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Introduction

In the new era of IoT, big data, and cloud systems, better performance 

and higher density of storage systems become more crucial in many 

applications.

To increase data storage density, new techniques have evolved, 

including shingled magnetic recording (SMR), heat-assistant magnetic 

recording (HAMR) for HDD, 3D Phase Change Memory (PCM) and 

Resistive RAM (ReRAM) for SSD. Furthermore, some hybrid and parallel 

access techniques together with specially designed IO scheduling and data 

migration algorithms have been deployed to develop high performance 

data storage solutions.

Among the various storage system performance analysis techniques, 

IO event trace analysis (block-level trace analysis in particular) is one 

of the most common approaches for system optimization and design. 

However, the task of completing a systematic survey is challenging 

and very few works on this topic exist. Some books provide theoretical 

fundamentals without enough practical analysis in physical systems, and 

others discuss the performance of some specific storage systems without 

proposing a tool that can be applied widely.

To fill this gap, this book brings together IO properties and metrics, 

trace parsing, and result reporting perspectives, based on MATLAB and 

Python platforms. It provides self-inclusive content on block-level trace 

analysis techniques, and it includes typical case studies to illustrate how 

these techniques and tools can be applied in real applications such as 

SSHD, RAID, Hadoop, and Ceph systems.



xvi

This book starts with an introduction in Chapter 1, which provides the 

background of data storage systems and general trace analysis. I show that 

the wide applications of block storage devices motivate the intensive study 

of various block-level workload properties.

Chapter 2 gives an overview of traces, in particular, the block-level 

traces. After introducing the common workload properties, I discuss the 

trace metrics in two categories, the basic ones and the advanced ones.

In Chapter 3, I present the ways to collect the block-level trace in both 

hardware and software tools. In particular, I show how the most popular 

tool in Linux system, blktrace, works in a simple setting.

In Chapter 4, I investigate the design of trace analyzers. I discuss 

the interactions of the workload with system components, algorithms, 

structure, and applications.

Case study is the best way to learn the methodology and the 

corresponding tools. This book will provide some examples to show how 

the analysis can be applied to real storage system tuning, optimization, 

and design. Therefore, from Chapter 5 to Chapter 9, I provide some typical 

examples for trace analysis and system optimization.

Chapter 5 presents the properties of traces from some benchmark 

tools, such as SPC and PCMarks. I show how to capture the main 

characteristics and then formulate a “synthetic” trace generator. I also 

show how the cache is affected by the workload, and how a proper 

scheduling algorithm is designed.

Chapter 6 attempts to explain the mystery behind SSHD’s performance 

boost in SPC-1C under WCD (write cache disabled). I show from the trace 

how a new hybrid structure can help to improve system performance.

Chapter 7 discusses the trace under two RAID systems with different 

read and write properties. I illustrate that the parity structure has a big 

impact on the overall performance.

Chapter 8 first reviews the literature on Hadoop workload analysis. And 

then I discuss the WD Hadoop cluster in a production environment. After 

that, the workload properties are analyzed, in particular, for SMR drives.

inTRoduCTioninTRoduCTion



xvii

Chapter 9 analyzes the Ceph system performance. Storage and the 

CPU/network/memory are discussed. I show that these components shall 

be considered as a unified system in order to identify the performance 

bottleneck.

The tools used in the book are introduced in the appendix. I first 

introduce the tool based on MATLAB. Then, I show how this tool is 

converted into the Python platform.

inTRoduCTioninTRoduCTion
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CHAPTER 1

Introduction
The chapter provides the background of data storage systems and general 

trace analysis. I will show that wide applications of block storage devices 

motivate the intensive study of various block-level workload properties.  

I will also list the objectives and contributions of this book in this chapter.

 Basics of Storage
In this information-rich world, data storage devices and systems are 

fundamental for information preservation. There are so many different 

types of storage devices available in the market, such as magnetic tape, 

optical disc drive, hard disk drive (HDD), solid state drive (SSD), flash 

memory, etc. Historically, there were even more types, like twister memory 

and drum memory. To narrow the focus, I will cover the modern computer 

storage/memory devices only. They can be generally divided into two 

categories [1].

• Volatile

• The commonly used, such as DRAM (dynamic 

RAM), SRAM (static RAM), etc.

• Those under development: T-RAM (thyristor RAM), 

Z-RAM (zero-capacitor), etc.
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• Non-volatile

• ROM (read-only memory), such as EPROM 

(Erasable Programmable ROM), EEPROM 

(Electrically E-PROM), MROM (Mask ROM), etc.

• NVRAM, such as flash memory, PCM (phase 

change memory), ReRAM/RRAM (resistive 

RAM), MRAM (magnetoresistive RAM), FeRAM 

(ferroelectric RAM), etc.

• Mechanical devices like HDD, magnetic tape, 

optical disc drives

When selecting a storage device or system, many factors must be 

considered carefully, such as price, performance, capacity, power efficiency, 

reliability, data integrity, durability, form factor, operating temperature, 

connection types, and so on, depending on the application scenarios. 

However, the performance of the devices is the major topic of this book.

 Storage Devices
In this section, I discuss several types of non-volatile storage devices, as 

some volatile devices like RAM, will be used inside those non-volatile 

devices as cache.

 HDD
HDD was first introduced by IBM in 1956. Soon it became the dominant 

secondary storage device for general purpose computers. Even now, it is still 

the mainstream storage device, in particular for data centers. Despite the fact 

that disk drives are commodity products today, a disk drive is an extremely 

complex electromechanical system encompassing decades of finely honed 

research and development on an immense multitude of diverse disciplines, 
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although the main components of the modern HDD have remained 

basically the same for the past 30 years. Figure 1-11 shows the components 

as assembled, and Figure 1-2 illustrates the basic electronics blocks.

1 All figures are provided in the source code download file for this book. To access 
the source code, go to www.apress.com/9781484239278 and click the Download 
Source Code button.

Figure 1-1. Basic components of a HDD

Figure 1-2. Basic HDD electronics blocks
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In particular, the servo is one of the most precise mechanical systems 

in the world. The disk head that reads and writes data to the medium 

is only few nanometers above the disc media; this is similar to a Boing 

737 plane flying a few meters above the ground. The HSA (head stack 

assembly) is moved by applying a current to the wires wound around a 

loop at its back end. This coil forms an electromagnet. The amount of 

current used is calculated by servo electronics. By varying the current, very 

precise acceleration and deceleration can be programmed, increasing IO 

performance and servo head positioning accuracy.

HDD can be divided into two categories: consumer and enterprise. 

Consumer HDDs are mostly used in desktop and mobile devices like a 

notebook. Consumer electronics HDDs are often embedded into digital 

video recorders, smart TVs, and automotive vehicles. Enterprise HDDs 

usually have higher reliability than consumer HDDs, with higher quality 

requirements for the media and head.

Disk drives have different spinning speeds (rotation per minute, 

RPM). For example, desktop HDDs are usually in 3.5-inch form with 7200 

RPM, while mobile HDDs are in 2.5-inch form with 5400 RPM. Each disc 

surface is divided into different concentric zones. Inner zones (ID) have 

less physical space and contain less sectors than outer zones (OD). As 

the spinning speed is the same, the data transfer speed of OD is generally 

faster than that in ID. For a typical 3.5-inch desktop HDD, the sequential 

read speed in OD could be 1.5 to 2 times than that in ID.

For a typical HDD, the following formula calculates average access 

time (Ta) [2, 3]:

 Ta
 = Ts + Tl + Tt + To (1.1)
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where

• Seek time as Ts: Time required to move the heads a desired 

distance. Typically specified at 1/3 the radius of the platter. 

The settle time is generally included in this part.

• Rotational latency as Tl: Amount of time the drive must 

wait before data is under the read/write head.

• Transfer time as Tt: Amount of time required to transfer 

data to or from the host.

• Controller overhead as To: How long it takes the drive to 

decode a command from the host.

Note that the read head is usually different from the write head, and 

the internal firmware process for reads and writes is also different. So there 

will be a slight variance for read and write seek times. Usually, write access 

costs more because of the longer setting time of a write, which is caused 

by PES (position error signal) requirement, which means write access 

requires a stronger condition on PES than read access. By design, faster 

RPM drives have faster average access times than slower RPM drives due 

to shorter latency and seek times.

The response time (Tres) is a different concept from the access time. 

In fact, since the conventional disk drive can only process one request at 

one time, some incoming requests have to wait in a queue. For example, 

some write requests may be buffered in DRAM write cache first and must 

wait for the previous request to be completed. Note that although there are 

many arms and heads per drive, the arms must move together since there 

is only one VCM to drive them in general. Thus,

 Tres
 = Ta + Tw (1.2)

where Tw is the waiting or queueing time just after the request enters 

the queue and before it is actually executed.
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Owning to the influence of the command queue, cache has large 

impact on the performance of both read and write. Thus, a large portion 

of DRAM inside HDD is used for cache. Read cache and write cache 

commonly share the same space, so that part of write cache segments may 

be converted into read cache segments when necessary. However, some 

HDDs may have dedicated read or write cache for different purposes. In 

Chapter 4, I will show more details.

Conventional magnetic recording (CMR) is a relative concept. 

The longitudinal magnetic recording (LMR) HDD was a conventional 

concept to perpendicular magnetic recording (PMR) HDD in early 2000s. 

Nowadays, PMR is the dominant structure and is still in evolution. For 

example, SMR (shingled magnetic recording) is a new type of PMR already 

available in the market, while HAMR (heat-assistant magnetic recording) 

and MAMR (microwave-assistant magnetic recording) are emerging.

 SMR HDD

SMR is the emergent technique being deployed to increase areal density in 

HDDs without drastic changes to the HDD mechanics [4, 5, 6, 7, 8]. Due to 

its shingled nature, SMR tends to favor large sequential writes over random 

ones. In this background section, I will give a general introduction to SMR 

characteristics.

The most significant feature of a SMR drive is its sequential write 

properties due to the shingled tracks. As shown in Figure 1-3, all physical 

sectors are written sequentially in a particular direction radially and are 

only rewritten after a wrap-around. Rewriting a previously written LBA will 

cause the previous write to be marked invalid and the LBA will be written 

to the next sequential physical sector.
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Due to this log-structure-like sequential write feature (which is 

beneficial for write performance), the conventional LBA-to-PBA mapping 

(direct/static mapping) may not work well since any change in a block 

results in a read-modify-write access to all its consecutive blocks in the 

same zone, which can cause performance penalties. Therefore, indirect/

dynamic mapping is usually applied. When an update happens, instead of 

an in-place rewrite, an out-of-place “new” write will be carried out, which 

leads to write implications; in other words, the data in the previous place 

becomes garbage and the new write claims additional space. In order to 

reuse those garbage blocks, a garbage collection (GC) procedure must be 

implemented.

Another concern of the out-of-place update is the potential harm to the 

sequential read performance. If some LBA-continuous requests are written 

into several different physical zones, the later LBA-continuous read request 

in the same LBA range cannot gain the actual benefit of the “logically 

sequential” read. The corresponding data management scheme can be 

implemented in three levels: drive, middleware, or host side. Although a 

few academic works have introduced in-place updates via a special data 

layout design, the out-of-place policy remains the main approach.

Figure 1-3. Schematic of SMR
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In general, a SMR drive expects the workload to be read/write sequentially, 

with infrequent updates to the data. In addition, since garbage data will 

generally occur at some points (unless data is never deleted or modified), idle 

time should be sufficiently long as to allow GC to run periodically without 

impacting external/user IO performance. Hence, the write-once-read-many 

(WORM) workload (archival) is a natural extension to the characteristics of 

SMR drives. Few other recent suggestions on SMR optimizations are available 

in [9], e.g., hybrid strategy, parallel access and large form factor.

 Other HDDs

The PMR technique reached its theoretical limitation of areal density for 

conventional design (1TB/in2) in recent years. The limiting factor is the 

onset of the super-paramagnetic limit as researchers strive towards smaller 

grained recording media. This levies a tradeoff between the signal-to- 

noise ratio (SNR) and the thermal stability of small grain media and the 

writability of a narrow track head, which restricts the ability to continue to 

scale CMR technology to higher areal densities [10].

Several promising technology alternatives have been explored to 

increase the areal density beyond the limit, such as two-dimensional 

magnetic recording (TDMR), heat-assisted magnetic recording, 

microwave-assisted magnetic recording [10], and bit-patterned magnetic 

recording (BPMR). Table 1-1 provides a brief category and Figure 1-5 

shows the trends of these techniques.

Table 1-1. New Techniques to Increase Areal Density

Approaches Reduce grain size 
and make  grains 
harder to switch

Reduce bit width 
and/or length

Increase areal density/
size, add heads and 
disks

Solutions haMr, MarM SMr, haMr, 

t-dMr

helium drive, advanced 

mechanical designs, form 

factor optimization
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In BPMR technology, each recording bit is stored in a fabricated 

magnetic island of around 10 nm. It has been proposed as a means 

for extending the super-paramagnetic limit of current granular media 

as illustrated in Figure 1-4 (a). The recording physics in BPMR are 

fundamentally different from conventional PMR, as the write and read 

scheme must be totally reestablished. A major shortcoming is the write 

synchronization requirement in which the write field must be timed to 

coincide with the locations of patterned islands. The total switching field 

distribution in the writing process, including various interference fields, 

must be less than the product of the bit length and the head field gradient 

to attain a high areal density up to 5 TB/in2 theoretically.

Figure 1-4. Future options of HDD[10]
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HAMR and MAMR are two implementations of energy-assisted 

magnetic recording (EAMR). HAMR is proposed to overcome head 

writability issues. The core components of proposed HARM and  

MAMR technologies are a laser and a spin torque-driven microwave 

oscillator, respectively. In HAMR, the media have to be stable at  

much smaller grain sizes yet be writable at suitably elevated 

temperatures. The integration of HAMR and BPMR enables an 

extension of both technologies, with projected areal density up to  

about 100 Tb/in2 based on the thermal stability of known magnetic 

materials [10]. Both WDC and Seagate announced their roadmap for 

EAMR. Seagate claimed that its HAMR- based HDDs will be due in  

late 2018,2 while WDC declared that its MAMR will store 40TB on a  

hard drive by 2025.3

TDMR still uses a relatively conventional perpendicular medium and 

head, while combining shingled write recording (SWR) and/or 2D read 

back and signal processing to promise particularly large gains. Recording 

with energy assist on BPM or 2D signal processing will enable the areal 

density beyond around 5 Tb/in2. However, there is no clear problem-free 

solution so far.

2 www.anandtech.com/show/11315/seagate-ships-35th-millionth-smr-hdd-
confirms-hamrbased-hard-drives-in-late-2018

3 www.wdc.com/about-wd/newsroom/press-room/2017-10-11-western-digital-
unveils-next-generation-technology-to-preserve-and-access-the-next-
decade-of-big-data.html
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Note that for HAMR/MAMR HDDs, the sequential access properties 

may be similar to SMR/TDMR. As the heater start-up/cool-down 

requires time, sequential access to reduce the status change is 

preferred.

One of other recent techniques to increase single device’s capacity 

is the volumetric density scaling, such as adding more disc platters 

into one Helium-filled drive (less turbulence, thinner disks, and higher 

capacity) and designing a large form factor enclosure [9]. To further 

increase the capacity of single drives, some interesting designs have 

been suggested. For example, the dual-spindle design can access two 

disk clusters with two arms [11]. In this direction, more arms and disks 

are also possible, such as six arms and six disk spindles. Magnetic disk 

libraries and cartridge designs make the disk media exchangeable, 

similar to optical disks.

Figure 1-5. Predicated density of future techniques[10]
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 SSD
A solid-state drive/disk (SSD) is a solid-state storage device to store data 

persistently that utilizes integrated circuit assemblies as memory [12]. 

Electronic interfaces compatible with traditional HDDs, such as SAS 

and SATA, are primarily used in SSD technology. Recently, PCIe, SATA 

express, and M.2 have become more popular due to increased bandwidth 

requirements.

The internal memory chip of a SSD can be NOR-flash, NAND-flash, 

or some other emerging NVM (non-volatile memory). Most SSDs have 

started to use 3D TLC (tri-layer ceil) NAND-based flash memory as of 

2017.

SSD is changing the storage industry. While the maximum areal 

storage density for HDDs is only 1.5 Tbit/in, the maximum for flash 

memory used in SSDs is 2.8 Tbit/in in laboratory demonstrations as of 

2016. And SSD’s overall areal density increasing ratio of flash memory 

is over 40% per year, which is larger than 10-20% of HDD. And the price 

decreasing ratio of SSD ($ per GB) is dropping faster than that of HDD.

Table 1-2 gives a comparison of SSD and HDD, where the SSD mainly 

refers to NAND-based devices, while HDD is conventional PMR devices.4

4 Revised source from wiki and latest industry updates.
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5 Usually, it ranges from 0 (sequential), ~ 0.5ms (1 track), ~ 0.2ms (head switch) to 
10+ ms (long seek).

Table 1-2. Comparison of HDD and SSD

Attribute SSD HDD

Start-up time almost no delay because there 

is no requirement to prepare 

mechanical components (some 

μs to ms). usually a few ms 

to switch from an automatic 

power-saving mode.

up to several seconds for disk 

spin-up. up to few hundred 

million seconds to wake up from 

idle mode.

random 

access time

typically less than 0.1 ms.  not 

a big performance bottleneck 

usually.

typically from 2.5 (high-end 

server/enterprise drives) to 12 

ms (laptop/mobile drives) mainly 

owing to seek time and rotational 

latency.

read  latency

time

usually low due to the direct 

data access from any location. 

For applications constrained 

by the hdd’s positioning time, 

SSd has no issue in faster boot 

and application launch times 

(see amdahl’s Law). a clean 

Windows oS may spend less 

than 6 seconds to boot up.

Generally much larger than 

SSds.   the time is different for 

each seek due to different data 

locations on the media and the 

current read head position.5 a 

clean Windows oS may spend 

more than 1 minute to boot up.

(continued)
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Table 1-2. (continued)

Attribute SSD HDD

data  transfer 

rate

relatively consistent Io speed 

for relatively sequential Io. 

performance is reduced when 

the portion of random smaller 

blocks is large. typical value 

ranges from around 300MB/s    

to 2500MB/s for consumer 

products (commonly speed 

around 500MB/s at 2017).

up to multi-gigabyte per second 

for enterprise class.

heavily depends on rpM, which 

usually ranges from 3,600 to 

15,000 (although 20,000 rpM 

also exists). typical transfer 

speed at about 200 MBps for  

3.5- inch drive at 7200 

rpM. Some high-end drives 

can be faster, up to 300 MBps. 

tpI and Spt are also influential 

factors.

read   

performance

Generally independent on the 

data location in SSd. In few 

cases, sequential access may 

be affected by fragmentation.

random seek is expensive.   

Fragmented files lead to the 

location of the data in different 

areas of the platter; therefore, 

response times are increased by 

multiple seeks of fragments.

Write  

performance

Write amplification may occur.6 

Wear leveling techniques are 

implemented to get this effect. 

however, the drive may  

unavoidably degrade at an 

observable rate due to SSd’s 

nature.

CMr has no issue with write 

amplification. however, SMr may 

have an issue due to the out-of- 

place-update. GC is also required.

(continued)

6 A performance degradation phenomenon where the NAND cells display a 
measurable drop in performance and may continue degrading throughout the 
SSD life cycle.
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7 A practical limit on the number of fragmentation exists in a file system for 
sustainment. In fact, subsequent file allocations may fail once that limit is 
reached. Therefore, defragmentation may still be needed to a lesser degree.

8 Normally, the noise is high when the disk starts to spin up. The noise level of 
HDD is generally much lower than that of the cooling fans.

9 When moving HDDs from a warm condition to a cold condition before operating 
it (or vise verse), a certain amount of acclimation time is required. Otherwise, 
internal condensation may occur and immediate operation may lead to damage 
of its internal components. In addition, the sudden atmospheric pressure change 
may also crash the head into the disc media.

Table 1-2. (continued)

Attribute SSD HDD

Impacts of 

file system 

fragmentation

relatively limited benefit to 

reading data sequentially, 

making fragmentation 

not significant for SSds. 

defragmentation would cause 

wear with additional writes.7

Many file systems get fragmented 

over time if frequently updated. 

optimum performance 

maintenance requires periodic 

defragmentation, although this may 

not be a problem for modern file 

systems due to node design and 

background garbage collection.

noise 

(acoustic) and 

vibration

SSds are basically silent without 

moving parts. Sometimes, the 

high voltage generator (for 

erasing blocks) may produce 

pitch noise. Generally insensitive 

to vibration.

the moving parts (e.g., heads, 

actuator, and spindle motor) 

make characteristic sounds of 

whirring and clicking. noise levels 

differ widely among models, 

and may be large.8 Mobile disks 

are relatively quiet due to better 

mechanical design. Generally 

sensitive to vibration.9

(continued)
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Table 1-2. (continued)

Attribute SSD HDD

data tiering hot data may move from slow 

devices to fast devices. It usually 

works with hdds, although in 

some implementations, fast and  

slow SSds are mixed.

hdds are usually used as a slow 

tier in a hybrid system. Some 

striped disk arrays may provide 

comparable sequential access 

performance to SSds.

Weight and 

size

essentially small and  

lightweight due to the internal 

structure. they usually have 

the same form factors (e.g., 

2.5-inch) as hdds, but thinner, 

with plastic enclosures. the 

M.2 (next Generation Form 

Factor) format makes them even 

smaller.

hdds are usually heavier than 

SSds, since their enclosures 

are made of metal in general. 

2.5-inch drives typically weigh 

around 200 grams while 3.5-inch 

drives weigh over 600 grams 

(depending on the enclosure 

materials, motors, disc magnets/

number, etc.). Some slim designs 

for mobile could be less than 

6mm thin.

(continued)
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Table 1-2. (continued)

Attribute SSD HDD

reliability and 

lifetime

no mechanical failure.  

however, the limited number 

of write cycles for each block 

may lead to data loss.10 a 

controller failure can lead to an 

unusable SSd. reliability differs 

quite considerably depending 

on different manufacturers, 

procedures, and models.11

potential mechanical failures 

from the resulting wear and 

tear. the storage medium itself 

(magnetic platter) does not 

essentially degrade from r/W 

accesses.12

Cost  per  

capacity13

Consumer-class SSd’s nand 

chip pricing has dropped rapidly: 

uS$0.60 per GB in april, 2013, 

uS$0.45, $0.37 and $0.24 

per GB in april 2014, February 

2015, and September 2016, 

respectively. the speed has 

slowed down since late 2016. 

prices may change after 3d 

nand becomes common.14

Consumer hdds cost about 

uS$0.032 and $0.042 per GB 

for 3.5-inch and 2.5-inch drives 

in May 2017. the price for 

enterprise hdds is generally 

more than 1.5 times over that 

for consumers. relatively stable 

prices in 2017 may be broken 

after MaMr/haMr release.

(continued)

10 A non-common SSD, which is based on DRAM, does not have a wearing issue.
11 Leading SSDs have lower return rates than mechanical drives as of 2011, although 

some bad design and manufacturing results in return rates reaching 40% for specific 
drives. Power outage is one of the main SSD failure types. A survey in December 
2013 for SSDs showed that survive rate from multiple power outages is low.

12 Carnegie Mellon University conducted a study for both consumer-and 
enterprise-class HDDs in 2007 and SSD in 2015 [13, 14]. HDDs’ average failure 
rate is 6 years, with life expectancy at 9-11 years.

13 https://pcpartpicker.com/trends/internal-hard-drive/
14 https://pcpartpicker.com/trends/price/internal-hard-drive/
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Table 1-2. (continued)

Attribute SSD HDD

Storage 

capacity

Sizes up to 60tB by Seagate 

were available as of 2016. 120 

to 512GB models were more 

common and less expensive.

hdds of up to 10tB and 12tB 

were available in 2015 and 2016, 

respectively.

read/write 

performance 

symmetry

Write speeds of less costly SSds 

are typically significantly lower 

than their read speeds. (usually 

≤1/3).  Similar read and write 

speeds are expected in high-

end SSds.

Most hdds have slightly longer/

worse seek time for writing than 

for reading due to the longer 

settle time.

Free block 

availability 

and trIM 

command

Write performance is 

significantly influenced 

by the availability of free, 

programmable blocks. the trIM 

command can reclaim the old 

data blocks no longer in use; 

however, fewer free blocks 

cause performance downgrade 

even with trIM.

CMr  hdds  do  not  gain  

benefits  from trIM because they 

are not affected by free blocks. 

however, SMr performance is 

also restricted by the available of 

free zones. trIM is required for 

dirty zones sometimes.

(continued)
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Attribute SSD HDD

power 

consumption

high performance flash-based 

SSds generally require 1/2  to  

1/3  of  the  power of hdds. 

emerging technologies like 

pCM/rraM are more energy- 

efficient.15

2.5-inch drives consume 2 to 

5 watts typically, while some 

highest-performance 3.5-inch 

drives may use around 12 watts 

on average, and up to about 20 

watts. Some special designs for 

green data centers send the disk 

to idle/sleep when necessary. 

1.8- inch format lower-power 

hdds may use as little as 0.35 

watts in idle mode.16

Table 1-2. (continued)

15 High-performance DRAM-based SSDs generally require as much power as 
HDDs, and a power connection is always required even when the system is idle.

16 Disk spin-up takes much more power than that a normal operation. For a system 
with many drives, like a RAID or EC configured structure, staggered spin-up is 
needed to limit the peak power overload.

In summary, here is a SWOT analysis for NAND SSD:

• Strength

• A mature technology widely employed by 

industries

• Large scale/density, applicable for 3D techniques

• A single drain contact per device group is required 

compared with NOR.

• Relatively cheaper than other emerging NVM types 

for dollar/GB
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• Weakness

• Asymmetric performance (slower write than read)

• Program/erase cycle (block-based, no write-in-

place)

• Data retention (retention gets worse as flash scales 

down)

• Endurance (limited write cycle compared with 

HDD and other emerging NVMs) 100-1000 slower 

than DRAM

• 10-1000 slower than PCM and FeRAM

• Usually, the higher the capacity, the lower the 

performance.

• Opportunity

• Scaling focused solely on density; density is higher 

than magnetic HDD in general.

• Decreased cost, which will be comparable with 

HDD in the near future

• 3D schemes exist despite of complexity

• Durability is improved to a certain degree together 

with fine-tuned wearing leverage algorithms.

• Replacement for HDD in data centers as a 

mainstream choice (in particular, an all-flash 

array), although hybrid infrastructures will remain 

for some years.
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• Threat

• The extra connections used in the NOR architecture 

provide some additional flexibility when compared 

to NAND configuration.

• The active development of MRAM/ReRAM may 

shake NAND flash’s dominate position.

The real question is the market share of the two technologies. It is 

important how you measure the market share. By money gets you a 

very different answer than by bit. In the money arena, SSDs will rapidly 

overtake HDDs spend in the very near future, while by bit, HDDs will still 

dominate for some years.

There are some other storage devices using flash memory. Flash 

thumb drives are similar to SSD but with much lower speed and they are 

commonly used for mobile applications. Kingston Digital released 1TB 

capacity drives with an USB 3.0 interface (data transfer speeds up to  

240 MB/s read and 160 MB/s write) in early 2017 and 2TB drives (up to  

300 MB/s read and 200 MB/s write) in late 2017, which is similar to  

HDD’s speed.

Small form size memory cards are also widely used in electronic 

devices, such as smartphones, tablets, cameras, and so on. Some common 

formats include CompactFlash, Memory Stick, SD/MicroSD/MiniSD, and xD.  

SanDisk introduced up to 1TB size of Extreme Pro series SD products in 

September 2016 and MicroSD up to 400GB in August 2017.

 Hybrid Disk
A hybrid drive is a logical or physical storage device that integrate a fast 

storage medium such as a NAND/NOR flash SSD into a slow medium such 

as a HDD [15]. The fast device in a hybrid drive can act either as a cache 

for the data stored on the HDD or as a tier peering to HDD. In generally, 

the purpose is to improve the overall performance by keeping copies of 
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the most frequently used data (hot data) on the faster component. Back in 

the mid-2000s, some hard drive manufacturers like Samsung and Seagate 

theorized the performance boost via SSD inside HDD. In 2007, Samsung 

and Seagate introduced the first hybrid drives using the Seagate Momentus 

PSD and Samsung SpinPoint MH80 products.

There are generally two types of hybrid disks. One is of a dual-drive 

structure (the tiering structure) where the SSD is the fast tier and HDD 

is the slow tier. Usually, the OS will recognize the devices with two sub- 

storage devices. Western Digital’s Black2 products introduced in 2013 and 

TarDisk’s TarDisk Pear in late 2015 are two examples of dual-drive devices. 

The other is an integrated structure (solid-state hybrid drive, SSHD) where 

the SSD acts as cache [16]. Users or OSs may see one storage device only 

without specific operations.

The hybrid disk drive can operate in either self-optimized (self- 

learning) mode or host-optimized mode. In the self-optimized mode of 

operation, the SSHD works independently from the host OS, so device 

drives determine all actions related to data identification and migration 

between the HDD and SSD. This mode lets the drive appear and operate 

to a host system exactly like a traditional drive. A typical drive is Seagate’s 

Mobile and Laptop SSHD. Host- optimized mode is also called host- hinted 

mode, so the host makes the decision for the data allocations in HDD and 

SSD via SATA interface (since SATA version 3.2). This mode usually requires 

software/driver support from the OSs. Microsoft started to support the 

host-hinted operations in Windows 8.1 (a patch for version 8 is available), 

while patches for the Linux kernel have been developed since October 

2014. Western Digital’s first generation of SSHDs is in this category.

The market of hybrid disk drives may be narrow due to some inherited 

limitations:

• The performance is heavily application/workload 

dependent usually. But the drive may not be smart 

enough to be constrained by its resource.

Chapter 1  IntroduCtIon



23

Table 1-3. Comparison of Some NVMs

STT-MRAM PCMS 3D 
Xpoint

ReRAM Flash NAND

read latency < 10ns < 100ns < 10ns 10–100us

Write latency 5ns > 150ns 50ns > 100us

power consumption Medium Medium Medium high

price (2016) 200−3000/ Gb ≤ 0.5/Gb 100/Gb ≤ 0.05/Gb

endurance(nb 

cycles)

1012   to  

unlimited

108−109 105−1010 105−106

• Block level optimization is no better or worse than file/

object level optimization due to less information on the 

workload. Thus it is not recommended to optimize the 

workload in the drive level.

• It is not well suited for a data center infrastructure’s 

general purpose due to relatively static configurations 

of hybrid disks.

For the write path, some hold-up capacitors are used to simulate SCM 

(see the “Storage Devices” section of this chapter) with DRAM in some 

high-end SSDs. This essentially solves the write back problem. For the read 

path, customers generally prefer to manage different speed tiers of storage 

by themselves. They are very concerned with the access latency variance, 

and hybrid systems are very poor in this area. There is virtually no uptake 

of infrastructure-managed hybrid storage in Hyperscale or public cloud 

infrastructure. There are lots of deployments of hybrid structures. It is just 

managed at higher layers, not in the infrastructure itself. Table 1-3 provides 

more details.
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 Tape and Disc
Magnetic tape was first used to record computer data in 1951. It usually 

works with some specific tape drives only. Despite its slow speed, it is still 

widely used for cold data archiving. IBM and FujiFilm demonstrated a 

prototype BaFe Tape with 123 Gb/in2 areal density and 220TB cartridge 

capacity in 2015. Sony and IBM further increased this number to  

201 Gb/in2 and 330TB into a tiny tape cartridge in 2017.17 Instead of 

magnetic materials painted on the surface of conventional tape, Sony used 

a “sputtering” method to coat the tape with a multilayer magnetic metal 

film, which is thinner with narrower grains using vertical bits. Note that 

tape and HDD share many similarities in the servo control, such as servo 

pattern and nanometer precision.

