposing an array of such low-capacity disks as a

virtual single large expensive disks (SLED).

RAID technology usually requires the distribution of data across a

number of disks via the data stripes. A stripe represents the smallest unit of

protection in an array, thus any lost data within a stripe can be recovered

using only the surviving data within that stripe. In early days, since clients

were connected to the RAID via a serial access channel, parallel access

by multiple clients was not explicitly supported. However, with many

advanced queuing schedulers developed, parallelism now is widely applied

in RAID systems in order to fully utilize the advantage of multiple disks.

160

There are some common performance issues within RAID systems

[20, 62, 63], such as the small write problem, the synchronization problem,

performance loss during downgrade (recovery and reconstruction),

and more.

The small write problem exists in many critical applications, such

as online transaction processing (OLTP) systems. Those applications

usually contain many read-modify-write (RMW) accesses. This leads to

some issues for a RAID system. First, a write in a striped array requires

reads of both data and parity blocks, and computation of a new parity,

before the writing of both new data and new parity, which is four times

more accesses than for a single disk. Second, these small accesses only

alter a few blocks within a specific stripe, yet the parity disk for the entire

stripe is unavailable during the update. This dramatically downgrades the

performance of the array by reducing the possible parallelism.

The synchronization problem is due to the data integrity requirements;

only when all drives of one stripe array are completed, the system returns a

completion signal. Since some disks may finish access earlier than others,

the faster disks have to wait for the slow ones. This requirement may be

relieved in some conditions, such as non-critical applications, protected

DRAM, etc. During recovery, due to background recovery access, the

foreground user requests may be largely impacted [65].

Similar problems are also applicable to the disk arrays using erasure

code (EC). And in some cases, the problem may be more critical due to the

higher complexity of EC than that of traditional RAID.

 Workload Analysis
You will study two RAID 5 examples from two different vendors under

video surveillance applications. The system settings will be given first,

followed by the analysis of two different traces: read-dominant and write-

dominant cases.

Chapter 7 Case study: raId

161

 System Settings
In the first example, there are 10 7200RPM HDDs each of 4TB. 24 write

streams and 6 read streams are imposed to this system. The second example

has 36 similar HDDs with 90 video channels. The trace length is 620 and 110

seconds, respectively. Some basic metrics are listed in Tables 7-1 and 7-2.

 Read-Dominated Trace
The LBA distribution of requests are near sequential in this trace, as

shown in Figure 7-1. For reads, there are two regions. One is the same to

the current write region, and the other is close to the previous write region

Table 7-1. RAID Trace 1: Read Dominated

Combined Read Write

Numbers of commands 7821 5493 (70.2%) 2328 (29.8%)

Number of blocks 5284520 3231312 (61.1%) 2053208 (38.9%)

average size (block) 675.7 588.3 882

r/s w/s rsec/s wsec/s rkB/s wkB/s IOps tp(MBps)

8.86 3.75 5211.8 3311.6 2605.9 1655.8 12.61 4.23

Table 7-2. RAID Trace 2: Write Dominated

Metrics Combined Read Write

Cmd number 21449 8535 12914

total blk size 2528514 357824 2170690

average blk size 210.012 41.924 168.088

average IOps 193.152 76.859 116.293

average tp (MBps) 11.118 1.573 9.545

Chapter 7 Case study: raId

162

(i.e., playback). The sizes of the read requests are mostly 512 or 1024

blocks. However, the ratio of 1024 blocks of read is less than that of write,

which is displayed in Figure 7-2.

Figure 7-1. LBA distribution of RAID Trace 1

Figure 7-2. Size distribution of RAID trace 1

Chapter 7 Case study: raId

163

In general, this trace has large portion of idle time, which accumulates

83.4% of total time. The average summation of idle time is almost evenly

distributed over time but the large idle intervals not, as shown in Figure 7-3.

The intervals >200ms and >500ms count 8% and 1.7%, respectively, but

occupy 71.6% and 34% of total idle time, respectively. In fact, 65% (94%) of

idle frequency is less than 10ms (1s), and 2% (70%) of idle time is less than

10ms (1s), as illustrated in Figure 7-4. So we can conclude that the total

idle time is long enough for small-IO-based background activities, but

the individual long idle intervals may be not sufficient, which means GC

access shall be completed in small steps.

Figure 7-3. Idle time distribution of RAID trace 1

Chapter 7 Case study: raId

164

Besides the large idle time, note that there are some abnormally

large response times for some requests (> 200ms). As you know, even

for the worst case, the access time of a 1024-block request should not

excess 60ms. Thus, the waiting time is too long for the two cases listed in

Table 7-3: 1) the CMD 529 is continuous to 530 but the write access costs

over 430ms; 2) CMD 1015 is close to 1024 but it costs 390ms. This may

be caused by 1) background disk activities such as log writes, metadata

updates, zone switches, etc; or 2) RAID synchronization events. A possible

solution is to evenly distribute tasks and actively provide idle time for

background tasks.

Figure 7-4. Idle time CDF of RAID trace 1

Chapter 7 Case study: raId

165

For the frequented write update shown in Figure 7-5, you can see that

94.2% of the accessed blocks (maybe repeated) are only written once and

5.8% of the blocks are at least accessed twice and <0.1% of the blocks are

written three times. This means a very low rewritten ratio. Thus you need

to identify if large size requests or small size requests are rewritten most.

The fact that decreasing percentage of written blocks are written multiple

times means a tiny portion of hot blocks.

Table 7-3. A Segment of RAID Trace 1

Start(sec) End ID End Cmd ICT(ms) LBA Length

27.51865 27.53302 529 529 W 0.109105 1.21e+08 1024

27.5331 27.96851 530 530 W 0.078425 1.21e+08 512

27.9686 27.98473 531 531 r 0.086485 80135168 1024

27.98483 27.987 532 532 r 0.10257 80351232 512

...

52.73206 52.7429 1014 1014 r 0.466475 80690688 512

53.46918 53.85766 1015 1015 r 726.2745 80875520 512

53.85778 53.86006 1016 1016 r 0.112894 80876032 512

53.86014 53.87545 1017 1017 r 0.083455 80881664 1024

Figure 7-5. Frequented update of RAID trace 1

Chapter 7 Case study: raId

166

For the timed write update shown in Figure 7-6, the total write blocks

occurs 35% of total access blocks (read and write) and the updated blocks

(at least write twice) are only 1% (1/35=2.9% rewritten blocks). Total write

commands are 30% of the total commands and the update commands

are 1.5%. Note that the timed write update ratio is closely related to the

frequented write update ratio; in other words, sum(hit*(update freq-1))/

total blocks = updated blocks/total write blocks.

Figure 7-6. Timed update of RAID trace 1

By further considering the write stack distance in Figure 7-7, you can

see that the hit ratio is low and it is not necessary to have an inline write

cache to hold these write data for a long time. Based on IOPS, to reach

stack distance 100, it costs roughly 26.6 seconds. In this period, only 10%

full write hit and 20% partial write hit of the overall 5% hit are observed.

The updated size is around 43MB on average. Thus it is not worthy of

compensating such a small hit. Note that the write hit distributes over the

write range. A full hit is only for 512-block requests while a partial hit is for

1024-block requests in this trace. See Figure 7-8 for details.

Chapter 7 Case study: raId

167

When you take SMR drive into consideration, as discussed in

Chapter 6, you have the main characteristics summarized in Table 7-4. You

may understand this table together with the SMR properties introduced

in Chapter 6. Although it is a read-dominated trace, it has no WORM

property.

Figure 7-7. Stack update of RAID trace 1

Figure 7-8. Write hit distribution of RAID trace 1

Chapter 7 Case study: raId

168

Table 7-4. Main Characteristics of Trace 1 for SMR

SMR characteristic Observation

sequential write Large size write requests (>=512 blocks) > 99.9%

Mode ratio: 50% for read & write (Q=1)

sequential cmd ratio(M>=2 & s>=1024): write 85% &

read 90% (Q>=50)

Write-once-read-

many

r/W: cmd 70:30; blks 61:39

stacked rOW ratio: < 1%

total write blocks occurs 2.9% of total access blocks

Garbage

collection (GC)

Frequent small idle time; short queue length 5.8%

frequented Wur the updated blocks (at least write twice)

are only 1% of total access blocks and 2.9% write blocks,

so very small write update ratio and write amplification

103% (considering the short trace duration)

sequential read to

random write

rOW ratio is 1.2, so it’s a very small read ratio, thus the

written data is rarely likely to be immediately read back

In-place or out-of-

place update

Very small update ratio; not necessary to apply large-size

ssd/draM/aZr cache for performance improvement (write

update in cache)

 Write-Dominated Trace
This trace from a video surveillance application shows a large difference

from the previous one in many aspects, such as the read/write ratio,

LBA distribution, size distribution, write update ratio, etc. Therefore, for

different venders under different scenarios, the actual workloads may

differ from each other significantly, even using the same storage structure.

Figure 7-9 shows the LBA distribution where only one main region

spanning 30GB is applied to both read and write close to the starting

position of LBA (as the trace was collected when the RAID is nearly empty).

Chapter 7 Case study: raId

169

If you further consider the figure of LBA vs. Time, you can see that the write

requests are more sequential than the read ones. Figure 7-10 illustrates

that write and read have similar size distribution, dominated 8-block

requests, and close shape of 8-128 blocks distribution. Also, the size

distribution range is much larger than the previous trace.

Figure 7-9. LBA distribution of RAID trace 2

Figure 7-10. Size distribution of RAID trace 2

Chapter 7 Case study: raId

170

As it is write dominated, let’s focus more on the write update.

Figure 7- 11 shows the stacked distance for write requests. This confirms

the timed write update, which is the small overlap size (possibly due to

metadata block attached to data blocks). From Figure 7-12, the stack

distance 250 is roughly 2.1 seconds based on IOPS. In this period, it’s

near 60% full write hit and 60% partial write hit of the overall 52% write

command hit. This means that some portions kept updating. Therefore,

the disk or system may require a random access zone or NVM for this small

portion of updated data.

Figure 7-11. Write stack distance of RAID trace 2

Chapter 7 Case study: raId

171

In sum, tens of mixed streams lead to a not-very-sequential IO pattern,

which indicates that a proper stream-detection algorithm with long queue

is required. Special metadata and parity structure lead to a relatively high

LBA update size and large update command ratio, which implies that a

large size DRAM/NVM/RAZ cache may be necessary to avoid the frequent

updates. Also, you can conclude that the impact of write cache is very

limited in the previous read-dominated trace. Note the frequent small

idles but less effective idle intervals, which indicates that GC policy may be

adjusted to fit this situation.

The impact to SMR drives is summarized in Table 7-5. Essentially,

the impact for normal write access is not trivial due to the relatively large

update ratio. The high updated command ratio may cause relative high

defragmentation. The metadata management scheme of the surveillance

system and/or the SMR drives may require changes. The drive may not

have enough idle time for the background GC subject to GC policy, as the

useful effective idle intervals are marginal.

Figure 7-12. Stack update of RAID trace 2

Chapter 7 Case study: raId

172

Table 7-5. Main Characteristics of Trace 2 wrt SMR

SMR characteristics Hadoop observation

sequential write Large size write requests (>=128 blocks): 35%

Mode ratio: 18% (27%) for write when Q=1(Q=128)

sequential cmd ratio(M>=2): write 35% at

QL=1 & 60% at Q=256

Write-once-read-many r/W: cmd 1:1.5; blks 1:6.1

high stacked rOW ratio

total write blocks occurs 85.9% of total access blocks

Garbage

collection (GC)

updated blocks (at least write twice) are 13.4% of write

blocks, so a relatively high write update ratio and write

amplification 115.5% (considering the short trace duration)

updated command ratio >50% with small overlap possibly

due to the metadata attached

Frequent but small-size idle time in host side difficult for

background GC

In-place or out-of-place

update

relatively high update ratio, so it’s necessary to apply

large-size ssd/draM/aZr cache for performance

improvement (write update in cache)

This trace is much busier than the previous one. The total effective idle

time (idle interval>0.1s) is 14.40 seconds and total idle time 98.6 seconds.

The total effective idle frequency (idle interval>0.1s) is 33 only while the

total idle frequency is 6244. Now the question is whether the (effective) idle

time is enough for background activities. Due to the relatively consistent

workload of video surveillance and data/metadata structure, the garbage

ratio of each SMR data zone is similar. Suppose a 1GB for zone size and

3MB per track. The total write workload of this trace is about 1GB. So is it

Chapter 7 Case study: raId

173

possible to move 1GB to new place in the effective idle times? Here is the

analysis:

• Completion of a sequential 1GB read and a sequential

887MB write (assume13.4% garbage ratio) requires

around 5.3 seconds for 7200RPM.

• The average useful idle time for GC is 14.4/33−0.1=0.34

second. Suppose the positioning time is 6ms for R/W.

(0.34−0.006*2) second can handle up to 64.4MB data in

GC zone.1 A total of 33 idle intervals can handle around

2GB data, which is larger than 1GB.

• Additionally, the old video data is replaced by new data

periodically, which will not change the garbage ratio

much in general.

Ideally, the idle time seems large enough to handle GC activities,

given that

• The effective idle time should be fully used and the GC

size is adjusted dynamically.

• The idle time algorithm works quite well with a lower

idle detection threshold, such as from 100ms to 50ms to

increase the GC activities.

• The other background activities may not take

much time.

However, in reality, you may require much large idle time. In particular,

defragmentation may significantly increase the write amplification ratio.

1 “This can be solved by the following optimization problem: \max cleaned_
data=read_speed*$t1_$+write_speed*t_2, subject to t_1+t_2=0.34−0.006*2
and t_1, t_2>0”.

Chapter 7 Case study: raId

175© Jun Xu 2018
J. Xu, Block Trace Analysis and Storage System Optimization,
https://doi.org/10.1007/978-1-4842-3928-5_8

CHAPTER 8

Case Study: Hadoop
Hadoop is one of the most popular distributed big data platforms in

the world. Besides computing power, its storage subsystem capability is

also a key factor in its overall performance. In particular, there are many

intermediate file exchanges for MapReduce. This chapter presents the

block-level workload characteristics of a Hadoop cluster by considering

some specific metrics. The analysis techniques presented can help you

understand the performance and drive characteristics of Hadoop in

production environments. In addition, this chapter also identifies whether

SMR drives are suitable for the Hadoop workload.

Users of large systems must deal with explosive data generation,

often from a multitude of different sources and formats. The observation

and extraction of potential value contained in this large, generally

unstructured data lead to great challenges, but also opportunities in data

storage, management, and processing. From a data storage perspective,

huge capacity (byte) growth is expected, with HDDs supplying most

capacity workloads for the foreseeable future, although SSDs and NVMs

are also widely used in time-sensitive scenarios (performance workload).

The interaction of HDDs with these capacity workloads must be well

understood so that these devices algorithms.

176

From data management and processing, big data arises as a trendy

technology, while Hadoop emerges as a leading solution. Originating

from Google’s GFS and MapReduce framework, the open-source Hadoop

has gained much popularity due to its availability, scalability, and good

economy of scale. Hadoop’s performance has been illustrated for batch

MapReduce tasks in many cases [66, 67], though more exploration is

ongoing for other applications within Hadoop’s umbrella of frameworks.

To best understand Hadoop’s performance, a common approach is

workload analysis [66, 67, 68, 69, 70]. The workload can be collected and

viewed in different abstract levels. The references [37, 35] suggest three

classifications: functional, system, and physical (see Figure 2-1 in

Chapter 2). However, most workload analysis works in this area are studied

with a system view.

