
Decoupled
Drupal in
Practice

Architect and Implement Decoupled
Drupal Architectures Across the Stack
—
Preston So
Foreword by Dries Buytaert

www.allitebooks.com

http://www.allitebooks.org

Decoupled Drupal in
Practice

Architect and Implement Decoupled
Drupal Architectures Across

the Stack

Preston So
Foreword by Dries Buytaert

www.allitebooks.com

http://www.allitebooks.org

Decoupled Drupal in Practice: Architect and Implement Decoupled Drupal
Architectures Across the Stack

ISBN-13 (pbk): 978-1-4842-4071-7			 ISBN-13 (electronic): 978-1-4842-4072-4
https://doi.org/10.1007/978-1-4842-4072-4

Library of Congress Control Number: 2018964944

Copyright © 2018 by Preston So

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484240717. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Preston So
Ridgewood, NY, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4072-4
http://www.allitebooks.org

To my mother, with love.

www.allitebooks.com

http://www.allitebooks.org

v

About the Author��xvii

About the Technical Reviewer���xix

Foreword���xxi

Acknowledgments���xxiii

Introduction��xxv

Table of Contents

Part I: Decoupled Drupal Fundamentals.. 1

Chapter 1: The Changing Web�� 3

Web Sites Are Now Just the Starting Point�� 3

From Web Sites to Web Applications�� 4

Responsive Web Design��� 5

Native Desktop and Mobile Applications�� 5

Zero User Interfaces��� 6

Conversational Content�� 7

Content in Augmented and Virtual Reality�� 7

Situational Content��� 8

Other Channels�� 9

Conclusion��� 10

Chapter 2: The Server Side: From Monolithic to Decoupled CMS���������������������������� 11

Monolithic Content Management��� 12

Decoupled Content Management��� 12

Web Services��� 15

REST and RESTful APIs�� 16

www.allitebooks.com

http://www.allitebooks.org

vi

RESTful and API-First Drupal��� 17

Content as a Service�� 19

Conclusion��� 19

Chapter 3: The Client Side: From Static to Dynamic Pages������������������������������������� 21

From Web 1.0 to Web 2.x��� 21

The JavaScript Renaissance�� 23

Universal (Isomorphic) JavaScript��� 24

JavaScript-to-Native Applications�� 27

Conclusion��� 28

Chapter 4: Decoupled Drupal��� 29

Fully Decoupled Drupal�� 31

Pseudo-Decoupled Drupal��� 32

Progressively Decoupled Drupal�� 34

Drupal as a Site and Repository��� 38

Use Cases for Decoupled Drupal�� 40

Conclusion��� 44

Chapter 5: Advantages of Decoupled Drupal��� 45

Content Syndication��� 45

Separation of Concerns�� 46

User-Centered User Experiences��� 46

Front-End Developer Experience��� 47

Pipelined Development�� 48

Conclusion��� 48

Chapter 6: Disadvantages of Decoupled Drupal�� 49

Additional Point of Failure�� 49

Security and Input Sanitization�� 50

Contextualized Editing and Administration�� 50

Layout and Display Management��� 51

Table of Contents

vii

Previewable Content Workflows�� 51

System Notifications�� 51

Monolithic Performance Benefits��� 52

Accessibility and User Experience��� 52

Conclusion��� 53

Part II: Decoupling Drupal... 55

Chapter 7: Decoupling Drupal 8 Core�� 57

The Web Services and Context Core Initiative�� 57

The Serialization Module��� 59

How Serialization Works��� 60

Adding a New Encoding��� 62

The Serialization API�� 63

Serializing and Deserializing�� 63

Encoding and Decoding Serialization Formats��� 63

Normalizing and Denormalizing��� 64

Using Entity Resolvers�� 64

The RESTful Web Services Module�� 65

The RESTful Web Services API��� 65

Configuring REST Resources�� 66

Using the RESTful Web Services Module��� 66

Exposing Resources with Entity Access��� 66

Customizing a REST Resource’s Format and Authentication Method������������������������������������� 67

Hypertext Application Language�� 68

Setting Up Drupal 8 as a Web Service Provider��� 69

Installing Composer�� 69

Downloading Drupal and Drupal Dependencies with Composer�� 70

Provisioning a Drupal Site�� 72

Generating Content and Enabling Core REST Modules��� 73

Table of Contents

viii

Configuring Core REST��� 74

Configuring CORS��� 77

Conclusion��� 79

Chapter 8: Decoupling Drupal 8 with Contributed Modules������������������������������������ 81

The Drupal Web Services Ecosystem��� 81

JSON API�� 83

The JSON API Specification�� 84

The JSON API Module��� 88

The JSON API Module API��� 88

RELAXed Web Services�� 91

The Drupal Deploy Ecosystem�� 91

The CouchDB Replication Protocol��� 92

The RELAXed Web Services Module��� 94

The RELAXed Web Services REST API�� 96

PouchDB and Hoodie�� 97

GraphQL��� 98

Motivating GraphQL�� 98

The GraphQL Specification��� 100

The GraphQL Module�� 107

REST UI�� 108

Conclusion��� 110

Chapter 9: Authenticating Requests in Drupal 8��� �113

Basic Authentication�� 113

HTTP Basic Authentication��� 114

The Authorization Header��� 115

Cookie-Based Authentication��� 116

Retrieving Cookies in Fully Decoupled Consumers�� 117

Authenticating Using Cookies��� 119

Table of Contents

ix

OAuth 2.0 Bearer Token Authentication��� 120

OAuth 2.0 Grants�� 121

Installing Simple OAuth and Generating Keys�� 122

OAuth 2.0 Scopes and Drupal Roles��� 123

Creating and Verifying Access Tokens�� 125

Issuing OAuth 2.0-Authenticated Requests�� 127

Handling Expired Tokens�� 128

JSON Web Tokens�� 130

The JSON Web Tokens Standard��� 130

How JSON Web Tokens Work�� 133

Installing JSON Web Tokens��� 134

Creating JWT HMAC and JWT RSA Keys�� 135

Issuing and Validating JWTs��� 138

Issuing JWT-Authenticated Requests��� 139

Conclusion��� 140

Part III: Consuming and Manipulating Drupal 8.. 141

Chapter 10: Core REST��� 143

Issuing REST Requests Against Drupal Core�� 143

Safe and Unsafe Methods�� 144

The X-CSRF-Token Header��� 145

Specifying Serialization Formats�� 145

Retrieving Content with Core REST�� 146

Creating Content with Core REST��� 147

Updating Content with Core REST�� 153

Deleting Content with Core REST��� 158

Conclusion��� 160

Table of Contents

x

Chapter 11: Using Views with Core REST�� 161

Using Views for Content Listings��� 161

Creating Views for REST Export Displays��� 162

Custom Content Types with Views REST Exports��� 168

Retrieving Views REST Exports with Core REST�� 178

Conclusion��� 180

Chapter 12: JSON API in Drupal��� 183

Retrieving Resources with JSON API��� 184

Retrieving Single Resources��� 184

Retrieving Resource Collections��� 185

Retrieving Limited Subsets of Fields�� 195

Retrieving Entity References�� 195

Creating Resources with JSON API�� 195

Updating Resources with JSON API��� 198

Deleting Resources with JSON API�� 200

Conclusion��� 201

Chapter 13: RELAXed Web Services�� 203

Retrieving Resources with RELAXed Web Services��� 206

Retrieving Workspaces and Workspace Collections��� 207

Retrieving Documents and Document Collections��� 210

Retrieving File Attachments��� 213

Creating and Updating Resources with RELAXed Web Services�� 217

Creating Workspaces�� 217

Creating Documents��� 220

Updating Documents�� 226

Creating and Updating Documents in Bulk��� 229

Table of Contents

xi

Deleting Resources with RELAXed Web Services�� 236

Deleting Workspaces�� 236

Deleting Documents��� 237

Deleting File Attachments�� 237

Conclusion��� 238

Chapter 14: GraphQL in Drupal�� 239

Retrieving Entities with GraphQL��� 239

Retrieving Individual Entities�� 240

Retrieving Entity Collections��� 247

GraphQL Mutations in Drupal��� 263

Conclusion��� 264

Part IV: The Decoupled Drupal Ecosystem... 267

Chapter 15: API-First Distributions��� 269

Contenta��� 270

Installing Contenta�� 272

Reservoir�� 274

Installing Reservoir��� 277

Using Reservoir�� 278

Headless Lightning�� 279

Installing Headless Lightning��� 280

Conclusion��� 281

Chapter 16: Software Development Kits and Reference Builds����������������������������� 283

The Waterwheel Ecosystem��� 284

Waterwheel.js��� 284

Consuming and Manipulating Drupal with Waterwheel.js�� 291

Waterwheel.swift�� 299

ember-drupal-waterwheel��� 300

react-waterwheel-app�� 301

Table of Contents

xii

The Contenta Ecosystem��� 303

Contenta Reference Builds��� 303

Contenta.js��� 308

Conclusion��� 309

Part V: Integration with Consumers.. 311

Chapter 17: React�� 313

Key Concepts in React��� 314

Scaffolding a React Application and Installing Dependencies�� 314

The Index Component��� 317

React State and Declarative Rendering�� 320

React Routing and Components��� 323

Backing React with Drupal and JSON API�� 326

Retrieving Drupal Data with axios�� 327

Handling Errored and Loading States��� 329

Conclusion��� 334

Chapter 18: React Native��� 335

Key Concepts in React Native�� 336

Scaffolding a React Native Application��� 336

React Native Views��� 338

React Native Styles�� 341

React Native Components�� 346

Backing React Native with Drupal and JSON API��� 349

Retrieving Drupal Data with axios�� 349

Handling Errored and Loading States��� 352

Conclusion��� 354

Chapter 19: Angular�� 355

Key Concepts in Angular�� 355

Scaffolding an Angular Application��� 356

The Root Component�� 358

Two-Way Data Binding��� 359

Table of Contents

xiii

Angular Components�� 361

Angular Directives�� 365

Angular Services�� 370

Backing Angular with Drupal and JSON API��� 375

Adding HttpClient to Angular�� 375

Retrieving Data from Drupal and Handling Observables�� 376

Subscribing to Observables in Components��� 378

Conclusion��� 380

Chapter 20: Vue.js��� 381

Key Concepts in Vue.js��� 382

The Vue.js MVVM-Inspired Pattern��� 382

Declarative Rendering and Directives�� 383

Vue.js Components��� 387

The Vue.js Ecosystem��� 389

Backing Vue.js with Drupal and JSON API�� 391

Scaffolding a Vue.js Application�� 391

Retrieving Drupal Data with axios�� 392

Handling Errored and Loading States��� 394

Conclusion��� 396

Chapter 21: Ember��� 399

Key Concepts in Ember�� 400

The Ember Ecosystem�� 400

Scaffolding an Ember Application�� 401

Ember Templates�� 403

Ember Routes��� 404

Ember Components�� 406

Ember Models��� 410

Table of Contents

xiv

Backing Ember with Drupal and JSON API��� 411

Ember Adapters and JSONAPIAdapter�� 411

Fetching Data in Route Handlers�� 412

Customizing JSONAPIAdapter�� 413

Conclusion��� 416

Part VI: Advanced Topics in Decoupled Drupal.. 417

Chapter 22: The REST Plug-in System��� 419

Creating a Custom Module��� 419

Implementing REST Resource Plug-ins��� 420

Annotating REST Resource Plug-ins��� 422

Serving Responses in Resource Plug-ins��� 423

Conclusion��� 426

Chapter 23: Contributed Modules for Advanced Use Cases����������������������������������� 427

JSON API Extras��� 427

JSON API Defaults�� 430

JSON-RPC�� 431

Subrequests��� 435

Subrequests Blueprints�� 437

Handling Request Dependencies�� 438

Using Subrequests Blueprints�� 440

Decoupled Router�� 442

Conclusion��� 443

Chapter 24: Schemas and Generated Documentation��� 445

Schemata��� 445

Generated API Documentation��� 449

OpenAPI��� 449

Generated Code��� 452

Conclusion��� 453

Table of Contents

xv

Chapter 25: Caching�� 455

Use Cases for Caching in Decoupled Drupal�� 455

The Drupal Cache Tag System��� 456

Reverse Proxies and Content Delivery Networks��� 458

Cache Indexing��� 461

Cache Invalidation�� 462

Conclusion��� 463

Chapter 26: The Future of Decoupled Drupal��� 465

The Admin UI and JavaScript Modernization Initiative��� 466

The Future of the Drupal Front End�� 467

Universal Editing��� 469

Progressive Decoupling and Decoupled Blocks��� 471

Shared Templating, Rendering, and Routing��� 473

Decoupling Drupal by Design��� 476

Conclusion��� 478

Index�� 481

Table of Contents

xvii

About the Author

Preston So has been a web developer since 2001, a Drupal

developer since 2007, a Drupal contributor since 2009, and a

globally recognized expert on decoupled Drupal since 2015.

Currently, he works as Director of Research and Innovation

at Acquia, where he is the primary subject-matter expert and

evangelist for decoupled Drupal and API-first approaches.

Previously, he led the Entertainment Weekly development

team at Time Inc. (now Meredith). Over the last decade,

he has given talks at more than 50 conferences on five

continents in multiple languages on a variety of topics,

including front-end development, responsive design, user

experience, Drupal development, open source innovation,

emerging technologies (conversational interfaces, augmented reality), the decentralized

web, and decoupled Drupal. He has presented at SXSW Interactive twice (2017, 2018)

and at industry conferences around the world, including Frontend United, Great Wide

Open, and others. He has also delivered keynotes at conferences on four continents in

multiple languages on the subject of decoupled Drupal.  

xix

About the Technical Reviewer

Brandon Scott is a software architect with a passion for

improving experiences for both end users and engineers

alike. Over his career Brandon has built his experience

across many industries including finance, entertainment,

and education. His primary focuses have been creating

distributed systems, developing coaching strategies for

engineers, and leading experience design workstreams.

Recently he has partnered with Razer, Inc., focusing on the

design of their SDK products and open source libraries.

Brandon has also previously worked with Microsoft on exploring their Microsoft Store

capabilities with the education sector.  

xxi

Foreword

When I started the Drupal project 18 years ago in a cramped Belgian dorm room,

working nights and weekends on what was originally supposed to be a message board

for my friends, I could never have imagined the impact that my software project would

have. Today, Drupal powers a full 2 percent of web sites online, and it has a devoted

open source community of more than a million people from all walks of life around the

world.

Nor could I have imagined back then the variety of places where we encounter

Drupal today, beyond the web sites that used to be Drupal’s primary focus. In just

the last few years, we have seen Drupal used to power digital signage on university

campuses, in-flight entertainment systems, interactive kiosks on cruise ships, and even

real-time updates about the next arriving train in a major transit system.

A little over two years ago, on my blog, https://dri.es, I wrote about how Drupal

is for ambitious digital experiences. When we talk about ambitious digital experiences,

though, we aren’t just concerned with web sites; we mean virtual and augmented reality,

conversational interfaces, and Internet of Things applications that are only now getting

started.

Now that Drupal has a strong API-first focus with web services available out of the

box, decoupled Drupal is a critical component of making it easy to build the ambitious

digital experiences we want to see in the world. It is no accident that Drupal is today

considered a leader in decoupled architectures among content management systems.

Thanks to Drupal’s web services, any application can create and edit content on Drupal.

We have well-known standards like JSON API, GraphQL, and CouchDB, and a growing

ecosystem of tools around decoupled Drupal that make it simple for developers to build

applications in any technology.

That is why this book, which I’m excited to see published, is so important. Preston

So is a respected voice in the Drupal community, with expertise in Drupal dating back

to 2007. I first worked directly with him in 2012 on the Spark initiative, a community

effort to improve the user experience of Drupal’s editorial interface, back when he

was a college student. Since three years ago, when he first began to explore decoupled

Drupal, Preston has become well-known worldwide through his writing and speaking

https://dri.es/

xxii

on the topic, and he spearheaded the effort to adopt React to build new administrative

interfaces in Drupal core. He has been instrumental in driving adoption of decoupled

architectures in the Drupal community. I’ve been working alongside Preston on these

efforts, and I can tell you there is no one better to write this book.

The book you hold in your hands is a must-have guide to decoupling Drupal, from

the history and background of how this trend came to be all the way to the details of how

to work with the nuances of Drupal’s web service APIs. When you finish reading, I think

you will agree that decoupled Drupal is an essential element of the bright future in front

of Drupal.

If you’re new to Drupal, I give you my warm welcome and invite you to report issues

on Drupal.org, join us at one of our many Drupal events, and consider contributing just

a little of your time, no matter whether you work with code, documentation, design,

usability testing, or anything else. I’m thrilled that this book is now available for the

Drupal community and the wider web development universe, who can now discover

Drupal in a new light.

Dries Buytaert

Boston

September 15, 2018

Dries Buytaert is the original creator and project lead for the Drupal open source web

publishing and collaboration platform. He is cofounder and chief technology officer

of Acquia, a venture-backed software company that offers products and services for

Drupal. A native of Belgium, Buytaert holds a PhD in computer science and engineering

from Ghent University and a Licentiate Computer Science (MsC) from the University

of Antwerp. In 2008, Buytaert was elected Young Global Leader at the World Economic

Forum as well as MIT TR 35 Young Innovator.

Foreword

xxiii

Acknowledgments

Authoring a book, particularly on a rapidly evolving and maturing subject area like

decoupled Drupal, is a demanding endeavor fraught with challenges and rewards as well

as highs and lows. I have been incredibly fortunate to have the support of a great many

individuals and organizations in crafting this work. There are far too many names to fit in

this space, and although it is an unwritten law that all acknowledgments sections suffer

from incompleteness, I will do my best here.

First, I would like to express my gratitude to Acquia and my teammates in the

Office of the CTO (OCTO), who have been wonderful throughout this undertaking. In

particular, my thanks to Dries Buytaert, Drupal project lead and Acquia CTO, for his

unwavering support over the course of this project. Thank you also to my dear friend

Wim Leers, who was among the very first confidants to whom I revealed my plans long

ago and whose healthy skepticism as an engineer paired with moral support as a friend

has both moderated and buoyed my efforts. I also wish to thank Terrence Kevin O’Leary

(tkoleary), who was an amazing mentor during my first stint at Acquia and continues to

boost all of my professional pursuits today.

I express my fond thanks to all of my other former and current OCTO colleagues,

who are nothing short of extraordinary in every sense of the word: Alex Bronstein

(effulgentsia), Angie Byron (webchick), ASH Heath, Chris Hamper (hampercm), Emilie

Nouveau (dyannenova), Gabe Sullice (gabesullice), Gábor Hojtsy, Jess (xjm), Jesse

Beach (jessebeach), Lauri Eskola (lauriii), Leah Magee, Mark Winberry (markwin), Matt

Grill (drpal), Michael Meyers (michaelemeyers), Moshe Weitzman (weitzman), Sam

Mortenson (samuel.mortenson), Ted Bowman (tedbow), and Tim Plunkett (tim.plunkett).

Second, I wish to express my appreciation to all the contributors involved in two

strategic initiatives that are mapping the future of Drupal even as the ink dries on this

page: the API-first Initiative and the Admin UI and JavaScript Modernization Initiative.

Thank you to the coordinators of the API-first Initiative not already mentioned, without

whom this book would be impossible: Daniel Wehner (dawehner), Mateu Aguiló Bosch

(e0ipso), and Sebastian Siemssen (fubhy). My thanks also to the coordinators of the

Admin UI and JavaScript Modernization Initiative not yet mentioned: Cristina Chumillas

(ckrina) and Sally Young (justafish).

xxiv

Third, I want to thank the entire Drupal community in Colorado, whose tireless

efforts to cultivate the local community spurred my own involvement in Drupal and

professional growth over the last 11 years. I especially wish to express my gratitude to

the late Rick Nashleanas, who hired me at Monarch Digital in Colorado Springs and

promptly shifted our entire web business to Drupal, and Matt Tucker (ultimateboy),

who first introduced me to the inner workings of Drupal over a decade ago. My gratitude

also goes to my high school English teacher Jeff Flygare, who encouraged me to pursue

interests in web development and writing. Who would have thought these two hobbies

of mine would come together in this way?

Thank you to the editorial staff at Apress for facilitating an excellent author

experience from start to finish, especially Nancy Chen, Louise Corrigan, and James

Markham. Fond thanks also to technical reviewer Brandon Scott, who provided

actionable and insightful feedback throughout the process.

I also wish to express my deep appreciation for the members of the Acquia Marketing

team who have supported my book project since day one, including Andrea Rosmarin,

DC Denison, and David Churbuck. My fond respect and gratitude also go to Christopher

Rogers, David Butler, Drew Robertson, Eric Williamson, Gigi Anderson, Lynne Capozzi,

Molly Sloan, Reena Leone, and Saša Zelenović.
I am grateful for all of my friends and family spread throughout New York City,

Boston, and the globe that have supported me in innumerable ways over the course of

this past year. Your friendship and love mean the world to me.

Last but not least, I also wish to express my unending appreciation for the worldwide

Drupal community, without whom the software underpinning this book would not exist.

This incredibly open, welcoming, and quirky open source community has galvanized an

inestimable passion in my heart for the ideals of free and open source software and the

principles that have guided Drupal throughout its history and continue to do so today.

I wish to close with a few words of encouragement to all those, like me, who have

been marginalized, underrepresented, and often oppressed in our industry. It is my

sincere hope that this work inspires you to pursue your own addition to our discourse

and introduce your invaluable perspective and unique expertise. We urgently need more

voices like yours, front and center, on stage at conferences, and at our local bookstores

and libraries; and we must continue to broaden the space for contributions like yours to

flourish and inspire.

Acknowledgments

xxv

Introduction

At no point in the history of content management has there been such a dizzying

proliferation of devices in our lives and of the digital experiences we encounter and

consume. Long the most critical element of an organization’s digital presence, the web

site is increasingly treated as just a single facet in a kaleidoscope of content channels

and form factors. Many of today’s users, in the course of acquiring content or data, never

even touch a traditional web browser.

On a daily basis, users interact with a staggering array of different clients, also known

as consumers: native mobile applications on smartphones, native desktop applications

on personal computers, over-the-top boxes on televisions, chat applications,

conversational interfaces, and Internet of Things (IoT) devices. Today, these consumers

tend to interact with a single server that acts additionally as a content repository or data

store.

This phenomenon has upended architectural paradigms and prior approaches

across the industry. Traditionally, web sites, especially larger ones, are administered

through a content management system (CMS), software that enables the creation and

manipulation of content and its formatting and layout. Many traditional CMSs, having

long specialized in web site administration, are underprepared for the ongoing explosion

of content channels.

Drupal, a free and open source CMS created by Dries Buytaert, is a notable

exception to this trend. In recent years, Drupal has been recasting itself as a CMS that

can be employed not just as an end-to-end system for traditional web sites, but also

for communication with clients ingesting data and other servers—as well as a cohesive

hybrid of both. This portends exciting new possibilities for one of the most commonly

used content management frameworks in existence today.

Other CMSs on the market suffer from certain disadvantages in the new digital

landscape. WordPress, which offers a RESTful API known as WP-API, nonetheless

lacks a flexible content model like Drupal’s and employs a homegrown specification

that enforces a learning curve for developers building data consumers. Meanwhile,

proprietary alternatives such as Contentful and Prismic, although quickly gaining market

share, are suboptimal for those who prefer to work with open source from end to end.

xxvi

In these pages, we will inspect concepts and ideas in decoupled Drupal from the

minutest details, such as how to issue requests that yield desired responses on the

consumer, to the bigger picture, including the implications of decoupled Drupal for the

future of Drupal and CMS architectures in general. By the end of this book, you will gain

an idiomatic understanding of Drupal’s APIs and their consumption and successfully

build simple content applications in a variety of technologies.

Part 1, “Decoupled Drupal Fundamentals,” outlines a trajectory for how monolithic

CMS architectures have increasingly evolved into decoupled or “headless” CMS

architectures for the demands of today’s multichannel world. Drawing a parallel

between the history of the CMS and the evolution of the web page, the first three

chapters outline how decoupled CMS architectures surfaced from the need to break

architectural and technical barriers. From there, we will define decoupled Drupal as

comprehensively as possible, evaluate its most common architectural approaches, and

enumerate the risks and rewards of decoupling Drupal. Part 1 can be safely skipped for

those already familiar with RESTful approaches and decoupled CMS architectures.

Part 2, “Decoupling Drupal,” scrutinizes Drupal in its capacity as a content service,

web service provider, and content repository. In those chapters, we will examine web

services solutions available in Drupal 8, both within Drupal core as a result of the

Web Services and Context Core Initiative (WSCCI) and among contributed modules.

Configuring Drupal as a RESTful data service will be described in detail, along with

available authentication mechanisms.

Part 3, “Consuming and Manipulating Drupal 8,” introduces how to bridge

the gap between Drupal and its API consumers, which typically occurs through

XMLHttpRequests (XHR). These chapters deal with how to form requests that will create,

read, update, and delete data on Drupal’s server side using core REST and contributed

solutions such as JSON API, RELAXed Web Services, and GraphQL.

Part 4, “The Decoupled Drupal Ecosystem,” deals with the emerging ecosystem

surrounding Drupal with regard to API-first distributions, which aid developers that are

new to Drupal, as well as software development kits (SDKs) and reference applications,

which furnish boilerplates for developers to build on and bridge the gap between Drupal

and consumer technologies. In the process, we identify projects such as Contenta,

Reservoir, Headless Lightning, and the Waterwheel ecosystem.

Part 5, “Integration with Consumers,” explores the development of Drupal-backed

(i.e., consuming or manipulating data from Drupal) applications themselves rather than

solely the requests and responses that underpin them. Using a variety of widespread

Introduction

xxvii

technologies, these chapters explain how to integrate decoupled Drupal with JavaScript-

based consumers.

Part 6, “Advanced Topics in Decoupled Drupal,” deals with issues of decoupled

Drupal in production, such as the REST plug-in system, self-documenting APIs, code

generation, and caching. In addition, these chapters assess questions about the future

of decoupled Drupal, content management, and decoupled CMSs from a critical

standpoint.

This book illuminates decoupled Drupal as an expanding paradigm ready for prime

time but also answers the increasing need to provide greater clarity, standardization,

and best practices around emerging approaches. Decoupled Drupal invites exciting

new advancements in user experience and digital ecosystems, but risks and drawbacks

limit its appropriateness for all use cases. Straddling two wildly different epochs in

content management, decoupled Drupal is a critical turning point not only in how we

conceptualize and deliver content, but also how we envisage our relationship to those

experiences.

Introduction

PART I

Decoupled Drupal
Fundamentals
In Part 1, we will establish an important conceptual foundation for decoupled Drupal,

a paradigm witnessing vast popularity but not without its risks. First, we will inspect

how the changing web has impacted the evolution of the content management system

by locking open the door to digital experiences in other technologies. Concurrent

changes in the server side and client side, most importantly universal JavaScript, have

encouraged even web practitioners to explore decoupled CMS architectures for more

than just native applications.

We define decoupled Drupal as the use of Drupal as a content service for

consumption by other applications, identifying two major architectural paradigms in

the process. The first, fully decoupled Drupal, a complete separation between Drupal’s

default front end and consumer applications, is increasingly employed not only to

satisfy the requirements of native and IoT applications but also JavaScript applications.

Another, progressively decoupled Drupal, provides a middle ground by interpolating

JavaScript frameworks into the Twig-driven front end.

Finally, after diving into the use cases and motivations for decoupling Drupal, we

will analyze some of the key advantages and disadvantages of these approaches, which

include considerations not only for developers but also the content editors, site builders,

site administrators, and end users who will inevitably forge and manipulate the resultant

experiences. Due to the relative immaturity of decoupled Drupal, I encourage you to

evaluate these risks and rewards carefully during project discovery, as these architectural

decisions may have outsized ramifications later in the process.

3
© Preston So 2018
P. So, Decoupled Drupal in Practice, https://doi.org/10.1007/978-1-4842-4072-4_1

CHAPTER 1

The Changing Web
Perhaps the most compelling fact about the Cambrian explosion, a seminal event in

Earth’s history, was that extant life forms diversified from mostly unicellular organisms

into multicellular organisms that came to represent most of the present-day animal

kingdom—all at one moment in the fossil record 541 million years ago. In the last

several years, digital experiences and content management are in the midst of another

Cambrian explosion—not in life forms, but in form factors.

In the present day, users are presented with a fast-growing buffet of options to

interact with organizations. A typical university student experience in the United

States, for instance, can potentially involve a range of touchpoints including a web

site, a mobile application, digital signage, and interactive kiosks. This phenomenon

engenders a fundamental question of how to prepare and architect for a widening range

of experiences that comes close to approaching the optimal state of content everywhere.

Before leaping headlong into how we can conceive and construct these experiences, it

is useful to zoom out and take stock of where we have been and how digital experiences

have evolved and will progress in the future. We can only build what we can clearly

define.

�Web Sites Are Now Just the Starting Point
Until the late 1990s, the vast majority of web site content was made up of text, images,

and, infrequently, other media assets. This original state of web content consisted of

large chunks of narrative or long-form text, with images and other media punctuating

this text. From the perspective of user experience on the Web, most users interacted with

these experiences with the sole help of the mouse and keyboard that were the primary

means of interfacing with a desktop computer.

4

As late as the end of the First Browser War, standards for writing web sites were not

codified evenly across vendors responsible for web browsers, even after the Cascading

Style Sheets (CSS) standards promulgated by Håkon Wium Lie in 1994 emerged as a

widely understood specification by the late 1990s. The slow adoption of well-established

World Wide Web Consortium (W3C) standards for some time stunted the growth of best

practices in the realm of web development such as the jettisoning of table-based layouts

and the introduction of CSS-based layouts. In the meantime, strong competition between

browser makers Netscape and Microsoft overshadowed the emergence of JavaScript, a

programming language initially prototyped in a mere ten days in 1995 by Brendan Eich

that later saw itself implemented in profoundly different ways in distinct browsers.

The free and open source Drupal content management system (CMS) played a

role in the evolution toward server-side dynamic web pages between its version 1.0

and 3.0 releases. The advent of server-side dynamism, which allowed a server-side

implementation—such as a CMS—to create markup and concatenate templates with

user-generated content retrieved from a database, overturned the previous approach

of uploading flat Hypertext Markup Language (HTML) files and media assets via File

Transfer Protocol (FTP). In turn, server-side dynamism was an important antecedent for

the migration of such application logic to the client side in the 2000s. More detail on this

can be found in Chapter 3.

For many web developers, it can be hard to grasp that web sites are considered

only the starting point in the current state of our industry. Nonetheless, there are

innumerable other formats where the codification of best practices and standards

similar to what transpired in the early-2000s Web remains in its initial stages.

�From Web Sites to Web Applications
Web 2.0 and Dynamic HTML (DHTML) heralded the entry of interactive elements on

web sites, marking the beginning of the era of web applications. In the early 2000s, in

contrast to its previous infamy as an inconsistently implemented language from browser

to browser, JavaScript was utilized to enhance interactions via Asynchronous JavaScript

and XML (Ajax), which facilitated dynamic markup changes on the client side after a

web page was flushed to the browser.

With the help of the Ajax paradigm, front-end developers benefited from the

XMLHttpRequest (XHR) application programming interface (API), a core feature of

JavaScript in the browser, to retrieve data from servers asynchronously and provide for

Chapter 1 The Changing Web

5

background operations that did not require full page refreshes. This transition can be

considered the moment when web sites truly became web applications rather than flat

assets delivered to a browser, solidifying the move away from flat-file HTML or markup

cobbled together on the server side. The “new” web page was one with dynamic portions

that would obviate the necessity of full round trips back to the server.

At this point in the history of web development, the distinction between web sites

and web applications becomes increasingly ambiguous, and it remains difficult to codify

such a differentiation today. See Chapter 3 for more about the evolution of client-side

JavaScript, the resulting JavaScript renaissance, and universal (isomorphic) JavaScript.

�Responsive Web Design
The late 2000s saw the advent of responsive web design (RWD), which emerged as a

method of offering web sites the capability to seamlessly transition across desktop,

tablet, and mobile without requiring that distinct versions of the page itself be provided.

By conceiving of content as a fluid (“content is like water”) that adapts to the vessels in

which it sits, responsive web design, a term coined by Ethan Marcotte in 2010 but already

present on some web sites even in the early 2000s, removed the desktop–mobile divide

from web design and is today ubiquitous around the Web and an important exemplar of

user interface plasticity.1

In RWD, web content can adhere to the confines of a typical web site or take on many

of the traits of native mobile applications when viewed on a mobile device. From the

perspective of the user, the experience on a mobile device is similar but distinguishable,

as on mobile, most assets such as text and images span the entire viewport.

�Native Desktop and Mobile Applications
Native desktop and mobile applications—and frameworks to build them—have existed

for many years, but they were typically proprietary ecosystems coupled with platform-

specialized technologies. Developers needed to engage with two starkly different

ecosystems and communities to write iOS applications in Objective-C as opposed to

Android applications in Java.

1�Marcotte, Ethan. “Responsive Web Design.” A List Apart. 25 May 2010. Accessed 1 April 2018.
http://alistapart.com/article/responsive-web-design

Chapter 1 The Changing Web

http://alistapart.com/article/responsive-web-design

6

By the late 2000s, frameworks endeavoring to facilitate cross-device native mobile

application implementations began to appear. These tended to be based on nonnative

code, as seen in the example of Xamarin, which translated applications written in

C# to native-ready code. The releases of Titanium and Cordova (formerly known as

PhoneGap), which are web application frameworks optimized for building native mobile

applications, reflected a new tendency toward web-to-native frameworks enabling

developers to write code familiar to them before compiling it to native code. By 2013,

Titanium powered applications on approximately 10 percent of all smartphones around

the world.2

In light of the JavaScript renaissance, JavaScript frameworks and libraries like React

and Angular have immersed themselves in the web-to-native paradigm by providing

vanilla JavaScript-to-native frameworks like React Native, Electron, and Ionic. Some

of these frameworks also offer features that enable developers to build native desktop

applications through web technologies. As such, JavaScript-to-native frameworks

emphasize cross-platform similarity in applications by touting the desire for web

applications to be indistinguishable from their native equivalents.

�Zero User Interfaces
Beyond the realm of web development, user interfaces are evolving in similarly

disruptive ways, staking their claim to the range of channels that organizations are

asked to consider outside of web sites, web applications, and native applications. Some

user interfaces used today on a day-to-day basis no longer rely on manual—or visual—

user interface components. Such zero user interfaces lack screens and physically

manipulated elements entirely.3

Voice assistants such as the Amazon Echo and Google Home both fit the zero user

interface paradigm, but other interfaces depending on aural or gestural manipulation

are also part of this paradigm, such as ambient and haptic interfaces that react to

surrounding stimuli rather than explicit user input on a screen or manual input.

2�Bort, Julie. “Microsoft Might Buy a Startup that Powers 10 Percent of the World’s Smartphones.”
Business Insider. 1 February 2013. Accessed 1 April 2018. http://www.businessinsider.com/
microsoft-eyes-appcelerator-acquisition-2013-2#ixzz2YmNSFhT7

3�Brownlee, John. “What Is Zero UI? (And Why Is It Crucial to the Future of Design?).” Fast
Company. 2 July 2015. Accessed 1 April 2018. https://www.fastcodesign.com/3048139/
what-is-zero-ui-and-why-is-it-crucial-to-the-future-of-design

Chapter 1 The Changing Web

http://www.businessinsider.com/microsoft-eyes-appcelerator-acquisition-2013-2#ixzz2YmNSFhT7
http://www.businessinsider.com/microsoft-eyes-appcelerator-acquisition-2013-2#ixzz2YmNSFhT7
https://www.fastcodesign.com/3048139/what-is-zero-ui-and-why-is-it-crucial-to-the-future-of-design
https://www.fastcodesign.com/3048139/what-is-zero-ui-and-why-is-it-crucial-to-the-future-of-design
https://www.fastcodesign.com/3048139/what-is-zero-ui-and-why-is-it-crucial-to-the-future-of-design

7

Although well beyond the scope of this book, zero user interfaces and their interaction

design will demand a rethinking of usability testing as interfaces become increasingly

adaptive and intelligent in their own right.

�Conversational Content
Conversational content, which entails interaction with content through dialogues in

text or voice, has been a favorite target of marketing teams and organizations in the last

few years. The aforementioned voice assistants occupy one side of the conversational

interface spectrum, but traditional chatbots, Short Message Service (SMS) textbots, and

messenger bots like those encountered on Facebook and Slack are also changing the face

of content access. Some voice assistants such as Amazon Echo and Google Home can be

programmed with custom functionality, whereas device assistants such as Cortana and

Siri reflect more closed ecosystems that limit custom code.

Conversational content is inaccessible without an information architecture that

provides forks in the road leading to one’s desired content. It tends toward single

utterances limited in length to maintain attention and cannot depend on media assets

outside of audio. Users can only interact with conversational interfaces in verbal forms

that are spoken or written.

For many organizations, serving web-based content as conversational content

without any change through a rudimentary chatbot might satisfy the need for

centralized content but is wholly inadequate for customers that require more

conversation-friendly content resembling authentic human interlocution. Crafting

conversational content remains a relatively unexplored wilderness where platform

agnosticism is beginning to take shape, with the help of new businesses such as

Dialogflow (formerly known as api.ai).

�Content in Augmented and Virtual Reality
Even as content is becoming increasingly conversational, content is also more and more

contextual. Nascent technologies such as machine vision (detecting and identifying

items in view of a device) and augmented reality (AR; superimpositions of media over

a projection of the real world) portend a future in which content will be a fixture in our

physical world as much as it is in our digital world.

Chapter 1 The Changing Web

8

Particularly important for marketing teams and organizations is an emphasis

on location-specific content that can also reside in the context of a user’s physical

surroundings, whether that entails a projection of the user’s actual surroundings (as in

AR) or a fictional presentation (as in virtual reality [VR]). Forrester Research claimed

in 2016 that “companies will continue to experiment with AR and VR, setting the

foundation for larger implementations in 2018 and 2019.”4 On the heels of the Consumer

Electronics Show (CES) 2018, a survey commissioned by Accenture also buttressed this

view,5 indicating that users are becoming more comfortable with interfaces in AR and VR

that offer information about their surroundings or help them improve their performance

in certain tasks. The usefulness of AR and VR now stretches well beyond their gaming-

oriented trappings.6

Such superimposed content provided to AR and VR interfaces is not only contextual

but overlain or projected on top of the user’s view. As such, unlike web content or

conversational content, any limited amount of text or media needs to complement the

preexisting visual elements of the user experience. Unlike conversational interfaces or

manual interfaces where interactions take place via explicit input, AR and VR interfaces

typically rely on user perspective or gestures to move across application states.

�Situational Content
With the growing maturity of geolocation technology, pinpointing a user’s location

allows for improved targeting of content according to where a user is at the current

moment. There are many ways to triangulate the location of a user, but the most

commonly used methods today are via location services on smartphones or Bluetooth

Low Energy (BLE) proximity beacons such as those produced by Estimote. Today, this is

something wifi is capable of as well.

4�“2017 Predictions: Dynamics that Will Shape the Future in the Age of the Customer.” Forrester.
October 2016. Accessed 1 April 2018. https://go.forrester.com/wp-content/uploads/
Forrester-2017-Predictions.pdf

5�“Time to Navigate the Super My Way: Give Digital Consumers Exactly What They’re
Looking For.” Accenture. 2018. Accessed 1 April 2018. https://www.accenture.com/us-en/
event-digital-consumer-survey-2018

6�Martin, Chuck. “Consumers Warm to Virtual, Augmented Reality: CES Study.” MediaPost.
10 January 2018. Accessed 1 April 2018. https://www.mediapost.com/publications/
article/312758/consumers-warm-to-virtual-augmented-reality-ces.html

Chapter 1 The Changing Web

https://go.forrester.com/wp-content/uploads/Forrester-2017-Predictions.pdf
https://go.forrester.com/wp-content/uploads/Forrester-2017-Predictions.pdf
https://go.forrester.com/wp-content/uploads/Forrester-2017-Predictions.pdf
https://www.accenture.com/us-en/event-digital-consumer-survey-2018
https://www.accenture.com/us-en/event-digital-consumer-survey-2018
https://www.accenture.com/us-en/event-digital-consumer-survey-2018
https://www.accenture.com/us-en/event-digital-consumer-survey-2018
https://www.mediapost.com/publications/article/312758/consumers-warm-to-virtual-augmented-reality-ces.html
https://www.mediapost.com/publications/article/312758/consumers-warm-to-virtual-augmented-reality-ces.html
https://www.mediapost.com/publications/article/312758/consumers-warm-to-virtual-augmented-reality-ces.html

9

Recently, proximity marketing that delivers personalized content with the aid of

beacons and other Internet of Things (IoT) hardware is gaining prominence. The content

we consume in our daily lives is increasingly geospatial, locational, and situational.

Enabling such content delivery is a range of technologies that function in tandem

to facilitate more situational digital experiences. A 2015 report from ABI Research

contends that shipments of Bluetooth-enabled beacons will exceed 400 million by 2020.7

Concurrently, businesses such as Walmart, Target, and Macy’s have adopted beacons to

enhance their sales floor experiences, and 14 Marriott hotels are now using beacons as a

means to deliver promotional messages showcasing available guest amenities.8

Nevertheless, this form of situational content often remains prohibitively difficult

due to the complexity of orchestrating devices across the spectrum of hardware, each

with its own software development kit (SDK). The dream of augmenting a user’s

perspective and surroundings with content—rather than the inverse—is remarkably

distant from the manner in which content-first web sites are designed and architected,

however.

�Other Channels
We cannot account for all possible channels where content can be delivered, but three

channels are particularly prominent in the wider industry, namely wearable technology,

digital signage, and set-top boxes such as Apple TV and Roku.

In all of these, limitations intrinsic to these digital experiences restrict how content

can be served. For instance, digital signage prizes legibility above all, resulting in a lower

quantity of content so that it can be visible from large distances. At the other extreme,

because real estate is at a high premium on smartwatches, content must consist of text at

small sizes. Set-top boxes, meanwhile, contend with design limitations that encapsulate

content in prefabricated templates adhering to a rigid set of rules.

7�“BLE Beacon Shipments Break 400 Million in 2020.” ABI Research. 30 July
2015. Accessed 1 April 2018. https://www.abiresearch.com/press/
ble-beacon-shipments-break-400-million-in-2020/

8�Schumacher, Frederic. “Interaction, Personalization, and Tech: The 3 Biggest Trends in the
Hospitality Industry 2017.” Metro Accelerator. 21 April 2017. Accessed 1 April 2018. https://
metroaccelerator.com/blog/3-biggest-trends-in-the-hospitality-industry-2017/

Chapter 1 The Changing Web

https://www.abiresearch.com/press/ble-beacon-shipments-break-400-million-in-2020/
https://www.abiresearch.com/press/ble-beacon-shipments-break-400-million-in-2020/
https://www.abiresearch.com/press/ble-beacon-shipments-break-400-million-in-2020/
https://metroaccelerator.com/blog/3-biggest-trends-in-the-hospitality-industry-2017/
https://metroaccelerator.com/blog/3-biggest-trends-in-the-hospitality-industry-2017/
https://metroaccelerator.com/blog/3-biggest-trends-in-the-hospitality-industry-2017/
https://metroaccelerator.com/blog/3-biggest-trends-in-the-hospitality-industry-2017/

10

�Conclusion
The channel explosion continues unabated, and the interwoven narratives of content

delivery and its technical paradigms challenge the very nature of what “content” truly

entails in a world of digital experiences that are increasingly off the screen. In this

chapter, we have inspected the range of dimensions along which content must succeed

to better separate the content we need to present from the mechanisms by which we

deliver it.

Whereas Drupal historically has focused on delivering content for consumption

on web sites, decoupled Drupal asks developers, designers, and architects alike to

reconsider this emphasis and move toward a more channel-agnostic stance where

content is no longer coupled to strict mechanisms of presentation. In the next chapter,

we dive deeper into the evolution of the CMS itself and how decoupled content

management has become a compelling paradigm.

Chapter 1 The Changing Web

11
© Preston So 2018
P. So, Decoupled Drupal in Practice, https://doi.org/10.1007/978-1-4842-4072-4_2

CHAPTER 2

The Server Side:
From Monolithic
to Decoupled CMS
Two long-term trends have led to the promulgation of decoupled Drupal as a viable

approach rather than an unrealistic idea. These processes are essential to understand

how CMSs are evolving to embrace a channel-agnostic approach by default.

First, in response to the channel explosion and the trend toward multichannel

publishing workflows, CMSs, like many other software projects, have gradually adopted

RESTful APIs as a means to serve data to many different consumers rather than a single

presentation layer tightly coupled to the back end. These decoupled architectures, in

which many consumers rely on a single data service, reflect the disentangling of the CMS

(server side) from its front end (client side) to deliver data to diverse consumers.

Second, the tendency for the client side to become less static and more dynamic

has upended both user experience and web development paradigms in recent years, as

discussed in Chapter 1. Most efforts to create interactive experiences involved enriching

web pages with more application-like behavior, seen in the seamless user experience

features found on native applications such as transitions across states and the real-time

appearance of new content without an explicit user request. Most web CMSs were built

in the early Web 2.0 era (see Chapter 3), when editorial interfaces needed to contend

with just display rather than behavior.

The CMS has traditionally consisted of a monolithic rather than decoupled

architecture, in which the software governs all elements of content management, from

database access to string concatenation in templates to page rendering and everything

in between. This characterization is true of many long-standing CMSs like WordPress

and Joomla. However, the spread of new devices and applications has encouraged many

12

in the CMS landscape to repurpose extant means of communicating with other systems,

typically used for server-to-server communication, to serve content to an array of front-

end consumers.

Drupal, the free and open source CMS created by Dries Buytaert in 2001, is a

framework written in PHP and distributed under the GNU General Public License.

Historically, Drupal has been used for a variety of web sites such as personal blogs,

complex corporate and government sites, and knowledge management sites. The Drupal

community is global, with thousands of contributors around the world.

�Monolithic Content Management
In the past, these web-based implementations tended to be unitary in that native mobile

applications or other experiences were unavailable to users; in short, the only form of

access was the web browser through traditional means. However, because these web

sites now often have other applications in parallel, providing a single source of content

as a centerpiece for an application ecosystem has become a paramount concern.

Drupal, however, has historically employed a monolithic architecture, meaning

that it is a contiguous end-to-end system with no ability to decouple subsystems from

one another, particularly the Drupal theme layer, which encapsulates the Drupal

front end. This tight coupling led to symptoms such as Drupalisms on the front end,

a phenomenon in which opaque Drupal terminology is exposed as HTML and CSS

classes, puzzling front-end developers less familiar with Drupal who are tasked with

building a Drupal theme.

As an example of how tight this coupling was with regard to multiple clients, in

versions of Drupal prior to version 7, it was not possible to serve raw Drupal content,

rather than HTML pages fully rendered by Drupal, to other systems or front ends. In

other words, it was not possible to use Drupal solely for its database abstraction layer or

for its Views collections.

�Decoupled Content Management
In contrast, decoupled CMS architectures involve components of a system that interact

with each other through machine-to-machine interfaces such as web services rather

than explicitly depending on each other as Drupal’s subsystems do. Whereas some

service-oriented systems consist entirely of small components that communicate

Chapter 2 The Server Side: From Monolithic to Decoupled CMS

13

without interdependencies, most CMSs that can be decoupled tend to exercise this

separation of concerns between the front end (or client side) and back end (or server

side) to enable greater flexibility on either side.