An optical disc is a flat, usually circular disc that encodes binary data 

(bits) in the form of pits. An early optical disc system can be traced back to 

1935. Since then, there have been four generations (a CD of about 700MB 

in the first generation, a DVD of about 4.7GB in the second generation, a 

standard Blu-ray disc of about 25GB in the third generation, and a fourth 

generation disc with more than 1TB data).

Both magnetic tapes and optical discs are usually accessed 

sequentially only. Some recent developments use robot arms make the 

change of tape/disc automatically. It is expected that tape and optical 

disc may still be active in the market for some years. In particular, due to 

much lower price per GB than other media, the tape seems to have a large 

potential market for extremely cold storage.

17 https://arstechnica.com/information-technology/2017/08/
ibm-and-sony-cram-up-to-330tb-into-tiny-tape-cartridge/
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 Emerging NVMs
There are also many types of emerging NVMs on the way to mature or 

under an early stage of development [17, 10]:

• Phase-change memory (PCM), such as 3D X-point

• Magnetoresistive RAM (MRAM), such as STTRAM and 

Racetrack memory

• Resistive RAM (RRAM/ReRAM), such as Memristor, 

Conductive-bridging RAM (CBRAM), Oxy-ReRAM

• Ferroelectric RAM (FeRAM), such as FeFET

• Others, such as conductive metal oxide (CMOx), 

solid electrolyte, NRAM (nano RAM), ZRAM  (zero- 

capacitor), quantum dot RAM, carbon nanotubes, 

polymer printed memory, etc.

STT-MRAM [18] (spin-transfer torque MRAM), using electron spin- 

induced change in magnetic moment, can replace low-density SRAM  

and DRAM, particularly for mobile and storage devices. Phase-change  

memory (PCM), making thermally induced physical phase changes 

between amorphous and crystalline states, has the ability to achieve a 

number of distinct intermediary states, thereby having the ability to hold 

multiple bits in a single cell. PCMS 3D Xpoint, announced by Intel and 

Micron in 2015, is based on changes in the resistance of the bulk material 

faster and is more stable than traditional PCM materials. ReRAM/CBRAM 

(conductive- bridging RAM) uses a metallic filament formation in electrolyte 

to storage, and FeRAM uses a ferroelectric layer instead of a dielectric layer 

to achieve nonvolatility [1]. Table 1-3 shows a simple comparison of them 

with NAND. A few of them could be in mass production within the next few 

years [19], although it might be still early to confirm which NVM technique is 

a winner in the competition, as they have their advantages and disadvantages. 

For example, let’s use PCM as an example for its SWOT analysis.
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• Strength

• Relatively mature (large-scale demos and products) 

compared with other emerging NVMs

• Industry consensus on materials, like GeSbTe  

or GST

• Large resistance contrast, which leads to analog 

states for MLC

• Much longer endurance than NAND Flash

• High scalability (still works at ultra-small F) and 

back- end- of-the-line compatibility

• Potential very high speed (depending on material 

and doping)

• Weakness

• RESET step to high resistance requires melting − > 

power-hungry and thermal crosstalk?

• To keep switching power down − > sub-

lithographic feature and high-current access device

• To fill a small feature − > atomic layer deposition or 

chemical vapor deposition techniques − > difficult 

now to replace GST with a better material

• MLC strongly impacted by relaxation of amorphous 

phase − > resistance drift

• 10-year retention at elevated temperatures 

(resistance drafts with time) can be an issue − > 

recrystallization
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• Device characteristics change over time due to 

elemental segregation − > device failure

• Variability in small features broadens resistance 

distributions

• Opportunity

• An order of magnitude lead over FeRAM, MRAM, etc.

• NOR-replacement products now shipping − > if 

yield-learning successful and MLC (3-4 bits per cell 

successfully implemented in PCM technologies 

despite R-drift phenomenon in 2016)

• Good for embedded NVM for SoC, Neuromorphic

• Drift-mitigation and/or 3D access devices can 

offer high-density (i.e., low-cost), which means the 

opportunity for NAND replacement. Finally S-type, 

and then M-type SCM may follow.

• Projected to reach 1.5B USD with an impressive 

CAGR of almost 84% by 2021

• Threat

• Attained speed in practice is much slower than the 

theoretical speed; slow NOR-like interfaces

• The current PCM SSD is only several times 

faster than SLC SSD, which is far away from the 

projection.

• DRAM/SRAM replacement may be challenging due 

to fundamental endurance limitation.

• PCM as a DRAM segment accounted for the major 

shares and dominated the market during 2016, 

which means a long way for S-SCM.
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• A key challenge is to reduce reset (write) current; 

contact dimension scaling will help, but will slow 

progress.

• Engineering process

NAND techniques are also under active development, in particular, 

the 3D NAND. Compared with these emerging NVMs, NAND is relatively 

mature, dense, and cheap. However, it could be much slower than PCM 

and ReRAM. Meanwhile, its durance may be significantly lower than PCM, 

MRAM, and FeRAM in general.

Based on these NVMs, a special category called SCM (storage 

class memory) is introduced to fill the IO gap between SSD and DRAM 

(although it was initially for the gap between HDD and DRAM from IBM).  

It is further divided into storage-type SCM and memory-type SCM, 

depending on whether their speed is in magnitudes of microseconds or 

nanoseconds. Improved flash with 3D techniques, PCM, MRAM, RRAM, 

and FeRAM are some major techniques applied to SCM. This wide 

deployment of SCM to the computer/network systems and IoT systems 

will reshape the current architectures. In the very near future, we can 

see the impact of SCM to in-memory computing (e.g., application in 

cognitive computing), hyper-converge infrastructure, hybrid storage/cloud 

infrastructure (with remote direct memory access), etc. A brief outlook of 

these NVMs is illustrated in Figure 1-6, which is modified from the IBM’s 

prediction.18 In fact, the commercial version of Optane P4800X using 3D 

PCM-like techniques by Intel released in Nov 2017 has 750GB in capacity, 

550K in IOPS, and 2.4/2.0 GB/ps in R/W throughput, while Z-NAND, 

a variant of 3D NAND by Samsung released in Jan 2018, has 800GB in 

capacity, 750K/150K in R/W IOPS, and 3.2 GB/ps in throughput.

18 IBM Almaden Research Center, Storage Class Memory, Towards a disruptively 
low-cost solid-state non-volatile memory, 2013
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Figure 1-6. Competitive outlook among emerging NVMs

According to Yole Development’s recent estimation,19 the emerging 

NVM market will reach USD 4.6 billion by 2021, exhibiting an impressive 

growth of +110% per year, although the market size in 2015 was USD 

53 million only. SCM will be the clear go-to market for emerging NVM 

in 2021. Marketsandmarkets20 also predicts that the global non-volatile 

memory market is expected to reach USD 82.03 billion by 2022, at a CAGR 

of 9.50% between 2017 and 2022.

19 www.yole.fr/
20 www.marketsandmarkets.com/Market-Reports/non-volatile-memory-
market-1371262.html
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 Storage Systems
This section discusses the system level storage infrastructure and 

implementation. RAID (redundant array of independent/inexpensive 

disks) and EC (erasure code) systems are mainly used for failure tolerance. 

Hybrid storage systems intend to achieve relatively high performance at 

low cost. Microserver and Ethernet drives have been employed in some 

object storage systems. Software-define systems separate the data flow 

and control flow. Some large-scale storage system implementations, like 

Hadoop/Spark, OpenStack, Ceph, are also introduced.

 Infrastructure: RAID and EC
RAID as a data storage virtualization technology combines multiple 

physical drive components into a single logical unit or pool for the 

purposes of data redundancy, performance improvement, or both [20]. 

The Storage Networking Industry Association (SNIA) standardized RAID 

levels and their associated data formats from RAID 0 to RAID 6: “RAID 0 

consists of striping, without mirroring or parity. RAID 1 consists of data 

mirroring, without parity or striping. RAID 2 consists of bit-level striping 

with dedicated Hammingcode parity. RAID 3 consists of byte-level 

striping with dedicated parity. RAID 4 consists of block-level striping with 

dedicated parity. RAID 5 consists of block-level striping with distributed 

parity. RAID 6 consists of block-level striping with double distributed 

parity.” RAID 2-4 are generally not for practical usage. RAID levels can be 

nested, as in hybrid RAID. For example, RAID 10 and 50, which is RAID 1 

and 5 based on RAID 0.

RAID can be implemented by either hardware or software. Hardware 

RAID controllers are expensive and proprietary, and usually used in 

enterprise environments. Software-based implementations have gained 

more popularity recently. Some RAID software is provided by modern 
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OSs and file systems, such as Linux, ZFS, GPFS, and Btrfs. Hardware- 

assisted RAID software implements RAID mechanisms in a standard drive 

controller chip with embedded proprietary firmware and drivers.

Nowadays, RAID systems are widely used in SMEs. Even in some data 

centers, RAID is still used as a fundamental structure for data protection. 

However, RAID is limited by its data reliability level, so only up to two 

disk failures can be tolerated by RAID 6, which is not secure enough for 

some critical applications. Thus, the erasure coding scheme emerged 

as an alternative to RAID. In EC, data is broken into fragments that are 

expanded and encoded with a configurable number of redundant pieces 

and are stored across different locations, such as disks, storage nodes, 

or geographical locations. Theoretically, EC can tolerate any number of 

disk failures, although up to four are used in a group practically. EC may 

also encounter some performance issues, particularly when the system is 

operated in downgraded or recovery mode.

 Hybrid Systems

Although all-flash arrays are gaining in popularity, hybrid structures 

remain the mainstream in data centers, due to the trade-offs between 

cost, reliability, and performance. In early days, the hybrid storage system 

contained a HDD as the fast tier and tape as the backup tier [21] [22]. 

Later, fast access speed HDDs (such as 15kRPM and 10kRPM) acted 

as the performance tier, and slow speed HDDs (such as 7200RPM and 

5400RPM) acted as the capacity tier [23]. With the development of non- 

volatile memory (NVM) technologies, such as NAND Flash [24], PCM [25], 

STTMRAM [18], and RRAM [19], the performance cost ratio of NVMs is 

increasing. Table 1-3 lists the performance and price comparison of some 

well-known NVMs. These NVMs with fast accessing speed can be used 

as the performance tier [17] [26] or cache [27] [28] [29] [30] in a modern 

hybrid system. Nowadays, SSD is the first choice of performance tier, and 

the high capacity shingled magnetic recording (SMR) drive is used often as 

the back-up tier [31].
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When designing a hybrid storage system, the algorithms for the 

tier and cache storage architectures are slightly different, although the 

general framework is similar (see Figure 1-7). Fundamentally, tier storage 

architecture moves data to the fast storage area instead of copying the 

data in the cache storage architecture. But both have four important 

steps to accomplish. Firstly, data allocation policies are needed to control 

the data flow between different devices. Secondly, there should be an 

efficient address mapping mechanism between the SSD cache address 

and the main storage address. Thirdly, due to the size limitation of SSD 

cache compared with main storage HDDs, only the frequently and 

recently accessed data, which is called hot data, can be stored in the SSD 

cache/tier to improve the system efficiency. Therefore, a suitable hot 

data identification algorithm should be applied to identify the hot/cold 

data. When the hot data is detected, the data needs to be promoted when 

necessary. Thus a data migration algorithm is needed to control the hot/

cold data flow to improve the future access efficiency. Lastly, a caching 

scheduling algorithm is employed for queuing behaviors, such as the 

queue size, synchronization, execution sequence.

Figure 1-7. General algorithms for hybrid storage system

Data allocation: Data allocation is conducted by the host or 

device controller to allocate the incoming data to the most suitable 

storage location, such as hot data to SSD or cold data to HDD. Besides 

the properties of the data, the status of the devices is also considered 

during the allocation process, such as the queue length, capacity usage, 

bandwidth, etc.
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Address mapping: Address mapping is required in a hybrid storage 

system because the capacities of the faster devices and slower devices are 

different. Due to the different address ranges, the accessing location of the 

incoming data needs to be translated to the actual address when the data 

is allocated to a different device. An address translation table is required to 

keep all these translation entries. If the address range is big, the memory 

consumption of the translation table is huge and the translation speed is 

reduced, which may affect the system performance.

Data migration (promotion/demotion): The data promotion is to 

migrate the data from the slower devices to the faster devices, and the 

data demotion is to migrate the data from the faster devices to the slower 

devices. This is called data migration. The data migration is usually 

conducted when the data in slower devices is identified as hot data or the 

data in faster devices is identified as cold data. In some research, the data 

migration is also done to balance the IOPS between the faster devices and 

slower devices.

Hot data identification: Hot data identification is important for the 

data migration to select the suitable data to promote and demote. It uses 

the properties of historical data to classify the incoming data as hot or cold. 

The classification is done by checking the accessing frequency and time 

of the data. Most frequently accessed and most recently accessed data are 

identified as hot data.

The hybrid storage architectures can be roughly classified into four 

categories, which are shown in Figure 1-8: (1) SSDs as a cache (caching 

method) of HDDs, (2) SSDs as a (high) tier (tiering method) to HDDs,  

(3) SSDs as the combination of tier and cache, and (4) HDDs with special 

purposes, such as HDDs utilized as the cache of SSDs. There are also some 

hybrid storage systems incorporating other types of NVMs into design 

consideration.
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 Microservers and Ethernet Drives

A microserver is a server-class computer which is usually based on a 

system on a chip (SoC) architecture. The goal is to integrate most of the 

server motherboard functions onto a single microchip, except DRAM, boot 

FLASH, and power circuits. Ethernet Drive is one of its various forms.

In October 2013, Seagate Technology introduced its Kinetic 

Open Storage platform with claims that the technology would enable 

applications to talk directly to the storage device and eliminate the 

traditional storage server tier. The company shipped its first near-line 

Kinetic HDDs in late 2014. The Kinetic drive is described as a key-value 

server with dual Ethernet ports that support the basic put, get, and delete 

semantics of object storage, rather than read-write constructs of block 

storage. Clients access the drive through the Kinetic API that provides 

key-value access, third-party object access, and cluster, drive, and security 

management.

Introduced in May 2015, Toshiba’s KVDrive uses the key-value API that 

Seagate open sourced rather than reinventing the wheel. Ceph or Gluster 

could run directly on Toshiba’s KVDrive.

WDC/HGST’s converged microserver based on its Open Ethernet 

architecture supports any Linux implementation. Theoretically, any 

network operating system can run directly in such a microserver.  

Figure 1-8. The overall categories of the hybrid storage 
architectures
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Ceph and OpenStack Object Storage system have been demonstrated 

together with Red Had server. For example, in early 2016, WDC 

demonstrated a large scale Ceph distributed storage system with 504 

drives and 4PB storage size.21

 Software-Defined Storage

Software-defined storage is an emerging concept that is still in evolution. 

There are many different definitions from different organizations, such as 

the following:

• TechTarget:22 SDS is an approach to data storage in 

which the programming that controls storage-related 

tasks is decoupled from the physical storage hardware 

(which places the emphasis on storage-related services 

rather than storage hardware).

• Webopedia:23 SDS is storage infrastructure that is 

managed and automated by intelligent software as 

opposed to the storage hardware itself. In this way, 

the pooled storage infrastructure resources in a SDS 

environment (which can provide functionality such 

as deduplication, replication, thin provisioning, 

snapshots, and other backup and restore capabilities 

across a wide range of server hardware components) 

can be automatically and efficiently used to match the 

application needs of an enterprise.

21 https://ceph.com/geen-categorie/500-osd-ceph-cluster/
22 http://searchsdn.techtarget.com/definition/software-defined-storage
23 www.webopedia.com/TERM/S/software-defined_storage_sds.html
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• Wikipedia:24 SDS is computer data storage software to 

manage policy-based provisioning and management 

of data storage independent of hardware. Software- 

defined storage definitions typically include a form 

of storage virtualization to separate the storage 

hardware from the software that manages the storage 

infrastructure. The software enabling a software- 

defined storage environment may also provide policy 

management for feature options such as deduplication, 

replication, thin provisioning, snapshots, and backup.

• Vmware:25 SDS is the dynamic composition of storage 

services (such as snaps, clones, remote replication, 

deduplication, caching, tiering, encryption, archiving, 

compliance, searching, intelligent logics) aligned on 

application boundaries and driven by policy.

Despite of these different views, there are some common factors and 

features, which are summarized in Table 1-4 and Figure 1-9. Table 1-4 actually 

shows the three steps for SDS. First, the hardware should be decoupled 

from the software, such as the abstraction of logical storage services and 

capabilities from the underlying physical storage systems. Second, the storage 

resource is virtualized, such as pooling across multiple implementations. 

Third, automation mechanism is created with policy- driven storage 

provisioning with service-level agreements replacing technology details. 

Typical SDS products include GlusterFS, Ceph, and VMwareVirtual SAN. 

Figure 1-9 further gives the features in five aspects: data organization, scaling, 

persistent data store, storage service, and delivery model.

24 https://en.wikipedia.org/wiki/Software-defined_storage
25 www.vmware.com/files/pdf/solutions/VMware-Perspective-on-software-
defined-storage-white-paper.pdf
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SDS also leads to some other concepts, such as a software-defined data 

center (SDDC). Based on the report by IDC and IBM,26 a SDDC is a loosely 

coupled set of software components that seek to virtualized and federate 

datacenter-wide hardware resources such as compute, storage, and 

network resources. The objective for a SDDC is to make the data center 

available in the form of an integrated service. Note that an implementation 

of SDS and SDDC may not be able to leave the support of another software 

defined concept, such as software-defined networking (SDN), which 

provides a fundamental change to the network infrastructure.

Table 1-4. Common Features of SDS

Level Steps Consequence

data plane, 

Control plane

abstract (decouple/standardization, pooling/

virtualization), automation (policy-driven)

Faster, more 

efficient simpler

Figure 1-9. The overall features of SDS

26 www-05.ibm.com/de/events/solutionsconnect/pdfs/SolCon2013IBMDietmar 
NollTrendsimBereichStorage14062013.pdf
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 Implementation
I focus on some most recent software implementations for large scale 

systems with distributed storage components in this section.

 Hadoop

Apache Hadoop,27 an open-source implementation of MapReduce 

originating at Google, provides a software framework used for distributed 

storage and processing of big data sets. It consists of computer clusters 

built from commodity hardware. All the modules in Hadoop are designed 

under a fundamental assumption that hardware failures commonly occur 

and should be automatically handled by the framework.

The base Apache Hadoop framework is composed of the following four 

major modules:

• Hadoop Common has the fundamental libraries and 

utilities required by other Hadoop modules.

• Hadoop Distributed File System (HDFS) is a distributed 

file-system written in Java that stores data on 

commodity machines, providing very high aggregate 

bandwidth across the cluster.

• Hadoop YARN is a resource-management platform 

responsible for managing computing resources in 

clusters and using them for scheduling of users’ 

applications.

• Hadoop MapReduce processes large scale data, as 

an implementation of the MapReduce programming 

model.

27 http://Hadoop.apache.org/
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HDFS stores large files (typically in the range of gigabytes to 

terabytes) across multiple machines. It achieves reliability by a replication 

mechanism, such as replicating the data across multiple hosts, and 

hence theoretically does not require RAID storage on hosts (some RAID 

configurations are still useful, like RAID 0). Data is stored on three nodes 

with the default replication value, 3. Data nodes can communicate with 

each other to rebalance data, to move copies around, and to keep the 

replication of data high. HDFS is not fully POSIX-compliant because the 

requirements for a POSIX file-system differ from the target goals for a 

Hadoop application. The trade-off of not-full compliance is increased 

performance for data throughput and support for non-POSIX operations 

such as Append. Although HDFS is the default distributed file system, 

it can be replaced by other file systems, such as FTP file systems, Ceph, 

Amazon S3, Windows Azure storage blobs (WASB), and others.

Nowadays, Hadoop is a large ecosystem with tens of different 

components. Figure 1-1028 shows a simplified Hadoop ecosystem with an 

active expansion. In 2014, an in-memory data processing engine named 

Spark29 was released to speed the MapReduce processing. These two 

projects share many common components.

28 http://hadoopecosystemtable.github.io
29 https://spark.apache.org/
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 OpenStack

OpenStack30 is an open-source and free software platform for cloud 

computing, mostly deployed as an infrastructure-as-a-service (IaaS). It 

consists of interrelated components that control diverse, multi-vendor 

hardware pools of computing, storage, and networking resources 

throughout a data center. Therefore, the components can be basically 

divided into the categories of compute, storage, networking, and interface. 

For example, Nova is the cloud computing fabric controller as the main 

component of an IaaS system. Neutron is the component for managing 

networks and IP addresses. Figure 1-11 shows the overall architecture [32].
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Figure 1-10. Hadoop ecosystem

30 www.openstack.org/
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OpenStack contains the block storage component called Cinder and 

an Object storage component called Swift. The Cinder system manages 

the creation, attaching, and detaching of the block devices to servers. 

Block storage volumes are fully integrated into Nova and the Horizon 

Dashboard, allowing cloud users to manage their own storage needs. Block 

storage is appropriate for performance-sensitive scenarios in both local 

server storage and storage platforms (e.g., Ceph, GlusterFS, GPFS, etc.). 

Swift is a scalable redundant storage system.

 Ceph

Ceph,31 an open-sourced and free distributed storage platform, provides a 

unified interfaces for object-, block-, and file-level storage [33, 34]. Ceph was 

initially created by Sage Weil for his doctoral dissertation. In 2012, Inktank 

Storage was founded by Weil for professional services and to support for Ceph.

Figure 1-11. Openstack architecture [32]

31 https://ceph.com

Chapter 1  IntroduCtIon

https://ceph.com


42

Ceph applies replicates and erasure code to make it fault-tolerant, 

using commodity hardware and requiring no specific hardware support. 

As a consequence, the system is both self-healing and self-managing, 

aiming to minimize administration time and other costs. A general 

architecture is illustrated in Figure 1-12. The reliable autonomic 

distributed object store (RADOS) provides the foundation for unified 

storage. The software libraries of Ceph’s distributed object storage provide 

client applications with direct access RADOS system. Ceph’s RADOS Block 

Device (RBD) automatically stripes and replicates the data across the 

cluster and integrates with kernel-based virtual machines (KVMs). The 

Ceph file system (CephFS) runs on top of LIBRADOS/RADOS that provides 

object storage and block device interfaces.

Figure 1-12. Ceph architecture
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 System Performance Evaluation
Many metrics are used to indicate the specification of storage devices 

or systems, in both static and dynamic sense. Table 1-5 gives a list of 

commonly used ones. When discussing performance, we usually refer to 

the dynamic specifications. In particular, IO performance is among the 

most important metrics.

Table 1-5. Common Metrics for Storage Devices

Metrics Unit

Capacity GB

areal density (tpI, Spt) GB/inch

Volumetric density tB/liter

Write/read endurance times/years

data retention time Years

Speed (latency of Io access time; rand.) Million seconds

Speed (bandwidth of Io access; seq.) MB/second

power consumption Watts

reliability (MtBF) hours

power on/off transit time Seconds

Shock and vibration G-force

temperature resistance °C

radiation resistance rad

Chapter 1  IntroduCtIon



44

Performance evaluation is an essential element of experimental 

computer science. It can be used to tune system parameters, to assess 

capacity requirements when assembling systems for production use, to 

compare the values of some different designs, and then provide guidance 

for the new development. As pointed out in [35], the three main factors 

that affect the performance of a computer system are

• The system’s design

• The system’s implementation

• The system’s workload

These three factors influence and interact with each other. It is common 

for a system to perform well for one workload, but not for another. For a given 

storage system, its hardware design is usually fixed. However, it may provide 

some tuning parameters. If the parameters are also fixed in one scenario, the 

performance is usually “predictable” for a particular application. By running 

enough experiments, it is possible to obtain some patterns for the parameters 

related to the application’s general workload properties. Then you may 

further tune the parameters. Sometimes, due to design limitations, the range 

of tuning parameters may be too narrow. Then you must redesign the system.

The most important three basic performance indexes are input/output 

operations per second (IOPS), throughput (TP), and response time (RT) [12].

• Throughput, also named bandwidth, is related to the 

data transfer rate and is the amount of data transferred 

to or from the storage devices within a time unit. 

Throughput is often measured in KB/sec, MB/sec, 

or GB/sec. For disk drives, it usually refers to the 

sequential access performance.

• IOPS means the IO operation transfer rate of the device 

or the number of transactions that can occur within 

a time unit. For disk drives, it usually refers to the 

random access performance.
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• Response time, also named latency, is the time 

cost between a host command sent to the storage 

device and returned to the host, so it’s the time cost 

of an IO request for the round trip. It is measured in 

milliseconds (ms) or microseconds (μs) and is often 

cited as an average (AVE) or maximum (MAX) response 

time. In a HDD specification, the average seek time and 

switch time are usually provided.

And the most important three access patterns are

• Block size, which is the data transfer length

• Read/write ratio, which is the mix of read and write 

operations

• Random/sequential ratio, which is the random or 

sequential nature of the data address requests

In addition, when considering consumer/client or enterprise devices/

systems, the focus may be different. For example, in some client use cases, 

IOPS and bandwidth may be more critical than response time for HDD/

SSD devices, as long as the response times are not excessively slow, since the 

typical client users would not usually notice a single IO taking a long time 

(unless the OS or software application is waiting for a single specific response). 

While client SSD use cases may mostly be interested in average response 

times, the enterprise use cases are often more concerned with maximum 

response times and the frequency and distribution of those times [12].

 Performance vs. Workload
Workload can be categorized in several ways. From the domain point of 

view, the workload can be imposed to the CPU, memory, bus, network, 

etc. The level of details required in workload characterization relies on the 

goal of the evaluation. It can be in the computer component level or in the 
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system application level. In the sense of applications, workload may be 

extracted from database, email, web service, desktop, etc.

An important difference among workload types is their rate [35], which 

makes the workload either static or dynamic. A static workload is one with 

a certain amount of work; when it is done, the job is completed. Usually, 

the job is several combinations of small sets of given applications. On the 

other hand, in a dynamic workload, work continues to arrive all the time; it 

is never done. It requires an identification of all possible jobs.

From practical point of view, the workload is divided into three 

categories: file-level, object-level, and block-level. In this book, I focus on 

block-level because most underlying storage devices are actually block 

devices, and the techniques applied to block-level analysis can be also 

used for file-level and object-level analysis.

 Trace Collection and Analysis
Workload trace can be collected using both software and hardware tools, 

actively or passively. The inherited logging mechanism of some systems, 

which usually runs as background activates, is one of passive trace sources. 

Actively, you may require specific hardware (e.g., a data collection card, 

bus analyzer, etc.) and software (e.g., dtrace, iperf, blktrace, etc.) to collect 

traces purposely. These traces may be at different precision and detail 

levels. Sometimes you may also require the aid of benchmark tools when 

the environments of real applications are not available or inconvenient to 

obtain. Chapter 5 will discuss this in detail.

 System Optimization
One of the main purposes of trace analysis is to identify the system 

performance bottleneck in various levels (e.g., component vs. system, user 

vs. kernel vs. hardware, etc.), and then optimize the overall system [36].
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Take a simple IO stack as an example (Figure 1-13).32 Access patterns 

generated by software applications must traverse the IO stack in order to get 

from the user space to the storage devices and back again. This movement 

indicates that the IOs will be impacted by the file system and various drivers 

as they pass them up or down the IO stack, such as coalescing small IO data 

transfers into a fewer larger IO data transfers, splitting large sequential IO 

data transfers into multiple concurrent random IO data transfers, and using 

the faster file system cache while deferring IO commits to the SSD.

Figure 1-13. IO stack

32 A detailed Linux storage stack diagram can be found at www.thomas-krenn.com/
en/wiki/Linux Storage Stack Diagram. The latest version, 4.10, was created at 
March 2017. [12]

In this book, I will provide some practical examples, ranging from 

single devices to complex systems, to show how the workload analysis can 

be applied to system optimization and design.
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CHAPTER 2

Trace Characteristics
Trace is usually classified as three levels: block level, file level, and object 

level. They share many common metrics, although each has its own 

unique properties. In this chapter, I will discuss block-level trace metrics in 

detail since the block-level trace provides more fundamental information 

on storage systems than other two levels. For simplicity of representation, 

I divide the metrics into two categories: the basic ones and the advanced 

ones. The meanings and performance impacts of these metrics are 

explained in detail.

 Workload Properties
Workload can be collected and viewed in different abstract levels. Usually, 

there are three different levels, as show in Figure 2-1 [37]. The functional 

view indicates the users’ behaviors, which aim to facilitate comparison 

between, say, a relational database system and a MapReduce system that 

serves the equivalent functional aims of some enterprise data warehouse 

management workload. It enables a large range of equivalent systems 

to be compared. It lacks tracing capabilities for large-scale, data-centric 

systems. The system view captures workload behavior at the highest level of 

abstraction that we can trace in large-scale data-centric systems currently. 

For example, this translates to the jobs steam and job characteristics in 

MapReduce. For enterprise network storage, this is the data accesses stream 

at the application, session, file, and directory levels. The physical view 
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describes a workload in terms of hardware component behaviors, such as 

the CPU, memory, disk, and network activities during workload execution. 

It depends on hardware, software, or even configuration changes.

Figure 2-1. Typical workload abstraction level

Table 2-1. Examples of Basic Metrics

Basic Metrics

Read to write ratio Request size 

distribution

LBA range/ randomness Inter-arrival 

time

The ratio between 

read and write 

operations in 

command number  

or total size

Request size, 

usually further 

count for total, 

read, and write

In a virtual volume, LBA 

can be used to represent 

the randomness in space. 

Otherwise, specify the 

device number.

Request 

arrival rate, 

idle time, 

busy time

With system-level information, queue depth, average response time, bus time, etc. 

can be also included.

The basic workload metrics are generally explicit and easily observed 

directly or calculated with very simple formulations. Some examples are 

listed in Table 2-1. However, the advanced ones are implicit and formulated 

in relatively complex forms/rules. See Table 2-2 for few advanced metrics. 

More details will be described in the next two sections of this chapter.
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Note that the meaning of “block” in HDD and SSD is different. 

However, the definition of one sector as one block in HDD is used here. In 

addition, there are some different formats for sectors, such as 512, 512e, 4k, 

4kn, etc. Without particular comments, assume that one sector is equal to 

512 bytes for representation simplicity.

A block-level trace usually contains some common fields, like arrival 

time, completion time, LBA (first or last LBA), request size, operational 

mode (read or write, sync or async), etc. Some other fields, like bus time 

and merge time, depend on the trace collection tools. Table 2-3 gives an 

example of trace. For the ith request, ri, denotes its arrival and completion 

action time as Di and Ci. Usually, we arrange all N requests in sequence of 

Di, i.e. (r1,. . . , ri, . . . ,rn).

Table 2-2. Examples of Advanced Metrics

Advanced Metrics

spatial locality Temporal locality Read/write 

dependency

priority-related 

metrics

The small distance 

of two requests 

means that soon 

after referencing ri 
you find a reference 

to the nearby 

address rj

The same address 

is referenced again 

after d steps.  

A concept closely 

related to  

temporal locality  

is popularity.

Three categories: 

true (read on 

write), output 

(write on write), 

and anti (write on 

read)

Request priority 

determines the 

execution sequence; 

it also includes 

the properties of 

synchronized vs. 

asynchronous.