Kavulya et al. [71] analyzed 10 months of MapReduce logs from the

Yahoo! M45 cluster, applied learning techniques to predict job completion

times from historical data, and identified potential performance problems

in their dataset. Abda et al. [72] analyzed six-month traces from two

large Hadoop clusters at Yahoo! and characterized the file popularity,

temporal locality, and arrival patterns of the workloads, while Ren et al. [66]

provided MapReduce workload analysis of 2000+ nodes in Taobao’s

e-commerce production environment. Wang et al. [67] evaluated Hadoop

job schedulers and quantified the impact of shared storage on Hadoop

system performance, and therefore synthesize realistic cloud workloads.

Shafer et al. [70] investigated the root causes of performance bottlenecks

in order to evaluate trade-offs between portability and performance in

Hadoop via different workloads. Ren et al. [73] analyzed three different

Hadoop clusters to explore new issues in application patterns and user

behavior and to understand key performance challenges related to IO and

load balance. And many other notable examples exist as well [69, 68, 37].

Chapter 8 Case study: hadoop

177

While predominately system-focused, some works provide a functional

view [69, 70, 73] where average traffic volume from historical web logs are

discussed. Some simulators and synthetic workload generators are also

suggested, such as Ankus [66], MRPerf [74], and its enhancement [67].

However, to my best knowledge, there is no direct analysis work for

a Hadoop system at the block level. A block-level analysis is timely and

more valuable now that device manufacturers are pressured to develop/

improve products to meet capacity or performance demands, such as

emerging hybrid or shingled magnetic recording (SMR) drives [5, 40, 4].

When considering the SMR drives (and the coming energy/heat assistant

magnetic recording (EAMR/HAMR) drives) which have much higher data

density than conventional drives, such an analysis is indispensable, due

to their distinguished features from the conventional drives. For example,

SMR drives introduce characteristics such as shingled tracks, which make

the device more amenable to sequential writes over random, as well as

indirect block address mapping, garbage collection, and more, which all

modify how these devices interact with user workloads. A big question at

the device level is if the block-level Hadoop workload is suitable in SMR

drives.

In this chapter, I analyze Hadoop workloads at a block device level

and answer this big question. Aided by blktrace, I provide a clear view of

Hadoop’s behavior in storage devices [75, 76]. The main contribution lies

in the following aspects:

• Defining some new block-level workload metrics, such

as stacked write update, stacked ROW, and queued

seek distance to fulfill particular requirement of disk

features

• Identifying some characteristics of a big organization’s

internal Hadoop cluster, and relating them to findings

of other published Hadoop clusters with similarity and

difference

Chapter 8 Case study: hadoop

178

• Providing some suggestions on Hadoop performance

bolstered from drive-level support

• Providing analysis for the applicability of SMR drives in

Hadoop workloads

This chapter will first cover the overall background of SMR drives and

the Hadoop cluster and trace collection procedure. Then it will cover the

analysis results based on these metrics.

 Hadoop Cluster
Numerous workload studies have been conducted at various levels,

from the user perspective to system/framework-level analysis. Most of

these types of analysis only capture certain characteristics of the system.

Harter et al. go as far as to take traces at a system view and apply a simple

simulator to provide a physical view of the workload [77]. However, leaving

the physical view of a system to simulation can miss details that may

be critical to understanding a workload. Therefore, it is generally more

reasonable to analyze the real workloads when considering performance.

The workflow of a Hadoop cluster is to import large and unstructured

datasets from global manufacturing facilities into the HDFS. Once

imported, the data is crunched and then organized into more structured

data via MapReduce applications. Finally, this data is given to HBase for

real-time analysis of the once previously unstructured data. While some

of this structured data is kept on the HDFS (or moved to another storage

location), the unstructured data is deleted daily in preparation to receive

new manufacturing data.

The Hadoop cluster is used to store the manufacturing information,

such as the data from 200 million devices per year created by the company.

For example, in phase I manufacturing (clean room assembly), while drive

components are assembled, data is captured by various sensors at each

Chapter 8 Case study: hadoop

179

construction step for every drive. From a manufacturing point of view,

creating 50-60 million devices a quarter creates petabytes of information

that must be collected, stored, and disseminated in the organization for

different needs. Some user scenarios include the query to the particular

models, the summarization of quality of one batch, the average media

density of one model, etc.

PIG/Hive is used for MapReduce indirectly, actually PIG/Hive converts

SQL-like code to Java code to run MapReduce. MapReduce then does

SQL-like statements to process raw test data to generate drill-downs

and dashboards for product engineering R&D and failure analysis (FA).

However, the cluster is mainly for analytics: MapReduce use cases (∼80%)

and also some Hbase online search use cases (∼20%).

The WD cluster configuration is shown in Table 8-1. A general data

flow is shown in Figure 8-1, where HDFS has native configurable logging

structure, while datanode needs the aid of blktrace. The read requests

from client-obtained metadata information from the namenode and

then namenode sends block ops to devices. Thus the client gets the

corresponding data from datanotes. The write requests will change both

data in datanodes and the metadata in namenodes.

Table 8-1. WD-HDP1 Cluster Configuration

WD-HDP1: 100 Servers

Cpu Intel Xeon e3-1240v2, 4 Core

raM 32 GB ddr3

os hdd WdC Wd3000BLFs 10krpM 300GB

hadoop hdd WdC Wd2000FyyX 7.2krpM 2-4tB

hadoop Version 1.2.x

Chapter 8 Case study: hadoop

180

The data collection structure is illustrated in Figure 8-2. The task

tracker runs above the local file system (FS). The jobs will finally convert

into the block-level accesses to the local devices in each datanode. The

tool blktrace actually collects the data in the block IO layer from the local

devices (see Appendix B for details). I ran blktrace (sometimes together

with iostat and/or iotop) repeatedly on four datanodes with different file

systems and write cache settings in tens of batches, where two nodes

used XFS and another two used EXT4 as local file systems, with each run

lasting for few hours to few days. I collected hundreds of GB of traces (100+

pieces) representing total 1500+ hours of cluster operation from May 2014

to January 2015.1 I switched the write cache on or off to collect data from

different situations. The workload to these four nodes was relatively stable

based on Ganglia’s network in/out metrics except for a few pieces. In

particular, I focus on the trace collected in January 2015 with batch ID from

16 to 25 in this book. They are all one-day duration traces with the settings

as show in Table 8-2.

1 Trace is available up request. Please contact WDLabs for details at https://
community.wd.com/c/wdlabs.

Figure 8-1. Data flow in Hadoop system

Chapter 8 Case study: hadoop

https://community.wd.com/c/wdlabs
https://community.wd.com/c/wdlabs

181

Figure 8-2. Trace collection using Ganglia and Blktrace

Table 8-2. File System and Write Cache Settings

Node ID FS Write cache

147 XFs 16:21 disabled; 22:25 enabled

148 eXt4 16:21 disabled; 22:25 enabled

149 eXt4 16:21 enabled; 22:25 disabled

150 XFs 16:21 enabled; 22:25 disabled

 Workload Metrics Evaluation
In this section, I discuss my observations of disk activity from a sample of

nodes within the Hadoop cluster. I then explain how these observations

relate to metrics discussed in the previous section. Finally, I conclude

with observations from a system level and suggestions for addressing

performance issues which could arise from my recorded observations.

Chapter 8 Case study: hadoop

182

 Block-Level Analysis
There exist some tools to parse and analyze raw block traces. For example,

seekwatcher [78] generates graphs from blktrace runs to help visualize IO

patterns and performance. Iowatcher [79] graphs the results of a blktrace

run. However, those tools cannot capture the advanced metrics defined in

Chapter 2. Thus you can apply the Matlab-based tool introduced before for

these advanced properties.

 General View

Figure 8-3 shows some average values of request size, IOPS, and

throughput. From the figure, you can observe that the write size and IOPS

are more related to file system type, as the difference between EXT4 and

XFS is obvious. However, the read size and IOPS seem to be more related

to batch, as different batches may have different read sizes. Note that the

overall throughput is similar for each batch, which means the workload

to each node is nearly even.2 By removing the maximum and minimum

values, you can look at the average value and standard derivatives in

Figure 8-4. The size pattern for write for different file system types is clearly

illustrated. Figure 8-5 further shows that the write requests’ major size

range is [1–127] blocks and 1024 blocks. The sum of ratios in the two ranges

is almost equal to 1, which leads to the near symmetric curve around 0.475.

2 There may exist a few nodes with large variance compared with others due to
non-perfect workload balance policy.

Chapter 8 Case study: hadoop

183

Figure 8-3. Average values of workloads for different file systems

Figure 8-4. Average size and IOPS

Chapter 8 Case study: hadoop

184

In order to get more insight views into the trace, let’s choose a typical

piece of a trace (Node 148 and batch 21) with its basic IO properties close

to the average value described earlier. Table 8-4 gives the basic information

about the workload. Next, I discuss this trace deeply in several aspects,

which are summarized in Table 8-3.

Figure 8-5. Write request size distribution in different range

Chapter 8 Case study: hadoop

185

Table 8-3. Summary of Observations and Implications

SMR characteristics Hadoop observation

Write once read many 40% read and 60% write

relatively low write update ratio

35.4% stacked roW ratio

Sequential read to
random write

relatively small random write ratio

roW ratio ˜60% and small size, so insignificant

impact

Out-of-place update stacked WoW: 70% within first 10 minutes

usefulness of large-size ssd/draM/aZr cache to

performance improvement (write update in cache)

Sequential write Large size write requests (S ≥1024 blocks) > 64%

Mode ratio: write 65% and read 70%

sequential ratio (S ≥1024): write 74% (66%) and read

82% (7%);

Near sequential ratio (S ≥1024): write 87% (65%) and

read 95% (85%)

Garbage collection (GC) Frequent small idle time and large idle time

periodically

Low device utilization

relatively short queue length

relatively low write update ratio

116.3% frequented WoW small write amplification

8.5% write update cmds small rewritten ratio

the dominant partial WoW hits are mainly large-size

requests, while full hits at small-size requests

Chapter 8 Case study: hadoop

186

 Size and LBA Distribution

The overall request LBA distribution is shown in Figure 8-6a. Figure 8-6b

further illustrates the size distribution curve, from which you can see that

minimum requests are 8 blocks while the maximum size is 1024 blocks. For

write requests, the total ratio of 8-block and 1024-block requests is almost

90%. The ratio of large size write requests (≥1024 blocks) is greater than

55%, so write requests are more sequential. For reads, the ratio of requests

with size ≤256 is around 50%, and the size distribution is more various.

Thus, the read request is generally more random than the write requests.

The LBA vs. size distribution figures further confirm this observation. In

fact, for writes, you can see that most large size requests lie intensively

in few ranges; middle size requests are very few, while for reads, the size

distribution is more diverse.

Table 8-4. Basic Statistics of Trace 148-21 (EXT4-WCD)

Combined Read Write

Number of blocks 917942 373424 544518

average size (block) 435.7 216.5 586.0

read Iops (r/s) 4.322

Write Iops (w/s) 6.302

Blocks read per second 935.802

Blocks written per second 3693.157

Chapter 8 Case study: hadoop

187

Figure 8-6. LBA and size distribution

Chapter 8 Case study: hadoop

188

These findings provide a different view from the “common sense”

of sequential access for Hadoop system [70]. It is true that sequential

reads and writes are generated at the HDFS level for large-size files (the

settings for chunk size is 128MB), so large-size files are split into 128MB

blocks and then stored into the HDFS, and the minimum access unit is

therefore 128MB generally. However, when these accesses interact with

local file systems such as EXT4 and XFS, the situation becomes much more

complex.

 IOPS and Throughput

The average value of these two metrics depends on the statistical time

window/interval. As an example, burstiness is very commonly observed in

this trace, which leads to relatively rigid curves and high maximum IOPS

for small time intervals, and a relatively smooth curve with low maximum

IOPS for a large time interval. The IOPS for reads are generally higher

than that of writes; however, the throughput of reads is generally lower

than that of writes. In comparing the 600-second interval average with

the 6-second interval average shown in Figure 8-7, the average value has

a large difference. Note that the read IOPS in the 6-second interval figure

are higher than 400, which is not an “error.” The reason is due to the near

sequential behavior described earlier. To verify the tool, I compared the

parsed curve with the one collected by iostat and iotop, and obtained a

consistent result.

Chapter 8 Case study: hadoop

189

 Utilization and Queue Depth

Both device workload (average 15%) and CPU workload (average 20%)

are low. The average queue depth of the HDD (average value <0.3) further

shows the low device utilization of this workload. As the overall workload

is generally low, and the “periodic” bottom-peak curve is illustrative, the

system therefore can exploit idle time to get the most potential benefits

(such as garbage collection and defragmentation for space efficiency, or

even block reorganization) for performance improvements. However, most

idle time is not long enough for large background jobs. How to fully utilize

these idle times is an interesting topic for future exploration.

Figure 8-7. IOPS and throughput

Chapter 8 Case study: hadoop

190

 Request Sequence

Let’s now look at the IO sequential pattern for both read and write

requests. Some relevant concepts were introduced in Chapter 2.

For queued next seek distance, observe that the value of the mode

(most frequent value) is equal to 0, and the mode ratio at N=64 (N=1)

for read and write is 70.2% (61.6%) and 65.4% (61.3%), respectively. This

implies a highly sequential workload (where higher is better). The mean

absolute value drops quickly with queue length, which implies that there

are many interleaved sequence streams. Therefore, the queue length used

for sequence detection in a disk drive should be reasonably large to see

better performance from the device.

Figure 8-8 illustrates sequence streams with different N, starting

from 2 (and doubling to 256). The specific values for N=1 and N=128

are given in Table 8-5 (“w/” and “w/o” denote the cases with or without

size constraints). You can see that the streams with only two requests

dominate, while the streams with larger request numbers are relatively

few. When a size constraint is enforced (S = 1024 blocks), the dominate N

for read is moved to the value ≥3.

Chapter 8 Case study: hadoop

191

Figure 8-8. Sequence stream with different N

Table 8-5. Sequence Stream and Command Detection

M 2 ≥ 2 Total streams Total commands

N=1 w/o w/ w/o w/

Read 52827 19987 282911 210081

Write 25633 12412 359668 324007

N=128 w/o w/ w/o w/

Read 43682 3579 308149 217373

Write 27303 9209 393962 354384

Chapter 8 Case study: hadoop

192

However, for the write the value of N is still 2. This shift indicates the

request size of reads in sequential streams is generally smaller than that

of writes. This is further confirmed by the average request size shown in

Table 8-6, so the size of sequence stream/commands of writes is much

larger than that of reads. Therefore, the difference for read/write between

size-constraint (S = 1024 blocks) and non-size-constraint requests is

shown to be significant. It is noted with increased queue length N, the total

stream number is generally decreased while the average stream size is

increased and average command size is decreased.

Table 8-6. Average Size of Sequence Stream and Command

Op (N) Avg. cmd
size w/o (blocks)

Avg. cmd
size w/ (blocks)

Avg. stream
size w/ (blocks)

read (1) 259.5 308.9 3247.3

Write (1) 952.0 910.3 24851.7

read (128) 245.4 307.9 18700.5

Write (128) 797.7 882.2 31685.2

The total sequence stream detected is illustrated in Figure 8-9. This

figure shows that the write request is much more sequential than read

(considering the ratio). Note that for this figure, “combined” is not a

simple sum of “read” and “write;” it is detected in the FIFO rule with all

commands. The value displayed in Table 8-5 is consistent to the mode

counter of queued next seek distance. In fact, you can easily calculate that

the frequency of mode is the total command number of streams minus the

total number of streams.