A useful way to illustrate the difference between monolithic and decoupled CMSs

is through astronomical metaphors. We can imagine monolithic CMSs as resembling

planet Earth, a single contiguous unit with many interdependent subsystems.

Meanwhile, decoupled CMSs can be thought of as individual Earths having many

satellites that transmit and receive messages between the CMS and decoupled

consumers, as seen in Figure 2-1.

Consider, for instance, a scenario where a Martian base with a limited capacity

to store information must retrieve certain data from mission control on Earth to keep

functioning properly. Rather than housing all of the mechanisms required to store and

prepare these data on Mars itself, the Martian base can request only the small mission-

critical pieces of information from Earth that it immediately requires. In that way, the

Martian base can operate in a much more lightweight fashion, as mission control on

Earth is the unit that is solely responsible for all of the other concerns with the required

data, such as its archival and preparation for transmission.

In the case of Drupal, this analogy additionally succeeds because Drupal 8 is not

built in a services-oriented fashion. That is, when Drupal 8 is decoupled, this does not

mean that its subsystems are separated from one another. Instead, the Drupal theme

Figure 2-1.  In this illustration, Mars represents “decoupled” bases that exchange
data through requests to and responses from a “monolithic” Earth, in this case,
monolithic Drupal

Chapter 2 The Server Side: From Monolithic to Decoupled CMS

14

layer is left unused as other decoupled systems take its place as consumers of data. As

we’ll see later, this is why such a diverse and flexible range of architectural approaches

(see Chapter 4) is possible with Drupal.

For this reason also, the monikers decoupled and headless Drupal, both frequently

used interchangeably to describe Drupal, are not as accurate as they seem. In short,

Drupal in its traditional form is a monolithic CMS backing decoupled applications, but it

is not decoupled itself insofar as its internal dependencies disappear. Instead, traditional

Drupal is decoupled in the sense that its communication interfaces enable it to operate

as a web service and without a front end enabled.

Note  Some practitioners prefer to call decoupled Drupal headless. In its broadest
meaning, headless software is software that does not make use of a graphical user
interface (GUI). However, such an interface already exists for Drupal, namely the
command-line interfaces Drush and Drupal Console, which enable administration
of Drupal solely through a terminal. Nonetheless, headless does effectively
illustrate the lack of use of Drupal’s coupled front end. Both terms suffer from
imprecision and connotations conferred by other terminology.

Figure 2-2 is a simple rendering that depicts a basic architecture for decoupled

Drupal. We’ll be revisiting this diagram in Chapter 3.

Figure 2-2.  In this diagram, a Drupal site acting as a traditional site or content
repository contains a web service (often a RESTful API) that accepts HTTP requests
and issues HTTP responses in JSON or XML to an HTTP client located on a
decoupled application, which might be server side or client side

Chapter 2 The Server Side: From Monolithic to Decoupled CMS

15

�Web Services
Today, RESTful APIs, a particular subset of web APIs, are the most common

communication interface between Drupal and other systems or applications. There are

several important terms here to decode, namely API, REST, and RESTful API.

An API consists of a set of defined methods and object classes that collectively

describe the expected behavior of a framework such as Drupal when certain actions are

undertaken. In simple terms, an API abstracts the underlying implementation of the

framework by exposing just the classes or methods that a developer might require in

building an application that builds on that framework.

Note T he API reference for all Drupal versions is located at api.drupal.org.
More in-depth API documentation is located at drupal.org/docs/8/api for
Drupal 8 (including documentation about the RESTful API) and at drupal.org/
docs/7/api for Drupal 7.

Drupal has many APIs that govern the process of extending and reusing the existing

implementation, such as the Database API, Entity API, and Form API, but it did not have

a web service and corresponding API until Drupal 8. Web service APIs are APIs that allow

for machine-to-machine communication among web servers like Drupal’s or between

web servers and clients.

In the early 2000s, many web service APIs were built atop the available open

standards at the time: Extensible Markup Language (XML), the data format; Simple

Object Access Protocol (SOAP), the transfer protocol for communication; and Web

Services Description Language (WSDL), a means of describing web APIs in XML. Later,

JavaScript Object Notation (JSON) became a popular format for encoding data over web

service APIs, because of its natural fit for client-side JavaScript code and the challenges

of parsing XML effectively.

Chapter 2 The Server Side: From Monolithic to Decoupled CMS

http://drupal.org
http://drupal.org/docs/8/api
http://drupal.org/docs/7/api
http://drupal.org/docs/7/api

16

Note T he W3C defined web services in 2002 as “designed to support
interoperable machine-to-machine interaction over a network.”1 However, this
is a narrower definition than the one provided earlier and encompasses several
requirements, most notably the use of SOAP over HTTP rather than REST.

�REST and RESTful APIs
Many web service APIs today adhere to the ideas of Representational State Transfer

(REST) and are known as REST-compliant. REST is a term promulgated by Roy Fielding

in his dissertation on the subject and consists of a set of architectural principles for

designing web services. REST-compliant, or RESTful, web services permit other systems

to query and modify web resources, which are stateful representations of data located at

particular uniform resource identifiers (URIs), through a limited and unchanging range

of stateless operations. These web resources are representations of the underlying data,

usually serialized as JSON or XML.

A RESTful API must adhere to certain architectural constraints, commonly known as

Fielding constraints after their promulgator, to be considered REST-compliant or RESTful:

•	 Client/server separation: The client/server model is one of the most

prominent examples of separation of concerns in web architecture.

A RESTful API presumes that the data are eventually destined for a

consumer that includes a user interface displaying those data. The

RESTful API itself is located on the server side, where data storage occurs.

•	 Stateless: A REST client, which is a consumer of the RESTful API, should

not pass information about the client application’s state to the server

for storage and use on the server. Each request issued by the consumer

should contain all information necessary to execute on the request on

the server side, such that all state is retained on the consumer.

•	 Cacheable: Responses from RESTful APIs should include information

about the cacheability of that response. This is to disallow clients

from employing stale or unsuitable data when responding.

1�“Web Services Glossary.” World Wide Web Consortium. 11 February 2004. Accessed 17 May 2018.
https://www.w3.org/TR/ws-gloss/

Chapter 2 The Server Side: From Monolithic to Decoupled CMS

https://www.w3.org/TR/ws-gloss/

17

•	 Layered system: A RESTful API must be able to function where there

is middleware or intermediaries such as a cache system or load

balancer. This is because clients are typically unaware of the nature of

the destination of requests they issue.

•	 Code on demand: Although optional, a server might also transmit

through a RESTful API additional executable code in the form of

client-side JavaScript. This is to allow for clients to be extended by

logic located on the server.

•	 Uniform interface: The most important of all the Fielding constraints,

clients must be able to rely on a uniform and unchanging interface to

query and manipulate data on the server side. Resources are typically

identified in requests by their URIs, and they are manipulated

solely through their representations (e.g., in JSON or XML). A client

must have enough information about the resource through its

representation to perform operations that modify or delete it and

to process it on the client, such as an Internet media type. Finally, a

RESTful API must adhere to standards of hypermedia as the engine

of application state (HATEOAS), in which a REST client should be

able to use links provided by the initial response of the server to

understand how to interact with the API solely through the API’s

response rather than any hard-coded information.

RESTful APIs are those APIs that are REST-compliant; that is, they follow the

architectural principles laid out by REST. RESTful APIs operate using HTTP methods

(GET, POST, PATCH, and DELETE, among others) and define a specific Internet media

type (e.g., application/vnd.collection+json) in which representations will be formatted.

They also have a base URI that serves as an initial entry point for REST clients.

�RESTful and API-First Drupal
Now that we’ve introduced the key principles of REST and some of the fundamentals

of web APIs, we can examine Drupal and how it characterizes itself as RESTful or non-

RESTful. The wide use of REST has led to some confusion in terms of identifying which

web services solutions are RESTful or not in the Drupal community.

Chapter 2 The Server Side: From Monolithic to Decoupled CMS

18

In Drupal 6 and 7, web service API capabilities were limited solely to contributed

modules, most notably Services, which provided an API specifically for performing

operations against a Drupal site efficiently. However, due to its wide range of capabilities

that go well beyond normal RESTful API functionality, Services does not explicitly follow

the Fielding constraints, which means that it is not strictly RESTful. Nonetheless, other

modules are available in Drupal 7, such as restWS and Restful, which do adhere to the

REST constraints.

During the development of Drupal 8, the Web Services and Context Core Initiative

(WSCCI) endeavored to allow server-to-server communication over a network using

Drupal. This community initiative, coordinated by Larry Garfield, led to the creation

of several modules, most notably the REST module, which provides the foundation for

RESTful APIs in Drupal. The default REST API available out-of-the-box in Drupal 8 Core

is REST-compliant (see Chapter 7).

In Drupal 8’s contributed module ecosystem, there are several important additional

modules available, including non-RESTful Services for Drupal 8. The first of the REST-

compliant modules, RELAXed Web Services, is a module that follows the CouchDB API

specification, with an eye toward content staging, content workflow, and PouchDB- and

Hoodie-oriented use cases (see Chapters 8 and 13). At the time of print, JSON API, a

module that implements the eponymous RESTful API specification in Drupal, is slated

for inclusion in Drupal core as a stable module in a forthcoming release (see Chapters 8

and 12).

In recent years, other options have surfaced that do not adhere to REST and promise

certain functionality beyond what REST-compliant solutions provide, most notably

GraphQL (see Chapters 8 and 14), a query language specialized for consumer-driven

queries (and therefore responses tailored for the consumer). Because of the confusion

around what constitutes a REST-compliant module, from this point forward we refer to

RESTful Drupal solely as a Drupal implementation using those modules with RESTful

functionality.

In this case, API-first Drupal refers to a Drupal implementation using those modules

with any web services functionality, irrespective of whether the module is REST-

compliant or not. It also includes the notion that Drupal is API-first, where the web

services are counted as Drupal’s most essential features and consumers using the APIs

are Drupal’s most important users. Indeed, this is the reason for the Drupal community’s

ongoing API-first initiative, a direct successor to WSCCI working to advance Drupal as a

web service provider.

Chapter 2 The Server Side: From Monolithic to Decoupled CMS

19

�Content as a Service
The story of decoupled management doesn’t end here. An additional development,

extrinsic to the broad range of web services solutions in Drupal, has galvanized

the community to acknowledge and address the importance of developers of other

applications who might wish to rely on Drupal solely as a back-end web service provider.

The earliest nominal examples of decoupled content management originate from a

preexisting category of platforms known as mobile back end as a service (mBaaS or simply

BaaS), which aim to provide a centralized data repository for native mobile applications.

Typical functionality not only included data storage and access, but also mobile-specific

capabilities such as push notifications and integration with other systems, often depending

on SDKs for use on the client side. Examples of mBaaS vendors include Kinvey and Built.io.

Whereas mBaaS platforms are specialized for native mobile applications, content as

a service (CaaS) encompasses all use cases involving content and content applications.

In a CaaS model, content is delivered on demand to client applications that consume

web APIs licensed under a hosting subscription. The platform serves as the content

repository for any consumer applications and typically offers additional content

management features such as content workflow and user management. Examples of

CaaS vendors include Contentful and Prismic.

Many opt to decouple Drupal because they wish to harness both Drupal’s extensive

content management capabilities and the greater flexibility that decoupled front ends

can provide. Others do so because they might need applications beyond Drupal to view

and manipulate a single collection of content. Whatever the case, although Drupal

might not be as specialized as mBaaS or CaaS providers, Drupal does benefit from its

commitment to being free and open source software from end to end, including the

Waterwheel SDKs that are suited specifically for decoupled use cases (see Chapter 16).

This means that if you host Drupal and any Drupal-backed (i.e., consuming or

manipulating Drupal data) applications yourself, you can take advantage of Drupal as a

back-end web service provider without paying a penny.

�Conclusion
Web service APIs undergird all decoupled CMS architectures because they are the

conduit through which data travel on its way from the server to the consumer. Some web

service APIs are also RESTful, which means that they adhere to certain constraints that

Chapter 2 The Server Side: From Monolithic to Decoupled CMS

20

characterize a range of widely used APIs. Nevertheless, in recent years, non-RESTful

web service solutions have also become popular both inside and outside the Drupal

community.

The CMS, historically a monolithic entity, has become decoupled because of the

exigencies of multichannel content workflows that publish content to many different

presentation layers. In this chapter, we examined how this evolution occurred and how

Drupal’s efforts have led to its favorable positioning as a decoupled CMS in the wider

industry. In the next chapter, we turn to the client side to explain how the evolution

in technologies such as JavaScript has engendered a wholesale shift in how data are

handled and ultimately presented.

Chapter 2 The Server Side: From Monolithic to Decoupled CMS

21
© Preston So 2018
P. So, Decoupled Drupal in Practice, https://doi.org/10.1007/978-1-4842-4072-4_3

CHAPTER 3

The Client Side:
From Static to Dynamic
Pages
The introduction of new digital experiences and content channels, and the underlying

software evolution that made it possible, is one important factor that led to the interest

in decoupling content management paradigms, as discussed in Chapter 1. Nonetheless,

changes in the architecture of web pages—both in terms of what users demand from

them and how they are composed—directly encouraged some to decouple Drupal from

its front end to use JavaScript-driven front ends instead.

�From Web 1.0 to Web 2.x
In the 1990s, during the Web 1.0 era, web pages tended to be flat files, located on servers

and administered through code editors. These static pages were each representations of

state, but state changes could only occur through a server round trip, initiated through a

full-page refresh in the browser, as illustrated in Figure 3-1. In Web 1.0 pages, this is how

HTML forms such as newsletter subscription forms would deliver feedback to the user.

In Drupal’s case, this would entail two bootstraps of Drupal.

22

The early 2000s brought a new approach to working with web pages: CMSs such as

Drupal. In Web 2.0, web sites that enabled user-generated content, a straightforward

user experience, and interoperability across devices were valued. With its early focus on

user-generated content and editorial experience, Drupal’s administrative pages can be

considered part of this trend.

Concurrently with the dissemination of Web 2.0 as an ideal, the concept of dynamic

pages appeared. Dynamic pages can mean one of two things: On the server side, dynamic

pages are composed by a framework such as Drupal according to a variety of conditions,

such as the logged-in user and the particular search parameters entered. Server-side

dynamic pages also used relational databases like MySQL instead of flat file assets. On

the client side, dynamic pages are those that are manipulated or otherwise rendered by

client-side JavaScript, which could parse HTML attributes such as onMouseOver.

In the later 2000s, web pages gradually became increasingly dynamic not only on

the server side—thanks to frameworks like Drupal, which used PHP to preprocess data

for pages—but also on the client side. Asynchronous JavaScript and XML (Ajax) is a

collection of client-side techniques to asynchronously retrieve and manipulate data on a

server and to inject those data dynamically without the need for a page reload.

Through Ajax, vast improvements to user experience were made possible, and

this is clearly seen in Drupal’s own Ajax framework for dynamic client-side updates.

In the case of a lowly newsletter subscription form, this meant that on submission,

Figure 3-1.  In the Web 1.0 era, applications typically articulated application state
as static pages

Chapter 3 The Client Side: From Static to Dynamic Pages

23

an Ajax spinner could appear signifying the journey to the server, and a subsequent

overwriting of the form could indicate success or failure, as seen in Figure 3-2. Each

change in the application state would not require a full-page refresh.

The principles that governed Ajax were quickly applied to increasingly larger scopes.

It was not only forms that experienced this kind of dynamic replacement and such state

changes without page refreshes; entire layout components of the page, and gradually

even the entirety of the page, became fodder for client-side dynamic behavior. With the

need for alternatives to JavaScript due to inadequate browser support now dwindling,

client-side techniques are quickly gaining momentum as JavaScript adoption widens

and user experience requirements become more demanding.

�The JavaScript Renaissance
One of the effects of the Ajax movement was an explosion of growth in the wider

JavaScript community, thanks to the “professionalization” of this once-lowly language.

In the 2000s, JavaScript was often denigrated as a programming language used by

nonprogrammers, due to the limited scope possible for JavaScript applications along

with proprietary influence.

Figure 3-2.  In Ajax, a small portion of the page is replaced with an Ajax spinner
indicating a change in progress and reinjected with new information requested
from the server

Chapter 3 The Client Side: From Static to Dynamic Pages

24

In the late 2000s and early 2010s, use of JavaScript began to be codified and

reformulated in unprecedented ways. First, John Resig’s creation of jQuery, a document

object model (DOM) manipulation library, led to the normalization of Ajax techniques

and inspired many other libraries to follow suit. Some of these libraries were widget

libraries, whereas others became full-fledged application frameworks.

With Ajax, true single-page applications, applications often characterized by their

minimal use of page refreshes and that rely heavily on JavaScript behavior, became

feasible for the first time. The development of Angular, Ember, and React, the three

most commonly used tools to build single-page applications in JavaScript today,

began in this period. In contrast to Ajax approaches, which were intended for small-

scale modifications on the page, single-page application frameworks and libraries

endeavored to make dynamic full-page renders possible, without ever enforcing a

page refresh.

This fundamental shift in the use of JavaScript—not simply as a decorator of user

interfaces, but as a page renderer—also resulted in the expansion of JavaScript to realms

outside the web browser, especially to the server side. In 2009, Node.js, an open source

JavaScript runtime environment, was released. Beyond the revolution in front-end build

tools that Node.js engendered through the Node Package Manager (NPM), Node.js also

made server-side JavaScript possible.

Some practitioners in the JavaScript community have treated the

“professionalization” of JavaScript as emblematic of a larger JavaScript renaissance that

includes the transition of small-scale Ajax to large-scale JavaScript frameworks and of

JavaScript limited to the browser to JavaScript available during the build process, and

most impactfully, on the server.

�Universal (Isomorphic) JavaScript
Because JavaScript was formerly only executable on the client side, if JavaScript

were responsible for the entire page rendering process, this code would need to be

downloaded, parsed, and executed by the browser before most functionality would

Chapter 3 The Client Side: From Static to Dynamic Pages

25

be available. Two metrics for determining perceived page performance are time

to first paint, ending when the user begins to see content on the page, and time to

first interaction, ending when the user is able to interact with the application’s user

interface.

In 2010, Twitter, in the midst of a redesign, architected a new client-side interface

that required substantial execution of JavaScript to render and enrich the user interface.

Client-side JavaScript would retrieve the data from a web service API optimized for a

variety of devices and populate the page, largely with client-side logic. In the end, the

interface’s time to first interaction suffered considerably, particularly on underprepared

mobile devices. In 2012, Twitter employed a new approach in which the initial pages

were rendered server-side and the client side bootstrapped an application with more

limited scope that furnished the expected behavior after rendering was complete.

In 2013, Airbnb reinvented JavaScript application architectures by using Node.

js for universal (also known as shared) JavaScript, in which at least some JavaScript is

executed identically on both client and server—although this code is replicated on both,

it is, in effect, shared. On the server side, an application framework composes an initial

render of the page using data provided through RESTful API calls or a NoSQL database

such as MongoDB. Once the initial render appears in the browser, the same application

framework begins “rehydrating” the server-side render by performing asynchronous

RESTful API calls and injecting updated data into the DOM.

Consider Figure 3-3, which depicts a typical isomorphic JavaScript implementation.

Chapter 3 The Client Side: From Static to Dynamic Pages

26

Airbnb’s most important invention was a completely reusable rendering system.

Because the JavaScript framework is the same on the server and client sides, it’s much

more convenient to debug or maintain the rendering code. As such, the main difference

between server-side and client-side rendering in the universal context is not the

templating language used, but instead what data derive from the server and how.

Figure 3-3.  In an isomorphic JavaScript implementation focused on rendering
shared across client and server, Node.js executes a framework, which composes an
initial application state in client-ready markup. This initial application state is
handed to the client side, which initializes the framework to facilitate additional
client-side rendering that is needed, especially to “rehydrate” or update the initial
state issued by the server side.

Chapter 3 The Client Side: From Static to Dynamic Pages

27

Apart from the modernization of JavaScript occurring presently through the

solidifying ECMAScript 6 (ES6) specification, universal JavaScript is one of the most

important motivations for the increased adoption of JavaScript-driven front ends.

This means that monolithic Drupal, with its focus on PHP-rendered pages, might be

cast as a second choice. Decoupling Drupal enables access to Node.js and JavaScript

isomorphism.

Figure 3-4 depicts a typical isomorphic JavaScript implementation that consumes a

CMS (in this case, Drupal).

Figure 3-4.  In an isomorphic JavaScript implementation served data by a CMS,
Node.js executes a framework, which retrieves data from a CMS such as Drupal
and thereafter composes an initial application state in client-ready markup. Any
asynchronous requests issued by the client side are directed to the CMS.

�JavaScript-to-Native Applications
One final aside to highlight is the growing need for unity across applications that

comprise an application ecosystem, including not only traditional web applications but

also native applications on mobile and desktop. This is both to maintain parity across

disparate user experiences and developer experiences, but also to allow development

Chapter 3 The Client Side: From Static to Dynamic Pages

28

teams to go to market more rapidly. To this end, many JavaScript frameworks now offer

JavaScript-to-native compilation, in the sense that code in JavaScript-driven single-page

applications can be rewritten as machine code.

Native mobile applications for Android and iOS typically require the use of Java (for

Android), or languages like Objective-C and Swift (for iOS). Angular and React use Ionic

and React Native, respectively, to compile single-page JavaScript applications into native

code. Meanwhile, for desktop applications, where still other technologies are often used,

solutions like Electron allow for single-page applications in JavaScript to be compiled to

native. The open source code editor Atom, for instance, is a web application at its core

but uses Electron for compatibility with desktop platforms.

�Conclusion
The client side has evolved considerably in recent years, starting with the proliferation

of Ajax and jQuery in front-end web development and ending with the JavaScript

renaissance and the promulgation of universal JavaScript. Because of the new demands

required by asynchronous requests and dynamic client-side web pages, the CMS is

increasingly an important origin of data and provider of web service APIs that allow for

state changes on the application layer.

The wide dissemination of JavaScript across the web development industry and the

remarkable changes in how it is employed highlight the fact that JavaScript is a language

that, due to its appeal on both the server and client side, will be used for many years

to come. In this chapter, we inspected the motivations and transformations triggered

by the JavaScript renaissance and its impact on the relationship between JavaScript

applications and Drupal. In the next chapter, we define decoupled Drupal more formally

as a set of architectural paradigms and describe each of the most common decoupled

Drupal approaches in turn.

Chapter 3 The Client Side: From Static to Dynamic Pages

29
© Preston So 2018
P. So, Decoupled Drupal in Practice, https://doi.org/10.1007/978-1-4842-4072-4_4

CHAPTER 4

Decoupled Drupal
Simply put, decoupled Drupal is the process of employing Drupal as a web service

provider that exposes data for consumption by other applications (Figure 4-1).

Drupal can be used to back other server-side applications, native desktop and mobile

applications, single-page JavaScript applications, over-the-top applications, and IoT

applications. Indeed, any application that can perform requests against a web service

can be a consumer of the APIs exposed by a decoupled Drupal implementation.

We can see the distinction between monolithic and decoupled Drupal in Figure 4-2.

In monolithic Drupal, the Drupal front end is part and parcel of the overarching Drupal

bootstrap; as such the entirety of the implementation is written in Drupal’s native

PHP. In the decoupled case, a consumer application is written in an arbitrary language,

such as JavaScript, Java, or even PHP, and interacts with Drupal through a RESTful API

present on the server side, as seen in Figure 4-3.

Figure 4-1.  In its simplest form, decoupled Drupal involves communication via
HTTP requests and responses between a web service in a Drupal site or content
repository (such as a RESTful API) and an HTTP client in a Drupal-backed
consumer application (such as a single-page JavaScript application).

30

One crucial note is that a single Drupal repository or decoupled Drupal back end

can serve as the centerpiece of an application ecosystem where many applications rely

on data originating from Drupal, as illustrated in Figure 4-4. For purposes of content

syndication, where a unitary source of content is important to keep data in sync across

all applications, an architecture where a single Drupal implementation feeds many

applications can be optimal.

Figure 4-2.  In monolithic Drupal (left), the entire bootstrap, from data retrieval to
template rendering, is written in PHP, and the Drupal front end (the theme layer)
is inseparable from other Drupal subsystems. In decoupled Drupal (right), an
arbitrary language can be used for the consumer application, and the RESTful API
bridges Drupal and its clients.

Figure 4-3.  A decoupled Drupal implementation can serve any manner of
Drupal-backed consumers, including a single-page application written in
JavaScript (left) or a native mobile application written in Java for Android (right).

Chapter 4 Decoupled Drupal

31

�Fully Decoupled Drupal
In fully decoupled Drupal, a decoupled Drupal installation serves as a data repository

for consumption by Drupal-backed applications. In other words, there is a complete

separation between the client side and server side, resulting in differing experiences

for Drupal users and developers (see Figure 4-5). For developers, whereas the back

end remains intact, the front end requires expertise not traditionally found in Drupal.

For end users, the front end might be either the administrative interfaces that Drupal

provides on the back end or the user-facing front end that replaces the Drupal theme.

Figure 4-4.  A single Drupal site or repository can serve as a hub of data that serves
information to a variety of applications collectively consuming the same API

Figure 4-5.  In this example of fully decoupled Drupal, a consumer application (in
this case a single-page JavaScript application) performs all rendering on both the
server side and client side. Drupal is consulted solely via HTTP requests.

Chapter 4 Decoupled Drupal

32

Fully decoupled Drupal implementations typically do not expose a Drupal front

end beyond the applications receiving data from Drupal, either due to redundancy or

a preference for other front ends. Often, fully decoupled Drupal implementations use

Drupal solely as a content repository. Nonetheless, the separation of concerns entailed

by fully decoupling Drupal typically allows for pipelined development—development at

different velocities by differently specialized teams—to occur (see Chapter 5).

Many fully decoupled implementations consist of a single decoupled front end,

such as one implemented in a JavaScript framework, connected to a Drupal site. Some

practitioners choose to replace a Drupal site’s front end outright to transform the

branded experience into a more application-like experience. This kind of architecture,

however, means that without the need for the original Drupal front end, the decoupled

front end merely replaces rather than augments Drupal’s capabilities.

�Pseudo-Decoupled Drupal
When it comes to site building and assembly, this can present a particularly intractable

challenge. Site builders prefer to have control over the layout and structure of their

pages by using Drupal modules such as Panels, but decoupled front ends do away with

this capability. For the use case where decoupling is desired but layout control is also

required, there is a category of fully decoupled Drupal implementations that do not

fall neatly into the fully decoupled category because of the manner in which the typical

client/server separation of concerns occurs.

Fully decoupled Drupal implementations generally separate structure (data) and

presentation (appearance) into the Drupal web service provider and the decoupled

front end, respectively. However, some project requirements call for a fully decoupled

architecture in which a site builder can still manipulate page structure by using layout

tools. In pseudo-decoupled Drupal or Drupal-aware decoupled Drupal (I have used

both terms interchangeably in the past), additional presentational information about

layout configuration is transmitted alongside the structured data provided by the web

service. In other words, Drupal front-end logic is exposed to a decoupled front end.

A comparison of progressively decoupled Drupal and pseudo-decoupled Drupal is

provided in Figure 4-6.

Chapter 4 Decoupled Drupal

33

As an example, RESTful Panels, a module that translates Panels configuration

into JSON, provides JSON-encoded layout component names, which contain the data

that will populate that layout component in the consumer application. As a result,

the consumer application interprets both the structure (data) and some presentation

(layout), even though the vast majority of presentational information is already present

in the consumer application. Moreover, rendering is now split between the exterior

render accomplished by the consumer application’s own paradigms and the interior

render that depends on information from Drupal before proceeding.

Figure 4-6.  An illustration of the differences between progressively decoupled
Drupal and pseudo-decoupled Drupal

Chapter 4 Decoupled Drupal

34

Although this approach comes with several key advantages, including but not

limited to greater site builder control, it also introduces a few drawbacks. First, there

is a duplication of functionality in that both the Drupal front end and the decoupled

front end (assuming it is a front end with a display large enough to engender a layout)

oversee layout. In addition, with front-end logic from Drupal missing, the render might

not be able to continue past a particular point. Second, there is a small but nontrivial

potential for circular dependencies. If, for instance, a decoupled front end allowed users

to manipulate layout structure on itself rather than on Drupal, then changes on either

the front end or Drupal back end could lead to the front-end layout tool’s dependency on

Drupal’s layout tool, and vice versa, or introduce race conditions.

�Progressively Decoupled Drupal
Progressively decoupled Drupal is an approach in which a JavaScript-driven front end

is interpolated into the Drupal front end rather than replacing it outright. Progressive

decoupling uniquely maintains contiguous experiences for content editors, site builders,

and front-end developers. As for content administrators and site assemblers, progressive

decoupling facilitates in-context user interfaces, content workflow (including preview),

and other traditional functions to retain their integrity. Meanwhile, front-end developers

can devote a part of the page to a JavaScript framework, which allows them to work at

their own speed. Figures 4-7 and 4-8 depict the differences between fully decoupled and

progressively decoupled Drupal.

Chapter 4 Decoupled Drupal

35

Figure 4-7.  In fully decoupled Drupal, the entire rendered page is the
responsibility of a JavaScript framework. However, this means that you cannot
leverage Drupal layout tools that would allow you to swap the columns or add a
third column to this layout.

Chapter 4 Decoupled Drupal

36

There are two primary motivations for this architectural approach that derive

from both server-side and client-side issues, although progressive decoupling is more

optimal for cases where greater power is required on the front end than Drupal provides

by default. On the server side, some hosted platforms do not have a Node.js offering

that would allow for JavaScript isomorphism to occur, despite a strong desire to use a

JavaScript framework. Many Drupal hosting providers, for instance, only offer hosting for

the LAMP stack that powers Drupal.

Meanwhile, on the client side, progressive decoupling is optimal for cases where

greater power is required on the front end than Drupal provides by default. First,

many of Drupal’s features rely on the ability to effect changes in the front end, such as

preprocessing data before it enters templates or displaying system notifications. Many

who implement Drupal often don’t want to see these features go. Second, although

Drupal’s front-end capabilities are strong, particularly with the arrival of Drupal 8,

some practitioners prefer to use a more JavaScript-driven approach, even if server-

side JavaScript execution is unavailable. In this case, a handover is possible between

Figure 4-8.  In progressively decoupled Drupal, Drupal’s page structure is
intact, and by limiting the JavaScript framework’s scope to just those dynamic
components, you can retain layout because some of the page is fully under Drupal’s
control

Chapter 4 Decoupled Drupal

37

the server and client; Drupal renders the initial state of the page, then a JavaScript

framework takes over once it has initialized.

Of course, because progressive decoupling is an approach that relates to the

foregoing trend of progressive enhancement, it is only relevant for Drupal front ends. That

is, progressively decoupled Drupal does not resolve the question of content syndication;

rather, it is intended to enrich Drupal as is to introduce some of the novel functionality

that galvanizes many architects to fully decouple Drupal instead.

Crucially, however, because progressive decoupling involves the interpolation

of JavaScript into Drupal’s front end, whose administrative interfaces already make

considerable use of JavaScript, a spectrum of possibilities is possible, as seen in

Figure 4-9. Although a JavaScript framework can occupy a very small portion of the

page, it can also serve to dynamize ever-larger portions of the page. For instance, a

minimal progressively decoupled implementation could scope JavaScript components

tightly to individual blocks on the page.

Figure 4-9.  This spectrum of progressively decoupled approaches demonstrates
that dynamic components of a page can occupy solely a block in Drupal, leaving
the majority of the page content in Drupal’s hands; or it can encompass the entire
page body, in a fashion almost indistinguishable from fully decoupled JavaScript
applications.

Chapter 4 Decoupled Drupal

38

Meanwhile, other progressively decoupled implementations have explored placing

the entire content area within a JavaScript framework while leaving the header and

footer intact. The header and footer on pages tend to contain navigational elements that

are not mutable across different pages and do not need substantial rerendering. In this

way, Drupal can provide solely the static portions of the page, dedicating the dynamic

portions to JavaScript, and simultaneously dictating static fallbacks for routes and

furnishing an initial server-side output.

Finally, on the extreme end of the spectrum, some progressively decoupled

implementations opt instead to replace the entire page body with a JavaScript

framework, thus leaving Drupal with solely those portions outside the <body> element.

Drupal provides an initial state, but a JavaScript framework subsequently exerts full

control over the page. Most implementations of this nature use Drupal because of its

rich and extensible drupalSettings JavaScript object (Drupal.settings in Drupal 7),

which is usually served on first page load and can contain critical information about

translations or configuration.

�Drupal as a Site and Repository
Throughout these first chapters, I’ve referred to decoupled Drupal alternately as a site

and a repository. This distinction is made because sites typically benefit from public,

user-facing front ends like the default Drupal front end. On the other hand, repositories

are usually data stores that can be accessed but lack their own endogenous user-

facing front end. This brings me to a crucial point: We can call decoupled Drupal a

site if and only if its front end is still leveraged alongside other clients; otherwise, it is

merely a content repository serving clients. In other words, in this context, a site can

act as a repository, but a repository cannot act as a site. This distinction is illustrated in

Figure 4-10.

Chapter 4 Decoupled Drupal

39

Because of Drupal’s rich capabilities and the functional losses incurred when

decoupling Drupal, the risks and rewards of decoupling Drupal (see Chapters 5 and 6)

must be carefully considered. Relegating Drupal to solely a repository role means

that none of Drupal’s features are accessible to the public, especially if an incident

incapacitates all consumer applications. Meanwhile, retaining Drupal as a full-fledged

site in addition to decoupled front ends, especially if there is only a single web-based

client fitting this bill, can lead to confusion among users.

Although the distinction is small, conceptualizing Drupal in this bifurcated manner

can help to isolate the use cases where decoupling Drupal is truly necessary. If you

are using Drupal as a repository that serves only one client, Drupal might or might not

be the most appropriate for your needs. For instance, there might be a way to address

the client’s needs within a monolithic implementation, such as through progressive

decoupling.

As we can see in Table 4-1, most decoupled Drupal use cases are appropriate, as

long as the Drupal site is accessible in the case of one or more clients, or it is the central

repository in the case of many clients. However, a Drupal repository with only one client

should raise the question of why a monolithic architecture is not pursued.

Figure 4-10.  In these three examples, Drupal is a site with a publicly accessible
front end but no decoupled clients (i.e., monolithic Drupal, left), a Drupal site with
an accessible front end with decoupled clients (i.e., fully decoupled Drupal with the
Drupal portion intact, center), and a Drupal repository without an accessible front
end but with a consumer client (i.e., fully decoupled Drupal where the client is the
only front end available, right).

Chapter 4 Decoupled Drupal

40

�Use Cases for Decoupled Drupal
Because decoupled Drupal as a set of architectural approaches is still maturing, there

is comparatively little guidance on how to decide whether an implementation should

use decoupled or monolithic Drupal. Architects must weigh many advantages and

disadvantages, such as the ones outlined in Chapters 5 and 6, before settling on a way

forward. Decoupling Drupal is not a decision to be taken lightly, because it has vast

ramifications on the nature of a project and the teams working on it.

A summary of the approaches discussed so far in this chapter follows, and is also

illustrated in Figure 4-11.

•	 Monolithic Drupal consists of one single, contiguous site that does

not expose data to other applications.

•	 Progressively decoupled Drupal entails the interpolation of a

JavaScript framework into Drupal’s front end to access its front-

end developer experience and dynamic page capabilities without

jettisoning Drupal’s front end entirely.

•	 Fully decoupled Drupal comprises a Drupal site or repository that

exposes data to other applications for consumption or manipulation.

These applications can be any server-side or client-side application.

•	 Pseudo-decoupled Drupal involves fully decoupled Drupal, with

the exception that presentational information such as layout

configuration is exposed to other applications for consumption or

manipulation. These applications tend to be those that make heavy

use of layout, such as JavaScript applications.

Table 4-1.  Use Cases for Decoupled Drupal

Common Valid Use Cases Use Cases Needing Discussion

Drupal as a site with one or many clients

Drupal as a repository with many clients

Drupal as a stand-alone site (monolithic)

Drupal as a repository with only one client

Chapter 4 Decoupled Drupal

41

Figure 4-11.  A comprehensive comparison of all common approaches to
decoupled Drupal, including (clockwise from top left) monolithic (traditional),
progressively decoupled with a JavaScript framework, pseudo-decoupled
with presentational exports, fully decoupled Drupal as a repository (with an
inaccessible Drupal front end), and fully decoupled Drupal as a site

Chapter 4 Decoupled Drupal

42

Generally speaking, the following broad guidelines can be followed when making

decisions around projects.

	 1.	 If you intend for Drupal data to be consumed and manipulated

by other applications outside of Drupal, and you do not need

Drupal’s front-end functionality, use fully decoupled Drupal.

	 2.	 If you intend to use a JavaScript framework for perceived front-

end developer and user benefits, and the framework will consume

and manipulate Drupal data, use fully decoupled Drupal if and

only if progressively decoupled Drupal does not satisfy your

requirements.

	 3.	 If you already have other applications consuming and

manipulating Drupal data besides your JavaScript application,

fully decoupled Drupal is usually the better option.

	 4.	 If you intend to use a JavaScript framework for perceived

front-end developer and user experience benefits, and the

framework will consume and manipulate not only Drupal

data but also presentational information from Drupal such as

layout configuration needed to construct the page, use pseudo-

decoupled Drupal. Nonetheless, be aware of the potential pitfalls

from using this approach, as outlined earlier.

	 5.	 If you are building a traditional web site with no need for

additional applications beyond Drupal, and if Drupal has all of the

functionality you need, use monolithic Drupal.

To sum up these guidelines through a single dichotomy, if you need non-web-based

applications outside of Drupal such as native applications to consume and manipulate

Drupal data, fully decoupled Drupal is the best choice. On the other hand, if you need

web-based applications in JavaScript to consume and manipulate Drupal data, you can

choose between progressively and fully decoupled Drupal. If you prefer to retain all of

Drupal’s existing functionality, including aspects of the Drupal front end, and you do

not require substantial evolution in your front-end developer experience and end-user

experience, monolithic Drupal might be the right choice.

Chapter 4 Decoupled Drupal

43

In Figure 4-12, these guidelines are applied within the context of a helpful flowchart

for decision making when it comes to decoupled Drupal, taken from Dries Buytaert’s

blog post “How to decouple Drupal in 2018,” which outlines several trajectories that

decoupled Drupal architectures can pursue.

Figure 4-12.  A flowchart for decision makers considering decoupled Drupal
architectures, reprinted with permission from Dries Buytaert (https://dri.es/
how-to-decouple-drupal-in-2018).

Chapter 4 Decoupled Drupal

https://dri.es/how-to-decouple-drupal-in-2018
https://dri.es/how-to-decouple-drupal-in-2018

44

�Conclusion
In this chapter, we defined decoupled Drupal more formally and examined the

most common approaches and use cases to decouple Drupal. As mentioned earlier,

decoupled Drupal is the use of Drupal as a web service provider that allows data to be

retrieved or manipulated by an arbitrary number of consumer applications. Currently,

four architectural paradigms demonstrate the diversity of approaches in decoupled

Drupal: monolithic Drupal, fully decoupled Drupal, progressively decoupled Drupal,

and pseudo-decoupled Drupal.

In monolithic Drupal, the Drupal front end remains intact and accessible, and this

is the way that most Drupal sites operate today. On the other hand, in fully decoupled

Drupal, Drupal’s PHP-driven front end is inaccessible, and consumer applications take

over all responsibilities for presentation of transmitted data. Of course, sometimes you

might wish to benefit from the features of JavaScript frameworks without jettisoning

Drupal’s front end, in which case progressively decoupled Drupal, which interpolates a

JavaScript framework into the default Drupal front end, is an appropriate option. Finally,

pseudo-decoupled Drupal characterizes some implementations in which Drupal

exposes not only structured data but also presentational information about how the

data should be rendered in a consumer application. However, this approach should be

undertaken with caution, as it flouts the separation of concerns between structure and

presentation and can lead to unintended consequences.

In the next chapter, we dig further into decoupled Drupal’s use cases and

identify some of the advantages and rewards of implementing Drupal in a decoupled

architecture.

Chapter 4 Decoupled Drupal

45
© Preston So 2018
P. So, Decoupled Drupal in Practice, https://doi.org/10.1007/978-1-4842-4072-4_5

CHAPTER 5

Advantages of Decoupled
Drupal
There are many advantages of decoupling Drupal in your own implementation, but

there are a few that are particularly valuable to marketing teams, to developers, and

to businesses: namely content syndication (“write once, publish everywhere”), an

architectural separation of concerns (structured data as distinct from presentation),

and pipelined development. Employing Drupal as a web service provider is particularly

beneficial if you have a team that specializes in JavaScript or in other front-end

technologies besides Drupal.

Progressively decoupled Drupal has its own benefits, which are outlined throughout

this chapter. These include pipelined development, but also the ability to maintain a

monolithic architecture without multiple points of failure, as well as mixed experiences

in which differentiated levels of interactivity can be provided for the benefit of the user.

�Content Syndication
“Write once, publish everywhere” is rapidly becoming a popular tenet in marketing

and publishing in the omnichannel landscape. Increasingly, content providers and

publishers are seeking to take advantage of diverse mediums to deliver their content to

a growing array of experiences. In these scenarios, Drupal is the hub for a constellation

of experiences, all ingesting content from a single source of truth, whether that hub is

a full Drupal site (with optional progressive decoupling) or a fully decoupled Drupal

repository.

It is important to emphasize here that Drupal does not need to be fully decoupled for

content syndication to succeed when it comes to building experience ecosystems. Many

Drupal sites that are monolithic and end-to-end also expose data for consumption by

46

other applications. Indeed, this is how Drupal project lead Dries Buytaert recommends

that architects use Drupal in a decoupled way: as a public-facing Drupal site that also

acts as a central data source for consumer applications. This maintains Drupal’s end-to-

end contiguity and also retains Drupal’s front-end benefits on the Drupal web site itself.

�Separation of Concerns
Web development has long contended with the issues surrounding the separation of

concerns between structured data and its presentation layer. Whereas structured content

and its delivery constitute the structural skeleton of Drupal, templates and their logic

make up the presentation of Drupal content. Even in monolithic Drupal, one can easily

draw a distinction between the layers that make up key back-end features of Drupal (e.g.,

the database itself, the database abstraction layer) and its front-end functions (e.g., the

Twig theme layer).

Although in monolithic and progressively decoupled Drupal, this separation

of concerns is implicit and largely invisible to the user, in fully decoupled Drupal it

becomes an explicit split between structured content, handled by Drupal, and its

presentation, handled by consumer applications. As such, by exposing data to the

front end in JSON or in XML, presentation and aesthetics become the domain of

the consumer applications that create their own experiences using Drupal content,

separately from the default Drupal front end.

The RESTful Panels module challenges this paradigm in the fully decoupled context,

but the injection of presentational logic from Drupal alongside structured content

challenges the separation of concerns that fully decoupled Drupal touts in the first place.

�User-Centered User Experiences
The benefit of improved user experiences is perhaps the most polemical of the

advantages that decoupled Drupal confers, because a good user experience results

from effective design and development, not necessarily from architectural decisions.

Nonetheless, decoupled Drupal does confer the advantage of an improved user

experience because experiences better catered to users’ needs can be crafted by

undertaking a decoupled Drupal architecture.

Chapter 5 Advantages of Decoupled Drupal

47

The question of user experience in this case is closely intertwined with the issues

surrounding the front-end developer experience (see the next section). For instance,

an interactive application requiring frequent rerenderings of content might not be as

effective in Drupal as in a JavaScript framework better oriented to the task. Nevertheless,

for consumer applications built for mobile audiences, the user experience must be well-

suited to the task, and Drupal’s responsive design might not be sufficient to provide a

user-centered experience.

In progressively decoupled Drupal, a JavaScript framework is employed to enhance

the existing user experience provided by Drupal, whether that means replacing as much

of it as possible or adding interactivity to a section of a single page. In this way, a more

user-centered experience can be applied selectively to an existing Drupal front end in an

incremental fashion.

�Front-End Developer Experience
For many front-end developers, especially those well-versed in JavaScript, the Twig-

driven front end of Drupal could be complex and distinct from the paradigms they have

worked with in the past. Some teams are made up of primarily JavaScript developers for

whom modern front-end development requires ample use of NPM and other JavaScript

development tools. In addition, Twig and Drupal’s Ajax frameworks are ill-suited for

highly interactive applications that might be requested by business stakeholders.

Decoupling Drupal, whether fully or progressively, offers developer teams the ability

to apply specialized knowledge in a differentiated fashion to desired functionality. For

instance, the use of a JavaScript framework with which a developer team is intimately

familiar can accelerate development on a progressively decoupled project. By the same

token, a fully decoupled Drupal implementation with a JavaScript consumer opens

access to a JavaScript framework’s features.

This is particularly true given the immense advancement that JavaScript as a

language has seen in recent years and its favorable positioning for use in interactive

client-side settings. New features in ES6, the current version of JavaScript seeing

widening browser support, such as arrow functions, destructured assignment, the

spread operator, and classes, among others, offer a much more pleasant experience for

developers than ever before.

Chapter 5 Advantages of Decoupled Drupal

48

�Pipelined Development
In pipelined development, teams with different skill sets can work in parallel on

different components of the implementation without impeding each other’s work or

compromising the integrity of the project. Decoupled Drupal also opens the door to a

pipelined development process in which a front-end team can build applications against

a dummy web service API used solely for testing but not actually completed, and a back-

end team can construct the back end that exposes that API and the underlying processes

yielding it.

Fully decoupled and progressively decoupled Drupal architectures both allow teams

to produce work at their own respective velocities. For instance, whereas an Ember

developer would be proficient with Handlebars, he or she might not understand the

systems that provision web service APIs in Drupal, at which point a Drupal developer

can contribute. In this fashion, a front-end developer is no longer hamstrung by the

complexities of Drupal’s theme layer and can control markup and rendering, and Drupal

developers can focus on their expertise on the back end and craft a robust RESTful API.

�Conclusion
In this chapter, we examined some of the rewards incurred when decoupling Drupal,

whether in the fully decoupled or progressively decoupled way. These include content

syndication, where an omnichannel landscape helps realize the dream of “write once,

publish everywhere,” and a separation of concerns, where structured content is distinct

from its presentation.

In addition, both developers and users benefit from experiences that are fine-

tuned to their requirements, whether it is greater interactivity, a particular device, or

a set of technologies. Finally, perhaps the most relevant for both fully decoupled and

progressively decoupled approaches is the promise of pipelined development, where

developers of different specializations can work in parallel on distinct components.

Chapter 5 Advantages of Decoupled Drupal

49
© Preston So 2018
P. So, Decoupled Drupal in Practice, https://doi.org/10.1007/978-1-4842-4072-4_6

CHAPTER 6

Disadvantages
of Decoupled Drupal
With all of the buzz and favorable attention surrounding decoupled Drupal at present,

it can be easy to sidestep the pitfalls of decoupling Drupal without evaluating them

intensively. Choosing to use Drupal only for its web service capabilities and as a

content repository can endanger your entire architecture if you need Drupal’s front-end

functionality or other critical functions that rely on the presence of Drupal’s default front

end. Other risks apply as well.

�Additional Point of Failure
Typically, monolithic Drupal implementations are hosted on LAMP (Linux, Apache,

MySQL, PHP) stacks, which are ubiquitous on today’s Web. On the other hand,

JavaScript consumer applications that are clients in a fully decoupled architecture

obligate the use of Node.js stacks like MERN (MongoDB, Express, React, Node.js) or

MEAN (Angular in lieu of React). Other solutions entirely might be necessary for native

mobile or IoT applications that have different demands.