In most cases, cache-related, cluster-related, and/or networked-related metrics 

should be included.
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Table 2-3. An Example of Block Trace

Order Arrival time (s) Completion time (s) First LBA Size Mode

1 0.026216 0.027506 902553856 1024 0

2 0.026790 0.027719 197306368 8 0

3 0.036680 0.039502 902554880 1024 0

4 0.039618 0.044770 197306368 16 1

5 0.039654 15.079936 197306368 16 1

6 0.044542 0.046394 902555904 1024 0

7 0.044865 0.046513 197306376 8 0

8 0.054996 0.055265 2657576 8 0

9 0.059638 0.059905 197306376 16 0

10 0.081950 0.083162 902556928 1024 0

11 0.089740 0.089960 197306384 8 1

12 0.092741 0.093955 902558976 1024 0

13 0.093261 0.095268 902557952 1024 0

14 0.112958 0.114461 902560000 1024 0

15 0.113097 0.115717 902561024 1024 0

16 0.114820 0.115926 197306384 8 0

17 0.135434 0.136744 902562048 1024 0

18 0.136436 0.136963 197306384 16 1

19 0.150173 0.151625 902563072 1024 0

20 0.150260 0.152809 902564096 1024 0
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 Basic Metrics
Basic metrics are usually simple and easy for observation. But this does not 

mean they contain less information than advanced metrics. In some cases, 

basic metrics are good enough to interpret the workload properties.

 LBA Distribution
From the curve of LBA distribution vs. time, you can easily observe the 

randomness/sequence of IO access. Figure 2-2 gives two examples of the 

write-only requests’ LBA distribution. The left plot shows a sequential 

access from LBA 6.7 ∗ 108 to 6.8 ∗ 108. The right plot mixes with sequential 

and random write accesses. Figure 2-3 shows that the IO pattern is 

combined with random read accesses and mixed write accesses. It’s 

clear that write access is more sequential than read access, as the write 

access contains several sequential streams. Note that there may exist a 

small gap between two continuous requests sometimes, although it may 

look sequential visually from the plot. However, these near sequential IO 

patterns can be accessed sequentially in most cases.

Figure 2-2. LBA distribution from a Ceph node
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 Size Distribution

In general, the drive (whatever HDD or SSD) is in favor of sequential 

access, so the sequential access has much higher throughput than the 

random access, in particular for HDD. And the request size also matters 

especially when the disk queue is short, which will be clearly illustrated in 

Chapter 4 in Figures 4-2 and 4-3.

Figure 2-4 plots the request frequency and CDF (cumulative density 

function) vs. request size. For the distribution of write requests, you can 

see that the percentage of the requests with size 1024 blocks are almost 

50% in this case, which usually means the IO pattern is dominated by 

large size requests. Note that due to OS/FS and disk drive limitation, the 

maximum request size is usually 1024 blocks, so even if the user requests a 

1MB size file, it will be divided into two IO requests internally (assume 512 

bytes per block).

Figure 2-3. LBA distribution from a Hadoop node
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Figure 2-4. Size distribution from a Hadoop node

If you further need to know the size distribution with respect to (wrt) 

LBA range, you may have plots like Figure 2-5, from which you can learn 

more about the hot range with size information. Since you know that the 

transfer speed of different location in a HDD (e.g., ID vs. MD vs. OD) is 

different, the LBA can roughly tell the relative speed with the request size 

information.
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 Read/Write Distribution
Read and write accesses may have different performance in drives. For 

HDD, the difference may be slight. However, for SSD, the gap could be 

large for the consumer class. In addition, read and write access may 

have dependencies on each other. For example, when a new write is just 

completed, the data may be still in the cache. An immediate read may 

access the data from the cache directly, instead of a media operation. Thus 

the visualization of distribution time can provide an intuitive view on the 

dependency. You can plot the data in a single figure or in two separate 

figures, as in Figure 2-3.

Figure 2-5. Combined LBA and size distribution
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Table 2-4. Required Fields for Metrics Calculation

Arrival 
time

Completion 
time

LBA Request 
size

Mode 
operation

LBA distribution Y (or) Y (or) Y

size distribution Y

IOps Y Y (or)

Throughput Y Y (or) Y

Queue length/depth Y (or) Y (or)

Busy/idle time Y Y

Read/write distribution Y (or) Y (or) Y

Inter- arrival time 

distribution

Y

Inter- completion time 

distribution

Y

 Inter-Arrival and Inter-Completion Time
Inter-arrival time is defined as the time interval between two sequentially 

arrived requests: δti = Di − Di−1. Similarity, inter-completion time is defined 

as δt̄ i = C̄ i − C̄ i−1, where C̄ i is reordered Ci based on a completion time 

sequence. δti is a direct indictor of the workload burstiness [38], together 

with the supposed-to-be average completion time of requests. When the 

average δti is much smaller than δt̄ i, it usually means the system is under a 

stressed workload, which may be beyond the storage device’s capability.  

In a sense, these two indictors are closely related to IOPS.
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 IOPS and Throughput
IOPS is usually defined as the IO number ∆n per unit time ∆t seconds, 

such as IOPS
n

t
=
D
D

. The unit time is preset by users, at perhpas 1 second. 

Similarly, throughput is the request size ∆S per unit time, so TP
s

t
=
D
D

. Note 

that they are in a sense average values within a given unit time/time-

window. For different ∆t, IOPS and throughput may have different values. 

Usually, a larger ∆t leads to a smoother curve. Figure 2-6 shows an example 

with data collected from a HDD node of a Ceph cluster. You can see that the 

IOPS ranges from 60 to 160 in the figure of ∆t=1 second, while it is 80–120 

when ∆t=6 seconds. In particular, when the workload contains many bursts, 

the maximum and minimum IOPS values for different ∆t may vary largely.

Figure 2-6. Average IOPS and throughput with different time window

The curves of the two metrics vs. time can be used to observe the 

workload burst visually. However, choose ∆t carefully. A too-large ∆t may 
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smooth the curve but remove the IO burst. A practical choice is related to 

the average inter-arrival time, so ∆t may be a few times the average inter- 

arrival time, but not too much.

Alternatively, you can fix ∆n. For example, you may set ∆n=20, and let 

∆t be various.

A complex setting is that you may let both ∆t and ∆n various. For 

example, let ∆n≤ 10 and ∆t = 1 second as the constraint. If within ∆t = 1 

second, there are ∆n within the range, do the average. Otherwise, if ∆n > 10,  

choose a time window that ∆n = 10, and then do the average.

Another trivial issue when drawing the curve is the time, so the average 

value happens at the beginning, middle, or end of ∆t. For example, if you 

choose the end of ∆t, you may have the following formulations:

• IO(tj ) = the total number of IOs based on the range 

calculated by Di, so IO(Di), where Di is within an 

interval [tj−1 tj ]

• R(tj ) = the summation of request size of IO(Di)

• Average IOPS at tj = IO(tj−1)/∆t

• Average request size at tj = R(tj−1)/IO(tj−1)

• Average throughput at tj = R(tj−1)/∆t

You can also apply moving average techniques here; there is an overlap 

between two continuous “average” metrics.

 Response Time
Response time is generally combined by the waiting (or queuing) time Tw 

and access (or service) time Ta, i.e., Tres = Ta + Tw . The service time is the 

time cost in service, such as disk access time. The queuing time is the cost 

when the request waits in the queue before it is sent for actual execution. 

When the trace is collected from the external bus (IO driver), such as 

SATA/SAS, the response time of ri is calculated by Ci − Di.
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 Queue Length/Depth
There are at least two queues in HDDs. One is along with the IO driver, 

which is influenced by the OS and FS, so the OS and/or FS may change the 

order of IOs to send to the disk drive based on some schedulers. The length 

is usually up to a trace collected externally only reflects the length in the 

IO driver. You can estimate the queue depth based on either arrival time or 

complete time of requests. They may have slightly differences. Let’s denote 

one queue’s D and C as Di and Ci in sequence.

• IO driver queue depth just before command arrived (Qd1)

• The queue depth just before Di (instant queue 

depth Q(Di)) = the number of requests whose  

C time >= Di and D time < Di

• IO driver queue depth just after command  

completed (Qd2)

• The queue depth just after Ci (instant queue depth 

Q(Ci)) = the number of requests whose C time >= Ci 

and D time < Ci

• Average queue depth

• Estimated average queue depth during non-idle 

period: ∑i((Qd1+Qd2)/2 ∗ (Di − Ci))/∑i(Di − Ci)

• Effective average queue depth in time interval: 

Sampling at ∆t seconds

Figure 2-7 gives an illustration of Qd1 and Qd2, where blue signs with 

arrows show the IO requests in time order. It also illustrates a few Qd1 and 

Qd2 for these requests. Table 2-5 further gives an example to show how the 

queue depth is calculated based on Qd1. Figure 2-8 shows the estimated 
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queue depth from a Hadoop node. It looks like the average queue depth is 

quite high, which means a high workload. However, zoom into the plot to 

check the intervals in-between the queues. In this example, the scale of the 

x-axis is 100 instead of 12000 to show more information.

Figure 2-7. Illustration of queue length

Table 2-5. Estimated queue depth and idle time

Arrival time Completion time Queue depth Idle time

0.00007 0.00036 0 -

0.01130 0.01157 0 1.09e–02

0.01134 0.01288 1 0

0.02622 0.02751 0 1.33e–02

0.02679 0.02772 1 0

0.03668 0.03950 0 8.96e–03

0.03962 0.04477 0 1.17e–04

(continued)
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Arrival time Completion time Queue depth Idle time

0.03965 15.07994 1 0

0.04454 0.04639 2 0

0.04486 0.04651 2 0

0.05500 0.05526 1 0

Table 2-5. (continued)

Figure 2-8. Queue depth using arrival and completed time from a 
Hadoop node

The other is the HDD internal queue for actual execution with 

mechanical parts. Some scheduling algorithms, such as SCAN and RPO 

(rotational positioning optimization), are applied here to attempt to 

minimize a given operation time. Vender special commands (VSCs) can be 

used to collect the internal queue information. RPO tries to minimize the 

summation of seek time and rotational latency of requests in the queue. 

Theoretically, a longer queue means the scheduler has more events to 

select, and the overall operational time can be reduced further (for a pure 

random access). However, in practice, when the queue length reaches a 

certain level, the performance does not increase, which is illustrated in 

Figures 4-2 and 4-3. Without VSC, we may only use the external IO queue 
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status to approximate the internal queue status. This is reasonable in a 

sense because a HDD can only handle one request per time.1 However, for 

SSD, the situation is much more complex due to parallel processing.

 Busy/Idle Time
When a disk is under an IO operation (including both foreground and 

background activities), the disk is busy; otherwise, it is in idle mode. 

These two metrics are useful when you intend to design some background 

operations for disks, such as defragmentation, address remapping, 

sector scanning, etc. As some of these operations require over hundred 

milliseconds to complete, the estimated busy or idle time will be estimated 

to show whether the performance will be affected by background 

operations.

However, without VSC to extract the drive internal trace log, you 

may not get the busy/idle time directly. Thus we may only approximate 

the time from the external trace when the internal trace is unavailable. 

The basic idea is to compare the completion time of requests in the 

queue with the new requests’ arrival time. If the completion time is 

later than the new arrival time, it means the drive is still busy at this 

arrival time. Otherwise, it is counted as idle time (although there may 

be some background activities inside disk drives; but you can assume 

that the user/external requests have higher priority than background 

activities). In other words, the calculation of idle time is heavily related 

to the queue depth, so only when queue depth is zerois there a chance 

to exist an idle interval.

Let’s consider the trace in Table 2-3. The completion time 0.027506s 

of the first request is later than the arrival time of 0.026790s of the second 

request, so the disk is busy at 0.026790s. However, the completion time 

1 This may be not true for some modern disks with new architectures, such as 
MBC, SMR, and Egress, where write requests may be accessed in batch.
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0.027719s of the second request is earlier than the arrival time 0.036680s 

of the third request, you may estimate that the drive have the idle time of 

0.036680–0.027719=0.009s. Table 2-5 shows the result.

Figure 2-9 has the same data set as Figure 2-8. Although the queue 

depth is high in Figure 2-8, you can still observe many idle intervals for  

the disk.

Figure 2-9. Estimated idle time from a Hadoop node

 Advanced Metrics
The workload from the real world is usually complex. Even for those 

claimed as sequential workloads, such as a Hadoop HDFS write or Ceph 

Bluestore write, the actual IO pattern in the block level is mixed with 

sequence and randomness, as well as read and write. The advanced 

metrics attempt to provide insights into these traces.
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 Sequence vs. Randomness
The sequence and randomness of a workload are somehow subjective in 

some engineers’ view, as it is not easy to clearly state whether a workload 

is more sequential or random when it is mixed. In addition, the “feeling” 

of sequence is also different in different cases. For example, some requests 

with very small gaps among them may be also considered as (near) 

sequential.

In my view, it may be quantified under different scenarios, such as 

the scheduler algorithm, queue length, etc. That means this property is 

objective when all the conditions are fixed. For example, consider a burst 

workload of write requests within a small LBA range. Some of the requests 

are actually continuous in LBA, although they do not arrive in order. If a 

FIFO scheduling policy is applied, this workload is random, as the disk 

has to seek to different locations for each request. When a simple SCAN or 

RPO scheduling algorithm is applied, the requests will be reordered and 

some will become sequential, if there is a long enough queue. Assume that 

there are N requests. So there are up to N−1 seeks (in a strict definition, a 

request is considered as a random one, if there is a seek in term of LBA). 

Let the random access number as Nr and sequential access as Ns, so you 

can obtain a ratio of randomness vs. sequence for a given workload under 

a fixed scenario.

 Sequential and Near Sequential Streams

This metric directly indicates the sequence degree of the workload. In 

general, a command is sequential when it comes after a similar command 

whose requested block LBAs just prior to this new command. Hence, 

sequential reads follow read commands and sequential writes follow 

write commands; but there are some subtleties to this definition. (Strictly) 

sequential stream means that the current and previous commands are of 

the same type (r/w) and the new command’s starting LBA immediately 
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follows the previous one. Near sequential stream means that there must 

be an earlier command of the same type (read or write) whose LBA range 

comes before and near the start of this new command. For a sequential 

stream, multiple streams may interleave with each other. There are user 

settings to affect these subtleties, allowing us to describe the variations of 

sequential command situations.

Queued sequence stream: In a time-order request stream, some are 

adjacent to each other (possible within a time window), such that last 

LBA(ri)+1 = first_LBA (rj ), where i < j, Dj − Di < δt and δt > 0 is an aging 

time.

In this way, j ≥ i + 1 is possible because of interleaved sequence streams. 

However in practice, a command queue with queue length N is required 

to identify the sequence, instead of only checking the exactly adjacent 

requests wherein. Once a new request enters the queue, it searches the 

queue to check the sequence match. If a match is found, it’s merged into 

the queue; otherwise, it adds a new entry to the queue. If the queue is full, 

it removes the entry using a replacement rule (e.g., FIFO or LRU).

Generally, the larger N, the larger number of sequence requests  

detected (M2) in each stream, and the smaller number of sequence  

streams (M1). The key is to find a large enough N such that the number  

of sequence streams detected is stable.

Queued sequence stream with constraint: In practice, a large block 

request S (e.g., S ≥ 1024) is also counted as a sequential request. Hence 

an alternative method in considering the stream i is to determine the 

total size of a stream Si together with M2, so if Si ≥ S and M2 ≥ M , then i is 

considered a sequence stream, where S and M are thresholds.

Queued near-sequence stream: Finally, it is possible that a small gap 

between LBA requests exists such that in a time-ordered request stream, 

some requests are near to each other within a time window. Once a new 

request is considered near-sequential to the previous one, the stream’s last 

LBA is updated as the new request’s last LBA (hole is filled for simplicity), 
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so last LBA(ri) +1≤ first LBA(rj ) and last LBA(ri) +δd ≥ first LBA(rj ),  

where i < j and 0<Dj –Di < δt. δd > 0 is a small integer in blocks, such as 64.  

A command queue is required to detect the interleaved streams and the size 

constraints are also applicable to near-sequence streams. See Figure 2-10.

Figure 2-10. An example of near sequence stream

Let’s look at an example in Table 2-6. Assume that these requests arrive 

in a t-seconds time window. It is obvious that all requests are random by 

comparing the last LBA of the pervious request and first LBA of the current 

request in terms of FIFO. In this case, there are seven times of seeks and 

Nr =8 and Ns =0. In this sense, the workload is random because there is 

no sequential stream. However, if you reorder the requests with the aid of 

queue in term of LBA, so the request order < 263158(7)4 >, you have Nr =3  

and Ns =4, in terms of (strict) sequential streams. Note that the request 

number 7 is absorbed by the request number 8 during the reordering. So 

M2=2 (< 2631 > and < 58(7) >) for (strictly) sequential stream. With two 

constraints, S = 1024 and M2 = 2, you have (< 58(7) > and < 4 >). The stream 

of < 2631 > is removed due to small size.

When considering a near sequential stream with ∆d=64 and 512, 

you have M2=3 (< 2631 > and < 58(7) > and < 4 >) and 1 (< 263158(7)4 >), 

respectively, under strictly sequential stream.
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From this example, here are the following variables:

• Ns1: The number of requests with sequential access

• Ns2: The number of requests with near sequential access 

and LBA gap

• Nr : The number of the remaining requests

These variables have strong connection with the logical seek defined in 

the next section.

The practical gap size ∆d in a real application is usually determined 

by the system performance tolerance. Usually, it is up to few track sizes. 

For example, if an acceptable tolerance is 5ms, then ∆d can be up to 1536 

blocks based on disk model of 10K RPM drive with track/head switch time 

at 1ms and average track size at 1.5MB. For random access, the average 

rotational latency is 3ms. Assume a 50% chance of the new request in the 

same track and 50% chance in next track (the actual probability is coupled 

with ∆d). Then you have 5-(3+1)*50%=3ms for further rotation, which is 

about half a track size, so 1536 blocks.2

2 This calculation is for a conventional HDD. For SMR or MBC drives, it may be 
different.

Table 2-6. An Example of LBA Sequence and Randomness

Order First LBA Last LBA Order First LBA Last LBA

1 128 135 5 256 511

2 0 7 6 8 63

3 64 127 7 640 647

4 1536 2047 8 512 1279
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Sequential ratio: Due to the different views on the sequence, the 

definition of sequential ratio is also varied. Below, few examples are listed.

• DEF1: The summation of sequential commands 

detected with S and M2 thresholds / total commands

• DEF2: (The summation of sequential commands 

detected with S and M2 thresholds - total sequential 

streams) / total commands

• DEF3: The summation of the request size of sequential 

commands detected with S and M2 thresholds / total 

request size of all commands

• DEF4: (The summation of the request size of sequential 

commands detected with S and M2 thresholds - 

the summation of the size of the first command in 

sequential streams) / total request size of all commands

If you remove size constraint S, you get another four definitions.

 Spatial Locality and Logical Seek Distance
Locality, as a special case of correlation of a variable with itself over short 

to medium ranges, can be visualized as a 2D probability surface p(s, d), 

showing the probability that the first time an address s bytes away will be 

referenced in exactly d cycles. There are generally two types of locality: 

spatial locality and temporal locality. For spatial locality, if the distance  

s = |xi − xj | is small, it implies that not long after referencing address xi you 

will discover a reference to the adjacent address xj . Temporal locality will 

be discussed in the next subsection.

ChApTeR 2  TRACe ChARACTeRIsTICs



70

Note that only LBAs are provided in most traces, not the physical 

block address (PBA). Because different HDDs may not have exactly same 

data layouts (such as serpentine), identical LBA layouts between different 

HDDs can result in different PBAs. However, the difference is usually very 

small if their data layout is similar. Therefore, analyzing logical distance is 

also meaningful.

Below I discuss two distances to indicate spatial and temporal 

localities, respectively [35].

 Logical Seek Distance

This metric is an indicator for spatial locality. It defines the logical block/

LBA distance between “consecutively” device-received IOs.

• Non-queued next: The simplest case, which calculate 

the distance between two exactly consecutive IOs.

• Non-queued closest: The absolute closest distance = 

min (||last_LBA(rj−1)– first_LBA(rj ) ||, ||last_LBA(rj ) – 

first_LBA(rj+1)||), where rj is the current IO. The closest 

distance is the signed value of the absolute close 

distance, where || · || indicates the absolute value.

• Queued next: Simulates a queue with certain rules such 

that the absolute closest distance = min (||last_LBA(ri)– 

first_LBA(rj )||), i=1,. . . ,ni ≤ N , where ni ≤ N is the 

current queue length, and ri is the IO in the queue.

• Queued closest: Simulates a queue such that the 

absolute closest distance = min(||last_LBA(ri) – first_

LBA(rj ) ||i=1,...,ni, ||last_LBA(rj ) – first_LBA(rj+1)||).

In general, ||Queued closest ||≤ ||Non-queued closest ||≤||Non-queued 

next||. For the distance, you can further define three values: mean, median, 

mode. Mode indicates the most frequent number such that the larger the 

counter for mode = 0, the better the sequence.
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 Temporal Locality and Logical Stack Distance
Temporal locality means that the same address is referenced again after d 

steps. Popularity is a terminus that is closely related to temporal locality.

 Logical Stack Distance

If an LBA in ri is referred to again after some time by another request rj , 

the command distance between the two requests is defined as (simplified) 

the logical stack distance, an important temporal locality index. Let’s take 

write requests as an example. If the distance is small enough (e.g., smaller 

than the HDD’s DRAM cache queue size), it might be a hit in the DRAM 

cache; otherwise, a disk update is required for the write. If the frequency 

of the write for a certain range of distance is high, it means the update 

frequency is high.

Unlike the case in [35], we are more interested in queued stack 

distance with consideration of cache. Therefore, let’s also look into read/

write dependency. The details will be discussed in later in this chapter.

 Burstiness and Self-Similarity

I/O requests almost never occur singly but tend to arrive in groups 

because, if there were long intervals without arrival, there were intervals 

that had far more arrivals than their even share. They are generally 

related to queue depth and request arrival rate and inter-arrival time. 

This phenomenon is often called long-range dependence and is 

typically explained as (stochastic) self-similarity because that is the 

only explanation that avoids non-stationarity. The phenomenon of self- 

similarity describes how a property of an object is preserved while scaling 

in space and/or in time. In other words, in addition to the long-range 

dependence property, the scale invariance property holds at any different 

time scale, like in a fractal shape.
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 Statistical Properties Visualization 
and Evaluation
Besides the statistical properties mentioned in previous sections, there 

are several other properties of both the marginal and the joint probability 

distributions of the interested attributes that may strong influence the 

quantitative analysis of the system behavior [35]:

• Normality: A probability distribution can be accurately 

approximated by a normal distribution. Although 

perfect normal distribution is rare in reality, it is often 

used a reference model.

• Nonstationary: In a stationary process, the outputs 

(job size, inter-arrival time) vary, but the stochastic 

process that produces them does not.

• Long-tailness and power-law: Some regions far from 

the mean or the median of the probability distribution, 

like the extreme values in the tails of the probability 

distribution, are assigned relatively high probabilities 

following a sub-exponential or polynomial law, 

contrary to what happens to the family of normal 

distributions, where the tails fall exponentially.

• Heavy-tailness: The long tails of the distribution fall 

polynomially and the self-similarity property holds.

• Cyclic behavior and seasonal variations: They are an 

indication of a non-stationary workload and must be 

treated separately.

• Autocorrelation, cross-correlation, and short-range 
dependence: Autocorrelation is also known as serial 

correlation or short-term/range memory, where the 
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autocorrelation at short time scales is significant and 

long-range dependence is also known as long-term 

memory, where the autocorrelation at long time scales 

is significant.

These properties can be possibly visualized via graphical plotting. The 

empirical cumulative distribution function (EDF) and the complementary 

EDF (CEDF) are often used to observe the sample distribution. In 

particular, the log-log EDF and log-log CEDF plots are usually applied 

to compare the body and the tails of the sample probability distribution, 

respectively. Similarly, the Q-Q plot (a plot of the quantiles of the first 

data set against the quantiles of the second data set) can be employed 

for evaluating possible differences, especially in the tails, between the 

empirical probability distribution and another reference probability 

distribution, either theoretical or empirical.

The mass-count disparity plot and the Lorenz curve can be used to 

look for evidence of the power-law property. The mass-count disparity 

plot displays the “mass” probability distribution (given by the probability 

that a unit of mass belong to an item smaller than a predefined x) against 

the “count” probability distribution (given by the CDF) in order to show 

possible disparities between these two probability distributions. The 

Lorenz curve is an alternative way to illustrate the relationship between the 

“count” distribution and the “mass” distribution; it is generated by pairing 

percentiles that correspond to the same value (i.e. a point (pc, pm) in the 

curve is such that p F x F F pm m m c c= ( ) = ( )( )-1  where Fm(·) and Fc(·) are the 

cumulative distribution functions of the “mass” and “count” distributions, 

respectively, and Fc
- ×( )1  is the inverse of Fc(·).

The run-sequence plot and the autocorrelation plot for investigating 

for the presence of both short-range and long-range dependence as 

long as for periodic patterns and trends. The run-sequence plot displays 

observed data in a time sequence; it is constructed by plotting values of the 

interested (univariate) attribute according to the temporal order as they 
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appear; this plot is particularly useful for finding both shifts in location 

and scale, for locating outliers and, in general, for getting insights about 

the trend of observed data. The autocorrelation plot (also known as a 

correlogram) is a plot of the sample autocorrelation function (ACF), 

which is of the sample autocorrelation at increasing time lags; it is used 

for checking for randomness in a sequence of observations of the same 

attribute. If random, such autocorrelations should be near to 0 for any and 

all time-lag separations; conversely, if non-random, then one or more of 

the autocorrelations will be significantly different from 0.

Some hypothesis-testing techniques can be used for quantitative 

evaluations of these properties, such as F-test, T-test, K-S (Kolmogorov- 

Smirnov) test, Mann-Whitney U-test, and H-test. These tests can compare 

the differences between two empirical distribution functions/samples. 

The Pearsons r and the Spearmans ρ correlation coefficients are utilized 

to discover linear and generic correlations, respectively, among the 

interested attributes. Both coefficients are within the range of [–1,+1], 

where +1 means a strong positive correlation, while –1 means a strong 

negative correlation. 0 means no significant correlation. More details will 

be described in Chapter 9.

 Read /Write Dependency
Dependencies are generally classified into four categories [39]:

• Read-on-write (ROW), or read after write (RAW), or 

true dependencies

• Write-on-write (WOW) or write after write (WAW) or 

write update, or output dependencies

• Write-on-read (WOR), or write after read (WAR ), or 

anti-dependencies

• Read-on-read (ROR) or read cache hit, or input- 

dependencies
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Within a certain time window, ROR and ROW are directly related to 

the cache replacement algorithm and read hit performance, while WOR 

and WOW are related to the cache update policy. The existence of a ROW 

between two operations relies on the situation that if the first operation 

writes a block that is later read by the other operation and there is no 

intervening operation on the block. WOW and WOR are similarly defined. 

ROR is a very common property to check read cache efficiency. ROW can 

check if the so-called “write once read many (WORM)” is possible, which 

is an important value for SMR (the higher the better).

 Write Update (Write on Write)

A high WOW ratio generally means high block update ratio. Therefore, 

when replicate blocks exist, it might be better to update one of the 

copies and invalidate the remainder rather update all the copies, if the 

WOW ratio is quite high within a short time window, for IO performance 

consideration. By comparing ROW and WOW, you can conclude the 

likelihood of blocks getting updated vs. being read or not. SMR generally 

expects less write update, resulting in smaller write amplification. If an 

out-of-place policy is applied for write updates, you can expect better 

spatial efficiency.

In order to have a better view on WOW, I define three different types of 

update ratios below. Their different purposes are shown in Table 2-7.

Table 2-7. Comparison of Write Update Ratios

Frequented Timed/ordered Stacked

Total updated blocks/commands Yes Yes Yes

Timing issue No Yes No

Update frequency Yes No No

Memory stack No No Yes
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Frequented update ratio: During a time period, record the update 

frequency of each LBA. Any write hit is counted. If its frequency is larger 

than 1, the LBA is rewritten in the observation period. You can therefore 

provide a curve of x-axis vs. y-axis, where

• x is the maximum update frequency (≤1 no rewritten; 

otherwise rewritten)

• y is the percentage of blocks updated (updated blocks 

at a specified-frequency value / total updated blocks 

of write commands) or its cumulated distribution 

function (CDF).

This process gives a quick, coarse grain analysis of how LBAs are 

updated in a workload of conventional PMR drives. However, it may not 

reflect the actual ratio for SMR drives. In fact, due to the indirect mapping 

and log nature of SMR, it misses the actual write update; for example, a 

rewrite with an out-of-place update actually is “new” write to SMR drives.

Timed/ordered update ratio: During a time period, record the 

total blocks of updated write request (repeated or not). An update is 

an operation to rewrite a block that was previously written during the 

observation period. You can provide a curve of x = time or command 

IDs vs. y = total size of updated blocks or percentage of blocks updated 

(updated blocks at frequency x / total blocks of commands), so the percept 

is the percentage of total blocks that were updated. Note that a similar 

definition to frequented update ratio and timed/ordered update ratio are 

given in [4, 40].

Stacked update ratio: During a time period, record the update 

frequency of each write command (partial or full hit). Once a rewrite 

happens, it is counted as a new command (update frequency is always ≤1). 

You can provide a curve of x = logical stack distance vs. y = percentage of 

updated write commands (updated write commands/total commands), 

or a curve of x = logical stack distance vs. y = percentage of updated write 
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size (updated write size/total commands). It shows the actual update size/

commands and tells if an update in SSD/DRAM cache is necessary. Note 

that the stack distance can be also replaced by time interval.

 Read on Write (ROW)

This metric is used to check if “write once read many (WORM)” is possible. 

In general, the higher the ROW ratio, the better the WORM property of the 

workload.

Frequented ROW ratio: During a time period record the read hit 

frequency of each LBA after a write command. You can then plot a curve 

of x = maximum hit numbers or frequency (<1 not updated, otherwise 

updated) vs. y = percentage of blocks or commands hit (updated blocks at 

frequency x / total number of HDD blocks).

Timed ROW ratio: During a time period, record the hit blocks of 

each read command since last write. You can provide a curve of x = time 

or command ID vs. y = percentage of blocks or commands of read hit 

commands (blocks of hit read commands/blocks of total commands).

Stacked ROW ratio: During a time period, record the hit frequency of 

each read command (partial or full hit) since last write. You can provide a 

curve of x = logical stack distance vs. y = percentage of read hit command 

(hit read commands/total read commands) or y = percentage of blocks of 

read hit command.

Beyond the material presented here, other qualities, such as self- 

similarity (for burst IO) and workload dependence among of nodes 

(i.e. how the tasks are distributed among nodes) [35, 39], are interesting 

metrics to be studied further. In the spirit of brevity, I include a targeted 

presentation of workload metrics, omitting these analyses.
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 Priority-Related Metrics
Requests have priority during execution. Usually, the foreground activities 

have higher priority than background activities. In some cases, such 

as synchronization in RAID5/6 and EC operations, these marked as 

synchronized requests may have higher priority due to time-out policies.

Other metrics may be related to cluster, multi-threads, network and 

so on [41]. For example, the network factors (I/O bandwidth distribution, 

channel utilization, instructions, packet sizes, source or destination of 

packets, page reference pattern, various forms of delay like transfer time 

and queuing delays, etc.) will also influence the final device performance.

 Modeling Issues
There are two regular approaches to evaluating a system design. One 

employs the traced workload directly to drive a simulation. The other 

builds a model from the trace and uses the model for either analysis 

or simulation. Although the numerical trace-based approach is 

straightforward, the workload models may have some advantages over 

traces, such as adjustment with controlled modification, repetitions, 

stationarity, generalization, avoiding noise, increased understanding, 

added features, efficiency, etc. Therefore, it is important to understand 

the metrics via mathematical models. In the previous section, I pointed 

out that the hypothesis tests are based on some assumptions of statistical 

models. Tables 2-8 and 2-9 list few common sense details on the modeling 

issues of some basic and advanced metrics. For more details, refer to [35].
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Table 2-8. Mathematical Models for Basic Metrics

Metrics Modeling issues

Throughput Commonly used distributions: pareto distribution

Queuing time Commonly used distributions: exponential distribution, 

erlang distribution

Service time Commonly used distributions: exponential distribution, 

erlang distribution

Response time Commonly used distributions: exponential distribution, 

erlang distribution

Disk seek time May be modeled by data fitting using a piecewise function

Read to write ratio No obvious distribution, depends on read/write 

dependency

Request size 
distribution

Commonly used distributions: logarithmic distribution, 

trunked- normal distribution, pareto distributions, 

exponential distribution, power-law distribution, log-

uniform

LBA range/
randomness

see spatial locality

Inter-arrival time Commonly used distributions: poisson distribution, 

exponential distribution, lognormal distribution
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A general procedure to generate an analytical model is as follows:

• First, decide the formulation: the characterization level 

and the workload basic component.