Chapter 8 Case study: hadoop

193

Therefore, you can see that total ratio of “sequential” read/write is

over 82% and 74% (N=256), respectively (detected read/write sequential

commands/total write/read commands), without size constraints. The

ratio is reduced to 76% and 65.5%, respectively, with the size constraint

(S =1024), which is more reasonable to indicate the sequence ratio.

With increased S, the ratio of sequential read/write commands drops

slightly, as shown in Figure 8-10. It shows that the sequence of write is

rather strong, as the sequence streams are generally large, so the ratio of

writes is reduced from 82% to 62% and 58% when S is changed from 1024

to 4096 and 8196, respectively.

Figure 8-9. Sequence ratio with S=1024

Figure 8-10. Sequence ratio with with S=4096 and 8192

Chapter 8 Case study: hadoop

194

As shown in Figure 8-11, near-sequential for read is very strong. The

total ratio for writes and reads is over 87% and 95%, respectively (detected

write or read sequential commands/total write or read commands),

without considering size constraint. It reduces to 65% and 85%,

respectively, with the size constraint, which is more reasonable to indicate

the sequence ratio of reads is higher than that of writes. With increased S,

the ratio of near-sequential read/write commands slightly drops, similar

to that of sequence ratio. Note that the distance is generally larger than 8

blocks; when δd ≥ 16, the increment is significant.

All the (near) sequence information discussed above provides a good

reference for pre-fetch policy design for disk drives. For example, when

considering a sequence detection algorithm, the gap is an important

parameter. When designing a hot data identification algorithm, the

definition of hit frequency may be changed slightly for these near

sequence streams. For instance, the LBA hit within a certain region can be

counted as a hot area to take post-read action. The observations also tell

that the interleaved stream number is not large and a small queue may

be good enough to detect the sequence (e.g., N≥16, compared with non-

cache, N=50 can increase around 5% sequence).

Figure 8-11. Near sequence ratio with S=1024

Chapter 8 Case study: hadoop

195

 Write Update

For frequent write updates, 86% of accessed blocks (maybe repeated) are

only written once. A decreasing percentage of written blocks are written

multiple times, which means only a small portion of hot blocks are

rewritten. Write amplification is roughly 116.3% if all rewritten data is put

into a new place.

For a timed write update, total write blocks occur 80% of total access

blocks (read and write), and the updated blocks (at least write twice) are

only 6.8%. Total write commands are 59% of the total commands and

the update commands are 22.5%. The average size of write commands is

around 586 blocks and the average size of overlapped blocks of update

commands is 73.3.

Before you look at the stacked write update, check the stacked distance

first. You will find that small requests have a high probability to be full hits

as opposed to large sized request (since the hit size is much smaller than

the average size). In fact, the average overlapped sizes for partial hits (only

a part of blocks are the same) and full hits (two requests are the same)

are 139.4 and 55.1 blocks, respectively. You can conclude that a partial hit

is more likely to happen for large size requests by using the numbers in

Tables 8-4 and 8-7.

Table 8-7. Statistics for Logical Stack Distance (LSD)

LSD≤1000 LSD≤2000 LSD≤4000 Overall

partial, Full 2.8%, 14.9% 3.5%, 17.6% 4.4%, 19.9% 7.5%, 27.3%

A further check can be obtained by considering the full and partial hits

separately by referring to Figure 8-12 for the hit frequency vs. LBA and size.

This confirms the dominant partial hit at large size, while full hit at small

size. The hits of the requests with medium-size (64-1023 blocks) are

much less.

Chapter 8 Case study: hadoop

196

Now let’s check stacked write update ratio. Based on write IOPS,

distance 4000 is roughly 10 minutes. In this period, you can see 72.9% full

write hit and 58.7% partial write hit of commands. With the knowledge

of cache size and structure, you can estimate the hit ratio. As the stack

distance is generally longer than DRAM cache length, updates on disk

Figure 8-12. Write update LBA and size distribution

Chapter 8 Case study: hadoop

197

cannot be avoided. Therefore, a “caching/buffering” location on the media

is necessary, so a larger-size SSD cache is necessary for performance

improvement.

The third plot in Figure 8-13 shows that over 65% of the overlapped

request size happens in the first 1% of overall time for partial/full hits,

which further confirms the necessity of large SSD cache. As conventional

disk drives have not provided such a big cache, it may be beneficial to

implement this cache via a hybrid drive (SSD+HDD) or at a higher level

in the system, such as array controllers or aggregate controllers. For SMR

drive, a convenient way is to allow conventional zones accompanying with

shingled zones for random write access.3 It is also called random access

zone (RAZ) in [5, 4].

3 For more information, please refer to T10.org and T13.org, such as zoned block
commands (ZBC)

Chapter 8 Case study: hadoop

http://t10.org
http://t13.org

198

Figure 8-13. Frequented, timed, and stacked write update (from top
to bottom)

Chapter 8 Case study: hadoop

199

 Read on Write (ROW)

ROW ratio is mainly used to check if “write once read many (WORM)”

is possible. You will find that the total ROW ratio is around 35.4% only,

which implied that the written data is less likely to be read multiple times

(i.e., a ratio much larger than 1). You can further check if the hit is only for

small size requests. Figures 8-14 and 8-15 show that the written data is less

likely to be immediately read back for most cases for similar reasons as

explained in previous chapters.

Figure 8-14. ROW ratio

Chapter 8 Case study: hadoop

200

 Write Cache Enabled vs. Disabled

Write cache is an important feature of HDDs. Many studies show that the

performance of WCE (write cache enabled) can be increased significantly

over WCD (write cache disabled) due to write-back policy, in particular

for some small-size random write workloads. However, the data reliability

concern (e.g., power loss leads to dirty data loss in DRAM write cache)

results in most data centers disabling this feature.

Here we compare four traces (148-21, 148-22, 149-21, and 149-22) as

nodes 148 and 149 always use different write cache setting and there is a

setting change between batch ID 21 and 22 (see Table 8-2). You can see

that there is no essential difference among write IOPS, throughput, and

average size as shown in Table 8-8. Meanwhile, the ratio of large write

requests (e.g., 1024 blocks) almost remains the same. Nevertheless, you

can observe that the (near) sequence ratio of WCD is slightly smaller than

that of WCE for both reads and writes (1% of absolute value). These factors

show that the HDFS does not change its behavior according to HDD’s

write cache settings, even though the local file system may respond to it.

However, as the workload is far away from the drive’s boundary capability,

the response is not significant.

Figure 8-15. ROW hit and size distribution

Chapter 8 Case study: hadoop

201

Table 8-8. Basic IO metrics for WCD vs. WCE

Average IOPS Throughput KBPS Size blocks

21 22 21 22 21 22

148 6.3 7.0 1846.6 2064.4 586.0 589.5

149 6.6 6.8 1782.2 1881.9 541.8 556.6

In the heavy workload cases, some interleaved sequential streams will be

considered as “random” rather than sequential, causing an increased ratio of

random writes, which is harmful to the overall disk performance. Therefore,

some non-volatile memory or DRAM protection technologies may be applied

in order to enable write cache, which becomes necessary for heavy workloads.

Additionally, for green environments in data centers where the bottleneck is

not the HDDs (at least under normal workloads), another benefit to WCE is

energy savings due to less mechanical accesses to the HDDs.

 System-Level View
In this section, I present a brief analysis of how the random IO, observed

in the previous section, of the block level traces led to a better analysis

of the Hadoop cluster’s IO patterns. First, let’s look at the workload

characteristics collected from HDFS logs, as shown in Table 8-9. Recall

the system level analysis mentioned earlier; I captured data generation

and deletion rates, job creation rates and characteristics, etc. with the low

level IO obfuscated from us. Arguably, this is how a high-level framework

should behave, fully or mostly insulated from the hardware devices below.

However, those who have to maintain the full operational stack must

be aware of the entire system, not just the user-level framework.

Below, I analyze the randomness from three aspects: the Hadoop

framework, the MapReduce policy, and HDFS mechanism.4

4 Grant Markey made some contributions to this and the conclusion section.

Chapter 8 Case study: hadoop

202

Notice that all daemons within the Hadoop framework write logs

of their runtime throughout the course of the day. Depending on

configuration, this can be written to the HDFS or to the local FS. If logs

are written to the local FS, they account for some random IO to the

HDD. Other daemons of frameworks which sit on top of Hadoops core

framework can generate more random IOs at the device level. Hbase has

similar logs from its region servers which must be written. Created for

real-time data processing, Hbase will spawn small MapReduce jobs which

access potentially small amounts of data, causing random read IOs in a

HDFS instance. Frameworks like Hive and other KV stores, which sit on

top of Hadoop, have similar logging structures which can potentially cause

random IO amplification down at the device level.

Java-based (apache) MapReduce must write temporary intermediary

files to disk during MapReduce jobs, some with repeating process IDs (PIDs)

and others with single or minimal use PIDs. These intermediary files can

either be dumped to locations in the HDFS (which attempts to serialize

the IO if possible) or the local FS, which will be a random IO event. This is

configurable via tuning the parameter mapreduce.task.tmp.dir.

After consulting the Hadoop XML configuration files, one thing that

I noticed was that the temporary/intermediary space for all HDFS and

Table 8-9. Basic Information Collected from HDFS Logs

Name Duration Total IO Requests Average IO Size(MB)

ave Max Min total read Write

wdc-x1 68 d 0.627 5.476 0.125 60.96 3.14 99.75

wdc-x2 98 d 0.396 5.661 0.107 47.83 3.09 93.2

r/W ratio Iops 105 throughput (MB/s)

avg Max Min total read Write total read Write

0.0348 0.125 0.0054 0.726 0.536 0.19 18.48 0.632 17.85

0.0383 0.33 0.007 0.458 0.325 0.133 12.11 0.442 11.67

Chapter 8 Case study: hadoop

203

MapReduce workloads were configured to store their output data to the HDFS

data drive. Because the Hadoop framework is written in Java, it must contend

with the properties of the Java Virtual Machine (JVM), meaning that memory

addresses have no meaning between JVMs. Hence, when a MapReduce task

passes data to another MapReduce task, it first writes data to a temporary

file for the other JVM task to read. Additionally, when a MapReduce job

launches, it must send the configuration parameters and executable jar file to

the TaskTrackers so that they can correctly spawn map and reduce tasks. This

data too was being stored to that configured local temporary space.

Couple this IO with the observation that the cluster runs close to 5500

MapReduce jobs per day, of which many are small task count jobs (due to

the 20% HBase analysis performed by users), and the amount of random

IO generated on these HDDs becomes very large. However, this IO is

something that can be mitigated and was not completely responsible for

the high level of random IO seen in the block-level traces. The HDFS itself

also contributes to the amount of random IO seen in those traces.

From the system logs as shown in Figure 8-16, you can see that the

number of chunks created and deleted daily is quite high for the system.

Each time the HDFS commits a chunk of data to the filesystem, it also

creates a metadata file. This metadata file is proportional to the size of

the HDFS chunk committed to the localFS, so a 128MB chunk will have a

corresponding ≈1.2MB metadata file created where smaller chunks will

have smaller metadata files. Hence, for the observed workload, there is

a lot of small random IO due to tens of thousands of new chunks being

generated daily on the HDFS. However, unlike the observed random IO for

the MapReduce framework, wherein the location to store the temporary

files is configurable, the location where these HDFS metadata files are

stored is not a configurable property, and therefore cannot be delegated to

another class of storage or storage location. When considering newer HDD

technologies, wherein random IO (especially random writes) can greatly

impact performance, understanding workload characteristics like these

are paramount. Without a device-level analysis of the workload, these

characteristics would have not been so clearly identified.

Chapter 8 Case study: hadoop

204

Figure 8-16. Basic curves from HDFS logs

Chapter 8 Case study: hadoop

205

 Some Further Discussions
In this chapter, I presented the block-level workload characteristics of

the Hadoop cluster by considering some specific metrics. The analysis

techniques presented can help others understand the performance

and drive characteristics of Hadoop in their production environments.

Collected by blktrace, I conducted a comprehensive analysis of these logs

which identified new workload patterns with some unexpected behaviors.

I showed that, while sequential and near-sequential requests represent the

majority of the IO workload, a non-trivial amount of random IO requests

exist in the Hadoop workloads. Additionally, the write update ratio on

drives is not very high, which indicates that a small write amplification

can occur if an out-of-place write policy is applied. Also note that the

ROW ratio is small, which means WORM does not generally hold for the

cluster’s workload. All these findings imply a relatively high spatial locality

and lower-than-expected temporal locality, which show that Hadoop

is generally a suitable application for SMR drives. However, further

improvements in both Hadoop and drive sides are required.

Looking critically at the configuration of a Hadoop system, it is possible

to fine-tune and minimize some, but not all, of the observed random

IO. Factors that add to this random IO are several types of framework

logging, intermediary files generated by MapReduce and HBase

workloads, and metadata files of HDFS chunks. The verbosity of Hadoop

daemon log files can be turned down to generate less data, and they along

with temporary MapReduce output can be written to a storage location

which will not impact HDFS chunk IO operations. Among these can be the

HDFS itself (rather than local storage), which will attempt to make the IO

more sequential, or on another physical/logical block device more suited

to random block IO (while maintaining data locality). Some basic curves

derived from HDFS logs are shown in Figure 8-16.

However, the final piece of the observed random IO is a consequence

of HDFS write/update mechanism and cannot be easily mitigated because

Chapter 8 Case study: hadoop

206

it currently must reside with the committed HDFS chunks on the HDFS

data drives. The small IO caused by chunk metadata must then be serviced

by a capacity block storage device which can either understand how to

transform these small random IO into larger sequential access patterns,

or a device that is simply designed to handle random IO. Without a

device-level view, it is possible that this overhead would be dismissed as

a problem elsewhere in the system rather than at the HDD device level,

where some of these issues are very simple to correct, given the proper

insight. For instance, a large DRAM buffer will be very useful for these

scenarios with random read accesses, and non-volatile memory (e.g.,

NAND and conventional zone) for these random write accesses.

Hence, it is reasonable to study an integration of HDFS and the local

files systems with consideration of device properties, such as a design in a

global view so that there is no “misunderstanding” of the local metadata

to the sequential write in HDFS. And the metadata and the “non-critical”

intermediate/temporary data are assigned to proper disk location.

Therefore, HDFS could take the responsibility of file/block accesses in

DataNode, which may make the drive operation more efficient. The

metadata location in the device shall also be carefully designed.

In addition, the drive-level cache and system-level cache may be

unified with the consideration of the mechanism of Java, such that some

temporary data may be absorbed by the unified cache/buffer instead of

disk mechanical accesses. This unification could be difficult due to the

current HDFS’s simple cache design and lack of direct interface between

JVM and drives. However, it is possible for drive manufacturers to provide

such an application-oriented interface for communication.

Furthermore, a certain intelligence might be useful for the drive to

understand the nature of the access (e.g., random or sequential, access

dependency), such that the drive can immediately switch to the optimal

algorithm/behavior for better performance. An application-level hinting

scheme with interaction between host and drive or a self-learning

algorithm inside drive can be helpful.