As a result, introducing an additional hosting stack into your organization’s

infrastructure might not only be difficult for those of more modest means; it also

introduces an additional point of failure in your architecture. For instance, if the

Drupal site acting as a web services provider fails without proper caching, the data your

application conveys to the user might be outdated or inaccessible. By the same token,

consumer applications that are the sole conduit for Drupal content and experience

downtime will lead to a situation where users have no means of accessing your content,

unless your Drupal site is also publicly accessible.

50

�Security and Input Sanitization
Whereas the vast majority of modern JavaScript and application frameworks contain

means to combat cross-site scripting attacks, including measures like input sanitization,

both fully decoupled and progressively decoupled Drupal require that you carefully

scrutinize the security implications of your architecture. For example, even though

Drupal offers form validation and text sanitization out of the box for all form fields, this is

only available in a monolithic architecture.

If you or your organization opts to use a bespoke framework—or “vanilla” JavaScript

without the aid of a framework—the security of user-generated input becomes a

potentially massive risk, a hazard that warrants strong emphasis here. Instead of

allowing Drupal to do the heavy lifting, your homegrown approach will require ample

research to evaluate whether you have taken satisfactory steps to ensure the security of

users, the consumer applications, and ultimately the entire architecture.

�Contextualized Editing and Administration
Some of Drupal 8’s most compelling functions include in-place editing (known as the

Quick Edit module) and configuration menus accompanying certain page components

(known as Contextual Links), a few of the modules that comprise contextualized tools

for Drupal administration. During content preview in a monolithic architecture, these

interfaces permit site builders and content editors to adjust content while viewing its live

result or to access administration pages from the comfort of the visual preview.

These contextualized tools, in a fully decoupled Drupal architecture, are no longer

available, unless they are reconstructed on the consumer application, which leads to a

duplication of functionality. As such, employing a distinct front end from Drupal’s for

the web experience transfers responsibility for deploying such interfaces to the front-

end developer, who can either provide replacements or replicas of these tools or note

their unavailability in the editor’s experience. The progressively decoupled approach

somewhat mitigates this, although it suffers from a “black box” problem in which

material contained within decoupled areas of the page cannot be edited or administered

according to normal Drupal administrators’ expectations.

Chapter 6 Disadvantages of Decoupled Drupal

51

�Layout and Display Management
Among Drupal 8’s features are core and contributed modules that confer features for

layout and display management, which offer a spectrum of options to provide variable

content displays (Display Suite) or construct layouts consisting of content panes

(Panels). Because they require significant control over Drupal’s markup, these modules

need to be tightly coupled to Drupal’s presentation layer.

Removing modules like Panels and Display Suite from the editorial equation

means that layout management becomes a developer concern, not that of an editor.

This results in considerable challenges for marketing teams that do not have access to

developers who can assist in implementing layout changes. To allow editors to continue

manipulating layouts rather than just content, your organization will either need to

employ Drupal’s presentation layer, rebuild layout management as a feature in the

consumer application, or expose layout configuration in the form of ingestible data via

modules like RESTful Panels.

�Previewable Content Workflows
Among the most important underpinnings of a robust CMS is the capability to create

and operate along editorial content workflows, whereby one can conveniently preview

content states such as drafts and “in review” without prematurely posting potentially

embargoed content.

Jettisoning Drupal’s functionality for content previews and content workflow by

employing a different front end from Drupal’s translates into considerable challenges

if an editorial team desires a previewable content workflow, to which they might be

accustomed after years of working within a traditional CMS. Several alternatives exist,

such as provisioning an additional private staging environment to allow for different

content to be deployed, or extending web services to expose differentiated content

accessible via secondary authentication or unique query parameters.

�System Notifications
Another key feature of Drupal is its robust notification system, which displays

information about any issues arising during a Drupal system process, especially severe

system errors that demand immediate attention. Although a REST resource is available

Chapter 6 Disadvantages of Decoupled Drupal

52

within Drupal to fetch watchdog logs, these provide only a limited amount of the

possible issues that administrators should scrutinize. Moreover, Drupal system messages

frequently highlighted at the top of rendered pages are inaccessible in a fully decoupled

Drupal environment.

To maintain unimpeded awareness of potential problems that occur in Drupal,

especially ones that could affect the transmission of data to consumer applications, it is

important to watch system messages within the Drupal back-end interface carefully, as

without substantial custom code, these messages will be unavailable. In a progressively

decoupled setting, providing these messages is less of a concern, as Drupal does handle

some of the rendering and only requires an area where such system messages can be

visible.

�Monolithic Performance Benefits
One of the most compelling features of Drupal 8 is cache tags (see Chapter 25), also

known as cacheability metadata, which allow developers to define dependencies on

data managed by Drupal and permit cache invalidation of items that rely heavily on

granular content contained within them. For instance, the BigPipe contributed module

abbreviates the time to first paint by providing progressive loads of pages based on the

differentiated cacheability of respective page components.

Such capabilities give Drupal the means to achieve significant performance

improvements during the page load. Sometimes, BigPipe can alleviate developers’

concerns about monolithic Drupal performance by benefiting from a similar page load

performance as that expected in JavaScript applications. This type of progressive loading

dependent on cacheability metadata is not available to developers of fully decoupled

implementations, but progressively decoupled builds can in certain cases leverage this

feature. Of course, for those who lack preexisting Drupal sites or are less accustomed to

Drupal’s feature set, this disadvantage might be less relevant.

�Accessibility and User Experience
Finally, but perhaps most important, Drupal’s efforts on accessibility and user

experience have included utmost consideration for markup and how it is presented to

people living with disabilities and users of assistive technologies. For example, Drupal’s

use of ARIA roles and other techniques ensure that all Drupal content is available for

Chapter 6 Disadvantages of Decoupled Drupal

53

users of screen readers. Moreover, Drupal’s focus on usability across its history means

that anyone using Drupal’s Form API is certain to benefit from a set of standardized and

battle-tested best practices.

In the fully decoupled and progressively decoupled setting, when it comes to

JavaScript applications, markup and user experience require considerably more thought,

because Drupal no longer provides ready-made front-end code or a roster of core

interface components and interactions to rely on. This results in the front-end developer

needing to craft a suitable user experience and robust accessibility without the aid of

Drupal. Fortunately, JavaScript frameworks have made significant strides in accessible

markup in recent years.

�Conclusion
Although decoupling Drupal can translate into wide-ranging dividends for your team

and for your goals in building digital experience ecosystems, it comes with certain

trade-offs, particularly if you employ Drupal as a stand-alone content service without a

corresponding front end. In the fully decoupled case, abandoning the Twig-driven front

end enables a better separation of concerns and pipelined development, but it forces

developers to be far more attentive to issues of accessibility and user experience.

Fully decoupling Drupal introduces considerable problems that should give pause to

any stakeholder and demand frank assessment. For instance, an additional hosting stack

introduces a second point of failure (although this is the case with each infrastructurally

distinct consumer you add). Issues of security such as sanitization of user-generated

content also deserve close examination. More relevant for editors and administrators,

key functions of Drupal that rely on its presentation layer such as contextual tools, layout

and display management, previewable content workflows, and system notifications

disappear except within the administrative interface, unless resurrected as replicas in

the consumer application.

Progressive decoupling mitigates some of these concerns by providing some

solutions; for instance, contextual tools, layout and display management, previewable

content, and system notifications remain intact, although the “black box” problem is a

source of concern for editors.

In other words, if you opt to decouple Drupal, whether fully or progressively, be

ready to work with a highly competent development team with specialties in both

Drupal and front-end technologies and to experiment with custom or contributed

solutions as you progress with your decoupled Drupal architecture.

Chapter 6 Disadvantages of Decoupled Drupal

54

In Part 2, we decouple Drupal by digging into the details behind Drupal’s web

services. We turn first to the core REST modules in Drupal core, which include

capabilities for HAL-compliant JSON responses adhering to Drupal’s data model and

RESTful principles. Then, we turn our attention to major contributed modules like JSON

API, GraphQL, and RELAXed Web Services, which each provide different capabilities to

interact with Drupal content, as well as authentication mechanisms.

Chapter 6 Disadvantages of Decoupled Drupal

PART II

Decoupling Drupal
In Part 1, we examined decoupled Drupal from a conceptual and historical perspective

by following its trajectory on the server side and client side and analyzing common

decoupled Drupal approaches and motivations for using a particular paradigm over

another. In these chapters, we dive into how Drupal core provides web services for

consumers, how Drupal’s contributed ecosystem has fostered a substantial ecosystem

surrounding core features, and how to authenticate requests against Drupal’s web

services.

In the process, we will enumerate a large variety of technologies, including modules

in Drupal core (Serialization, RESTful Web Services, HAL), Drupal contributed modules

(JSON API, RELAXed Web Services, GraphQL, REST UI), and authentication methods

(OAuth 2.0, JSON Web Tokens).

From the standpoint of out-of-the-box web services, Drupal 8 Core offers a robust

variety of features for handling the encoding and serialization of API responses that

consumers require. In Drupal 8 Core, four key modules, when enabled, collectively

facilitate the provisioning of RESTful APIs out of the box: HAL, Serialization, REST,

and Basic Authentication. Some of these modules provide foundations that underpin

important contributed modules also useful for Drupal such as JSON API, RELAXed Web

Services, and GraphQL. For instance, while the JSON API contributed module depends

on Serialization, it does not depend on REST.

In addition, the RESTful Web Services module integrates tightly with Drupal’s

Entity Access system to provide granularly permissioned access to resources. Finally,

with more recent developments such as the inclusion of CORS support and the future

incorporation of JSON API into Drupal core, the advantages of employing Drupal off the

shelf to provide web services become more compelling.

56

After examining these modules and setting up Drupal 8 as a web service provider,

we’ll configure Drupal 8 to be an effective web service provider and back end before

turning to the contributed ecosystem of web services modules. Many developers may

find that Drupal’s contributed ecosystem offers more flexible and extensible solutions for

providing web services, as well as user interfaces and additional features that enhance

existing web services.

For instance, JSON API, CouchDB, and GraphQL are all widely understood

standards that have witnessed significant adoption due to their emphasis on a positive

developer experience. In Drupal’s case, the REST UI module furnishes a more

user-friendly experience for REST resource configuration.

This and other useful contributed modules offer convenient user interfaces for

esoteric configuration tasks.

Finally, one of the most critically important elements of any decoupled Drupal

architecture is authentication to ensure that data remains private and protected. While

Drupal offers several built-in mechanisms in core that we can employ in a decoupled

Drupal architecture, namely Basic Authentication and cookie-based authentication,

these are much less secure than contributed alternatives. In the contributed landscape,

the Simple OAuth (Drupal’s OAuth 2.0 implementation) and JSON Web Tokens modules

implement more modern standards.

Because Drupal 8 Core is the most common point of entry for those experimenting

with Drupal as a decoupled back end, we’ll start there.

Part II  Decoupling Drupal

57
© Preston So 2018
P. So, Decoupled Drupal in Practice, https://doi.org/10.1007/978-1-4842-4072-4_7

CHAPTER 7

Decoupling Drupal 8 Core
Thanks to the work of the WSCCI, Drupal 8 today provides a capable REST server out of

the box that includes the ability to retrieve and modify content entities—such as nodes,

users, taxonomy terms, and comments—through broadly understood create, read,

update, and delete (CRUD) operations within HTTP requests.

�The Web Services and Context Core Initiative
For Drupal to truly embrace the future web, we need to fundamentally
rethink how Drupal responds to an incoming HTTP request. We need to
treat HTML pages as what they are: A particularly common form of REST
response, but only one among many. To that end, Drupal needs to evolve,
and quickly, from a first-class web CMS into a first-class REST server that
includes a first-class web CMS.

—Larry Garfield, WSCCI lead1

As we saw in Chapters 2 and 3, Drupal emerged during a more traditional time when

static pages drove application state and CMSs were monolithic by nature. In recent years,

however, increasing dynamism in web applications and unprecedented new channels

for content delivery are spotlighting Drupal’s increasing challenges when it comes to

honoring requests intended for a diverse array of sources.

1�Garfield, Larry. “Announcing the Web Services and Context Core Initiative.” GarfieldTech.
11 April 2011. Accessed 12 March 2018. https://www.garfieldtech.com/blog/
web-services-initiative

https://www.garfieldtech.com/blog/web-services-initiative
https://www.garfieldtech.com/blog/web-services-initiative
https://www.garfieldtech.com/blog/web-services-initiative

58

These requests can run the gamut between partial page requests (e.g., edge side

includes), RESTful API calls, and even requests originating from command-line

interfaces such as Drush and Drupal Console.2 Nevertheless, requests like these were

not particularly well-suited for Drupal during a time when Drupal placed a much

greater emphasis on building and rendering HTML pages rather than data needing to be

presented in various formats. As late as Drupal 7, the core installation of Drupal solely

provided an XML-RPC (remote procedure calls in XML) layer in lieu of a bonafide web

services layer.3

The Web Services and Context Core Initiative (WSCCI) was launched in 2011

during the Drupal 7 release cycle and became an official Drupal 8 initiative. Owing

to the need to circumvent the HTML rendering processes in Drupal, the objective of

the WSCCI team was to modernize Drupal’s handling of requests and serving of pages

to anticipate the myriad use cases that would emerge further along in the Drupal 8

development cycle.

To accommodate all of the kinds of responses that Drupal needs to serve for

consumers, as part of the effort to include more of the Symfony PHP framework in

Drupal core, WSCCI advocated the incorporation of the Symfony HTTPFoundation

component (an HTTP request processing library written in PHP) into Drupal core. In

addition, in 2012, due to the vast scope of the initiative, it scaled down to occupy itself

solely with web services concerns.4, 5

With the entry of the Serialization module, WSCCI enabled Drupal to serialize,

meaning to transform structured data into a storable format (e.g., files or transmissions

across networks), and to deserialize, meaning to reconstruct Drupal data structures from

data formatted for storage. For the first time, modules could serialize content entities

into XML, JSON, and the HAL+JSON format based on the HAL normalization, which

adheres to the Hypertext Application Language (HAL) specification.

2�Catchpole, Nathaniel. “Componentized Drupal: Drupal 8 and Symfony2.” Drupal Watchdog.
1 March 2013. Accessed 12 March 2018. https://www.drupalwatchdog.com/volume-3/issue-1/
componentized-drupal

3�Sánchez, Valentin. “Drupal 8 Web Services and Context Core Initiative.” Conocimiento
Plus. 6 January 2015. Accessed 12 March 2018. https://conocimientoplus.wordpress.
com/2015/01/06/drupal-8-web-services-and-context-core-wscci-initiative/

4�Kudwien, Daniel F. “Drupal 8: The path forward.” Unleashed Mind. 20 February 2012. Accessed
12 March 2018. http://www.unleashedmind.com/en/blog/sun/drupal-8-the-path-forward

5�Buytaert, Dries. “The future is a RESTful Drupal.” Dries Buytaert. 16 February 2012. Accessed 12
March 2018. https://dri.es/the-future-is-a-restful-drupal

Chapter 7 Decoupling Drupal 8 Core

https://www.drupalwatchdog.com/volume-3/issue-1/componentized-drupal
https://www.drupalwatchdog.com/volume-3/issue-1/componentized-drupal
https://www.drupalwatchdog.com/volume-3/issue-1/componentized-drupal
https://conocimientoplus.wordpress.com/2015/01/06/drupal-8-web-services-and-context-core-wscci-initiative/
https://conocimientoplus.wordpress.com/2015/01/06/drupal-8-web-services-and-context-core-wscci-initiative/
https://conocimientoplus.wordpress.com/2015/01/06/drupal-8-web-services-and-context-core-wscci-initiative/
http://www.unleashedmind.com/en/blog/sun/drupal-8-the-path-forward
http://www.unleashedmind.com/en/blog/sun/drupal-8-the-path-forward
https://dri.es/the-future-is-a-restful-drupal
https://dri.es/the-future-is-a-restful-drupal

59

Note T he Drupal community chose to replace JSON-LD with HAL in 2013.
For more information, visit https://www.drupal.org/project/drupal/
issues/1924220.

�The Serialization Module
The Serialization module permits modules that cite it as a dependency (like the

RESTful Web Services or REST module) to employ serializers contained therein to

transform Drupal data into formats consumable by other applications. Built with the

Symfony Serializer component as a foundation, the Serialization module provides an

API for developers to introduce additional serialization formats via the installation

of contributed modules. Prominent modules using the Serialization API include the

aforementioned HAL module in Drupal 8 Core (supports the HAL+JSON format) and the

CSV Serialization contributed module (supports data in CSV format).

When different standards and specifications inevitably enter the picture, the

Serialization module also handles normalization, the process by which data in

a particular format are structured or exposed differently to adhere to particular

requirements without changing their format (denormalization is the process in reverse).

For instance, the HAL+JSON format provided by the HAL module uses data structures

and exposes pieces of information that are different from the default JSON encoding in

Drupal, including links to other resource URIs that adhere to the HAL specification.

To satisfy the need for both normalization and serialization, the Serialization

module offers other modules a default serializer and default normalizer. In addition,

other modules can also employ their own homegrown encoders, which transform arrays

generated by normalizers into serialization formats, or normalizers. Custom encoders

for JSON and XML are unnecessary, as default JSON and XML encoders are already

present in the Symfony Serializer format.

As Figure 7-1 indicates, a serialization process in Drupal consists of a normalization

process and an encoding process in succession.

Chapter 7 Decoupling Drupal 8 Core

https://www.drupal.org/project/drupal/issues/1924220
https://www.drupal.org/project/drupal/issues/1924220

60

�How Serialization Works
Although most developers will choose to employ the serializer as is, each serialization

(or deserialization) process actually consists of both normalization (or denormalization)

and encoding (or decoding). This provides for a separation of concerns between a

normalization of an object into a nested array and an encoding of that same array into

the required format. Figure 7-2 digs deeper into this dual process with an example

serialization process.

Figure 7-1.  This figure, adapted from a diagram in the Symfony Serializer
documentation, demonstrates how serializers create consumable data in JSON
and XML based on two constituent processes: normalization and encoding

Chapter 7 Decoupling Drupal 8 Core

61

Figure 7-2.  This diagram illustrates how normalization needs to occur before
encoding to satisfy certain specifications like HAL, which dictate certain elements
that should be part of the encoded format. In this example serialization, a node
entity is normalized into a HAL-compatible structure before being encoded into the
HAL+JSON format.

Chapter 7 Decoupling Drupal 8 Core

62

We can introspect the methods used to detail this process even further. When

the Serializer::serialize() method is invoked, the Serializer iterates through all

available Normalizer services to determine which Normalizer it should use, invoking No

rmalizer::supportsNormalization($object, $format) on each Normalizer (from

highest to lowest priority) until it discovers a Normalizer returning TRUE. If a Normalizer

is not found, Drupal returns an error.

The Serializer service undertakes exactly the same process to choose the right

Encoder, iterating through the Encoders and invoking EncoderInterface::supportsEn

coding($format) every time until it encounters the particular Encoder that satisfies the

stipulations of the format provided as an argument.

�Adding a New Encoding
Drupal ships with the core-supported formats JSON, XML, and HAL+JSON, but

sometimes you might wish to add a new encoding altogether, assuming the available

formats are unsuitable for your project. To that end, you can add an Encoder as long

as the data structure provided by core’s default Normalizers is appropriate for your

encoding as well.

First, create an encoder that implements EncoderInterface and define the

obligatory encode() and decode() methods. Then, you can register the encoder using a

*.services.yml file in your module. This example is taken from the HAL module’s hal.

services.yml file:

services:

 # ...

 serializer.encoder.hal:

 class: Drupal\hal\Encoder\JsonEncoder

 tags:

 - { name: encoder, priority: 10, format: hal_json }

 # ...

Note  You can find the full example of this YAML file at https://api.drupal.
org/api/drupal/core%21modules%21hal%21hal.services.yml/8.6.x.

Chapter 7 Decoupling Drupal 8 Core

https://api.drupal.org/api/drupal/core!modules!hal!hal.services.yml/8.6.x
https://api.drupal.org/api/drupal/core!modules!hal!hal.services.yml/8.6.x

63

�The Serialization API
There are several key APIs that can aid you in constructing new serializers and

normalizers and in handling entities with references to other entities using entity

resolvers.

�Serializing and Deserializing
You can use the serialize() and deserialize() methods in Drupal 8’s serializer

service (\Symfony\Component\Serializer\SerializerInterface) to either serialize an

entity into JSON or XML output or to deserialize incoming JSON or XML into a Drupal

entity:

$output = $this->serializer->serialize($entity, 'json');

$entity = $this->serializer->deserialize($output, \Drupal\node\Entity\

Node::class, 'json');

In the first line shown, an entity is serialized into JSON output. In the second, a JSON

data structure is deserialized into an entity that can then be manipulated normally by

Drupal code.

�Encoding and Decoding Serialization Formats
Each serializer implementation makes use of an encoder (\Symfony\Component\

Serializer\Encoder\EncoderInterface) and decoder (\Symfony\Component\

Serializer\Decoder\DecoderInterface) that can be used to add support for encodings

to and decodings from new serialization formats (e.g., CSV or something else).

As an educational example, the encode() implementation in the CSV Serialization

module identifies the type of input data and encodes that data into CSV that can then be

consumed outside of Drupal’s own understanding of entities.

Note  See the CSV Serialization module’s implementation of encode() at
https://cgit.drupalcode.org/csv_serialization/tree/src/
Encoder/CsvEncoder.php#n108.

Chapter 7 Decoupling Drupal 8 Core

https://cgit.drupalcode.org/csv_serialization/tree/src/Encoder/CsvEncoder.php#n108
https://cgit.drupalcode.org/csv_serialization/tree/src/Encoder/CsvEncoder.php#n108

64

�Normalizing and Denormalizing
To reconcile the differences between a particular encoding and a specific normalization,

such as the distinctions between the raw JSON data structures and the HAL+JSON

normalization, the Symfony Serializer component introduces normalizer (\Symfony\

Component\Serializer\Normalizer\NormalizerInterface) and denormalizer

(\Symfony\Component\Serializer\Normalizer\DenormalizerInterface) interfaces.

In Drupal, the default normalization is as close to an identical replication of

the object data as possible and merely applies the JSON and XML encoders to the

default normalization (json and xml formats). Other normalization formats written by

developers might wish to apply specific constraints to incoming object data, such as the

omission of local IDs in favor of universally unique identifiers (UUIDs) or the addition of

new metadata that satisfies specifications like JSON-LD or HAL.

The normalize() implementation in the HAL module, which is discussed further

shortly, demonstrates how adherence to specifications must be captured by normalizers

and not encoders, whose responsibilities do not include the inclusion of metadata

such as that required by the HAL specification. In this example, the normalization is

prepended with a _links key that begins every HAL response.

Note  See the HAL module’s implementation of normalize() at https://
github.com/drupal/drupal/blob/8.5.x/core/modules/hal/src/
Normalizer/ContentEntityNormalizer.php#L57.

�Using Entity Resolvers
Although content entities are the most common data structures to be serialized, you

might also find that a particular entity references other entities. When that is the case, as

is common in complex Drupal content models, you can resolve those referenced entities

by invoking resolve() with their UUIDs (\Drupal\serialization\EntityResolver\

UuidResolver) or local Drupal identifiers (\Drupal\serialization\EntityResolver\

TargetIdResolver).

Chapter 7 Decoupling Drupal 8 Core

https://github.com/drupal/drupal/blob/8.5.x/core/modules/hal/src/Normalizer/ContentEntityNormalizer.php#L57
https://github.com/drupal/drupal/blob/8.5.x/core/modules/hal/src/Normalizer/ContentEntityNormalizer.php#L57
https://github.com/drupal/drupal/blob/8.5.x/core/modules/hal/src/Normalizer/ContentEntityNormalizer.php#L57

65

�The RESTful Web Services Module
On the shoulders of the RESTful Web Services module in Drupal 7, Drupal core’s

REST module also depends on the Serialization module. In its standard usage,

the REST module exposes a customizable and extensible REST API that exposes

data housed in Drupal. In this section, I discuss the REST module and its API; see

Chapter 10 for retrieving and manipulating data through CRUD operations, and

see Chapter 22 for more advanced features of the REST module such as resource

plug-ins.

By default, the REST module permits developers to work with Drupal data using

HTTP methods (like GET, POST, and DELETE) on content entities (including nodes, users,

and comments). Moreover, issuing GET requests against configuration entities (e.g.,

vocabularies, user roles, and site configuration) and Watchdog database log entries is

now supported as of Drupal 8.2.0.6

Note T he RESTful Web Services module for Drupal 7 is available on the Drupal.
org project page located at https://www.drupal.org/project/restws.

�The RESTful Web Services API
The REST module makes a few APIs available to developers who wish to extend the

feature set of Drupal’s default core REST API. Not to be confused with the REST API

exposed for consumer applications, the RESTful Web Services module’s API refers to the

internal interfaces available for Drupal developers to extend core functionality.

This section delves into one of the two key APIs that Drupal developers have access

to and by far the most important: REST resource configuration. The other available API,

which handles resource plug-ins that add additional resources to defaults available out

of the box, is covered in Chapter 25.

6�“RESTful Web Services module overview.” Drupal.org. 9 November 2016. Accessed 23 March
2018. https://www.drupal.org/docs/8/core/modules/rest/overview

Chapter 7 Decoupling Drupal 8 Core

https://www.drupal.org/project/restws
https://www.drupal.org/docs/8/core/modules/rest/overview
https://www.drupal.org/docs/8/core/modules/rest/overview

66

�Configuring REST Resources
To begin, each REST resource, irrespective of whether it represents a content

entity or configuration entity, has its own configuration entity (\Drupal\rest\

RestResourceConfigInterface) that corresponds to a @RestResource plug-in. Without

the REST resource configuration entity, the REST resource plug-in is unavailable for use.

Because all REST resources have corresponding configuration entities, we can

configure them in the same way as other configuration entities. As an example, you can

designate particular HTTP methods, serialization formats, and authentication methods

that a given REST resource is intended to support. Through this process, the chosen

serialization formats and authentication methods are exposed to the selected HTTP

methods in configuration.

REST resources can be configured by either using the REST UI module, which offers

a GUI, or by modifying and importing configuration YAML by hand. Many developers,

myself included, use existing configurations of REST resources, such as core/modules/

rest/config/optional/rest.resource.entity.node.yml as a handy reference that can

be copied and pasted.7

�Using the RESTful Web Services Module
Typically, when you are building out an architecture with multiple consumers that

require data from Drupal, you would expose these data by permitting access to resources

by certain user roles with specific permissions and by designating a REST resource’s

serialization format and authentication method as you see fit.

�Exposing Resources with Entity Access
One key advantage of Drupal 8 is that it contains a granular and robust user roles and

permissions system that works effectively with permissions for accessing exposed REST

resources. In Drupal 8, for REST resources exposing content entities, the Entity Access

API determines whether a user role has the correct permissions to retrieve or manipulate

content entities.

7�“RESTful Web Services API overview.” Drupal.org. 5 March 2018. Accessed 23
March 2018. https://www.drupal.org/docs/8/api/restful-web-services-api/
restful-web-services-api-overview

Chapter 7 Decoupling Drupal 8 Core

https://www.drupal.org/docs/8/api/restful-web-services-api/restful-web-services-api-overview
https://www.drupal.org/docs/8/api/restful-web-services-api/restful-web-services-api-overview
https://www.drupal.org/docs/8/api/restful-web-services-api/restful-web-services-api-overview

67

For instance, to issue GET requests on a node (i.e., read or view it), a user—which

in this case might simply be a consumer application, represented on Drupal as an

anonymous user—needs to be granted the Access content permission by a Drupal

administrator. Similarly, the Create article content permission must be enabled for a

user to be able to issue a POST request against a node of type Article.

The reuse of the Entity Access system by REST resources is a critical feature

for consumers handling sensitive private data and as such should be employed

with appropriate authentication methods like that provided by the Simple OAuth

module, which couples user roles and their designated permissions with individually

identifiable consumer applications. I discuss authentication methods in greater detail

in Chapter 9.

Note T he Simple OAuth module for Drupal 8 is available on the Drupal.org
project page located at https://www.drupal.org/project/simple_oauth.

�Customizing a REST Resource’s Format
and Authentication Method
Out of the box, the REST module contains support for the two most commonly used

formats on the Web: json and xml. By enabling core’s HAL module (see next section),

developers can also use the hal_json format. With the assistance of other contributed

modules, still other formats can be added, such as csv. The REST module also allows

developers to provide distinct authentication methods depending on the resource in

question, so developers can differentiate between requiring Basic Authentication for

certain resources and OAuth2 authentication for more sensitive resources. See Chapter 8

for a more comprehensive discussion of authentication in decoupled Drupal.

Here is an example of how to configure available formats and authentication

mechanisms on a per-resource basis using YAML:

granularity: resource

configuration:

 methods:

 - ...

Chapter 7 Decoupling Drupal 8 Core

https://www.drupal.org/project/simple_oauth

68

 formats:

 - hal_json

 - xml

 - json

 authentication:

 - cookie

Note T he preceding example uses cookie-based authentication, which is
relevant in the progressive decoupling case, because the consumer application
and Drupal front end are both active in a single browser session. In cookie-based
authentication, a cookie set during an authenticated user session can be employed
by a JavaScript application to perform authentication against Drupal’s REST API.

All of this configuration can also be done using the REST UI module.

�Hypertext Application Language
When consumer applications ingest data normalized as HAL-compliant JSON

(HAL+JSON), the appearance of data structures adhere to the HAL specification, which

underpins the HAL module. When enabled, Drupal 8’s HAL module normalizes entities

according to the HAL specification.

Much like JSON-LD, the HAL specification addresses one particular requirement that

many web service APIs grapple with: the ability to hyperlink across multiple resources

to include links or references to other relevant resources in a single API response that

provides greater usefulness to consumer applications. Indeed, HAL itself is a generic

media type the purpose of which is to comprise “series of links” within web service APIs.

Armed with these links, API consumers can then traverse them to progress through a

variety of application states.

The availability of surrounding tooling remains among the most obvious benefits of

adopting a specification like HAL to serve API responses. For example, a HAL browser

offers developers the means to “test drive” their applications and inspect how their JSON

is formatted through a convenient user interface.

Chapter 7 Decoupling Drupal 8 Core

69

Note T he HAL specification is located at https://tools.ietf.org/html/
draft-kelly-json-hal-08.

�Setting Up Drupal 8 as a Web Service Provider
With some of the key foundations established, we can now turn our attention to setting

up Drupal 8 as a web services provider. In this section, we acquire, install, and generate

content for Drupal before moving into core REST configuration, both manually and

using the REST UI module. First, though, we’ll need a local copy of the most recent

version of Drupal.

�Installing Composer
If you have never installed Drupal or worked with Drupal 8 before, the new dependency

management system in Drupal might be unfamiliar. If you have already worked with

Composer-based workflows in the past, this section can be safely skipped.

Composer is a dependency manager in PHP, analogous to package managers like

NPM and Yarn in JavaScript and Bundler in Ruby. Based on a composer.json file located

in your PHP code base, Composer fetches and installs the dependencies listed therein.

Unless you have specific requirements that obligate unique versions of Composer

on a per-project basis, it is a best practice to install Composer globally. If you are using

Linux, Unix, or OSX, navigate to https://getcomposer.org/installer to download a

convenient installer. Once it is installed, use the following command to move Composer

to a directory in your PATH. This will allow you to use composer commands globally.

$ mv composer.phar /usr/local/bin/composer

If you are using Windows, navigate to https://getcomposer.org/Composer-Setup.

exe to download an executable that will install Composer such that it will be available on

any directory.8

8�“Introduction.” Composer. 18 February 2012. Accessed 8 September 2018.
https://getcomposer.org/doc/00-intro.md

Chapter 7 Decoupling Drupal 8 Core

https://tools.ietf.org/html/draft-kelly-json-hal-08
https://tools.ietf.org/html/draft-kelly-json-hal-08
https://getcomposer.org/installer
https://getcomposer.org/Composer-Setup.exe
https://getcomposer.org/Composer-Setup.exe
https://getcomposer.org/doc/00-intro.md

70

Note  For more information about installing Composer including manual
installation and local installation, consult the Composer documentation at
https://getcomposer.org/doc/00-intro.md.

�Downloading Drupal and Drupal Dependencies
with Composer
In the directory where you wish to house Drupal, run the following. This command also

executes composer install, which will download Drupal 8 and all dependencies.

$ composer create-project drupal-composer/drupal-project:8.x-dev core-rest

--stability dev --no-interaction

$ cd core-rest

Note  For more information about the drupal-composer/drupal-project
Composer template for Drupal 8 projects, consult the README at https://
github.com/drupal-composer/drupal-project/blob/8.x/README.md.

For developers familiar with past development workflows for Drupal, one of the

unique aspects of Composer is the ability to add new dependencies from the command

line using the command shown here, where {module_name} is the name of the module

you wish to add. Composer will automatically add the dependency to your composer.

json file.

$ composer require drupal/{module_name}

If you open your composer.json file, you will see something like the following added.

{

 "require": {

 "drupal/{module_name}": "1.x-dev"

 }

}

Chapter 7 Decoupling Drupal 8 Core

https://getcomposer.org/doc/00-intro.md
https://github.com/drupal-composer/drupal-project/blob/8.x/README.md
https://github.com/drupal-composer/drupal-project/blob/8.x/README.md

71

If you see errors while running composer require, you might need to add Drupal.org

as a Composer repository such that Composer recognizes that Drupal packages need

to be fetched from https://packages.drupal.org/8. We can use composer config

to set this, as you can see in the following command. Note that if you are using the

installation method detailed earlier or if you are on Drupal 8.3.0 or later, this step should

be unnecessary.

$ composer config repositories.drupal composer https://packages.drupal.

org/8

When you open composer.json again, you will see the following appear.

{

 "repositories": {

 "drupal": {

 "type": "composer",

 "url": "https://packages.drupal.org/8"

 }

 }

}

Note I f you are running Composer and encounter a memory limit error, there
are several resolutions available. The most common is to configure the memory_
limit within your php.ini file to be larger than the default. Another option is to
temporarily configure PHP’s memory limit to be infinite, as seen in the following
version of the composer create-project command. For more information,
consult the Composer documentation regarding PHP memory limits at https://
getcomposer.org/doc/articles/troubleshooting.md#memory-limit-
errors.

$ php -d memory_limit=-1 composer.phar create-project
drupal-composer/drupal-project:8.x-dev core-rest --stability
dev --no-interaction

Chapter 7 Decoupling Drupal 8 Core

http://drupal.org
https://packages.drupal.org/8
https://getcomposer.org/doc/articles/troubleshooting.md#memory-limit-errors
https://getcomposer.org/doc/articles/troubleshooting.md#memory-limit-errors
https://getcomposer.org/doc/articles/troubleshooting.md#memory-limit-errors

72

�Provisioning a Drupal Site
After downloading Drupal and its dependencies, you can provision a new site in your

designated local development environment using the existing code base you just

acquired. In these examples I am using Acquia Dev Desktop, but you can use any local

development environment you prefer, such as Lando, Docker for Drupal, or MAMP. In

Acquia Dev Desktop, selecting the + button in the lower left opens a menu of options,

including the one we want: Import local Drupal site. Once you have inputted all the

information, as shown in Figure 7-3, we can move ahead to installing Drupal.

Note A cquia Dev Desktop can be downloaded at https://dev.acquia.com/
downloads.

Figure 7-3.  In this screenshot, we have opted to import a local Drupal site
that already exists in the core-rest directory. This Drupal site will use PHP
version 7.0.14, and a new database will be created.

Chapter 7 Decoupling Drupal 8 Core

https://dev.acquia.com/downloads
https://dev.acquia.com/downloads

73

Now, you can install Drupal in the normal way, whether through Drush, Drupal

Console, or manually using the web interface at /core/install.php. If you encounter

a White Screen of Death—an empty error screen that might include unformatted errors

at the top of the page—at /core/install.php with errors regarding autoload.php, you

might need to rerun composer install.

Note  More information about Drush and Drupal Console can be found at
their sites, http://www.drush.org and https://drupalconsole.com,
respectively.

�Generating Content and Enabling Core REST Modules
Next, we’ll want to create some content that we can test through the API, a process that

can be done manually or using the Devel Generate submodule of Devel. The following

commands create 20 nodes and 20 users (both examples of content entities).

$ composer require drupal/devel

$ drush en –y devel devel_generate

$ drush genc 20 && drush genu 20

Note  Devel’s project page on Drupal.org is at https://www.drupal.org/
project/devel.

Once you have installed the site and added a modicum of content, you now have

a fully functional Drupal site. However, we have yet to enable the modules that are

responsible for exposing the core REST API. Because these modules are already part of

core but not enabled, we simply need to navigate to the Extend page (/admin/modules)

or enable them via Drush. The following Drush command, for instance, enables Drupal

Core’s Serialization, HAL, Basic Authentication, and REST modules.

$ drush en -y serialization hal rest basic_auth

At this point, we can navigate to core-rest.dd:8083/node/1?_format=json to

test our shiny new REST API. Unfortunately, when we do navigate to that path (seen in

Chrome in Figure 7-4), we see an error stating “Not acceptable format: json”. This

Chapter 7 Decoupling Drupal 8 Core

http://www.drush.org
https://drupalconsole.com
http://drupal.org
https://www.drupal.org/project/devel
https://www.drupal.org/project/devel

74

means there is still more work we have to do, namely configuring the REST resources

that we want exposed in the API.

�Configuring Core REST
To expose our REST resources in a Drupal-exposed REST API, we need to configure

those REST resources using Drupal’s configuration management system. As an example,

if our requirement is to expose nodes of content type Article to the API, we need to

ensure that we have assigned HTTP methods, formats, and authentication methods to

the content type’s corresponding REST resource.

As mentioned previously, an example configuration YAML file that can serve as

a reference for others is located at /core/modules/rest/config/optional/rest.

resource.entity.node.yml. By using Drupal’s configuration import system, we can

copy the following YAML into Drupal to provide a newly configured REST resource.

langcode: en

status: true

dependencies:

 module:

 - basic_auth

 - hal

 - node

id: entity.node

plugin_id: 'entity:node'

granularity: resource

configuration:

 methods:

 - GET

 - POST

Figure 7-4.  There’s a step missing here, as our REST resources are not yet
configured

Chapter 7 Decoupling Drupal 8 Core

75

 - PATCH

 - DELETE

 formats:

 - hal_json

 authentication:

 - basic_auth

To make Drupal aware of this configuration, we can navigate to Manage ➤

Configuration ➤ Development ➤ Configuration synchronization (/admin/config/

development/configuration), where we can choose to import a single item, as shown in

Figure 7-5.

Once we have imported the configuration for our Articles, we can test requests

against the REST API that is now properly configured. Although we can do this using the

cURL command-line interface or in the browser, I recommend the Postman REST client,

which is a tool that issues and saves arbitrary requests against HTTP APIs. Postman is

quite powerful with many useful features, so we will be using it throughout this chapter

to test requests.

Figure 7-5.  The Single import page is used to import individual configuration
items. We need to import a configuration item each time we designate another
REST resource for each content type.

Chapter 7 Decoupling Drupal 8 Core

76

Note P ostman can be downloaded at https://www.getpostman.com.

In Postman, we can create and issue requests like the one shown in Figure 7-6,

which depicts a GET request against core-rest.dd:8083/node/1?_format=hal_json. All

we need to do is insert the correct URL, choose the HTTP method, and click Send. The

resulting response is a HAL-compliant JSON payload that contains all of the information

contained in a node (content item) having a node ID of 1.

Congratulations! You have just successfully issued your very first GET request against

the core REST API in Drupal 8. In other words, you have just taken the first steps to

implement decoupled Drupal.

Figure 7-6.  Postman is a powerful HTTP client that can replace cURL in your
developer toolbox. In this example, we are issuing a GET request against the node
(a content item in Drupal) that has a node ID (identifier) of 1.

Chapter 7 Decoupling Drupal 8 Core

https://www.getpostman.com

77

�Configuring CORS
Even though we now have a fully functional REST API after having configured REST

resources, we should not deploy this API to production as it currently stands. If we were

to attempt to access this domain from an application on a different domain, our requests

would all fail due to the same-origin policy, a principle that forbids requests from other

domains from retrieving content on a home domain for security reasons. The same-

origin policy prevents data housed on one domain from falling victim to exploits or

distributed denial-of-service (DDoS) attacks conducted by another.

To mitigate this risk, cross-origin resource sharing (CORS) allows user agents (for our

purposes, API consumers or consumer applications) to access designated resources via

particular HTTP headers from a domain that is distinct from the originator of the request.

As an example, a request to my-decoupled-backend.com from my-consumer-app.net

would be blocked by default unless the appropriate headers are present in the request.

Note  For more information about both principles, the Mozilla Developer Network
has well-maintained documentation about the same-origin policy (https://
developer.mozilla.org/en-US/docs/Web/Security/Same-origin_
policy) and CORS (https://developer.mozilla.org/en-US/docs/Web/
HTTP/CORS).

By default, Drupal blocks every request that originates from different domains for

security purposes. However, using Drupal’s site settings, which drive behavior across an

entire installation of Drupal, we can permit select domains (or all domains on the web)

access to particular methods or routes in Drupal. This allows us to expose our API for

consumers on different origins, and we can make particular methods or routes available

in an arbitrary manner.

Consider the following selection from sites/default/default.services.yml, which

contains Drupal’s default site settings; this section deals specifically with CORS settings.

 # Configure Cross-Site HTTP requests (CORS).

 # Read https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

 # for more information about the topic in general.

 # Note: By default the configuration is disabled.

Chapter 7 Decoupling Drupal 8 Core

http://my-decoupled-backend.com
http://my-consumer-app.net
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

78

 cors.config:

 enabled: false

 # Specify allowed headers, like 'x-allowed-header'.

 allowedHeaders: []

 �# Specify allowed request methods, specify ['*'] to allow all possible

ones.

 allowedMethods: []

 # Configure requests allowed from specific origins.

 allowedOrigins: ['*']

 # Sets the Access-Control-Expose-Headers header.

 exposedHeaders: false

 # Sets the Access-Control-Max-Age header.

 maxAge: false

 # Sets the Access-Control-Allow-Credentials header.

 supportsCredentials: false

CORS is disabled by default. To override the default and enable it, we need to copy

default.services.yml into a new file named services.yml in the same directory.

By doing so, we instruct Drupal to overrule the default settings with our bespoke file

where we have provided our own CORS configuration. In the process, we can designate

specific HTTP headers, HTTP methods, or origins that we wish to grant access to our

new API. For instance, the following YAML characterizes a public API against which any

consumer from any origin can issue requests that have direct ramifications on Drupal

content.

cors.config:

 enabled: true

 allowedHeaders: ['*']

 allowedMethods: ['GET', 'POST', 'PATCH', 'DELETE']

 allowedOrigins: ['*']

 exposedHeaders: false

 maxAge: false

 supportsCredentials: false

Chapter 7 Decoupling Drupal 8 Core

79

That CORS configuration is overly lax and should not be used in production. In the

following example, the API is much more private and only allows incoming requests

accompanied with certain headers. Moreover, it restricts all possible HTTP methods to

GET only and allows only requests from a single consumer application’s origin to proceed.

cors.config:

 enabled: true

 �allowedHeaders: ['x-csrf-token', 'authorization', 'content-type',

'accept', 'origin', 'x-requested-with']

 allowedMethods: ['GET']

 allowedOrigins: ['https://my-decoupled-app.net']

 exposedHeaders: false

 maxAge: false

 supportsCredentials: false

Although Drupal significantly eases the process with the help of YAML, your

infrastructure might obligate you to perform additional steps, especially if you are

using Apache or Nginx. If you run into CORS issues even after saving services.yml and

rebuilding the cache registry (drush cr), you might be encountering an upstream issue

in your web server’s configuration and its issuance of CORS header responses.

Note A CORS contributed module (https://www.drupal.org/project/
cors) existed previously for the benefit of Drupal 8 implementations prior to
Drupal 8.2.0. However, as of Drupal 8.2.0, the introduction of opt-in CORS support
has led to the deprecation of the CORS module in favor of Core’s native CORS
support. For more information, see the change record at https://www.drupal.
org/node/2715637.

�Conclusion
In this chapter, we investigated the availability of web services in core and the foundations

that underpin how we provision APIs in core REST. As you can see, the history is quite

complicated and indicates an early emphasis on the availability of web services during the

Drupal 8 development cycle, although the original motivation behind efforts to foster core

support was cross-site content synchronization rather than decoupled Drupal use cases.

Chapter 7 Decoupling Drupal 8 Core

https://www.drupal.org/project/cors
https://www.drupal.org/project/cors
https://www.drupal.org/node/2715637
https://www.drupal.org/node/2715637

80

Owing to the baseline drawn by the WSCCI, web services are now an integral piece

of Drupal 8 Core, albeit not enabled by default. Thanks to the Serialization module,

furthermore, we can now access a broad range of features that handle a variety of

encodings and normalizations, with the possibility of extending those through the

Serialization API.

With RESTful Web Services and HAL in Drupal 8 Core, we can easily expose REST

APIs for consumer applications without adding a single module to core as it exists. In

this chapter, we also covered setting up and installing Drupal 8 to provide web services,

configuring REST resources, and configuring CORS support. In the following chapter, we

turn to contributed modules for providing web services and how they dovetail with core

REST capabilities.

Chapter 7 Decoupling Drupal 8 Core

81
© Preston So 2018
P. So, Decoupled Drupal in Practice, https://doi.org/10.1007/978-1-4842-4072-4_8

CHAPTER 8

Decoupling Drupal 8
with Contributed Modules
In Chapter 7, we examined the existing web services ecosystem within Drupal core

thanks to the introduction of the Serialization, HAL, and RESTful Web Services

modules during the Drupal 8 development cycle. However, many of the rationales that

justified the adoption of HAL are no longer as relevant as they were, and many new API

specifications that are better suited to decoupled Drupal architectures have emerged

since.

In this chapter, we zoom out from the capabilities available by default in Drupal

8 to inspect the wider Drupal web services ecosystem, focusing on four modules in

particular. Three of them, JSON API, RELAXed Web Services, and GraphQL, are already

used in production by early adopters. A fourth, REST UI, is a tool that provides a GUI for

configuring core REST and can be easier for many users than writing YAML by hand to

configure REST resources.

�The Drupal Web Services Ecosystem
One of the most striking characteristics of Drupal in the decoupled sense is that it

benefits from a wide and diverse array of web services that support interoperable

machine-to-machine interaction between Drupal and consumer applications. In

the Drupal ecosystem, web services are typically provided in the form of contributed

modules. The most commonly seen in production builds are core REST, JSON API,

RELAXed Web Services, and GraphQL (see Figure 8-1).

82

Although most of these web services are RESTful APIs, which adhere to REST

principles and operate using HTTP methods, some web services modules, most notably

the GraphQL module, do not provide an HTTP API following REST principles and

therefore cannot be considered RESTful. For this reason, it is generally preferred to

use the term web services to describe all of the APIs available to Drupal rather than the

narrower term RESTful APIs.

Consider Figure 8-2, which consists of a Euler diagram delineating the most

common web services modules available in Drupal 8, including core REST and

contributed solutions JSON API, RELAXed Web Services, and GraphQL. Whereas JSON

API and RELAXed Web Services both implement API specifications that are specifically

RESTful, GraphQL is a query language in addition to a web service and is therefore

categorized differently.