• Second, collect the parameters of the workload to be 

modeled while it is executed.

• Third, statistically analyze the measured data with 

some statistical distribution (e.g., logarithmic 

distribution, trunked-normal distribution, Pareto 

distributions, exponential distribution, power-law 

distribution, log-uniform distribution) and stochastic 

model (e.g., Markov models), including the sampling 

procedure and static/dynamic analysis.

Table 2-9. Mathematical Models for Advanced Metrics

Metrics Modeling issues

Locality Commonly used distributions: Zipf distribution (Independent 

Reference Model).

Other models: LRU stack model, Markovian models, fractal model

Spatial locality The simplest way is by counting unique substrings of the 

reference stream. Formally measured by the size of the 

working set.

Temporal locality The simplest measure is to look at the reference stream 

through a pinhole or using a simulation of an LRU stack.

Read/write 
dependency

Models: state machine, Markov chain, clustering

Priority-related 
metrics

They are completely determined by the Os/Fs rules. A model 

can be built based on Markov chain with

Burstiness and 
self-similarity

Auto-covariance and covariance matrices are often used to 

describe self-similarity.
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An example using Markov chain can be stated in the following steps.

 1. Assuming the workload is approximately periodic 

with s states, model the IO trace of each data 

storage unit in one cycle as a specific Markov chain. 

Otherwise, all the corresponding Markov chain 

parameters should be time-varying.

 2. Given a historic workload trace L, represented as a 

D × T matrix: 
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where D is the total number of data storage units 

and T is the total number of time intervals. xd,t is the 

IO intensity for any chosen data unit d at time t.  

xd,t ∈ {1, 2, 3, ..., s}.

 3. Each Markov chain can be represented by its s by s 

state transition probability matrix:  
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where pi,j is the probability of the data unit IO 

intensity state change to j at next time interval under 

the condition that its current IO intensity state is i, 

and i, j ∈ {1, 2, 3, ..., s}
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 4. To simplify data allocation in the tiered storage 

system, you also need to classify the thousands of 

data units into a dozen of data clusters according to 

their dynamic IO intensities, such as a K-means 

algorithm using the state transition probability 

matrices as well as the residual time for each state s 

of every data units. By combining the initial state of 

the cluster S, you can obtain the predicted IO 

intensity of all the clusters in a whole period, 

represented as the following N × T matrix: 
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where sl,t is the IO intensity of the lth data cluster at 

the tth time interval.

Refer to [7, 8] to see the difference between simulation and modeling 

approaches. For more complex cases, you may use the so-called multiple- 

level process models. And, in these cases, the correlation must be 

considered.

 Typical Applications
In this section, you will take a look at several trace metrics of some typical 

applications in order to get a quick view. Table 2-10 lists some typical 

applications, where only block size, read/write percentage, and random/

sequential percentage are provided with some rough values. The dominant 

factors, IOPS or MBPS (throughput), actually show that whether the 

workload is random request dominant or sequential request dominant.
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IO workload characteristics are generally application-dependent 

nature. Many access patterns, such as read/write proportions and 

handling of writes differ by particular applications. Nevertheless, 

the majority of characteristics vary only by environments (operating 

conditions). Environment-dependent characteristics include the length of 

idle intervals, request arrival rate, workload randomness and sequentially, 

read and write performance, disk service time and response time of 

request, request size, etc. More importantly, there are characteristics of 

the overall IO workload that do remain consistent through applications 

Table 2-10. Typical Application IO Workload Profiles

Application IO profile

Application size (Byte) R/W Rand./seq. Dominant

Web file server 4KB, 8KB, 

64KB

95%/5% 75%/25% IOps

Database online transaction 

processing (OLTp)

8KB 70%/30% 100%/0% IOps

exchange email 4KB 67%/33% 100%/0% IOps

Os drive 8KB 70%/30% 100%/0% IOps

Decision support systems (Dss) 1MB 100%/0% 100%/0% IOps

File server 8KB 90%/10% 75%/25% IOps

Video on demand 512KB 100%/0% 100%/0% IOps

Web server logging 8KB 0%/100% 0%/100% MBps

sQL server logging 64KB 0%/100% 0%/100% MBps

Os paging 64KB 90%/10% 0%/100% MBps

Media streaming 64KB 98%/2% 0%/100% MBps
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and environments. A particular note here is workload burstiness (i.e. 

long-range dependence). The block-level workloads, in particular, request 

inter-arrival times and request seek distances, are long-range–dependent 

in general. As a measure of temporal locality in a time series, long-range 

dependence has a variety of consequences specifically with regards to 

predict overall system and particular resource saturation. Consequently, 

burstiness shall be taken into consideration when designing new storage 

systems, and resource management policies at various layers of the 

IO path. As a result, there is no universally good configuration for all 

workloads due to large difference in various applications [42].

For file system performance, keeping the file system block size 

close to the workloads I/O size can increase the efficiency of the system 

significantly [43].

Web traffic volume is increasing rapidly. Some researchers argue 

that there have been no dramatic changes in web server workload 

characteristics in the last 10 years [44]. They consist of one-time 

referencing behaviors, heavy-tailed file size distributions, non-Poisson 

aggregate request streams, high concentration of references, Poisson per- 

document request streams, and the dominance of remote requests.

A database usually has a significant inter-transaction locality, showing 

that real workloads transactions are generally dependent of each other. 

Another observation is that significant use of sequential accesses allows 

a prefetch policy to be applied. Sequentiality is a consequence of long- 

running queries that examine a large number of records, such as a join 

operation.

OLTP (online transaction processing) workloads are characterized by 

a large memory footprint, joined with a small critical working set, and by 

their reduced benefit from micro-architectural optimizations. In addition, 

index searching in OLTP workloads require a different cache design.
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Let’s further look into two workloads with more details.3 Table 2-11 

show the metrics values of the two traces. You can see that their properties 

have large differences. Sometimes, only two or three major metrics are 

used in the simple synthetic trace generators, although the applications’ 

actual trace is much more complex.

 Traces in File- and Object-Levels
The other two types of traces generally share many common properties 

with block-level traces. However, they have their unique features in some 

scenarios. Table 2-12 gives some metrics of file-level traces, which are 

different from those of block-level traces.

3 OLTP is from Financial1.spc and search engine from WebSearch1.spc of UMASS 
Trace Repository at http://traces.cs.umass.edu/index.php/Storage/Storage

Table 2-11. Basic Metrics for Two Typical Workloads

Trace Duration(s) Traffic 
(G-B)

Total 
requests 
(×106)

Avg. R/W 
size (KB)

R/W 
traffic 
ratio

Random 
read 
(×106)

Random 
write 
(×106)

OLTp 43712 18.491 5.335 3.466 0.1820 0.955 2.99

search 

engine

3151.3 16.369 1.055 15.509 8762.9 0.994 2.08e-4
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Table 2-12. Some Metrics for File-Level Traces

Metrics Explanation

File types A file system is utilized in one of several ways: as a 

long term storage for persistent data, as a repository 

for data too large to fit in the main memory, as the 

site of storage for executables, and for storing logs 

of system usage for accounting and monitoring. The 

metadata to user data ratio is an important index

File age The age is defined as the time from its last reference.

File access duration The time from open to close

User behavior model Users generate the references that constitute the 

workload.

Process and state model several aspects are included, such as how a process 

makes file service requests during its existence; the 

conditional activation table for access dependency; 

and the ratio of different operations, such as open, 

close, write, read, seek, etc. It may be molded as a 

closed Markov chain.

Reference model how the requests are distributed among the files in 

the system

As mentioned, the metrics to be considered may be different based 

on different abstract levels. For example, in the system level, we usually 

consider the attributes listed in Table 2-13, where most of them could be in 

file or object-levels.
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Table 2-13. Workload in System Level

Workload 
in systems 
views

Load arrival pattern Data access pattern Computation 
pattern

MapReduce The time arrival of 

sequence of jobs

hDFs input and output 

paths, the data size for 

the input, shuffle, and 

output storage

Input data size, 

shuffle data size, 

output data size, 

job duration, map 

task time, reduce 

task time

enterprise 

network 

storage

The time arrival 

sequence of 

application instances 

or user sessions

Read/write, sequential/

random, single/repeated 

access, file sizes, file 

types

N.A.

In this chapter, I presented some trace metrics for performance 

evaluation and design of storage systems. Some typical applications were 

given to provide a quick impression on these metrics. In fact, due to the 

large difference of some applications, there is no one-for-all system design 

in general. I will discuss more details in the later chapters.
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CHAPTER 3

Trace Collection
Trace quality is one of the essential requirements for analysis. Low quality 

traces may lead to complex, wrong conclusions for trace analysis. There 

are two main issues in trace quality. One is timing drift, which is when 

the actual event arrival time is earlier than the collected arrival time. 

The other is a missing event, such as when the tool cannot capture all 

the required events. Thus, proper tools shall be applied to guarantee the 

correctness of the traces. Both software tools and hardware devices are 

introduced in this chapter.

 Collection Techniques
Many techniques have been proposed to monitor and capture system or 

component traces. There are four techniques generally:

• Hardware-based monitoring entails the modification of 

the testbed hardware so that as a program is executed, 

a record of all instructions and/or data addresses is 

created.

• Software-based tracing can achieve similar goals as 

hardware to a certain degree, but instead of altering the 

system hardware, software is modified or inserted.
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• Emulation-based tracing constructs a layer between 

the host machine and the OS under evaluation, like 

QEMU1 and SimOS.2 The layer only emulates enough 

components to allow the OS to run correctly. While 

this system provides a flexible interface to collect 

operating system-dependent traces, the accuracy of the 

captured trace is dubious sometimes. Since emulation 

is performed, execution will be perturbed.

• Microcode-based tracing utilizes microcode 

modification to capture trace information, introducing 

minimal slowdown, like PALcode (Privileged 

Architecture Library code).3

However, the third and fourth techniques are not popular due to high 

complexity and dubious accuracy. Therefore, only hardware and software 

based techniques are discussed in this chapter.

 Hardware Trace Collection
We refer the hardware method to the trace collection approach that uses 

a particular hardware device/system capturing the IOs other than the 

targeted storage devices, although some software may be still required to 

manage the traces [38, 45]. There are many types of hardware to collect 

the block-level trace. One of the most common devices is a bus analyzer, 

although it is not limited to block-level IOs for disk drives, such as network 

traffic, DDR/CPU caching/stall/latency/throughput/etc. Some products 

can capture rather accurate traces, such as the Xgig 6G SAS/SATA analyzer 

from Viavi solution, the BusXpert Micro II Series SAS/SATA analyzer from 

1 www.qemu.org/
2 http://simos.stanford.edu/
3 http://download.majix.org/dec/palcode_dsgn_gde.pdf
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SerialTek, the Trace and analyzer from TI, the protocol analyzer from 

LeCroy, the Eumulator XL-100 from Arium, and the SuperTrace Probe 

from Green Hills Software.

The bus analyzers often provide multiple communication interfaces 

for users. Take the devices in Figure 3-1 as an example. They provide USB, 

Ethernet, SCSI, etc. These devices usually achieve reliable and accurate 

linkups via multiple mechanisms, with higher resolution (e.g., time 

precision and capture frequency) and more information captured than 

software-based tools.

Figure 3-1. Bus analyzers from LeCropy, XGIG, and SerialTek
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Figure 3-2. Plentiful protocol information from BusXpert

Figure 3-2 shows an example of SAS IO access in BusXpert, which 

provides almost all basic information related to SAS protocols. The users 

can easily trace the command status from the detailed logs, such as the 

response time, connections, etc.
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Figure 3-3 provides another example of SATA command analysis. You 

can see that the host issued the command COMWAKE after around 5 

seconds. The drive almost immediately acknowledged COMWAKE. At time 

5.59 seconds, SMART READ DATA was transferred to the host.

Figure 3-3. SATA command analysis
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Although there is no difficulty in capturing almost all the essential 

protocol information, no advanced metrics of IO properties are included 

in the software used to analyze the trace.

 Software Trace Collection
In term of accuracy, a software trace collector may be not as good as 

hardware devices. In particular, for these applications with time precision 

in nanoseconds or less, software may not work well. For example, a disk 

feature debug related to the SAS/SATA protocol may be applicable to 

the bus analyzer since it may involve the disk drive’s SoC clock issues. 

However, for disk drive IO performance, it is generally operated at the 

millisecond level (precision), which is generally within the capability of 

the modern processors and operating systems inside a common server or 

workstation.

There are many IO tools available [45, 35]:

• Linux/Unix: Dtrace[46], LTTng, BCC,4 iostat, dstat, 

tracefs,5 iotop, hdparm, ionice, Ctrace,6 iogrind, POSIX 

Test Suite, ioprofile, SystemTap, IOR, PCP, and swtrace

4 https://github.com/iovisor/bcc
5 www.usenix.org/conference/fast-04/tracefs-file-system-trace-them-all. 
It is a thin stackable file system used to capture file system traces in a portable 
way. Tracefs can capture uniform traces for any file systems without modifying 
the file systems being traced. It can also capture traces at various degrees of 
granularity: by users, groups, processes, file operations, files and file names, etc. 
In addition, it can transform trace data into aggregate counters, compressed, 
checksummed, encrypted, or anonymized streams; and it can buffer and direct 
the resulting data to various destinations (e.g., sockets, disks, etc.).

6 http://ctrace.sourceforge.net/. CTrace is a fast and lightweight trace/debug 
library designed specifically for multi-threaded applications. It is coded in C and 
employs POSIX threads.
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• Windows: Xperf,7 TraceWPP/TraceView/Tracelog/

Logman,8 Vtrace, Oracle trace collector, Bus analyzer 

module,9 and PatchWrx10

However, not all of these tools can provide event details. In fact, the 

general purpose monitoring tools, like iostat and iotop, cannot provide 

detailed information on a per-IO basis.

These tools can be divided into two classes: static and dynamic. 

Static tools view the binary image of a program as a black box that is 

never modified. Dynamic tools instead rely on binary-level alterations to 

facilitate the gathering of statistical data from an application. For example, 

all the Windows tools and iotop/iostat/dstat/hdparm/ionice/iogrind/

ioprofile are static tools, while SystemTap, Dtrace, and LTTng are dynamic 

tools. In particular, Dtrace and LTTng use a mechanism called probing that 

is able to selectively activate instrumentation routines that are embedded 

within software at all levels of abstraction, so that performance-related 

statistics can be obtained from not only an application but also the various 

libraries and kernel routines associated with its execution.

7 http://xperf123.codeplex.com/. Xperf is built on top of the ETW (Event 
Tracing for Windows) infrastructure, which provides the capability to capture 
event traces for user and kernel mode drivers.

8 http://msdn.microsoft.com/en-us/library/windows/hardware/
ff552961(v=vs.85).aspx. These Windows tools enable WPP tracing in a trace 
producer and controlling trace sessions (trace controllers).

9 www.scsitoolbox.com/products/BusAnalyzerModule.asp. BAM is a software 
bus analyzer that can capture, display, and analyze trace data from any peripheral 
bus, including SCSI, Fiber Channel, IDE, ATA, SATA, and SAS. BAM offers 
complete versatility as far as choice of phases that are captured and displayed, 
capture modes to minimize IO impact, buffer size and capture size, and device(s) 
to capture trace data from.

10 http://studies.ac.upc.edu/doctorat/InstProf/PatchWrx.pdf. PatchWrx is a 
static binary-rewriting instrumentation tool to capture full instruction and data 
address traces on the DEC Alpha platform running Microsoft NT. The toolset 
modifies the binary image before execution.
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 Blktrace
Blktrace is a static tool that has been embedded into the Linux kernel 

since version 2.617-rc1. This tool is lightweight and easy to use. It only 

considers device access after OS/FS cache. When IO enters to block an IO 

layer (request queue), the relay channel per CPU gets events emitted, and 

blktrace then captures the events from the channels. More details can be 

found in Appendix B.

 Dtrace, SystemTap, and LTTng
As mentioned, dynamic tracing tools embed tracing code into working 

user programs or kernels, without the need of recompilation or reboot. 

Since any processor instruction may be patched, it can virtually access any 

information you need at any place. I will discuss several dynamic tracing 

tools next.

DTrace [47] originated from Solaris.11 Its development was begun in 

1999, and it became part of the Solaris 10 release. Nowadays, DTrace is 

open-sourced as a part of OpenSolaris, although it has not merged into 

the Linux kernel due to license incompatibility. There exist several ports 

without proper support. A toolkit based on Dtrace for simplification of use 

has been developed by B. Gregg.12 But the essential limitation has been 

solved. A few attempts led to the development of another clone of DTrace 

called DProbes, but it seems to be unsuccessful.

Therefore, three major Linux players, Red Hat, Hitachi and IBM, 

presented another dynamic tracing system for Linux called SystemTap.13 

SystemTap is one of the most powerful tracers so far. However, it has 

to generate a native module for each script it runs, which is a huge 

11 www.solarisinternals.com/wiki/index.php/DTraceTopics
12 https://github.com/opendtrace/toolkit
13 http://sourceware.org/systemtap/langref/
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performance penalty. Ktap14 was further developed to reduce the overhead 

using Lua and LuaJIT internally. Another similar implementation is 

sysdig,15 which is scriptless.

LTTng16 is also a widely used open source tracing framework for Linux. 

It used static tracing and required kernel recompilation until version 2.0; 

it currently utilizes ftrace and kprobe subsystems in the Linux kernel. 

It makes the users understand the interactions among multiple system 

components, like the Linux kernel, using either existing or user-defined 

instrumentation points, C/C++ applications, Java applications, Python 

applications, or any other user space application with the LTTng logger. It 

may outperform other tracers because it has optimized event collection. It 

also supports numerous event types, including USDT (user-level statically 

defined tracing).

When identifying the overall system performance instead of only 

storage IO, these tools will play a significant role. In Chapter 9, you will use 

Ceph as an example to find the performance bottleneck from an overall 

system view.

 Trace Warehouse
Mainly for research purposes, there are some real/synthesis traces 

available online for download. The following are few examples:

• SNIA at http://iotta.snia.org. It provides block 

IO trace (e.g., the block traces on a virtual desktop 

infrastructure and Microsoft Production Servers), NFS 

trace, system call trace, etc.

14 https://github.com/ktap/ktap
15 www.sysdig.org/
16 http://lttng.org/
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• Sandia National Laboratories at www.cs.sandia.gov/

Scalable_IO/SNL_Trace_Data/. S3d I/O kernel trace 

data was collected during runs on 6400 clients of 

Redstorm.

• Los Alamos National Laboratory at http://institute.

lanl.gov/data/. Few traces, like MPI/HPC, are 

categorized.

• Google at https://github.com/google/cluster-data. 

It provides cluster workload trace on Google compute 

cells.

• Facebook at https://github.com/SWIMProjectUCB/

SWIM/wiki/Workloads-repository. A number of 

1-hour segments from Facebooks Hadoop traces were 

published as part of UC Berkeley AMP Labs SWIM 

project.

• Dartmouth University at www.cs.dartmouth.edu/

dfk/nils/workload.html. It provides some traces 

from parallel file systems (e.g., Intel’s CFS, Thinking 

Machines SFS).17

• Harvard University at www.eecs.harvard.edu/sos/

traces.html. It provides some NFS traces.

• UMassAmherst at http://traces.cs.umass.edu/

index.php/Main/Traces. OLTP and search engine 

traces are archived.

17 Most of these traces have been designed under the assumption that scientific 
applications running on parallel computers would exhibit behavior similar 
to that of the same applications running on uniprocessors and vector 
supercomputers.
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• Hebrew University at www.cs.huji.ac.il/labs/

parallel/workload/index.html. Multiple parallel 

workloads are collected.

• OpenCloud at http://ftp.pdl.cmu.edu/pub/

datasets/hla. These traces were taken from a Hadoop 

cluster managed by CMU’s Parallel Data Lab. They 

provide very detailed insights into the workload of a 

cluster used for scientific workloads during a 20-month 

period, including timestamps, slot counts, and more.

Together with the source code for the analysis tool, I also provide trace 

sample data in GitHub.

This chapter discussed both hardware and software tools for trace 

collection. Note that the former generally offer higher precision and more 

information than the latter, although they are more expensive. However, 

in many scenarios, the precision is only required at the millisecond level. 

Therefore, software-only tools are widely applied in both industries and 

academics. Note that there exist various tools for different purposes. 

In order to identify the overall system performance, you shall employ 

multiple tools or some integrated tool sets.
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CHAPTER 4

Trace Analysis
Trace analysis provides insights into workload properties and IO patterns, 

which are essential for storage system tuning and optimizing. This 

chapter discusses how the workload interacts with system components, 

algorithms, structures, and applications.

 Interactions with Components
As discussed in Chapter 1, different storage devices may have large 

different properties. In addition, their internal structures and algorithms 

also have significant impacts on the final performance. For example, write 

cache of HDDs can gain benefits from data locality:

• Write cache hits can avoid some disk mechanical 

writes; instead, the dirty blocks in DRAM cache are 

overwritten. It is a benefit of temporal locality.

• Larger cache space means longer write queue: 

physically contiguous dirty blocks can be grouped into 

a single IO operation. It is a benefit of spatial locality.

• An advanced replacement policy efficiently places cold 

data onto a disk while keeping the hot data in cache via 

exploring both spatial and temporal locality.
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• The cache can temporarily absorb the write burst and 

distribute the write load evenly over time to minimize 

the impact to concurrent IOs.

For HDD with MBC, write cache can provide log access for write burst, 

and thus give a better arrangement for grouped I/O access. In this section, 

I mainly discuss the HDD and SSD factors that influence the performance.

 HDD Factors
For HDD, the performance varies with respect to (wrt) the disk drive’s 

features (e.g., RPM, TPI/SPT, location [OD, MD or ID], head quality, servo 

control mechanism, cache structure/algorithm, queue length, and so on) and 

workload properties (e.g., sequence, request size, queue depth, and more).

First, look at drive’s features. For example, the throughput of the OD 

side of HDDs can be double that of the ID side, as shown in Figure 4-1. A 

10K RPM enterprise drive may be over two times faster than a 5400 RPM 

desktop drive. The fast RPM drives generally have a quicker response time 

than the slow RPM ones.

Figure 4-1. Throughput difference in different HDD locations
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Second, consider the workload properties. Figure 4-2 provides an 

example that IOPS changes wrt request size (0.5, 1, 2,..., 2014KB) and 

queue depth (1, 2, 4, 8, 16, 32) for write cache enabled (WCE) or disabled 

(WCD). You can see that without cache/buffer, WCD gives similar 

performance for different queue depths under the same request size. 

However, when write cache is enabled, the performance for queue depth 

as 1 has a significant difference from that for 16. Figures 4-2 and 4-3 

illustrate the performance difference wrt buffer size under WCE and WCD.

Figure 4-2. IOPS difference wrt queue depth and request size under 
WCE and WCD (random write via IOMeter) 
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 SSD Factors
For SSD, the performance also varies wrt the disk drive’s features (e.g., 

die number, block size, parallel access, flash management algorithm 

(wear-leveling), address mapping policy, trim condition, cache structure/

algorithm, queue length, IO driver interface, and more) and the workload 

properties (e.g., fragmentation, sequence/randomness, write update, read/

write ratio, request size, queue depth, request intensity/throttling, etc.).

Different from HDD, a consumer-class NAND SSD may show 

artificially and unsustainably high performance temporarily during 

initial measurements. It may also display unacceptable performance in 

bad conditions. Thus I shall have a proper condition for SSD in order to 

demonstrate sustained solid-state performance. The well-known starting 

point is a completely new SSD or a low-level formatted SSD (to wipe the 

Figure 4-3. Throughput difference wrt to buffer size for WCE and 
WCD (sequential write via IOMeter)
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contents and restore it to its original state). Run some random writes for 

a while, depending on the SSD capacity. Then the SSD is put in a “used” 

state. When the performance levels settle down to a sustainable rate, we 

have the true performance value. Figure 4-4 illustrates this phenomenon, 

where D1-D6 are MLC and D7-D8 are SLC.1 Note that this situation has 

been alleviated since 2017.

NAND SSDs generally use a virtual address mapping scheme, whereby 

LBAs are mapped to PBAs for some reason [12]. For instance, wear leveling 

algorithms allocate updated data to new cell locations to promote evenly 

distributed wear on the memory cells and thus improve the memory cell 

life or endurance. As a result, the SSD must keep track of the LBA-PBA 

affiliations. Similar to HDD, sequential operation may also be faster than 

random access when the data in the physical location is less fragmented.

1 http://searchsolidstatestorage.techtarget.com/feature/
The-truth-about-SSD-performance-benchmarks

Figure 4-4. SSD performance states [12]
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Similar to HDD, the queue depth (i.e., the number of the outstanding 

IOs) has a deep impact to the IOPS performance. Figure 4-5 illustrates 

the IOPS trends for four different models of SSDs under two applications: 

database and file server. You can see that the resulting IOPS are largely 

different. In addition, SSD2 performs better than SSD3 in the database, 

while worse in the file server. This indicates that the internal architecture 

and algorithm of a SSD is sensitive to the applications.

Figure 4-5. SSD IOPS vs. queue depth

Block alignment is also a performance issue. When blocks are aligned 

with the NAND flash memory cell boundaries, they are more efficiently 

stored in an SSD. For instance, an 8KB block will fit precisely in an 8KB 

NAND page size. If all things are equal, more small block IOs can be 

accessed in a given period of time than large block IOs, although the 
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amount of data might be the same, such as 64 IOs of 8KB data transfer 

length vs. 4 IOs of 128KB data transfer length. In any case, the minimum 

granularity of access to NAND flash depends on the design of the 

underlying NAND flash. Figure 4-6 shows the throughput under sequential 

requests with different sizes. You can see that when the size is less than 

32KB, the transfer speed is significantly influenced by the size. However, 

when the size is larger than 128KB, the throughput is relatively stable.

Figure 4-6. SSD sequential throughput vs. request size

The read/write ratio has larger impact to the SSDs than CMR HDDs. 

First, the “new” write generally needs more time than read, so more steps 

of the write operation than that of the read operation. Second, for a write- 

in- place update, an “erase” access is required. Therefore, the number of 

write steps relies on how full the drive is and whether the SSD controller 

shall erase the target cell (or even relocate some data by performing a more 

time-costly RMW access) before writing the new data.

Although the performance ratio of sequential to random access is not 

so high as the HDDs, sequentiality is still important because it contributes 

in minimizing erase operations via grouping write requests by blocks, 

optimizing both lifetime and I/O performance by reducing the number of 

erasures, and so on.
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In sum, there are many major differences between SSD and HDD, 

besides those listed in the summary table in Chapter 1. Here, I further 

extend it to general NVM:

• Access location: It significantly matters for HDD due to 

positioning time, while it doesn’t determine latency in 

NVM generally, although the access order matters.

• Access size: Large and sequential requests are 

significantly faster than small and random requests. 

However, it has less impact to NVM. In fact, larger IO 

may pay an additional cost due to internal structures, 

although sequential access is still generally faster than 

random access in NVM.

• Access type: HDD is usually either block- or file-based. 

Some object-based devices still use internal mapping 

between block and object. However, some NVMs can 

be byte-level. The object-level mapping is also more 

native than that of HDD. Read and write performances 

are likely to be different in many NVMs.

• Content: Some techniques, such as compression and 

reduplication, are content-dependent. They are not 

necessary for HDD due to the additional computational 

and IO resource usage, which may downgrade the 

HDD performance largely. Compared with the space 

saving, they may not be worthwhile. However, for NVM, 

these techniques can reduce the cost and improve the 

storage efficiency.

• Timing: HDD usually caps at 300 IOPS, while some 

NVM devices may be 100 to 10000 times faster. The 

cache scheduler therefore has large difference.
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There are many testing and benchmarking tools with different 

measurement conditions. People may be confused by the results from these 

different tools. SNIA developed standard testing tools called SSSI Reference 

Test Platform (RTP) and the Performance Test Specification (PTS).2

 Interactions with Algorithms
The algorithms and policies utilized in the hybrid storage systems actually 

determine the performance of the overall storage system when the 

hardware is fixed. In this section, the most important algorithms, such as 

data allocation, hot data identification, data migration, and scheduling 

algorithm, are surveyed. For easy of representation, I list some main 

factors considered in these algorithms in Tables 4-1 and 4-2, where access 

frequency and interval are the most important two factors in hot data 

identification and data migration algorithms.

2 www.snia.org/forums/sssi/rtp

Table 4-1. Two Most Important Factors

Items Description Typical Algorithms

access 

frequency 

(r/W) (F),

access 

interval (t)

the access time within a given time 

period. Due to the different performance 

in r/W, we may also consider them 

separately.

some argue that the least recently used 

data may have higher probability to be 

re-accessed in the near future; some 

deny it; now an acceptable tradeoff is 

that it depends on iO pattern/workload.

lFU (least frequently used)

[48], GDsF (Greedy-Dual 

size Frequency) [49]

lrU (least recently used), 

MrU (most recently used), 

lFUDa (lFU with dynamic 

aging) [48], lrU-K(least 

recently used k)[50], GDs [51]

Chapter 4  traCe analysis

http://www.snia.org/forums/sssi/rtp


110

Table 4-2. Other Performance Factors

Items Description

Data size Generally, only hot data with small size is 

required to move to a higher tier. the small 

degree depends on the read/write speed rate 

of ssD and hDD, and the migration speed 

between them, etc.

Cache total/remaining size

Device total/remaining bandwidth

the cache size decides how much hot data 

can be stored in the cache. hence it decides 

the threshold of hot degree.

the bandwidth decides if the migration is 

proper at current time. an approximated 

function may be built to predict the remaining 

bandwidth with respect to r/W ratio, iO 

intensity, etc.

r/W ratio since the r/W access time and pattern are 

different, this ratio gives different performance 

(e.g., the write amplification).

r/W granularity and iO intensity the value represents the data amount ratio 

relating to an r/W iO to a fixed size data block. 

average r/W granularity is the average ratio 

of all the iOs in a predefined time interval. 

Commonly, the larger the value, the more 

important the data is to users. 

(continued)
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 Interactions with Structure
The fundamental structure of the storage device or system also has a large 

impact on the system performance. For example, RAID- and EC-based 

systems have the functionality of data protection. However, it increases 

the internal IO burden to the disks due to the additional parity data. In 

particular, during the system recovery from a critical disk failure, the internal 

workload eats large portion of disk bandwidth, and therefore the overall 

system performance to the external users is significantly downgraded. 

Chapter 7 will analyze the impact of RAID structure to the IO pattern.

Table 4-2. (continued)

Items Description

Data correlation One data may be related to another, so the 

iO operations in a data block have some 

characteristics in a predefined period of time, 

and another may have similar properties, 

hence they are associated. this value can be 

used for iO predication.

iO range/amount/distribution iO distribution represents the statistical 

accessing information, such as the accessing 

address range and the accessing frequency in 

a given accessing period.

Grain size the minimum size for each page/block to be 

replaced/migrated

tier contrast/compensation (device 

value)

it values the difference between two different 

storage tiers/caches for direct data migration, 

including device status, accessing speed, etc.

Others Data loss/error, etc. 
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For a hybrid storage system, although it has the potential to improve 

the performance of hot data, the internal data migration may also occupy 

some additional resources. Improper IO scheduler and data migration 

algorithms will definitely lower the overall performance. In addition, the 

so-called cache structure and tiering structure may have large difference 

in data allocation and IO scheduling, which leads to performance diversity 

under different scenarios. Chapter 6 will use a small-scale hybrid device as 

an example. Furthermore, the inter-connection structure, such as bus and 

bridge, could also be the performance bottleneck in some cases.