Chapter 8 Case study: hadoop

207

In conclusion, the device level analysis of the in-house Hadoop

cluster has provided new insights into how Hadoop interacts with the

underlying file system and handles its lower-level IO. These new insights

motivate me to continue studying how workload characteristics of big data

frameworks and application tuning could help the performance of storage

devices in the current data driven climate which we live in. This study

is also applicable to Spark, an in-memory MapReduce system roughly.

For example, a detailed workload analysis can provide some insights of

the SCM application for Spark systems, which will benefit a cost-efficient

design of hybrid SCM-DRAM structures.

Chapter 8 Case study: hadoop

209© Jun Xu 2018
J. Xu, Block Trace Analysis and Storage System Optimization,
https://doi.org/10.1007/978-1-4842-3928-5_9

CHAPTER 9

Case Study: Ceph
Ceph, an open-source distributed storage platform, provides a unified

interface for object-, block-, and file-level storage [33, 80, 34, 81]. This

chapter presents the block-level workload characteristics of a WD WASP/

EPIC microserver-based Ceph cluster. The analysis techniques presented

can help you to understand the performance and drive characteristics

of Ceph in production environments. In addition, I also identify whether

SMR, hybrid disk, and SSD drives are suitable for the Ceph workload.

The basic architecture of Ceph was described in Chapter 1. Ceph’s

core, RADOS, is a fully distributed, reliable, and autonomous object

store using the CRUSH (Controlled Replication Under Scalable Hashing)

algorithm. Ceph’s building blocks are called OSDs (object storage

daemons). OSDs are responsible for storing objects on local file systems

(e.g., EXT4 and XFS), and cooperating to replicate data, detect and recover

from failures, or migrate data when OSDs join or leave the cluster. Ceph’s

design originated in the premise that failures are common in large-scale

storage systems. Along these lines, Ceph targets at guaranteeing reliability

and scalability by leveraging the intelligence of the OSDs. Each OSD uses

a journal to accelerate the write operations by coalescing small writes and

flushing them asynchronously to the backing file system when the journal

is full. The journal can be a different file or located in another device or

partition [82, 83, 84].

210

These tests are based on a “unique” platform. Instead of traditional

workstations, the so-called microserver structure is used for the

production environments. In the system, each microserver has an

individual OS and an HDD. It is almost the minimum granularity for an IO

device, which essentially satisfies the original design requirement of Sage

Weil, the father of Ceph [80, 33]. In fact, this architecture minimizes the

failure domain to a disk unit instead of many disks becoming inaccessible

in one server with a multi-disk architecture. The storage cluster is scaled

out by connection microservers by a top of the rack Ethernet switch.

A microserver-based cluster with 12 nodes (named as sm1-wasp1 to

sm1-wasp12) is shown in Figure 9-1. Three virtual machines (VMs) act

as the clients to generate the IO requests (named as Cag-blaster-ixgbe-02

to Cag-blasterixgbe-04). All the tests are done in the Ceph version Jewel.

In this microserver-based configuration for filestore, each node/drive

is divided into four partitions. /dev/sda1 installs the operating system

(Ubuntu) and /dev/sda3 is reserved. /dev/sda2 is used for metadata, and

/dev/sda4 is used for user data.

Figure 9-1. Ceph cluster topology

Chapter 9 Case study: Ceph

211

 Filestore IO Pattern
Three VMs are used as clients to send bench write requests to a replicate

pool (named rep1 with one replicate) for 250 seconds and blktrace to

collect traces for 310 seconds, so rados bench -p rep1 250 write from

each client and blktrace /dev/sdax -w 310 from each node. Due to the

limitation of blktrace (it’s unable to collect an individual partition in the

same drive), the trace from sda2/sda4 and the whole sda are collected

separately. A bus analyzer is also used to verify the traces.

The common properties of the 12 nodes are listed in Table 9-1. You

can observe that the basic properties are generally similar. One of the IO

pattern curves is illustrated in Figures 9-2 and 9-3, where the three rows

represent sda2, sda4, and sda, respectively. Note that all wasp nodes

are write cache enabled. The command of "ceph tell osd.* bench

41943040 4194304" gives around 100MBPS (cached). Therefore, it means

the three clients with 32 threads each have almost fully utilized the disk

bandwidth. The reason will be explained later.

You can also see that differences of IO patterns may still exist in

different nodes; for example, the read/write ratio is high in some nodes

while it is low in other nodes, and the idle time distribution varies. Based

on read/write ratio, we can roughly divide the IO patterns into two classes:

one is read dominated, and the other is write dominated. When read

dominates, the average size of the read becomes smaller.

Chapter 9 Case study: Ceph

212

Table 9-1. Common Properties for Ceph Nodes

Properties Metadata Data

r/W Mixed read and write No read requests

size relatively small requests (8-block

requests dominated); size of write

varies largely; the r/W ratio varies

largely.

1024-block requests dominated,

followed by small blocks

sequence Mode =8 (very small); relatively

more random over a small range.

Much higher near sequential ratio

than strict sequential ratio (small

gaps exist for 50% requests)

Mode =0; high sequential ratio.

higher near sequential ratio

(small gaps exist for 5% write

requests)

Write update high update ratio (>50% write

requests updated)

Low update ratio (updated

blocks <1%, more partial)

Write stack

distance

relatively small distance to

achieve high percentage of hits;

small average overlap size

(8 blocks); necessary for write

cache.

relatively large distance to

achieve high percentage of hits;

small average overlap size;

unnecessary for write cache.

Chapter 9 Case study: Ceph

213

Figure 9-2. IO pattern in different partitions: LBA and size
distribution

Chapter 9 Case study: Ceph

214

Figure 9-3. IO pattern in different partitions: Throughput and
IOPS

Chapter 9 Case study: Ceph

215

Table 9-2 shows the total idle time for different nodes at different

scenarios. Basically, the idle time is unevenly distributed, which

means that the workload to each node is actually uneven. In other

words, some nodes are very busy, such as wasp12 in the case of “3-8”

(3 clients, 8 threads), while some are very “lazy,” such as wasp8 in the

case of “3- 8.” This is partially due to the CRUSH algorithm, which is

in charge of PG (placement group) allocations. Although a reasonable

number of clients and threads may alleviate the uneven distribution,

it may not essentially solve this problem. Thus, some improvement

policies, such as asynchronized, active feedback, adjustable PG, etc,

shall be implemented.

Chapter 9 Case study: Ceph

216

Ta
bl

e
9-

2.
 T

ot
al

 Id
le

 T
im

e
in

 th
e

Fi
rs

t 2
40

 S
ec

on
ds

CT
w

as
p4

w
as

p5
w

as
p6

w
as

p7
w

as
p8

w
as

p9
w

as
p1

0
w

as
p1

1
w

as
p1

2
m

ea
n

st
d

st
d

m
ea

n
m
ax

m
in

3–
8

52
.4

8
17

.7
7

55
.3

4
44

.6
5

11
4.

21
9.

1
48

.4
9

21
.1

3
0.

7
40

.4
3

34
.1

7
0.

85
16

2.
2

3–
16

10
7.

78
0.

15
76

.3
1

11
3.

58
0.

85
39

.8
7

5.
91

22
.5

2
61

.6
6

47
.6

3
44

.5
3

0.
93

74
6.

81

3–
32

48
.0

9
63

.4
2

35
.9

3
4.

19
8.

45
0.

01
25

.6
1

0
4.

87
21

.1
7

23
.3

4
1.

1
89

58
03

3–
64

69
.6

9
37

.3
8

79
.8

5
33

.2
1

32
.6

7
30

.8
1

29
.8

5
31

.3
1

30
.2

41
.6

6
19

.0
7

0.
46

2.
68

1–
8

15
0.

49
15

.6
5

13
0.

66
0.

31
7.

65
5.

34
12

7.
56

1.
01

5.
18

49
.3

2
65

.6
3

1.
33

48
8.

16

1–
16

21
.6

5
5.

19
48

.3
15

1.
41

39
.0

5
2.

13
19

.5
4

37
.6

8
17

.5
4

38
.0

5
45

.2
2

1.
19

71
.0

3

1–
32

8.
13

5.
59

95
.2

9
32

.9
4

6.
36

9.
03

78
.4

6
10

2.
52

42
.2

42
.2

8
39

.9
1

0.
94

18
.3

4

1–
64

17
.0

3
11

4.
01

58
.2

1
1.

23
32

.7
7

17
.5

5
9.

72
6.

1
36

.5
4

32
.5

7
35

.3
2

1.
08

92
.7

7

Chapter 9 Case study: Ceph

217

 Performance Consistency Verification
Performance consistency is a basic requirement for enterprise storage

systems and it guarantees the performance repeatability at the same

conditions. There are several approaches to check it. Table 9-3 gives a

summary.

Table 9-3. Comparison of Three Approaches

Metrics Pro Con

hypothesis Full view with relatively full information;

consistency in a relatively strict sense.

hardly satisfied

average only simple and relatively easily satisfied partial view with limited

information on average only

range

tolerance

engineer’s view in practice; easy to

check.

partial view; usually

experiment dependent.

The first one is the hypothesis approach, which actually can be used

to test whether two or more samples have the same mean (and variance),

median, or distribution in statistical sense. A simple procedure is as

follows:

 1. Check if all rounds of tests have steady state.

 2. Use the steady state of each round as a sample

vector for an overall consistency test or one-two-one

(paired) test.

 3. Select a proper hypothesis test for different

requirements/assumptions.

Chapter 9 Case study: Ceph

218

Some common hypothesis tests are used in different scenarios:

• F-test: Requires each sample vector is normal

distribution; if the final p-value is smaller than

predefined significant level (0.05 by default), you reject

the hypothesis that these samples have the same mean.

• H-test: Requires each sample vector is continuous

distribution (weaker condition); if the final p-value

is smaller than predefined significant level (0.05 by

default), you reject the hypothesis that these samples

have the same median.

• T-test: Applicable for paired independent tests only; if

the final p-value is smaller than predefined significant

level (0.05 by default), you reject the hypothesis that

these samples have the same distribution.

This approach actually gives the result in a relatively strict sense.

However, you may allow some differences in most cases.

The second one uses a simplified statistical method, which only

concerns the average value without the overall trend, and is usually for

rough estimation only:

 1. Get the average values of interested metrics of each

test (possibly in steady state).

 2. Form a sample vector with the average values from

all rounds.

 3. Test if it follows a normal distribution (or other

experimental distribution, such as uniform) with an

acceptable variance.

Chapter 9 Case study: Ceph

219

The third one is the range tolerance approach, which checks if

the performance is within a certain region that we can tolerant/allow

experimentally:

 1. Check if each run’s value is within a certain range

of this run’s mean or expected experimental

value. There are two cases: one is required for all

data points, such as latency, and the other is only

required for almost all points, such as throughput.

 2. Check if the average value of each run is within a

certain range of the mean of all runs.

This approach usually needs the experts to set up the proper

thresholds in order to construct a reasonable range.

Let’s take a look at an example with seven rounds of tests in the same

environments in Table 9-4. Each round contains three random read and

three sequential write accesses. Since an F-test requires normality, you

begin with the normal test on each round. In some cases, if you cannot not

capture enough data, you may simply mark it as invalid. In this example,

you can see only two rounds out of seven pass the normal test for the test

named rand 6, and the two rounds likely have the same mean. Overall, the

results indicate that the performance is not strictly consistent.

Table 9-4. An Example of the Hypothesis Approach

Value rand_6 rand_4 rand_2 write_5 write_3 write_1

Normal 2 3 2 6 0 2

Non-normal 5 3 5 1 7 5

Invalid 0 1 0 0 0 0

F-value 3.114 60.405 3.261 24.002 24.002 57.901

p-value 0.079 0 0.073 0 –1 0

result 1 0 1 0 –1 0

Chapter 9 Case study: Ceph

220

If you switch to average-only and range tolerance approaches, you may

have another observation in a relaxed sense, shown in Tables 9-5 and 9-6.

Table 9-5 shows the average throughput in MBPS for each round, as well as

the overall mean and standard derivation. Table 9-6 shows the difference

ratio between each round and the overall average. You can see most ratios

are within 10%. If the customers can allow a 20% range, you may say

that the system satisfies the performance consistency requirement. Note

that curve of each round shall also satisfy some range requirements in a

“continuous” sense. Figure 9-4 shows one example of six tests. Table 9-7

gives the ratio that the total number of values fall into the range of ± 20%

or ± 10% of the mean. If a 20% range is set, you can see that only the test

named write 5 doesn’t satisfy the requirements.

Table 9-5. Summary for Bandwidth of Rados Bench

Mean rand_6 rand_4 rand_2 write_5 write_3 write_1

r0 679.72 1642.15 1613.56 327.86 1261.88 405.87

r1 704.20 1596.64 1446.77 345.57 1275.05 386.54

r2 814.66 1646.67 1503.92 397.04 1322.19 442.87

r3 907.08 1566.22 1529.88 401.05 1225.51 394.28

r4 891.53 1539.09 1399.01 409.12 1200.37 360.88

r5 902.05 1507.67 1194.60 416.98 1310.67 422.73

r6 762.12 1524.56 1164.23 361.48 1186.59 336.50

Mean 808.77 1574.71 1407.42 379.87 1254.61 392.81

std 88.65 51.49 157.14 32.06 48.69 33.39

std/Mean 0.11 0.03 0.11 0.08 0.04 0.09

Chapter 9 Case study: Ceph

221

Figure 9-4. Bandwidth from six tests in one round

Table 9-6. Comparison via Range Tolerance Approach

Diff Ratio rand_6 rand_4 rand_2 write_5 write_3 write_1

r0 –0.160 0.043 0.146 –0.137 0.006 0.033

r1 –0.129 0.014 0.028 –0.090 0.016 –0.016

r2 0.007 0.046 0.069 0.045 0.054 0.127

r3 0.122 –0.005 0.087 0.056 –0.023 0.004

r4 0.102 –0.023 –0.006 0.077 –0.043 –0.081

r5 0.115 –0.043 –0.151 0.098 0.045 0.076

r6 –0.058 –0.032 –0.173 –0.048 –0.054 –0.143

Max 0.122 0.046 0.146 0.098 0.054 0.127

Min –0.129 –0.043 –0.173 –0.137 –0.054 –0.143

Chapter 9 Case study: Ceph

222

 Bottleneck Identification
Ceph is a rather complex system whose performance is decided by both

hardware and software [41]. From the hardware point of view, CPU,

memory, disk, and network are the four major components. Tables 9- 8

and 9-9 give some general views. From the software aspect, there are

even more factors, such as the file system, Linux OS settings, memory

allocator, and more. In addition, the Ceph system configuration provides

hundreds of parameters, and many of them affect the overall performance.

Therefore, it is generally difficult to identify the performance bottleneck of

the overall system.

Table 9-7. Ratio of Values within a Given Range Around Mean

Ratio rand_6 rand_4 rand_2 write_5 write_3 write_1

± 0.2 0.91 1 0.99 0.44 1 0.9

± 0.1 0.73 0.99 0.89 0.2 0.91 0.6

Table 9-8. Impact of CPU, Memory, and Network

Variables Options Remarks

Cpu Core number,

speed,

structure,

instruct set,

etc.

a common recommendation is at least one (virtual)

core per Osd. Faster Cpu cores usually help in

performance improvement, although the Cpu

structure also matters (e.g., Intel vs. arM, internal

architecture/versions) the real perf/GB, perf/$, and

so on. turning off energy-saving mode helps.

Memory raM per server,

raM per Osd,

etc.

a common recommendation is at least 1GB per 1tB

Osd, and better 2GB per Osd. the actual value is

workload-dependent.