Figure 8-1.  The four most commonly used web services in Drupal 8

Figure 8-2.  This Euler diagram shows which of Drupal 8’s web services are
RESTful; GraphQL is non-RESTful but is still a web service

Drupal’s web services ecosystem consists of modules that vary in their

dependencies. Some modules, such as RELAXed Web Services, depend on the RESTful

Web Services module in addition to the Serialization module available in Drupal 8 Core

Chapter 8 Decoupling Drupal 8 with Contributed Modules

83

(among other modules related to content staging). Others, such as JSON API, depend

on Serialization for features such as the JSON encoder but not the REST module. A final

outlier is GraphQL, which relies on none of the aforementioned modules.

Figure 8-3 demonstrates the variation in dependencies across the Drupal web

services ecosystem. Note that this illustration only considers modules available for

Drupal 8.

Figure 8-3.  Core web services capabilities form the foundation of contributed web
services modules. Whereas RELAXed Web Services depends on the RESTful Web
Services module, JSON API implements its own approach and only relies on the
Serialization module.

�JSON API
In this section, we describe and examine the most stable and widely used of all four web

services modules, JSON API. The JSON API specification is among the most recognizable

in the web services landscape, with communities such as Ember and Ruby on Rails

adopting it for their own REST APIs. JSON API is favorable for many developers because

of its focus on facilitating highly relational queries with rich operations provided in

query string parameters.

Chapter 8 Decoupling Drupal 8 with Contributed Modules

84

As of this writing, the Drupal 8 implementation of JSON API is slated for inclusion

in an upcoming minor version release of Drupal core as a stable module. The JSON API

module is maintained by Mateu Aguiló Bosch (e0ipso), Wim Leers, and Gabriel Sullice

(gabesullice).

�The JSON API Specification
Dubbing itself an “anti-bikeshedding tool,” JSON API is a specification for REST APIs

emitting responses in JSON and has recently gained momentum due to its adoption by

the Ember and Ruby on Rails communities. JSON API also benefits from robust handling

of relationships between resources and sought-after query operations like built-in

sorting and pagination. The Drupal implementation of the JSON API is located in the

JSON API module, which is approaching inclusion in Drupal 8 Core.

JSON API describes itself as follows:

[A] specification for how a client should request that resources be fetched or
modified, and how a server should respond to those requests.

JSON API is designed to minimize both the number of requests and the
amount of data transmitted between clients and servers. This efficiency is
achieved without compromising readability, flexibility, or discoverability.

Thanks to Drupal’s approach to entity relationships through references, Drupal’s

data structures (e.g., entity types, bundles, and fields) are well-suited for consumption

and manipulation in conjunction with the JSON API specification and module.1

Note T he JSON API specification is located at http://jsonapi.org, and the
JSON API module’s project page is available on Drupal.org at https://www.
drupal.org/project/jsonapi.

1�“JSON API.” Drupal.org. 18 December 2017. Accessed 10 May 2018. https://www.drupal.org/
docs/8/modules/json-api/json-api

Chapter 8 Decoupling Drupal 8 with Contributed Modules

http://jsonapi.org
https://www.drupal.org/project/jsonapi
https://www.drupal.org/project/jsonapi
https://www.drupal.org/docs/8/modules/json-api/json-api
https://www.drupal.org/docs/8/modules/json-api/json-api

85

�JSON API Document Structure

Unlike the HAL specification or many common APIs in JSON in the wild, the

JSON API specification is highly opinionated about how data should be provided

within a JSON API response. This section does not treat the JSON API specification

exhaustively and should not be considered as authoritative a resource as the formal

specification itself.

Every request and response body, no matter what the method, consists of a single

JSON object. Any data specific to a resource lie under this object under the key data,

which can represent either an object or array value. However, JSON API has strict rules

for the typing of the data value: When creating or updating an entity resource, the value

will be an object containing a single value; only when retrieving collections of more than

one resource (see Chapter 12) does the value become an array. Compare the following

two examples:

{

 "data": {

 // Single resource

 }

}

{

 "data": [

 {

 // One of multiple resources

 }

]

}

Apart from data, other top-level members, or predefined keys within the JSON

object, include errors, meta, links, and included. The most frequently used member,

as you might expect, is included, which contains all resources fetched via includes in

query arguments.2 See Chapter 12 for more information about JSON API includes.

2�“Core Concepts.” Drupal.org. 17 April 2018. Accessed 11 May 2018. https://www.drupal.org/
docs/8/modules/json-api/core-concepts

Chapter 8 Decoupling Drupal 8 with Contributed Modules

https://www.drupal.org/docs/8/modules/json-api/core-concepts
https://www.drupal.org/docs/8/modules/json-api/core-concepts

86

�JSON API Resource Objects

The JSON API specification also defines resource objects that represent the content of

the relevant entities that the JSON API module treats as resources. These are contained

within the data and included members. Within the context of Drupal, resource objects

correspond to JSON representations of individual entities, such as content entities like

users and nodes.

The specification requires that two members must be represented in every resource

object: type and id. All identifiers in JSON API are UUIDs.

Note B ecause the creation of entities via POST generally relies on Drupal to
generate a unique identifier, the id is not required for POST requests that create
resources through JSON API. Nonetheless, a consumer application is at liberty to
provide a UUID for the resource when issuing a POST request.

The type member, which is always in kebab case (i.e., custom-entity-type) is

always necessary as it indicates to JSON API how the resource should be treated and

operated on. We cover how the JSON API module provides type information later in this

chapter. For now, the most important fact you need to know is that the value for the type

member consists of the entity type name and bundle name separated by two hyphens.

Theoretically, on an entity without any required fields, you could create an entity

simply by issuing a POST request from the consumer application with the following

object.

{

 "data": {

 "type": "node--airport",

 }

}

This would create an entity with no values filled in, though, as we’re missing two

additional important members: attributes and relationships.

Chapter 8 Decoupling Drupal 8 with Contributed Modules

87

�JSON API Attributes and Relationships

To house values, the JSON API specification defines two members: attributes, which

stores values specific to the resource in question, and relationships, which stores

values that are provided by another resource in the system. Within the Drupal context,

relationships are usually represented by values that are available via entity reference.

As an example, consider a bundle Airport on type Node that has a uid property

representing the creator of the node. This could correspond to a user whose information

would be presented to the Airport entity via entity reference. The following document

showcases a more complete object with attributes and relationships represented:

{

 "data": {

 "type": "node--airport",

 "id": "5c11bcce-dd2f-43b3-9925-c85036b7fcc0",

 "attributes": {

 "title": "Daniel K. Inouye International Airport"

 },

 "relationships": {

 "uid": {

 "data": {

 "type": "user--user",

 "id": "ffe4bcbe-4aef-4676-9d22-c63cfac51d56"

 }

 }

 }

 }

}

In this example, the relationships member contains a reference to the property

that contains the related entity. Within the uid property, another data object is defined,

along with the required type and id members that indicate it is a unique resource also

accessible through JSON API at its own URL.

Chapter 8 Decoupling Drupal 8 with Contributed Modules

88

As you might have noticed, whereas the surrounding resource contains attributes

of the entity in question, the related resource does not have any attributes or

relationships itself, because JSON API will only provide a related resource’s contents if

it is specifically requested by the consumer through the include query parameter.

See Chapter 12 for more on includes.

�The JSON API Module
The vision of the JSON API module is to require the user to perform the minimum

amount of configuration possible. As such, on installing and enabling the JSON API

module, you make a REST API immediately available for every content type within your

Drupal installation. To do this, the JSON API module traverses entity types and bundles

to generate URLs where it can retrieve and manipulate entities via safe and unsafe HTTP

methods.

This mission of “no configuration” and off-the-shelf readiness for production does

come with several drawbacks, namely that the JSON API is necessarily opinionated

about the paths at which resources are made available, methods against which

you can issue requests, and permissions by which entities can be retrieved and

otherwise modified. This is because permissions for the JSON API module always fall

back to default permissions in the core user system rather than relying on a unique

configuration page (as core REST does).

To enable JSON API, use the following commands:

$ composer require drupal/jsonapi

$ drush en -y jsonapi

�The JSON API Module API
The API within the JSON API module makes heavy use of Drupal’s entity type and bundle

system. Every available bundle within the Drupal application is assigned a unique URL

that follows strict patterns. Unlike the core REST modules, JSON API’s paths cannot be

configured and are enabled by default. This is because the JSON API specification sets

out rules that cover much more territory than specifications such as HAL, given that it

dictates how HTTP methods should be used, which HTTP response codes are issued,

and how resources should be formatted in responses and linked to others.

Chapter 8 Decoupling Drupal 8 with Contributed Modules

89

�JSON API Types

The reliance on bundles means that the JSON API module requires that every resource

have a globally unique type property, the value of which is populated by the entity type

machine name and bundle type machine name separated by two hyphens. Consider

Table 8-1, which contains examples of how types and bundles are translated into the

JSON API-compliant type property.

As you can see from Table 8-1, when an entity type lacks a bundle, the entity type is

repeated for consistency’s sake.

�JSON API URLs

For disambiguation from other web services modules and also from Views REST exports

(see Chapter 11), the JSON API module requires that all resource URLs be prefixed with

/jsonapi.

In addition, the module requires that every resource type represented in Drupal must

be “uniquely addressable” within the API, meaning that every Drupal type has to live at its

own path. This is to prevent collisions between two bundles (Drupal content types) having

distinct sets of fields at the same URI. This condition in the JSON API module also means

that each resource URL only handles requests for a single type of resource. As such, the

Drupal implementation of JSON API follows the pattern seen in Table 8-2.

Table 8-1.  Drupal Entity Types and Bundles as JSON API types

Type Bundle JSON API type

Article (article) Node (node) node--article

Basic page (page) Node (node) node--page

User (user) None (defaults to Type user) user--user

Table 8-2.  JSON API Resources in Drupal and Available HTTP Methods

Method URL Example

GET, POST /jsonapi/{entity_type_id}/{bundle_id} /jsonapi/node/article

GET, PATCH,

DELETE

/jsonapi/{entity_type_id}/{bundle_id}/

{entity_id}

/jsonapi/node/

article/{{uuid}}

Chapter 8 Decoupling Drupal 8 with Contributed Modules

90

GET appears twice in Table 8-2 because of JSON API’s provision of optionality when it

comes to retrieving an individual entity or a collection of entities. For more information,

see Chapter 12.

Note T here is no valid resource URL at /jsonapi/node, because if it were
allowed, the resource URL would serve multiple resource types (due to the
potential presence of multiple bundle types within the entity type) from a single
URL, which violates the JSON API specification.

After the entity type and bundle are provided, there is an optional component for

the entity identifier. In the JSON API case, this is the UUID, not the node ID as seen

in core REST modules. When working with a single resource, whether it is to retrieve

it or manipulate it, you must include the UUID in the URL. When creating resources,

however, the UUID must be excluded so that Drupal is responsible for generating the

UUID on creating the entity.

�JSON API Request Headers and Response Codes

Where appropriate, the JSON API specification asks clients that are issuing requests to

include Content-Type and Accept headers that indicate that the request adheres to the

JSON API specification, such as the sample headers here:

Accept: application/vnd.api+json

Content-Type: application/vnd.api+json

The JSON API specification also includes information about what responses can be

issued as acceptable. The Drupal module makes use of the codes illustrated in Table 8-3.

Table 8-3.  Response Codes Issued by the JSON API Module

Response Code Condition

200 OK Successful GET and PATCH requests

201 Created Successful POST requests (just-created resource is also included in

response body)

204 No Content Successful DELETE requests

Chapter 8 Decoupling Drupal 8 with Contributed Modules

91

For examples of requests against Drupal’s JSON API implementation, see Chapter 12.

Now, we turn to RELAXed Web Services, another major web services provider in Drupal 8.

�RELAXed Web Services
The RELAXed Web Services module, maintained by Tim Millwood (timmillwood) and

Andrei Jechiu (jeqq), is unique among the most popular web services solutions available

in Drupal 8 because of its use of the CouchDB specification and its emphasis on content

staging use cases rather than content delivery to multiple channels. In this sense, it is

closest in orientation to the original efforts of the WSCCI, whose initial mission was to

foster better content staging across Drupal sites.

Content staging is a loosely defined range of features that include editorial

workflows, content previews, and most important, the ability to draft and test content in

a nonproduction environment in cases where the content needs to remain embargoed

or otherwise private. When content has been sufficiently vetted and is greenlit to go

live, content synchronization must occur between the staged content and live content.

In Drupal, this is typically done through content workspaces, which are collections of

content that should be synced across environments as a group. Content staging is a

common feature in most CMSs.

The RELAXed Web Services module is part of the Drupal Deploy ecosystem, which

we discuss in detail in this section. In addition, we cover the CouchDB specification and

PouchDB client, which facilitates offline-enabled consumers. More details on RELAXed

Web Services and Drupal’s CouchDB implementation can be found in Chapter 13.

�The Drupal Deploy Ecosystem
The Drupal Deploy ecosystem consists of several key modules that ease the process of

content staging from one Drupal site to another. The centerpiece of the Drupal Deploy

ecosystem is the Deploy module, which manages any dependencies that entities might

have to one another and includes a robust API that handles a variety of content staging

use cases, including the following.3

3�“Drupal Deploy.” Drupal Deploy. Accessed 24 August 2018. http://www.drupaldeploy.org

Chapter 8 Decoupling Drupal 8 with Contributed Modules

http://www.drupaldeploy.org

92

•	 Cross-site content staging: Deploy and RELAXed Web Services are

well-suited for content staging across multiple Drupal sites.

•	 Single-site content staging: The Workspace module integrates with

the Deploy module and offers a previewing system for a variety of

workflow states.

•	 Fully decoupled content delivery: RELAXed Web Services also

supports content delivery to consumers operating in non-web

channels.

The Deploy module depends on the Multiversion and RELAXed Web Services

module. The Multiversion module makes all content entities in Drupal revisionable,

namely nodes, taxonomy terms, users, comments, and block content. It also adds a

new unique identifier for revisions to the Entity API in Drupal that facilitates effective

handling of revision trees and restoration of deleted revisions.

Meanwhile, RELAXed Web Services implements the CouchDB specification

and provides a REST API that we can employ both for traditional cross-site content

staging and decoupled consumers. For many architects, using RELAXed Web

Services will only make sense in conjunction with the other modules that are part of

the Drupal Deploy ecosystem, such as Replication, Conflict, Trash, and Workbench

Moderation.

Note T he full scope of the Drupal Deploy ecosystem is far too large for full
coverage in this volume. For more information, refer to the Drupal Deploy web site
at www.drupaldeploy.org.

�The CouchDB Replication Protocol
CouchDB is not a traditional specification for REST APIs; rather, it is a NoSQL

database tool. CouchDB stores data within JSON documents that are accessible via

web browser and via HTTP requests issued from consumers written in languages like

JavaScript.4 Each of these documents (resources) has a unique name within a CouchDB

4�“Multiversion.” Drupal.org. 31 May 2014. Accessed 24 August 2018. https://www.drupal.org/
project/multiversion

Chapter 8 Decoupling Drupal 8 with Contributed Modules

http://www.drupaldeploy.org
https://www.drupal.org/project/multiversion
https://www.drupal.org/project/multiversion

93

database, which is exposed through a RESTful API that permits resource retrieval and

manipulation.5

Like JSON API in Drupal, CouchDB supports certain HTTP methods such as GET,

POST, PUT, and DELETE. However, CouchDB also supports other HTTP methods excluded

from core REST such as PUT and COPY. A list of the most common request methods and

expected responses follows.

•	 GET: In CouchDB, GET requests retrieve items, which can be

documents (resources), static items, or introspective information

such as configuration, returned as JSON.

•	 POST: In CouchDB, POST is used for updating values in documents,

uploading new documents, and triggering certain remote

procedures.

•	 PUT: Excluded from Drupal’s core REST, PUT in CouchDB allows us to

create new objects such as databases, documents, and others.

•	 DELETE: In CouchDB, DELETE requests delete the resource in

question.

•	 COPY: Special to CouchDB, COPY requests can be used to reproduce

documents and objects in the database.

If a disallowed method is used, CouchDB returns a 405 Method Not Allowed

response code and lists the allowed methods in the response body.6

Note  For more information about the CouchDB API, consult the API reference
located at http://docs.couchdb.org/en/latest/api/index.html.

5�“1. Introduction.” Apache CouchDB. 2018. Accessed 24 August 2018. http://docs.couchdb.org/
en/latest/intro/index.html

6�“10. API Reference.” Apache CouchDB. 2018. Accessed 24 August 2018. http://docs.couchdb.
org/en/latest/api/index.html

Chapter 8 Decoupling Drupal 8 with Contributed Modules

http://docs.couchdb.org/en/latest/api/index.html
http://docs.couchdb.org/en/latest/intro/index.html
http://docs.couchdb.org/en/latest/intro/index.html
http://docs.couchdb.org/en/latest/api/index.html
http://docs.couchdb.org/en/latest/api/index.html

94

�The RELAXed Web Services Module
To install the RELAXed Web Services module, be sure to include the third-party

dependency manually or use Composer Manager to ensure the relaxedws/replicator

library is present.

$ composer require relaxedws/replicator:dev-master

$ composer require drupal/relaxed

$ drush en -y relaxed

Once RELAXed Web Services is installed, navigate to Configuration ➤ Relaxed

settings (/admin/config/relaxed/settings), where you will find a RELAXed Web

Services settings page. During installation, RELAXed Web Services generates a new

Replicator user that is responsible for content replication across sites. This is afforded

by the Perform pull replication and Perform push replication permissions specific to

RELAXed Web Services.

If you do not need content staging functionality, you can skip ahead to the next

section. If you do plan to stage content across Drupal sites, create a new user with the

Replicator role or update an existing user with the role. Remember that the Replicator

user needs to be present on all Drupal sites that are conducting content replication. On

the RELAXed Web Services settings page, provide the Replicator user’s credentials and

set the root path for all resources exposed through RELAXed Web Services, as seen in

Figure 8-4.

Chapter 8 Decoupling Drupal 8 with Contributed Modules

95

If you are performing content replication across multiple Drupal sites, you will also

need to configure a remote by navigating to Configuration ➤ Relaxed remotes (/admin/

config/services/relaxed), where you can add new remote Drupal sites, a process

that requires the Workspace module. You will need to provide the credentials of the

Replicator user responsible for content replication.

Finally, navigate to Structure ➤ Workspaces (/admin/structure/workspace) to add

and edit the workspace that should connect to the remote Drupal site.

Note  For more information about using the Drupal Deploy suite, see the RELAXed
Web Services module configuration page on Drupal.org, located at https://
www.drupal.org/docs/8/modules/relaxed-web-services/module-
configuration.

Figure 8-4.  If you are staging content across multiple sites, assign the Replicator
role to a user and provide that user’s credentials on the RELAXed Web Services
settings page

Chapter 8 Decoupling Drupal 8 with Contributed Modules

https://www.drupal.org/docs/8/modules/relaxed-web-services/module-configuration
https://www.drupal.org/docs/8/modules/relaxed-web-services/module-configuration
https://www.drupal.org/docs/8/modules/relaxed-web-services/module-configuration

96

�The RELAXed Web Services REST API
As mentioned in the previous section, RELAXed Web Services does not require you to

use its content staging capabilities and can be employed on its own as a REST API. It is

possible to save the configuration page without providing a Replicator user, and it is also

possible to use the RELAXed Web Services module without the Workspaces module.

When Workspaces is not installed, the default workspace is live.

To test whether the REST API is functioning correctly, simply navigate to /relaxed in

your browser, and the welcome response shown in Figure 8-5 will appear. Any GET with

the correct permissions, depending on how you have configured access control, will also

yield the welcome response at the root resource.

Figure 8-5.  A GET request against the root CouchDB resource in RELAXed Web
Services will yield a welcome response

To obtain a list of all available workspaces on the Drupal back end, we can issue

a GET request against the /relaxed/_all_dbs resource, which will return a response

containing the workspaces present on Drupal. If you have not installed the Workspaces

module, this will return the default workspace live.

To obtain a collection of all the Drupal entities (CouchDB documents) available

in a workspace, we can issue a GET request against /relaxed/{workspace}/_all_

docs, where {workspace} is the desired workspace. For instance, on a Drupal site

Chapter 8 Decoupling Drupal 8 with Contributed Modules

97

without Workspaces installed, the resource would be located at the path /relaxed/

live/_all_docs.7

For example requests that demonstrate RELAXed Web Services functionality,

see Chapter 13.

Note A full accounting of the available REST resources and supported methods
in RELAXed Web Services is available on Drupal.org at https://www.drupal.
org/docs/8/modules/relaxed-web-services/available-rest-
resources-and-supported-http-methods.

�PouchDB and Hoodie
One of the most important reasons that decoupled Drupal practitioners choose

RELAXed Web Services over the other options is not solely because of its content staging

capabilities; it is also because other databases can integrate richly with data contained

in RELAXed Web Services. Most compellingly, client-side technologies such as PouchDB

and Hoodie can be used to provide offline-enabled features.

PouchDB is the JavaScript analogue of Apache CouchDB and is designed specifically

to work locally in the browser. PouchDB enables applications to house local data in an

offline database, which is then synchronized with an available CouchDB database once

the user regains connectivity.

Note A comprehensive introduction to PouchDB is beyond the scope of this
volume. For more information about PouchDB, consult the web site at https://
pouchdb.com.

Hoodie, which depends on PouchDB, more overtly embraces offline-first and no-

back-end principles. Written in JavaScript, Hoodie is based on CouchDB and Node.

js and can also integrate with a Drupal-powered CouchDB database for content

synchronization.

7�“Available REST Resources and Supported HTTP Methods.” Drupal.org. 8 June 2018. Accessed
25 August 2018. https://www.drupal.org/docs/8/modules/relaxed-web-services/
available-rest-resources-and-supported-http-methods

Chapter 8 Decoupling Drupal 8 with Contributed Modules

https://www.drupal.org/docs/8/modules/relaxed-web-services/available-rest-resources-and-supported-http-methods
https://www.drupal.org/docs/8/modules/relaxed-web-services/available-rest-resources-and-supported-http-methods
https://www.drupal.org/docs/8/modules/relaxed-web-services/available-rest-resources-and-supported-http-methods
https://pouchdb.com
https://pouchdb.com
https://www.drupal.org/docs/8/modules/relaxed-web-services/available-rest-resources-and-supported-http-methods
https://www.drupal.org/docs/8/modules/relaxed-web-services/available-rest-resources-and-supported-http-methods

98

Note A comprehensive introduction to Hoodie is beyond the scope of this volume.
For more information about Hoodie, consult the web site at http://hood.ie.

�GraphQL
Within the Drupal web services ecosystem, perhaps the most futuristic solution available

to decoupled Drupal practitioners is GraphQL, a declarative query language and

application-level protocol created by Facebook to power its extensive mobile application

ecosystem. Thanks to the work of maintainers Sebastian Siemssen (fubhy) and Philipp

Melab (pmelab), Drupal has its own implementation of GraphQL.

GraphQL is quite similar to previous query languages like SPARQL insofar as it

describes function calls and does not directly query a database; instead, the GraphQL

server acts as an additional abstraction layer and is responsible for handling incoming

requests from consumers. GraphQL servers should be agnostic to data storage and are

typically proxies or relay systems that forward API calls.

The most important principle in GraphQL is that client requests and server payloads

adhere to a shared shape. In other words, the client provides a structure of the data that

it requires, and the server returns the data according to the client-declared structure.

�Motivating GraphQL
GraphQL’s recent success in the JavaScript community and beyond has much to do with

the limitations of traditional RESTful architectures found in today’s CMS landscape.

Typical RESTful architectures rely on many endpoints, suffer from response bloat,

require many round trips to the server, lack backward compatibility, and often provide

insufficient introspection.

In REST APIs, individual resources tend to be overly specific and yield responses

that are ill-suited for highly relational resource trees. This often leads to bespoke or

homegrown API resources that satisfy developers of consumer applications but increase

maintenance costs. For these developers, this issue can be particularly damaging

because they have the responsibility to traverse undesirable or convoluted responses

without control over the response object’s structure. To alleviate this, GraphQL provides

a single URL that provides a unified response even if a GraphQL server needs to perform

constituent operations to acquire those data.

Chapter 8 Decoupling Drupal 8 with Contributed Modules

http://hood.ie

99

Today, we often employ REST APIs for vast collections of consumer applications,

without due attention to the fact that consumers are highly distinct and should not

receive the same response, especially low-level consumers such as Raspberry Pi. In

addition, due to changing business requirements, consumers might need to contend

with ever-larger payloads without the ability to control the quantity of incoming data.

GraphQL’s tailored responses allow for consumers themselves to dictate precisely the

amount of data they need—no more, no less.

Many REST APIs also enforce multiple requests to the server to provide a complex

or highly relational application view on the consumer. In Drupal’s case, this also means

additional bootstraps. Unlike JSON API, which uses query parameter strings to dictate

how relationships or includes should figure in the response payload, GraphQL allows

consumers to cater the response to their request structure in a flexible way.

When it comes to maintenance, REST APIs suffer considerably from a lack of

industry cohesion around a solution for API versioning. This leads to convoluted

solutions such as the provisioning of multiple APIs with version-specific paths (e.g.,

/api/v1, /api/v2). When changes occur in the API and how it responds to requests,

consumers must be updated manually to new API versions. GraphQL obviates the

need for API versioning by allowing consumers to submit identical queries to multiple

versions without a difference in the response, thanks to the consumer-tailored structure

of the response.

Finally, many REST APIs contend with challenging developer experiences by not

providing a full introspection layer within the API. GraphQL has a native and extensible

schema and type system that developers can introspect in the same way as they query a

GraphQL API. This aids client-side tooling and validation downstream.8

Table 8-4 summarizes the preceding information by enumerating each disadvantage

of traditional RESTful architectures and GraphQL’s mitigation.

8�So, Preston, and Sebastian Siemssen. “An Introduction to GraphQL and What It Means
for Drupal.” Acquia. 10 March 2016. Accessed 25 August 2018. https://www.acquia.com/
resources/webinars/introduction-graphql-and-what-it-means-drupal

Chapter 8 Decoupling Drupal 8 with Contributed Modules

https://www.acquia.com/resources/webinars/introduction-graphql-and-what-it-means-drupal
https://www.acquia.com/resources/webinars/introduction-graphql-and-what-it-means-drupal

100

Nonetheless, GraphQL does have its disadvantages, which decoupled Drupal

practitioners should consider as well. For instance, many of the features available in

GraphQL are also available in HTTP, such as parallel network requests (varies across

browsers), content negotiation (which allows clients to request multiple versions of

a resource at a single path), and a native content type system (which is analogous to

GraphQL’s own type system). In addition, many architects might find that the learning

curve of GraphQL is overly steep and might favor simply provisioning additional REST

API endpoints.

�The GraphQL Specification
In this section, we embark on a rapid introduction to some of the most important key

concepts in GraphQL. We apply this knowledge when we implement requests against

Drupal’s GraphQL server in Chapter 14.

Note A comprehensive account of GraphQL’s syntax is beyond the scope of this
volume. For more information about GraphQL syntax, refer to https://graphql.
org/learn.

Table 8-4.  Limitations in Typical RESTful Architectures and

GraphQL Mitigations

REST Limitation GraphQL Mitigation

Many endpoints Fewer endpoints

Response bloat Tailored responses

Many round trips Fewer round trips

No backward compatibility Inherent backward compatibility

No native introspection layer Full introspection layer

Chapter 8 Decoupling Drupal 8 with Contributed Modules

https://graphql.org/learn
https://graphql.org/learn

101

�GraphQL Operations

GraphQL models two types of operations: queries and mutations. Queries, which are

read-only retrievals of data, can be named case-sensitively or anonymous. Mutations are

write queries. Consider the following examples and note the comment syntax.

query {

 # Read-only fetch

}

This anonymous query has a shorthand.

{

 # Read-only fetch

}

Queries can be named.

query getUser {

 # Read-only fetch

}

Note T hese are hypothetical examples solely for illustrative purposes and not
functional queries that would yield responses from Drupal.

�GraphQL Selection Sets and Fields

Consider the following hypothetical query. In GraphQL, the field is the most important

irreducible unit within a requested object, and selection sets define which fields from objects

should be present in a response payload. In selection sets, fields are separated by carriage

returns (\n). Top-level fields (e.g., entity in this example) are typically globally accessible.

{

 entity {

 user(id: "123") {

 name

 }

 }

}

Chapter 8 Decoupling Drupal 8 with Contributed Modules

102

If it were functional, this query would return a response object from the GraphQL

server whose structure mirrors that of the original query, such as the following.

{

 "data": {

 "entity": {

 "user": {

 "name": "Preston So"

 }

 }

 }

}

Fields are also capable of describing relationships with other data. For instance, we

can consider fields to be much like functions insofar as they return values and can carry

an arbitrary number of arguments. Consider the following example.

{

 entity {

 user(id: "3") {

 firstName

 lastName

 email

 avatar(height: "72", width: "72")

 }

 }

}

Fields can also be aliased, which is useful for disambiguating identically named

fields.

{

 entity {

 user(id: "3") {

 firstName

 lastName

 email

Chapter 8 Decoupling Drupal 8 with Contributed Modules

103

 thumbnail: avatar(height: "72", width: "72")

 profileImage: avatar(height: "250", width: "250")

 }

 }

}

�GraphQL Fragments

GraphQL also allows for the definition of fragments, which are reusable selection sets

that can help keep queries from becoming unmaintainable. As a note, fields present in

fragments are included in the query at the same level of invocation as adjacent fields. For

instance, in the following example, title and body occupy the same hierarchical plane.

{

 entity {

 article: node(id: "992") {

 title

 ...content

 }

 }

}

fragment content on Page {

 body

}

This hypothetical query might yield a response like this:

{

 "data": {

 "entity": {

 "article": {

 "title": "GraphQL and Drupal ..."

 "body": "... go together like peas in a pod!"

 }

 }

 }

}

Chapter 8 Decoupling Drupal 8 with Contributed Modules

104

Fragments are required to declare types so that when objects of different types

are fetched, their fields are conditionally applied. For example, consider a query that

includes two fragments, each dedicated to a particular type of view on the article. When

the object selected by a query is a Teaser, the body is excluded and a smaller image is

chosen.

{

 entity {

 article: node(id: "992") {

 title

 ...content

 }

 }

}

fragment content on Page {

 heroImage: image(width: "960")

 body

}

fragment content on Teaser {

 thumbnail: image(width: "100")

}

Fragments are also nestable.

{

 entity {

 article: node(id: "992") {

 title

 ...content

 }

 }

}

fragment content on Page {

 ...heroImage

 body

}

Chapter 8 Decoupling Drupal 8 with Contributed Modules

105

fragment heroImage on Page {

 image(width: "960")

}

Fragments can be inlined to improve code legibility, and in this usage they can be

nameless.

{

 entity {

 article: node(id: "992") {

 title

 ... on Page {

 body

 image(width: "960")

 }

 ... on Teaser {

 image(width: "100")

 }

 }

 }

}

�GraphQL Variables and Directives

In GraphQL, directives alter query behavior and can be used to conditionally include or

exclude fields based on variables that are defined in the query definition and the values

of which are passed into the query. For instance, consider the following hypothetical

query.

query getArticle($hasBody: Boolean) {

 article: node(id: "992") {

 title

 ... @include(if: $hasBody) {

 body

 image(width: "960")

 }

 }

}

Chapter 8 Decoupling Drupal 8 with Contributed Modules

106

The GraphQL specification recommends supporting directives such as @skip and

@include.

query getArticle($hasBody: Boolean, $anonymous: Boolean = true) {

 article: node(id: "992") {

 title

 author @skip(if: $anonymous)

 ... @include(if: $hasBody) {

 body

 image(width: "960")

 }

 }

}

To pass in variables, the GraphQL server also needs to accept a JSON payload that

contains the variables defined with values.

{

 "hasBody": true,

 "anonymous": true

}

�GraphQL Mutations

In GraphQL, mutations are write operations that instruct the GraphQL server to perform

the operation named with the fields contained in the selection set. Consider the

following mutation query, in which the exclamation mark indicates that an argument

is required. In this hypothetical scenario, we have predefined an Article object type in

GraphQL having several fields.

mutation CreateArticle($article: Article!) {

 createArticle(article: $article) {

 id

 title

 body

 }

}

Chapter 8 Decoupling Drupal 8 with Contributed Modules

107

We can then execute this mutation query with the following arguments, under the

assumption that this data structure mirrors the Article type definition.

{

 "article": {

 "title": "GraphQL and Drupal ...",

 "body": "... go together like peas in a pod!"

 }

}

This query would then yield the following response, which would confirm the

article’s creation.9

{

 "data": {

 "createArticle": {

 "id": "992",

 "title": "GraphQL and Drupal ...",

 "body": "... go together like peas in a pod!"

 }

 }

}

�The GraphQL Module
The GraphQL module is Drupal’s authoritative implementation of GraphQL and permits

the creation and exposure of a schema reflecting a Drupal 8 site’s content. Because

the module depends on the webonyx/graphql-php library, a PHP implementation of

GraphQL, it satisfies the full feature set of the GraphQL specification.

The GraphQL module can be used as a baseline for constructing schemas via custom

code, but there is a default generated schema that is extensible through plug-ins within

9�“Queries and Mutations.” GraphQL. 2018. Accessed 25 August 2018. http://graphql.github.
io/learn/queries

Chapter 8 Decoupling Drupal 8 with Contributed Modules

http://graphql.github.io/learn/queries
http://graphql.github.io/learn/queries

108

the GraphQL Core submodule. In addition, GraphiQL, a debugger for GraphQL queries,

is built into the GraphQL module and is available at the path /graphql/explorer on

module installation.10

The GraphQL module has a unique installation method that can be confusing to

developers new to Drupal. Because it relies on an external repository hosted on GitHub,

the first step is to open our composer.json file in the root of our Drupal installation and

add the following as a member of the repositories array.

{

 "type": "vcs",

 "url": "https://github.com/drupal-graphql/graphql"

}

Once you save your composer.json file, you will be able to use a normal Composer

workflow or Composer Manager to handle dependencies. Note that we are also enabling

the GraphQL Core module, which provides, among other things, the GraphiQL debugger.

$ composer require drupal/graphql

$ drush en -y graphql graphql_core

For examples that demonstrate how consumers can retrieve Drupal content through

GraphQL, see Chapter 14.

Note T he GraphQL module is available on GitHub at https://github.com/
drupal-graphql/graphql. The project page is available on Drupal.org at
https://www.drupal.org/project/graphql.

�REST UI
Although it is essential to understand the underpinnings of REST resource configuration

in Drupal 8 and how it integrates with the Drupal configuration system (see Chapter 7),

the REST UI module, maintained by Juampy NR (juampynr) and Clemens Tolboom

(clemens.tolboom), accelerates your configuration process thanks to a convenient user

10�“GraphQL.” Drupal.org. 20 March 2015. Accessed 25 August 2018. https://www.drupal.org/
project/graphql

Chapter 8 Decoupling Drupal 8 with Contributed Modules

https://github.com/drupal-graphql/graphql
https://github.com/drupal-graphql/graphql
https://www.drupal.org/project/graphql
https://www.drupal.org/project/graphql
https://www.drupal.org/project/graphql

109

interface that alleviates the need to perform single imports on Drupal’s configuration

synchronization page. For users who are less experienced with Drupal, such an interface

can be particularly useful.

Use the default approach (i.e., downloading, extracting into the /modules directory,

and installing on the Extend page) or dependency management in Composer. A cache

registry rebuild might be necessary.

$ composer require drupal/restui

$ drush en -y restui

$ drush cr

On navigating to Manage ➤ Configuration (/admin/config), you will encounter a

new user interface with a list of enabled REST resources, as seen in Figure 8-6. If you

followed our steps in Chapter 7 to import configuration for entities that are nodes, you

will already see nodes represented as an enabled resource within the interface.

Figure 8-6.  The REST resources configuration page in the REST UI modules takes
into account resources that you have already configured. Here, we have configured
all node resources to be made available for retrieval and manipulation.

Chapter 8 Decoupling Drupal 8 with Contributed Modules

110

Adjacent to each resource type represented, you can edit its configuration via an

interface that replicates the structure of configuration imports in the appearance of a

form, as seen in Figure 8-7.

Figure 8-7.  Each individual set of resources can be configured using a form that
looks similar to the configuration imports covered previously

REST UI is particularly useful for rapid-fire configuration of sites that need to

be converted into web services providers, and it allows less experienced users to

understand how resources are exposed without reading configuration YAML.

Note T he REST UI module is located on Drupal.org at https://www.drupal.
org/project/restui.

�Conclusion
In this chapter, we’ve covered the most stable and popular contributed solutions for

web services available in Drupal 8—namely JSON API, RELAXed Web Services, and

GraphQL—along with the REST UI module, which can help to accelerate your progress. In

addition, we have become familiar with concepts across all three specifications that will be

useful when we turn to developing applications against these modules in later chapters.

Chapter 8 Decoupling Drupal 8 with Contributed Modules

https://www.drupal.org/project/restui
https://www.drupal.org/project/restui

111

In the next chapter, we orient ourselves toward an area of critical importance in

decoupled Drupal architectures: authentication. First, we’ll look at the authentication

methods that Drupal core provides out of the box: Basic Authentication and cookie-

based authentication. Luckily, more secure contributed solutions exist, such as Simple

OAuth and JSON Web Tokens. As we learn, protecting the security and privacy of users

in your decoupled Drupal architecture is just as mission-critical as delivering content to

the devices they use.

Chapter 8 Decoupling Drupal 8 with Contributed Modules

113
© Preston So 2018
P. So, Decoupled Drupal in Practice, https://doi.org/10.1007/978-1-4842-4072-4_9

CHAPTER 9

Authenticating Requests
in Drupal 8
Among the most important areas of concern for decoupled Drupal architecture is

security. By nature, decoupled Drupal introduces substantial security concerns that

have implications for the data stored in Drupal as well as the safety of users who access

Drupal content through a consumer. Indeed, one of the drawbacks of decoupled

Drupal cited in Chapter 6 was the increased onus on developer teams to build in robust

authentication.

There are three approaches in Drupal 8 for authentication that are relevant to

decoupled Drupal. Basic Authentication and OAuth2 Bearer Token authentication are

the most commonly used for decoupled Drupal architectures, whereas cookie-based

authentication is important for progressively decoupled Drupal implementations in

which consumers make use of the user session cookie on a Drupal-rendered page. Other

approaches exist as well, most notably JSON Web Tokens (JWT), which is implemented

in a Drupal contributed module.

�Basic Authentication
The Basic Authentication module is by far the easiest to use, but it is also rather insecure.

Available in Drupal 8 Core, Basic Authentication (commonly abbreviated Basic Auth)

processes an incoming request, isolating the provided username and password and

authenticating them against Drupal to ensure that the user in question has the correct

permissions to retrieve or manipulate requested content.1

1�“HTTP Basic Authentication Overview.” Drupal.org. 22 December 2016. Accessed 7 August 2018.
https://www.drupal.org/docs/8/core/modules/basic_auth/overview

https://www.drupal.org/docs/8/core/modules/basic_auth/overview

114

Nonetheless, you should exercise extreme caution when using Basic Authentication

with decoupled Drupal, because the username and password are protected in a

limited fashion. In Basic Authentication, credentials are transmitted over the wire in

base64 encoding (i.e., not encrypted or hashed), which is straightforward to convert

into exploitable plain text. In addition, every request typically includes credentials,

meaning that this sensitive information is transmitted repeatedly, creating a larger attack

window.2 Due to these concerns, Basic Authentication should be used only together with

HTTPS on the Drupal back end.

Warning  Due to the inherent vulnerabilities of Basic Authentication, it is a
best practice to use either Simple OAuth or JSON Web Tokens (covered later in
this chapter) in production where sensitive data needs to be retrieved. However,
for authenticated requests against nonsensitive data, Basic Authentication can
offer a more convenient developer experience and is thus used frequently during
development or technical demonstrations.

�HTTP Basic Authentication
The Basic Authentication module implements the HTTP Basic protocol, which dictates

how to conduct basic access authentication. The HTTP Basic protocol allows user agents

to issue requests that include a standard provision of a user’s username and password.

HTTP Basic is often desirable because it enforces access controls without requiring

cookies (see next section) or session identifiers and because it employs HTTP headers,

eliminating the need for handshakes.3

The HTTP Basic protocol stipulates how to construct an Authorization field to

transmit authentication credentials to Drupal. According to RFC 7617 (2015), we can

construct the Authorization field as follows:4

2�“Is BASIC-Auth Secure if Done over HTTPS?” Stack Overflow. 5 December 2010.
Accessed 7 August 2018. https://security.stackexchange.com/questions/988/
is-basic-auth-secure-if-done-over-https

3�“Basic Access Authentication.” Wikipedia. 10 July 2018. Accessed 7 August 2018. https://
en.wikipedia.org/wiki/Basic_access_authentication

4�Reschke, J. “The ‘Basic’ HTTP Authentication Scheme.” Internet Engineering Task Force.
September 2015. Accessed 7 August 2018. https://tools.ietf.org/html/rfc7617

Chapter 9 Authenticating Requests in Drupal 8

https://security.stackexchange.com/questions/988/is-basic-auth-secure-if-done-over-https
https://security.stackexchange.com/questions/988/is-basic-auth-secure-if-done-over-https
https://en.wikipedia.org/wiki/Basic_access_authentication
https://en.wikipedia.org/wiki/Basic_access_authentication
https://tools.ietf.org/html/rfc7617

115

	 1.	 Both the username and the password are concatenated together

and separated by a colon, which means that the username cannot

contain a colon.

	 2.	 The concatenated string is then encoded into an octet sequence. The

character set for this encoding step can be unspecified by default or

dictated by a charset parameter originating from the server.

	 3.	 This encoded string is then encoded using a variant of base64

encoding.

	 4.	 The base64-encoded string is then prepended with the authorization

method in question (e.g., “Basic”) followed by a space.

�The Authorization Header
In Drupal, if a request exercises some permissioned action unavailable for anonymous

users, it must include an Authorization header containing credentials for a user

that has a role with the sufficient permissions to conduct the action, whether it is an

update or deletion of an entity. Within any sensitive request that travels to Drupal, the

Authorization header must be set by the consumer, which additionally needs to handle

the aforementioned preparation steps itself.

As an example, consider the username and password combination admin and

admin. Consider the following JavaScript function, which returns a correctly formatted

Authorization field thanks to string concatenation and JavaScript’s native btoa()

function:

function encodeBasicAuth(user, pass) {

 var creds = user + ':' + pass;

 var base64 = btoa(creds);

 return 'Basic ' + base64;

}

Then, within an XMLHttpRequest (XHR), you can invoke the function. As we will see

in later chapters, many JavaScript frameworks accelerate this process by providing their

own XHR API, as does Waterwheel.js (see Chapter 16). Note that the Drupal back end

referred to in the following example is the same one we set up in Chapter 7.

Chapter 9 Authenticating Requests in Drupal 8

116

var req = new XMLHttpRequest();

req.open('GET', 'https://core-rest.dd:8083/node/1');

req.setRequestHeader('Authorization', encodeBasicAuth('admin', 'admin'));

req.send('_format=hal_json');

This request can also be written as follows, which reflects a Drupal back end where

Basic Authentication is required for retrieval of content entities. As you can see, our

base64-encoded Authorization field is YWRtaW46YWRtaW4=.

GET /node/1?_format=hal_json HTTP/1.1

Content-Type: application/json

X-CSRF-Token: SDEEgyW_n2vI3GygOI2Y-W7VRrfIiN8gk3PdO1O3vHo

Authorization: YWRtaW46YWRtaW4=

Host: core-rest.dd:8083

�Cookie-Based Authentication
In Drupal, cookie-based authentication is an additional method to authenticate user

credentials during the issuance of a request. The primary distinction between Basic

Authentication and cookie-based authentication is the latter’s use in Drupal’s normal

operations. Whereas Basic Authentication focuses on third-party applications, in cookie-

based authentication, Drupal uses cookies on the browser to preserve a user’s session.

As a result, cookie-based authentication is particularly useful in instances of

progressive decoupling, because any Drupal page that requires authentication will refer

to the session cookie housed in the browser. Because progressive decoupling involves

the interpolation of a JavaScript framework into Drupal’s front end, the framework has

access to the authenticated cookie as well, absolutely free of charge. This is because

both the framework and the surrounding Drupal front end have access to the document.

cookie object, where the cookie is located.

For fully decoupled implementations, cookie-based authentication is roughly

analogous to Basic Authentication, except for the crucial fact that the value of an active

session cookie can easily be stolen and subsequently employed to exploit a Drupal back

end. As such, although I am including it for the sake of completeness to illustrate the

functionality, you should leverage this approach with extreme caution.

Chapter 9 Authenticating Requests in Drupal 8

117

�Retrieving Cookies in Fully Decoupled Consumers
It is possible to replace Basic Authentication in fully decoupled Drupal architectures

with cookie-based authentication, particularly if your authentication needs are

relatively simple and your data are less sensitive. Whereas in Basic Authentication, a

username and password are transparently available on the client, in a fully decoupled

implementation of cookie-based authentication, the session cookie is stored on the

client and transmitted on every request.

Warning  Due to the inherent vulnerabilities of cookie-based authentication, it is
a best practice to use either Simple OAuth or JSON Web Tokens (covered later in
this chapter) in production where sensitive data need to be retrieved. However, for
authenticated requests against nonsensitive data, cookie-based authentication can
offer a more convenient developer experience and is thus used frequently during
development or technical demonstrations.

To retrieve the session cookie for cookie-based authentication, we need a user

session. To acquire a user session, you can issue a POST request against the login form

(/user/login?_format=json) of the Drupal back end serving your content, submitting

alongside it the following request body5:

{

 "name": "admin",

 "pass": "admin"

}

As you can see in Figures 9-1 and 9-2, the response to this request will have a 200

OK response code and contain a session cookie, as well as a response object containing

information about the user whose session has begun and tokens that can be used to

issue requests using unsafe HTTP methods (see Chapter 10 for more about the

X-CSRF-Token) or to log the user out.

5�Kandyba, Igor. “Playing with Web Services API in Drupal 8. Theory and Practice.” Just Drupal. 23
May 2017. Accessed 7 August 2018. https://justdrupal.com/web-services-drupal-8/

Chapter 9 Authenticating Requests in Drupal 8

https://justdrupal.com/web-services-drupal-8/

118

{

 "current_user": {

 "uid": "1",

 "roles": [

 "authenticated",

 "administrator"

],

 "name": "admin"

 },

 "csrf_token": "SDEEgyW_n2vI3GygOI2Y-W7VRrfIiN8gk3PdO1O3vHo",

 "logout_token": "jW66ozYwAe_D_rj2sY61WfuzPW9ft91ei6vngUhoYms"

}

Note I n these examples, we are using Postman, an HTTP client. For more
information about Postman and its usage, see Chapter 10.

Figure 9-1.  We can issue a POST request against Drupal’s login form to retrieve
the cookie that we need to conduct cookie-based authentication. The response also
includes useful information about the user’s roles and tokens for other purposes.

Chapter 9 Authenticating Requests in Drupal 8

119

�Authenticating Using Cookies
In fully decoupled Drupal implementations, the steps undertaken in the previous

section are required to access the session cookie. However, in progressively decoupled

implementations, the session cookie is available in document.cookie, as the JavaScript

framework and Drupal-rendered front end occupy the same DOM.

You can include the cookie name (e.g., SESS4aabd467346dd626e54a80f80ddac4cb)

and value (e.g., _bY169JQ3op6EgvPF2pWF1rW0NfFvKdiklNZR7rMJl0), separated by =, in

the request headers of any subsequent request that requires authentication to proceed.

For instance, consider the following headers for a POST request that creates a node. For

further examples of POST requests against core REST, see Chapter 10.