 Interactions with Applications
As discussed in Chapter 2, the metrics of different applications may have 

large differences [35]. Table 4-3 provides a simple comparison of typical 

requirements among some common applications.3 Due to the significant 

variation of requirements from one to another, it imposes different 

demands on the storage systems. Chapter 8 will illustrate the IO pattern of 

a Hadoop system with HDFS for big data applications, while Chapter 9 will 

discuss one of the most popular distributed storage systems, Ceph.

3 For space saving, the words “sequential,” “performance,” and “throughput” are 
shortened as “seq.”, “perf.” and “TP”, respectively. Jie Yu and Grant Markey also 
contributed this table.
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CHAPTER 5

Case Study: 
Benchmarking Tools
Benchmark tools are useful to provide some “standard” performance 

indexes for storage systems with specific requirements. This chapter shows 

how to identify the access pattern of benchmark results. The first tool is 

SPC-1C from the Storage Performance Council (SPC). After capturing the 

pattern, I developed a synthetic emulator to match the real traces. The 

second tool is PCMark from FutureMark. I illustrate how to use gain-loss 

analysis to improve cache algorithm efficiency.

Storage performance benchmarks assess the relative performance 

of storage systems by running a number of standards tests and trails, via 

a tool or a set of programs with or without specific hardware equipment 

supported. Below are some benchmark tools that are often used for active 

trace collection:

• Synthetic trace

• The user can specify test scenarios for queue depth, 

request size, transfer rate, sequence, etc. It is good 

to determine corner case behavior.

• Examples: IOMeter, VDBench, fio, IOzone, iorate, 

sqlio, diskspd1.

1 https://gallery.technet.microsoft.com/DiskSpd-a-robust-storage-6cd2f223

https://gallery.technet.microsoft.com/DiskSpd-a-robust-storage-6cd2f223
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• Application-based trace

• The user can choose specific applications with 

predefined workload patterns. It is good to illustrate 

real world cases.

• Examples: SysMark,2 PCMark, SPC (Storage 

Performance Council, e.g., SPC-1, SPC-2), TPC 

(Transaction Processing Council, e.g., TPC-A/B/C/

D/H/W),3 SPEC (Standard Performance Evaluation 

Corporation, e.g., HPC/SFS/JVM/SDM),4 Jetstress,5 

COSbench6.

• Real trace

• The user can input the real-world trace directly. 

It is useful when the user attempts to test similar 

applications in different systems.

• Example: AnandTech Storage Bench7.

Table 5-1 gives a simple comparison of some commonly used tools, 

where the letters W, L, and U in the OS column indicate Windows, Linux, 

and Unix, respectively.

2 https://bapco.com/products/sysmark-2014/
3 www.tpc.org/
4 www.spec.org/
5 www.microsoft.com/en-us/download/details.aspx?id=36849
6 http://lbs.sourceforge.net/
7 www.anandtech.com/

Chapter 5  Case study: BenChmarking tools

https://bapco.com/products/sysmark-2014/
http://www.tpc.org/
http://www.spec.org/
http://www.microsoft.com/en-us/download/details.aspx?id=36849
http://lbs.sourceforge.net/
http://www.anandtech.com/


117

For large-scale systems, the traditional tools may be insufficient  

(e.g., lack of measurement metrics) or inconvenient (e.g., no integrated 

user interface) enough. Therefore, some dedicated tools are proposed, 

such as HiBench,8 Berkely BDB,9 BigDataBench,10 and BigBench11 for big 

data benchmarks, in particular, the Hadoop/Spark systems.

A general benchmark procedure is shown in Table 5-2 [52]. Note 

that there exist other classification methods. For example, three types 

are named as micro-benchmark in lower-level system operation (e.g., 

evaluating HDFS operations on modern cluster), functional/components 

benchmarks in high-level functions (e.g., Terasort, basic SQL), application- 

level benchmarks (e.g., overall system performance for a given application 

scenario). For more details, refer to [41, 35].

8 https://github.com/intel-hadoop/HiBench
9 https://amplab.cs.berkeley.edu/benchmark/
10 http://prof.ict.ac.cn/BigDataBench/
11 https://github.com/intel-hadoop/Big-Data-Benchmark-for-Big-Bench

Table 5-1. A Comparison of Some Common Benchmark Tools

Block File Posix OS S/C Open Latest

iometer y - - Wlu s/C y 1.1.0/

2014

iozone y y y Wlu s y 2006

Bonnie++ y lu s y (gpl2) 1.0.1

dbench y y y lu s/C y (gnu) 2008

Filebench y y y lu s y 2011
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 SPC-1C
The Storage Performance Council (SPC) provides several benchmarking 

tools under different levels. SPC-1C [53] is designed to be vendor/platform 

independent and is applicable for a wide range of storage component 

products, such as disk drives, host bus adapters (HBAs), intelligent 

enclosures, and storage software such as logical volume managers.

 Workload Properties
Two important concepts related to the workload intensity are the BSU 

(business scaling unit) and ASU (application storage unit). Each BSU 

is composed of three ASUs: ASU1 for a data store with a weight of 45%, 

ASU2 for a user store with 45%, and ASU3 for a log with 10%, which totally 

corresponds to five IOPS per ASU.

Table 5-2. Five Steps for General Benchmarks

Steps Remarks

Choose 

the proper 

configuration.

select the proper type of benchmark, such as macro- benchmark 

(overall test for the full system), micro-benchmark (few 

operations to check partial changes), or trace-based.

Choose 

the correct 

environment.

Consistent hardware and software settings, and some factors, 

such as cache status, hdd zoned constant angular velocity, file 

system aging, nonessential processes, etc.

run the 

benchmark.

identical run for repeatability, multiple rounds for accuracy with 

small standard deviations or high confidence level, sufficient 

running time for steady state, automatic run via suitable scripts.

present the 

results.

statistical results with small confidence-interval and near 

normal distribution

Validate the 

results.

reproduce/confirm the results or compare with other similar 

ones.
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There are three types of access patterns: random (uniform 

distribution), sequential, and (random walking access) pattern. The details 

can be found in Table 5-3, which is further summarized in Table 5-4. 

Table 5-5 indicates that the small size requests (8 and 16 blocks) are over 

85%. Random walk is an important model of Markovian Chain. Table 5-6 

shows the main characteristics of this model.

Table 5-3. Decomposition of SPC-1C Workload

ASU 1-1 1-2 1-3 1-4 2-1 2-2 2-3 3-1

intensity 0.035 0.281 0.07 0.21 0.018 0.07 0.035 0.281

r/W 0.5 0.5 1 0.5 0.3 0.3 1 0

random 1 0 0 0 1 0 0 0

pattern 0 1 0 1 0 1 0 0

seq. 0 0 1 0 0 0 1 1

ratio 1-1 1-2 1-3 1-4 2-1 2-2 2-3 3-1

r rand. 0.0175 0 0 0 0.0054 0 0 0

r seq. 0 0 0.07 0 0 0 0.035 0

r pattern 0 0.1405 0 0.105 0 0.021 0 0

W rand. 0.0175 0 0 0 0.0126 0 0 0

W seq. 0 0 0 0 0 0 0 0.281

W pattern 0 0.1405 0 0.105 0 0.049 0 0
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Table 5-4. SPC-1C Workload Ratio

Workload ratio ASU1 ASU2 ASU3

asu i/total 0.596 0.123 0.281

read rand. in asu i 0.02936 0.0439 0

read seq. in asu i 0.11745 0.28455 0

read pattern in asu i 0.41191 0.17073 0

Write rand. in asu i 0.02936 0.10244 0

Write seq. in asu i 0 0 1

Write pattern in asu i 0.41191 0.39837 0

Table 5-5. Size Distribution

Size distribution Probability Size distribution Probability

8 0.7684 64 0.03088

16 0.09264 128 0.03088

32 0.0772

Table 5-6. SPC-1C Random Walk Pattern

ASU 1-1 1-2 1-3 1-4 2-1 2-2 2-3 3-1 Sum

Read 0 0.1405 0 0.105 0 0.021 0 0 0.2665

Write 0 0.1405 0 0.105 0 0.049 0 0 0.2945
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You can also find from Table 5-7 that the write accesses and pattern 

access are dominate, which shows the importance of self-similarity and 

write cache in the benchmarking test.

Table 5-7. Basic IO Pattern Distribution

R/W Ratio Mode Ratio

read 0.3944 random 0.053

Write 0.6056 sequential 0.386

pattern 0.561

 Synthetic Trace
With all these parameters, you can actually write your own synthetic trace 

generator. Thus more flexibility is provided to change any parameters 

you are interested in, such as disk size, BSU, simulation times, even the 

configuration of SPC-1C, like ASU, IOPS per BSU, distribution patterns, 

etc. For example, you can separate ASU from BSU to see the influence of 

different applications (data store, user store, and log./seq. write) instead 

of mixed workload, and change the distribution (e.g., inter-arrival time, 

request size, etc.) to fit more specific requirements. In addition, you 

may integrate the generator to another toolkit, such as Disksim [54] and 

IOMeter, as a synthetic generator component. Figures 5-1, 5-2, and 5-3 

show the comparison of a real trace captured by bus analyzer and the 

synthetic trace generated by the MATLAB-based tool in Appendix A.
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Figure 5-1. Inter-arrival time histogram
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Figure 5-2. SPC-1C spatial distribution
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From Figure 5-1, you can see that the inter-arrival time is approximately 

an exponential distribution. As you know, the workload is mixed by 

eight different types of IO streams from three ASUs. Some high intensity-

streams are visible in this spatial distribution of Figure 5- 2. Generally, the 

generated random R/W IO streams are consistent with the real workload, 

but the sequential ones are not very close in a light workload. One possible 

reason is the real workload was not generated by the exact parameters as 

those in the random walking model. In fact, it is hard to align the temporal 

distribution well. However, the result in Figure 5-3 is fairly acceptable.

 PCMark
PCMark Vantage [55] is a widely used benchmark tool that is not limited 

to disk performance. It can provide application-level traces in eight 

categories, as shown in Table 5-8, where a particular trace is decomposed 

into the number of write and read commands. Figure 5-4 further shows the 

traces in the plot of LBA vs time.12

12 Junpeng Niu helped part of coding work in this section.

Figure 5-3. SPC-1C trace temporal distribution
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Table 5-8. Eight Applications in PCMark

Order Eight Apps Total CMD Write Read

1 Windows defender 6755 300 6455

2 gaming 11040 62 10978

3 importing pictures 2806 4 2802

4 Vista startup 7418 1327 6091

5 Video editing 8204 3711 4493

6 Windows media Center 5011 3309 1702

7 adding music 3336 1506 1830

8 application loading 11155 2660 8495

Figure 5-4. Eight applications in PCMark
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Now you can use this trace as an example for the read cache 

performance analysis. Some early research shows that the common 

differentiator between drives is read cache hit rate, with reasonable pre- 

and/or post-read data. For easy of notation, I define a prefetch action as 

both a pre-read and post-read request, as shown in Figure 5-5. A common 

case is that some later read requests hit the data in the cache due to 

prefetch data, if the trace has a strong locality. Three types of prefetch 

accesses are commonly used: prefetch always (PA), prefetch on a miss (PoM),  

prefetch on a hit (PoH).

Figure 5-5. Cache prefetch

Figure 5-6. Hole types

As mentioned, a gap between requests is allowed for near sequential 

streams. This gap can be a “hole” in the prefetch data, which is harmful to 

the overall performance. As shown in Figure 5-6, there are three types of 

holes:

• Post hole: The first LBA of the incoming command has 

a distance (> 0) within a threshold to the last LBA of the 

queued commands in the cache.

• Pre hole: The last LBA of the incoming command has 

a distance within a threshold to the first LBA of the 

queued commands in the cache.

• Pre and post hole: Both post and pre holes exist.
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To formally define the hole, consider the following two cases:

• Constant: If the range between two close regions in the 

cache is less than the constant Hs blocks, this range is 

viewed as a hole.

• Adaptive: The hole size is related to DRAM and SSD 

cache (most likely monotone increasing to the total/

remaining

H
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where ST and SR are the total and remaining cache 

size, respectively, and aT and aR are coefficients for 

ST and SR. An example for 64MB of DRAM cache is 

defined as
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where a aT R= =
1

2

15

213 13
, .The actual Hs  and Hs  

are decided by trace, such as the median size of 

requests within a time window. More specifically, 

consider if the hole is in the same track/cylinder.

A background task shall be implemented to monitor the LBA regions 

in cache and the hit density on these regions. This process is also tasked 

to look for gaps in regions of data with some level of hit density and to 

generate self-induced read commands to fill in these holes with data from 

main store.
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To connect the cache algorithm to the trace properties, use the 

following hypothesis:

• If two regions of a certain range within a time-frame 

have a high enough correlation, the gap between them 

is likely to be accessed.

• The pre-fetch should not affect the overall performance 

much, so the benefits gained from the additional cache 

hit ratio should be larger than the additional cost due 

to pre-fetch.

• The up-bound of the hole size to be fetched is decided 

by multiple factors, such as the total/remaining cache 

size, workload size, cache type, access time, etc.

Now we have some questions to answer.

• What is the benefit from a hole filling policy? The key is 

to get the increased cache hit ratio (hit ratio with hole 

filling v.s. hit ratio without hole filling).

• What is the additional cost from a hole filling policy? 

The key is to find how many self-induced commands 

are generated to fill the hole. The time of the user 

workload must be considered.

• Since the similarity exists between hole filling and 

the prefetch policy, is it possible to merge hole filling 

to prefetch policy (integration)? The key is to find the 

overlapped cache hit between two policies; if the overlap 

rate is high, prefetch may include hole filling as part of it.

• When and where to apply the two policies (or 

integrated policy) with balanced benefit and cost? The 

key is to reduce the additional mechanical access cost 

and cache pollution.
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 Workload Properties
Let’s look at the think time and completion time first, as shown in 

Figures 5-7 and 5-8, respectively. You can see the large difference for their 

distributions of various applications. Table 5-9 further gives the mean and 

standard derivative values together with IOPS. Figure 5-9 and Table 5-10 

provide the size distribution. You may also find the relation between the 

size and completion time.

Figure 5-7. PCMark: Think time distribution
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Figure 5-8. PCMark: Completion time
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Table 5-9. PCMark: Think/Completion Time (ms) and IOPS

App IOPS Think-time 
mean

Std. Completion-time 
mean (blk)

Std.

1 120.57 8.29 46.04 3.43 5.49

2 189.29 5.28 9.20 10.24 47.4

3 48.70 20.54 21.25 1.99 3.44

4 311.30 3.21 8.25 3.59 5.84

5 122.47 8.17 16.68 0.76 2.64

6 59.56 16.79 22.58 1.2 3.22

7 145.65 6.87 14.87 2.78 5.86

8 204.29 4.90 16.37 16.41 29.87
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Figure 5-9. PCMark: Size distribution
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Based on a sequential stream, you can observe some obvious 

sequences in general. Importing pictures has the most sequence, while 

application loading has less sequence. Except for application loading 

(mixed streams), queue length 10 is good enough to detect most streams. 

Application loading has relatively more mixed sequential streams. Also 

note that for read-only cases, most streams have only two commands. In 

Apps 2, 3, and 4, the average stream length is longer than others, which 

provides more chance for infinity read mode.

 Gain-Loss Analysis
With the prefetch policy, the gain is from the increased hit ratio due to 

the cache policy (e.g., hole filling, prefetch), while the loss is from the 

additional disk access (e.g., pre-/post read attached to the user commands; 

the self-induced non-attached commands) due to the cache policy.

Table 5-10. PCMark: Size Distribution (Blocks)

App Mean -all std. Mean -read std. Mean -write std.

1 98.67 87.55 102.78 87.4 10.22 7.3

2 86.92 56.39 87.36 56.24 8 0

3 175.09 82.28 175.33 82.1 8 0

4 71.92 54.86 83.12 49.32 20.48 49.35

5 60.77 63.68 59.18 25.42 62.69 90.43

6 173.36 115.82 255.16 13.43 131.29 122.52

7 43.01 61.43 60.39 70.63 21.89 38.54

8 36.23 37.58 41.31 37.47 20.04 33.11
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Two methods can be used to analyze the gain and loss. One simple 

method considers frequency only, so it counts the number of the hit 

frequency and additional disk access frequency. The self-induced 

commands’ cost is generally smaller than non-attached commands. If the 

hit increases due to self-induced commands, the gain is large; otherwise, it 

is small. This method can provide a rough estimation. The other method is 

the so-called mixed simulation and modeling approach; it uses simulation 

to get the hit ratio and additional command frequency, while using the 

analytical model to obtain the average response time, which is relative 

complex and quantitative. Let’s only consider the first one.

Let’s define gain and loss quantitatively:

• Gain: The additional cache hit obtained (a2) = the 

cache hit ratio at hole length x (a3) - the cache hit ratio 

without hole filling (a0)

• Loss: The additional self-induced commands 

occurrence / the total read command (a1)

• Gain-loss-ratio a = a2/a1: The higher, the better to 

estimate a, but there are a few basic considerations:

• The queue depth (Qd) in the cache: which has 

significant influence on the LRU algorithm. By 

observing the largest a vs. Qd, you will see that the 

optimal Qd. Qd for different applications may be 

various.

• The time interval (dT ) between commands: Only if 

the interval is larger than a certain value, the system 

has chance to handle self-induced command, such 

as finding the ratio a for different dT .
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• The hit frequency of each hole: When using a 

correlation method to select the hole to fill, the 

hit frequency must be higher than 1. If the hit 

frequency is generally larger than 1, then this 

method is meaningful; otherwise, it is meaningless.

Let’s start to verify whether a self-induced hole filling policy is 

beneficial. Take the following steps:

 1. Check a1, a2, and a for all read commands (write 

commands also fill the cache).

 2. If a1 is much larger than a2 (e.g., a < 0.2), it is not 

economic for hole filling; then check if a2 is too 

small to be worthy. Otherwise, hole filling is useful; 

and check the selective self-induced commands 

based on workload.

 3. If the time-interval between two commands is large 

enough (e.g., > 15ms), the self-induced command 

may not cost additional resources. If so, any increased 

cache hit ratio is beneficial. Repeat Steps 1-2.

Table 5-11 provides the results where Qd = queue depth and fs = filling 

hole size. You can see that App 2 is most significant for hole filling, while 

App 6 is least significant. Hole filling is generally suitable for Apps 2, 3, 5, 

and 8. If you only consider the commands with a think time larger than 

10ms, you have the results listed in Table 5-12. You can see that the general 

trend is similar to the case without time-interval constraints. App 5 is most 

significant for hole filling for fs = 128 and App 3 for fs = 256; while App 6 is 

less significant. In sum, a is generally smaller than 1 for short queue depth. 

When hole size is very small, a is very small (<< 1). When both queue 

length and hole size are short, hole filling policy is generally useless. Based 

on the value of a, you can say that this policy is generally useless for App 6 

and may be useful for Apps 2, 5, and 8. Further conclusion should be made 

after comparing with prefetch policy.
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Table 5-11. Gain-Loss Analysis for Hole Filling

Qd =128;fs =128

1 2 3 4 5 6 7 8

a2 0.026 0.024 0.007 0.001 0.049 0.000 0.051 0.079

a1 0.328 0.060 0.041 0.183 0.099 0.020 0.293 0.192

a 0.078 0.399 0.165 0.007 0.494 0.000 0.175 0.413

Qd =128;fs=256

1 2 3 4 5 6 7 8

a2 0.045 0.044 0.017 0.003 0.061 0.000 0.109 0.118

a1 0.362 0.058 0.028 0.225 0.106 0.026 0.265 0.235

a 0.124 0.760 0.620 0.015 0.580 0.000 0.412 0.505

Qd =256;fs =128

1 2 3 4 5 6 7 8

a2 0.029 0.034 0.007 0.003 0.048 0.000 0.051 0.102

a1 0.338 0.065 0.042 0.183 0.099 0.031 0.295 0.206

a 0.084 0.520 0.160 0.014 0.490 0.000 0.174 0.493

Qd =256;fs =256

1 2 3 4 5 6 7 8

a2 0.048 0.057 0.017 0.006 0.062 0.000 0.110 0.154

a1 0.375 0.061 0.030 0.225 0.104 0.042 0.282 0.242

a 0.128 0.930 0.590 0.027 0.593 0.000 0.390 0.637
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Table 5-12. Gain-Loss Analysis for Hole Filling (Constrained)

Qd =128;fs =128

1 2 3 4 5 6 7 8

a2 0.015 0.023 0.006 0.001 0.023 0.000 0.031 0.058

a1 0.205 0.043 0.016 0.025 0.028 0.009 0.174 0.146

a 0.073 0.548 0.364 0.026 0.811 0.000 0.176 0.396

Qd =128;fs =256

1 2 3 4 5 6 7 8

a2 0.026 0.035 0.015 0.002 0.034 0.000 0.050 0.094

a1 0.252 0.045 0.006 0.041 0.037 0.014 0.196 0.184

a 0.105 0.778 2.389 0.060 0.923 0.000 0.253 0.512

Qd =256;fs =128

1 2 3 4 5 6 7 8

a2 0.018 0.033 0.006 0.001 0.023 0.000 0.031 0.080

a1 0.209 0.047 0.016 0.027 0.029 0.019 0.189 0.162

a 0.088 0.697 0.364 0.025 0.773 0.000 0.162 0.495

Qd =256;fs =256)

1 2 3 4 5 6 7 8

a2 0.031 0.049 0.015 0.002 0.035 0.000 0.050 0.127

a1 0.259 0.048 0.006 0.042 0.039 0.025 0.211 0.196

a 0.119 1.028 2.389 0.058 0.908 0.000 0.235 0.648
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Next, let’s consider the gain and loss for the prefetch policy. Let’s 

define the terms:

• Prefetch: Includes post-read and pre-read. Post- 

read means an additional size is attached to the last 

LBA; pre-read means an additional size is attached to 

the first LBA. For example, assume that the original 

command is to read LBA 10-20 and the pre-read size is 8.  

Then the extended command is to read LBA 2-20.

• Gain: The additional cache hit obtained (b2) = the 

cache hit ratio at fetch length x (b3) - the cache hit ratio 

without prefetch (b0)

• Loss: The prefetch commands occurs / the total read 

command (b1)

• Gain-loss-ratio b = b2/b1: The higher, the better

For this case, let’s also consider the number of sequential streams 

and each stream’s length, besides the queue depth and the time interval. 

The procedure is similar to the previous case. Table 5-13 shows the 

result. You can see that App 5 is most significant for post-read; while App 

6 is less significant. b is generally smaller than 1 for short queue depth. 

When prefetch size is very small (< 64), b is very small (<< 1). When 

the queue length and hole length is long, a prefetch policy is generally 

useful. Based on the value of b, you may say that this policy is generally 

useless for App 6, most significant for App 5 with post-read, and may be 

useful for Apps 2, 4, 7, and 8.
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Table 5-13. Gain-Loss Analysis for Prefetch Policy

Qd =128;fs =128

1 2 3 4 5 6 7 8

b2 0.179 0.140 0.063 0.119 0.462 0.000 0.220 0.224

b1 0.818 0.859 0.937 0.880 0.528 1.000 0.769 0.764

b 0.219 0.163 0.067 0.136 0.875 0.000 0.286 0.294

Qd =128;fs =256

1 2 3 4 5 6 7 8

b2 0.307 0.417 0.197 0.383 0.607 0.000 0.398 0.321

b1 0.690 0.582 0.803 0.616 0.382 1.000 0.591 0.668

b 0.444 0.717 0.245 0.621 1.589 0.000 0.674 0.480

Qd =256;fs =128

1 2 3 4 5 6 7 8

b2 0.183 0.147 0.063 0.120 0.461 0.000 0.220 0.239

b1 0.814 0.851 0.937 0.879 0.527 1.000 0.769 0.748

b 0.225 0.173 0.067 0.137 0.875 0.000 0.286 0.319

Qd =256;fs =256

1 2 3 4 5 6 7 8

b2 0.310 0.427 0.197 0.384 0.607 0.000 0.398 0.342

b1 0.687 0.572 0.803 0.615 0.381 1.000 0.591 0.645

b 0.452 0.746 0.245 0.625 1.593 0.000 0.674 0.530
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You may also analyze the relationship between post-read and 

sequential stream by counting 1) the stream numbers (c) and the ratio  

c1 = c/total read numbers; 2) each streams hit frequency c2; 3) the cache hit 

as b2 (only consider post read, redefine b2). This test can help to check if the 

infinity sequence read takes effect, such as only when the sequence length 

is long enough, the cache enters into infinity mode. In infinity mode, 

post-read is automatic. However, if it is not in infinity mode, you still need 

to consider the benefit of the post-read, after detecting a two-command 

sequential stream, like the possibility of three or more commands attached 

to the stream.

You can further find the relation between prefetch and hole filling by 

defining

• Gain: The additional cache hit obtained (d2) = the 

cache hit ratio at fetch length x and hole length y (d3) - 

the cache hit ratio without prefetch and hole filling (d0)

• Loss: The additional commands occurs / the total read 

command (d1)

• Gain-loss-ratio d = d2/d1: The higher, the better

Two comparison methods are conducted here:

• Two queues, one for prefetch (Q1) and other for hole 

filling (Q2), both under LRU. Consider the overlapped 

hit ratio, i.e., if a command hits in Q1, it also hits in Q2 

and vice versa.

• Two queues, one for prefetch (Q1) and other for hole 

filling + prefetch (Q3); both under LRU. Consider the 

additional hit ratio of Q3 over Q1.
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Define x0 as the hit number without prefetch and hole filling policies, 

x̄1 = x1 + x0 as the hit with prefetch, x̄2 = x2 + x0 as the hit due to hole filling, 

and x̄3 as the hit due to combined prefetch and hole filling. Now if x0 is 

much larger than x1 and x2, it shows that there is not much difference 

between prefetch and hole filling; otherwise, check the difference between 

x1 and x2. If x1 is much larger than x2, it shows that the benefit of fetch 

is much larger than hole filling; otherwise, it is reasonable to do hole 

filling instead of prefetch. If x3 − x0 is much larger than x1, it indicates that 

the hole filling gained benefits from refetch; otherwise, prefetch is not 

beneficial.

Without post-read fetch, you can observe that x̄ 1 is generally higher 

than x̄2, and x1 and x0 are generally larger than x2. Except for Apps 5 and 6,  

x2 is generally smaller than 1% (Apps 4 and 8 are around 1% when queue 

length and fetch size are 256). This means that if post-read takes effect, 

then the hole filling’s influence is very small. The overlap between two 

policies (post only) are much higher than x1 and x1 + x2; x0 /(x1 + x2) is 

generally larger than 10 when prefetch size is over 128 (various prefetch 

size; fixed hole filling size 256). Now the key problem is whether it is 

worthy to do the hole filling for the additional 2% (queue length =128, 

fetch size =256/128) cache hit ratio at the cost of additional self-induced 

access (~ 10%).

Observe that b1 is generally larger than a1. However, the cost of 

each prefetch is generally smaller than that of a self-induced hole filling 

command. Note that this direct comparison may be unfair. An indirect 

method is to estimate the average service time for the prefetch policy and 

hole filling policy (WCD), so for prefetch, define the response time as write 

ratio ∗write access time + read ratio ∗(b3 ∗cache access time + (1–b3)∗ read  

access time), and for hole filling, define the response time as write  

ratio ∗write access time + read ratio ∗(a3 ∗cache access time + (1–a3)∗ read 

access time). However, I omit the details here.
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In sum, you can see that hole filling policy can improve the cache ratio 

by introducing self-induced background filling commands.

• The benefit (increased hit frequency) and the cost 

(additional self-induced commands) ratio of (post) 

hole filling is generally less than 1 if filling any hole 

within a certain distance; the average is 0.47 (queue 

depth = 256; hole size = 256 blks).

• The benefit and the cost ratio of prefetch (post-read) 

is generally less than 1 if prefetching any non-hit 

command with a certain prefetch size; the average 

is 0.68 (queue depth = 256; prefetch size = 256 blks), 

which is better than a (post) hole filling policy, 

considering that some hole filling commands may need 

more recourses than prefetch commands.

• If further applying (post) hole filling policy to the 

prefetch policy, the additional benefit/cost ratio is 

generally less than 0.2 (queue depth = 256; prefetch size =  

256 blks, hole size = 256 blks). Unless a well-designed 

hole filling policy (e.g., based on data-correlation) is 

applied, it is not very useful for overall performance 

improvement.

Due to the similarity of hole filling and prefetch, the data-correlation 

methods may be applied to both hole filling and prefetch; thus the two 

policies might be merged.

Chapter 5  Case study: BenChmarking tools



143© Jun Xu 2018 
J. Xu, Block Trace Analysis and Storage System Optimization,  
https://doi.org/10.1007/978-1-4842-3928-5_6

CHAPTER 6

Case Study:  
Modern Disks
Modern disks implement many different features, such as media-based 

cache (e.g., using a portion of disk space to log some random write 

accesses), DRAM protection (e.g., using a small-size NVM to temporarily 

store some data in DRAM cache during a power loss such that write- 

cache can be always enabled), hybrid structure (e.g., migrating hot data 

to high-speed devices and cold data to low-speed devices so that the 

overall access time is reduced), etc. A hybrid disk (e.g., SSHD), one of the 

hybrid structures, has advantages in some scenarios where data hotness 

is significant. Some emerging and future techniques like SMR, HAMR, 

and BPR favor sequential access in order to diminish garbage collection, 

reduce energy consumption, and/or improve the device life. This chapter 

shows how trace analysis can help to identify these mechanisms via 

workload property analysis using two examples: SSHD and SMR drives.

 SSHD
In this section, let’s explore the mystery behind SSHD’s performance 

enhancement in SPC-1C [53] under WCD: SSD/DRAM cache and the 

self-learning algorithm [56, 57, 16]. I collected data from the XGIG 
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bus analyzer and monitored the response from LeCroy Scope, with a 

workload generated by the SPC-1C tool. Some techniques, such as pattern 

recognition, curve fitting, and queue theory, are applied for analysis.

From Figure 6-1, you can see that the IOPS jumps to two times the 

traditional HDDs for WCD, so the IOPS of SSHD is around 570, while the 

traditional HDDs (two models: one is Savvio from Seagate, and the other 

is Sirius from WD) can only reach around 200 IOPS when the response 

time is less than or equal to 30ms. The task here is to find the reasons for 

the performance improvement of hybrid structure via trace analysis. The 

basic idea is to compare several drives with a certain level of similarity: to 

inject the same workloads to the similar drives, isolate the similarity, and 

compare the differences. For example, similar CMR models  are selected 

in Table 6- 1.

Figure 6-1. SSHD performance comparison with traditional HDDs
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You know from the previous chapter that the write (random) access 

dominates the IO requests in SPC-1C, which means the write cache 

actually plays an important role. However, write cache is supposed to 

be disabled for WCD. Is it true for this SSHD? To verify it, you can do a 

simple test by injecting random write requests to SSHD and calculating 

the CCT/qCCT/TtoD time. If write cache is actually disabled, all requests 

will be written to media directly, which cost roughly 10ms response time. 

However, from the trace, you can observe that there are many requests 

with response times of less than 1ms at the beginning. Therefore, write 

cache actually is active even for the WCD setting. This benefits from the 

technique of NAND-backed DRAM cache protection, so part of cached 

data can be written to NAND just after system power loses.

Now let’s start some analysis for two essential problems: the cache size 

and access isolation.