(continued)

Chapter 9 Case study: Ceph

223

Table 9-9. Impact of Disk

Variables Options Remarks

drive type hdd, ssd,

NVM, etc.

Balance between price and performance shall be considered;

usually ssd acts as cache and journal; unbalanced

structure may lead to performance loss; one bad drive

can affect the overall pool performance (ceph osd perf).

drive

number

drive per

server, drive

per Osd

More drives increase throughput per server but decrease

throughput per Osd; one Osd per platter/drive.

drive

controller

sas/ sata/

pCIe hBa,

etc.

More/better hBas increase throughput. hW raId may

increase IOps. the best performance is achieved when

you have one hBa for every 6-8 sas drives, but it is

cheaper to use a sas expander to let one hBa control 24

(or more) drives.

More hBas and fewer expanders are used to achieve

maximum throughput, or sas expanders can be applied to

minimize cost when full drive throughput is not needed.

(continued)

Variables Options Remarks

BIOs ht mode,

energy-saving,

NuMa, etc.

ht affects the virtual core number (enable). Consider

the tradeoff of energy-savings for low power but less

computational resource allocated.

Network

switch/NIC

Bandwidth

and latency;

ethernet, Fiber,

Infiniband, etc.

higher bandwidth for higher throughput to an extent;

lower latency for more small IO. try ms crc data =

false and ms crc header = false for high- quality

networks.

For cluster with less than 20 spinners or 2 ssds,

consider upgrading to a 25Gbe or 40Gbe.

Table 9-8. (continued)

Chapter 9 Case study: Ceph

224

In this sense, you shall monitor all necessary components of the

system in order to make a conclusion. Take the Ceph software stack as

an example in Figure 9-5. You may deploy the corresponding system

monitoring tools 1 into interested stack points to collect data so that

you can capture all possible places for SW failures, errors, performance

degrades, etc. plus all potential SW performance tuning points. In fact,

Ceph has some built-in monitoring tools such as LTTng.

1 See Brendan Gregg’s chart of general Linux performance tools at
www.brendangregg.com/linuxperf.html.

Table 9-9. (continued)

Variables Options Remarks

raId

controller

enable/

disable;

cache

More recent testing with red hat, supermicro, and

seagate also showed that a good raId controller with

onboard write-back cache can accelerate IOps-oriented

write performance.

While Ceph does not use raId (since it supports both

simple replication and eC), the right raId controller cache

can still improve write performance via the onboard

cache.

drive

cache

enable or

disable

write cache

Cache has large impact on small write performance

Chapter 9 Case study: Ceph

http://www.brendangregg.com/linuxperf.html

225

Dedicated tools for Ceph deployment, monitoring, and management

have been developed, such as CeTune (Intel),2 VSM (Intel),3 OpenATTIC,4

and InkScope.5

With the aid of some integrated tools, such as SaltStack,6 you

may design your own all-in-one tool. Figure 9-6 shows one possible

design, which intends to integrate the functionalities of configuration,

deployment, benchmarking, and measurement analysis of Ceph systems.

It can be developed by using the “glue” programming language Python,

together with some Bash scripts.

2 https://github.com/01org/CeTune
3 https://github.com/01org/virtual-storage-manager
4 www.OpenATTIC.org
5 https://github.com/inkscope/inkscope
6 https://saltstack.com/

Figure 9-5. Ceph software stack

Chapter 9 Case study: Ceph

https://github.com/01org/CeTune
https://github.com/01org/virtual-storage-manager
http://www.openattic.org/
https://github.com/inkscope/inkscope
https://saltstack.com/

226

Figure 9-6. Functionalities of a Ceph performance tool

As shown in the overall structure of Figure 9-6, there are some

components integrated into this tool, such as SaltStack for Ceph

management, InfluxDB7 with Telegraf8 for performance data collection and

storage, and Grafana9 for data visualization. All these tools are open source

and under the free license (InfluxDB/Telegraf under MIT, Grafana/salt-

stack under Apache v2).

SaltStack platform or Salt is an open-source configuration

management software and remote execution engine in Python. It

essentially has a server-client structure. You can use Salt to manage the

Ceph nodes and distribute executing commands. InfluxDB is a time series

database built from scratch to handle high write and query loads. Telegraf,

developed by Go,10 is a metric collection daemon that can gather metrics

from a wide array of inputs and write them into a wide group of outputs.

It is plugin-driven for both the collection and output of data for easy

extension. It is a compiled and standalone binary that can be executed

on any system without external dependencies; no npm/pip/gem or other

package management tools required. Once Telegraf daemon is running,

7 www.influxdata.com/
8 www.influxdata.com/time-series-platform/telegraf/
9 https://grafana.com/
10 https://golang.org/

Chapter 9 Case study: Ceph

http://www.influxdata.com/
http://www.influxdata.com/time-series-platform/telegraf/
https://grafana.com/
https://golang.org/

227

the data will be automatically saved to influxDB. Grafana provides a

powerful and exquisite way to create, explore, and share dashboards and

information with your team and the world. After the DBs are set up, you

can configure Grafanas data sources from these influxDB.

With this tool, you can easily obtain all necessary information. Take

a look at the example provided in the section on the filesstore IO pattern.

From Table 9-2, you can clearly observe that some drives are drained of IO

bandwidth. However, the CPU, memory and network usages are all lower

than 50% at the same time. Therefore, you can make a conclusion that the

drives are the performance bottleneck.

Chapter 9 Case study: Ceph

229© Jun Xu 2018
J. Xu, Block Trace Analysis and Storage System Optimization,
https://doi.org/10.1007/978-1-4842-3928-5

APPENDIX A

 Tools and Functions
In this appendix, trace analysis tools based on MATLAB [85] and Python [86]

are introduced. The functionalities are explained and sample code is

provided. Although these two tools use different languages, they generally

have common interfaces, such as the same input and output parameters.

 MATLAB-Based Tool: MBPAR
The MATLAB-based Block-Trace Parser, Analyzer and Reporter (MBPAR)

is designed for easy use.1 Without specified options, the default setting

will do all the available analysis and output all the analyzed results into a

Microsoft PowerPoint (ppt) file. The intermediate figures and data can be

also saved into disk for next usage. Sample code is as follows:

% define the filename to parse and analyze

filename= D :\sample. t r c

% parse the blktrace file and translate the events into MATLAB

matrix

blktrace_parser;

% analyze the IO events with/without raw report

1 https://github.com/junxuwdc/MBPAR. Jun Xu developed most of the code, while
Junpeng Niu contributed few functions on sequential analysis.

https://doi.org/10.1007/978-1-4842-3928-5
https://github.com/junxuwdc/MBPAR

230

batch_analysis;

% generate report in a given PowerPoint format

batch_generate_ppt;

Here the files blktrace parser.m, batch analysis.m, and batch

generate ppt.m are all scripts. We use scripts for simplicity, although they

can be easily converted into functions. For example, blktrace parser.m

receives the filename of raw traces as input and output the parsed IO

events as the input of batch analysis.m, which further output analyzed

results and figures as input of batch generate ppt.m.

The output of blktrace parser.m mainly contains two variables: 1)

lists_cmd is a N × 3 matrix, where N is the number of requests, and 3

columns represents the first LBA, the size, and the type (0 for write and

1 for read) of the request, respectively; 2) lists_action is a N × 2 matrix,

which represents the arrival time and completion time of requests. Note

that the input for the analysis functions can be from any type of traces

other than blktrace, as long as the data format is the same for lists_cmd

and lists_action.

The content of batch_analysis.m is straightforward. Essentially, it

defines some data formats and calls all available analysis functions. There

are some parameters (including these for subfunctions of analysis) to

adjust the tool’s behavior:

• options.offset time is used to adjust the starting

time of the traces. In some traces, the starting time does

not start from 0 so you need to find the starting time of

the first event. The default value is 0.

• options.time interval indicates the time window

when calculating the average value in seconds. The

default value is 1 second.

• options.plot figure decides if the tool outputs a

figure. When options.export report is true, options.

plot figure will be set as true too.

Appendix A Tools And FuncTions

231

• options.plot fontsize regulates the font size used in

the figure.

• options.export report decides if a debug report with

raw data and figures is generated. This option is only

used in Windows system for debug purpose.

• options.report name indicates the debug report

name.

• options.near_sequence configures whether a strict

sequential stream (0) or a near sequential stream (1) is

calculated.

• options.lba_size_set adjusts the number of the LBA

size set during some statistics. Each LBA range will be

calculated as the total LBA/the number of sets.

The following is a sample configuration:

% batch_analysis.m

ptions.export_report=1;

if exist('name','var')

 options.report_name=[name, '_raw.ppt'];

else

 options.report_name='trace_analysis_raw.ppt';

end

% report title

if options.export_report

 saveppt2(options.report_name,'f',0,'t',...

 [' Basic Workload Analysis Report'])

 options.plot_figure=1;

end

Appendix A Tools And FuncTions

232

options.plot_fontsize=10;

options.offset_time=0; [lists_action,idx]=sortrows(lists_

action,1); lists_cmd=lists_cmd(idx,:);

After the simple setting, it starts to call all of the analysis functions. The

analyzed data is saved for further usage, such as generating a PowerPoint

analysis report.

%% call individual sub-functions

%0 get the very basic workload information

basic_info=sub_basic_info(lists_action,lists_cmd,options);

%1 average queue depth for completion and arrival

queue_record=sub_queue_depth(lists_action,lists_cmd,options);

%2 calculate the busy time of the device;

time_record=sub_busy_time(lists_action,options);

%3 average IOPS and throughput of requests options.

time_interval=1; % set the time window = 1s

average_record=sub_iops(lists_action,lists_cmd,options);

options.time_interval=6; % set the time window = 6s

average_record= sub_iops(lists_action,lists_cmd,options);

%4 calcuate the size distribution

req_size_record=sub_size_dist(lists_action,lists_cmd,options);

%5 calcuate the LBA/size distribution

options.lba_size_set=50; % adjust the range of LBA in

plotting

lba_stat_array=sub_lba_dist(lists_action,lists_cmd,options);

Appendix A Tools And FuncTions

233

%6 sequential analysis (stream/commands/size/queue length)

options.near_sequence=0; % sequential analysis

options.S2_threshold =32; % limit the minimum number which is

counted as sequence stream

options.max_stream_length=1024;

options.seq_size_threshold=1024; % the size constraint for a

sequential stream

sequence_stat=sub_sequence_analysis(lists_action,lists_cmd,

options);

options.near_sequence=1; % near sequential analysis;

options.S2_threshold =32; % limit the minimum number which is

counted as sequence stream

options.S2_threshold2 =64; options.max_stream_length=1024;

options.seq_size_threshold=1024; % the size constraint for a

near sequential stream

sequence_stat=sub_sequence_analysis(lists_action,lists_

cmd,options);

%7 calculate the sequence queue

% sub_sequence_queue(lists_cmd,options)

%8 stack distance analysis - WOW

% options.spec_stack=[10,20,30];

% specify the stack distance for very large datasets;

stack_wow_record=sub_stack_wow(lists_cmd,options);

%9 stack distance analysis - ROW

stack_row_record=sub_stack_row(lists_cmd,options);

%10 frequented write update ratio - WOW options.access_type=0;

freq_wow_record=sub_freq_wow(lists_cmd,options);

Appendix A Tools And FuncTions

234

%11 timed/ordered update ratio - WOW

options.access_type=0; time_wow_record=sub_time_wow(lists_

cmd,options);

%12 seek distance calcuation

seek_dist_record=sub_seek_dist(lists_cmd,options);

%13 queue length and idle time

idle_queue_record=sub_idle_queue(lists_action,options);

save analyzed_data

batch generate ppt.m specifies the analysis contents. First, it needs

a PowerPoint template, like workload.pptx. This template has some

predefined frames/layouts with specified names via a master page. Here

you use the tool named exportTopptx2 to access the slides:

options.ppt_template='E:\⎵workload.pptx';

exportToPPTX('open',options.ppt_template);

%% See all available masters and layout templates

% You can programmatically access master/layout information

% You can also run exportToPPTX by itself to have this

information printed to command window

pptxInfo = exportToPPTX;

fprintf('All⎵available⎵layout⎵templates:\n');

for ilayout=1:numel(pptxInfo.master(1).layout)

 fprintf('\t%d.⎵%s\n',ilayout,pptxInfo.master(1).

layout(ilayout).name);

end

2 This tool is developed by Stefan Slonevskiy and downloaded from
www.mathworks.com/matlabcentral/fileexchange/40277-exporttopptx

Appendix A Tools And FuncTions

http://www.mathworks.com/matlabcentral/fileexchange/40277-exporttopptx

235

Second, it finds the corresponding analyzed results and figures

from the saved dataset generated by batch analysis.m and creates the

necessary remarks for the figures. Finally, it outputs a report in a pptx

format. Take the IOPS page as an example. In this example, you use the

predefined slide layout called 3Figure1Text, where there are some objects

like Title 1, Footer Placeholder 2, Picture_11, Picture_12, Picture_22,

and Text_main. These objects can be manipulated via the function

exportToPPTX so you can easily adjust the content of the report based on

requirements.

%% generate iops

filenames1=dir('iops*.fig');

filenames2=dir('throughput*.fig'); filenames3=dir

('reqsize*.fig');

% Layout #11: 3Figure1Text (Title 1, Footer Placeholder 2,

Picture_11, Picture_12, Picture_22, Text_

a1=size(filenames1,1);

for i=1:a1

 exportToPPTX('addslide','Layout','3Figure1Text');

 exportToPPTX('addtext','Estimated IOPS and Throughput','

Position','Title');

 exportToPPTX('addtext','Basic Properties','Position',

'Text_sup');

 for j=1:3

 eval(['filenames=filenames',int2str(j),';']);

 h = hgload(filenames(i).name);

 set(gcf, 'color', 'white');

 set(gca, 'color', 'none');

 pic_pos=['Picture_' int2str(j)];

 exportToPPTX('addpicture',h,'Position',

pic_pos,'Scale','maxfixed');

 close(h);

Appendix A Tools And FuncTions

236

 end

 temp_str1='Observe⎵if⎵burst⎵and⎵idleness⎵exist';

 temp_str2='Bursts⎵exist⎵if⎵there⎵are⎵peaks⎵much⎵
higher⎵than⎵the⎵average';

 temp_str3='Idleness⎵exist⎵if⎵there⎵are⎵troughs⎵much⎵
lower⎵than⎵the⎵average';

A sample of the auto-generated presentation slide is shown in

Figures A-1 and A-2. The users can easily adjust the slide layouts for their

scenarios.

Appendix A Tools And FuncTions

237

Figure A-1. A generated PowerPoint sample report

Appendix A Tools And FuncTions

238

Figure A-2. A generated PowerPoint sample report (cont’d)

 Python-Based Tool: PBPAR
The Python-based tool is generally similar to the MATLAB-based tool.

However, it provides more flexibility due to its wide interfaces to other

programming languages. In addition, it is completed free and open sourced.