POST /entity/node?_format=json HTTP/1.1

Content-Type: application/json

X-CSRF-Token: SDEEgyW_n2vI3GygOI2Y-W7VRrfIiN8gk3PdO1O3vHo

Cookie: SESS4aabd467346dd626e54a80f80ddac4cb=_

bY169JQ3op6EgvPF2pWF1rW0NfFvKdiklNZR7rMJl0

Host: core-rest.dd:8083

To log the user out, simply issue a POST request to /user/logout?_format=

json&token=jW66ozYwAe_D_rj2sY61WfuzPW9ft91ei6vngUhoYms (using the previously

retrieved logout_token as the second query string parameter), on which you will receive a

204 No Content response code that indicates termination of the user session.6

Figure 9-2.  The session cookie can be used to authenticate requests from consumer
applications through a logged-in user’s session

6�“Additional RPC Endpoints: user/login user/login/status user/logout user/password.” Drupal.
org. 28 July 2016. Accessed 9 August 2018. https://www.drupal.org/node/2720655

Chapter 9 Authenticating Requests in Drupal 8

https://www.drupal.org/node/2720655

120

�OAuth 2.0 Bearer Token Authentication
Today one of the most widely used authentication methods, OAuth is an open standard

for access delegation that grants access to information without the need for passwords.

OAuth has several versions; the first version (OAuth) is supported by the OAuth

contributed module, and the second version (OAuth 2.0) is supported by the Simple

OAuth contributed module.

In OAuth, a consumer is granted access to resources on the server on behalf of

an owner of those resources, who authorizes access without sharing the consumer

credentials. OAuth issues access tokens over HTTP to consumers via an authorization

server. From there on, the consumer employs the access token to retrieve or manipulate

protected resources in requests that it issues.7

Because the first version of OAuth is less secure and is not backward compatible

with OAuth 2.0, we focus solely on the second version in this section. Some developers

might opt to use OAuth 1 to avoid an HTTPS server requirement, but this is no longer

advisable.8

Note  The Simple OAuth module (OAuth 2.0) is available on Drupal.org at
https://www.drupal.org/project/simple_oauth. The OAuth module
(OAuth 1) is available on Drupal.org at https://www.drupal.org/project/
oauth.

Warning  OAuth 1 is now considered less secure than OAuth 2.0 and should not
be used in production where using OAuth 2.0 is possible instead.

7�“OAuth.” Wikipedia. 30 July 2018. Accessed 7 August 2018. https://en.wikipedia.org/wiki/
OAuth

8�“OAuth 2.0.” Drupal.org. 18 February 2018. Accessed 7 August 2018. https://www.drupal.org/
project/simple_oauth

Chapter 9 Authenticating Requests in Drupal 8

http://drupal.org
https://www.drupal.org/project/simple_oauth
http://drupal.org
https://www.drupal.org/project/oauth
https://www.drupal.org/project/oauth
https://en.wikipedia.org/wiki/OAuth
https://en.wikipedia.org/wiki/OAuth
https://www.drupal.org/project/simple_oauth
https://www.drupal.org/project/simple_oauth

121

�OAuth 2.0 Grants
In OAuth 2.0, a grant is a means of acquiring an access token that can be used by

consumers to access protected resources. There are various ways to communicate with

a back end from the consumer’s standpoint via API, but depending on the relationship

between the consumer and the server, one particular grant type might be better than

others. The authorization code grant type, for instance, is used to build many custom

third-party applications that consume GitHub data.9

The PHP League establishes four OAuth 2.0 grant types that map neatly onto the

five grant types cited in the OAuth 2.0 Authorization Framework RFC (RFC 6749). In the

process, the PHP League also introduces several justifications for a particular grant type.

In what follows, first-party refers to a consumer sufficiently trusted to handle an end

user’s credentials, whereas a third-party consumer is untrusted.10

•	 Authorization code grant: If the permission of a user (the access

token owner) is required to access resources, and if the consumer is

a web application or a third-party native application, you can use the

authorization code grant type.

•	 Implicit grant: If the permission of a user is required to access

resources, and if the consumer is a third-party browser-based

application, you can use the implicit grant type.

•	 Client credentials grant: If the permission of a user is not required to

access resources, you can use the client credentials grant type.

•	 Password grant: If the permission of a user is required to access

resources, and if the consumer is a first-party application, you can

use the password grant type.

The Simple OAuth module emphasizes the password grant, as it is a convenient

catchall for trusted first-party applications that potentially require access to any

operation possible in Drupal, including creating and deleting users. Nonetheless, the

password grant might allocate excessive power to the consumer application. In that case,

consider one of the other grant types.

9�“OAuth 2.0 Server: Terminology.” The League of Extraordinary Packages. Accessed 7 August
2018. http://oauth2.thephpleague.com/terminology

10�“Which OAuth 2.0 Grant Should I Implement?” The League of Extraordinary Packages. Accessed
10 August 2018. https://oauth2.thephpleague.com/authorization-server/which-grant

Chapter 9 Authenticating Requests in Drupal 8

http://oauth2.thephpleague.com/terminology
https://oauth2.thephpleague.com/authorization-server/which-grant

122

Warning  There is considerable debate about whether the password grant type
is truly secure enough for consumers like single-page applications, which need
to store client secrets within readable code, and even native applications. The
additional requirement of user credentials (see upcoming sections) might be
sufficiently secure for your needs, but not all implementations consider this a best
practice. See this GitHub issue for more context and insight: https://github.
com/thephpleague/oauth2-server/issues/889.

�Installing Simple OAuth and Generating Keys
To install Simple OAuth, you can execute the following Composer commands.

$ composer config repositories.drupal composer https://packages.drupal.

org/8 && composer require drupal/simple_oauth:^3

This will install both the Simple OAuth module and the OAuth2 Server package by

the PHP League, which is a strict dependency. You can also install Simple OAuth using

Drush or the Drupal user interface, but installing the OAuth2 Server is a required step,

whether you manage it with Composer or you download it directly.

Once you have installed Simple OAuth, you will need to generate a pair of keys to

encrypt the tokens that Simple OAuth generates. For security reasons, store these keys

outside of your Drupal document root, while ensuring you save the respective paths to

the keys.

$ openssl genrsa -out private.key 2048

$ openssl rsa -in private.key -pubout > public.key

Chapter 9 Authenticating Requests in Drupal 8

https://github.com/thephpleague/oauth2-server/issues/889
https://github.com/thephpleague/oauth2-server/issues/889

123

Note I f you run into errors while attempting to use the keys you generated, your
permissions might not be set correctly on those files. Use the chmod command to
set the octal code on your keys directory to 0600.

�OAuth 2.0 Scopes and Drupal Roles
In OAuth 2.0, scopes are permissions and can help define the operations to which an

OAuth 2.0 token ought should access. In Drupal, they are synonymous with user roles. It

is generally good practice to associate every consumer with a single user role, such as an

explicit role for our “Swift app” alongside the existing Administrator and Authenticated

user roles.

In Figure 9-3, we have created a new Swift app role, and we have given it the same

permissions as an administrator in Figure 9-4.

Figure 9-3.  Create a new role with its own permissions to reflect the scope that
a consumer can access. It is a best practice to make consumers synonymous with
their roles.

Chapter 9 Authenticating Requests in Drupal 8

124

The final step is to make Drupal aware of any consumers that will employ OAuth2

tokens to retrieve or manipulate content. To do that, we will create a new consumer and

give it the same scope (Drupal role) that we just created. Navigate to the Configuration ➤

Simple OAuth ➤ Consumers page (/admin/config/services/consumer) and click Add

consumer (/admin/config/services/consumer/add).

The form will require a label identifying a consumer (e.g., Swift app, an iOS

application written in Swift) and a new secret (a new password that the consumer will

use, hashed in Drupal; e.g., l0r3m1psum). There are other optional fields as well, covered

in the subsequent sections. On saving the form, Drupal will generate a consumer

identifier, a UUID by which the consumer will be identifiable (e.g., 24ac1dc6-9cd3-11e8-

98d0-529269fb1459). This is what you will see on the Consumers page of the Simple

OAuth module (Figure 9-5).

Figure 9-4.  In this example, we have set all of the consumer’s permissions to be
identical to those of an administrator, as the consumer is a trusted first-party
entity

Chapter 9 Authenticating Requests in Drupal 8

125

Navigate to the Simple OAuth configuration page (/admin/config/people/

simple_oauth) and insert the paths to the public and private key that you saved earlier.

Optionally, you can also set a higher expiration time for tokens (e.g., 870000 instead of

300 seconds) for testing purposes, but you should not do this in production.11

�Creating and Verifying Access Tokens
We can now issue our first request, which is for an access token that Drupal grants us

to perform operations against the Drupal back end. The resource against which we will

need to issue our request is the access token resource provided by Simple OAuth, located

at /oauth/token. Our request body will need to contain all of the elements required for

Drupal to identify the client.

Because the OAuth 2.0 specification requires that the OAuth token resource accept

only POST requests formatted in form-data or x-www-form-urlencoded, we cannot use

a traditional JSON-formatted request body to retrieve an access token. (In fact, JSON-

formatted responses will be rejected.) Fortunately, Postman provides a convenient

interface to insert request bodies in form-data or x-www-form-urlencoded.

Each POST request needs to contain the encoded information required by OAuth 2.0

shown in Table 9-1.

Figure 9-5.  Once we have created the consumer, it will appear in our list of
consumers along with its UUID and assigned scope(s)

11�Aguiló Bosch, Mateu. “2. Installation and Set Up.” YouTube. 30 November 2016. Accessed 10
August 2018. https://www.youtube.com/watch?v=SI60hF4n8U8

Chapter 9 Authenticating Requests in Drupal 8

https://www.youtube.com/watch?v=SI60hF4n8U8

126

Issuing this POST request will yield a response containing a JSON object with two

important keys: access_token and request_token. A sample response from an OAuth

token resource follows, with tokens truncated in the interest of brevity.

{

 "token_type": "Bearer",

 "expires_in": 870000,

 "access_token": "eyJ0eXAi0iJKV1Qi[...]",

 "refresh_token": "uAXzh+B/7kCxsXkl[...]",

}

To verify that our access token indeed works with Drupal’s OAuth 2.0 server, we can

issue a GET request against the /oauth/debug resource, with ?_format=json appended.

Issuing a GET request without an Authorization header would yield a response

containing a typical anonymous user’s Drupal roles and permissions as encoded in

JSON.

We can use the debug endpoint /oauth/debug to verify that our access token is

correct. Add an Authorization header containing “Bearer ” (note the space following

the prefix) followed by the access token copied from the response from /oauth/token

and issue a GET request.

GET /oauth/debug?_format=json HTTP/1.1

Authorization: Bearer eyJ0eXAi0iJKV1Qi[...]

Table 9-1.  Required Parameters in Request Body to Retrieve an OAuth 2.0 Token

Key Example Value Description

grant_type password The type of grant, usually password

client_id 24ac1dc6-9cd3-11e8-

98d0-529269fb1459

The consumer UUID generated by Drupal on

client creation

client_secret l0r3m1psum The client secret chosen during client addition

Username admin The username of the account you wish to

associate your client to (and grant those

permissions to)

Password admin The password of the user account

Chapter 9 Authenticating Requests in Drupal 8

127

The response will contain a JSON object with the submitted access token, and if the

authentication was successful, the identifier of the user whose credentials were supplied

during access token retrieval. In addition, Drupal’s OAuth 2.0 server provides in the

response a listing of the user’s roles and permissions.12

�Issuing OAuth 2.0-Authenticated Requests
Once your keys are saved in the Simple OAuth configuration page, you can instruct

Drupal to allow certain methods and resources to be exposed through OAuth2

authentication using either the configuration import approach (see Chapter 7) or the

REST UI contributed module (see Chapter 8) to enable the oauth2 authentication

method.

We can enable both the core REST modules and REST UI as follows.

$ composer require drupal/restui

$ drush en -y rest restui

Then, navigate to Configuration » REST (/admin/config/services/rest) in Drupal

to access REST UI, where the list of resources available to core REST is available. For

now, we can focus our attention solely on the settings under the category Content. On

the Settings for resource Content page (/admin/config/services/rest/resource/

entity%3Anode/edit), assuming you have configured the Simple OAuth module

correctly, an oauth2 option will be available in the Authenticated providers list. Enabling

the oauth2 option permits OAuth 2.0-authenticated requests from consumers to access

the correct resource.

To retrieve the token, issue a POST request against /oauth/token with the request

body containing the following parameters as form-data.

grant_type: password

client_id: 24ac1dc6-9cd3-11e8-98d0-529269fb1459

client_secret: l0r3m1psum

username: admin

password: admin

12�Aguiló Bosch, Mateu. “3. Password Grant.” YouTube. 30 November 2016. Accessed 10 August
2018. https://www.youtube.com/watch?v=BEKKFExaBMM

Chapter 9 Authenticating Requests in Drupal 8

https://www.youtube.com/watch?v=BEKKFExaBMM

128

Finally, add an Authorization header to your consumer’s request with the Bearer

prefix, as you can see next. Once Drupal receives the consumer’s request that contains

an OAuth 2.0 token in the Authorization header, Drupal will serve the request after

validating the token.

Authorization: Bearer eyJ0eXAi0iJKV1Qi[...]

Note  For more resources about Drupal’s OAuth 2.0 implementation, Mateu Aguiló
Bosch has a well-made video series on YouTube detailing some of the Simple
OAuth module’s functionality, particularly its handling of other grant types, at
https://youtu.be/rTcC0maPLSA.

�Handling Expired Tokens
During development, having a high length of time until an OAuth 2.0 token is expired is

perfectly appropriate. However, once your consumer and server are live in production,

it is inadvisable to have overly lengthy times to expiration for your OAuth 2.0 token. After

all, if your token expires within 120 seconds, all operations requiring that token must

transpire during that span of time; otherwise, your token will have expired.

If your token has expired, you can follow these steps to generate a new token to

continue issuing requests against Drupal. When Simple OAuth generates an access

token, which needs to be used in all OAuth 2.0-authenticated requests (see previous

section), it also generates an authentication token known as the refresh token. Refresh

tokens last longer and are associated with another access token that can replace the

expired access token. To acquire a new access token, we need to use the refresh token

grant rather than the password grant.

To make use of the refresh token grant, you will need to enable the Simple OAuth

Extras module, which comes downloaded with the Simple OAuth module.

$ drush en -y simple_oauth_extras

To retrieve a new access token using the refresh token provided in the initial

response (containing the expired access token), issue a POST request against /oauth/

token with the request body containing the following parameters as form-data.

Chapter 9 Authenticating Requests in Drupal 8

https://youtu.be/rTcC0maPLSA

129

grant_type: refresh_token

refresh_token: uAXzh+B/7kCxsXkl[...]

client_id: 24ac1dc6-9cd3-11e8-98d0-529269fb1459

client_secret: l0r3m1psum

You can also require that the new access token be limited to a particular scope

(Drupal role). Note that scope is optional but can be used to associate the newly

generated token with a different scope than before, which we can express using the

machine name of the Drupal role under which all access should occur.

scope: swift_app

In response, Drupal’s OAuth 2.0 implementation will return a JSON object containing

the keys token_type (having the value Bearer), expires_in (with the new TTL of the

access token), access_token (a new access token signed with the private key recognized by

Drupal), and refresh_token (a new refresh token with which to refresh access tokens).13

If your refresh token has also expired, there is no option but to generate a new

token from scratch, which is problematic because it requires the transmission of user

credentials across the wire. You can automate the process of refreshing an access token

by always ensuring that your consumer issues a request for a new access token just

before the refresh token expires based on the duration provided in the original access

token response.

Note  You can debug existing tokens directly on your Drupal site by navigating to
Configuration ➤ Simple OAuth ➤ Tokens (/admin/config/people/simple_
oauth/oauth2_token), where you will find a list of existing tokens that Drupal
has generated.14

The PHP League’s implementation of OAuth 2.0 uses JSON Web Tokens (JWT)
to articulate all authentication tokens. For more about JWT, continue to the next
section.

13�“Refresh Token Grant.” The League of Extraordinary Packages. Accessed 22 August 2018.
http://oauth2.thephpleague.com/authorization-server/refresh-token-grant

14�Aguiló Bosch, Mateu. “6. Debugging Existing Tokens.” YouTube. 30 November 2016. Accessed 22
August 2018. https://www.youtube.com/watch?v=Xpv6x2hAktQ

Chapter 9 Authenticating Requests in Drupal 8

http://oauth2.thephpleague.com/authorization-server/refresh-token-grant
https://www.youtube.com/watch?v=Xpv6x2hAktQ

130

�JSON Web Tokens
Defined by RFC 7519, JSON Web Tokens (JWT) is a rapidly maturing open standard for

authentication via JSON objects, implemented in the JSON Web Token Authentication

module, or JWT module for short. The Drupal implementation, authored by Jonathan

Green (jonathan.green) and Gabe Sullice (gabesullice), provides an authentication

provider in Drupal that allows for information to be verified through a digital signature.

In JWT, tokens are signed either through a secret using the HMAC algorithm or

a typical public and private key pair through RSA or ECDSA. The JWT standard is

particularly useful for authorizing user sessions through transmission of tokens on each

request and for facilitating information exchange between parties through verification of

signed tokens.15

Note  The JSON Web Tokens (JWT) specification is located at https://jwt.io.

�The JSON Web Tokens Standard
Individual JSON Web Tokens (JWTs, pronounced jots) are made up of three components

that are dot-separated—the header, payload, and signature—and adhere to this format:

header.payload.signature

The first part of a JWT is the header. JWT headers are generally split into two parts: the

type of the token (JWT) and the chosen hashing algorithm employed to encrypt the payload

(e.g., HMAC SHA256 or RSA), expressed in a JSON object as in the following example.

{

 "alg": "HS256",

 "typ": "JWT"

}

This object is then base64url-encoded to constitute the first portion of the JWT.

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9

15�“Introduction to JSON Web Tokens.” JWT. Accessed 20 August 2018. https://jwt.io/
introduction/

Chapter 9 Authenticating Requests in Drupal 8

https://jwt.io
https://jwt.io/introduction/
https://jwt.io/introduction/

131

The second part is the payload, which expresses claims (or statements of

information) about a consumer’s identity, the information we wish to transmit, and

other information about the token in question.16 There are three different types of claims:

•	 Registered claims: Registered claims are key/value pairs in the

payload that are recommended but not mandatory and adhere to

certain predefined, interoperable claims, including iss (the issuer

of the token), exp (time of expiration), sub (the subject of the token),

aud (the audience of the token), nbf (the time before which the JWT

must not be accepted), iat (issuance time of the JWT), and jti

(unique token identifier).

•	 Public claims: Public claims are those that JWTs can define at will.

The authoritative list of public claims is the IANA JSON Web Token

Registry, which lists all claims already defined. This is to avoid

collisions in the event that two JWTs define identical public claims.

An alternative approach is to define a public claim through a URI that

is resistant to collision (e.g., a URI containing a UUID).

•	 Private claims: Private claims are custom claims that parties agree

to define to share information privately. These are neither registered

nor public, as they are not part of the IANA registry nor the shortlist

of registered claims.

An example JSON object representing a payload follows.

{

 "iss": "jwt-drupal-backend.net",

 "exp": 1534864265,

 "name": "Preston So",

 "admin": true

}

16�Chan, Edward. “Using JSON Web Tokens (JWT) to Authenticate Requests to REST Resources in
Drupal 8.” Mediacurrent. 23 March 2017. Accessed 21 August 2018. https://www.mediacurrent.
com/blog/using-json-web-tokens-jwt-authenticate-requests-rest-resources-drupal-8/

Chapter 9 Authenticating Requests in Drupal 8

https://www.mediacurrent.com/blog/using-json-web-tokens-jwt-authenticate-requests-rest-resources-drupal-8/
https://www.mediacurrent.com/blog/using-json-web-tokens-jwt-authenticate-requests-rest-resources-drupal-8/

132

Like the JWT header, the JWT payload is also base64url-encoded. For signed tokens,

the header and payload are both globally readable, a situation that is only resolved if the

information housed in the header and payload are encrypted before base64url encoding.

ewogICJpc3MiOiAiand0LWRydXBhbC1iYWNrZW5kLm5ldCIsCiAgImV4cCI6IDE1MzQ4NjQy

NjUsCiAgIm5hbWUiOiAiUHJlc3RvbiBTbyIsCiAgImFkbWluIjogdHJ1ZQp9

The third and last part is the signature, which is comprised of a hash of the encoded

header, the encoded payload, and secret (the signature available to the server that

verifies existing tokens and signs new ones). You must use the algorithm specified in

the JWT header to generate the signature. The signature guarantees that any data in the

payload were not modified.

For instance, if you are using HMAC SHA256 as your chosen algorithm, you can

create methods that handle base64url encoding and HMAC SHA256 hashing and

employ them as in the following example, where secret is a secret key, provided by the

consumer and validated by the server, used to create a digitally signed token.

const signature = HMACSHA256(

 base64url(header) + '.' + base64url(payload),

 secret

);

An example signature can be seen here:

jIyIIA6wMwGCLE2fyIU1f_Y9e3Nn4rPC3Ta1MzoAKLA

Once you have the hashed signature, you can now concatenate all three strings

together, separated by periods, to form the completed JWT.

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.ewogICJpc3MiOiAiand0LWRydXBhbC1iYWNr

ZW5kLm5ldCIsCiAgImV4cCI6IDE1MzQ4NjQyNjUsCiAgIm5hbWUiOiAiUHJlc3RvbiBTbyIsCi

AgImFkbWluIjogdHJ1ZQp9.jIyIIA6wMwGCLE2fyIU1f_Y9e3Nn4rPC3Ta1MzoAKLA

Note  The IANA JSON Web Token Registry is located at https://www.iana.
org/assignments/jwt/jwt.xhtml. The jwt.io Debugger is located at
http://jwt.io.

Chapter 9 Authenticating Requests in Drupal 8

https://www.iana.org/assignments/jwt/jwt.xhtml
https://www.iana.org/assignments/jwt/jwt.xhtml
http://jwt.io

133

�How JSON Web Tokens Work
Several advantages characterize the JWT standard over alternatives such as HTTP Basic

Authentication and OAuth 2.0. First, JWTs are compact in size with limited overhead,

especially when compared to alternative approaches such as Security Assertion Markup

Language (SAML)—this means that JWTs can be sent within a URL, POST parameter, or

HTTP header. Second, JWTs are self-contained, and all required information about the

consumer is present in the JWT payload. Finally, JWTs are fully functional in CORS, as

token-based authentication systems permit calls to any server when the token is in the

HTTP header.

JWTs are considered more secure than session-based authentication mechanisms

like cookies and OAuth 2.0 because they do not require session data to be maintained on

the server, obviating the need to share such session data between servers that provide

the same application. In addition, JWTs express their own expiry date within the payload

so that garbage collection is not required on session expiry.

Perhaps more relevant to decoupled Drupal practitioners, however, is the fact that

JWT is stateless, as RESTful communication between consumer and server requires that

a valid JWT accompany every request issued. Because JWTs can be transmitted with

each request and already express all information about users and consumers, there is no

need to perform any fetches from a database for these details.

Figure 9-6 illustrates a typical authentication workflow, in which the authentication

provider (in this case Drupal) receives a request for a JWT, creates a digitally signed JWT

using the secret key provided, and issues the JWT to the consumer to be stored client-

side. From that point on, the consumer issues requests to the server, where the JWT is

verified and validated. The server then transmits the response to the consumer.

Chapter 9 Authenticating Requests in Drupal 8

134

�Installing JSON Web Tokens
The Drupal implementation of JSON Web Tokens requires the Key module and can be

installed through the normal module installation process, with one important caveat.

Because JWT comes with its own composer.json file and has a dependency on the

firebase/php-jwt PHP library, you can either use the Composer Manager module to install

the third-party library or your own Composer-based approach, such as the following.

$ composer config repositories.drupal composer https://packages.drupal.org/8

$ composer require drupal/jwt

$ drush en -y jwt

Figure 9-6.  A JWT authentication workflow in Drupal, which serves as both the
authentication and web service provider. When the consumer requests a new token
with valid credentials, Drupal’s JWT authentication provider creates and issues a
new JWT to the consumer. The consumer then employs this JWT in every request to
the API that it issues.

Chapter 9 Authenticating Requests in Drupal 8

135

We also need to enable the JWT module’s two inner modules handling Drupal’s

issuance and consumption of JWTs.

$ drush en -y jwt_auth_consumer jwt_auth_issuer

As seen in previous sections, Drupal’s primary responsibility besides issuing

responses to consumer requests is to provide secrets that are capable of signing or

validating JWTs, functionality handled by the Key module. Once installation of the JWT

module is complete, we need to create a new key by navigating to Configuration ➤

System ➤ Keys (/admin/config/system/keys), where we can add new or existing keys.

JWT offers us a choice when it comes to the hash algorithm used, and the Drupal

implementation of JWT includes two of those options: JWT HMAC Key and JWT RSA

Key. We cover each of those in turn in the next section.

Note  The JSON Web Token Authentication module, Drupal’s JWT implementation,
is available on Drupal.org at https://www.drupal.org/project/jwt. The
Key module is available on Drupal.org at https://www.drupal.org/project/
key. The firebase/php-jwt library is available on GitHub at https://
github.com/firebase/php-jwt.

Warning  The JWT module in Drupal remains an alpha release and should not be
used live in production without extreme care and caution.

�Creating JWT HMAC and JWT RSA Keys
The JWT module documentation recommends file-based keys, regardless of whether

you are using HMAC or RSA. Recall that in Drupal, keys are synonymous with JWT

secrets.

To issue and validate your JWTs in Drupal using HMAC, you can generate a file-

based key consisting of 256 bits, base64-encoded.

$ head -c 64 /dev/urandom | base64 -w 0 > /path/to/private/keys/jwt.key.txt

Chapter 9 Authenticating Requests in Drupal 8

http://drupal.org
https://www.drupal.org/project/jwt
http://drupal.org
https://www.drupal.org/project/key
https://www.drupal.org/project/key
https://github.com/firebase/php-jwt
https://github.com/firebase/php-jwt

136

A sample HMAC key follows:

md64thgk0icWTrZ5B4Yb45nvYwPcaWnrn/82lJW0DW4piGQcU2TC/BL/

lOZLsiwnSn0dinr1rZOmww0nZ9Aurg==

Note I f you receive an error base64: invalid option, you might need to use
the -b (--break) option instead of -w (--wrap), depending on the version
of the base64 command-line interface you are using. BSD allows -w, whereas
GNU allows -b. In both versions, the -b and -w flags handle line wrapping during
encoding.

To issue and validate your JWTs in Drupal using RSA, you can generate a file-based

key consisting of 2,048 bits.

$ openssl genrsa -out private.key 2048 > /path/to/private/keys/jwt.key.txt

Once you have created the key you plan to provide to your consumers, and once you

have designated if it should be stored as configuration or referred to in a file, navigate

to Configuration ➤ System ➤ Keys (/admin/config/system/keys), where you can

designate if the key should be stored as configuration (in which case you need to directly

provide the value in the form) or referred to as a file (already located on the server). This

is illustrated in Figure 9-7.

Chapter 9 Authenticating Requests in Drupal 8

137

Figure 9-7.  In this example, we are using configuration to provide the key, which
means we need to store it in Drupal’s configuration rather than as a file. The result
of our earlier HMAC key creation command is reflected in the Key value field.

Chapter 9 Authenticating Requests in Drupal 8

138

�Issuing and Validating JWTs
Recall that we must enable the JWT Authentication Issuer module for Drupal to sign

JWTs with this secret key and issue them. Once you have enabled the Issuer module,

it exposes an endpoint located at the URI /jwt/token, which will generate JWTs for

credentialed consumers that issue requests against it.

When we navigate to /jwt/token in a logged-in state as a user, or when we perform a

GET request against /jwt/token with the appropriate credentials, we receive a token like

the one that follows, in the expected JWT standard format, as you can see in Figure 9-9.

With this JWT, we are now able to issue JWT-authenticated requests against Drupal from

consumers.

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpYXQiOjE1MzQ4ODc2MzMsImV4cCI6MTUz

NDg5MTIzMywiZHJ1cGFsIjp7InVpZCI6IjEifX0.jIyIIA6wMwGCLE2fyIU1f_

Y9e3Nn4rPC3Ta1MzoAKLA

17�“JSON Web Token Authentication (JWT).” Drupal.org. 19 February 2016. Accessed 21 August
2018. https://www.drupal.org/project/jwt

Figure 9-8.  Once we have made Drupal aware of the key, we then apply it as the
dedicated secret for our HMAC SHA256 algorithm

Then, navigate to Configuration ➤ System ➤ JWT Authentication (/admin/config/

system/jwt), where you can either directly provide the key (for storage in configuration)

or refer to an available file, as seen in Figure 9-8.17

Chapter 9 Authenticating Requests in Drupal 8

https://www.drupal.org/project/jwt

139

�Issuing JWT-Authenticated Requests
The next step is for us to issue a JWT-authenticated request to retrieve content on the

consumer. Although our Drupal site is now configured to issue and accept JWTs, we

have not yet configured our REST resources to be available for use with Drupal’s JWT

authentication. To remedy this, we need to follow the same steps that we followed in

Chapter 7 to configure how Drupal will serve authenticated requests. Fortunately, REST

UI, covered in Chapter 8, can make this process much easier, as we also saw earlier in

this chapter with OAuth 2.0.

Recall how we install and enable both the core REST modules and REST UI.

$ composer require drupal/restui

$ drush en -y rest restui

Navigate to Configuration ➤ REST (/admin/config/services/rest) in Drupal to

access REST UI, where we can choose any of the resources available to core REST. For

our limited purposes, we can choose to edit the settings for Content. On the Settings for

resource Content page (/admin/config/services/rest/resource/entity%3Anode/

edit), assuming you have configured the JWT module correctly, you will see an

additional jwt_auth option in the Authenticated providers list. Enabling the jwt_auth

option will allow for all content resources to be authenticated via JWT.

To test JWT-authenticated requests, we can modify permissions for accessing

content such that anonymous users cannot perform retrievals (GET) of content

without a role with greater access. Navigate to People ➤ Permissions (/admin/people/

permissions) and disable the View published content permission for anonymous users.

Figure 9-9.  To get to your token, navigate to /jwt/token in the browser after
providing your key (JWT secret) and enabling the JWT Authentication Issuer
module

Chapter 9 Authenticating Requests in Drupal 8

140

To retrieve the token, navigate to /jwt/token while logged in as an administrator

and copy the string. Then, just like we did with OAuth 2.0 in previous sections, add an

Authorization header to your consumer with the Bearer prefix, as you can see here. On

receipt of the JWT-authenticated request, Drupal will validate the token and serve the

appropriate response.

Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpYXQiOjE1MzQ4

ODc2MzMsImV4cCI6MTUzNDg5MTIzMywiZHJ1cGFsIjp7InVpZCI6IjEifX0.jIyIIA6wMwGCLE

2fyIU1f_Y9e3Nn4rPC3Ta1MzoAKLA

Note  For more information about the inner workings of Drupal’s JWT
implementation and how it generates and validates JWTs from the PHP standpoint,
see Edward Chan’s excellent tutorial on issuing JWT-authenticated requests
against Drupal at https://www.mediacurrent.com/blog/using-json-
web-tokens-jwt-authenticate-requests-rest-resources-drupal-8.

�Conclusion
Authentication is critical for ensuring users’ privacy and security, particularly in a

more services-oriented—and therefore intrinsically less secure—architecture like

decoupled Drupal. In this chapter, we scrutinized the most common approaches for

authenticating requests to Drupal 8, including Basic Authentication, OAuth2 Bearer

Token authentication, and JWT. In addition, we covered cookie-based authentication in

Drupal 8, which is useful for progressively decoupled implementations that require use

of a Drupal-rendered page.

In Part 3, we leap headlong into how Drupal’s web services modules, whether in

core or contributed, handle and respond to requests from consumers. We will cover two

highly distinct approaches to using core REST for retrieving and manipulating content:

a more traditional developer-focused approach and an approach utilizing the Views

module that is friendlier for site builders and content creators. Then, we will discuss

each of the aforementioned contributed modules, namely JSON API, RELAXed Web

Services, and GraphQL, in turn to evaluate their similarities and differences so we can

make educated decisions about which web service solutions to select.

Chapter 9 Authenticating Requests in Drupal 8

https://www.mediacurrent.com/blog/using-json-web-tokens-jwt-authenticate-requests-rest-resources-drupal-8
https://www.mediacurrent.com/blog/using-json-web-tokens-jwt-authenticate-requests-rest-resources-drupal-8

PART III

Consuming and
Manipulating Drupal 8
In Part 2, we discussed the most important building blocks of any decoupled Drupal

architecture, from the web services that expose Drupal content to the reference

applications that can serve as the foundation of API consumers. In the process, we also

inspected API-first distributions in Drupal, authentication methods, and in particular

the core and contributed modules that facilitate decoupling Drupal 8.

In these chapters, we move from the what to the how and bridge the gap between

client applications and the APIs they consume by providing a comprehensive view of

how to issue requests to serve a variety of requirements. We will examine how we can

directly apply the web services Drupal and its contributed ecosystem make available

through both retrieval and manipulation of Drupal entities. Through this approach, we

will apply our understanding of the web services ecosystem in Drupal (core REST, JSON

API, RELAXed Web Services, and GraphQL) to demonstrate how they are similar and

distinct from one another. We also will explore a built-in feature of core REST, Views

REST exports, which allows for the rapid-fire construction of read-only APIs.

Like the previous chapters, we turn first to core REST, which introduces Drupal’s own

X-CSRF-Token header and allows for serialization formats to be customized during the

request so that JSON, XML, or other responses can be served. In the process, we will also

explore the unique content modeling features in Drupal and how they can be leveraged

to design rich content APIs thanks to the Drupal core module Views.

Though core REST can sometimes provide a less ideal experience for those building

consumer applications, it underpins many of the other web services solutions available

in Drupal and allows for architects to provision a robust CRUD-enabled API out of the

142

box with no additional code required. This is also true of Views REST exports, meaning

that a Drupal site on its own can provide a fully functional RESTful API without the need

to install additional modules.

Then, we will redirect our attention to the contributed modules providing web

services for Drupal 8, namely JSON API, GraphQL, and RELAXed Web Services.

Each of these modules provides a different set of features for developers of consumer

applications, and as such their mechanisms of data access vary. In particular, because

GraphQL cannot be considered a typical RESTful web service and obligates learning its

specification, we treat each of these web services modules differently.

Besides its substantial adoption by other open-source communities and the robust

means by which we can retrieve and manipulate content, JSON API also offers a

significantly better experience when it comes to retrieving relationships and performing

complex filtering on read queries to Drupal. This means that we can fetch not only a

content entity but also information about the user who authored it, which would require

two successive requests in core REST. While JSON API’s query string-focused approach

can quickly become convoluted, it has the highest level of adoption in the Drupal

community and widest-ranging ecosystem of surrounding tools out of all available web

services solutions, as we will see in Chapter 23.

Sometimes, it is also useful for us to pair a RESTful API with other tools and features

that serve other purposes in our Drupal architectures. This is the case with RELAXed

Web Services, Drupal’s implementation of the CouchDB specification and part of the

Drupal Deploy ecosystem for content staging and synchronization. Paired with client-side

technologies that provide offline-enabled features, RELAXed Web Services can be a

powerful solution for content ecosystems that require complex editorial workflows.

Nonetheless, RELAXed Web Services can also be employed on its own as well.

Finally, we will inspect one of the more intriguing characters in the web

services landscape when it comes to decoupled Drupal: GraphQL. While Drupal’s

implementation of GraphQL lacks write query functionality off the shelf, its unique

approach to read queries that curate responses can serve as an improvement over

some of the complicated queries that other web services obligate us to issue. Today, the

GraphQL module robustly addresses a range of needs in typical read queries, such as

sorting, filtering, and condition groups.

Because contributed modules evolve rapidly, we will start with the most stable of the

web services solutions available in Drupal 8, namely core REST.

Part III  Consuming and Manipulating Drupal 8

143
© Preston So 2018
P. So, Decoupled Drupal in Practice, https://doi.org/10.1007/978-1-4842-4072-4_10

CHAPTER 10

Core REST
As we witnessed in previous chapters, because Drupal includes a HAL-compliant REST

API out of the box with minimal configuration, it is easy to provision a web service

API that developers can use to consume content entities and manipulate them from

consumer applications. In Chapter 7, we exposed content entities as REST resources,

employed Entity Access to manage permissions, and configured the serialization formats

and authentication methods to be used in the core REST API. Now it’s time to retrieve

and manipulate those data as a consumer.

Fortunately, if you are already familiar with other REST APIs, writing and issuing

HTTP requests against Drupal core to ascertain the data you require in your application

is simple. In this chapter, we examine the key components of every request that hits the

core REST API, how to retrieve and manipulate content entities through core REST, and

how to add and remove them from Drupal.

�Issuing REST Requests Against Drupal Core
As REST is an architectural pattern that functions across HTTP, it extensively uses

HTTP verbs, which fall into two categories: safe and unsafe methods. In addition,

Drupal provides an additional mechanism to protect the back end from potential

vulnerabilities—the X-CSRF-Token request header—to prevent attackers from using

unsafe methods nefariously. For instance, without CSRF protection, an attacker could

issue a POST request that introduces executable code if CORS (see Chapter 7) is not

applied correctly. Finally, because Drupal serves responses flexibly across a variety

of serialization formats, it expects a query argument in the request that describes the

desired serialization format for consumption.

144

�Safe and Unsafe Methods
In HTTP, verbs (also known as request methods) include GET, HEAD, POST, PUT, DELETE,

TRACE, OPTIONS, CONNECT, and PATCH. Some of these request methods are defined as

safe because they describe read-only operations and cannot manipulate the data in

question. From this list of HTTP verbs, HEAD, GET, OPTIONS, and TRACE are safe methods.

On the other hand, all of the other methods listed are unsafe, because they perform write

operations against the data exposed by the API and thus data stored in Drupal.

In this chapter, we only cover GET, POST, DELETE, and PATCH among the

aforementioned methods, because they correspond to the fundamental CRUD

operations that permit us to retrieve and manipulate content. In the case of Drupal and

many other such systems, GET means read, POST means create, DELETE means delete, and

PATCH means update.1

Whereas PUT and POST in REST parlance both translate to updates of data, PUT

is problematic for Drupal as its request body generally incorporates the entire

data structure that will overwrite the existing data. Due to this trait, requests that

include relationships to other entities in addition to a single content entity introduce

considerable complexity to the API. In addition, the HAL normalization in core, per

the specification, includes link relations that must precisely reflect the data returned in

response to a GET request.

Other motivations specific to Drupal exist for the exclusion of PUT support that

have to do with field-level permissioning in content entities. To issue a well-formed

PUT request, a consumer application would need write access on every field present

in a content entity rather than only the select few it truly needs. As a result, Drupal

maintainers would potentially need to expand permissions much more widely than

would be considered safe under normal circumstances. Luckily, because PATCH supports

partial write operations, updates to content entities by the consumer can occur when

only certain fields are writeable—by excluding fields for which consumers have

insufficient permissions from the request altogether.2

1�“Getting Started: REST Configuration & REST Request Fundamentals.” Drupal.org. 17
May 2017. Accessed 2 April 2018. https://www.drupal.org/docs/8/core/modules/
rest/1-getting-started-rest-configuration-rest-request-fundamentals

2�Garfield, Larry. “Putting off PUT.” Drupal.org. 26 February 2013. Accessed 2 April 2018.
https://groups.drupal.org/node/284948

Chapter 10 Core REST

https://www.drupal.org/docs/8/core/modules/rest/1-getting-started-rest-configuration-rest-request-fundamentals
https://www.drupal.org/docs/8/core/modules/rest/1-getting-started-rest-configuration-rest-request-fundamentals
https://www.drupal.org/docs/8/core/modules/rest/1-getting-started-rest-configuration-rest-request-fundamentals
https://groups.drupal.org/node/284948
https://groups.drupal.org/node/284948

145

�The X-CSRF-Token Header
As we saw in Chapter 7, Drupal has built-in tools for CORS that protect the underlying

data. Another potential vulnerability results from cross-site request forgery (CSRF), a

scenario in which a consumer application that has permissions to modify data behind

the API could issue malicious requests against the same API even without the consumer

application’s awareness. This is possible because the consumer application might not

have the protections available to validate user-generated input and filter potentially

damaging data contained therein.

To guard itself from CSRF attacks, Drupal 8 requires that all requests define an

X-CSRF-Token request header whenever they employ an unsafe HTTP method like POST,

PATCH, or DELETE. To retrieve the token, you should issue a preliminary GET request

against the path /session/token or /rest/session/token. In forthcoming examples, we

witness directly how the use of unsafe methods differs from safe methods thanks to the

X-CSRF-Token request header’s presence.

�Specifying Serialization Formats
Because Drupal can serve and accept multiple serialization formats, including

HAL+JSON, JSON, and XML, every request to the core REST API has to specify a query

argument that designates the serialization format desired or used in the request. This

remains the case even if the Drupal back end’s core REST API only supports a single

serialization format (e.g., JSON).

When you issue a request against Drupal’s core REST API, you must append the

query argument ?_format to each URI. As an example, on the test site we installed in

Chapter 7, we would point a GET request to retrieve HAL-compliant JSON for a node with

an ID of 1 toward the URI core-rest.dd:8083/node/1?_format=hal_json.

When a request body presents data in a particular serialization format, such as node

objects in the case of unsafe methods like POST and PATCH, developers should specify

the Content-Type request header indicating the corresponding serialization method, as

demonstrated over the next several sections.

Chapter 10 Core REST

146

Note A lthough Drupal 8 made Accept header-based content negotiation
available previously, due to poor support by browsers and proxies, it was removed
from Drupal. As a result, Drupal 8 today requires the serialization format to be
indicated via query arguments rather than allowing it to be specified solely in the
Accept request header.3 See the following change record for more information:
https://www.drupal.org/node/2501221.

�Retrieving Content with Core REST
If you currently lack a test site similar to the one we installed in Chapter 7, you can return

to that chapter and set up a site like core-rest.dd:8083. As a note, all subsequent paths

in examples throughout this chapter are domain-relative. Near the end of Chapter 7, we

used Postman to issue a GET request to retrieve a content entity.

Let’s repeat that same request to show the process once more in detail. As mentioned

previously, issuing successful GET requests against core REST requires the following

REST resource configuration:

granularity: resource

configuration:

 methods:

 - GET

 formats:

 - hal_json

 authentication:

 - basic_auth

In Postman, it is possible to issue a GET request against /node/1 having the query

parameter ?_format=hal_json (resulting in the final path /node/1?_format=hal_json).

If you issue this request without any headers, you will receive the response in Figure 10-1

with a 200 OK status code. Success!

3�Wehner, Daniel. “Accept Header Based Routing Got Replaced by a Query Parameter.” Drupal.org.
6 July 2015. Accessed 2 April 2018. https://www.drupal.org/node/2501221

Chapter 10 Core REST

https://www.drupal.org/node/2501221
https://www.drupal.org/node/2501221
https://www.drupal.org/node/2501221

147

�Creating Content with Core REST
To issue POST requests against core REST, we need the following REST resource

configuration:

granularity: resource

configuration:

 methods:

 - POST

 formats:

 - hal_json

 authentication:

 - basic_auth

Figure 10-1.  This GET request results in a 200 OK response code and a HAL-
compliant JSON payload containing a single content entity, in this case a node
with an nid of 1.

Chapter 10 Core REST

148

Prior to issuing our request, we need to craft our request body to include the specific

data structure we would like Drupal to use to create our new content entity. If you are

using HAL+JSON, this means we also need to incorporate the correct _links key in the

request payload. We can acquire those link relations easily by issuing a preliminary GET

request against the entity and reproducing the link relations contained in the response.

The request payload must never include a UUID, because the UUID is generated and

assigned by Drupal as it creates the content entity.

In Drupal, POST requests require two steps if you lack an X-CSRF-Token. First, within

Postman, issue a GET request against /rest/session/token, which will yield a unique

string of letters and numbers (e.g., Eh1INrGyEUNBog5ZL2o-dHFPnLoseIKCcL35aVSGg94).

This is your X-CSRF-Token that should accompany every request that uses an unsafe

method (see Figure 10-2).4 Copy it to your clipboard for future reference.

Figure 10-2.  In this GET request, we’ve merely requested the X-CSRF-Token that we
will need to include in any request using an unsafe method

4�“POST for Creating Content Entities.” Drupal.org. 14 March 2018. Accessed 24 April 2018. https://
www.drupal.org/docs/8/core/modules/rest/3-post-for-creating-content-entities

Chapter 10 Core REST

https://www.drupal.org/docs/8/core/modules/rest/3-post-for-creating-content-entities
https://www.drupal.org/docs/8/core/modules/rest/3-post-for-creating-content-entities
https://www.drupal.org/docs/8/core/modules/rest/3-post-for-creating-content-entities

149

To create a new article, create a POST request that contains a JSON data structure for a

new article with a test title such as My snazzy new article. Drupal needs an interpretable

data structure within the request payload that it can use to create a new article node, like

the following (see Figure 10-3).

{

 "_links": {

 "type": {

 "href": "http://core-rest.dd:8083/rest/type/node/article"

 }

 },

 "title": [

 {

 "value": "My snazzy new article"

 }

],

 "type": [

 {

 "target_id": "article"

 }

]

}

Chapter 10 Core REST

150

Because we are focused on forming requests properly and want to avoid distractions,

we do not use built-in authentication methods for now. This is extremely dangerous and

inadvisable live in production, but in a local development environment we can do this

safely.

For the purposes of this chapter, we can enable an anonymous user to create content

by navigating to People ➤ Permissions in the administration toolbar. To proceed, grant

the following permissions to the Anonymous user role on the appropriate content

types (for now, we are only working with Articles and Basic pages). These permissions

encompass Create new content (i.e., POST), Delete any content (i.e., DELETE), and Edit

any content (i.e., PATCH).

Afterward, back in Postman, we will want to incorporate the X-CSRF-Token

that we retrieved via GET earlier (X-CSRF-Token: Eh1INrGyEUNBog5ZL2o-

dHFPnLoseIKCcL35aVSGg94) as well as the correct Content-Type header (Content-Type:

application/hal+json) into the request headers, as shown in Figure 10-4.

Figure 10-3.  In this POST request, we include the data that we want Drupal to
use to populate the article during creation. Note in particular that we are also
specifying link relations and the content type in this request.

Chapter 10 Core REST

151

Next, in Postman, we can issue a POST request against /entity/node?_format=hal_

json (recall that the _format query parameter is required for every request to Drupal

irrespective of the method). Drupal responds with a 201 Created response code and

response payload containing the data structure of the just-created entity. Success again!

Figure 10-5 shows the result of the request in Postman.

Figure 10-4.  Postman allows you to specify arbitrary request headers. In this
case, we’ve included the X-CSRF-Token and Content-Type headers so that Drupal
accepts our request and also associates it with the correct serialization format.

Chapter 10 Core REST

152

Drupal’s home page, on installation, displays content ordered by descending

recency by default. If we take a moment and navigate to our home page for testing

purposes (see Figure 10-6), we see our new article is present with Anonymous as the

author. Because we only provided a title and didn’t fill in any of the other fields, the

article has a title only.

Figure 10-5.  A POST request to Drupal to create an entity yields a 201 Created
response code and the created entity in the response body

Chapter 10 Core REST

153

Note A s of Drupal 8.3.0, you can issue requests against the path /node instead
with the format query parameter appended. For all intents and purposes, that path
is identical to the resource at /entity/node in versions of Drupal 8.3.0 and later.