Table 6-1. Similar Models Chosen for Comparison

SSHD CMR A CMR B CMR C

Capacity (GB) 600 900 600 900

RPM 10.5k 10.5k 10k 10.5k

Bytes per sector 512, 520, 524, 528 512 512 512

Discs 2 3 2 3

Average latency (ms) 2.9 2.9 3 2.9

DRAM cache 128MB 64MB 32MB 64MB

NAND 16GB eMLC none none none

Interface 6Gbps sas 6Gb/s sas 6Gb/s sas 6Gb/s sas

Chapter 6  Case study: Modern disks 



146

 Cache Size
We begin with the question of “how much DRAM is used as write cache 

during WCD?” First, let’s make sure that the test is repeatable (or the result 

is consistent). In order to verify this, perform the following procedure.

 1. Connect SSHD to the XGIG bus analyzer and power 

off/on SSHD.

 2. Send 100 random write 8K requests to SSHD using 

IOMeter or another tool, and repeat the same 

requests 10 times.

 3. Repeat Steps 1-2 for 4 times with the same requests.

 4. Compare and find the access pattern for the XGIG 

traces via a trace analyzer tool.

 5. Repeat Steps 1-4 with the request number changed 

to 200 and 400.

 6. Do the same test on a different SSHD with the same 

IO pattern.

In Step 4, a similar access pattern (LBA vs. CCT) should be observed. 

Note that you are checking DRAM write cache in this case, so only a 

random write request is used. For a full cache check, you may also try 

random read, mixed read/write, and mixed random/sequential patterns. 

If a similar pattern is observed, you may conclude that the result is 

consistent and useful to identify some inside information. Otherwise, you 

shall find out the reasons. One is that the SSD/DRAM cache is not cleaned 

before a new test. Therefore, you need some cache flush commands or disk 

initialization commands to force it empty. Also note that:
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• R/W DRAM cache may share the same space.

• The SSD mapping table may share the same space with 

R/W DRAM cache (a good case: SSD mapping table 

uses a dedicated DRAM space).

• The SSD reboot self-learning procedure may take 

DRAM space.

Second, implement the following procedure to make sure each test 

starts with a clean cache:

 1. Power off/on SSHD (make sure the DRAM write 

cache is cleared).

 2. Send 1000 random 8K write requests to SSHD with 

queue depth=1 using IOMeter.

 3. Repeat Steps 1-2 for 10 times each with different 

request sizes, such as 16K, 32K, 64K, 128K, ..., 2048K.

Once you capture the traces, some post-processes shall be made:

 1. Count the write DRAM hit number at the first 

portion of the total accesses for each run by isolating 

DRAM accesses from others (DRAM CCT/qCCT is 

generally much smaller than others).

 2. Choose the maximum number of each count.

 3. Calculate the hit numbers and the corresponding 

actual cache size.

 4. Find the turning point, which provides a hint of the 

cluster size.

 5. Refine the turning point by narrowing the 

region. For example, if the turning point is within 

[256K-512K], then some more points, such as 300K, 

400K, and 500K, may be used.
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Note that this model of SSHD has read-cache only SSD so that DRAM 

access will not be mixed with SSD write access, which simplifies the analysis 

in Figures 6-2-6-5. Figure 6-2 shows the traces from IOmeter random write 

tests (request size from 1K to 1M). Assume that the write cache is empty.1 

Then the first portion of each run could be the DRAM write cache hit.

1 Even if you follow the instruction here to clean the DRAM, it may not completely 
true; thus you can also judge it by the fact that no seek is heard.

Figure 6-2. IOmeter traces for SSHD
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Zoom into the system to find out the hit. Figures 6-3, 6-4, and 6-5 

give three examples where the request sizes are 1KB, 512KB, and 1MB, 

respectively. In Figures 6-3 and 6-4, you can observe obvious write cache 

hits, and the total hit number for 1KB is much larger than that of 512KB 

due to limited cache size. However, when the size is increased to 1MB, no 

obvious write cache is observed, or it means that one threshold between 

512K and 1M is set as the turning point for different size requests. This also 

indicates that large size requests will go directly to the media. With the 

same steps, you can actually get the required values for WCD and WCE, as 

shown in Tables 6-2 and 6-3.

Figure 6-3. 1K request trace details
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Figure 6-4. 512K request trace details

Figure 6-5. 1024K request trace details
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Table 6-2. Comparison Under WCE

SSHD CMR A

size Counted number size size Counted number size

1k 98 0.1M 1k 98 0.1M

4k 98 0.4M 4k 98 0.4M

16k 97 1.5M 16k 99 1.5M

64k 102 6.4M 64k 102 6.4M 2

128k 103 12.9M 128k 104 12.9M

256k 111 27.8M 256k 110 27.8M

512k 115 57.5M 512k 66 33M

520k - - 880k 35 30M

900k - - 900k 42 36.9M

1024k n.a. - 1000k 36 36M

Table 6-3. Two Cases Under WCD of SSHD

SSHD (WCD) test1 test2

size Counted number size Counted number size

1k 98 0.1M 101 101k

4k 100 0.4M 100 400k

16k 99 1.5k 100 1600k

64k 101 6.3k 101 6464k

128k 54 6.75M 54 6.75M

256k 26 6.5M 26 6.5M

512k 12 6.0M 13 6.5M

520k - - 12 6.1M
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From the turning point, you may also guess the cache cluster/segment 

size. For example, SSHD’s cluster size is around 64K for write during WCD, 

and CMR A is around 256KB. SSHD uses up to 60MB DRAM space as write 

cache when WCE, while only around 8MB is used for WCD with some  

100 segments.

 Access Isolation
You saw in the previous chapter that SPC-1C has a large portion of local 

accesses. This property brings the possibility that some data can be cached 

into DRAM or SSD and be accessed quickly later. Then the second question 

is “how many accesses are actually directed to DRAM or SSD?” It is generally 

a difficult task. However, as the access times of DRAM, SSD, and HDD are 

significantly different, you may isolate the possible commands in different 

places roughly. The basic idea is to observe the behaviors of the different 

accesses and then apply data classification and pattern recognition methods 

to find the access pattern, and do repeated random read tests to finally find 

the turning points. Although the procedure is similar to the previous case, 

you need to change the number of requests to SSHD in this case:

 1. Send 100/200/256/257/etc. pieces of 8K requests 

to SSHD, repeat 20- 100 times for each number, 

and refine the number of commands to be sent 

according to the access pattern.

 2. Suppose the turn point is X. Send X random read 

commands with size 16K,32K,..., and 1024K to SSHD 

and find the cluster size according to the turning point.

To verify if the repeat number is high enough, check the steady states 

of response time. Figure 6-6 provides an example where 100 rounds are 

run. You can see that since the third round, the average value and standard 

derivatives of response times are almost constant. Thus 10 times of repeats 

should be enough in this case.
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Figure 6-6. Steady state of response time

Figure 6-7 shows a case where 100 random read requests with 8KB size 

were sent to SSHD 20 times. In the first round, all reads went to media. 

After several rounds, the read requests become hot and eventually all 

cached in DRAM. Slowly increase the number of requests to check how 

many requests the DRAM read cache can hold.

Figure 6-7. 100 8K random reads, repeated 20 times

Figure 6-8 illustrates the results for 250 requests repeatedly. You can 

see that DRAM cache can fully hold at least 250 segments. However, when 

you slightly increase it to 257, destage starts. When further increase to 260, 
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DRAM destage to SSD happens obviously at a relatively high speed, which 

is illustrated in Figure 6-9. The destage has a certain adaptive steps, so 

when the hit number (access frequency) of the data is increased, destage 

becomes more frequent.

Figure 6-8. 250 8K random reads, repeated 100 times

Figure 6-9. 260 8K random reads, repeated 100 times

Chapter 6  Case study: Modern disks 



155

Thus, you may guess that 256 could be the maximum read segment 

number, as no destage happens if this maximum segment number is not 

exceeded. Note that you can find the destage pattern via different time 

intervals and sizes.

I leave an issue on request access identification on devices here. Take 

a look at Figure 6-10, where repeated 260 8KB read requests were sent to 

SSHD 100 times. As the number is over DRAM’s capacity, some requests 

will go to SSD. The response time of the 1st, 3rd, 14th, 20th and 50th runs 

is shown. You can see that the very first run all went to disk. Starting at the 

second round, some went to DRAM and some to media. In the 20th round, 

the accesses to DRAM, SSD, and media all existed. However, around 50 

rounds, most requests went to DRAM and SSD. In fact, you can see a clear 

gap of response time for these read requests. Basically, you may say that 

those below 0.1ms are DRAM accesses, and those above 0.2ms are most 

from SSD. Now you can get the statistical values for the response time of 

SSD and DRAM in an estimated sense, as shown in Table 6-4.

Figure 6-10. Read response time pattern over repeated rounds
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 SMR
This section will discuss the main characteristics of SMR [4, 5] and the 

interaction between these characteristics and particular workloads. The 

industry has two approaches for SMR generally:

• The drive manages all data accesses, and data 

management is complicated similar to the FTL (flash 

translation layer) of SSD, so the management of 

metadata, GC (garbage collection), over-provisioning, 

variable performance, etc, is all inside the drive. 

However, there are no host-side changes, so the drive is 

used as a normal one. Currently, all major SMR drives 

available in the market fall in this category.

• The host manages most data-related accesses via a 

SMR-specific file system similar to flash file system. 

Data management is complicated but can leverage 

mature file systems that write sequentially. A few 

examples are SFS [58], HiSMRfs [59], and Shingledfs 

[5]. Although mixed drive-host management is also 

possible, it is really rare.

Table 6-4. Statistics on Response Time (Based on 40-90 Rounds) 

260 Average CCT qCCT TtoD

overall Mean 0.227 0.227 0.212

std. 0.096 0.096 0.096

ssd Mean 0.279 0.279 0.264

std. 0.031 0.031 0.032

draM Mean 0.063 0.063 0.048

std. 0.001 0.001 0.001
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Many particular design issues are considered for SMR drives, such as 

data layout management (layout, data placement, defragmentation, GC, 

pointer to bands), mixed zones (combine shingled and unshingled part in 

same disk), SMR algorithms, and structure for specific applications, etc. 

Table 6-5 lists some main expected workload characteristics for SMR so that 

those applications with designed metrics can work perfectly in SMR drives.

Table 6-5. SMR Characteristics vs. Workload Metrics

SMR char SMR expectation Workload metrics SMR impact

sequential 

write

Good for large size 

sequential write 

requests

average write request 

size and distribution

seek distance (LBa)

sequential stream and 

near-sequential stream

the larger size, the 

better

the smaller seek 

distance, the more 

sequential

the more streams, the 

more sequential

Write once 

read-many

Good for less  

updates and more 

reads

read/write ratio

read on write (roW) hit 

ratio

Write update ratio

the higher read/write 

ratio (roW ratio), the 

better

the smaller the write 

update ratio, the better

Garbage 

collection 

(GC)

smaller write 

amplification  

and less GC

device utilization, 

device idle time 

distribution, queue 

length

iops, throughput

Frequented/timed/

stacked write update 

ratio (Wur)

Write on write (WoW) hit 

distribution and ratio

Long and frequent idle 

time for GC

Low write update ratio 

indicates that less GC 

is required

(continued)
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SMR char SMR expectation Workload metrics SMR impact

sequential 

read to 

random 

write

Less read 

performance impact 

due to indirect 

mapping, such as 

sequential LBa read 

requests in random 

physical address

read on write (roW) 

hit/size distribution and 

ratio

the higher the small 

(large) read to small 

(large) write ratio, the 

better

in-place or 

out-of-place 

update

Frequent and recent 

updates need 

random access 

zone (raZ)/ssd/

large draM buffer 

to hold write data

stacked write update 

ratio

the higher ratio in 

shorter stack, the 

more necessary to 

have an in-place 

update buffer

Table 6-5. (continued)

Chapter 6  Case study: Modern disks 



159© Jun Xu 2018 
J. Xu, Block Trace Analysis and Storage System Optimization,  
https://doi.org/10.1007/978-1-4842-3928-5_7

CHAPTER 7

Case Study: RAID
RAID is one of the most widely applied data-protection strategies in the 

world [23, 60, 61, 62, 63]. It has unique features compared with single disk 

access, such as file synchronization, recovery, etc. Therefore, it leads to 

some unique IO patterns compared with others. This chapter analyzes 

two examples based on RAID 5 from two application scenarios. Large 

differences are observed between two traces. This chapter also analyzes 

whether the workloads are suitable for SMR drives. In addition, some 

suggestions are provided in order to improve system performance.

The concept of a RAID was introduced to harness the potential of 

commodity hard drives in 1987. Patterson et al. [64] officially established 

the RAID taxonomy in 1988. RAID overcomes the capacity limitations 

of commodity disks by exposing an array of such low-capacity disks as a 

virtual single large expensive disks (SLED).

RAID technology usually requires the distribution of data across a 

number of disks via the data stripes. A stripe represents the smallest unit of 

protection in an array, thus any lost data within a stripe can be recovered 

using only the surviving data within that stripe. In early days, since clients 

were connected to the RAID via a serial access channel, parallel access 

by multiple clients was not explicitly supported. However, with many 

advanced queuing schedulers developed, parallelism now is widely applied 

in RAID systems in order to fully utilize the advantage of multiple disks.
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There are some common performance issues within RAID systems 

[20, 62, 63], such as the small write problem, the synchronization problem, 

performance loss during downgrade (recovery and reconstruction),  

and more.

The small write problem exists in many critical applications, such 

as online transaction processing (OLTP) systems. Those applications 

usually contain many read-modify-write (RMW) accesses. This leads to 

some issues for a RAID system. First, a write in a striped array requires 

reads of both data and parity blocks, and computation of a new parity, 

before the writing of both new data and new parity, which is four times 

more accesses than for a single disk. Second, these small accesses only 

alter a few blocks within a specific stripe, yet the parity disk for the entire 

stripe is unavailable during the update. This dramatically downgrades the 

performance of the array by reducing the possible parallelism.

The synchronization problem is due to the data integrity requirements; 

only when all drives of one stripe array are completed, the system returns a 

completion signal. Since some disks may finish access earlier than others, 

the faster disks have to wait for the slow ones. This requirement may be 

relieved in some conditions, such as non-critical applications, protected 

DRAM, etc. During recovery, due to background recovery access, the 

foreground user requests may be largely impacted [65].

Similar problems are also applicable to the disk arrays using erasure 

code (EC). And in some cases, the problem may be more critical due to the 

higher complexity of EC than that of traditional RAID.

 Workload Analysis
You will study two RAID 5 examples from two different vendors under 

video surveillance applications. The system settings will be given first, 

followed by the analysis of two different traces: read-dominant and write- 

dominant cases.

Chapter 7  Case study: raId
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 System Settings
In the first example, there are 10 7200RPM HDDs each of 4TB. 24 write 

streams and 6 read streams are imposed to this system. The second example 

has 36 similar HDDs with 90 video channels. The trace length is 620 and 110 

seconds, respectively. Some basic metrics are listed in Tables 7-1 and 7-2.

 Read-Dominated Trace
The LBA distribution of requests are near sequential in this trace, as 

shown in Figure 7-1. For reads, there are two regions. One is the same to 

the current write region, and the other is close to the previous write region 

Table 7-1. RAID Trace 1: Read Dominated

Combined Read Write

Numbers of commands 7821 5493 (70.2%) 2328 (29.8%)

Number of blocks 5284520 3231312 (61.1%) 2053208 (38.9%)

average size (block) 675.7 588.3 882

r/s         w/s        rsec/s        wsec/s        rkB/s          wkB/s        IOps         tp(MBps)

8.86      3.75      5211.8       3311.6       2605.9        1655.8      12.61        4.23

Table 7-2. RAID Trace 2: Write Dominated

Metrics Combined Read Write

Cmd number 21449 8535 12914

total blk size 2528514 357824 2170690

average blk size 210.012 41.924 168.088

average IOps 193.152 76.859 116.293

average tp (MBps) 11.118 1.573 9.545
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(i.e., playback). The sizes of the read requests are mostly 512 or 1024 

blocks. However, the ratio of 1024 blocks of read is less than that of write, 

which is displayed in Figure 7-2.

Figure 7-1. LBA distribution of RAID Trace 1

Figure 7-2. Size distribution of RAID trace 1
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In general, this trace has large portion of idle time, which accumulates 

83.4% of total time. The average summation of idle time is almost evenly 

distributed over time but the large idle intervals not, as shown in Figure 7-3.  

The intervals >200ms and >500ms count 8% and 1.7%, respectively, but 

occupy 71.6% and 34% of total idle time, respectively. In fact, 65% (94%) of 

idle frequency is less than 10ms (1s), and 2% (70%) of idle time is less than 

10ms (1s), as illustrated in Figure 7-4. So we can conclude that the total 

idle time is long enough for small-IO-based background activities, but 

the individual long idle intervals may be not sufficient, which means GC 

access shall be completed in small steps.

Figure 7-3. Idle time distribution of RAID trace 1
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Besides the large idle time, note that there are some abnormally 

large response times for some requests (> 200ms). As you know, even 

for the worst case, the access time of a 1024-block request should not 

excess 60ms. Thus, the waiting time is too long for the two cases listed in 

Table 7-3: 1) the CMD 529 is continuous to 530 but the write access costs 

over 430ms; 2) CMD 1015 is close to 1024 but it costs 390ms. This may 

be caused by 1) background disk activities such as log writes, metadata 

updates, zone switches, etc; or 2) RAID synchronization events. A possible 

solution is to evenly distribute tasks and actively provide idle time for 

background tasks.

Figure 7-4. Idle time CDF of RAID trace 1
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For the frequented write update shown in Figure 7-5, you can see that 

94.2% of the accessed blocks (maybe repeated) are only written once and 

5.8% of the blocks are at least accessed twice and <0.1% of the blocks are 

written three times. This means a very low rewritten ratio. Thus you need 

to identify if large size requests or small size requests are rewritten most. 

The fact that decreasing percentage of written blocks are written multiple 

times means a tiny portion of hot blocks.

Table 7-3. A Segment of RAID Trace 1

Start(sec) End ID End Cmd ICT(ms) LBA Length

27.51865 27.53302 529 529 W 0.109105 1.21e+08 1024

27.5331 27.96851 530 530 W 0.078425 1.21e+08 512

27.9686 27.98473 531 531 r 0.086485 80135168 1024

27.98483 27.987 532 532 r 0.10257 80351232 512

...

52.73206 52.7429 1014 1014 r 0.466475 80690688 512

53.46918 53.85766 1015 1015 r 726.2745 80875520 512

53.85778 53.86006 1016 1016 r 0.112894 80876032 512

53.86014 53.87545 1017 1017 r 0.083455 80881664 1024

Figure 7-5. Frequented update of RAID trace 1
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For the timed write update shown in Figure 7-6, the total write blocks 

occurs 35% of total access blocks (read and write) and the updated blocks 

(at least write twice) are only 1% (1/35=2.9% rewritten blocks). Total write 

commands are 30% of the total commands and the update commands 

are 1.5%. Note that the timed write update ratio is closely related to the 

frequented write update ratio; in other words, sum(hit*(update freq-1))/

total blocks = updated blocks/total write blocks.

Figure 7-6. Timed update of RAID trace 1

By further considering the write stack distance in Figure 7-7, you can 

see that the hit ratio is low and it is not necessary to have an inline write 

cache to hold these write data for a long time. Based on IOPS, to reach 

stack distance 100, it costs roughly 26.6 seconds. In this period, only 10% 

full write hit and 20% partial write hit of the overall 5% hit are observed. 

The updated size is around 43MB on average. Thus it is not worthy of 

compensating such a small hit. Note that the write hit distributes over the 

write range. A full hit is only for 512-block requests while a partial hit is for 

1024-block requests in this trace. See Figure 7-8 for details.
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When you take SMR drive into consideration, as discussed in  

Chapter 6, you have the main characteristics summarized in Table 7-4. You 

may understand this table together with the SMR properties introduced 

in Chapter 6. Although it is a read-dominated trace, it has no WORM 

property.

Figure 7-7. Stack update of RAID trace 1

Figure 7-8. Write hit distribution of RAID trace 1
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Table 7-4. Main Characteristics of Trace 1 for SMR

SMR characteristic Observation

sequential write Large size write requests ( >=512 blocks) > 99.9%

Mode ratio: 50% for read & write (Q=1)

sequential cmd ratio(M>=2 & s>=1024):  write  85% & 

read 90% (Q>=50)

Write-once-read- 

many

r/W: cmd 70:30; blks 61:39

stacked rOW ratio: < 1%

total write blocks occurs 2.9% of total access blocks

Garbage  

collection (GC)

Frequent small idle time; short queue length 5.8% 

frequented Wur the updated blocks (at least write twice) 

are only 1% of total access blocks and 2.9% write blocks, 

so very small write update ratio and write amplification 

103% (considering the short trace duration)

sequential read to 

random write

rOW ratio is 1.2, so it’s a very small read ratio, thus the 

written data is rarely likely to be immediately read back

In-place or out-of- 

place update

Very small update ratio; not necessary to apply large-size 

ssd/draM/aZr cache for performance improvement (write 

update in cache)

 Write-Dominated Trace
This trace from a video surveillance application shows a large difference 

from the previous one in many aspects, such as the read/write ratio, 

LBA distribution, size distribution, write update ratio, etc. Therefore, for 

different venders under different scenarios, the actual workloads may 

differ from each other significantly, even using the same storage structure.

Figure 7-9 shows the LBA distribution where only one main region 

spanning 30GB is applied to both read and write close to the starting 

position of LBA (as the trace was collected when the RAID is nearly empty).  
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If you further consider the figure of LBA vs. Time, you can see that the write 

requests are more sequential than the read ones. Figure 7-10 illustrates 

that write and read have similar size distribution, dominated 8-block 

requests, and close shape of 8-128 blocks distribution. Also, the size 

distribution range is much larger than the previous trace.

Figure 7-9. LBA distribution of RAID trace 2

Figure 7-10. Size distribution of RAID trace 2
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As it is write dominated, let’s focus more on the write update.  

Figure 7- 11 shows the stacked distance for write requests. This confirms 

the timed write update, which is the small overlap size (possibly due to 

metadata block attached to data blocks). From Figure 7-12, the stack 

distance 250 is roughly 2.1 seconds based on IOPS. In this period, it’s 

near 60% full write hit and 60% partial write hit of the overall 52% write 

command hit. This means that some portions kept updating. Therefore, 

the disk or system may require a random access zone or NVM for this small 

portion of updated data.

Figure 7-11. Write stack distance of RAID trace 2
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In sum, tens of mixed streams lead to a not-very-sequential IO pattern, 

which indicates that a proper stream-detection algorithm with long queue 

is required. Special metadata and parity structure lead to a relatively high 

LBA update size and large update command ratio, which implies that a 

large size DRAM/NVM/RAZ cache may be necessary to avoid the frequent 

updates. Also, you can conclude that the impact of write cache is very 

limited in the previous read-dominated trace. Note the frequent small 

idles but less effective idle intervals, which indicates that GC policy may be 

adjusted to fit this situation.

The impact to SMR drives is summarized in Table 7-5. Essentially, 

the impact for normal write access is not trivial due to the relatively large 

update ratio. The high updated command ratio may cause relative high 

defragmentation. The metadata management scheme of the surveillance 

system and/or the SMR drives may require changes. The drive may not 

have enough idle time for the background GC subject to GC policy, as the 

useful effective idle intervals are marginal.

Figure 7-12. Stack update of RAID trace 2
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Table 7-5. Main Characteristics of Trace 2 wrt SMR

SMR characteristics Hadoop observation

sequential write Large size write requests ( >=128 blocks): 35%

Mode ratio: 18% (27%) for write when Q=1(Q=128)

sequential cmd ratio(M>=2): write 35% at  

QL=1 & 60% at Q=256

Write-once-read-many r/W: cmd 1:1.5; blks 1:6.1

high stacked rOW ratio

total write blocks occurs  85.9% of total access blocks

Garbage  

collection (GC)

updated blocks (at least write twice) are 13.4% of write 

blocks, so a relatively high write update ratio and write 

amplification 115.5% (considering the short trace duration)

updated command ratio >50% with small overlap possibly 

due to the metadata attached

Frequent but small-size idle time in host side difficult for 

background GC

In-place or out-of-place 

update

relatively high update ratio, so it’s necessary to apply 

large-size ssd/draM/aZr cache for performance 

improvement (write update in cache)

This trace is much busier than the previous one. The total effective idle 

time (idle interval>0.1s) is 14.40 seconds and total idle time 98.6 seconds. 

The total effective idle frequency (idle interval>0.1s) is 33 only while the 

total idle frequency is 6244. Now the question is whether the (effective) idle 

time is enough for background activities. Due to the relatively consistent 

workload of video surveillance and data/metadata structure, the garbage 

ratio of each SMR data zone is similar. Suppose a 1GB for zone size and 

3MB per track. The total write workload of this trace is about 1GB. So is it 
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possible to move 1GB to new place in the effective idle times? Here is the 

analysis:

• Completion of a sequential 1GB read and a sequential 

887MB write (assume13.4% garbage ratio) requires 

around 5.3 seconds for 7200RPM.

• The average useful idle time for GC is 14.4/33−0.1=0.34 

second. Suppose the positioning time is 6ms for R/W. 

(0.34−0.006*2) second can handle up to 64.4MB data in 

GC zone.1 A total of 33 idle intervals can handle around 

2GB data, which is larger than 1GB.

• Additionally, the old video data is replaced by new data 

periodically, which will not change the garbage ratio 

much in general.

Ideally, the idle time seems large enough to handle GC activities,  

given that

• The effective idle time should be fully used and the GC 

size is adjusted dynamically.

• The idle time algorithm works quite well with a lower 

idle detection threshold, such as from 100ms to 50ms to 

increase the GC activities.

• The other background activities may not take  

much time.

However, in reality, you may require much large idle time. In particular, 

defragmentation may significantly increase the write amplification ratio.

1 “This can be solved by the following optimization problem: $\max$ cleaned_
data=read_speed*$t1_$+write_speed*$t_2$, subject to $t_1$+$t_2$=0.34−0.006*2 
and $t_1$, $t_2$>0”.
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CHAPTER 8

Case Study: Hadoop
Hadoop is one of the most popular distributed big data platforms in 

the world. Besides computing power, its storage subsystem capability is 

also a key factor in its overall performance. In particular, there are many 

intermediate file exchanges for MapReduce. This chapter presents the 

block-level workload characteristics of a Hadoop cluster by considering 

some specific metrics. The analysis techniques presented can help you 

understand the performance and drive characteristics of Hadoop in 

production environments. In addition, this chapter also identifies whether 

SMR drives are suitable for the Hadoop workload.

Users of large systems must deal with explosive data generation, 

often from a multitude of different sources and formats. The observation 

and extraction of potential value contained in this large, generally 

unstructured data lead to great challenges, but also opportunities in data 

storage, management, and processing. From a data storage perspective, 

huge capacity (byte) growth is expected, with HDDs supplying most 

capacity workloads for the foreseeable future, although SSDs and NVMs 

are also widely used in time-sensitive scenarios (performance workload). 

The interaction of HDDs with these capacity workloads must be well 

understood so that these devices algorithms.
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From data management and processing, big data arises as a trendy 

technology, while Hadoop emerges as a leading solution. Originating 

from Google’s GFS and MapReduce framework, the open-source Hadoop 

has gained much popularity due to its availability, scalability, and good 

economy of scale. Hadoop’s performance has been illustrated for batch 

MapReduce tasks in many cases [66, 67], though more exploration is 

ongoing for other applications within Hadoop’s umbrella of frameworks.

To best understand Hadoop’s performance, a common approach is 

workload analysis [66, 67, 68, 69, 70]. The workload can be collected and 

viewed in different abstract levels. The references [37, 35] suggest three 

classifications: functional, system, and physical (see Figure 2-1 in  

Chapter 2). However, most workload analysis works in this area are studied 

with a system view.

Kavulya et al. [71] analyzed 10 months of MapReduce logs from the 

Yahoo! M45 cluster, applied learning techniques to predict job completion 

times from historical data, and identified potential performance problems 

in their dataset. Abda et al. [72] analyzed six-month traces from two  

large Hadoop clusters at Yahoo! and characterized the file popularity, 

temporal locality, and arrival patterns of the workloads, while Ren et al. [66]  

provided MapReduce workload analysis of 2000+ nodes in Taobao’s 

e-commerce production environment. Wang et al. [67] evaluated Hadoop 

job schedulers and quantified the impact of shared storage on Hadoop 

system performance, and therefore synthesize realistic cloud workloads. 

Shafer et al. [70] investigated the root causes of performance bottlenecks 

in order to evaluate trade-offs between portability and performance in 

Hadoop via different workloads. Ren et al. [73] analyzed three different 

Hadoop clusters to explore new issues in application patterns and user 

behavior and to understand key performance challenges related to IO and 

load balance. And many other notable examples exist as well [69, 68, 37].
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While predominately system-focused, some works provide a functional 

view [69, 70, 73] where average traffic volume from historical web logs are 

discussed. Some simulators and synthetic workload generators are also 

suggested, such as Ankus [66], MRPerf [74], and its enhancement [67].

However, to my best knowledge, there is no direct analysis work for 

a Hadoop system at the block level. A block-level analysis is timely and 

more valuable now that device manufacturers are pressured to develop/

improve products to meet capacity or performance demands, such as 

emerging hybrid or shingled magnetic recording (SMR) drives [5, 40, 4]. 

When considering the SMR drives (and the coming energy/heat assistant 

magnetic recording (EAMR/HAMR) drives) which have much higher data 

density than conventional drives, such an analysis is indispensable, due 

to their distinguished features from the conventional drives. For example, 

SMR drives introduce characteristics such as shingled tracks, which make 

the device more amenable to sequential writes over random, as well as 

indirect block address mapping, garbage collection, and more, which all 

modify how these devices interact with user workloads. A big question at 

the device level is if the block-level Hadoop workload is suitable in SMR 

drives.

In this chapter, I analyze Hadoop workloads at a block device level 

and answer this big question. Aided by blktrace, I provide a clear view of 

Hadoop’s behavior in storage devices [75, 76]. The main contribution lies 

in the following aspects:

• Defining some new block-level workload metrics, such 

as stacked write update, stacked ROW, and queued 

seek distance to fulfill particular requirement of disk 

features

• Identifying some characteristics of a big organization’s 

internal Hadoop cluster, and relating them to findings 

of other published Hadoop clusters with similarity and 

difference
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• Providing some suggestions on Hadoop performance 

bolstered from drive-level support

• Providing analysis for the applicability of SMR drives in 

Hadoop workloads

This chapter will first cover the overall background of SMR drives and 

the Hadoop cluster and trace collection procedure. Then it will cover the 

analysis results based on these metrics.

 Hadoop Cluster
Numerous workload studies have been conducted at various levels, 

from the user perspective to system/framework-level analysis. Most of 

these types of analysis only capture certain characteristics of the system. 

Harter et al. go as far as to take traces at a system view and apply a simple 

simulator to provide a physical view of the workload [77]. However, leaving 

the physical view of a system to simulation can miss details that may 

be critical to understanding a workload. Therefore, it is generally more 

reasonable to analyze the real workloads when considering performance.

The workflow of a Hadoop cluster is to import large and unstructured 

datasets from global manufacturing facilities into the HDFS. Once 

imported, the data is crunched and then organized into more structured 

data via MapReduce applications. Finally, this data is given to HBase for 

real-time analysis of the once previously unstructured data. While some 

of this structured data is kept on the HDFS (or moved to another storage 

location), the unstructured data is deleted daily in preparation to receive 

new manufacturing data.

The Hadoop cluster is used to store the manufacturing information, 

such as the data from 200 million devices per year created by the company. 

For example, in phase I manufacturing (clean room assembly), while drive 

components are assembled, data is captured by various sensors at each 
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construction step for every drive. From a manufacturing point of view, 

creating 50-60 million devices a quarter creates petabytes of information 

that must be collected, stored, and disseminated in the organization for 

different needs. Some user scenarios include the query to the particular 

models, the summarization of quality of one batch, the average media 

density of one model, etc.