The following code shows how to call the analysis functions:

from numpy import *

from matplotlib.pylab import *

from scipy.stats import *

from scipy import *

import dill

from PBPAR import *

Appendix A Tools And FuncTions

239

lists_action=lists_action[:,0:2]

options=options_class()

options.export_report = 0

options.report_name = 'trace_analysis.ppt' options.export_

report = 0

options.plot_fontsize = 10

options.time_interval = 50

options.plot_figure = 1

options.offset_time = 0

idx=argsort(lists_action[:,0])

lists_cmd=lists_cmd[ix_(list(idx),[0,1,2])]

lists_action=lists_action[ix_(list(idx),[0,1])]

#0 obtain basic information

basic_info=sub_basic_info(lists_action,lists_cmd,options)

call individual sub-functions

#1 average queue depth for completion and arrival

queue_record=sub_queue_depth(lists_action,lists_cmd,options)

#2 calculate the device busy time;

time_record=sub_busy_time(lists_action,options)

#3 average IOPS and throughput of requests

options.time_interval = 1

average_record=sub_iops(lists_action,lists_cmd,options)

options.time_interval = 6

average_record=sub_iops(lists_action,lists_cmd,options)

#4 calculate the size distribution req_size_record=sub_size_

dist(lists_action,lists_cmd,options)

Appendix A Tools And FuncTions

240

#5 calculate the LBA/size distribution

options.lba_size_set = 50

lba_stat_array=sub_lba_dist(lists_action,lists_cmd,options)

#6 sequential analysis (stream/commands/size/queue length)

options.near_sequence = 0

options.S2_threshold = 32

options.S2_threshold2 = 64

options.max_stream_length = 1024

options.seq_size_threshold = 1024 sequence_stat=sub_sequence_

analysis(lists_action,lists_cmd,options)

options.near_sequence = 1

options.S2_threshold = 32

options.S2_threshold2 = 64

options.max_stream_length = 1024

options.seq_size_threshold = 1024 sequence_stat=sub_sequence_

analysis(lists_action,lists_cmd,options)

#7 sequence queue analysis

sub_sequence_queue(lists_cmd,options)

#8 stack distance analysis - WOW

options.spec_stack=[10,20,30]; # for very large dataset

stack_wow_record=sub_stack_wow(lists_cmd,options)

#9 stack distance analysis - ROW stack_row_record=sub_stack_

row(lists_cmd,options)

#10 frequented write update ratio – WOW

options.access_type = 0 freq_wow_record=sub_freq_wow(lists_

cmd,options)

Appendix A Tools And FuncTions

241

#11 timed/ordered update ratio – WOW

options.access_type = 0 time_wow_record=sub_time_wow(lists_

cmd,options)

#12 seek distance calcuation seek_dist_record=sub_seek_

dist(lists_cmd,options)

#13 queue length and idle time idle_queue_record=sub_idle_

queue(lists_action,options)

Finally, you can call batch generate ppt.py to create the slide similar

to the MATLAB code. Note that you use the Python library python-pptx3 as

the wrapper to create the ppt file. python-pptx doesn’t need a PowerPoint

installation.

 Interaction Between MATLAB and Python
Due to the similarity, it is not very difficult to convert code between two

languages. Here are some tools/links for reference; Table A-1 compares

them briefly:

• Small Matlab to Python compiler (SMOP): Converts

MATLAB/Octave code to Python code, https://

github.com/victorlei/smop

• LiberMate: A MATLAB-to-Python (SciPy/NumPy)

translator, https://github.com/awesomebytes/

libermate

• OMPC: Open-source MATLAB-to-Python compiler,

which is a bit outdated, although partially functional,

ompc.juricap.com/

3 http://python-pptx.readthedocs.io/en/latest/

Appendix A Tools And FuncTions

https://github.com/victorlei/smop
https://github.com/victorlei/smop
https://github.com/awesomebytes/libermate
https://github.com/awesomebytes/libermate
http://ompc.juricap.com/
http://python-pptx.readthedocs.io/en/latest/

242

Pylab of Python provides functions to read MATLAB mat files.

Wrappers and interfaces between two languages are also available:

• pymatlab: Interfaces and communicates with MATLAB

from Python. Users can easily integrate a project with

a large MATLAB codebase into Python scripts by using

MATLAB scripts as a part of the Python program.

https://pypi.python.org/pypi/pymatlab.

• Python-Matlab wormholes: Allows both directions of

interaction. However, only n-dimensional float arrays

of data types are supported. https://github.com/

pp5311006/python-matlab-wormholes.

• Python-Matlab Bridge: Offers the matlab magic

extension for iPython to execute normal MATLAB code

from within iPython. Scipy is required to handle sparse

arrays. https://github.com/arokem/python-matlab-

bridge.

Table A-1. Comparison of Code Converters

Developers First / Latest Required Library Remarks

libermate eric c. schug March 2009/

May 2014

numpy, scipy,

matcompat

imported libs

are common

sMop Victor lei June 2013/

dec 2016

smop supports

octave

oMpc peter Jurica 2008/

June 2010

ompc provides

online version

Appendix A Tools And FuncTions

https://pypi.python.org/pypi/pymatlab
https://github.com/pp5311006/python-matlab-wormholes
https://github.com/pp5311006/python-matlab-wormholes
https://github.com/arokem/python-matlab-bridge
https://github.com/arokem/python-matlab-bridge

243

• PyMat & pymat2: Allows Python programs to start,

close, and communicate with a MATLAB engine

session. The code is out of date. pymat.sourceforge.

net/, https://github.com/tinkuge/pymat2

• mlabwrap, mlabwrap-purepy: Makes MATLAB look

like a normal Python library using PyMat. mlabwrap.

sourceforge.net/.

• pymex: Embeds the Python interpreter in MATLAB

extension module. https://github.com/kw/pymex.

• matpy: Calls Python from MATLAB. Users can access

MATLAB in multiple ways, such as creating variables

or manipulating .mat files. https://github.com/

invenia/matpy.

Appendix A Tools And FuncTions

http://pymat.sourceforge.net/
http://pymat.sourceforge.net/
https://github.com/tinkuge/pymat2
http://mlabwrap.sourceforge.net/
http://mlabwrap.sourceforge.net/
https://github.com/kw/pymex
https://github.com/invenia/matpy
https://github.com/invenia/matpy

245© Jun Xu 2018
J. Xu, Block Trace Analysis and Storage System Optimization,
https://doi.org/10.1007/978-1-4842-3928-5

APPENDIX B

 Blktrace and Tools
Blktrace was developed by Jens Axboe in early 2000. Since Linux version

2.617-rc1, it has been embedded into the kernel. In fact, there have been

no major changes since 2007. It has some main features as follows:

• Low overhead, such as <0.5% CPU usage of one core in

Intel E5-1620

• An easy-to-use configuration with simple CLI

commands

• Highly configurable with trace IO on one or several

devices, plus user-selectable filter events

• Low cost. Compared to a hardware bus analyzer, it’s

free of charge.

• Live and playback tracing

Figure B-1 shows the simplified structure of blktrace. You can see that

it only considers device access after OS/FS cache. When IO enters to block

IO layer (request queue), the relay channel per CPU gets events emitted,

and blktrace then captures the events from the channels. Some events

traces are listed as follows:

• Q: Request queue entry allocated

• S: Sleep during request queue allocation

https://doi.org/10.1007/978-1-4842-3928-5

246

• I: Request queue insertion

• M: Back merge of IO on request queue

• F: Front merge of IO on request queue

• T: Unplug due to timer

• D: Request issued to underlying block dev

• C: Request completed

• P: Request queue plug operation

• U: Request queue unplug operation

• B: IO bounce operation

• X: IO split operation

• A: IO remap: MD or DM

Figure B-1. Blktrace structure

APPENDIX b blktrAcE AND tools

247

It has wide applications, e.g.,:

• To analyze productivity of block devices (both real and

virtual) and various hardware configurations

• To calculate potential expenses of resources (for

example, at connection of program RAID)

• To define an optimal configuration for a specific

program surrounding

• To estimate productivity of various file systems

(e.g., EXT4, JFS, XFS, Btrfs) via differently interaction

with block subsystems

• To analyze the efficiency of more complex systems,

such as hybrid system, deduplication system, mobile

storage system (e.g., Android), cloud system, etc.

Therefore, this tool has been extensively used in both academics and

industries.

• Industry: HP, Oracle, IBM, Intel, WDC, Seagate,

Huawei, Taobao, DHT, SGI, etc.

• Academics: Harvard University, University of

California, Berkley, Imperial College of London,

University of New South Wales, Florida International

University, Sungkyunkwan University, Stony Brook

University, University of Minnesota Twin Cities, Seoul

National University, University of British Columbia,

University of Maine, etc.

APPENDIX b blktrAcE AND tools

248

Some examples are listed as follows:

• Alibaba/Taobao: Debug an broken output pipe problem

in the new kernel 2.6.37 and monitor performance for

HDFS, https://kernel.googlesource.com/pub/scm/

linux/kernel/git/axboe/blktrace/9bf422b17cb2330

f94376f8ca82a6e6cc496f9a3.

• IBM: Monitor and tune virtual I/O scheduler for

virtualized storage systems, http://dl.acm.org/

citation.cfm?id=1254826.

• Intel: Aid tool for Hystor (a high-performance hybrid

storage system, SSD+HDD) design, http://dl.acm.

org/citation.cfm?id=1995902.

• University of California, Berkeley: Determine the

proper chunk size in HDFS for shared storage systems,

www.eecs.berkeley.edu/alspaugh/papers/cake socc

2012.pdf.

• University of Maine: Aid tool for migration algorithm

design for hybrid storage systems, http://web.eece.

maine.edu/jyue/papers/mascots11.pdf.

Blktrace has a simple user interface. Two typical usages are

• Without command filter

$ blktrace -d /dev/sda -o blktrace.sda

• With command filter

$ blktrace -d /dev/sda -a fs -o - |blkparse -i -

The results can be output to the terminal, HDD, RAM disk, or

TMPFS. It may be better to store trace in a different device from the one

traced. The command details can be found in its man page or you can refer

to the user manual.

APPENDIX b blktrAcE AND tools

https://kernel.googlesource.com/pub/scm/linux/kernel/git/axboe/blktrace/9bf422b17cb2330f94376f8ca82a6e6cc496f9a3
https://kernel.googlesource.com/pub/scm/linux/kernel/git/axboe/blktrace/9bf422b17cb2330f94376f8ca82a6e6cc496f9a3
https://kernel.googlesource.com/pub/scm/linux/kernel/git/axboe/blktrace/9bf422b17cb2330f94376f8ca82a6e6cc496f9a3
http://dl.acm.org/citation.cfm?id=1254826
http://dl.acm.org/citation.cfm?id=1254826
http://dl.acm.org/citation.cfm?id=1995902
http://dl.acm.org/citation.cfm?id=1995902
http://www.eecs.berkeley.edu/alspaugh/papers/cake socc 2012.pdf
http://www.eecs.berkeley.edu/alspaugh/papers/cake socc 2012.pdf
http://web.eece.maine.edu/jyue/papers/mascots11.pdf
http://web.eece.maine.edu/jyue/papers/mascots11.pdf

249

The trace collected by blktrace is in a binary format. In order to convert

into a readable format, you need some tools to parse it. Blkparse produces

formatted output of event streams of block devices. Figure B-2 provides

an example output by blktrace. You can see that the IO request to device

generally has D time (the time when request enters device) and C time (the

time when request is completed), as well as some other file system-related

time, such as queuing, insert, and merge.

Figure B-2. A sample trace collected by blktrace and parsed by
blkparse

There are other tools related to blktrace:

• Verify blkparse/blkrawverify verifies an output file from

blkparse.

• Btrace calls blktrace on the specified devices and pipes

the output through blkparse for formatting.

• Btt represents an abbreviation of the expression of

the blktrace timeline that is possible to translate as

the chronicle of blktrace, www.fis.unipr.it/doc/

blktrace-1.0.1/btt.pdf.

APPENDIX b blktrAcE AND tools

http://www.fis.unipr.it/doc/blktrace-1.0.1/btt.pdf
http://www.fis.unipr.it/doc/blktrace-1.0.1/btt.pdf

250

• Seekwatcher generates graphs from blktrace to

visualize IO patterns and performance, https://oss.

oracle.com/mason/seekwatcher/.

• Iowatcher graphs the results of a blktrace run,

masoncoding.com/iowatcher/.

These tools generally provide some basic information about the trace

properties. For example, Seekwatcher visualizes some basic metrics

such as throughput and IOPS, as shown in Figure B-3. Iowatcher makes

an animation of IO events. However, they do not provide any inside

information related to cache and queue, which is particularly useful for the

new generation disk drives, like SMR. This motivates the development of a

dedicated tool for block-level trace analysis.

Figure B-3. Basic information by IOwatcher

APPENDIX b blktrAcE AND tools

https://oss.oracle.com/mason/seekwatcher/
https://oss.oracle.com/mason/seekwatcher/
http://masoncoding.com/iowatcher/

251© Jun Xu 2018
J. Xu, Block Trace Analysis and Storage System Optimization,
https://doi.org/10.1007/978-1-4842-3928-5

 Bibliography

 [1] R. Gastaldi and G. Campardo, Eds., In Search of the

Next Memory: Inside the Circuitry from the Oldest to

the Emerging Non-Volatile Memories. Springer, 2017.

 [2] M. Xie, L. Xia, and J. Xu, “State-dependent m/g/1/k

queuing model for hard disk drives,” IEEE CASE

(the 13th Conference on Automation Science and

Engineering), Xian, China, Mar 2017.

 [3] J. Niu, J. Xu, and L. Xie, “Optimal selection of

garbage collection dirty threshold to balance power

consumption and space release,” IEEE CAC, China,

Oct 2017.

 [4] A. Amer, J. Holliday, D. Long, E. Miller, J. Paris,

and T. Schwarz, “Data management and layout

for shingled maganetic recording,” in IEEE trans.

Magnetics, vol. 47, no. 10, pp. 3691–3697, 2011.

 [5] T. Feldman and G. Gibson, “Shingled magetic

recording: areal density increase requires new

data management,” USENIX; Login, vol. 38, no. 3,

pp. 22–30, 2013.

 [6] J. Niu, M. Xie, J. Xu, L. Xie, and L. Xia, “Smr drive

performance analysis under different workload

environments,” Control Engineering Practice, vol. 75,

pp. 86–97, 2018.

https://doi.org/10.1007/978-1-4842-3928-5

252

 [7] J. Niu, J. Xu, and L. Xie, “A deep look at smr

performance via simulation approach,” IEEE ICCA

(13th International conference on control and

automation), Ohrid, Macedonia, Jul 2017.

 [8] ——, “Analytical modeling of smr drive under

different workload environments,” IEEE ICCA

(13th International conference on control and

automation), Ohrid, Macedonia, Jul 2017.

 [9] E. Brewer and L. Ying, “Disks for data centers,” File

system and storage technology (FAST), CA, USA, 2016.

 [10] Y. Shiroishi, K. Fukuda, I. Tagawa, H. Iwasaki,

S. Takenoiri, H. Tanaka, H. Mutoh, and

N. Yoshikawa, “Future options for hdd storage,”

IEEE TRANS. MAGNETICS, vol. 45, no. 10,

pp. 3816–3822, 2009.

 [11] C. F. Adams and C. R. McKie, “Balanced actuator

which accesses separate disc assemblies,” Seagate,

Patent US6115215A, 1998.

 [12] E. Kim, “Ssd performance - a primer: An intrduction

to solid state drive performance, evaluation and

test,” SNIA, Tech. Rep., 2013.

 [13] B. Schroeder and G. A. Gibson, “Disk failures in the

real world: What does an mttf of 1,000,000 hours

mean to you?” The 5th USENIX conference on File

and Storage Technologies, Oct 2007.