�Updating Content with Core REST
With our snazzy new article created and available for consumption in Drupal, we can

now turn to the question of updating that content, such as in cases when our marketing

colleagues need to adjust the title to different text. To issue successful PATCH requests

against core REST, you will need the following REST resource configuration YAML:

granularity: resource

configuration:

 methods:

 - PATCH

 formats:

 - hal_json

 authentication:

 - basic_auth

Figure 10-6.  Our Drupal home page, which is a list of content ordered by most
to least recent, shows our newly created article, but there is no body as we did not
provide one in the request

Chapter 10 Core REST

154

Before we issue our request, just as we witnessed in POST requests, we must include

the _links key to ensure our request body adheres to the HAL specification. Moreover,

because the entity has already been created, the request payload should not include a

UUID, which is an immutable value within Drupal generated on entity creation.

Whereas content creation via POST obligates us to provide the entity we wish to create

in its entirety, PATCH only asks us to describe the changes we want to see reflected in the

entity on Drupal, and this is the key difference between the two methods. This means

we have fewer data we need to transmit, and our requests can shrink in size as a result.

However, several new challenges emerge, such as the fact that a 403 Forbidden response

code will not be sent when the PATCH request is only successful for certain fields due

to favorable permissioning as others remain unchanged due to lack of permissions.

Due to this, some PATCH requests can succeed only partially and fail silently from the

consumer’s perspective.

On the other hand, certain components within a PATCH request, such as the content

type, are required and cannot be absent, even if that information never changes. This is

because the Drupal server cannot understand under which content type (also known as

a bundle in Drupal) an entity should be created when it deserializes a request body. As

a result, any required information like the content type’s machine name (e.g., article or

page) must be present in the request.

Note A s of Drupal 8.1.0, every successful PATCH request returns a 200 OK
response status code alongside a response body containing the serialized entity.
Prior to Drupal 8.1.0, such requests would yield a 204 No Content code
alongside an empty response body.5

Now that we understand the particularities of PATCH requests, we can update content

on Drupal from consumer applications. To begin, we need a request header containing

our X-CSRF-Token. For this example, we have generated a new token that is represented

in Figure 10-7 (i7GUIxfEYRR3nzcNyremz9Q73sdyTpStSoCsU7J0NQw). Armed with our new

token, we need to populate the request body with the fields we are modifying and HAL-

compliant link relations:

5�“PATCH for Updating Content Entities.” Drupal.org. 9 November 2016. Accessed 24 April 2018.
https://www.drupal.org/docs/8/core/modules/rest/4-patch-for-updating-content-
entities

Chapter 10 Core REST

https://www.drupal.org/docs/8/core/modules/rest/4-patch-for-updating-content-entities
https://www.drupal.org/docs/8/core/modules/rest/4-patch-for-updating-content-entities
https://www.drupal.org/docs/8/core/modules/rest/4-patch-for-updating-content-entities

155

{

 "_links": {

 "type": {

 "href": "http://core-rest.dd:8083/rest/type/node/article"

 }

 },

 "title": [

 {

 "value": "My snazzy and snappy new article"

 }

],

 "type": [

 {

 "target_id": "article"

 }

]

}

Figure 10-7.  Our PATCH request with X-CSRF-Token and Content-Type
headers

In this example, because we are modifying only the title field (we are adding only the

words “and snappy” to the title), there are no other fields of which Drupal needs to be

aware. Like POST requests, in this example we also see represented the target_id field

indicating the content type Drupal should use when deserializing this data structure

appropriately.

Chapter 10 Core REST

156

Because we are not creating a new entity, we point the request to the resource we

created in the previous section rather than a generic catchall resource. To match the

request to the resource we wish to modify, we need to provide the identifier of the node

(the nid) and target our request toward that URI. In our case, as we already used Devel

Generate to randomly create 20 nodes, that URI is /node/21?_format=hal_json, as the

article we created in the last section was assigned an nid of 21.

First, we populate the appropriate request headers, including the X-CSRF-Token and

Content-Type headers.

In the request body, we provide the changes we desire to see on the server,

highlighted in Figure 10-8.

Figure 10-8.  Our simple PATCH request includes HAL-compliant link relations,
the fields we wish to update (in this case only the title), and the content type of the
Drupal entity

Figure 10-9 depicts the response, consisting of a 200 OK response and a response

body that includes the updated entity, which indicates a successful PATCH.

Chapter 10 Core REST

157

On refreshing the Drupal home page, we see before our own eyes in Figure 10-10 that

the article we created in the previous section has now been updated with our new title.

Pretty snappy!

Figure 10-9.  In response, Drupal returns a 200 OK response code and a response
body that contains the updated entity

Figure 10-10.  The Drupal home page shows that our article is updated to reflect
the new title

Chapter 10 Core REST

158

�Deleting Content with Core REST
Unfortunately, our customer has returned to us stating that they aren’t fans of the new

article and we need to delete the article so it will not appear in the consumer application.

This situation calls for a DELETE request, which will remove the article from Drupal. To

issue successful DELETE requests against core REST, we need the following REST resource

configuration YAML:

granularity: resource

configuration:

 methods:

 - DELETE

 formats:

 - hal_json

 authentication:

 - basic_auth

With the exception of GET requests, among all methods, DELETE requests might be

the easiest to compose from the consumer application’s standpoint. Most of the required

elements of other methods are unnecessary here, as we solely need to provide a clear

indication of which entity to delete rather than any information within it. Moreover,

because our request body is empty, no data are transmitted and as such no Multipurpose

Internet Mail Extensions (MIME) type designated by a Content-Type request header is

required either.6

Simply point your request at the resource in question and append the format query

parameter—forming /node/21?_format=hal_json—along with the X-CSRF-Token

header, as seen in Figure 10-11.

6�“DELETE for Deleting Content Entities.” Drupal.org. 11 July 2017. Accessed 24 April 2018.
https://www.drupal.org/docs/8/core/modules/rest/5-delete-for-deleting-content-
entities

Chapter 10 Core REST

https://www.drupal.org/docs/8/core/modules/rest/5-delete-for-deleting-content-entities
https://www.drupal.org/docs/8/core/modules/rest/5-delete-for-deleting-content-entities
https://www.drupal.org/docs/8/core/modules/rest/5-delete-for-deleting-content-entities

159

Drupal responds with an empty response body and the 204 No Content response

code, as shown in Figure 10-12, confirming that the entity is now deleted.

Figure 10-11.  There is no need to designate a MIME type for our request body in a
DELETE request, as it remains empty

Figure 10-12.  Drupal responds with 204 No Content and an empty response
body. Our entity has disappeared!.

Sure enough, our Drupal home page again, when refreshed, shows only the

generated content, and the entity has now disappeared, as illustrated in Figure 10-13.

Success!

Chapter 10 Core REST

160

�Conclusion
In this chapter, I introduced you to the key approaches in retrieving and manipulating

content entities in Drupal through the core REST API. This encompasses simple use

cases like getting and deleting content in Drupal or more complex situations involving

creating and modifying content.

As you can see, working with the core REST API is straightforward as long as the

correct permissions and REST resources are configured. Although these examples

were trivial to demonstrate a consistent process to API testing that we reuse later, the

immediacy and directness of the core REST API are part of what make it so appealing.

Figure 10-13.  The DELETE request has led to our entity’s removal from the Drupal
home page

Chapter 10 Core REST

161
© Preston So 2018
P. So, Decoupled Drupal in Practice, https://doi.org/10.1007/978-1-4842-4072-4_11

CHAPTER 11

Using Views with Core
REST
Sometimes, the core REST API isn’t adequate for your needs, whether due to the

fact that it is ill-equipped to issue collections of resources or because you cannot get

out of Drupal the information that you require in your consumer. Many of the same

motivations that lead decision makers to choose Drupal as a CMS—namely the Views

module and its flexible query building—transfer to decoupled Drupal implementations

as well. Fortunately, Views contains a REST export display type that can be employed to

provide custom-designed, read-only APIs.

�Using Views for Content Listings
For those less familiar with Drupal as a monolithic CMS, Views is a query builder and

tool that facilitates the creation of arbitrary listings of entities in Drupal 8 Core. Many of

Drupal’s administrative user interfaces, in fact, are themselves Views and customizable,

such as the home page that we saw in earlier chapters while manipulating our new

article. You can use Views to create lists of content in various displays (including page

and block) and in various formats (including table and unformatted list).

Many developers and site builders find Views useful to create listings of content such

as a table of logged-in users, a teaser list of recent articles, or an alphabetically sorted

list of taxonomy terms. In the decoupled Drupal context, this information is highly

useful and valuable for consumer applications as well. Instead of using the page or block

display, though, which limits the use of these content listings to the native Drupal front

end, you can use the REST export display type to easily create read-only APIs based on

Views output.

162

�Creating Views for REST Export Displays
Because Views is packaged with Drupal 8 Core, you shouldn’t have to enable the relevant

modules, but just in case, you should verify that Views and Views UI, the module that

provides a user interface for Views, are both installed and enabled. Using REST exports

in Views also requires the RESTful Web Services and Serialization modules to be

enabled.

We can then navigate to Structure ➤ Views ➤ Add new view to create a new View

(/admin/structure/views/add). You can also repurpose one of the existing Views

that comprise certain listings on the Drupal administrative interface by creating an

additional REST export display, but for this example we take a View from start to finish

by building a View of articles alphabetized by their titles. On the Add view page, shown

in Figure 11-1, you’ll need to set a name and View settings, which include configuration

of content types and sort criteria.

Figure 11-1.  The Add view page allows you to create Views, which are content
listings that can be exposed not only as pages and page blocks, but also as REST
exports

Then, we need to create a REST export and provide some initial settings, most

importantly a path where this Views display can be accessed. Many API designers prefer

to version their APIs by prefixing their resource paths with /api/v1, which indicates the

Chapter 11 Using Views with Core REST

163

first version of an API. This allows for architects to release new versions of APIs, such

that new consumers can depend on the improved version while leaving consumers still

relying on the prior version unaffected. Because we anticipate this scenario, we’ll use

api/v1/articles, as shown in Figure 11-2.

Figure 11-2.  You can set an arbitrary path at which your Views-created REST API
will be available when exposing a new View as a REST export. This can aid with a
rudimentary versioning system for consumer applications.

Clicking Save and edit brings us to the Views configuration interface, which allows us

to set various conditions on our REST export display and offers us a live preview of our

API resource as well (see Figure 11-3).

Chapter 11 Using Views with Core REST

164

You can use the Add filter criteria modal (see Figure 11-4), for instance, to facilitate

the sorting of articles by their number of comments, by updated date, by author name,

by published status, or by any of a variety of criteria.

Figure 11-3.  The live preview of the Views REST export shows how our REST
resource will look as a payload exposed to consumer applications

Figure 11-4.  In Views, we can add filter criteria that determine how content items
should be sorted based on fields contained therein

Chapter 11 Using Views with Core REST

165

Let’s examine a real use case for adding a new filter criterion to our Views

configuration. Although our web site contains articles that might or might not have

articles, our consumer application is designed for a client that requires an image to be

present on every content item issued. This means that our API must take into account

only articles that have images. Fortunately, our Devel Generate command (see Chapter 7)

created some articles with and without images.

Because every image that was generated also has a title, we’ll add a filter criterion

that ensures that the image’s title is not empty, as seen in Figure 11-5.

Figure 11-5.  In this filter criterion, we are designating only content items that
have images to be included in the REST export display

Our Views configuration now looks like Figure 11-6, with our filter criteria stating

that we only want published articles that contain images with some sort of title filled in.

Chapter 11 Using Views with Core REST

166

If we inspect the live Views preview underneath the interface, we can indeed see that

only articles with images have been included in the payload.

...

"field_image":

 [

 {

 "target_id":1

 "alt":�"Abbas distineo neo. Importunus luctus nutus turpis ullamcorper

ymo.",

 "title":�"Abbas magna utrum. Distineo gemino interdico lobortis natu

nibh nimis similis typicus.",

 "width":481,

 "height":563,

 "target_type":"file",

 "target_uuid":"376df8ce-f1f3-474c-94ae-7f4816be67c6",

Figure 11-6.  The Views configuration page, with our filter criteria added

Chapter 11 Using Views with Core REST

167

 "url": �"http:\/\/core-rest.dd:8083\/sites\/core-rest.dd\/

files\/2018-03\/generateImage_dZ02Dw.png"

 }

]

...

Now, we can consume this content normally as an API resource, but not through the

typical means in the core REST API; our API, on saving the View, will be available at the

path that we defined during the initial Views creation process.

Instead of alphabetizing by article title, the client has requested that we alphabetize

by the image title instead. We can apply a new sort criterion based on the image

title in ascending order and remove the existing title sort criterion. This leads to the

configuration in Figure 11-7.

Figure 11-7.  In this example Views configuration, we have limited the View to
display only published articles with images, based on the ascending order of the
image title within the article

When we inspect the live preview underneath our configuration, we can see that

after the preceding entity, which contains an image whose title begins with “Abbas,” a

new entity has taken the place of the second content entity. In our generated content,

the second presented entity has the title “Laoreet Refero,” but the referenced image has a

title of “Accumsan augue ….”

Chapter 11 Using Views with Core REST

168

...

"field_image": [

 {

 "target_id": 7,

 "alt": "Abico nimis nunc pecus persto suscipere utinam.",

 "title": �"Accumsan augue caecus dolus luctus mauris plaga suscipere

valde venio.",

 "width": 317,

 "height": 128,

 "target_type": "file",

 "target_uuid": "63bafb27-944a-4484-a991-f8601b1517c8",

 "url": �"http:\/\/core-rest.dd:8083\/sites\/core-rest.dd\/

files\/2018-03\/generateImage_xC0P2i.gif"

 }

]

...

This example is fairly contrived to give you familiarity with the Views configuration

interface, particularly developers who might be using Drupal solely as a content back

end and don’t yet have the exposure to Drupal. Our content will rarely be this easily

handled, though, and often we have unique demands of our content model that force us

to use custom content types.

Although much of the power of Views is beyond the scope of this overview, simple

APIs providing Views resources can be valuable for consumer applications that only

require read-only access to content. Before testing our Views REST export with Postman,

however, we dig a bit deeper through a custom content type.

�Custom Content Types with Views REST Exports
Much of Drupal’s powerful tooling for content models revolves around the ability to

create new custom content types and to designate particular fields for them. This is

available out of the box in Drupal and means that, unlike WordPress, which requires

custom plug-ins to enable this feature, an arbitrary content model and corresponding

schema can be constructed with content types such as Product, FAQ, Train Model,

Portfolio Item, and others, depending on the unique requirements of your content.

These types can then be customized with fields according to a variety of field types.

Chapter 11 Using Views with Core REST

169

In this example, our Basic page and Article types no longer suffice for our content

model’s needs. Now that our client has decided that they will build a travel site

cataloguing airports around the world, we need to create an API that provides a list of

airports, which can be sorted via IATA code or via the location of the airport.

We need to create a new Airport content type that contains the following fields:

•	 Airport (content entity)

•	 Name (field)

•	 IATA code (field)

•	 Location (field)

Navigate to Manage ➤ Structure ➤ Content types (/admin/structure/types/add)

to add a new content type. In Figure 11-8, we’ve provided the content type with a name

(“Airport”), given it a description that will be used as help text on the Add content page,

and changed the default title field label to “Name” to better reflect the specifics of our

content type.

Figure 11-8.  One of the most powerful features of Drupal is the ability to create
custom content types that have arbitrary fields. In this screenshot, we are creating a
new Airport content type.

Chapter 11 Using Views with Core REST

170

The next page, displayed in Figure 11-9, gives us the ability to add fields to and

remove fields from the content type. We don’t need the Body field, so we can remove that

to focus on just the IATA code field and the Location field.

Figure 11-9.  You can add fields of various types to custom content types (or reuse
fields present in other content types) and provide them with unique labels and
machine names

After using the plain text formatter for both of these fields, ultimately, we see that

our Airport content type consists of two additional fields besides the title: IATA code and

Location (see Figure 11-10).

Chapter 11 Using Views with Core REST

171

Now, we can create some content. Add ten content entities of type Airport with

the information filled in. Once that is complete, we can create our View and the

corresponding REST export. Navigate to Manage ➤ Structure ➤ Views (/admin/

structure/views) and click Add view (/admin/structure/views/add). Give the View a

name (e.g., “Airports”), and ensure that the Views settings are set to show content of type

Airport sorted by Title. Next, we ensure that a REST export is present that will give us the

ability to target the API in our consumer application at the path api/v1/airports.

As you might have noticed, our Views configuration does not allow us to delineate

which fields we want to include or how to include them. This is because we are using

the default Entity formatter to display entities rather than relying on Field formatters.

However, we can customize our Views REST export to display individual fields instead of

the entire entity in Drupal’s entity structure (see Figure 11-11).

Figure 11-10.  Our completed Airport content type, with IATA code and Location
fields

Chapter 11 Using Views with Core REST

172

Instead, we can change the formatter to show individual fields, which gives us

much more flexibility. If we choose, we can ask Views to only provide a REST export that

contains an individual field, such as the IATA code and the location, but without any of

the others, such as the title. This is particularly useful if you have content that contains

fields that you wish to expose in the editorial back end or in your Drupal site but not on

your consumer front end.

For our purposes, we’ll only export the IATA code and the Location fields, leaving the

Title field hidden and only visible when browsing content on the Drupal site. Our new

Views configuration shows the IATA code and Location fields but not the Title field—

even though the airports are still sorted by their names, as we see in the sort criteria in

Figure 11-12.

Figure 11-11.  By default, Views formats REST exports to display all fields using
the default entity data structure, as seen in the value Entity in the Show field

Chapter 11 Using Views with Core REST

173

Now we have a lightweight API resource that is only providing individual field data,

and the live preview in Figure 11-13 shows that our limiting the exported data solely to

IATA code and location has significantly reduced the payload size.

Figure 11-12.  Instead, by setting the REST export to display individual “Fields”
instead, we can designate which fields we want to display, instead of all node
information generally

Chapter 11 Using Views with Core REST

174

Here is how the payload in Figure 11-13 looks when prettified:

[

 {

 "field_iata_code": "AMS",

 "field_location": "Amsterdam, Netherlands"

 },

 {

 "field_iata_code": "IST",

 "field_location": "Istanbul, Turkey"

 },

 {

 "field_iata_code": "DEN",

 "field_location": "Denver, CO"

 },

 {

 "field_iata_code": "GRU",

 "field_location": "S\u00e3o Paulo, Brazil"

 },

Figure 11-13.  Limiting the display to particular fields can improve the experience
of developers building consumer applications with payloads that are less complex
and easier to traverse

Chapter 11 Using Views with Core REST

175

 {

 "field_iata_code": "ATL",

 "field_location": "Atlanta, GA"

 },

 {

 "field_iata_code": "JFK",

 "field_location": "New York, NY"

 },

 {

 "field_iata_code": "LAX",

 "field_location": "Los Angeles, CA"

 },

 {

 "field_iata_code": "ORD",

 "field_location": "Chicago, IL"

 },

 {

 "field_iata_code": "JNB",

 "field_location": "Johannesburg, South Africa"

 },

 {

 "field_iata_code": "BKK",

 "field_location": "Bangkok, Thailand"

 }

]

There is one issue that gives us pause, though. Drupal indicates every custom

field that is not part of its standard core data model with the field_ prefix. All else

unchanged, this means that every developer who consumes this API must be aware and

write their applications according to the nomenclature provided by Drupal. Fortunately,

Drupal also allows us to provide aliases for these custom field names, allowing us to give

our fields names that are much easier to remember. Clicking Settings next to the Fields

formatter allows us to alias our fields, as you can see in Figure 11-14.

Chapter 11 Using Views with Core REST

176

Now our exported data looks even better for consumers that need particular field

labeling and also small payload sizes.

[

 {

 "iata": "AMS",

 "location": "Amsterdam, Netherlands"

 },

 {

 "iata": "IST",

 "location": "Istanbul, Turkey"

 },

 {

 "iata": "DEN",

 "location": "Denver, CO"

 },

Figure 11-14.  Thanks to Views, we can set aliases on field names that can make
the consumer application developer experience better still

Chapter 11 Using Views with Core REST

177

 {

 "iata": "GRU",

 "location": "S\u00e3o Paulo, Brazil"

 },

 {

 "iata": "ATL",

 "location": "Atlanta, GA"

 },

 {

 "iata": "JFK",

 "location": "New York, NY"

 },

 {

 "iata": "LAX",

 "location": "Los Angeles, CA"

 },

 {

 "iata": "ORD",

 "location": "Chicago, IL"

 },

 {

 "iata": "JNB",

 "location": "Johannesburg, South Africa"

 },

 {

 "iata": "BKK",

 "location": "Bangkok, Thailand"

 }

]

Note T his section was partially inspired by Kevin Blanco’s excellent tutorial
“Build a Quick RESTful View in Drupal 8,” which can be found at https://
medium.com/kevinblanco-io/build-a-quick-restful-view-in-
drupal-8-56203ea63b88.

Chapter 11 Using Views with Core REST

https://medium.com/kevinblanco-io/build-a-quick-restful-view-in-drupal-8-56203ea63b88
https://medium.com/kevinblanco-io/build-a-quick-restful-view-in-drupal-8-56203ea63b88
https://medium.com/kevinblanco-io/build-a-quick-restful-view-in-drupal-8-56203ea63b88

178

As a final step, we can also make our REST export available in serialization formats

other than JSON if we have defined them. For instance, we can include the ability to

request the data via XML or via CSV, assuming that we have a serializer for CSV in place.

In Figure 11-15, we have enabled all three available formats (hal_json, json, and xml),

although leaving all boxes unchecked will also make all three available.

�Retrieving Views REST Exports with Core REST
Over the course of the last several sections, we have used core REST modules like

Serialization and Views REST exports to provide us with two API resources, located at

/api/v1/articles and /api/v1/airports. Now, we can retrieve both of our Views REST

exports by using Postman as we saw previously to issue GET requests against Drupal.

One important note about Views REST exports is that their permissions are defined

distinctly from typical REST resources such as the individual entities we have been

working with previously. Views REST exports do not make use of REST resource plug-ins,

which means that the permissions defined by REST do not apply to Views.1

1�“GET on Views-Generated Lists.” Drupal.org. 12 February 2018. Accessed 26 April 2018. https://
www.drupal.org/docs/8/core/modules/rest/get-on-views-generated-lists

Figure 11-15.  With style options, we can allow consumers to retrieve data in
HAL+JSON, JSON, XML, or any other serialization format we have defined

Chapter 11 Using Views with Core REST

https://www.drupal.org/docs/8/core/modules/rest/get-on-views-generated-lists
https://www.drupal.org/docs/8/core/modules/rest/get-on-views-generated-lists
https://www.drupal.org/docs/8/core/modules/rest/get-on-views-generated-lists

179

When we issue a GET request against /api/v1/articles?_format=hal_json, even

without any headers (an X-CSRF-Token is unnecessary here as GET is a safe method),

Drupal responds with HAL-compliant article entities, just as we expected. Using the

value json gives us a pure representation of the entities in question, as does xml, which

can be seen in Figure 11-16.

Figure 11-16.  With our Views REST export configured to serve XML responses
when requested, we can successfully retrieve our View in XML format

When we issue a GET request against /api/v1/airports?_format=json, we receive

in response the data that we just previewed during our configuration of Views REST

exports, displayed in Figure 11-17. Not too shabby!

Chapter 11 Using Views with Core REST

180

�Conclusion
Although core REST provides the ability out of the box to query individual entities

and to manipulate them, sometimes that is insufficient for the use cases that we are

presented with as architects and developers. It often makes sense to manipulate entities

individually given the impact of unsafe HTTP methods, but when it comes to read-only

operations, individual entities are simply inadequate.

Thanks to Views REST exports, provisioning APIs that expose collections of content

can be a painless and quick process. For many lightweight applications that only need

to retrieve content, Views can be a powerful alternative to core REST modules. However,

Views was originally built to provide content listings for the Drupal front end, which

means there are limitations to what it can accomplish.

Figure 11-17.  Earlier actions such as adding aliases for field names and limiting
the amount of information displayed by designating fields have led to a simplified
JSON payload

Chapter 11 Using Views with Core REST

181

In addition, there are often situations where you need a more robust API

specification that others have worked with before or where you cannot provision two

separate API endpoints for the purposes of complex operations you wish to perform

against the exposed data. Drupal has a solution to this problem: JSON API, which we

discuss at length in coming chapters.

Chapter 11 Using Views with Core REST

183
© Preston So 2018
P. So, Decoupled Drupal in Practice, https://doi.org/10.1007/978-1-4842-4072-4_12

CHAPTER 12

JSON API in Drupal
As we witnessed in Chapter 8, JSON API is a powerful alternative to core REST because

it is a widely understood specification, it benefits from robust means of specifying

relationships and query operations, and it is one of the most stable of the contributed

web services solutions available to Drupal. Although JSON API is slated for inclusion in

core as a stable module in Drupal 8.7.0, it might be less of interest to architects focused

first and foremost on stability.

The Drupal implementation of JSON API differs significantly from core REST in

several key ways. First, the _format query parameter that decorates each of our requests

against core REST is unnecessary in JSON API, as the serialization format is assumed to

be JSON exclusively. Second, the formation of resource URIs differs from core REST and

noticeably so from typical routes used to access content on a Drupal site.

In this chapter, we review these differences as well as procedures to issue successful

requests against JSON API in Drupal to create, read, update, and delete content.

Note  For file upload functionality, refer to the JSON API File module, a contributed
solution that is beyond the scope of this volume. The JSON API File module is
available on Drupal.org at https://www.drupal.org/project/jsonapi_
file. Documentation is available on Drupal.org at https://www.drupal.org/
docs/8/modules/json-api/working-with-files-post.

https://www.drupal.org/project/jsonapi_file
https://www.drupal.org/project/jsonapi_file
https://www.drupal.org/docs/8/modules/json-api/working-with-files-post
https://www.drupal.org/docs/8/modules/json-api/working-with-files-post

184

�Retrieving Resources with JSON API
The JSON API specification recommends that every request include an Accept header

containing the correct MIME type for JSON API, but the JSON API module accepts

requests without any request headers present.1

Accept: application/vnd.api+json

�Retrieving Single Resources
Retrieving a single resource requires its identifier, with the caveat that unlike core REST,

the identifier is not an nid as we saw in core REST, but rather a UUID. To retrieve a single

article, all we need to do is issue a GET request against the following URI, supplying the

UUID in lieu of {{node_uuid}}.

/jsonapi/node/article/{{node_uuid}}

Also, the bundle referred to in the path (i.e., article) must reflect the same bundle

(content type) as the entity in question, as otherwise an error will be thrown. When you

issue the request, the ensuing response will include a response code of 200 OK, and the

response body will contain the JSON API object of the node you requested, including

attributes (i.e., fields), any available relationships, and link relations.2

Note  To retrieve a particular node’s UUID, you can use debugging tools available
such as the Devel module, which we installed in Chapter 7 to provide automatic
content generation. Navigate to the node you need to identify in Drupal, toggle from
the View to the Devel tab, and the UUID is available under the Variable section, as
seen in Figure 12-1. Alternatively, you can enable the core REST modules from
Chapters 7 and 10 and issue a GET request against the entity, and the resulting
response will include the UUID.

1�“Fetching Resources (GET).” Drupal.org. 3 April 2018. Accessed 10 May 2018. https://www.
drupal.org/docs/8/modules/json-api/fetching-resources-get

2�“Pagination.” Drupal.org. 29 May 2018. Accessed 26 August 2018. https://www.drupal.org/
docs/8/modules/json-api/pagination

Chapter 12 JSON API in Drupal

https://www.drupal.org/docs/8/modules/json-api/fetching-resources-get
https://www.drupal.org/docs/8/modules/json-api/fetching-resources-get
https://www.drupal.org/docs/8/modules/json-api/pagination
https://www.drupal.org/docs/8/modules/json-api/pagination

185

�Retrieving Resource Collections
Among the most important motivations for employing JSON API in lieu of core REST is

the capability of retrieving multiple resources in a single request via JSON API collections.

In Drupal 8 Core, although we can retrieve individual entities using core REST, Views

REST exports (see Chapter 11) are the only means by which we can retrieve entity

collections out of the box. In JSON API, we simply need to remove the UUID in our GET

request. After issuing this request, JSON API responds with a collection of article nodes.

/jsonapi/node/article

In the resulting response, we find a 200 OK response code and a data object

containing a maximum of 50 articles, accompanied by a link to the following page of

available articles in the collection.

�Paginating Resource Collections

One best practice when paginating resource collections is to use JSON API’s built-in

pagination links rather than generating bespoke pagination URLs. Every collection

retrieved from JSON API includes the following information under the links key,

captured in Table 12-1.

Figure 12-1.  With the help of the Devel module, you can introspect any entity and
ascertain its UUID for use in retrieving single entities

Chapter 12 JSON API in Drupal

186

Note  If you encounter a situation in which there is a page limit that is greater
than the number of resources appearing in the response (e.g., page limit offour, but
only three resources appear), and there is also a next link available, this means
that one of the entities in the collection is not represented for security reasons.

In addition to the pagination links, the JSON API specification also facilitates

certain query parameters that operate on collections we retrieve through the API. As an

example, a request to the following path specifies a limit of 25 articles, and the response

will contain a link to the next page of articles in the collection.

/jsonapi/node/article?page[limit]=25

We can use page[offset] to retrieve the second page of 25 articles so that only

articles 26 through 50 are present in the response from the server.

/jsonapi/node/article?page[limit]=25&page[offset]=25

Note  Due to the need to avoid DDoS and similar attacks that would damage
performance on the Drupal back end, the JSON API module enforces an upper
page limit of 50 to avoid performing access checks on too many resources. This
is also the motivation for the inability to retrieve a total page count. For more
information about JSON API pagination in Drupal, see https://www.drupal.
org/docs/8/modules/json-api/pagination.

Table 12-1.  JSON API Pagination Links and Definitions

Key Page Indication Current Page Status

self Current page If neither prev nor next exists, there is only one page.

next Next page If next exists, there are more pages. If next does not exist, this is the

last page.

prev Previous page If prev exists, the current page is not the first page.

Chapter 12 JSON API in Drupal

https://www.drupal.org/docs/8/modules/json-api/pagination
https://www.drupal.org/docs/8/modules/json-api/pagination

187

�Sorting Resource Collections

We can also perform sort operations on the fly within our requests by making use of the

sort query parameter, which recognizes attributes as the value by which to sort results.

In the following examples, we sort the collection in the response by the title field and

nid identifier.

/jsonapi/node/article?sort[sort-title][path]=title

/jsonapi/node/article?sort[sort-nid][path]=nid

There is also a shorthand for these sorts.

/jsonapi/node/article?sort=title

/jsonapi/node/article?sort=nid

We can reverse the order by providing another parameter.

/jsonapi/node/article

?sort[sort-title][path]=title

&sort[sort-title][direction]=DESC

/jsonapi/node/article

?sort[sort-nid][path]=nid

&sort[sort-nid][direction]=DESC

There is also a shorthand that can be leveraged by prefixing the value with a hyphen,

which indicates that an ascending order should be reversed and be descending instead.

/jsonapi/node/article?sort=-title

/jsonapi/node/article?sort=-nid

Where there are attributes available within a field that we are using to sort our

collection, we can refer to those by adding a period (.) to access the attributes that

are one level down. In the following example, we are sorting the collection by the

article author’s name, and sort-author is the arbitrary name we have given our sort to

disambiguate from other sorts.

/jsonapi/node/article?sort[sort-author][path]=uid.name

The shorthand for this path is as follows.

/jsonapi/node/article?sort=uid.name

Chapter 12 JSON API in Drupal

188

It is also possible to sort by multiple fields, which are considered in the order in

which they are expressed.

/jsonapi/node/article

?sort[sort-title][path]=title

&sort[sort-title][direction]=DESC

&sort[sort-author][path]=uid.name

In the shorthand form, you can reverse the order in the same way as we have seen

previously.3

/jsonapi/node/article?sort=-title,uid.name

�Filtering Resource Collections

When we issue a GET request against a resource collection such as /jsonapi/node/

article, we retrieve every resource that we have the permissions to retrieve. Often,

however, consumer applications need filtered responses that adhere to a certain set of

characteristics, such as all articles written by a particular author or all articles past a

certain date.

In Drupal’s JSON API implementation, we can use filters to designate which

resources should be part of a response. The simplest method of using a filter is by

selecting particular resources based on the values of fields, taking the following format

in the path, where {field_name} and {other_field_name} are fields available for use in

filtering, and {value} represents values based on which to filter.

/jsonapi/node/article

?filter[{field_name}]={value}

&filter[{other_field_name}]={value}

Unlike Views REST exports (see Chapter 11), which rely on a user interface for

exposing customized resources, the filtering system Drupal’s JSON API implementation

makes available consists of two fundamental ideas: conditions and groups. In JSON API,

conditions represent expressions that are asserted to be true. A condition indicates that

something about a resource is true or false, such as: “Was this article created this week?”

When the condition returns FALSE for a resource, JSON API excludes it from the collection.

3�“Collections and Sorting.” Drupal.org. 22 March 2018. Accessed 26 August 2018. https://www.
drupal.org/docs/8/modules/json-api/collections-and-sorting

Chapter 12 JSON API in Drupal

https://www.drupal.org/docs/8/modules/json-api/collections-and-sorting
https://www.drupal.org/docs/8/modules/json-api/collections-and-sorting

189

Meanwhile, groups are logical sets composed of the assertions in conditions that

facilitate larger condition groups. These condition groups can be nested to craft fine-

grained queries with a great deal of granularity. For instance, consider the following

example, which illustrates the tree relationships established when we nest condition

groups. We can easily express a hierarchy of conditions this way.

v(w() && x(y() || z()))

In this example, conditions y() and z() are members of group x() in an OR

relationship. Conditions w() and x() are members of group v() in an AND relationship.

Figure 12-2 illustrates this condition group as a tree.

Conditions have three components: a path, an operator, and a value. Paths identify

specific fields on a particular resource. Operators are methods of comparison to verify that

a condition is satisfied. Values are what we need to compare the resource against. Due to

the limitations of URL query strings, we represent every condition as a key/value pair.4

Consider the following filter, which we have given a random identifier. This filter

finds all resources that satisfy the condition that the user’s first name is “Gábor” and

nothing else. Note in this example that special characters like = (%3D) and á (%E1) are

required due to their use in URL query strings.

4�“Filtering.” Drupal.org. 4 May 2018. Accessed 26 August 2018. https://www.drupal.org/docs/8/
modules/json-api/filtering

Figure 12-2.  Example condition groups are represented in a hierarchical tree

Chapter 12 JSON API in Drupal

https://www.drupal.org/docs/8/modules/json-api/filtering
https://www.drupal.org/docs/8/modules/json-api/filtering

190

/jsonapi/user/user

?filter[my-custom-filter][condition][path]=field_first_name

&filter[my-custom-filter][condition][operator]=%3D

&filter[my-custom-filter][condition][value]=G%E1bor

Every condition or group must have an identifier, which we can arbitrarily define,

so that JSON API successfully disambiguates it from other conditions and groups.

For example, consider that we might wish to also filter by last name such that we only

retrieve resources whose last name starts with the letter H. To do this, we need to

differentiate our conditions.

/jsonapi/user/user

?filter[first-name-filter][condition][path]=field_first_name

&filter[first-name-filter][condition][operator]=%3D

&filter[first-name-filter][condition][value]=G%E1bor

&filter[last-name-filter][condition][path]=field_last_name

&filter[last-name-filter][condition][operator]=STARTS_WITH

&filter[last-name-filter][condition][value]=H

Table 12-2 lists all of the filter operators available in Drupal’s JSON API

implementation and their definitions.

Table 12-2.  JSON API Filter Operators and Definitions

Operator Definition

= Equals

<> Not equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

STARTS_WITH Starts with the provided value

CONTAINS Contains the provided value

ENDS_WITH Ends with the provided value

(continued)

Chapter 12 JSON API in Drupal

191

�Filtering Resource Collections with Condition Groups

We have now applied two conditions to our query, but we have not yet grouped them

together to reflect Figure 12-2. To construct a condition group, we need to create a

conjunction between conditions using either AND or OR. Now we can check to see if the

user’s first name in the resource collection is “Gábor” or “Gabe.”

To create a condition group, we define a condition group name and assign our

desired filters to that group using the memberOf key and the condition group name.

Groups can also have their own memberOf keys, which means we can nest condition

groups within one another. Consider the following example, which constructs a

condition group selecting users having the first names Gábor or Gabe and employs an

additional filter selecting last names beginning with H.

/jsonapi/user/user

?filter[g-condition-group][group][conjunction]=OR

&filter[gabor-filter][condition][path]=field_first_name

&filter[gabor-filter][condition][operator]=%3D

&filter[gabor-filter][condition][value]=G%E1bor

&filter[gabor-filter][condition][memberOf]=g-condition-group

&filter[gabe-filter][condition][path]=field_last_name

&filter[gabe-filter][condition][operator]=%3D

&filter[gabe-filter][condition][value]=Gabe

&filter[gabe-filter][condition][memberOf]=g-condition-group

Operator Definition

IN Checks that the provided value is present in an array

NOT_IN Checks that the provided value is absent from an array

BETWEEN Checks that the provided value is within a range

NOT_BETWEEN Checks that the provided value is outside of a range

IS_NULL Is null (no value required)

IS_NOT_NULL Is not null (no value required)

Table 12-2.  (continued)

Chapter 12 JSON API in Drupal

192

&filter[last-name-filter][condition][path]=field_last_name

&filter[last-name-filter][condition][operator]=STARTS_WITH

&filter[last-name-filter][condition][value]=H

Figure 12-3 depicts these conditions in a hierarchical tree.

Conditions also include another powerful feature captured in paths, much like we

saw at the end of the section concerning sorting operations. Paths provide a means for

us to filter based on the values present in related entities and use dot (.) notation to

traverse those relationships. Consider the following example, which filters articles based

on the beginning of the author’s name.

/jsonapi/node/article

?filter[author_name][condition][path]=uid.name

&filter[author_name][condition][operator]=STARTS_WITH

&filter[author_name][condition][value]=Angie

Note  If there are multiple related entities, as in the case of a field with multiple
values, you can also use positive integers to indicate which related entity you wish
to target. For instance, the path related_entity.1.field would filter based
on the second related resource.

Figure 12-3.  JSON API condition groups can be arbitrarily nested

Chapter 12 JSON API in Drupal

193

If the verbosity of some of these filters is worrying, it will come as a comfort that

JSON API provides certain shorthands that make writing filters more efficient. For

instance, the following filter can be reduced to the filter immediately following, because

the equals (=) is assumed when another operator is not provided.

/jsonapi/user/user

?filter[first-name-filter][condition][path]=field_first_name

&filter[first-name-filter][condition][operator]=%3D

&filter[first-name-filter][condition][value]=G%E1bor

/jsonapi/user/user

?filter[first-name-filter][condition][path]=field_first_name

&filter[first-name-filter][condition][value]=G%E1bor

If you do not need to filter by the same field multiple times, we can use the path as

the identifier for the filter. In the following filters, we have reduced URL verbosity by

replacing a custom filter name with the field name itself.

/jsonapi/user/user

?filter[first-name-filter][condition][path]=field_first_name

&filter[first-name-filter][condition][value]=G%E1bor

/jsonapi/user/user

?filter[field_first_name][value]=G%E1bor

Finally, we can exclude value altogether in this scenario.

/jsonapi/user/user

?filter[field_first_name]=G%E1bor

Note  Filters on Drupal’s JSON API implementation should not be confused with
Drupal’s access control, governed by user roles and permissions. A best practice is
to always verify access on the back end rather than on queries from the consumer
and to filter inaccessible resources out of the response ahead of time. Most
important, JSON API will not return resources if the user issuing the request lacks
access to that resource.

Chapter 12 JSON API in Drupal

194

�Examples of Common Filtering Scenarios

In this section, we identify some common scenarios and provide filters for each.

Consider the following example, which fetches only those articles that are published.

The shorthand version follows the longhand version in each of the following examples.

/jsonapi/node/article

?filter[status-filter][condition][path]=status

&filter[status-filter][condition][value]=1

/jsonapi/node/article

?filter[status][value]=1

We can also filter based on whether a referenced entity is present or not by targeting

the referenced entity UUID. In this case, we are targeting a particular user’s articles.

/jsonapi/node/article

?filter[author-filter][condition][path]=uid.uuid

&filter[author-filter][condition][value]=360427cb-96be-459f-a0d9-

8fe9bc5164a4

/jsonapi/node/article

?filter[uid.uuid][value]=360427cb-96be-459f-a0d9-8fe9bc5164a4

We might also wish to filter an article collection based on whether the user is one

of several in a list of users. To do this, we use the IN filter operator and a special array

notation to determine whether an article has been written by admin or average_joe.

/jsonapi/node/article

?filter[name-filter][condition][path]=uid.name

&filter[name-filter][condition][operator]=IN

&filter[name-filter][condition][value][]=admin

&filter[name-filter][condition][value][]=average_joe

Note  For other examples that increase in complexity beyond those presented
here, see the documentation on Drupal.org available at https://www.drupal.
org/docs/8/modules/json-api/filtering.

Chapter 12 JSON API in Drupal

https://www.drupal.org/docs/8/modules/json-api/filtering
https://www.drupal.org/docs/8/modules/json-api/filtering

195

�Retrieving Limited Subsets of Fields
If you need to serve content to a variety of diverse clients, including consumers that traffic

in small payload sizes for performance reasons, the complete response from the JSON API

module can often be overwhelmingly large. To alleviate this, the JSON API specification

includes the ability to retrieve a limited subset of fields from resources through query

parameters that enumerate the fields that we wish to include in the response.

As an example, we can provide a fields query parameter that instructs the API to

only serve us the title, created and changed timestamps, and body of the article.

/jsonapi/node/article?fields[node--article]=title,created,changed,body

�Retrieving Entity References
Quite often, a final desired feature of retrieving data through APIs is the ability to request

not only the individual resource but also fields that contain entity references. For

instance, a consumer application might wish, just like many Drupal sites do on a regular

basis, to include not only the content originating from the author, but also the full author

entity representing the user who created the content.

If we issue a GET request against /jsonapi/node/article/{{node_uuid}}, we will

receive in the response a uid field that includes the identifier of the user who created the

article, but no other information that originates from the user entity, such as their e-mail

address. To resolve this, we can include the include parameter, which defines which

relationships to include in the ultimate response.

/jsonapi/node/article?include=uid

�Creating Resources with JSON API
Thanks to the JSON API specification, it is possible for us to create individual

resources through an API, but we cannot create multiple resources like we can retrieve

collections. This is also true of updates and deletions of resources through JSON API.5

For information on how to mitigate this limitation, see Chapter 23 for a description of

the Subrequests module.

5�“Creating New Resources (POST).” Drupal.org. 22 March 2018. Accessed 10 May 2018. https://
www.drupal.org/docs/8/modules/json-api/creating-new-resources-post

Chapter 12 JSON API in Drupal

https://www.drupal.org/docs/8/modules/json-api/creating-new-resources-post
https://www.drupal.org/docs/8/modules/json-api/creating-new-resources-post

196

JSON API requires the following request headers on every POST request to yield a

standard response:

Accept: application/vnd.api+json

Content-Type: application/vnd.api+json

To create the article, we can use the same URI we used to retrieve collections of

articles when we issue a POST request against JSON API in Drupal.

/jsonapi/node/article

Just as we saw with entity creation in core REST, we need to include any required

fields in the request payload:

{

 "data": {

 "type": "node--article",

 "attributes": {

 "title": "My snazzy new article",

 "body": {

 "value": �"Hello world! Lorem ipsum dolor sit amet consectetur

adipiscing elit",

 "format": "plain_text"

 }

 }

 }

}

Often, when creating an entity, we might wish to also include a relationship that

identifies a user as the author of an article. In the following request payload, we include

in this POST request a relationship that assigns the entity to an existing user with the

identifier {{user_uuid}}.

Chapter 12 JSON API in Drupal

197

{

 "data": {

 "type": "node--article",

 "attributes": {

 "title": "My snazzy new article",

 "body": {

 "value": �"Hello world! Lorem ipsum dolor sit amet consectetur

adipiscing elit",

 "format": "plain_text"

 }

 },

 "relationships": {

 "uid": {

 "data": {

 "type": "user--user",

 "id": "{{user_uuid}}"

 }

 }

 }

 }

}

Both of these POST requests will yield a 201 Created response code in the response,

and JSON API additionally presents us with the created entity (with its Drupal-generated

UUID) in the response body, just as if we had retrieved it as a single resource. Figure 12-4

depicts a sample response in Postman.

Chapter 12 JSON API in Drupal

198

Note  If you are faced with a 403 Forbidden response code and an error
message that requires Administer nodes permissions, you can assign that
capability to anonymous users for testing, but this is not advisable in production.

�Updating Resources with JSON API
PATCH requests also require Accept and Content-Type request headers.6

Accept: application/vnd.api+json

Content-Type: application/vnd.api+json

6�“Updating Existing Resources (PATCH).” Drupal.org. 29 May 2017. Accessed 10 May 2018.
https://www.drupal.org/docs/8/modules/json-api/updating-existing-resources-patch

Figure 12-4.  On creating the article, Drupal’s JSON API implementation responds
with a response body that contains the created entity

Chapter 12 JSON API in Drupal

https://www.drupal.org/docs/8/modules/json-api/updating-existing-resources-patch

199

To issue a PATCH request against Drupal to update an entity, we first need to ascertain

the UUID of the resource in question.

/jsonapi/node/article/{{node_uuid}}

Within the request payload, just like core REST, we include only the fields that we

wish to modify, along with the UUID of the entity in question.

{

 "data": {

 "type": "node--article",

 "id": "{{node_uuid}}",

 "attributes": {

 "title": "My even snazzier new article"

 }

 }

}

PATCH requests also allow us to include a relationship to a user who authored the

article, whom we identify by their UUID in the request body. The following object shows

a relationship that links the entity to an existing user identified by {{user_uuid}}.

{

 "data": {

 "type": "node--article",

 "id": "{{node_uuid}}",

 "attributes": {

 "title": "My even snazzier new article"

 },

 "relationships": {

 "uid": {

 "data": {

 "type": "user--user",

 "id": "{{user_uuid}}"

 }

 }

 }

 }

}

Chapter 12 JSON API in Drupal

200

Each of these requests yields a 200 OK response code with the JSON API response

containing the full updated entity. Figure 12-5 depicts the result of the request.

�Deleting Resources with JSON API
Now that we have updated the article, we can also delete the article including only the

Content-Type request header in the DELETE request.

Content-Type: application/vnd.api+json

Just as with core REST, unlike the other unsafe HTTP methods, we do not need to

provide any request payload when issuing a DELETE request. All we need to do is target

the resource with its UUID and issue the DELETE request against that URI.7

/jsonapi/node/article/{{node_uuid}}

7�“Removing Existing Resources (DELETE).” Drupal.org. 13 May 2017. Accessed 10 May 2018.
https://www.drupal.org/docs/8/modules/json-api/removing-existing-resources-delete

Figure 12-5.  Just as with POST requests, a PATCH request yields a response from
JSON API that includes the updated entity in the response body

Chapter 12 JSON API in Drupal

https://www.drupal.org/docs/8/modules/json-api/removing-existing-resources-delete

201

This request yields a 204 No Content response code with a response payload devoid

of any content, indicating that our article has been removed from Drupal. Figure 12-6

depicts a sample response in Postman.