PIG/Hive is used for MapReduce indirectly, actually PIG/Hive converts 

SQL-like code to Java code to run MapReduce. MapReduce then does 

SQL-like statements to process raw test data to generate drill-downs 

and dashboards for product engineering R&D and failure analysis (FA). 

However, the cluster is mainly for analytics: MapReduce use cases (∼80%) 

and also some Hbase online search use cases (∼20%).

The WD cluster configuration is shown in Table 8-1. A general data 

flow is shown in Figure 8-1, where HDFS has native configurable logging 

structure, while datanode needs the aid of blktrace. The read requests 

from client-obtained metadata information from the namenode and 

then namenode sends block ops to devices. Thus the client gets the 

corresponding data from datanotes. The write requests will change both 

data in datanodes and the metadata in namenodes.

Table 8-1. WD-HDP1 Cluster Configuration

WD-HDP1: 100 Servers

Cpu Intel Xeon e3-1240v2, 4 Core

raM 32 GB ddr3

os hdd WdC Wd3000BLFs 10krpM 300GB

hadoop hdd WdC Wd2000FyyX 7.2krpM 2-4tB

hadoop Version 1.2.x
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The data collection structure is illustrated in Figure 8-2. The task 

tracker runs above the local file system (FS). The jobs will finally convert 

into the block-level accesses to the local devices in each datanode. The 

tool blktrace actually collects the data in the block IO layer from the local 

devices (see Appendix B for details). I ran blktrace (sometimes together 

with iostat and/or iotop) repeatedly on four datanodes with different file 

systems and write cache settings in tens of batches, where two nodes 

used XFS and another two used EXT4 as local file systems, with each run 

lasting for few hours to few days. I collected hundreds of GB of traces (100+ 

pieces) representing total 1500+ hours of cluster operation from May 2014 

to January 2015.1 I switched the write cache on or off to collect data from 

different situations. The workload to these four nodes was relatively stable 

based on Ganglia’s network in/out metrics except for a few pieces. In 

particular, I focus on the trace collected in January 2015 with batch ID from 

16 to 25 in this book. They are all one-day duration traces with the settings 

as show in Table 8-2.

1 Trace is available up request. Please contact WDLabs for details at https://
community.wd.com/c/wdlabs.

Figure 8-1. Data flow in Hadoop system
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Figure 8-2. Trace collection using Ganglia and Blktrace

Table 8-2. File System and Write Cache Settings

Node ID FS Write cache

147 XFs 16:21 disabled; 22:25 enabled

148 eXt4 16:21 disabled; 22:25 enabled

149 eXt4 16:21 enabled; 22:25 disabled

150 XFs 16:21 enabled; 22:25 disabled

 Workload Metrics Evaluation
In this section, I discuss my observations of disk activity from a sample of 

nodes within the Hadoop cluster. I then explain how these observations 

relate to metrics discussed in the previous section. Finally, I conclude 

with observations from a system level and suggestions for addressing 

performance issues which could arise from my recorded observations.
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 Block-Level Analysis
There exist some tools to parse and analyze raw block traces. For example, 

seekwatcher [78] generates graphs from blktrace runs to help visualize IO 

patterns and performance. Iowatcher [79] graphs the results of a blktrace 

run. However, those tools cannot capture the advanced metrics defined in 

Chapter 2. Thus you can apply the Matlab-based tool introduced before for 

these advanced properties.

 General View

Figure 8-3 shows some average values of request size, IOPS, and 

throughput. From the figure, you can observe that the write size and IOPS 

are more related to file system type, as the difference between EXT4 and 

XFS is obvious. However, the read size and IOPS seem to be more related 

to batch, as different batches may have different read sizes. Note that the 

overall throughput is similar for each batch, which means the workload 

to each node is nearly even.2 By removing the maximum and minimum 

values, you can look at the average value and standard derivatives in 

Figure 8-4. The size pattern for write for different file system types is clearly 

illustrated. Figure 8-5 further shows that the write requests’ major size 

range is [1–127] blocks and 1024 blocks. The sum of ratios in the two ranges 

is almost equal to 1, which leads to the near symmetric curve around 0.475.

2 There may exist a few nodes with large variance compared with others due to 
non-perfect workload balance policy.

Chapter 8  Case study: hadoop



183

Figure 8-3. Average values of workloads for different file systems

Figure 8-4. Average size and IOPS

Chapter 8  Case study: hadoop



184

In order to get more insight views into the trace, let’s choose a typical 

piece of a trace (Node 148 and batch 21) with its basic IO properties close 

to the average value described earlier. Table 8-4 gives the basic information 

about the workload. Next, I discuss this trace deeply in several aspects, 

which are summarized in Table 8-3.

Figure 8-5. Write request size distribution in different range
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Table 8-3. Summary of Observations and Implications

SMR characteristics Hadoop observation

Write once read many 40% read and 60% write

relatively low write update ratio

35.4% stacked roW ratio

Sequential read to 
random write

relatively small random write ratio

roW ratio ˜60% and small size, so insignificant 

impact

Out-of-place update stacked WoW: 70% within first 10 minutes

usefulness of large-size ssd/draM/aZr cache to 

performance improvement (write update in cache)

Sequential write Large size write requests (S ≥1024 blocks) > 64%

Mode ratio: write 65% and read 70%

sequential ratio (S ≥1024): write 74% (66%) and read 

82% (7%);

Near sequential ratio (S ≥1024): write 87% (65%) and 

read 95% (85%)

Garbage collection (GC) Frequent small idle time and large idle time 

periodically

Low device utilization

relatively short queue length

relatively low write update ratio

116.3% frequented WoW small write amplification

8.5% write update cmds small rewritten ratio

the dominant partial WoW hits are mainly large-size 

requests, while full hits at small-size requests
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 Size and LBA Distribution

The overall request LBA distribution is shown in Figure 8-6a. Figure 8-6b 

further illustrates the size distribution curve, from which you can see that 

minimum requests are 8 blocks while the maximum size is 1024 blocks. For 

write requests, the total ratio of 8-block and 1024-block requests is almost 

90%. The ratio of large size write requests (≥1024 blocks) is greater than 

55%, so write requests are more sequential. For reads, the ratio of requests 

with size ≤256 is around 50%, and the size distribution is more various. 

Thus, the read request is generally more random than the write requests. 

The LBA vs. size distribution figures further confirm this observation. In 

fact, for writes, you can see that most large size requests lie intensively 

in few ranges; middle size requests are very few, while for reads, the size 

distribution is more diverse.

Table 8-4. Basic Statistics of Trace 148-21 (EXT4-WCD)

Combined Read Write

Number of blocks 917942 373424 544518

average size (block) 435.7 216.5 586.0

read Iops (r/s) 4.322

Write Iops (w/s) 6.302

Blocks read per second 935.802

Blocks written per second 3693.157
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Figure 8-6. LBA and size distribution
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These findings provide a different view from the “common sense” 

of sequential access for Hadoop system [70]. It is true that sequential 

reads and writes are generated at the HDFS level for large-size files (the 

settings for chunk size is 128MB), so large-size files are split into 128MB 

blocks and then stored into the HDFS, and the minimum access unit is 

therefore 128MB generally. However, when these accesses interact with 

local file systems such as EXT4 and XFS, the situation becomes much more 

complex.

 IOPS and Throughput

The average value of these two metrics depends on the statistical time 

window/interval. As an example, burstiness is very commonly observed in 

this trace, which leads to relatively rigid curves and high maximum IOPS 

for small time intervals, and a relatively smooth curve with low maximum 

IOPS for a large time interval. The IOPS for reads are generally higher 

than that of writes; however, the throughput of reads is generally lower 

than that of writes. In comparing the 600-second interval average with 

the 6-second interval average shown in Figure 8-7, the average value has 

a large difference. Note that the read IOPS in the 6-second interval figure 

are higher than 400, which is not an “error.” The reason is due to the near 

sequential behavior described earlier. To verify the tool, I compared the 

parsed curve with the one collected by iostat and iotop, and obtained a 

consistent result.
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 Utilization and Queue Depth

Both device workload (average 15%) and CPU workload (average 20%) 

are low. The average queue depth of the HDD (average value <0.3) further 

shows the low device utilization of this workload. As the overall workload 

is generally low, and the “periodic” bottom-peak curve is illustrative, the 

system therefore can exploit idle time to get the most potential benefits 

(such as garbage collection and defragmentation for space efficiency, or 

even block reorganization) for performance improvements. However, most 

idle time is not long enough for large background jobs. How to fully utilize 

these idle times is an interesting topic for future exploration.

Figure 8-7. IOPS and throughput
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 Request Sequence

Let’s now look at the IO sequential pattern for both read and write 

requests. Some relevant concepts were introduced in Chapter 2.

For queued next seek distance, observe that the value of the mode 

(most frequent value) is equal to 0, and the mode ratio at N=64 (N=1) 

for read and write is 70.2% (61.6%) and 65.4% (61.3%), respectively. This 

implies a highly sequential workload (where higher is better). The mean 

absolute value drops quickly with queue length, which implies that there 

are many interleaved sequence streams. Therefore, the queue length used 

for sequence detection in a disk drive should be reasonably large to see 

better performance from the device.

Figure 8-8 illustrates sequence streams with different N, starting 

from 2 (and doubling to 256). The specific values for N=1 and N=128 

are given in Table 8-5 (“w/” and “w/o” denote the cases with or without 

size constraints). You can see that the streams with only two requests 

dominate, while the streams with larger request numbers are relatively 

few. When a size constraint is enforced (S = 1024 blocks), the dominate N 

for read is moved to the value ≥3.
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Figure 8-8. Sequence stream with different N

Table 8-5. Sequence Stream and Command Detection

M 2 ≥ 2 Total streams Total commands

N=1 w/o w/ w/o w/

Read 52827 19987 282911 210081

Write 25633 12412 359668 324007

N=128 w/o w/ w/o w/

Read 43682 3579 308149 217373

Write 27303 9209 393962 354384
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However, for the write the value of N is still 2. This shift indicates the 

request size of reads in sequential streams is generally smaller than that 

of writes. This is further confirmed by the average request size shown in 

Table 8-6, so the size of sequence stream/commands of writes is much 

larger than that of reads. Therefore, the difference for read/write between 

size-constraint (S = 1024 blocks) and non-size-constraint requests is 

shown to be significant. It is noted with increased queue length N, the total 

stream number is generally decreased while the average stream size is 

increased and average command size is decreased.

Table 8-6. Average Size of Sequence Stream and Command

Op (N) Avg. cmd  
size w/o (blocks)

Avg. cmd  
size w/ (blocks)

Avg. stream  
size w/ (blocks)

read (1) 259.5 308.9 3247.3

Write (1) 952.0 910.3 24851.7

read (128) 245.4 307.9 18700.5

Write (128) 797.7 882.2 31685.2

The total sequence stream detected is illustrated in Figure 8-9. This 

figure shows that the write request is much more sequential than read 

(considering the ratio). Note that for this figure, “combined” is not a 

simple sum of “read” and “write;” it is detected in the FIFO rule with all 

commands. The value displayed in Table 8-5 is consistent to the mode 

counter of queued next seek distance. In fact, you can easily calculate that 

the frequency of mode is the total command number of streams minus the 

total number of streams.
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Therefore, you can see that total ratio of “sequential” read/write is 

over 82% and 74% (N=256), respectively (detected read/write sequential 

commands/total write/read commands), without size constraints. The 

ratio is reduced to 76% and 65.5%, respectively, with the size constraint  

(S =1024), which is more reasonable to indicate the sequence ratio.

With increased S, the ratio of sequential read/write commands drops 

slightly, as shown in Figure 8-10. It shows that the sequence of write is 

rather strong, as the sequence streams are generally large, so the ratio of 

writes is reduced from 82% to 62% and 58% when S is changed from 1024 

to 4096 and 8196, respectively.

Figure 8-9. Sequence ratio with S=1024

Figure 8-10. Sequence ratio with with S=4096 and 8192
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As shown in Figure 8-11, near-sequential for read is very strong. The 

total ratio for writes and reads is over 87% and 95%, respectively (detected 

write or read sequential commands/total write or read commands), 

without considering size constraint. It reduces to 65% and 85%, 

respectively, with the size constraint, which is more reasonable to indicate 

the sequence ratio of reads is higher than that of writes. With increased S, 

the ratio of near-sequential read/write commands slightly drops, similar 

to that of sequence ratio. Note that the distance is generally larger than 8 

blocks; when δd ≥ 16, the increment is significant.

All the (near) sequence information discussed above provides a good 

reference for pre-fetch policy design for disk drives. For example, when 

considering a sequence detection algorithm, the gap is an important 

parameter. When designing a hot data identification algorithm, the 

definition of hit frequency may be changed slightly for these near 

sequence streams. For instance, the LBA hit within a certain region can be 

counted as a hot area to take post-read action. The observations also tell 

that the interleaved stream number is not large and a small queue may 

be good enough to detect the sequence (e.g., N≥16, compared with non- 

cache, N=50 can increase around 5% sequence).

Figure 8-11. Near sequence ratio with S=1024
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 Write Update

For frequent write updates, 86% of accessed blocks (maybe repeated) are 

only written once. A decreasing percentage of written blocks are written 

multiple times, which means only a small portion of hot blocks are 

rewritten. Write amplification is roughly 116.3% if all rewritten data is put 

into a new place.

For a timed write update, total write blocks occur 80% of total access 

blocks (read and write), and the updated blocks (at least write twice) are 

only 6.8%. Total write commands are 59% of the total commands and 

the update commands are 22.5%. The average size of write commands is 

around 586 blocks and the average size of overlapped blocks of update 

commands is 73.3.

Before you look at the stacked write update, check the stacked distance 

first. You will find that small requests have a high probability to be full hits 

as opposed to large sized request (since the hit size is much smaller than 

the average size). In fact, the average overlapped sizes for partial hits (only 

a part of blocks are the same) and full hits (two requests are the same) 

are 139.4 and 55.1 blocks, respectively. You can conclude that a partial hit 

is more likely to happen for large size requests by using the numbers in 

Tables 8-4 and 8-7.

Table 8-7. Statistics for Logical Stack Distance (LSD) 

LSD≤1000 LSD≤2000 LSD≤4000 Overall

partial, Full 2.8%, 14.9% 3.5%, 17.6% 4.4%, 19.9% 7.5%, 27.3%

A further check can be obtained by considering the full and partial hits 

separately by referring to Figure 8-12 for the hit frequency vs. LBA and size. 

This confirms the dominant partial hit at large size, while full hit at small 

size. The hits of the requests with medium-size (64-1023 blocks) are  

much less.
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Now let’s check stacked write update ratio. Based on write IOPS, 

distance 4000 is roughly 10 minutes. In this period, you can see 72.9% full 

write hit and 58.7% partial write hit of commands. With the knowledge 

of cache size and structure, you can estimate the hit ratio. As the stack 

distance is generally longer than DRAM cache length, updates on disk 

Figure 8-12. Write update LBA and size distribution

Chapter 8  Case study: hadoop



197

cannot be avoided. Therefore, a “caching/buffering” location on the media 

is necessary, so a larger-size SSD cache is necessary for performance 

improvement.

The third plot in Figure 8-13 shows that over 65% of the overlapped 

request size happens in the first 1% of overall time for partial/full hits, 

which further confirms the necessity of large SSD cache. As conventional 

disk drives have not provided such a big cache, it may be beneficial to 

implement this cache via a hybrid drive (SSD+HDD) or at a higher level 

in the system, such as array controllers or aggregate controllers. For SMR 

drive, a convenient way is to allow conventional zones accompanying with 

shingled zones for random write access.3 It is also called random access 

zone (RAZ) in [5, 4].

3 For more information, please refer to T10.org and T13.org, such as zoned block 
commands (ZBC)
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Figure 8-13. Frequented, timed, and stacked write update (from top 
to bottom)
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 Read on Write (ROW)

ROW ratio is mainly used to check if “write once read many (WORM)” 

is possible. You will find that the total ROW ratio is around 35.4% only, 

which implied that the written data is less likely to be read multiple times 

(i.e., a ratio much larger than 1). You can further check if the hit is only for 

small size requests. Figures 8-14 and 8-15 show that the written data is less 

likely to be immediately read back for most cases for similar reasons as 

explained in previous chapters.

Figure 8-14. ROW ratio
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 Write Cache Enabled vs. Disabled

Write cache is an important feature of HDDs. Many studies show that the 

performance of WCE (write cache enabled) can be increased significantly 

over WCD (write cache disabled) due to write-back policy, in particular 

for some small-size random write workloads. However, the data reliability 

concern (e.g., power loss leads to dirty data loss in DRAM write cache) 

results in most data centers disabling this feature.

Here we compare four traces (148-21, 148-22, 149-21, and 149-22) as 

nodes 148 and 149 always use different write cache setting and there is a 

setting change between batch ID 21 and 22 (see Table 8-2). You can see 

that there is no essential difference among write IOPS, throughput, and 

average size as shown in Table 8-8. Meanwhile, the ratio of large write 

requests (e.g., 1024 blocks) almost remains the same. Nevertheless, you 

can observe that the (near) sequence ratio of WCD is slightly smaller than 

that of WCE for both reads and writes (1% of absolute value). These factors 

show that the HDFS does not change its behavior according to HDD’s 

write cache settings, even though the local file system may respond to it. 

However, as the workload is far away from the drive’s boundary capability, 

the response is not significant.

Figure 8-15. ROW hit and size distribution
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Table 8-8. Basic IO metrics for WCD vs. WCE

Average IOPS Throughput KBPS Size blocks

21 22 21 22 21 22

148 6.3 7.0 1846.6 2064.4 586.0 589.5

149 6.6 6.8 1782.2 1881.9 541.8 556.6

In the heavy workload cases, some interleaved sequential streams will be 

considered as “random” rather than sequential, causing an increased ratio of 

random writes, which is harmful to the overall disk performance. Therefore, 

some non-volatile memory or DRAM protection technologies may be applied 

in order to enable write cache, which becomes necessary for heavy workloads. 

Additionally, for green environments in data centers where the bottleneck is 

not the HDDs (at least under normal workloads), another benefit to WCE is 

energy savings due to less mechanical accesses to the HDDs.

 System-Level View
In this section, I present a brief analysis of how the random IO, observed 

in the previous section, of the block level traces led to a better analysis 

of the Hadoop cluster’s IO patterns. First, let’s look at the workload 

characteristics collected from HDFS logs, as shown in Table 8-9. Recall 

the system level analysis mentioned earlier; I captured data generation 

and deletion rates, job creation rates and characteristics, etc. with the low 

level IO obfuscated from us. Arguably, this is how a high-level framework 

should behave, fully or mostly insulated from the hardware devices below. 

However, those who have to maintain the full operational stack must  

be aware of the entire system, not just the user-level framework.  

Below, I analyze the randomness from three aspects: the Hadoop 

framework, the MapReduce policy, and HDFS mechanism.4

4 Grant Markey made some contributions to this and the conclusion section.
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Notice that all daemons within the Hadoop framework write logs 

of their runtime throughout the course of the day. Depending on 

configuration, this can be written to the HDFS or to the local FS. If logs 

are written to the local FS, they account for some random IO to the 

HDD. Other daemons of frameworks which sit on top of Hadoops core 

framework can generate more random IOs at the device level. Hbase has 

similar logs from its region servers which must be written. Created for 

real-time data processing, Hbase will spawn small MapReduce jobs which 

access potentially small amounts of data, causing random read IOs in a 

HDFS instance. Frameworks like Hive and other KV stores, which sit on 

top of Hadoop, have similar logging structures which can potentially cause 

random IO amplification down at the device level.

Java-based (apache) MapReduce must write temporary intermediary 

files to disk during MapReduce jobs, some with repeating process IDs (PIDs)  

and others with single or minimal use PIDs. These intermediary files can 

either be dumped to locations in the HDFS (which attempts to serialize 

the IO if possible) or the local FS, which will be a random IO event. This is 

configurable via tuning the parameter mapreduce.task.tmp.dir.

After consulting the Hadoop XML configuration files, one thing that 

I noticed was that the temporary/intermediary space for all HDFS and 

Table 8-9. Basic Information Collected from HDFS Logs

Name Duration Total IO Requests Average IO Size(MB)

ave Max Min total read Write

wdc-x1 68 d 0.627 5.476 0.125 60.96 3.14 99.75

wdc-x2 98 d 0.396 5.661 0.107 47.83 3.09 93.2

r/W ratio Iops 105 throughput (MB/s)

avg Max Min total read Write total read Write

0.0348 0.125 0.0054 0.726 0.536 0.19 18.48 0.632 17.85

0.0383 0.33 0.007 0.458 0.325 0.133 12.11 0.442 11.67
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MapReduce workloads were configured to store their output data to the HDFS 

data drive. Because the Hadoop framework is written in Java, it must contend 

with the properties of the Java Virtual Machine (JVM), meaning that memory 

addresses have no meaning between JVMs. Hence, when a MapReduce task 

passes data to another MapReduce task, it first writes data to a temporary 

file for the other JVM task to read. Additionally, when a MapReduce job 

launches, it must send the configuration parameters and executable jar file to 

the TaskTrackers so that they can correctly spawn map and reduce tasks. This 

data too was being stored to that configured local temporary space.

Couple this IO with the observation that the cluster runs close to 5500 

MapReduce jobs per day, of which many are small task count jobs (due to 

the 20% HBase analysis performed by users), and the amount of random 

IO generated on these HDDs becomes very large. However, this IO is 

something that can be mitigated and was not completely responsible for 

the high level of random IO seen in the block-level traces. The HDFS itself 

also contributes to the amount of random IO seen in those traces.

From the system logs as shown in Figure 8-16, you can see that the 

number of chunks created and deleted daily is quite high for the system. 

Each time the HDFS commits a chunk of data to the filesystem, it also 

creates a metadata file. This metadata file is proportional to the size of 

the HDFS chunk committed to the localFS, so a 128MB chunk will have a 

corresponding ≈1.2MB metadata file created where smaller chunks will 

have smaller metadata files. Hence, for the observed workload, there is 

a lot of small random IO due to tens of thousands of new chunks being 

generated daily on the HDFS. However, unlike the observed random IO for 

the MapReduce framework, wherein the location to store the temporary 

files is configurable, the location where these HDFS metadata files are 

stored is not a configurable property, and therefore cannot be delegated to 

another class of storage or storage location. When considering newer HDD 

technologies, wherein random IO (especially random writes) can greatly 

impact performance, understanding workload characteristics like these 

are paramount. Without a device-level analysis of the workload, these 

characteristics would have not been so clearly identified.
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Figure 8-16. Basic curves from HDFS logs
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 Some Further Discussions
In this chapter, I presented the block-level workload characteristics of 

the Hadoop cluster by considering some specific metrics. The analysis 

techniques presented can help others understand the performance 

and drive characteristics of Hadoop in their production environments. 

Collected by blktrace, I conducted a comprehensive analysis of these logs 

which identified new workload patterns with some unexpected behaviors. 

I showed that, while sequential and near-sequential requests represent the 

majority of the IO workload, a non-trivial amount of random IO requests 

exist in the Hadoop workloads. Additionally, the write update ratio on 

drives is not very high, which indicates that a small write amplification 

can occur if an out-of-place write policy is applied. Also note that the 

ROW ratio is small, which means WORM does not generally hold for the 

cluster’s workload. All these findings imply a relatively high spatial locality 

and lower-than-expected temporal locality, which show that Hadoop 

is generally a suitable application for SMR drives. However, further 

improvements in both Hadoop and drive sides are required.

Looking critically at the configuration of a Hadoop system, it is possible 

to fine-tune and minimize some, but not all, of the observed random 

IO. Factors that add to this random IO are several types of framework 

logging, intermediary files generated by MapReduce and HBase 

workloads, and metadata files of HDFS chunks. The verbosity of Hadoop 

daemon log files can be turned down to generate less data, and they along 

with temporary MapReduce output can be written to a storage location 

which will not impact HDFS chunk IO operations. Among these can be the 

HDFS itself (rather than local storage), which will attempt to make the IO 

more sequential, or on another physical/logical block device more suited 

to random block IO (while maintaining data locality). Some basic curves 

derived from HDFS logs are shown in Figure 8-16.

However, the final piece of the observed random IO is a consequence 

of HDFS write/update mechanism and cannot be easily mitigated because 
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it currently must reside with the committed HDFS chunks on the HDFS 

data drives. The small IO caused by chunk metadata must then be serviced 

by a capacity block storage device which can either understand how to 

transform these small random IO into larger sequential access patterns, 

or a device that is simply designed to handle random IO. Without a 

device-level view, it is possible that this overhead would be dismissed as 

a problem elsewhere in the system rather than at the HDD device level, 

where some of these issues are very simple to correct, given the proper 

insight. For instance, a large DRAM buffer will be very useful for these 

scenarios with random read accesses, and non-volatile memory (e.g., 

NAND and conventional zone) for these random write accesses.

Hence, it is reasonable to study an integration of HDFS and the local 

files systems with consideration of device properties, such as a design in a 

global view so that there is no “misunderstanding” of the local metadata 

to the sequential write in HDFS. And the metadata and the “non-critical” 

intermediate/temporary data are assigned to proper disk location. 

Therefore, HDFS could take the responsibility of file/block accesses in 

DataNode, which may make the drive operation more efficient. The 

metadata location in the device shall also be carefully designed.

In addition, the drive-level cache and system-level cache may be 

unified with the consideration of the mechanism of Java, such that some 

temporary data may be absorbed by the unified cache/buffer instead of 

disk mechanical accesses. This unification could be difficult due to the 

current HDFS’s simple cache design and lack of direct interface between 

JVM and drives. However, it is possible for drive manufacturers to provide 

such an application-oriented interface for communication.

Furthermore, a certain intelligence might be useful for the drive to 

understand the nature of the access (e.g., random or sequential, access 

dependency), such that the drive can immediately switch to the optimal 

algorithm/behavior for better performance. An application-level hinting 

scheme with interaction between host and drive or a self-learning 

algorithm inside drive can be helpful.
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In conclusion, the device level analysis of the in-house Hadoop 

cluster has provided new insights into how Hadoop interacts with the 

underlying file system and handles its lower-level IO. These new insights 

motivate me to continue studying how workload characteristics of big data 

frameworks and application tuning could help the performance of storage 

devices in the current data driven climate which we live in. This study 

is also applicable to Spark, an in-memory MapReduce system roughly. 

For example, a detailed workload analysis can provide some insights of 

the SCM application for Spark systems, which will benefit a cost-efficient 

design of hybrid SCM-DRAM structures.
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CHAPTER 9

Case Study: Ceph
Ceph, an open-source distributed storage platform, provides a unified 

interface for object-, block-, and file-level storage [33, 80, 34, 81]. This 

chapter presents the block-level workload characteristics of a WD WASP/

EPIC microserver-based Ceph cluster. The analysis techniques presented 

can help you to understand the performance and drive characteristics 

of Ceph in production environments. In addition, I also identify whether 

SMR, hybrid disk, and SSD drives are suitable for the Ceph workload.

The basic architecture of Ceph was described in Chapter 1. Ceph’s 

core, RADOS, is a fully distributed, reliable, and autonomous object 

store using the CRUSH (Controlled Replication Under Scalable Hashing) 

algorithm. Ceph’s building blocks are called OSDs (object storage 

daemons). OSDs are responsible for storing objects on local file systems 

(e.g., EXT4 and XFS), and cooperating to replicate data, detect and recover 

from failures, or migrate data when OSDs join or leave the cluster. Ceph’s 

design originated in the premise that failures are common in large-scale 

storage systems. Along these lines, Ceph targets at guaranteeing reliability 

and scalability by leveraging the intelligence of the OSDs. Each OSD uses 

a journal to accelerate the write operations by coalescing small writes and 

flushing them asynchronously to the backing file system when the journal 

is full. The journal can be a different file or located in another device or 

partition [82, 83, 84].
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These tests are based on a “unique” platform. Instead of traditional 

workstations, the so-called microserver structure is used for the 

production environments. In the system, each microserver has an 

individual OS and an HDD. It is almost the minimum granularity for an IO 

device, which essentially satisfies the original design requirement of Sage 

Weil, the father of Ceph [80, 33]. In fact, this architecture minimizes the 

failure domain to a disk unit instead of many disks becoming inaccessible 

in one server with a multi-disk architecture. The storage cluster is scaled 

out by connection microservers by a top of the rack Ethernet switch.

A microserver-based cluster with 12 nodes (named as sm1-wasp1 to 

sm1-wasp12) is shown in Figure 9-1. Three virtual machines (VMs) act 

as the clients to generate the IO requests (named as Cag-blaster-ixgbe-02 

to Cag-blasterixgbe-04). All the tests are done in the Ceph version Jewel. 

In this microserver-based configuration for filestore, each node/drive 

is divided into four partitions. /dev/sda1 installs the operating system 

(Ubuntu) and /dev/sda3 is reserved. /dev/sda2 is used for metadata, and  

/dev/sda4 is used for user data.

Figure 9-1. Ceph cluster topology
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 Filestore IO Pattern
Three VMs are used as clients to send bench write requests to a replicate 

pool (named rep1 with one replicate) for 250 seconds and blktrace to 

collect traces for 310 seconds, so rados bench -p rep1 250 write from 

each client and blktrace /dev/sdax -w 310 from each node. Due to the 

limitation of blktrace (it’s unable to collect an individual partition in the 

same drive), the trace from sda2/sda4 and the whole sda are collected 

separately. A bus analyzer is also used to verify the traces.

The common properties of the 12 nodes are listed in Table 9-1. You 

can observe that the basic properties are generally similar. One of the IO 

pattern curves is illustrated in Figures 9-2 and 9-3, where the three rows 

represent sda2, sda4, and sda, respectively. Note that all wasp nodes 

are write cache enabled. The command of "ceph tell osd.* bench 

41943040 4194304" gives around 100MBPS (cached). Therefore, it means 

the three clients with 32 threads each have almost fully utilized the disk 

bandwidth. The reason will be explained later.

You can also see that differences of IO patterns may still exist in 

different nodes; for example, the read/write ratio is high in some nodes 

while it is low in other nodes, and the idle time distribution varies. Based 

on read/write ratio, we can roughly divide the IO patterns into two classes: 

one is read dominated, and the other is write dominated. When read 

dominates, the average size of the read becomes smaller.
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Table 9-1. Common Properties for Ceph Nodes

Properties Metadata Data

r/W Mixed read and write No read requests

size relatively small requests (8-block 

requests dominated); size of write 

varies largely; the r/W ratio varies 

largely.

1024-block requests dominated, 

followed by small blocks

sequence Mode  =8  (very  small);  relatively 

more random over a small range.

Much higher near sequential ratio 

than strict sequential ratio (small 

gaps exist for 50% requests)

Mode =0; high sequential ratio.

higher near sequential ratio 

(small gaps exist for 5% write 

requests)

Write update high update ratio (>50% write 

requests updated)

Low  update  ratio  (updated  

blocks <1%, more partial)

Write stack 

distance

relatively small distance to 

achieve high percentage of hits; 

small average overlap size  

(8 blocks); necessary for write 

cache.

relatively large distance to 

achieve high percentage of hits; 

small average overlap size; 

unnecessary for write cache.
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Figure 9-2. IO pattern in different partitions: LBA and size 
distribution
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Figure 9-3. IO pattern in different partitions: Throughput and 
IOPS

Chapter 9  Case study: Ceph



215

Table 9-2 shows the total idle time for different nodes at different 

scenarios. Basically, the idle time is unevenly distributed, which 

means that the workload to each node is actually uneven. In other 

words, some nodes are very busy, such as wasp12 in the case of “3-8” 

(3 clients, 8 threads), while some are very “lazy,” such as wasp8 in the 

case of “3- 8.” This is partially due to the CRUSH algorithm, which is 

in charge of PG (placement group) allocations. Although a reasonable 

number of clients and threads may alleviate the uneven distribution, 

it may not essentially solve this problem. Thus, some improvement 

policies, such as asynchronized, active feedback, adjustable PG, etc, 

shall be implemented.
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 Performance Consistency Verification
Performance consistency is a basic requirement for enterprise storage 

systems and it guarantees the performance repeatability at the same 

conditions. There are several approaches to check it. Table 9-3 gives a 

summary.