 [14] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “A large-

scale study of flash memory failures in the field,”

ACM Sigmetrics, Portland, OR, USA, 2015.

BiBliography

253

 [15] J. Niu, J. Xu, and L. Xie, “Hybrid storage systems:

A survey of architectures and algorithms,” IEEE

Access, vol. 6, pp. 13 385–13 406, 2018.

 [16] J. R. David Reinsel, “Breaking the 15K-rpm HDD

Performance Barrier with Solid State Hybrid

Drives,” 2013.

 [17] M. K. Qureshi, V. Srinivasan, and J. A. Rivers,

“Scalable high performance main memory system

using phase-change memory technology,” ACM

SIGARCH Computer Architecture News, vol. 37,

no. 3, pp. 24–33, 2009.

 [18] Y. Huai, “Spin-transfer torque MRAM (STT-MRAM):

Challenges and prospects,” AAPPS Bulletin, vol. 18,

no. 6, pp. 33–40, 2008.

 [19] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu,

P.-S. Chen, B. Lee, F. T. Chen, and M.-J. Tsai,

“Metal–oxide RRAM,” Proceedings of the IEEE,

vol. 100, no. 6, pp. 1951–1970, 2012.

 [20] B. Jacob, S. W. Ng, and S. Rodriguez, Memory

Systems: Cache, DRAM, Disk, Elsevier, 2008.

 [21] D. Lee, M. O’Sullivan, and C. Walker, “Measurement

for improving the design of commodity archival

storage tiers,” Utility and Cloud Computing (UCC),

2011 Fourth IEEE International Conference. IEEE,

2011, pp. 275–280.

BiBliography

254

 [22] I. Koltsidas, S. Sarafijanovic, M. Petermann,

N. Haustein, H. Seipp, R. Haas, J. Jelitto, T. Weigold,

E. Childers, D. Pease et al., “Seamlessly integrating

disk and tape in a multi-tiered distributed file

system,” 2015 IEEE 31st International Conference on

Data Engineering. IEEE, 2015, pp. 1328–1339.

 [23] N. Muppalaneni and K. Gopinath, “A multi-tier

RAID storage system with RAID1 and RAID5,”

Parallel and Distributed Processing Symposium,

2000. IPDPS 2000. Proceedings. 14th International.

IEEE, 2000, pp. 663–671.

 [24] Wikipedia, “Flash memory — Wikipedia, the free

encyclopedia,” 2017. [Online]. Available: “https://

en.wikipedia.org/wiki/Flash memory”

 [25] H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P.

Reifenberg, B. Rajendran, M. Asheghi, and K. E.

Goodson, “Phase change memory,” Proceedings of

the IEEE, vol. 98, no. 12, pp. 2201–2227, 2010.

 [26] K. A. Bailey, P. Hornyack, L. Ceze, S. D. Gribble, and

H. M. Levy, “Exploring storage class memory with

key value stores,” Proceedings of the 1st Workshop on

Interactions of NVM/FLASH with Operating Systems

and Workloads, ACM, 2013, p. 4.

 [27] C. W. Smullen, J. Coffman, and S. Gurumurthi,

“Accelerating enterprise solid-state disks with

non-volatile merge caching,” Green Computing

Conference, 2010 International, IEEE, 2010,

pp. 203–214.

BiBliography

https://en.wikipedia.org/wiki/Flash_memory
https://en.wikipedia.org/wiki/Flash_memory

255

 [28] N. Lu, I.-S. Choi, S.-H. Ko, and S.-D. Kim, “A PRAM

based block updating management for hybrid solid

state disk,” IEICE Electronics Express, vol. 9, no. 4,

pp. 320–325, 2012.

 [29] M. Tarihi, H. Asadi, A. Haghdoost, M. Arjomand,

and H. Sarbazi- Azad, “A hybrid non-volatile cache

design for solid-state drives using comprehensive

I/O characterization,” IEEE Transactions on

Computers, vol. 65, no. 6, pp. 1678–1691, 2016.

 [30] G. Sun, Y. Joo, Y. Chen, Y. Chen, and Y. Xie, “A hybrid

solid-state storage architecture for the performance,

energy consumption, and lifetime improvement,”

Emerging Memory Technologies, Springer, 2014,

pp. 51– 77.

 [31] W. Xiao, H. Dong, L. Ma, Z. Liu, and Q. Zhang,

“HS-BAS: A hybrid storage system based on band

awareness of Shingled Write Disk,” Computer Design

(ICCD), 2016 IEEE 34th International Conference on,

IEEE, 2016, pp. 64–71.

 [32] P. Petriuk, “Openstack architecture,” Mirantis, White

paper, 2014.

 [33] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long,

and C. Maltzahn, “Ceph: A scalable, high-

performance distributed file system,” Proceedings

of the 7th Conference on Operating Systems Design

and Implementation (OSDI 06), 2006.

 [34] K. Singh, Learning Ceph. Packt Publishing, 2015.

BiBliography

256

 [35] D. G. Feitelson, Workload Modeling for Computer

Systems Performance Evaluation, UK: Cambridge

University Press, 2014.

 [36] R. Nou, J. Giralt, and T. Cortes, “Automatic i/o

scheduler selection through online workload

analysis,” in Ubiquitous Intelligence & Computing and

9th International Conference on Autonomic & Trusted

Computing (UIC/ATC), Fukuoka, Japan, 2012.

 [37] Y. Chen, “Workload-driven design and evaluation

of large-scale data- centric systems,” PhD thesis, UC

Berkeley, 2012. [Online]. Available: http://www.

eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-

2012- 73.pdf.

 [38] L. K. John and A. M. G. Maynard, Eds., Workload

Characterization of Emerging Computer Applications,

Springer Science+Business Media, LLC, 2001.

 [39] W. W. Hsu and A. J. Smith, “Characteristics of i/o

traffic in personal computer and server workloads,”

IBM Sysms Journal, vol. 42, no. 2, p. 347, 2003.

 [40] Q. M. Le, K. SathyanarayanaRaju, A. Amer, and

J. Holliday, “Workload impact on shingle write disks:

all-writes can be alright,” in 19th IEEE ISMASCTS,

Jul 2011, pp. 444 – 446.

 [41] B. Gregg, Systems Performance: Enterprise and the

Cloud, Prentice Hall, 2013.

 [42] A. Riska and E. Riedel, “Disk drive level workload

characterization,” Annual Tech 06: USENIX Annual

Technical Conference, 2006.

BiBliography

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-73.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-73.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-73.pdf

257

 [43] V. T. Priya Sehgal and E. Zadok, “Evaluating

performance and energy in file system server

workloads,” File system and storage technologies, 2010.

 [44] A. Williams, M. Arlitt, C. Williamson, and K. Barker,

Web Information Systems Engineering and

Internet Technologies Book Series, 2005, vol. 2, ch.

WEBWORKLOAD CHARACTERIZATION: TEN

YEARS LATER, pp. 3–21.

 [45] R. Eigenmann, Ed., Performance Evaluation and

Benchmarking with Realistic Applications, The MIT

Press, 2001.

 [46] S. Klyaus, Dynamic Tracing with DTrace &

SystemTap, online book, http://myaut.github.

io/dtrace-stap-book/.

 [47] B. Gregg, DTrace: Dynamic Tracing in Oracle Solaris,

Mac OS X and FreeBSD, Oracle, 2011.

 [48] Wikipedia, “Cache replacement policies —

Wikipedia, the free encyclopedia,” 2017.

 [49] L. Cherkasova, Improving WWW proxies

performance with greedy- dual- size-frequency

caching policy, Hewlett-Packard Laboratories, 1998.

 [50] E. J. O’neil, P. E. O’neil, and G. Weikum, “The lru-k

page replacement algorithm for database disk

buffering,” ACM SIGMOD Record, vol. 22, no. 2,

pp. 297–306, 1993.

 [51] S. Jin and A. Bestavros, “Popularity-aware greedy

dual-size web proxy caching algorithms,” Distributed

computing systems, 2000. Proceedings. 20th

international conference on, IEEE, 2000, pp. 254–261.

BiBliography

http://myaut.github.io/dtrace-stap-book/
http://myaut.github.io/dtrace-stap-book/

258

 [52] A. Traeger, E. Wright, N. Joukov, and C. P. Wright,

“A nine year study of file system and storage

benchmarking,” ACM trans. storage, vol. 4, no. 2,

p. 5, 2009.

 [53] SPC, SPC BENCHMARK 1C, 1st ed., Storage

Performance Council, CA, USA, Nov 2012.

 [54] J. S. Bucy, J. Schindler, S. W. Schlosser, and G. R.

Ganger, The DiskSim Simulation environment

version 4.0 reference manual, Carnegie Mellon

University, PA, USA, 2008.

 [55] Futuremark, PCMark: the complete benchmark,

2nd ed., Futuremark, Apr 2016.

 [56] H. Kim, S. Seshadri, C. L. Dickey, and L. Chiu,

“Evaluating phase change memory for enterprise

storage systems: A study of caching and tiering

approaches,” ACM Transactions on Storage (TOS),

vol. 10, no. 4, p. 15, 2014.

 [57] Y. Kim, A. Gupta, B. Urgaonkar, P. Berman, and

A. Sivasubramaniam, “Hybridstore: A cost-efficient,

high- performance storage system combining SSDs

and HDDs,” in 2011 IEEE 19th Annual International

Symposium on Modelling, Analysis, and Simulation

of Computer and Telecommunication Systems, IEEE,

2011, pp. 227– 236.

 [58] D. L. Moal, Z. Bandic, and C. Guyot, “Shingled file

system host-side management of shingled magnetic

recording disks,” in Consumer Electronics (ICCE),

2012 IEEE International Conference on, 2012.

BiBliography

259

 [59] C. Jin, W.-Y. Xi, Z.-Y. Ching, F. Huo, and C.-T. Lim,

“Hismrfs: a high performance file system for

shingled storage array,” Mass Storage Systems and

Technologies (MSST), 2014 30th Symposium on,

Santa Clara, CA, USA, 2014.

 [60] C. Li, D. Feng, Y. Hua, and F. Wang, “Improving

RAID performance using an endurable SSD cache,”

Parallel Processing (ICPP), 2016 45th International

Conference on, IEEE, 2016, pp. 396–405.

 [61] W. Liu, D. Feng, L. Zeng, and J. Chen,

“Understanding the swd-based raid system,” in

International Conference on Cloud Computing and

Big Data, 2014.

 [62] A. Thomasian and Y. Tang, “Performance, reliability,

and performability of a hybrid raid array and a

comparison with traditional raid1 arrays,” Cluster

Computing, vol. 15, pp. 239–253, 2012.

 [63] M. Li and J. Shu, “Daco: A high-performance

disk architecture designed specially for large-

scale erasure-coded storage systems,” IEEE

TRANSACTIONS ON COMPUTERS, vol. 59, no. 10,

pp. 1350–1362, 2010.

 [64] D. A. Patterson, G. Gibson, and R. H. Katz, “A case

for redundant arrays of inexpensive disks (raid),”

The 1988 ACM SIGMOD International Conference on

Management of Data, 1988, pp. 109–116.

BiBliography

260

 [65] S. Wu, H. Jiang, L. Tian, and B. Mao, “Workout:

Io workload outsourcing for boosting raid

reconstruction performance,” 7th USENIX

Conference on File and Storage Technologies, FAST

09, San Francisco, CA, 2009.

 [66] Z. Ren, X. Xu, J. Wan, W. Shi, and M. Zhou,

“Workload analysis, implications, and optimization

on a production hadoop cluster: A case study on

taobao,” Services Computing, IEEE Trans. on, vol. 7,

no. 2, pp. 307 – 321, 2014.

 [67] G. Wang, A. R. Butt, H. Monti, and K. Gupta,

“Towards synthesizing realistic workload traces

for studying the hadoop ecosystem,” IEEE 19th

MASCOTS, 2011, pp. 400–408.

 [68] Y. Chen, S. Alspaugh, and R. H. Katz, “Design

insights for mapreduce from diverse production

workloads,” UC Berkeley, http://www.eecs.

berkeley.edu/Pubs/TechRpts/2012/EECS-2012-

17.pdf, Tech. Rep. UCB/EECS-2012- 17, Jan 2012.

 [69] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and

M. Paleczny, “Workload analysis of a large-scale key-

value store,” SIGMETRICS ’12, 2012, pp. 53–64.

 [70] J. Shafer, S. Rixner, and A. Cox, “The hadoop

distributed filesystem: Balancing portability and

performance,” Performance Analysis of Systems &

Software (ISPASS), Mar 2010, pp. 122 – 133.

 [71] S. Kavulya, J. Tany, R. Gandhi, and P. Narasimhan,

“An analysis of traces from a production mapreduce

cluster,” 10th IEEE/ACM International Conference on

Cluster, Cloud and Grid Computing, 2010, pp. 94–103.

BiBliography

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-17.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-17.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-17.pdf

261

 [72] C. L. Abad, N. Robert, Y. Lu, and R. H. Campbell,

“A storage-centric analysis of mapreduce workloads:

File popularity, temporal locality and arrival patterns,”

IEEE International Symposium on Workload

Characterization (IISWC), 2012, pp. 100–109.

 [73] K. Ren, Y. Kwon, M. Balazinska, and B. Howe,

“Hadoops adolescence: A comparative workload

analysis from three research clusters,” Carnegie

Mellon University, PA, USA, Tech. Rep. CMU-

PDL-12-106, 2012.

 [74] G. Wang, A. R. Butt, P. Pandey, and K. Gupta,

“A simulation approach to evaluating design

decisions in mapreduce setups,” IEEE/ACM

MASCOTS, London UK, Sep 2009.

 [75] J. Axboe, blktrace User Guide, 2007. [Online].

Available: www.cse.unsw.edu.au/∼aaronc/
iosched/doc/blktrace.html.

 [76] A. Brunelle, Block Layer tracing: blktrace, knfiu.

mimuw.edu.pl, 2007.

 [77] T. Harter, D. Borthakur, S. Dong, A. S. Aiyer, L. Tang,

A. C. Arpaci- Dusseau, and R. H. Arpaci-Dusseau,

“Analysis of hdfs under hbase: a facebook messages

case study.” FAST, 2014, pp. 199–212.

 [78] C. Mason, Seekwatcher, Oracle, https://oss.

oracle.com/mason/seekwatcher/.

 [79] ——, iowatcher, 2013. [Online]. Available:

masoncoding.com/iowatcher/

BiBliography

http://www.cse.unsw.edu.au/∼aaronc/iosched/doc/blktrace.html
http://www.cse.unsw.edu.au/∼aaronc/iosched/doc/blktrace.html
https://oss.oracle.com/mason/seekwatcher/
https://oss.oracle.com/mason/seekwatcher/
http://masoncoding.com/iowatcher/

262

 [80] S. A. Weil, “Ceph: Reliable, scalable, and

high-performance distributed storage,” Ph.D.

dissertation, University of California, Santa Cruz,

CA, USA, 2007.

 [81] K. Singh, Ceph Cookbook. Packt Publishing, 2016.

 [82] D. Gudu, M. Hardt, and A. Streit, “Evaluating the

performance and scalability of the ceph distributed

storage system,” IEEE International Conference on

Big Data, 2014, pp. 177–782.

 [83] X. Zhang, S. Gaddam, and A. Chronopoulos, “Ceph

distributed file system benchmarks on an openstack

cloud,” IEEE International Conference on Cloud

Computing in Emerging Markets (CCEM), Bangalore

India, Nov 2015, pp. 113–120.