Figure 12-6.  In response to our DELETE request, Drupal’s JSON API
implementation responds with an empty response body and a 204 No Content
response code, proving the deletion of our entity from Drupal

�Conclusion
In this chapter, we covered performing basic CRUD operations with JSON API in

Drupal. Although JSON API is a complex and robust specification serving a variety of

needs, thanks to the JSON API module, it is easy to employ even for practitioners new to

decoupled Drupal. Although the approaches differ substantially from core REST, many

of the same expected response codes and response payloads indicate a high degree of

similarity between the two.

In the next chapter, we turn our attention to performing CRUD operations with

RELAXed Web Services, the module that adheres to the CouchDB specification. We

cover all of the same operations, including creating, retrieving, updating, and deleting

Drupal content using the RELAXed Web Services module.

Chapter 12 JSON API in Drupal

203
© Preston So 2018
P. So, Decoupled Drupal in Practice, https://doi.org/10.1007/978-1-4842-4072-4_13

CHAPTER 13

RELAXed Web Services
RELAXed Web Services is a particularly robust candidate for use as a web service

provider because of its tight integration with the Drupal Deploy ecosystem and the

CouchDB specification. This means that architects and developers can employ RELAXed

Web Services for a variety of content staging scenarios as well as for content delivery to

consumers. RELAXed Web Services has better support than core REST in areas such as

translations, revisions, and file attachments.

As mentioned in Chapter 8, it is entirely possible to leverage RELAXed Web Services

without the Workspaces module and the rest of the Drupal Deploy ecosystem. The fact

that RELAXed Web Services implements the CouchDB specification opens the door to

offline-enabled applications in the presentation layer with the help of PouchDB and

Hoodie.

In this chapter, we explore RELAXed Web Services and how to retrieve and

manipulate content through its CouchDB-compliant API. RELAXed Web Services adds

a series of permissions to create, read, update, and delete resources through the API,

which are by default only assigned to administrators, as seen in Figure 13-1.

204

Recall that unless we configure the path under which all RELAXed Web Services

resources are available, every URL will be prefixed with /relaxed. To demonstrate this,

we can repeat our request from Chapter 8 that displays a welcome message in Postman

with the credentials of a user with the appropriate permissions.

For the purposes of easier demonstration, we will use Basic Authentication (see

Chapter 9) and an administrator’s credentials, but you can employ any authentication

mechanism you prefer via configuration or module installation. As mentioned previously,

you will need to consider more secure authentication mechanisms on deployment to

production. We can issue a GET request against /relaxed with our credentials provided

via Basic Authentication (username admin and password admin) as follows.

GET /relaxed HTTP/1.1

Authorization: Basic YWRtaW46YWRtaW4=

Figure 13-1.  New permissions created by RELAXed Web Services on RESTful Web
Services module features

Chapter 13 RELAXed Web Services

205

The response we receive looks like this:

{

 "couchdb": "Welcome",

 "uuid": "90a7677e8fbea8c2505ba4b9a1e1d719",

 "vendor": {

 "name": "Drupal",

 "version": "8.5.5"

 },

 "version": "8.5.5"

}

Figure 13-2 also depicts the welcome response. We are in business!

Figure 13-2.  When we issue a GET request against the /relaxed path, we receive a
welcome message identifying the API as CouchDB-compliant

Chapter 13 RELAXed Web Services

206

Note  For information not covered in this chapter about requests more relevant to
content staging requirements, refer to the documentation available at https://
www.drupal.org/docs/8/modules/relaxed-web-services/available-
rest-resources-and-supported-http-methods.

�Retrieving Resources with RELAXed Web Services
RELAXed Web Services makes a diverse range of resources available, each with different

characteristics. Before we begin, we need to define the available resources and what they

represent in the Drupal ecosystem. For instance, CouchDB databases are equivalent to

Drupal workspaces, and CouchDB documents are equivalent to Drupal entities.

Table 13-1 defines some of the common CouchDB terminology and its Drupal

equivalent in a nonexhaustive list.

Table 13-1.  CouchDB Objects and Drupal Equivalents

CouchDB Object Drupal Equivalent

Database Workspace

Document Entity

Attachment File attachment

Local document Local entity (replication log entity)

The CouchDB specification recommends that all requests expecting responses in

JSON include the following two headers.1 Nonetheless, many requests described in the

coming sections are possible in RELAXed Web Services without these headers.

Accept: application/json

Content-Type: application/json

1�“10.1. API Basics.” Apache CouchDB. 2018. Accessed 27 August 2018. http://docs.couchdb.
org/en/latest/api/basics.html

Chapter 13 RELAXed Web Services

https://www.drupal.org/docs/8/modules/relaxed-web-services/available-rest-resources-and-supported-http-methods
https://www.drupal.org/docs/8/modules/relaxed-web-services/available-rest-resources-and-supported-http-methods
https://www.drupal.org/docs/8/modules/relaxed-web-services/available-rest-resources-and-supported-http-methods
http://docs.couchdb.org/en/latest/api/basics.html
http://docs.couchdb.org/en/latest/api/basics.html

207

Note I n examples throughout this chapter, it is assumed that you have either
manually created or automatically generated content using Devel Generate, steps
that we undertook in Chapter 7.

For information about the response headers that CouchDB issues, refer to the
CouchDB documentation available at http://docs.couchdb.org/en/
latest/api/basics.html.

�Retrieving Workspaces and Workspace Collections
To retrieve a list of all the workspaces available on your Drupal site, namely a workspace

collection, issue a GET request to the URL shown here. Recall that the /relaxed prefix will

be different if you modified it during module configuration.2

/relaxed/_all_dbs

Depending on how you have configured your permissions and workspaces, you will

see different results. For some configurations, you might encounter an array containing

a single member live, whereas for others you will receive an array containing two

members, like this:

[

 "live",

 "stage"

]

See the result of this request, which has returned a 200 OK response code, in action

in Postman in Figure 13-3. The strings in the array represent workspaces and indicate the

paths that we should employ to target individual documents (Drupal entities) housed in

those workspaces.

2�“Available REST Resources and Supported HTTP Methods.” Drupal.org. 8 June 2018. Accessed
27 August 2018. https://www.drupal.org/docs/8/modules/relaxed-web-services/
available-rest-resources-and-supported-http-methods

Chapter 13 RELAXed Web Services

http://docs.couchdb.org/en/latest/api/basics.html
http://docs.couchdb.org/en/latest/api/basics.html
https://www.drupal.org/docs/8/modules/relaxed-web-services/available-rest-resources-and-supported-http-methods
https://www.drupal.org/docs/8/modules/relaxed-web-services/available-rest-resources-and-supported-http-methods

208

Note  From this point forward, all figures in this chapter are Postman screenshots
showing identical responses to those presented in the text.

To retrieve an individual workspace, simply append the workspace name

({workspace} below) to the end of the path for all workspaces.

/relaxed/{workspace}

In the following path, we target the live workspace.

/relaxed/live

The response, accompanied by a 200 OK response code, will look like the following,

seen also in Figure 13-4.

Figure 13-3.  In this example, we request the collection of all workspaces available
on Drupal and receive this response

Chapter 13 RELAXed Web Services

209

{

 "db_name": "live",

 "update_seq": 692452149,

 "instance_start_time": "1531835105"

}

Now that we have fetched an individual workspace, we can access all of the

documents contained within that workspace in the next section.

Note I f you want to check whether a workspace exists, you can issue a HEAD
request against the same URL instead. The response will contain a limited set of
information about the workspace, but this is a lightweight method of ascertaining a
workspace’s existence.

Figure 13-4.  In this example, we have retrieved information from the live
workspace

Chapter 13 RELAXed Web Services

210

�Retrieving Documents and Document Collections
To retrieve a collection of all the entities (CouchDB documents) present in a given

workspace, use the following format for your URL, where {workspace} is the name of the

workspace housing the desired content.

/relaxed/{workspace}/_all_docs

For instance, given the live workspace, we can issue a request for all entities present

in that workspace against the following URL.

/relaxed/live/_all_docs

The response, accompanied by a 200 OK response code, will look like the following,

seen also in Figure 13-5.

{

 "offset": 0,

 "rows": [

 {

 "id": "9e0100c4-7817-45ea-8dc1-948fce322ac3",

 "key": "9e0100c4-7817-45ea-8dc1-948fce322ac3",

 "value": {

 "rev": "2-653009520389f0bd88f948c0f8cebad8"

 }

 },

 {

 "id": "12abcd43-40c7-4af8-b146-1e085ef85f9c",

 "key": "12abcd43-40c7-4af8-b146-1e085ef85f9c",

 "value": {

 "rev": "2-89a6a9764fa93cd1ccd859956191e3c2"

 }

 }

],

 "total_rows": 2

}

Chapter 13 RELAXed Web Services

211

To retrieve an individual entity, we need to replace _all_docs with the UUID of the

document (Drupal entity) that we are trying to retrieve, as seen in the following example,

where {workspace} is the name of the desired workspace, and {document_id} is the

UUID of the desired document.

/relaxed/{workspace}/{document_id}

For instance, consider one of the entities identified in the collection we fetched just

now. We would form a request against that entity as follows. Note that the UUID is the

identifier we are using to target the correct entity.

/relaxed/live/462e86f6-0123-43a6-a71e-914d9432ab6e

The response, accompanied by a 200 OK response code, will contain an object that

also exposes certain details about the entity, such as key information about the entity

and fields that are present. This can be seen in Figure 13-6 and Figure 13-7.

Figure 13-5.  A typical collection of entities originating from the RELAXed Web
Services REST API for a given workspace. Note that an additional request is
required to drill deeper into the data.

Chapter 13 RELAXed Web Services

212

Figure 13-6.  In this case, we have fetched an individual taxonomy term along
with crucial information about the taxonomy term in question

Chapter 13 RELAXed Web Services

213

�Retrieving File Attachments
One of the unique characteristics of RELAXed Web Services and CouchDB is its

robust handling of file attachments. For file attachments, the CouchDB specification

recommends that Accept headers include the expected MIME type for the file (e.g.,

image/jpeg for JPEG images) or wildcards to allow for any MIME type, as follows. In the

absence of an Accept header, CouchDB assumes any MIME type by default.

Accept: */*

GET requests that target file attachments take a relatively complex format in RELAXed

Web Services. In the following URL, {workspace} represents the workspace name,

{document_id} represents the entity UUID, {field_name} represents the field name

where the file attachment is present, {delta} represents the delta in the field

Figure 13-7.  In another request to an entity having a different UUID, we have
retrieved an article

Chapter 13 RELAXed Web Services

214

(in single-value fields, 0; in multiple-value fields, its index in the array), {file_id}

represents the UUID of the file, {scheme} represents the scheme value of the file, and

{filename} represents the filename value of the field.

/relaxed/{workspace}/{document_id}/{field_name}/{delta}/{file_id}/{scheme}/

{filename}

If this seems extremely complex, fear not, because all of this information is available

in any request to an entity that contains a file attachment.

Consider, for instance, the entity we retrieved in the previous section. Within that

response, we find the following field object, with surrounding items removed for brevity.

"field_image": [

 {

 "entity_type_id": "file",

 "target_uuid": "4f3ad958-83f7-4800-8505-0e26a06f96b7",

 "alt": "Commodo ibidem pertineo sagaciter scisco.",

 "title": "Aliquip inhibeo suscipit verto.",

 "width": "280",

 "height": "451",

 "uri": "public://2018-08/generateImage_2BMzyH.jpg",

 "filename": "generateImage_2BMzyH.jpg",

 "filesize": "6752",

 "filemime": "image/jpeg"

 }

],

Given this example image, we can match elements to what their equivalents would

be in forming the request. Table 13-2 identifies these elements based on the example

image presented.

Chapter 13 RELAXed Web Services

215

Table 13-2.  RELAXed Web Services File Attachment URL Segments

Placeholder Definition Example

{field_name} Field name field_image

{delta} Delta in values

array

0 given a single-value field; 0 or higher given a multiple-

value field

{file_id} File UUID 4f3ad958-83f7-4800-8505-0e26a06f96b7

{scheme} URI scheme public (taken from uri field above)

{filename} File name generateImage_2BMzyH.jpg

The URL then becomes the following:

/relaxed/live/462e86f6-0123-43a6-a71e-914d9432ab6e/field_image/0/4f3ad958-

83f7-4800-8505-0e26a06f96b7/public/generateImage_2BMzyH.jpg

The response arrives with a 200 OK response code and the full desired image. This

can be seen in Figure 13-8.

Chapter 13 RELAXed Web Services

216

Note I f you want to check whether a file attachment exists, you can issue a
HEAD request against the same URL instead. The response will contain a limited
set of information about the file attachment, but this is a lightweight method of
ascertaining a file attachment’s existence.

Figure 13-8.  When we issue a GET request against a file attachment, we receive
the image in the response body, provided we gave all the correct information in
forming the URL

Chapter 13 RELAXed Web Services

217

�Creating and Updating Resources with RELAXed
Web Services
Unlike core REST (see Chapter 7), RELAXed Web Services makes frequent use of the

PUT method. In many cases, specifically CouchDB documents (Drupal entities) and file

attachments, we can use PUT to both create new resources and to update existing ones,

as long as we provide all necessary information about the new or modified entity in the

request body, in the case of documents (entities). As such, in this section, we cover both

creating and updating resources with RELAXed Web Services.

�Creating Workspaces
If you are using the Workspaces module in conjunction with other tools from the

Drupal Deploy ecosystem, although you can create workspaces through the Drupal

user interface, it can often make sense to create a new workspace through the REST API

available through RELAXed Web Services, particularly if your consumer needs to be able

to manipulate workspaces.

To create a new workspace, we simply need to issue a PUT request against the

following URL, where {workspace} represents the new workspace (CouchDB database)

we wish to create.

/relaxed/{workspace}

As an example, if you wish to create another workspace named draft in addition to

stage and live, you can do so by issuing a PUT request to the following URL.

/relaxed/draft

All PUT requests in RELAXed Web Services require a Content-Type request header.

We can use application/json to indicate this.

PUT /relaxed/draft HTTP/1.1

Authorization: Basic YWRtaW46YWRtaW4=

Content-Type: application/json

Chapter 13 RELAXed Web Services

218

The response code returned is 201 Created with a short confirmation message,

which can also be seen in Figure 13-9.

{

 "ok": true

}

Figure 13-9.  When we issue a PUT request against a URL containing the desired
name of our new workspace, we receive a response with a 201 Created response
code

Chapter 13 RELAXed Web Services

219

Sure enough, if we issue a GET request against /relaxed/_all_dbs, as we did in the

previous section, we can see our new workspace represented in the array. This is also

seen in Figure 13-10.

[

 "live",

 "stage",

 "draft"

]

Figure 13-10.  After our earlier PUT request, when we issue a GET request against
/relaxed/_all_dbs, we see our newly created workspace represented in the array

Chapter 13 RELAXed Web Services

220

Note A ccording to the CouchDB specification, all workspace names must begin
with a lowercase letter (a-z) and consist solely of lowercase letters (a-z), digits
(0-9), or certain special characters (_, $, (,), +, -, and /). It is also possible to
state these rules as a regular expression: ^[a-z][a-z0-9_$()+/-]*$.3

�Creating Documents
There are two ways to create a new document (Drupal entity) using RELAXed Web

Services. The first is to issue a POST request against /relaxed/{workspace}, which will

create a document in the workspace based on the request body. The second approach

is to issue a PUT request against /relaxed/{workspace}/{document_id}, where

{document_id} is the UUID we desire the created entity to have.

There is only one way to update a single document (Drupal entity), which is to issue

a PUT request against /relaxed/{workspace}/{document_id}, where {document_id} is

the UUID of an existing entity. In short, when we issue a PUT request to an existing entity,

the entity is updated with the request body; when it is a nonexistent one, the entity is

created with the request body.

Because it is the most straightforward way to create Drupal entities, we begin with

the approach using POST on a workspace URL. Consider the following example request.

POST /relaxed/live HTTP/1.1

Accept: application/json

Content-Type: application/json

{

 "@context": {

 "_id": "@id",

 "@language": "en"

 },

 "@type": "node",

 "_id": "b6cea743-ba86-49b0-81ac-03ec728f91c4",

 "en": {

3�“10.3.1. /db.” Apache CouchDB. 2018. Accessed 27 August 2018. http://docs.couchdb.org/en/
stable/api/database/common.html

Chapter 13 RELAXed Web Services

http://docs.couchdb.org/en/stable/api/database/common.html
http://docs.couchdb.org/en/stable/api/database/common.html

221

 "@context": {

 "@language": "en"

 },

 "langcode": [

 {

 "value": "en"

 }

],

 "type": [

 {

 "target_id": "article"

 }

],

 "title": [

 {

 "value": "REST and RELAXation"

 }

],

 "body": [

 {

 "value": �"This article brought to you by a request to RELAXed Web

Services!"

 }

]

 }

}

Note that in this example, we are defining a UUID that Drupal will use to create the

new entity. If you exclude the _id key, Drupal will generate its own UUID for the entity.

When we issue this request, we receive in response an object that confirms the

article’s creation with a 201 Created response code. You can see this in Figure 13-11.

{

 "ok": true,

 "id": "b6cea743-ba86-49b0-81ac-03ec728f91c4",

 "rev": "1-e16bb624b7d8cc04a16b879eb86e4e7"

}

Chapter 13 RELAXed Web Services

222

Sure enough, when we issue a GET request against /relaxed/live/b6cea743-ba86-

49b0-81ac-03ec728f91c4, we are able to retrieve the entity we have just created, as seen

in Figure 13-12.

Figure 13-11.  When we issue a POST request to a workspace resource with a
request body containing the desired content, we receive a 201 Created
response code

Chapter 13 RELAXed Web Services

223

Creating an entity via PUT involves a process that is quite similar to entity creation

via POST. Instead of placing the UUID within the request body or allowing Drupal to

generate a new UUID for us, we position the UUID within the URL of the request. This

means that there is no way of using the PUT method to delegate UUID generation to

Drupal. Note that the UUID provided in the URL must not be a preexisting UUID.

In this example request, we provide the same request body as in the previous

example and use a new UUID. Note that the UUID in the URL and in the request body

must match.

PUT /relaxed/live/0b36080d-a3ed-48c0-9863-a5726c687166 HTTP/1.1

Accept: application/json

Content-Type: application/json

Figure 13-12.  When we supply the UUID of the recently created entity in a GET
request, we can verify that the article has been created

Chapter 13 RELAXed Web Services

224

{

 "@context": {

 "_id": "@id",

 "@language": "en"

 },

 "@type": "node",

 "_id": "0b36080d-a3ed-48c0-9863-a5726c687166",

 "en": {

 "@context": {

 "@language": "en"

 },

 "langcode": [

 {

 "value": "en"

 }

],

 "type": [

 {

 "target_id": "article"

 }

],

 "title": [

 {

 "value": "Feeling RELAXed"

 }

],

 "body": [

 {

 "value": �"It's possible to achieve a sense of contentment while

using RELAXed Web Services."

 }

]

 }

}

Chapter 13 RELAXed Web Services

225

Drupal responds with a 201 Created response code to reflect the article’s creation,

as seen in Figure 13-13.

{

 "ok": true,

 "id": "0b36080d-a3ed-48c0-9863-a5726c687166",

 "rev": "1-16feb476aa943ba5802b4580bb284dff"

}

Figure 13-13.  In this example, we have used PUT to create an article by providing
a UUID for Drupal to use to create the entity

Chapter 13 RELAXed Web Services

226

�Updating Documents
There is only one way to update a single document (Drupal entity), which is to issue a

PUT request against /relaxed/{workspace}/{document_id}, where {document_id} is the

UUID of an existing entity. In short, when we issue a PUT request to an existing entity, the

entity is updated with the request body; when it is a nonexistent one, the entity is created

with the request body.

To update this same article, we can simply provide the UUID of the existing entity

and provide a new request body. Note that this will only update the entity if the UUID

already exists; if not, Drupal will create an entity using the UUID provided.

Most important, to identify to CouchDB that we are performing an update, we need

to provide a _rev identifier that indicates the revision that we are updating; otherwise

we will receive a 409 Conflict response code. Refer back to the response that RELAXed

Web Services issued when we created the article, where you will find the revision

identifier (e.g., 1-16feb476aa943ba5802b4580bb284dff). Note the additional _rev key

underneath the _id key in the request body here.

PUT /relaxed/live/0b36080d-a3ed-48c0-9863-a5726c687166 HTTP/1.1

Accept: application/json

Content-Type: application/json

{

 "@context": {

 "_id": "@id",

 "@language": "en"

 },

 "@type": "node",

 "_id": "0b36080d-a3ed-48c0-9863-a5726c687166",

 "_rev": "1-16feb476aa943ba5802b4580bb284dff",

 "en": {

 "@context": {

 "@language": "en"

 },

 "langcode": [

 {

 "value": "en"

 }

Chapter 13 RELAXed Web Services

227

],

 "type": [

 {

 "target_id": "article"

 }

],

 "title": [

 {

 "value": "Are you well-RESTed and RELAXed yet?"

 }

],

 "body": [

 {

 "value": �"As you can see this article has changed a great deal, so

we need to make sure that RELAXed Web Services knows about

that."

 }

]

 }

}

RELAXed Web Services will issue us a 201 Created response code (indicating,

slightly confusingly if you are accustomed to core REST, that a new revision was created)

as well as a new revision identifier, which we should use in the future when we need to

update the entity again. You can see this result in Figure 13-14.

{

 "ok": true,

 "id": "0b36080d-a3ed-48c0-9863-a5726c687166",

 "rev": "2-ec679e0d2763c981441b96e14232dc94"

}

Chapter 13 RELAXed Web Services

228

Once again, sure enough, a GET request against the UUID of the article demonstrates

that it was updated successfully, as seen in Figure 13-15.

Figure 13-14.  RELAXed Web Services gives us a new revision identifier when we
perform an update on an entity

Chapter 13 RELAXed Web Services

229

�Creating and Updating Documents in Bulk
It is also possible to create and update documents in bulk using POST requests to the URL

here, where {workspace} represents the desired workspace (CouchDB database).

/relaxed/{workspace}/_bulk_docs

Within this request, we need the familiar Accept and Content-Type request headers,

and our request body needs to contain a docs array consisting of document objects

representing each entity we wish to create.

Figure 13-15.  When we retrieve the same entity again, we see that it has been
updated with our new content

Chapter 13 RELAXed Web Services

230

Consider the following example request, in which we aim to create two articles that

describe two popular 2018 movies.

POST /relaxed/live/_bulk_docs HTTP/1.1

Accept: application/json

Content-Type: application/json

{

 "docs": [

 {

 "@context": {

 "_id": "@id",

 "@language": "en"

 },

 "@type": "node",

 "_id": "be3bdff5-4c20-4996-a158-b24b3b8a27d6",

 "en": {

 "@context": { "@language": "en" },

 "langcode": [{ "value": "en" }],

 "type": [{ "target_id": "article" }],

 "title": [{ "value": "Ready Player One" }],

 "body": [{ "value": "A movie directed by Steven Spielberg." }]

 }

 },

 {

 "@context": {

 "_id": "@id",

 "@language": "en"

 },

 "@type": "node",

 "_id": "8e0a2aba-0027-43b4-a738-48a0b35837c9",

 "en": {

 "@context": { "@language": "en" },

 "langcode": [{ "value": "en" }],

Chapter 13 RELAXed Web Services

231

 "type": [{ "target_id": "article" }],

 "title": [{ "value": "A Wrinkle in Time" }],

 "body": [{ "value": "A movie directed by Ava DuVernay." }]

 }

 }

]

}

Submitting this request yields a 201 Created response code as well as a response

body that contains confirmations of our now-assigned UUIDs and revision identifiers that

we can target when we need to issue a bulk update, as you can also see in Figure 13-16.

[

 {

 "ok": true,

 "id": "be3bdff5-4c20-4996-a158-b24b3b8a27d6",

 "rev": "1-6524707f2d6d9fc22ab05bcca81c88f3"

 },

 {

 "ok": true,

 "id": "8e0a2aba-0027-43b4-a738-48a0b35837c9",

 "rev": "1-470e61ec70ac61c871cd51ed211e64b1"

 }

]

Chapter 13 RELAXed Web Services

232

Now, to update both of these articles in bulk, we merely need to provide the revision

identifiers within each document object. Consider the following example. Note in particular

the new _rev key underneath the _id key, information we obtained in the previous response.

POST /relaxed/live/_bulk_docs HTTP/1.1

Accept: application/json

Content-Type: application/json

{

 "docs": [

 {

Figure 13-16.  In this example, because we have created two articles using bulk
creation, RELAXed Web Services returns an array containing two objects reflecting
our newly created entities

Chapter 13 RELAXed Web Services

233

 "@context": {

 "_id": "@id",

 "@language": "en"

 },

 "@type": "node",

 "_id": "be3bdff5-4c20-4996-a158-b24b3b8a27d6",

 "_rev": "1-6524707f2d6d9fc22ab05bcca81c88f3",

 "en": {

 "@context": { "@language": "en" },

 "langcode": [{ "value": "en" }],

 "type": [{ "target_id": "article" }],

 "title": [{ "value": "Ready Player One (2018)" }],

 �"body": [{ "value": "Directed by Steven Spielberg, this film

takes place in the city of Columbus and a virtual world called the

Oasis." }]

 }

 },

 {

 "@context": {

 "_id": "@id",

 "@language": "en"

 },

 "@type": "node",

 "_id": "8e0a2aba-0027-43b4-a738-48a0b35837c9",

 "_rev": "1-470e61ec70ac61c871cd51ed211e64b1",

 "en": {

 "@context": { "@language": "en" },

 "langcode": [{ "value": "en" }],

 "type": [{ "target_id": "article" }],

 "title": [{ "value": "A Wrinkle in Time (2018)" }],

 �"body": [{ "value": "Directed by Ava DuVernay, this film is based

on the seminal science fiction work by Madeleine L'Engle." }]

 }

 }

]

}

Chapter 13 RELAXed Web Services

234

With a 201 Created response code in the response and new revision identifiers in

the response body, we know that our articles have been updated to reflect the new title

and body. This is depicted in Figure 13-17.

[

 {

 "ok": true,

 "id": "be3bdff5-4c20-4996-a158-b24b3b8a27d6",

 "rev": "2-98304c073b5d752a5feee70b32db93f6"

 },

 {

 "ok": true,

 "id": "8e0a2aba-0027-43b4-a738-48a0b35837c9",

 "rev": "2-c538bab443da1ba452f63e84790a627a"

 }

]

Chapter 13 RELAXed Web Services

235

Note  For more examples of creating and updating resources beyond the scope
of this volume, refer to the RELAXed Web Services documentation available on
Drupal.org at https://www.drupal.org/docs/8/modules/relaxed-web-
services/available-rest-resources-and-supported-http-methods.

Figure 13-17.  We are issued new revision identifiers that we can use to perform
another bulk update of these documents (Drupal entities) in the future

Chapter 13 RELAXed Web Services

https://www.drupal.org/docs/8/modules/relaxed-web-services/available-rest-resources-and-supported-http-methods
https://www.drupal.org/docs/8/modules/relaxed-web-services/available-rest-resources-and-supported-http-methods

236

�Deleting Resources with RELAXed Web Services
Our final requirements from RELAXed Web Services involve deleting workspaces and

entities from the Drupal server. Fortunately, like in core REST and JSON API, this process

is the most straightforward of all the methods. Because our response body will be empty

in each of these requests, we only need the Accept header (and as of this writing, Drupal

will perform the deletion even if we do not provide it).

Accept: application/json

�Deleting Workspaces
To delete a workspace, we need to issue a DELETE request against the URL of the

workspace in question. For instance, we can delete the workspace we created earlier

with the following request.

DELETE /relaxed/draft HTTP/1.1

Authorization: Basic YWRtaW46YWRtaW4=

Accept: application/json

As you can see in Figure 13-18, a confirmation object appears confirming the

workspace deletion along with a 200 OK response code. If we issue a GET request to the

URL /relaxed/draft now, we will receive a 404 Not Found error.

{

 "ok": true

}

Chapter 13 RELAXed Web Services

237

�Deleting Documents
To delete documents (Drupal entities), issue a request against the URL where the

document is present. In this example, we are deleting the Ready Player One article we

created in previous sections.

DELETE /relaxed/live/be3bdff5-4c20-4996-a158-b24b3b8a27d6 HTTP/1.1

Authorization: Basic YWRtaW46YWRtaW4=

Accept: application/json

Document deletion will also yield a response with a 200 OK response code and a

confirmation object like that seen in the previous section.

�Deleting File Attachments
To delete file attachments, issue a request against the URL where the file attachment is

present. In this example, we are deleting the generated image we retrieved in previous

sections.

Figure 13-18.  Successful deletions lead to a 200 OK response code and a
confirmation that our entity is now deleted

Chapter 13 RELAXed Web Services

238

DELETE /relaxed/live/462e86f6-0123-43a6-a71e-914d9432ab6e/field_

image/0/4f3ad958-83f7-4800-8505-0e26a06f96b7/public/generateImage_2BMzyH.

jpg HTTP/1.1

Authorization: Basic YWRtaW46YWRtaW4=

Accept: application/json

File attachment deletion will also yield a response with a 200 OK response code and

a confirmation object that includes the UUID of the surrounding entity and a revision

identifier.

{

 "ok": true,

 "id": "462e86f6-0123-43a6-a71e-914d9432ab6e",

 "rev": "2-e1dfe8a2e4f73bd2026988c921abb3ea"

}

�Conclusion
In this chapter, we examined CRUD operations using the RELAXed Web Services module

in Drupal, which is an implementation of the CouchDB specification. Although many

architects will opt to use RELAXed Web Services in conjunction with other solutions

in the Drupal Deploy ecosystem, these sections prove that developers of consumer

applications can benefit from a robust API even without the additional content staging

capabilities afforded by Drupal Deploy.

In the next chapter, we change gears entirely and direct our attention to the GraphQL

specification and its implementation in Drupal, which requires a completely new and

non-RESTful approach when it comes to creating, retrieving, updating, and deleting

Drupal content. With GraphQL, we complete our tour of major contributed web services

solutions in the wider Drupal ecosystem.

Chapter 13 RELAXed Web Services

239
© Preston So 2018
P. So, Decoupled Drupal in Practice, https://doi.org/10.1007/978-1-4842-4072-4_14

CHAPTER 14

GraphQL in Drupal
GraphQL is a rapidly maturing solution available as a web service in Drupal 8. Although

it is still under heavy development, many aspects of the module are stable, and many

production sites leverage GraphQL on Drupal. As we saw in Chapter 8, GraphQL is

particularly robust as a web service due to its focus on tailored responses and a readily

available introspection layer.

In addition, on installation, GraphQL provides a built-in debugging tool and user

interface named GraphiQL that allows us to issue queries and inspect responses in real

time, located at /graphql/explorer. In this chapter, we use this debugger extensively

due to its ease of use. To issue a request to Drupal’s GraphQL implementation, all we

need to do is produce a GET request to the URL /graphql with the query parameter

?query=, followed by our query, formatted as a URL-encoded string.

In this chapter, we retrieve content entities through GraphQL and demonstrate some

of the features through the Drupal implementation of GraphQL. The GraphQL module

adds a variety of permissions that allow users of various roles to execute arbitrary

queries, bypass field security, or access the GraphiQL interface, among others. These are

assigned to administrators only by default.

�Retrieving Entities with GraphQL
Unlike other modules such as RELAXed Web Services and JSON API, the GraphQL

module offers a more specific and less generic set of GraphQL fields that map to Drupal

equivalents. For instance, whereas RELAXed Web Services and JSON API make no

distinction between nodes and users, instead treating them as generic entities, the

GraphQL module treats them separately.

240

Note  GraphiQL offers several convenient keyboard shortcuts to access certain
features. To prettify the query you have inserted, use the keyboard shortcut
Shift+Ctrl+P. To run the query, use Ctrl+Enter. To access an autocomplete drop-
down when providing fields, use Ctrl+Space.

�Retrieving Individual Entities
To retrieve an individual node entity, we can issue the following anonymous query. The

nodeById field accepts two arguments: id, the identifier of the node, which should be

provided as a string, and language, the language of the node, which should be provided

as a LanguageId (a GraphQL module-provided type that obligates language codes in

capital letters without quotation marks; e.g., EN, FR). The language argument defaults to

null and is hence optional.

{

 nodeById(id: "1", language: EN) {

 title

 }

}

The preceding query yields the following response, as we would expect. Note that we

are using content generated through Devel Generate (see Chapter 7) in this scenario.

{

 "data": {

 "nodeById": {

 "title": "At Autem Hos Nostrud Saluto Voco"

 }

 }

}

As you can see in this example, we can drill down into the node to access the

fields contained therein, such as title. Although these fields map on to their Drupal

equivalents, as we have seen in previous responses from core REST and JSON API (e.g.,

status, changed, created, etc.), the GraphQL module also makes preformatted fields

available, such as entityLabel. Consider the following query.

Chapter 14 GraphQL in Drupal

241

{

 nodeById(id: "1") {

 entityLabel

 changed

 entityChanged

 }

}

This query yields the following response, as seen in Figure 14-1. As you can see,

whereas changed yields a Unix timestamp, similar to the other APIs we have covered so

far, requiring us to perform date handling on the consumer, entityChanged provides

us instead with the date according to Drupal’s default date formatter. This is a powerful

outcome and means that we can simultaneously take advantage of raw and formatted

output from Drupal at the same time.

{

 "data": {

 "nodeById": {

 "entityLabel": "At Autem Hos Nostrud Saluto Voco",

 "changed": 1536169822,

 "entityChanged": "2018-09-05T17:50:22+0000"

 }

 }

}

Chapter 14 GraphQL in Drupal

242

Retrievals of users operate much the same way. Consider the following example,

a query that retrieves a user entity, whose fields adhere to the User type defined in the

GraphQL module.

{

 userById(id: "2") {

 uid

 name

 mail

 }

}

This query yields the following response.

{

 "data": {

 "userById": {

 "uid": 2,

 "name": "chifrothaw",

Figure 14-1.  The GraphQL module allows us to designate whether we desire raw
or formatted output from Drupal. In this case, entityChanged has run through
Drupal’s date formatter.

Chapter 14 GraphQL in Drupal

243

 "mail": "chifrothaw@example.com"

 }

 }

}

We can also retrieve relationships within the entity itself. Consider the following

example query, which fetches a node entity along with its author. In this query, we

include fields that adhere to the Node type for the first level, but because entityOwner is

of type User, we must use fields from the User type definition. We are also using aliases

(see Chapter 8) to improve the experience for the developer building our consumer.

{

 entity: nodeById(id: "2") {

 title: entityLabel

 created: entityCreated

 author: entityOwner {

 id: uid

 name

 email: mail

 }

 }

}

The result looks something like this, as you can see in Figure 14-2.

{

 "data": {

 "entity": {

 "title": "Aliquip Quia",

 "created": "2018-09-05T17:50:22+0000",

 "author": {

 "id": 1,

 "name": "admin",

 "email": "admin@example.com"

 }

 }

 }

}

Chapter 14 GraphQL in Drupal

244

As you might have noticed, although we have certain crucial information about the

entity, such as when it was created or changed, who created it, and what it is called, we

lack other information such as the actual body of the content entity. This is due to the

fact that whereas the Body field is required in nodes of type Article and Page, it is fully

possible in Drupal’s content modeling system to do without the Body field.

Whenever we create a new content type in Drupal, as you might recall from our study

of JSON API, all content entities of that type are assigned a bundle. Within the Drupal

implementation of GraphQL, there is a clear distinction between the overarching Node

type, which governs all nodes irrespective of their bundle, and individual NodeArticle

and NodePage types, which include bundle-specific information like the Body field.

Consider the following example. In this scenario, we are using a fragment to

designate that we should only retrieve the body if the node in question is an article.

{

 entity: nodeById(id: "2") {

 title: entityLabel

 created: entityCreated

 author: entityOwner {

 id: uid

 name

Figure 14-2.  In this example, we use aliases to improve the consumer developer
experience in addition to including information about the user who authored this
entity

Chapter 14 GraphQL in Drupal

245

 email: mail

 }

 ...body

 }

}

fragment body on NodeArticle {

 body {

 value

 }

}

Recall that we can also inline this fragment to avoid repeating the field name

multiple times.

{

 entity: nodeById(id: "2") {

 title: entityLabel

 created: entityCreated

 author: entityOwner {

 id: uid

 name

 email: mail

 }

 ... on NodeArticle {

 body {

 value

 }

 }

 }

}

The result of this query is the following, as seen in Figure 14-3.

{

 "data": {

 "entity": {

 "title": "Aliquip Quia",

Chapter 14 GraphQL in Drupal

246

 "created": "2018-09-05T17:50:22+0000",

 "author": {

 "id": 1,

 "name": "admin",

 "email": "admin@example.com"

 },

 "body": {

 "value": �"Abico ideo ratis scisco. Accumsan dignissim ea fere

in quadrum venio volutpat. Facilisis genitus ideo

immitto jugis magna neque pecus quae. Ad huic in

jumentum meus nutus. Blandit nutus pecus ut. Aliquip

commoveo inhibeo metuo."

 }

 }

 }

}

Figure 14-3.  We can inline a fragment based on the values of the specific bundle
that we are targeting. In this case the body will only be included in the response if
the entity is an article.

Chapter 14 GraphQL in Drupal

247

Note  Drupal’s implementation of GraphQL makes a variety of queries available
that retrieve individual entities and are well beyond the scope of this overview,
including blockContentById (custom block content), commentById
(comments), contactMessageById (contact form submissions), fileById
(file entities), shortcutById (shortcuts), taxonomyTermById (taxonomy
terms), and nodeRevisionById (node revisions). GraphiQL's autocomplete and
documentation features can help you explore what fields are available in those
queries.

�Retrieving Entity Collections
In addition to queries that retrieve individual entities by identifier, the GraphQL module

also offers collection queries that can perform arbitrary operations across a range of

entities, such as nodeQuery and userQuery. Consider the following example.

{

 collection: nodeQuery(limit: 20) {

 entities {

 title: entityLabel

 }

 }

}

This query yields a collection of 20 entities, as you can see in Figure 14-4.

Chapter 14 GraphQL in Drupal

248

In the Drupal implementation of GraphQL, nodeQuery takes several arguments:

limit, the number of entities included in the response (defaults to 10); offset, the

number of entities to skip before an entity should figure in the response (defaults to 0);

sort, which dictates how the entities should be sorted; filter, which provides arbitrary

filters; and revisions, which dictates whether revisions should be included or not.

The default value of the revisions argument is DEFAULT, which loads current revisions;

ALL loads all revisions, and LATEST loads only the most recent revision (all values are

expressed without quotation marks as they adhere to their own type definition).

To also retrieve the body of these entities, we can use the following query, which

drills into the per-bundle implementations. In the following example, we only include

the body for articles.

{

 collection: nodeQuery(limit: 20) {

 entities {

 title: entityLabel

 ... on NodeArticle {

 body {

Figure 14-4.  In this query, we retrieve a collection of entities but limit the response
to 20 entities

Chapter 14 GraphQL in Drupal

249

 value

 }

 }

 }

 }

}

As of now, there is no way in the GraphQL specification to include multiple types on

a single fragment. This means that to include the body for page entities as well, we must

create another fragment referring to NodePage, as you can see in the following example

query.

{

 collection: nodeQuery(limit: 20) {

 entities {

 title: entityLabel

 ... on NodeArticle {

 body {

 value

 }

 }

 ... on NodePage {

 body {

 value

 }

 }

 }

 }

}

�Sorting Entity Collections

Consider the following example, which fetches a collection of five entities (limit), with

the first five entities in the collection skipped (offset), sorted by title in descending

(reverse) order (sort). As you can see, the sort argument accepts an object that

contains two other fields, field (the field on which to sort) and direction (ASC or DESC,

without quotation marks).

Chapter 14 GraphQL in Drupal

250

{

 collection: nodeQuery(

 limit: 5

 offset: 5

 sort: {

 field: "title"

 direction: DESC

 }

) {

 entities {

 title: entityLabel

 }

 }

}

The response contains the following object, also seen in Figure 14-5, which indicates

that our request has successfully fetched the desired entities.

{

 "data": {

 "collection": {

 "entities": [

 {

 "title": "Imputo Qui Quia"

 },

 {

 "title": "Genitus Hos Metuo Meus Olim Suscipere"

 },

 {

 "title": "Facilisis"

 },

 {

 "title": "Ea"

 },

Chapter 14 GraphQL in Drupal

251

 {

 "title": "Dignissim Facilisis Hendrerit Lucidus Refero"

 }

]

 }

 }

}

Note that because the sort argument can also accept an array of objects, we can

perform multiple sorts in succession, as you can see in the following example query,

which sorts first based on title and then based on the last updated timestamp, both in

descending order.

{

 collection: nodeQuery(

 limit: 5

 offset: 5

 sort: [

Figure 14-5.  In this example query, we have requested a collection of entities
sorted by title in reverse order, showing only five entities, and having skipped the
first five results

Chapter 14 GraphQL in Drupal

252

 {

 field: "title"

 direction: DESC

 },

 {

 field: "changed"

 direction: DESC

 }

]

) {

 entities {

 title: entityLabel

 }

 }

}

�Filtering Entity Collections

We can also filter our results such that our response only contains entities of type Article

by using the filter argument, which accepts an object of similar structure to the sort

argument. Consider the following example, which fetches an entity collection of only

articles, limits them to five, and sorts them by title in ascending order.

{

 collection: nodeQuery(

 filter: {

 conditions: {

 field: "type"

 value: "article"

 operator: EQUAL

 }

 }

 limit: 5

 sort: {

 field: "title"

 direction: ASC

 }

Chapter 14 GraphQL in Drupal

253

) {

 entities {

 title: entityLabel

 }

 }

}

This query yields the following response, also seen in Figure 14-6. If we change the

type on which we are filtering to page, you can see that our results change, as seen in

Figure 14-7 for comparison.

{

 "data": {

 "collection": {

 "entities": [

 {

 "title": "Abluo"

 },

 {

 "title": "Ad Adipiscing Illum Iriure Lobortis"

 },

 {

 "title": "Ad Quadrum Typicus"

 },

 {

 "title": "Aliquip Quia"

 },

 {

 "title": "Aptent Enim Vicis Virtus Ymo"

 }

]

 }

 }

}

Chapter 14 GraphQL in Drupal

254

Figure 14-6.  In this example query, we have selected only articles, with a limit of
five and sorted by title in ascending order

Figure 14-7.  In this example, we select pages instead. Notice the difference in the
response.

Chapter 14 GraphQL in Drupal

255

Table 14-1 lists the available operators for conditions. As you can see, the list is

similar to that of Drupal’s implementation of JSON API in Chapter 12.

Table 14-1.  GraphQL Filter Operators and Definitions

Operator Definition

EQUAL Equals

NOT_EQUAL Not equal to

GREATER_THAN Greater than

GREATER_THAN_OR_EQUAL Greater than or equal to

SMALLER_THAN Less than

SMALLER_THAN_OR_EQUAL Less than or equal to

IN Checks that the provided value is present in an array

NOT_IN Checks that the provided value is absent from an array

LIKE Checks that the provided value matches the provided pattern

NOT_LIKE Checks that the provided value does not match the provided pattern

BETWEEN Checks that the provided value is within a range

NOT_BETWEEN Checks that the provided value is outside of a range

IS_NULL Is null

IS_NOT_NULL Is not null

The LIKE and NOT_LIKE operators might be unfamiliar for those accustomed to the

JSON API filter operators presented in Chapter 12, such as STARTS_WITH and CONTAINS.

In the Drupal implementation of GraphQL, these mirror patterns seen in typical SQL

databases using % and _ as wildcards. Consider the following examples.

•	 The pattern X% matches all values that begin with the letter X,

whereas the pattern %X matches those ending with the letter X.

•	 The pattern %X% matches values having X in any position, whereas X%Y

matches values starting with X and ending with Y.

•	 The pattern _X% matches values with X in the second position, and

X_%_%_% matches values beginning with X that are at least four

characters long.

Chapter 14 GraphQL in Drupal

256

As with JSON API (see Chapter 12), we can also provide condition groups that govern

how our responses should look. For instance, consider the following example, which

requests all pages with titles that begin with the uppercase letter A.

{

 collection: nodeQuery(

 filter: {

 conditions: [

 {

 field: "type"

 value: "page"

 operator: EQUAL

 },

 {

 field: "title"

 value: "A%"

 operator: LIKE

 }

]

 }

 limit: 5,

 sort: {

 field: "title"

 direction: ASC

 }

) {

 entities {

 title: entityLabel

 }

 }

}

We receive the following response, also seen in Figure 14-8.

{

 "data": {

 "collection": {

Chapter 14 GraphQL in Drupal

257

 "entities": [

 {

 "title": "Acsi Amet Nutus Pala"

 },

 {

 "title": "Ad Ipiscing Elit"

 },

 {

 "title": "At Autem Hos Nostrud Saluto Voco"

 }

]

 }

 }

}

Figure 14-8.  Here, we are using two conditions to first select only pages and then
only those pages having titles that begin with the uppercase letter A

Chapter 14 GraphQL in Drupal

258

�Filtering Entity Collections with Condition Groups

Like Drupal’s JSON API implementation, the GraphQL module in Drupal also makes

available condition groups for complex filters. Recall from Chapter 12 that groups are

logical sets composed of the assertions in conditions that facilitate larger condition

groups. As previously mentioned, these condition groups can be nested to craft

fine-grained queries with a high degree of granularity. For a more comprehensive

explanation of conditions, condition groups, and conjunctions, refer back to Chapter 12.

Consider a scenario where we have several articles and pages that have the following

titles, representing entities generated through Devel Generate.

•	 Ad Ipiscing Elit (page)

•	 Ad Quadrum Typicus (article)

•	 Ad Adipiscing Illum Iriure Lobortis (article)

•	 Aliquip Quia (article)

In the following example GraphQL query, we create a condition group that checks

whether the selected entity’s title begins with either Ad or Aliquip, without checking

whether the entity is an article or not.

{

 collection: nodeQuery(

 filter: {

 groups: {

 conditions: [

 {

 field: "title"

 value: "Ad%"

 operator: LIKE

 },

 {

 field: "title"

 value: "Aliquip%"

 operator: LIKE

 }

]

 conjunction: OR

Chapter 14 GraphQL in Drupal

259

 },

 },

 limit: 5

 sort: {

 field: "title"

 direction: ASC

 }

) {

 entities {

 title: entityLabel

 }

 }

}

The result of this query is the following response. Note that our page is still

represented in the response.

{

 "data": {

 "collection": {

 "entities": [

 {

 "title": "Ad Adipiscing Illum Iriure Lobortis"

 },

 {

 "title": "Ad Ipiscing Elit"

 },

 {

 "title": "Ad Quadrum Typicus"

 },

 {

 "title": "Aliquip Quia"

 }

]

 }

 }

}

Chapter 14 GraphQL in Drupal

260

Now, we include yet another condition group as part of a hierarchy that also checks

whether the selected entity is an article in an AND relationship with the existing condition

group.

{

 collection: nodeQuery(

 filter: {

 groups: {

 conditions: {

 field: "type"

 value: "article"

 operator: EQUAL

 }

 conjunction: AND

 groups: {

 conditions: [

 {

 field: "title"

 value: "Ad%"

 operator: LIKE

 },

 {

 field: "title"

 value: "Aliquip%"

 operator: LIKE

 }

]

 conjunction: OR

 }

 }

 }

 limit: 5

 sort: {

 field: "title"

 direction: ASC

 }

Chapter 14 GraphQL in Drupal

261

) {

 entities {

 title: entityLabel

 }

 }

}

This query returns the following response. Note that the page entity has now

disappeared from the response, indicating that our condition groups are selecting the

correct entities. This can be seen in Figure 14-9.