Table 9-3. Comparison of Three Approaches

Metrics Pro Con

hypothesis Full view with relatively full information; 

consistency in a relatively strict sense.

hardly satisfied

average only simple and relatively easily satisfied partial view with limited 

information on average only

range 

tolerance

engineer’s view in practice; easy to 

check.

partial view; usually 

experiment dependent.

The first one is the hypothesis approach, which actually can be used 

to test whether two or more samples have the same mean (and variance), 

median, or distribution in statistical sense. A simple procedure is as 

follows:

 1. Check if all rounds of tests have steady state.

 2. Use the steady state of each round as a sample 

vector for an overall consistency test or one-two-one 

(paired) test.

 3. Select a proper hypothesis test for different 

requirements/assumptions.
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Some common hypothesis tests are used in different scenarios:

• F-test: Requires each sample vector is normal 

distribution; if the final p-value is smaller than 

predefined significant level (0.05 by default), you reject 

the hypothesis that these samples have the same mean.

• H-test: Requires each sample vector is continuous 

distribution (weaker condition); if the final p-value 

is smaller than predefined significant level (0.05 by 

default), you reject the hypothesis that these samples 

have the same median.

• T-test: Applicable for paired independent tests only; if 

the final p-value is smaller than predefined significant 

level (0.05 by default), you reject the hypothesis that 

these samples have the same distribution.

This approach actually gives the result in a relatively strict sense. 

However, you may allow some differences in most cases.

The second one uses a simplified statistical method, which only 

concerns the average value without the overall trend, and is usually for 

rough estimation only:

 1. Get the average values of interested metrics of each 

test (possibly in steady state).

 2. Form a sample vector with the average values from 

all rounds.

 3. Test if it follows a normal distribution (or other 

experimental distribution, such as uniform) with an 

acceptable variance.
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The third one is the range tolerance approach, which checks if 

the performance is within a certain region that we can tolerant/allow 

experimentally:

 1. Check if each run’s value is within a certain range 

of this run’s mean or expected experimental 

value. There are two cases: one is required for all 

data points, such as latency, and the other is only 

required for almost all points, such as throughput.

 2. Check if the average value of each run is within a 

certain range of the mean of all runs.

This approach usually needs the experts to set up the proper 

thresholds in order to construct a reasonable range.

Let’s take a look at an example with seven rounds of tests in the same 

environments in Table 9-4. Each round contains three random read and 

three sequential write accesses. Since an F-test requires normality, you 

begin with the normal test on each round. In some cases, if you cannot not 

capture enough data, you may simply mark it as invalid. In this example, 

you can see only two rounds out of seven pass the normal test for the test 

named rand 6, and the two rounds likely have the same mean. Overall, the 

results indicate that the performance is not strictly consistent.

Table 9-4. An Example of the Hypothesis Approach

Value rand_6 rand_4 rand_2 write_5 write_3 write_1

Normal 2 3 2 6 0 2

Non-normal 5 3 5 1 7 5

Invalid 0 1 0 0 0 0

F-value 3.114 60.405 3.261 24.002 24.002 57.901

p-value 0.079 0 0.073 0 –1 0

result 1 0 1 0 –1 0
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If you switch to average-only and range tolerance approaches, you may 

have another observation in a relaxed sense, shown in Tables 9-5 and 9-6. 

Table 9-5 shows the average throughput in MBPS for each round, as well as 

the overall mean and standard derivation. Table 9-6 shows the difference 

ratio between each round and the overall average. You can see most ratios 

are within 10%. If the customers can allow a 20% range, you may say 

that the system satisfies the performance consistency requirement. Note 

that curve of each round shall also satisfy some range requirements in a 

“continuous” sense. Figure 9-4 shows one example of six tests. Table 9-7 

gives the ratio that the total number of values fall into the range of ± 20% 

or ± 10% of the mean. If a 20% range is set, you can see that only the test 

named write 5 doesn’t satisfy the requirements.

Table 9-5. Summary for Bandwidth of Rados Bench

Mean rand_6 rand_4 rand_2 write_5 write_3 write_1

r0 679.72 1642.15 1613.56 327.86 1261.88 405.87

r1 704.20 1596.64 1446.77 345.57 1275.05 386.54

r2 814.66 1646.67 1503.92 397.04 1322.19 442.87

r3 907.08 1566.22 1529.88 401.05 1225.51 394.28

r4 891.53 1539.09 1399.01 409.12 1200.37 360.88

r5 902.05 1507.67 1194.60 416.98 1310.67 422.73

r6 762.12 1524.56 1164.23 361.48 1186.59 336.50

Mean 808.77 1574.71 1407.42 379.87 1254.61 392.81

std 88.65 51.49 157.14 32.06 48.69 33.39

std/Mean 0.11 0.03 0.11 0.08 0.04 0.09

Chapter 9  Case study: Ceph



221

Figure 9-4. Bandwidth from six tests in one round

Table 9-6. Comparison via Range Tolerance Approach

Diff Ratio rand_6 rand_4 rand_2 write_5 write_3 write_1

r0 –0.160 0.043 0.146 –0.137 0.006 0.033

r1 –0.129 0.014 0.028 –0.090 0.016 –0.016

r2 0.007 0.046 0.069 0.045 0.054 0.127

r3 0.122 –0.005 0.087 0.056 –0.023 0.004

r4 0.102 –0.023 –0.006 0.077 –0.043 –0.081

r5 0.115 –0.043 –0.151 0.098 0.045 0.076

r6 –0.058 –0.032 –0.173 –0.048 –0.054 –0.143

Max 0.122 0.046 0.146 0.098 0.054 0.127

Min –0.129 –0.043 –0.173 –0.137 –0.054 –0.143
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 Bottleneck Identification
Ceph is a rather complex system whose performance is decided by both 

hardware and software [41]. From the hardware point of view, CPU, 

memory, disk, and network are the four major components. Tables 9- 8 

and 9-9 give some general views. From the software aspect, there are 

even more factors, such as the file system, Linux OS settings, memory 

allocator, and more. In addition, the Ceph system configuration provides 

hundreds of parameters, and many of them affect the overall performance. 

Therefore, it is generally difficult to identify the performance bottleneck of 

the overall system.

Table 9-7. Ratio of Values within a Given Range Around Mean

Ratio rand_6 rand_4 rand_2 write_5 write_3 write_1

± 0.2 0.91 1 0.99 0.44 1 0.9

± 0.1 0.73 0.99 0.89 0.2 0.91 0.6

Table 9-8. Impact of CPU, Memory, and Network

Variables Options Remarks

Cpu Core number, 

speed,  

structure, 

instruct set,  

etc.

a common recommendation is at least one (virtual) 

core per Osd. Faster Cpu cores usually help in 

performance improvement, although the Cpu 

structure also matters (e.g., Intel vs. arM, internal 

architecture/versions) the real perf/GB, perf/$, and 

so on. turning off energy-saving mode helps.

Memory raM per server, 

raM per Osd, 

etc.

a common recommendation is at least 1GB per 1tB 

Osd, and better 2GB per Osd. the actual value is 

workload-dependent.

(continued)

Chapter 9  Case study: Ceph



223

Table 9-9. Impact of Disk

Variables Options Remarks

drive type hdd, ssd, 

NVM, etc.

Balance between price and performance shall be considered; 

usually ssd acts as cache and journal; unbalanced 

structure may lead to performance loss; one bad drive 

can affect the overall pool performance (ceph osd perf).

drive 

number

drive per 

server, drive 

per Osd

More drives increase throughput per server but decrease 

throughput per Osd; one Osd per platter/drive.

drive 

controller

sas/ sata/ 

pCIe hBa, 

etc.

More/better hBas increase throughput. hW raId may 

increase IOps. the best performance is achieved when 

you have one hBa for every 6-8 sas drives, but it is 

cheaper to use a sas expander to let one hBa control 24 

(or more) drives.

More hBas and fewer expanders are used to achieve 

maximum throughput, or sas expanders can be applied to 

minimize cost when full drive throughput is not needed.

(continued)

Variables Options Remarks

BIOs ht mode, 

energy-saving, 

NuMa, etc.

ht affects the virtual core number (enable). Consider 

the tradeoff of energy-savings for low power but less 

computational resource allocated.

Network 

switch/NIC

Bandwidth 

and latency; 

ethernet, Fiber, 

Infiniband, etc.

higher bandwidth for higher throughput to an extent; 

lower latency for more small IO. try ms crc data =  

false and ms crc header = false for high- quality 

networks.

For cluster with less than 20 spinners or 2 ssds, 

consider upgrading to a 25Gbe or 40Gbe.

Table 9-8. (continued)
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In this sense, you shall monitor all necessary components of the 

system in order to make a conclusion. Take the Ceph software stack as 

an example in Figure 9-5. You may deploy the corresponding system 

monitoring tools 1 into interested stack points to collect data so that 

you can capture all possible places for SW failures, errors, performance 

degrades, etc. plus all potential SW performance tuning points. In fact, 

Ceph has some built-in monitoring tools such as LTTng.

1 See Brendan Gregg’s chart of general Linux performance tools at  
www.brendangregg.com/linuxperf.html.

Table 9-9. (continued)

Variables Options Remarks

raId 

controller

enable/ 

disable; 

cache

More recent testing with red hat, supermicro, and 

seagate also showed that a good raId controller with 

onboard write-back cache can accelerate IOps-oriented 

write performance.

While Ceph does not use raId (since it supports both 

simple replication and eC), the right raId controller cache 

can still improve write performance via the onboard 

cache.

drive 

cache

enable or 

disable 

write cache

Cache has large impact on small write performance
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Dedicated tools for Ceph deployment, monitoring, and management 

have been developed, such as CeTune (Intel),2 VSM (Intel),3 OpenATTIC,4 

and InkScope.5

With the aid of some integrated tools, such as SaltStack,6 you 

may design your own all-in-one tool. Figure 9-6 shows one possible 

design, which intends to integrate the functionalities of configuration, 

deployment, benchmarking, and measurement analysis of Ceph systems. 

It can be developed by using the “glue” programming language Python, 

together with some Bash scripts.

2 https://github.com/01org/CeTune
3 https://github.com/01org/virtual-storage-manager
4 www.OpenATTIC.org
5 https://github.com/inkscope/inkscope
6 https://saltstack.com/

Figure 9-5. Ceph software stack
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Figure 9-6. Functionalities of a Ceph performance tool

As shown in the overall structure of Figure 9-6, there are some 

components integrated into this tool, such as SaltStack for Ceph 

management, InfluxDB7 with Telegraf8 for performance data collection and 

storage, and Grafana9 for data visualization. All these tools are open source 

and under the free license (InfluxDB/Telegraf under MIT, Grafana/salt- 

stack under Apache v2).

SaltStack platform or Salt is an open-source configuration 

management software and remote execution engine in Python. It 

essentially has a server-client structure. You can use Salt to manage the 

Ceph nodes and distribute executing commands. InfluxDB is a time series 

database built from scratch to handle high write and query loads. Telegraf, 

developed by Go,10 is a metric collection daemon that can gather metrics 

from a wide array of inputs and write them into a wide group of outputs. 

It is plugin-driven for both the collection and output of data for easy 

extension. It is a compiled and standalone binary that can be executed 

on any system without external dependencies; no npm/pip/gem or other 

package management tools required. Once Telegraf daemon is running, 

7 www.influxdata.com/
8 www.influxdata.com/time-series-platform/telegraf/
9 https://grafana.com/
10 https://golang.org/
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the data will be automatically saved to influxDB. Grafana provides a 

powerful and exquisite way to create, explore, and share dashboards and 

information with your team and the world. After the DBs are set up, you 

can configure Grafanas data sources from these influxDB.

With this tool, you can easily obtain all necessary information. Take 

a look at the example provided in the section on the filesstore IO pattern. 

From Table 9-2, you can clearly observe that some drives are drained of IO 

bandwidth. However, the CPU, memory and network usages are all lower 

than 50% at the same time. Therefore, you can make a conclusion that the 

drives are the performance bottleneck.
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APPENDIX A

 Tools and Functions
In this appendix, trace analysis tools based on MATLAB [85] and Python [86]  

are introduced. The functionalities are explained and sample code is 

provided. Although these two tools use different languages, they generally 

have common interfaces, such as the same input and output parameters.

 MATLAB-Based Tool: MBPAR
The MATLAB-based Block-Trace Parser, Analyzer and Reporter (MBPAR) 

is designed for easy use.1 Without specified options, the default setting 

will do all the available analysis and output all the analyzed results into a 

Microsoft PowerPoint (ppt) file. The intermediate figures and data can be 

also saved into disk for next usage. Sample code is as follows:

%  define the filename to parse and analyze

filename= D :\sample. t r c

%  parse the blktrace file and translate the events into MATLAB 

matrix

blktrace_parser;

%  analyze the IO events with/without raw report

1 https://github.com/junxuwdc/MBPAR. Jun Xu developed most of the code, while 
Junpeng Niu contributed few functions on sequential analysis.

https://doi.org/10.1007/978-1-4842-3928-5
https://github.com/junxuwdc/MBPAR
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batch_analysis;

%  generate report in a given PowerPoint format

batch_generate_ppt;

Here the files blktrace parser.m, batch analysis.m, and batch 

generate ppt.m are all scripts. We use scripts for simplicity, although they 

can be easily converted into functions. For example, blktrace parser.m 

receives the filename of raw traces as input and output the parsed IO 

events as the input of batch analysis.m, which further output analyzed 

results and figures as input of batch generate ppt.m.

The output of blktrace parser.m mainly contains two variables: 1) 

lists_cmd is a N × 3 matrix, where N is the number of requests, and 3 

columns represents the first LBA, the size, and the type (0 for write and  

1 for read) of the request, respectively; 2) lists_action is a N × 2 matrix, 

which represents the arrival time and completion time of requests. Note 

that the input for the analysis functions can be from any type of traces 

other than blktrace, as long as the data format is the same for lists_cmd 

and lists_action.

The content of batch_analysis.m is straightforward. Essentially, it 

defines some data formats and calls all available analysis functions. There 

are some parameters (including these for subfunctions of analysis) to 

adjust the tool’s behavior:

• options.offset time is used to adjust the starting 

time of the traces. In some traces, the starting time does 

not start from 0 so you need to find the starting time of 

the first event. The default value is 0.

• options.time interval indicates the time window 

when calculating the average value in seconds. The 

default value is 1 second.

• options.plot figure decides if the tool outputs a 

figure. When options.export report is true, options.

plot figure will be set as true too.
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• options.plot fontsize regulates the font size used in 

the figure.

• options.export report decides if a debug report with 

raw data and figures is generated. This option is only 

used in Windows system for debug purpose.

• options.report name indicates the debug report 

name.

• options.near_sequence configures whether a strict 

sequential stream (0) or a near sequential stream (1) is 

calculated.

• options.lba_size_set adjusts the number of the LBA 

size set during some statistics. Each LBA range will be 

calculated as the total LBA/the number of sets. 

The following is a sample configuration:

% batch_analysis.m

ptions.export_report=1;

if exist('name','var')

    options.report_name=[name, '_raw.ppt'];

else

    options.report_name='trace_analysis_raw.ppt';

end

%  report title

if options.export_report

    saveppt2(options.report_name,'f',0,'t',...

        [' Basic Workload Analysis Report'])

    options.plot_figure=1;

end
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options.plot_fontsize=10;

options.offset_time=0; [lists_action,idx]=sortrows(lists_

action,1); lists_cmd=lists_cmd(idx,:);

After the simple setting, it starts to call all of the analysis functions. The 

analyzed data is saved for further usage, such as generating a PowerPoint 

analysis report.

%% call individual sub-functions

%0 get  the  very  basic  workload  information

basic_info=sub_basic_info(lists_action,lists_cmd,options);

%1 average queue depth for completion and arrival

queue_record=sub_queue_depth(lists_action,lists_cmd,options);

%2 calculate the busy time of the device;

time_record=sub_busy_time(lists_action,options);

%3 average IOPS  and  throughput of requests options. 

time_interval=1;  %  set  the  time  window  =  1s  

average_record=sub_iops(lists_action,lists_cmd,options);

options.time_interval=6; %  set the time window = 6s

average_record=  sub_iops(lists_action,lists_cmd,options);

%4 calcuate the size distribution

req_size_record=sub_size_dist(lists_action,lists_cmd,options);

%5 calcuate the LBA/size  distribution

options.lba_size_set=50; %  adjust the range of LBA  in 

plotting

lba_stat_array=sub_lba_dist(lists_action,lists_cmd,options);
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%6 sequential analysis (stream/commands/size/queue  length)

options.near_sequence=0;  % sequential analysis

options.S2_threshold =32; %  limit the minimum number which is 

counted as sequence stream

options.max_stream_length=1024;

options.seq_size_threshold=1024; %  the size constraint for a 

sequential stream

sequence_stat=sub_sequence_analysis(lists_action,lists_cmd, 

options);

options.near_sequence=1;  % near sequential analysis;

options.S2_threshold =32; %  limit the minimum number which is 

counted as sequence stream

options.S2_threshold2   =64; options.max_stream_length=1024;

options.seq_size_threshold=1024; %  the size constraint for a 

near sequential stream

sequence_stat=sub_sequence_analysis(lists_action,lists_

cmd,options);

%7 calculate the sequence queue

% sub_sequence_queue(lists_cmd,options)

%8 stack distance analysis - WOW

% options.spec_stack=[10,20,30];  

% specify  the  stack  distance  for  very  large  datasets;

stack_wow_record=sub_stack_wow(lists_cmd,options);

%9 stack distance analysis - ROW

stack_row_record=sub_stack_row(lists_cmd,options);

%10 frequented write update ratio - WOW options.access_type=0; 

freq_wow_record=sub_freq_wow(lists_cmd,options);
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%11 timed/ordered update ratio - WOW 

options.access_type=0;  time_wow_record=sub_time_wow(lists_

cmd,options);

%12 seek distance calcuation

seek_dist_record=sub_seek_dist(lists_cmd,options);

%13 queue length and idle time

idle_queue_record=sub_idle_queue(lists_action,options);

save analyzed_data

batch generate ppt.m specifies the analysis contents. First, it needs 

a PowerPoint template, like workload.pptx. This template has some 

predefined frames/layouts with specified names via a master page. Here 

you use the tool named exportTopptx2 to access the slides:

options.ppt_template='E:\⎵workload.pptx'; 

exportToPPTX('open',options.ppt_template);

%% See all available masters and layout templates

%  You can programmatically access master/layout information

% You can also run exportToPPTX by itself to have this 

information printed to command window

pptxInfo = exportToPPTX;

fprintf('All⎵available⎵layout⎵templates:\n');

for ilayout=1:numel(pptxInfo.master(1).layout)

     fprintf('\t%d.⎵%s\n',ilayout,pptxInfo.master(1).

layout(ilayout).name);

end

2 This tool is developed by Stefan Slonevskiy and downloaded from  
www.mathworks.com/matlabcentral/fileexchange/40277-exporttopptx
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Second, it finds the corresponding analyzed results and figures 

from the saved dataset generated by batch analysis.m and creates the 

necessary remarks for the figures. Finally, it outputs a report in a pptx 

format. Take the IOPS page as an example. In this example, you use the 

predefined slide layout called 3Figure1Text, where there are some objects 

like Title 1, Footer Placeholder 2, Picture_11, Picture_12, Picture_22, 

and Text_main. These objects can be manipulated via the function 

exportToPPTX so you can easily adjust the content of the report based on 

requirements.

%%  generate  iops

filenames1=dir('iops*.fig');

filenames2=dir('throughput*.fig'); filenames3=dir 

('reqsize*.fig');

%  Layout #11: 3Figure1Text (Title 1, Footer Placeholder 2, 

Picture_11, Picture_12, Picture_22, Text_

a1=size(filenames1,1);

for i=1:a1

    exportToPPTX('addslide','Layout','3Figure1Text');

     exportToPPTX('addtext','Estimated  IOPS  and  Throughput','

Position','Title');

     exportToPPTX('addtext','Basic Properties','Position', 

'Text_sup');

    for j=1:3

        eval(['filenames=filenames',int2str(j),';']);

        h = hgload(filenames(i).name);

        set(gcf, 'color', 'white');

        set(gca, 'color', 'none');

        pic_pos=['Picture_' int2str(j)];

         exportToPPTX('addpicture',h,'Position', 

pic_pos,'Scale','maxfixed');

        close(h);
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    end

    temp_str1='Observe⎵if⎵burst⎵and⎵idleness⎵exist';

     temp_str2='Bursts⎵exist⎵if⎵there⎵are⎵peaks⎵much⎵ 
higher⎵than⎵the⎵average';

     temp_str3='Idleness⎵exist⎵if⎵there⎵are⎵troughs⎵much⎵ 
lower⎵than⎵the⎵average';

A sample of the auto-generated presentation slide is shown in 

Figures A-1 and A-2. The users can easily adjust the slide layouts for their 

scenarios.
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Figure A-1. A generated PowerPoint sample report

Appendix A  Tools And FuncTions



238

Figure A-2. A generated PowerPoint sample report (cont’d)

 Python-Based Tool: PBPAR
The Python-based tool is generally similar to the MATLAB-based tool. 

However, it provides more flexibility due to its wide interfaces to other 

programming languages. In addition, it is completed free and open sourced.

The following code shows how to call the analysis functions:

from numpy import *

from matplotlib.pylab import *

from scipy.stats import *

from scipy import *

import dill

from PBPAR import *
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lists_action=lists_action[:,0:2]

options=options_class()

options.export_report = 0

options.report_name = 'trace_analysis.ppt' options.export_

report = 0

options.plot_fontsize = 10

options.time_interval = 50

options.plot_figure = 1

options.offset_time = 0

idx=argsort(lists_action[:,0])

lists_cmd=lists_cmd[ix_(list(idx),[0,1,2])]

lists_action=lists_action[ix_(list(idx),[0,1])]

#0 obtain basic information

basic_info=sub_basic_info(lists_action,lists_cmd,options)

### call individual sub-functions

#1 average queue depth for completion and arrival

queue_record=sub_queue_depth(lists_action,lists_cmd,options)

#2 calculate the device busy time;

time_record=sub_busy_time(lists_action,options)

#3 average IOPS and throughput of requests

options.time_interval = 1

average_record=sub_iops(lists_action,lists_cmd,options)

options.time_interval = 6

average_record=sub_iops(lists_action,lists_cmd,options)

#4 calculate the size distribution req_size_record=sub_size_

dist(lists_action,lists_cmd,options)
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#5 calculate  the  LBA/size  distribution

options.lba_size_set  =  50

lba_stat_array=sub_lba_dist(lists_action,lists_cmd,options)

#6 sequential analysis (stream/commands/size/queue   length)

options.near_sequence = 0

options.S2_threshold = 32

options.S2_threshold2 = 64

options.max_stream_length = 1024

options.seq_size_threshold = 1024  sequence_stat=sub_sequence_

analysis(lists_action,lists_cmd,options)

options.near_sequence = 1

options.S2_threshold = 32

options.S2_threshold2 = 64

options.max_stream_length = 1024

options.seq_size_threshold = 1024 sequence_stat=sub_sequence_

analysis(lists_action,lists_cmd,options)

#7 sequence queue analysis

## sub_sequence_queue(lists_cmd,options)

#8 stack distance analysis - WOW

#  options.spec_stack=[10,20,30]; # for very large dataset 

stack_wow_record=sub_stack_wow(lists_cmd,options)

#9 stack distance analysis - ROW stack_row_record=sub_stack_

row(lists_cmd,options)

#10 frequented write update ratio – WOW

options.access_type = 0 freq_wow_record=sub_freq_wow(lists_

cmd,options)
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#11 timed/ordered update ratio – WOW

options.access_type  =  0 time_wow_record=sub_time_wow(lists_

cmd,options)

#12  seek  distance  calcuation seek_dist_record=sub_seek_

dist(lists_cmd,options) 

#13 queue length and idle time  idle_queue_record=sub_idle_

queue(lists_action,options)

Finally, you can call batch generate ppt.py to create the slide similar 

to the MATLAB code. Note that you use the Python library python-pptx3 as 

the wrapper to create the ppt file. python-pptx doesn’t need a PowerPoint 

installation.

 Interaction Between MATLAB and Python
Due to the similarity, it is not very difficult to convert code between two 

languages. Here are some tools/links for reference; Table A-1 compares 

them briefly:

• Small Matlab to Python compiler (SMOP): Converts 

MATLAB/Octave code to Python code, https://

github.com/victorlei/smop

• LiberMate: A MATLAB-to-Python (SciPy/NumPy) 

translator, https://github.com/awesomebytes/

libermate

• OMPC: Open-source MATLAB-to-Python compiler, 

which is a bit outdated, although partially functional, 

ompc.juricap.com/

3 http://python-pptx.readthedocs.io/en/latest/
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Pylab of Python provides functions to read MATLAB mat files. 

Wrappers and interfaces between two languages are also available:

• pymatlab: Interfaces and communicates with MATLAB 

from Python. Users can easily integrate a project with 

a large MATLAB codebase into Python scripts by using 

MATLAB scripts as a part of the Python program. 

https://pypi.python.org/pypi/pymatlab.

• Python-Matlab wormholes: Allows both directions of 

interaction. However, only n-dimensional float arrays 

of data types are supported. https://github.com/

pp5311006/python-matlab-wormholes.

• Python-Matlab Bridge: Offers the matlab magic 

extension for iPython to execute normal MATLAB code 

from within iPython. Scipy is required to handle sparse 

arrays. https://github.com/arokem/python-matlab- 

bridge.

Table A-1. Comparison of Code Converters

Developers First / Latest Required Library Remarks

libermate eric c. schug March 2009/

May 2014

numpy, scipy, 

matcompat

imported libs 

are common

sMop Victor lei June 2013/

dec 2016

smop supports 

octave

oMpc peter Jurica 2008/

June 2010

ompc provides 

online version
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• PyMat & pymat2: Allows Python programs to start, 

close, and communicate with a MATLAB engine 

session. The code is out of date. pymat.sourceforge.

net/, https://github.com/tinkuge/pymat2

• mlabwrap, mlabwrap-purepy: Makes MATLAB look 

like a normal Python library using PyMat. mlabwrap.

sourceforge.net/.

• pymex: Embeds the Python interpreter in MATLAB 

extension module. https://github.com/kw/pymex.

• matpy: Calls Python from MATLAB. Users can access 

MATLAB in multiple ways, such as creating variables 

or manipulating .mat files.  https://github.com/

invenia/matpy.
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APPENDIX B

 Blktrace and Tools
Blktrace was developed by Jens Axboe in early 2000. Since Linux version 

2.617-rc1, it has been embedded into the kernel. In fact, there have been 

no major changes since 2007. It has some main features as follows:

• Low overhead, such as <0.5% CPU usage of one core in 

Intel E5-1620

• An easy-to-use configuration with simple CLI 

commands

• Highly configurable with trace IO on one or several 

devices, plus user-selectable filter events

• Low cost. Compared to a hardware bus analyzer, it’s 

free of charge.

• Live and playback tracing

Figure B-1 shows the simplified structure of blktrace. You can see that 

it only considers device access after OS/FS cache. When IO enters to block 

IO layer (request queue), the relay channel per CPU gets events emitted, 

and blktrace then captures the events from the channels. Some events 

traces are listed as follows:

• Q: Request queue entry allocated

• S: Sleep during request queue allocation

https://doi.org/10.1007/978-1-4842-3928-5
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• I: Request queue insertion

• M: Back merge of IO on request queue

• F: Front merge of IO on request queue

• T: Unplug due to timer

• D: Request issued to underlying block dev

• C: Request completed

• P: Request queue plug operation

• U: Request queue unplug operation

• B: IO bounce operation

• X: IO split operation

• A: IO remap: MD or DM

Figure B-1. Blktrace structure
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It has wide applications, e.g.,:

• To analyze productivity of block devices (both real and 

virtual) and various hardware configurations

• To calculate potential expenses of resources (for 

example, at connection of program RAID)

• To define an optimal configuration for a specific 

program surrounding

• To estimate productivity of various file systems  

(e.g., EXT4, JFS, XFS, Btrfs) via differently interaction 

with block subsystems

• To analyze the efficiency of more complex systems, 

such as hybrid system, deduplication system, mobile 

storage system (e.g., Android), cloud system, etc.

Therefore, this tool has been extensively used in both academics and 

industries.

• Industry: HP, Oracle, IBM, Intel, WDC, Seagate, 

Huawei, Taobao, DHT, SGI, etc.

• Academics: Harvard University, University of 

California, Berkley, Imperial College of London, 

University of New South Wales, Florida International 

University, Sungkyunkwan University, Stony Brook 

University, University of Minnesota Twin Cities, Seoul 

National University, University of British Columbia, 

University of Maine, etc.
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Some examples are listed as follows:

• Alibaba/Taobao: Debug an broken output pipe problem 

in the new kernel 2.6.37 and monitor performance for 

HDFS, https://kernel.googlesource.com/pub/scm/

linux/kernel/git/axboe/blktrace/9bf422b17cb2330

f94376f8ca82a6e6cc496f9a3.

• IBM: Monitor and tune virtual I/O scheduler for 

virtualized storage systems, http://dl.acm.org/

citation.cfm?id=1254826.

• Intel: Aid tool for Hystor (a high-performance hybrid 

storage system, SSD+HDD) design, http://dl.acm.

org/citation.cfm?id=1995902.

• University of California, Berkeley: Determine the 

proper chunk size in HDFS for shared storage systems, 

www.eecs.berkeley.edu/alspaugh/papers/cake socc 

2012.pdf.

• University of Maine: Aid tool for migration algorithm 

design for hybrid storage systems, http://web.eece.

maine.edu/jyue/papers/mascots11.pdf.

Blktrace has a simple user interface. Two typical usages are

• Without command filter

$ blktrace -d /dev/sda -o blktrace.sda

• With command filter

$ blktrace -d /dev/sda -a fs -o - |blkparse -i -

The results can be output to the terminal, HDD, RAM disk, or 

TMPFS. It may be better to store trace in a different device from the one 

traced. The command details can be found in its man page or you can refer 

to the user manual.
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The trace collected by blktrace is in a binary format. In order to convert 

into a readable format, you need some tools to parse it. Blkparse produces 

formatted output of event streams of block devices. Figure B-2 provides 

an example output by blktrace. You can see that the IO request to device 

generally has D time (the time when request enters device) and C time (the 

time when request is completed), as well as some other file system-related 

time, such as queuing, insert, and merge.

Figure B-2. A sample trace collected by blktrace and parsed by 
blkparse

There are other tools related to blktrace:

• Verify blkparse/blkrawverify verifies an output file from 

blkparse.

• Btrace calls blktrace on the specified devices and pipes 

the output through blkparse for formatting.

• Btt represents an abbreviation of the expression of 

the blktrace timeline that is possible to translate as 

the chronicle of blktrace, www.fis.unipr.it/doc/

blktrace-1.0.1/btt.pdf.
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• Seekwatcher generates graphs from blktrace to 

visualize IO patterns and performance, https://oss.

oracle.com/mason/seekwatcher/.

• Iowatcher graphs the results of a blktrace run, 

masoncoding.com/iowatcher/.

These tools generally provide some basic information about the trace 

properties. For example, Seekwatcher visualizes some basic metrics 

such as throughput and IOPS, as shown in Figure B-3. Iowatcher makes 

an animation of IO events. However, they do not provide any inside 

information related to cache and queue, which is particularly useful for the 

new generation disk drives, like SMR. This motivates the development of a 

dedicated tool for block-level trace analysis.

Figure B-3. Basic information by IOwatcher
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