 [84] F. Wang and M. Nelson, “Ceph parallel file

system evaluation report,” National Center for

Computatational Sciences, OAK RIDGE NATIONAL

LABORATORY, ORNL/TM-2013/151, 2013.

 [85] S. Attaway, A Practical Introduction to Programming

and Problem Solving using Matlab. Elsevier, 2013.

 [86] M. Luiz, Learning Python. Sebastopol, CA: O’Reilly

Media, 2013.

BiBliography

263© Jun Xu 2018
J. Xu, Block Trace Analysis and Storage System Optimization,
https://doi.org/10.1007/978-1-4842-3928-5

Index

A
Apache Hadoop, 38, 40

B
Benchmark tools

PCMark, 125–128
procedure, 117–118
SPC-1C, 115
storage performance, 115
synthetic trace, 121–124
trace collection, 115–116
workload properties, 118–121

Bit-patterned magnetic recording
(BPMR), 8

Blktrace, 96
academics and

industries, 247
applications, 247
feature, 245
IOwatcher, 250
lists, events traces, 245–246
structure, 245–246
tools, 249–250
trace collection, 249
user interface, 248

Block-level analysis, Hadoop
average size, 183, 192

average values of
workloads, 183

IOPS and Throughput, 188–189
LBA and size distribution,

186–188
LSD, 195–198
observations and implication,

185
queue depth, 189
request size distribution, 184
ROW ratio, 199–200
sequence ratio with S=1024,

193–194
sequence ratio with S=4096

and 8192, 193
sequence stream

and command detection, 191
with different N, 190–191

trace statistics 148-21
(EXT4- WCD), 186

WCD vs. WCE, 201
workload characteristics,

205–207
workload, utilization, 189
write update, 195–197

Bottleneck identification, ceph
impacts, CPU, memory,

network and disk, 222–224

https://doi.org/10.1007/978-1-4842-3928-5

264

performance tool, 226
software stack, 225

C
Ceph, 42

bottleneck identification,
222–227

cluster topology, 210
IO patterns, 211
IOPS, 214
LBA distribution, 53, 213
OSDs, 209
verification, performance

consistency
hypothesis approach, 217–219
range tolerance

approach, 219–222
simplified statistical

method, 218–220
Ceph management, saltstack, 226
Controlled Replication Under

Scalable Hashing
(CRUSH), 209

Conventional magnetic recording
(CMR), 6

CRUSH algorithm, 215

D
Devices, storage

common metrics, 43
HDD (see Hard disk drive (HDD))

hybrid disk, 22–23
NVMs (see Non-volatile

memory (NVM))
SSD (see Solid-state drive/disk

(SSD))
tape and disc, 24

DRAM protection, 143–145
DTrace, 96

E
Energy-assisted magnetic

recording (EAMR), 10
Erasure code (EC), 160

F
Ferroelectric RAM (FeRAM), 25

G
GitHub, 99

H
Hadoop

Cluster configuration, 179
data flow, 180
failure analysis, 179
Google’s GFS, 176
HDFS logs, 207
LBA distribution, 54
MapReduce framework, 176
performance, 176
SMR drives, 177

Bottleneck identification,
ceph (cont.)

Index

265

trace collection, 181
workflow, 178

Hard disk drive (HDD), 1
areal density, 8
BPMR technology, 9
categories, 4
CMR, 6, 8
components, 3
DRAM write cache, 5
EAMR, 10
garbage data, 8
HAMR, 6, 10
HSA, 4
MAMR technologies, 10
PMR, 6, 8
predicated density, 11
response time (Tres), 5
single device’s capacity, 11
SMR, 6–8
SNR, 8
spinning speeds, 4
and SSHD, 144
TDMR, 8, 10
trace analysis, 102–103
WORM workload, 8

Hardware trace collection
bus analyzers, 91
products, 90
SAS IO access, BusXpert, 92
SATA command analysis, 93

Head stack assembly (HSA), 4
Host bus adapters (HBAs), 118
Hybrid disk, 21–23
Hybrid storage system, 33–34

address mapping, 33
algorithms, 32
data allocation, 32
data promotion, 33
fast access speed HDDs, 31
identification, hot data, 32–33
NVM technologies, 31
SSD, 31

I
IO stack, 47

J, K
Java Virtual Machine (JVM), 203

L
LBA distribution

Ceph node, 53
Hadoop node, 54
size, 54–56

Logical Stack Distance
(LSD), 195

Longitudinal magnetic recording
(LMR), 6

LTTng, 97

M
Magnetic tapes and optical

discs, 24
Magnetoresistive RAM (MRAM), 25

Index

266

MapReduce system, 49
MATLAB and

Python, 241–243
MATLAB-based Block-Trace Parser,

Analyzer and Reporter
(MBPAR)

batch analysis.m, 230, 235
batch generate ppt.m, 234
blktrace parser.m, 230
code, 229
configuration, 231
exportToPPTX, 234–236
options, 230–231
PowerPoint analysis

report, 232, 234
PowerPoint sample report,

237–238
Microservers and Ethernet

drives, 34
Microwave-assistant magnetic

recording (MAMR), 6

N
Non-volatile memory (NVM)

flash with 3D techniques, 28
Marketsandmarkets, 29
NAND techniques, 28
PCMS 3D Xpoint, 25
ReRAM/CBRAM, 25
SCM, 28
STT-MRAM, 25
SWOT analysis, 25–28
types, 25

O
Object storage daemons

(OSDs), 209
Online transaction processing

(OLTP), 84, 160
OpenStack, 41

P, Q
PBPAR

batch generate ppt.py, 241
code, 238–241

PCMark
applications, 125
Cache prefetch, 126
definition, holes, 127
hole types, 126
hypothesis, 128
workload properties

completion time, 130
size distribution, 132, 133
think/completion time (ms)

and IOPS, 131
think time distribution, 129

Performance Test Specification
(PTS), 109

Perpendicular magnetic recording
(PMR), 6

Phase-change memory
(PCM), 25

Physical block address (PBA), 70
Python

and MATLAB, 241–243
PBPAR (see PBPAR)

Index

267

R
RAID and EC

hybrid systems, 31–34
levels, 30
SMEs, 31
software-based

implementations, 30
Random access zone (RAZ), 197
Read-dominated trace

CDF, 164
frequency update, 165
idle time distribution, 163
LBA distribution, 162
segment, 165
size distribution, 162
SMR characteristics, 168
stack update, 167
time update, 166

Read-modify-write (RMW), 160
Read on Write (ROW) ratio, 77
Redundant array of independent/

inexpensive disks (RAID)
data integrity requirements, 160
OLTP systems, 160
read-dominated trace (see

Read-dominated trace)
RMW accesses, 160
system settings, 161
technology, 159
write-dominated trace (see

Write-dominated trace)
Resistive RAM (RRAM/ReRAM), 25
Response time, trace, 59

S
SAS/SATA protocol, 94
Seagate Technology, 34
Sequence vs. randomness, workload

FIFO scheduling policy, 65
LBA sequence, 68
queued near-sequence

stream, 66
queued sequence stream with

constraint, 66
ratio, 69
sequential stream, 65
variables, 68

Shingled magnetic recording
(SMR), 177

algorithms, 157
approaches, 156
characteristics vs. workload

metrics, 157–158
conventional LBA-to-PBA

mapping, 7
drives, 157
garbage collection (GC)

procedure, 7
HDD mechanics, 6
high capacity, 31
schematic of, 7

Single large expensive disks
(SLED), 159

Software-defined data center
(SDDC), 37

Software-defined networking
(SDN), 37

Index

268

Software-defined storage (SDS)
common features, 37
overall features, 37
SDDC, 37
SDN, 37
TechTarget, 35
Vmware, 36
Webopedia, 35
Wikipedia, 36

Software trace collection
black box, 95
Blktrace, 96
DTrace, 96
IO tools, 94–95
LTTng, 97
SAS/SATA protocol, 94
static tools, 95
SystemTap, 96

Solid-state drive/disk (SSD)
flash memory, 12, 21
and HDD, 12–19
market share, 21
NVM, 12
PCIe, SATA express, and M.2, 12
performance tier, 31
SAS and SATA, 12
small size memory cards, 21
SWOT analysis, 19–21
trace analysis

block alignment, 106
and HDD, 108
IOPS vs. queue depth, 106
NAND flash, 107
NAND SSDs, 104–105

NVM, 108
sequential throughput vs.

request size, 107
SNIA, 109

Solid-state hybrid drive (SSHD)
access isolation, 152–156
cache size, 149

flush/disk initialization
commands, 146–148

IOmeter traces, 148
WCD, 151
WCE, 151

CMR models, 144
NAND-backed DRAM cache

protection, 145
selection, models, 145
SPC-1C tool, 144
1K request trace, 149
512K request trace, 150
1024K request trace, 150
vs. traditional HDDs, 144

SPC-1C, 115, 118, 144
decomposition, 119
random walk pattern, 120
spatial distribution, 123
temporal distribution, 124

workload ratio, 120
Storage class memory (SCM), 28
Storage Performance Council

(SPC), 115–118
Storage system

basics of storage, 1–2
devices (see Devices, storage)
implementation

Index

269

Apache Hadoop, 38–40
Ceph, 41–42
OpenStack, 41

microserver and Ethernet
drives, 34

performance evaluation
access patterns, 45
common metrics, 43
factors, 44
IOPS, 44
IO stack, 47
redesign, 44
response time (RT), 45
throughput (TP), 44
trace collection and

analysis, 46
vs. workload, 45–46

RAID and EC (see RAID and EC)
software-defined

storage, 35–37
Stream-detection algorithm, 171
Synthetic trace

generator, 121
inter-arrival time histogram,

122–124
SPC-1C, 123–124

System-level analysis, Hadoop
HDFS mechanism, 201
HDFS metadata, 203
JVM, 203
MapReduce framework, 203

System on a chip (SoC)
architecture, 34

SystemTap, 96

T, U
Tape and disc, 24
TechTarget, 35
Toshiba’s KVDrive, 34
Trace analysis

algorithms
hot data identification and

data migration, 109
performance factors,

110–111
gain benefits, HDDs, 101–102
HDD (see Hard disk drive

(HDD))
interactions

with applications, 112–114
with structure, 111–112

SSD (see Solid-state drive/disk
(SSD))

Trace collection
benchmark tools (see

Benchmark tools)
hardware method (see

Hardware trace collection)
software (see Software trace

collection)
techniques, 89–90
warehouse, 97–99

Trace metrics
advanced

mathematical models, 80
priority-related, 78
read/write

dependency, 74–77

Index

270

sequential and near
sequential
streams, 65–69

spatial locality and logical
seek distance, 69–70

statistical properties
visualization, 72–74

temporal locality, 71
analytical model, 80–82
basic

busy/idle time, 63–64
estimation, queue depth and

idle time, 61–62
inter-arrival and inter-

completion time, 57
IOPS and

throughput, 58–59
LBA (see LBA distribution)
mathematical models, 79
queue depth, 60–62
queue length, 61
read and write

distribution, 56–57
response time, 59
rotational positioning

optimization, 62
scheduling algorithms, 62
typical workloads, 85
VSCs, 62
workload properties, 49–52

file-level traces, 86
numerical trace-based

approach, 78

typical application IO workload
profiles, 83–84

workload in system level, 87
Two-dimensional magnetic

recording (TDMR), 8

V
Vender special commands (VSCs),

62
Virtual machines (VMs), 210
Vmware, 36

W, X, Y, Z
Warehouse, trace, 97–99
Webopedia, 35
Wikipedia, 36
Workload and system

performance, 45–46
Workload metrics

block-level analysis (see Block-
level analysis, Hadoop)

system-level analysis (see
System-level analysis,
Hadoop)

Workload properties
access patterns, 119
application storage

unit, 118
business scaling unit, 118
gain-loss analysis

cache ratio, hole filling
policy, 142

Trace metrics (cont.)

Index

271

definition, 134–135
hole filling, 136–137
mixed simulation and

modeling approach, 134
prefetch and hole filling,

140–141
prefetch policy,

133, 138–139
self-induced hole filling

policy, 135
simple method, 134

HDD, 103
IO pattern distribution, 121
PCMark (see PCMark)
size distribution, 120
SPC-1C, 119–120

Write cache disabled (WCD), 200
Write cache enabled (WCE), 200
Write-dominated trace

LBA distribution, 169
size distribution, 169
SMR characteristics, 172
stack distance, 170
stack update, 171

Write once read many
(WORM), 8, 77, 199

Write Update (Write on Write)
frequency, 76
IO performance, 75
ratio, 75
stack distance, 77
time period, 76

Index

	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Introduction
	Basics of Storage
	Storage Devices
	HDD
	SMR HDD
	Other HDDs

	SSD
	Hybrid Disk
	Tape and Disc
	Emerging NVMs

	Storage Systems
	Infrastructure: RAID and EC
	Hybrid Systems
	Microservers and Ethernet Drives
	Software-Defined Storage

	Implementation
	Hadoop
	OpenStack
	Ceph

	System Performance Evaluation
	Performance vs. Workload
	Trace Collection and Analysis
	System Optimization

	Chapter 2: Trace Characteristics
	Workload Properties
	Basic Metrics
	LBA Distribution
	Size Distribution

	Read/Write Distribution
	Inter-Arrival and Inter-Completion Time
	IOPS and Throughput
	Response Time
	Queue Length/Depth
	Busy/Idle Time

	Advanced Metrics
	Sequence vs. Randomness
	Sequential and Near Sequential Streams

	Spatial Locality and Logical Seek Distance
	Logical Seek Distance

	Temporal Locality and Logical Stack Distance
	Logical Stack Distance
	Burstiness and Self-Similarity

	Statistical Properties Visualization and Evaluation
	Read /Write Dependency
	Write Update (Write on Write)
	Read on Write (ROW)

	Priority-Related Metrics

	Modeling Issues
	Typical Applications
	Traces in File- and Object-Levels

	Chapter 3: Trace Collection
	Collection Techniques
	Hardware Trace Collection
	Software Trace Collection
	Blktrace
	Dtrace, SystemTap, and LTTng

	Trace Warehouse

	Chapter 4: Trace Analysis
	Interactions with Components
	HDD Factors
	SSD Factors

	Interactions with Algorithms
	Interactions with Structure
	Interactions with Applications

	Chapter 5: Case Study: Benchmarking Tools
	SPC-1C
	Workload Properties
	Synthetic Trace

	PCMark
	Workload Properties
	Gain-Loss Analysis

	Chapter 6: Case Study: Modern Disks
	SSHD
	Cache Size
	Access Isolation

	SMR

	Chapter 7: Case Study: RAID
	Workload Analysis
	System Settings
	Read-Dominated Trace
	Write-Dominated Trace

	Chapter 8: Case Study: Hadoop
	Hadoop Cluster
	Workload Metrics Evaluation
	Block-Level Analysis
	General View
	Size and LBA Distribution
	IOPS and Throughput
	Utilization and Queue Depth
	Request Sequence
	Write Update
	Read on Write (ROW)
	Write Cache Enabled vs. Disabled

	System-Level View

	Some Further Discussions

	Chapter 9: Case Study: Ceph
	Filestore IO Pattern
	Performance Consistency Verification
	Bottleneck Identification

	Appendix A: Tools and Functions
	MATLAB-Based Tool: MBPAR
	Python-Based Tool: PBPAR
	Interaction Between MATLAB and Python

	Appendix B: Blktrace and Tools
	Bibliography
	Index