{

 "data": {

 "collection": {

 "entities": [

 {

 "title": "Ad Adipiscing Illum Iriure Lobortis"

 },

 {

 "title": "Ad Quadrum Typicus"

 },

 {

 "title": "Aliquip Quia"

 }

]

 }

 }

}

Chapter 14 GraphQL in Drupal

262

The hierarchy established by these condition groups can be seen in Figure 14-10, in a

structure that is identical to that reproduced in Figure 12-3 from our prior exploration of

condition groups in JSON API.

Figure 14-9.  In this example query, we filter based on whether the entity is an
article, as well as whether the title begins with one of two provided strings

Chapter 14 GraphQL in Drupal

263

Note A lthough the full scope of available features in GraphQL read queries within
Drupal is far beyond the capacity of this book, the GraphiQL interface provides
a robust introspection interface that pairs schema documentation with a live
testing tool and can accelerate on-boarding. Use the Docs link in the upper right of
GraphiQL to access this interface.

�GraphQL Mutations in Drupal
Although built-in mutation (write query) support was previously available out of the

box in the Drupal implementation of GraphQL, the maintainers of the GraphQL module

have since removed the feature in favor of focusing on stabilizing read queries. One of

the most intractable challenges of providing automatic mutation support for Drupal’s

uniquely flexible content model is the fact that mutations would need to account for

every individual bundle and every field contained therein.

In a January 2018 blog post, comaintainer Philipp Melab provided additional

insight: “[S]ome entity structures added additional complexities: For example, just

trying to create an article with a title and a body value while the comment module is

enabled results in a constraint violation, as the comment field requires an empty list of

comments.”

Figure 14-10.  The hierarchy of condition groups established by the example
GraphQL query

Chapter 14 GraphQL in Drupal

264

Although the work to provide mutation support in the Drupal implementation of

GraphQL would have accounted for all of these circumstances, the result would have

been a developer experience overburdened with Drupal-specific terminology and

considerations when building consumers that would both read and write to Drupal.1

There are references available for providing GraphQL mutations in Drupal, but

they are outdated. Rather than reproduce them, we instead conclude our examination

of Drupal’s implementation of GraphQL here. As of this writing, there is no stable

method to write custom GraphQL mutations that comes packaged with the module on

installation. Nonetheless, this is an area where much exploration has and will continue

to take place.

Note  For examples of how GraphQL mutations worked prior to the adoption
of webonyx/graphql-php as a dependency, see https://github.com/
drupal-graphql/graphql-mutation and https://github.com/drupal-
graphql/graphql-examples. Note that these code bases are only provided for
reference and for historical reasons. For more information about the removal of
GraphQL mutation support, see Philipp Melab’s Amazee Labs blog post “Extending
GraphQL: Part 3 – Mutations” at https://www.amazeelabs.com/en/blog/
extending-graphql-part-3-mutations.

�Conclusion
In this chapter, we covered Drupal’s implementation of GraphQL, how to retrieve

individual entities and entity collections, and why out-of-the-box mutation support is

unavailable. Although the GraphQL module only provides read query support out of the

box, it nonetheless offers a developer experience that rivals the JSON API and RELAXed

Web Services module, thanks to the emphasis the specification places on tailored

responses and schema introspection.

1�Melab, Philipp. “Extending GraphQL: Part 3 - Mutations.” Amazee Labs. 9 January
2018. Accessed 6 September 2018. https://www.amazeelabs.com/en/blog/
extending-graphql-part-3-mutations

Chapter 14 GraphQL in Drupal

https://github.com/drupal-graphql/graphql-mutation
https://github.com/drupal-graphql/graphql-mutation
https://github.com/drupal-graphql/graphql-examples
https://github.com/drupal-graphql/graphql-examples
https://www.amazeelabs.com/en/blog/extending-graphql-part-3-mutations
https://www.amazeelabs.com/en/blog/extending-graphql-part-3-mutations
https://www.amazeelabs.com/en/blog/extending-graphql-part-3-mutations
https://www.amazeelabs.com/en/blog/extending-graphql-part-3-mutations

265

In Part 4, we explore Drupal’s surrounding ecosystem for decoupled Drupal, which

includes a rich and diverse array of distributions, SDKs, and reference applications. By

moving beyond what is available in Drupal’s core and contributed modules, we venture

into the concerns of consumers and their developers. Among the issues we inspect are

how to provide different flavors of Drupal for decoupled use cases and how we can make

the lives of developers on the other side of the fence much simpler through SDKs and

reference applications that can speed up the building process.

Chapter 14 GraphQL in Drupal

PART IV

The Decoupled Drupal
Ecosystem
In Part 3, we moved away from descriptions of web services into direct implementation

of requests that consume and manipulate Drupal content. This presents a suitable

foundation for us to begin to inspect the actual development of consumer applications

in various technologies. However, before turning to that theme, in these chapters, we

discuss the burgeoning decoupled Drupal ecosystem, whose aim is to simplify the

process of employing Drupal as a content service and to accelerate the development of

consumer applications.

When Drupal 8 was released, many Drupal developers had not yet conceived of

decoupling Drupal. As a result, the standard Drupal 8 installation that results from

a typical setup process is often far too overloaded with features for efficient use as a

decoupled Drupal back end. While site maintainers can disable unneeded modules,

this process can be cumbersome. However, thanks to the use of Drupal distributions,

which are flavors of Drupal with different module and feature sets, decoupled Drupal

practitioners have begun to adopt API-first distributions. These are versions of Drupal

that are optimized for decoupled Drupal use cases with features such as pre-enabled

web services, preconfigured settings, and an enhanced user interface.

Thanks to the growth surrounding Contenta and the interest in projects such as

Reservoir, API-first distributions will remain an area in significant transition for years

to come. Many architects have not yet landed on complete wishlists when it comes to

the ideal feature set for an API-first distribution, but competing approaches indicate

substantial interest. If and when an installation profile dedicated specifically to

decoupled Drupal use cases enters core, it is certain to take great inspiration from the

work on Contenta, Reservoir, and others.

268

Moreover, of all the primary causes of the success seen by headless CMSes, perhaps

most meaningful is the proliferation of software development kits (SDKs) and reference

builds that facilitate development of consumer applications by developers. These

software projects provide a means for non-Drupal practitioners to “speak” the language

of Drupal and ramp up quickly on their consumers. While content-as-a-service platforms

provide these as free and open-source software, the remainder of their platform remains

under lock and key. In recent years, Drupal has adopted a firm stance as an open-source

CMS from end to end, monolithic or decoupled. Newly emerging SDKs and reference

builds in the Waterwheel and Contenta ecosystems both indicate a healthy demand for

easy consumption of Drupal content.

With the help of SDKs and reference builds—and a middleware layer in the form of

Contenta.js—developers of any technology, regardless of exposure to Drupal, are able

to consume and manipulate Drupal content as easily as they would any API. Whereas

SDKs like Waterwheel.js are intended for generic use, more demo-ready reference builds

such as Waterwheel’s Ember and React applications as well as Contenta’s example

applications can offer evaluators greater peace of mind.

Part IV T he Decoupled Drupal Ecosystem

269
© Preston So 2018
P. So, Decoupled Drupal in Practice, https://doi.org/10.1007/978-1-4842-4072-4_15

CHAPTER 15

API-First Distributions
In Drupal parlance, distributions refer to variations of Drupal that include Drupal core in

its entirety and other items such as themes, modules, libraries (for front-end assets), and

installation profiles. Distributions can be full-featured, meaning they are comprehensive

solutions for use in specialized cases, or they can act as quick-start tools that help

developers and site builders get going quickly.1

Note  Some commonly used distributions in Drupal include Conference
Organizing Distribution (COD) for conference web sites; Open Social for social
communities, intranets, and networks; and Thunder for publishing web sites.
Documentation for each of these distributions is available on Drupal.org at
https://www.drupal.org/docs/8/distributions.

In recent years, the advent of decoupled Drupal architectures has led to a rethinking

of how Drupal should appear and perform in such an environment. For many

developers building Drupal consumers, the inner workings of Drupal’s web services

can be prohibitively time-consuming to learn. Because distributions are an optimal

way to designate which modules to install and how a site should be configured, they are

exceptional candidates for easing the learning curve of decoupled Drupal.

Such API-first distributions are variations of Drupal that provide specialized

configuration and module sets for decoupled Drupal use cases. During core

conversations at DrupalCon Baltimore 2017, the need for an API-first distribution

emerged due to the wide variety of best practices for decoupled Drupal and the lack of

1�“Distributions.” Drupal.org. 5 April 2018. Accessed 1 August 2018. https://www.drupal.org/
docs/8/distributions

https://www.drupal.org/docs/8/distributions
https://www.drupal.org/docs/8/distributions
https://www.drupal.org/docs/8/distributions

270

awareness about Drupal among consumer developers. A Drupal core idea issue was

created that eventually became Contenta.2

Over the course of 2017, the API-first distributions Contenta and Reservoir were

independently released. Later in 2017, Headless Lightning, a variant of Acquia’s

Lightning distribution, adopted much of Reservoir’s functionality. In turn, ecosystems

surrounding Contenta and Reservoir have emerged. In 2018, Lauri Eskola and I

reintroduced the suggestion to provide a “Decoupled” installation profile in Drupal

core out of the box, which would obviate much of the need for particular API-first

distributions.3

Whereas API-first distributions are excellent back ends for content ecosystems that

merely need a repository to consume rather than a full web site, they are not as ideal for

decoupled Drupal architectures in which the back end performs double duty as both a

site and a repository (see Chapter 4 for more on decoupled Drupal use cases). Reservoir,

for instance, restricts functionality significantly, much of it for users accustomed

to building monolithic Drupal sites normally. As such, you should use API-first

distributions when you are building applications consuming a repository rather than a

site; for a site, you can use monolithic Drupal normally.

�Contenta
Contenta is the most commonly used API-first distribution in the Drupal community

and the project witnessing the most contributor activity. Like Reservoir, covered in the

next section, Contenta’s goal is to provide the ideal content repository for decoupled

Drupal architectures. Nonetheless, Contenta has distinct priorities from Reservoir.

Contenta largely keeps the default administrative interface intact to provide more

familiarity to Drupal developers, with the caveat that this introduces complexity for

novice Drupal developers. To mitigate this, Contenta includes a quick installation

process for developers less familiar with Drupal that includes the most common

2�So, Preston. “Introducing Reservoir, a Distribution for Decoupling Drupal.” Acquia
Developer Center. 19 June 2017. Accessed 1 August 2018. https://dev.acquia.com/blog/
introducing-reservoir-a-distribution-for-decoupling-drupal/19/06/2017/18296

3�Eskola, Lauri, and Preston So. “Drupal 9: Decoupled by Design?” Drupal Developer Days
Lisbon 2018. 2018. Accessed 1 August 2018. https://lisbon2018.drupaldays.org/sessions/
drupal-9-decoupled-design

Chapter 15 API-First Distributions

https://dev.acquia.com/blog/introducing-reservoir-a-distribution-for-decoupling-drupal/19/06/2017/18296
https://dev.acquia.com/blog/introducing-reservoir-a-distribution-for-decoupling-drupal/19/06/2017/18296
https://lisbon2018.drupaldays.org/sessions/drupal-9-decoupled-design
https://lisbon2018.drupaldays.org/sessions/drupal-9-decoupled-design

271

required modules and a full slate of default content.4 The distribution also includes the

JSON API Extras module, which adds further configurability to JSON API such as aliases

for routes handled by JSON API (see Chapter 8).

Contenta’s flexibility also allows consumer developers to choose between a blank

slate or a demo installation that includes solved problems and the Umami theme.

Like Reservoir, Contenta centers the most striking benefits of Drupal for developers of

consumer applications. Using Drupal as an underlying base allows Contenta to leverage

the same open source software license and to provide the same content modeling tools

available in core Drupal. However, perhaps the most touted benefit of Contenta is its

bevy of reference builds for developers, an ecosystem detailed in Chapter 16.5

Contenta’s mission, according to its authors, is fourfold:

•	 Friendly to non-Drupal users: Contenta expresses a simplified vision

of the Drupal administrative back end in which those unaccustomed

to Drupal’s terminology can use available defaults to model and

create content.

•	 Usable from the first minute: Contenta comes already packaged

with substantial demo content, allowing developers from other

ecosystems to evaluate decoupled Drupal much more quickly with

the ability to revert to a clean slate.

•	 Decoupled knowledge hub: The Contenta web site includes a

collection of articles and resources that includes tutorials on

challenging concepts in decoupled Drupal, such as OAuth2

authentication and JSON API query operations.

•	 Feature-complete for decoupled use cases: Contenta touts its

creators’ real-world experience in implementing full-featured

decoupled Drupal architectures and highlights its promise to be

feature-complete for requirements including decoupled Drupal.

4�Aguiló Bosch, Mateu. “Contenta Makes Your Content Happy.” Medium. 27 June
2017. Accessed 6 August 2018. https://medium.com/@mateu.aguilo.bosch/
contenta-makes-your-content-happy-6f76bbe0cdae

5�“Contenta Is an API-First Drupal Distribution.” Contenta CMS. Accessed 20 September 2018.
http://www.contentacms.org

Chapter 15 API-First Distributions

https://medium.com/@mateu.aguilo.bosch/contenta-makes-your-content-happy-6f76bbe0cdae
https://medium.com/@mateu.aguilo.bosch/contenta-makes-your-content-happy-6f76bbe0cdae
http://www.contentacms.org

272

Note  The main Contenta distribution, which provides a JSON API implementation,
is available on GitHub at https://github.com/contentacms/contenta_
jsonapi. The Contenta web site is located at https://contentacms.org.

�Installing Contenta
To install Contenta for local development, as seen in Figure 15-1, you can execute the

following quick install commands, which requires that Composer 1.7 or higher be

installed on your machine. Read on for Contenta installation instructions on production.

$ php -r "readfile('https://raw.githubusercontent.com/contentacms/contenta_

jsonapi/8.x-2.x/installer.sh');" > contentacms-quick-installer.sh

$ chmod a+x contentacms-quick-installer.sh

$./contentacms-quick-installer.sh

Figure 15-1.  Contenta’s installation process for local development includes a
command-line interface that guides users through

Chapter 15 API-First Distributions

https://github.com/contentacms/contenta_jsonapi
https://github.com/contentacms/contenta_jsonapi
https://contentacms.org

273

To install Contenta in Composer-based workflows and for production, execute

the following command. This will additionally download Contenta modules beyond

Drupal core.

$ php -r "readfile('https://raw.githubusercontent.com/contentacms/contenta_

jsonapi_project/8.x-1.x/scripts/download.sh');" > download-contentacms.sh

$ chmod a+x download-contentacms.sh

$./download-contentacms.sh /path/to/my-contenta

Once this completes, copy the .env.example file to a new .env file and add crucial

information about your Drupal site and MySQL database. The documentation also

recommends using .env.local to store sensitive credentials so that version control tools

such as git ignore it. Consider the following example .env and .env.local files.

.env

SITE_MAIL=admin@example.com

ACCOUNT_MAIL=admin@example.com

SITE_NAME='Contenta Test'

ACCOUNT_NAME=admin

MYSQL_DATABASE=contenta

MYSQL_HOSTNAME=localhost

MYSQL_PORT=3306

MYSQL_USER=contenta

.env.local

MYSQL_PASSWORD=contenta

ACCOUNT_PASS=admin

Then, you can execute the following command to run the installation script.

$ composer run-script install:with-mysql

Note  The Contenta Composer installer is available on GitHub at
https://github.com/contentacms/contenta_jsonapi_project.

Chapter 15 API-First Distributions

https://github.com/contentacms/contenta_jsonapi_project

274

�Reservoir
The second distribution we discuss in this chapter is Reservoir, an experimental and

minimalist distribution for decoupling Drupal. Reservoir’s goal, like that of Contenta,

is to form an optimal and generic content repository for any decoupled Drupal

architecture that successfully on-boards developers of all backgrounds, especially those

unaccustomed to Drupal’s interfaces, so that they can accomplish any task related to

content management or API consumption.

Reservoir focuses specifically on limiting functionality to several primary areas:

content modeling, content management, content exposure through APIs, and content

API documentation (Figure 15-2). As such, it is primarily intended for use as a lightweight

content repository with no inclusion of typical monolithic Drupal functionality.

As a result, unlike Contenta, Reservoir intentionally removes significant portions of

monolithic Drupal features, including the user-facing front end and modules that are

irrelevant to content repositories (e.g., Breakpoint, Contact, Block). For better or worse,

Reservoir also avoids use of Views, because it is assumed that consumers will prefer to

make use of well-documented and broadly understood responses from JSON API rather

than employ an unfamiliar module with a learning curve handling only read operations.

Figure 15-2.  Reservoir provides side-by-side representations of content in HTML
and in JSON API responses

Chapter 15 API-First Distributions

275

These characteristics comprise Reservoir’s minimalist orientation that prizes

developers of consumer applications as first-class citizens:

•	 Opinionated feature set: Like Contenta, Reservoir is quite opinionated

about its feature set and the modules it makes available to consumer

developers. Reservoir offers support for the JSON API and Simple

OAuth modules, which means developers no longer need to

configure REST resources or study authentication methods. In future

iterations, Reservoir is slated to include GraphQL support.

•	 Generated API documentation: With the help of the OpenAPI module

and ReDoc JavaScript library (see Figure 15-3), both of which ship

with Reservoir off the shelf, Reservoir generates API documentation

automatically as developers create and modify content models.

When you browse content using the default Drupal interface, API

documentation for each resource also appears on the right side.

Thanks to OpenAPI, Reservoir also offers an OpenAPI (Swagger)

description for developers who wish to use different documentation

generation tools. Contenta has since adopted all of these features.

Figure 15-3.  Thanks to OpenAPI and ReDoc, Reservoir autogenerates API
documentation that adjusts based on changes to the Drupal content model

Chapter 15 API-First Distributions

276

•	 Optimized user interface: On installing Reservoir for the first time,

a welcome tour (Figure 15-4) greets new users and presents an

overview of the content modeling, content management, and API

provisioning functionality available in Reservoir.

Since the releases of Contenta and Reservoir, the two projects have converged

significantly. After Reservoir’s release, its maintainers collaborated with the Contenta

team to introduce API documentation and side-by-side content representations, and this

functionality is now available in Contenta as well.

Today, Contenta and Reservoir only differ most noticeably in their priorities.

Reservoir strips down functionality to the bare essentials and focuses on a minimalist

approach favorable to developers entirely unaware of Drupal. On the other hand,

Figure 15-4.  The welcome screen on installing Reservoir also includes a guided
tour of its functionality

Chapter 15 API-First Distributions

277

Contenta forges a middle ground with familiar user interfaces in which those

experienced with Drupal can add functionality at will without repercussions and still

focus on content delivery to consumer applications. Contenta also employs default

content for a more demonstration-ready state.

Note R eservoir is available on GitHub at https://github.com/acquia/
reservoir. In addition, a demonstration video of the alpha by author Wim Leers is
available as of this writing at https://vimeo.com/222271467.

�Installing Reservoir
The easiest way to install Reservoir is using the Composer project template (see

Figure 15-5) with the following command:

$ composer create-project acquia/reservoir-project your-project-name

--stability=alpha

Next, in your webhost configuration, ensure that your domain points to the directory

your-project-name/docroot. From there, navigate to the domain and install Reservoir

normally.6

6�“Reservoir.” GitHub. 29 June 2017. Accessed 1 August 2018. https://github.com/acquia/
reservoir/blob/8.x-1.x/README.md

Chapter 15 API-First Distributions

https://github.com/acquia/reservoir
https://github.com/acquia/reservoir
https://vimeo.com/222271467
https://github.com/acquia/reservoir/blob/8.x-1.x/README.md
https://github.com/acquia/reservoir/blob/8.x-1.x/README.md

278

Note  The Reservoir Composer installer is available on GitHub
at https://github.com/acquia/reservoir-project.

�Using Reservoir
During the installation process, Reservoir creates four items: one item of sample content

(titled “Hello world”), three sample users (having three distinct roles), and an OAuth 2.0

client representing a consumer application. Once you are ready to deploy Reservoir to

production, you will need to delete these demo data and replace the OAuth 2.0 public

and private keys with your own (see Chapter 9 for more about OAuth 2.0). In addition,

ensure your CORS settings are correctly configured (see Chapter 7).

For Drupal developers, Reservoir might not be the optimal choice, as the data

Reservoir exposes are limited to nodes (content) and node types (content types).

Reservoir excludes much of the familiar Drupal user interface and features like Views

Figure 15-5.  Installing Reservoir’s Composer project template

Chapter 15 API-First Distributions

https://github.com/acquia/reservoir-project

279

and taxonomy terms. According to the authors, these restrictions simplify development

and enhance understanding, which in turn lowers maintenance costs downstream.

Despite Reservoir allowing the installation of Drupal modules to introduce new

capabilities or custom code, Reservoir’s minimalism means that experienced Drupal

developers might find Contenta more appealing.

In short, Reservoir emphasizes simplicity yet suffers from the limitations of its

minimalist orientation. On the other hand, Contenta focuses on robustness and

completeness out of the box, but it retains much of the complexity that can be confusing

for novice Drupal users.

Note  There is also a gradually expanding ecosystem around Reservoir, which
includes reservoir-docker, a Docker image for Reservoir available on GitHub
at https://github.com/mattgrill/reservoir-docker, and well, a
Drupal installation based on Reservoir and Acquia's BLT project, available on
GitHub at https://github.com/damontgomery/well.

�Headless Lightning
Lightning is a Drupal distribution developed by Acquia that aims to track ahead of

Drupal core with various useful modules that provide a richer experience for content

editors and Drupal developers off the shelf. In its original conception, Lightning was

intended solely for monolithic Drupal sites and typical Drupal use cases but has since

expanded its reach to include decoupled Drupal architectures as well.

The API-first functionality provided by Lightning is also available as a subprofile

in Headless Lightning, a more lightweight distribution that includes all of Reservoir’s

web services modules as well as its simplified administrative interface. Both Lightning

and Headless Lightning make use of the Content API feature, which is Lightning’s

nomenclature for the JSON API implementation it exposes.7

7�Powell, Dane. “Creating a Decoupled Drupal Application in 30 Minutes with Lightning, BLT, and
DrupalVM.” Acquia Developer Center. 28 November 2017. Accessed 1 August 2018. https://
dev.acquia.com/blog/creating-a-decoupled-drupal-application-in-30-minutes-with-
lightning-blt-and-drupalvm/28/11/2017/18886

Chapter 15 API-First Distributions

https://github.com/mattgrill/reservoir-docker
https://github.com/damontgomery/well
https://dev.acquia.com/blog/creating-a-decoupled-drupal-application-in-30-minutes-with-lightning-blt-and-drupalvm/28/11/2017/18886
https://dev.acquia.com/blog/creating-a-decoupled-drupal-application-in-30-minutes-with-lightning-blt-and-drupalvm/28/11/2017/18886
https://dev.acquia.com/blog/creating-a-decoupled-drupal-application-in-30-minutes-with-lightning-blt-and-drupalvm/28/11/2017/18886

280

Headless Lightning shares many of Reservoir’s goals in that it intends to simplify the

user interface presented to consumer developers, to offer opinions about the features

that users of a content repository would want, and to avoid impeding the progress of

content editors and site builders.8

As a matter of fact, this distinction between Lightning and Headless Lightning

addresses one of the key concerns about Contenta and Reservoir, because the foregoing

API-first distributions were optimized solely for the content repository use case rather

than a site-and-repository use case (see Chapter 4). Nonetheless, it is still impossible in

any of the API-first distributions to switch gracefully between the two use cases due to

their architectural dissimilarity.

Note  Lightning is available on GitHub at https://github.com/acquia/
lightning. Headless Lightning is available on GitHub at https://github.
com/acquia/headless-lightning.

�Installing Headless Lightning
The easiest way to install Headless Lightning is through the Composer-based project

template.

$ composer create-project acquia/lightning-project:dev-headless --no-

interaction --stability=dev

This command creates a directory named lightning-project containing a docroot

folder. You can customize the directory name by introducing an additional argument

before the --no-interaction and --stability flags.

$ composer create-project acquia/lightning-project:dev-headless your-

project-name --no-interaction --stability=dev

At the end of the installation process, like Reservoir, although there is no need to

configure REST resources, you will need to configure CORS support (see Chapter 7) and

OAuth authentication tokens (see Chapter 9).

8�“Headless Lightning.” GitHub. 7 November 2017. Accessed 1 August 2018. https://github.com/
acquia/headless-lightning/blob/master/README.md

Chapter 15 API-First Distributions

https://github.com/acquia/lightning
https://github.com/acquia/lightning
https://github.com/acquia/headless-lightning
https://github.com/acquia/headless-lightning
https://github.com/acquia/headless-lightning/blob/master/README.md
https://github.com/acquia/headless-lightning/blob/master/README.md

281

�Conclusion
Although API-first distributions still constitute a maturing element of the decoupled

Drupal ecosystem, they are essential for developers unfamiliar with Drupal and for

those looking for a simplified content repository rather than a full-fledged CMS as a back

end for their applications. In the last several years, there has been a flurry of activity in

the Drupal community to create distributions like Contenta, Reservoir, and Headless

Lightning, all of which share many features but also highlight many differences in

approach.

With the help of API-first distributions, developers who would have never considered

Drupal otherwise can leverage a more accessible and novice-friendly interface that

places components like API documentation and side-by-side representations front and

center. In the next chapter, we delve into the other extreme of the decoupled Drupal

ecosystem—starter kits, SDKs, and reference builds that aid developers building

consumers on the other side.

Chapter 15 API-First Distributions

283
© Preston So 2018
P. So, Decoupled Drupal in Practice, https://doi.org/10.1007/978-1-4842-4072-4_16

CHAPTER 16

Software Development
Kits and Reference Builds
Today, developers are opting to employ Drupal in novel ways that were unimaginable

only a few years ago. As a result, developers of wildly diverse backgrounds are now

contending with Drupal’s web services in unprecedented ways to serve content to their

own applications. Thanks to web services in Drupal 8 Core, Drupal is well-positioned for

a wide variety of consumer applications in distinct technologies. However, there’s just

one issue: Developers unfamiliar with Drupal don’t know how to use it.

In this chapter, we cover some of the most essential tools in the decoupled Drupal

ecosystem that stretch beyond typical web services—namely SDKs and reference builds

that accelerate consumer application development in technologies besides Drupal’s

own (see Figure 16-1). This enables developers who might have never discovered or

considered Drupal to try it without adopting the entire monolith.

Figure 16-1.  This diagram shows where API-first distributions (see Chapter 15),
SDKs, and reference applications fall in a typical decoupled Drupal architecture

284

The idea of an SDK is nothing new in web development and software in general, nor

is the notion of bridging a consumer application with an API using such an SDK. Today,

proprietary content-as-a-service solutions like Contentful and Prismic provide free and

open source SDKs that work seamlessly with their own web services while enabling

developers to write in their own language. Nevertheless, these SDKs, although free,

require a subscription to a proprietary platform with often opaque API specifications.

One of the primary motivators to choose Drupal is that it is free and open source.

With the aid of a robust ecosystem of SDKs, Drupal can effectively rival services like

Contentful as the only end-to-end API-first CMS available on the market, although there

is a long way to go to achieve a comprehensive set of SDKs for a sufficiently wide range

of technologies. In that sense, whereas SDKs are not inherently tied to typical Drupal

development, they play an important role as bridges to other technologies and as an

integral component of application ecosystems backed by Drupal.

Generally, SDKs in the decoupled Drupal ecosystem aim to compensate for the

lack of understanding that many developers new to Drupal have of its web services and

how to consume them. For instance, Waterwheel.js (formerly known as Hydrant) and

Waterwheel.swift (formerly known as the Drupal iOS SDK) aid developers of JavaScript

and Swift, respectively, in building Drupal-backed applications. With SDKs, developers

do not need to memorize nuances such as how fields of differing cardinalities are

exposed in JSON responses.

�The Waterwheel Ecosystem
The Waterwheel ecosystem is an emerging set of SDKs built by the Drupal community

that cater to developers of applications in non-Drupal technologies. If you’ll forgive the

flawed metaphor for a moment, Waterwheel helps developers “speak” Drupal’s language

by facilitating communication with less overhead between Drupal and disparate

technologies. Currently, there are two SDKs available in JavaScript (ES6) and Swift

respectively, along with an Ember add-on and React reference build.

�Waterwheel.js
Released in 2016, Waterwheel.js is a helper library that helps JavaScript developers

consume and manipulate Drupal content.

Chapter 16 Software Development Kits and Reference Builds

285

Note W aterwheel.js is available on GitHub at https://github.com/acquia/
waterwheel.js and on NPM at http://npmjs.org/package/waterwheel.
Previously, Waterwheel.js also included support for the Entity Query API module
(https://www.drupal.org/project/entityqueryapi) and its query
operations, but it has since been superseded by the JSON API module (see
Chapters 8 and 13).

Although Waterwheel.js contains an HTTP client that fits Drupal like a glove, it is

particularly versatile as developers can use it on the server side to issue API calls within

Node.js during the server-side execution of a framework like Ember or React. In addition,

you can use Waterwheel.js on the client side to conduct asynchronous requests after the

browser loads the client bundle. This means Waterwheel.js is universal in that its code

can be shared across the client/server boundary.

Due to the flexibility of Waterwheel.js, Drupal developers can also use it to enhance

the client-side experience of existing monolithic Drupal sites via AJAX-like interactions

or other HTTP clients that specialize in asynchronous requests such as superagent or

axios. As it is intended for use as a foundation for JavaScript frameworks, it is optimal for

both fully and progressively decoupled Drupal use cases.

Note T he superagent and axios libraries are available on NPM at https://
www.npmjs.com/package/superagent and https://www.npmjs.com/
package/axios, respectively.

Because Waterwheel.js is the easiest entry point for many developers building

consumer applications, we explore its features in more detail in the upcoming sections.

�Installing and Building Waterwheel.js

The easiest way to install Waterwheel.js is to clone the GitHub repository directly.

$ git clone git@github.com:acquia/waterwheel.js.git

You can also clone the GitHub repository through HTTPS.

$ git clone https://github.com/acquia/waterwheel.js.git

Chapter 16 Software Development Kits and Reference Builds

https://github.com/acquia/waterwheel.js
https://github.com/acquia/waterwheel.js
http://npmjs.org/package/waterwheel
https://www.drupal.org/project/entityqueryapi
https://www.npmjs.com/package/superagent
https://www.npmjs.com/package/superagent
https://www.npmjs.com/package/axios
https://www.npmjs.com/package/axios

286

To install development dependencies such as axios and qs (a library that handles

query strings), you can use the shorthand of npm install to fetch the libraries

Waterwheel.js needs.

$ npm i

To run tests and check coverage, run the shorthand test command.

$ npm t

Finally, the most crucial step of any client-side JavaScript application is to generate

a production-ready bundle that contains a minified version of all dependencies. The

following command creates a single bundle file in the dist directory containing all of the

built-in functionality of Waterwheel.js.

$ npm run build

�Instantiating Waterwheel.js

To create a new instance of Waterwheel.js on a Node.js server supporting ES6, you can use

the const keyword to require the Waterwheel module. Thereafter, you can instantiate a

new waterwheel by providing an object argument containing the Drupal source’s URI and

an OAuth 2.0 access token (for more information on OAuth 2.0, see Chapter 9).1

// On a Node.js server

const Waterwheel = require('waterwheel');

const waterwheel = new Waterwheel({

 base: 'http://drupal-backend.dd:8083',

 oauth: {

 grant_type: 'GRANT-TYPE',

 client_id: 'CLIENT-ID',

 client_secret: 'CLIENT-SECRET',

 username: 'USERNAME',

 password: 'PASSWORD'

 }

});

1�So, Preston. “Getting Started with Waterwheel.js and Resource Discovery.” Acquia Developer
Center. 30 September 2016. Accessed 18 July 2018. https://dev.acquia.com/blog/
getting-started-with-waterwheeljs-and-resource-discovery/30/09/2016/16911

Chapter 16 Software Development Kits and Reference Builds

https://dev.acquia.com/blog/getting-started-with-waterwheeljs-and-resource-discovery/30/09/2016/16911
https://dev.acquia.com/blog/getting-started-with-waterwheeljs-and-resource-discovery/30/09/2016/16911

287

To make Waterwheel available to a browser that supports ES6, you can import the

generated bundle (see previous section) with <script> and add it to the window object.

In progressively decoupled scenarios, you can also use Drupal asset libraries to include

the client-ready bundle.

// On a browser supporting ES6

// <script type="text/javascript" src="/path/to/waterwheel.js"></script>

const waterwheel = new window.Waterwheel({

 base: 'http://drupal-backend.dd:8083',

 oauth: {

 grant_type: 'GRANT-TYPE',

 client_id: 'CLIENT-ID',

 client_secret: 'CLIENT-SECRET',

 username: 'USERNAME',

 password: 'PASSWORD'

 }

});

Many browsers today still lack support for ES6, in which case you can still include the

client bundle with a traditional <script> tag before defining a waterwheel global in ES5.

// On a browser not supporting ES6

// <script type="text/javascript" src="/path/to/waterwheel.js"></script>

var waterwheel = new window.Waterwheel({

 base: 'http://drupal-backend.dd:8083',

 oauth: {

 grant_type: 'GRANT-TYPE',

 client_id: 'CLIENT-ID',

 client_secret: 'CLIENT-SECRET',

 username: 'USERNAME',

 password: 'PASSWORD'

 }

});

When you instantiate Waterwheel, you can also provide other properties to the

argument object that might be useful for your Waterwheel-driven consumer application.

For instance, you can provide a timeout argument that indicates how long a request can

Chapter 16 Software Development Kits and Reference Builds

288

idle before Waterwheel cancels it. The following is a list of possible additional properties

that Waterwheel optionally accepts, taken directly from the README as of this writing.2

•	 base: The base path for your Drupal instance. All request paths will

be built from this base.

•	 resources: A JSON object that represents the resources available to

waterwheel (see next two sections).

•	 oauth: An object containing information required for fetching and

refreshing OAuth Bearer tokens. Waterwheel recommends the

Simple OAuth module (see Chapter 9).

•	 grant_type: The type of OAuth 2.0 grant. As of this writing

password is the only supported value.

•	 client_id: The ID of your client.

•	 client_secret: The secret of your client.

•	 username: The user’s username.

•	 password: The user’s password.

•	 timeout: How long an HTTP request should idle before being

canceled.

•	 accessCheck: Indicates whether authentication should be used.

Possible values are true and false.

•	 jsonapiPrefix: If you have overridden the JSON API prefix, specify it

here and Waterwheel will use this over the default of jsonapi.

•	 validation: A boolean that defaults to true. If set to false, every

request will ignore any existing OAuth information, allowing you to

make requests without any authentication. If you have an open API,

then the Simple OAuth module is not necessary.

2�“Waterwheel.” GitHub. 30 August 2017. Accessed 18 July 2018. https://github.com/acquia/
waterwheel.js/blob/master/README.md

Chapter 16 Software Development Kits and Reference Builds

https://github.com/acquia/waterwheel.js/blob/master/README.md
https://github.com/acquia/waterwheel.js/blob/master/README.md

289

�Resource Discovery

Developers of consumer applications often grapple with the challenges of implementing

forms of client-side validation that mirror the server-side validation all requests

eventually undergo once received by the server. With the help of the OpenAPI

specification, represented in Drupal by the OpenAPI module (see Chapter 24 for more

about OpenAPI, a specification for self-documenting APIs), Waterwheel.js enables a

feature known as resource discovery.

Specifically, resource discovery allows consumer applications to understand the

Drupal content schema and avoid validation pitfalls without relying on the back-and-

forth with Drupal as the source for validation. This is crucial as among Drupal’s key

features is content modeling flexibility, which means that new content types and fields

therein can be added or removed arbitrarily.

Because consumer applications are necessarily unaware of how Drupal users have

modeled content on the CMS, and because developers typically lack a comprehensive

understanding of the serialization of entities in Drupal for web services, client-side

validation against a server-side Drupal content schema can be particularly difficult.

Consumer applications might also wish to add their own elements to the content model

that reside adjacent to Drupal’s content model, especially if they are working with other

data sources. In one of the most important benefits, consumer applications can perform

client-side validation without needing to consult the server at all.

In Waterwheel.js, resource discovery allows consumer application developers to

consume a metadata object when they instantiate waterwheel that contains information

about which entities and fields are available on Drupal for retrieval and manipulation.

�Populating Resources with Resource Discovery

To populate resources available to Waterwheel.js, you can provide a resources manifest

to enable resource discovery. Waterwheel.js can automatically process an OpenAPI

schema JSON file and validate any user-generated content against those responses

before issuing requests against Drupal.

Inspect the following example, for instance, which imports the OpenAPI schema

from a JSON file and incorporates it into the data available to Waterwheel.js.

// On a Node.js server

const Waterwheel = require('waterwheel');

const waterwheel = new Waterwheel({

Chapter 16 Software Development Kits and Reference Builds

290

 base: 'http://drupal-backend.dd:8083',

 resources: require('./resources.json'),

 oauth: {

 grant_type: 'GRANT-TYPE',

 client_id: 'CLIENT-ID',

 client_secret: 'CLIENT-SECRET',

 username: 'USERNAME',

 password: 'PASSWORD'

 }

});

If you wish to populate the Waterwheel.js resources later and not during

instantiation, you can do so with the populateResources() method, which issues an

additional API call to a resource provided by the OpenAPI Drupal module. Here we see

the method invoked with an ES6 promise to handle the response.

waterwheel.populateResources('http://drupal-test.dd:8083/resources.json')

 .then(res => {

 // ...

 });

Once you have populated the internal resources of Waterwheel.js, you can access

them using the getAvailableResources() method. The response returned by the

promise will contain an array of available resources, as illustrated in the following

comment. You can then validate incoming requests on resources against this array.

waterwheel.getAvailableResources()

 .then(res => {

 /*

 ['comment',

 'file',

 'menu',

 'node.article',

 'node.page',

 'node_type.content_type',

 'query',

 'taxonomy_term.tags',

Chapter 16 Software Development Kits and Reference Builds

291

 'taxonomy_vocabulary',

 'user']

 */

 });

Note T he OpenAPI Drupal module is available on Drupal.org at https://
www.drupal.org/project/openapi. Consult Chapter 24 for more details on
OpenAPI.

�Consuming and Manipulating Drupal with Waterwheel.js
Waterwheel.js, like Contenta.js (discussed later in the chapter), provides a bridge

between JavaScript developers and Drupal, allowing them to write in their native

language against Drupal’s web services to retrieve and manipulate content.

�Retrieving Content with Waterwheel.js

To retrieve content with Waterwheel.js, you can use the get() method on the api object,

identifying the type (and bundle if necessary) in the process. All queries in Waterwheel.

js return ES6 promises. Because Waterwheel.js requires both the entity type and bundle

to construct the appropriate resource path, we must identify both when we call get() by

identifying the appropriate resource within the api object.

// Node represents type with varied bundles

waterwheel.api['node:article'].get(1) // .then(...

waterwheel.api['node:page'].get(1) // .then(...

// User represents both type and bundle

waterwheel.api['user'].get(1) // .then(...

The get() method accepts two arguments: the identifier of the requested entity,

which is required (e.g., nid, tid, uid, etc.) for core REST, and the format of the response,

which is optional and defaults to json.

waterwheel.api['node:article'].get(1)

 .then(res => {

 // Drupal JSON response

 })

Chapter 16 Software Development Kits and Reference Builds

https://www.drupal.org/project/openapi
https://www.drupal.org/project/openapi

292

 .catch(err => {

 // Error

 });

To request an entity serialized as XML, include the desired format argument:

waterwheel.api['node:article'].get(1, 'xml')

 .then(res => {

 // Drupal JSON response

 })

 .catch(err => {

 // Error

 });

�Creating Content with Waterwheel.js

With Waterwheel.js, you can also create a new entity in core REST by issuing a POST

request and invoking the post() method. The following invocation of the post()

method creates a node of type Basic page with the title of “Hello Drupal.”

The post() method accepts two arguments: the body of the desired content entity,

which is formatted in such a way that Drupal will be able to deserialize it into a Drupal

entity, and the format, which is optional and defaults to JSON.

waterwheel.api['node:page'].post({

 "type": [

 {"target_id": "page"}

],

 "title": [

 {"value": "Hello Drupal"}

],

 "body": [

 {"value": "How are you today?"}

]

})

 .then(res => {

 // 201 Created

 })

Chapter 16 Software Development Kits and Reference Builds

293

 .catch(err => {

 // Error

 });

�Updating Content with Waterwheel.js

We can also issue PATCH requests, or update operations, against any content entity in

Drupal’s core REST by invoking the patch() method, which accepts three arguments:

the identifier of the entity needing an update (required), the body containing the

updated fields of the entity (required), and the optional format. The following query

updates the title and body of an article with an nid of 1.

waterwheel.api['node:article'].patch(1, {

 "nid": [

 {"value": "1"}

],

 "type": [

 {"target_id": "article"}

],

 "title": [

 {"value": "New title"}

],

 "body": [

 {"value": "New node"}

]

})

 .then(res => {

 // Updated entity in JSON

 })

 .catch(err => {

 // Error

 });

Similar to typical core REST responses, this PATCH query returns the newly updated

JSON object in the response, which can then be handled in the fulfilled promise.

Chapter 16 Software Development Kits and Reference Builds

294

�Deleting Content with Waterwheel.js

To delete an entity with Waterwheel.js, we simply need to provide the identifier as an

argument when we invoke the delete() method, and our Drupal entity is deleted.

waterwheel.api['user'].delete(2)

 .then(res => {

 // 204 No Content

 })

 .catch(err => {

 // Error

 });

�Retrieving Content with JSON API and Waterwheel.js

If you have JSON API installed on your Drupal site (see Chapters 8 and 12 for a full

overview), you can employ Waterwheel.js to issue queries against JSON API as well

with the help of the jsonapi object, which contains a get() method for retrieving both

individual content entities and entity collections.

As of this writing, only retrieval (get()), creation (post()), and deletion (delete())

are supported among the JSON API features of Waterwheel.js.

The get() method accepts three arguments:

•	 resource: The bundle and entity to be requested.

•	 params: Any other arguments required by your query, which are

recast as query string arguments before the request is issued.

•	 id: The UUID of the entity to be requested.

To retrieve a collection, you can supply the bundle and entity type as a string, which

forms the first argument, as you can see in the example given here. The following code

retrieves a default collection of articles from JSON API.

waterwheel.jsonapi.get('node/article', {})

 .then(res => {

 // Handle response

 })

 .catch(err => {

 // Error

 });

Chapter 16 Software Development Kits and Reference Builds

295

To retrieve a single resource, we can supply a third argument that is the UUID of the

entity in question. In this case, we are retrieving the article having the UUID expressed in

the argument.

waterwheel.jsonapi.get('node/article', {}, 'bc4acb41-d3fe-4e19-a43b-

c51665dab367')

 .then(res => {

 // Handle response

 })

 .catch(err => {

 // Error

 });

Thanks to JSON API, we can also retrieve related resources contained in

relationships within a requested resource. This means that in conjunction with the

article, we can also fetch the related user that authored the article by referring to the

uid contained within the article entity. We accomplish this by “overloading” the UUID

argument to state the relationship.

waterwheel.jsonapi.get('node/article', {}, 'bc4acb41-d3fe-4e19-a43b-

c51665dab367/uid')

 .then(res => {

 // Handle response

 })

 .catch(err => {

 // Error

 });

Finally, we can also use the second params argument to perform query operations on

the fly on any collections that we might wish to retrieve. Common examples of these can

be found in Chapter 12, and a few are reproduced here.

To sort by title in ascending order, we can provide a sort query string argument as

follows, reflecting the relative path /jsonapi/node/article?sort=title.

waterwheel.jsonapi.get('node/article', {

 sort: 'title'

})

 .then(res => {

Chapter 16 Software Development Kits and Reference Builds

296

 // Handle response

 })

 .catch(err => {

 // Error

 });

Prefixing the field name with a hyphen gives us the collection sorted by title in

descending order, reflecting the path /jsonapi/node/article?sort=-title.

waterwheel.jsonapi.get('node/article', {

 sort: '-title'

})

 .then(res => {

 // Handle response

 })

 .catch(err => {

 // Error

 });

We can also limit the collection to only 25 entries, reflecting the path /jsonapi/

node/article?page[limit]=25.

waterwheel.jsonapi.get('node/article', {

 page: {

 limit: '25'

 }

})

 .then(res => {

 // Handle response

 })

 .catch(err => {

 // Error

 });

We can ensure that only articles 26 through 50 are represented in the initial

collection, represented by the path /jsonapi/node/article?page[limit]=25&page

[offset]=25.

Chapter 16 Software Development Kits and Reference Builds

297

waterwheel.jsonapi.get('node/article', {

 page: {

 limit: '25',

 offset: '25'

 }

})

 .then(res => {

 // Handle response

 })

 .catch(err => {

 // Error

 });

As a final example, we can define our own filter—in this case allowing only those

articles with an identifier of 5 or higher—and apply it to the collection, here reflecting the

path constructed as follows:

/jsonapi/node/article

?filter[nid_filter][condition][value]=5

&filter[nid_filter][condition][field]=nid

&filter[nid_filter][condition][operator]=%3C

Here, %3C represents the left angle bracket <. As you can see, thanks to the built-in

query handling present in Waterwheel.js, we don’t need to use the UTF-8 replacement.

waterwheel.jsonapi.get('node/article', {

 filter: {

 nid_filter: {

 condition: {

 value: '5',

 field: 'nid',

 operator: '<'

 }

 }

 }

})

Chapter 16 Software Development Kits and Reference Builds

298

 .then(res => {

 // Handle response

 })

 .catch(err => {

 // Error

 });

�Creating Content with JSON API and Waterwheel.js

Waterwheel.js also allows us to create and delete content entities exposed by JSON API,

but as of this writing it does not permit us to update them through a PATCH request.

The first argument—the concatenated bundle and entity type—of post() and

delete() are identical to get() on the jsonapi object. However, the second argument

differs; in post(), it is the desired data of the article to be created, whereas in delete(),

it is the UUID of the entity to be deleted.

In this first example, we create an article with predefined data that Drupal will use to

construct the entity.

const postData = {

 'data': {

 'type': 'node--article',

 'attributes': {

 'langcode': 'en',

 'title': 'My stealthily created new article',

 'status': '1',

 'promote': '0',

 'sticky': '0',

 'default_langcode': '1',

 'path': null,

 'body': {

 'value': 'Say hello to my stealthily created new article.'

 }

 }

 }

};

Chapter 16 Software Development Kits and Reference Builds

299

waterwheel.jsonapi.post('node/article', postData)

 .then(res => {

 // Handle response

 })

 .catch(err => {

 // Error

 });

�Deleting Content with JSON API and Waterwheel.js

In this second example, we delete an entity by referring to its UUID in our invocation of

delete(). Notice the difference in the argument from post().

waterwheel.jsonapi.delete('node/article', 'bc4acb41-d3fe-4e19-a43b-

c51665dab367/uid')

 .then(res => {

 // Handle response

 })

 .catch(err => {

 // Error

 });

�Waterwheel.swift
Formerly known as the Drupal iOS SDK, Waterwheel.swift offers robust support for

Drupal 8’s core REST API and common Swift consumer needs like session management

and authentication capabilities. Because it is intended for integration with Swift,

Waterwheel.swift supports iOS, macOS, tvOS, and watchOS. Although a full inspection of

Waterwheel.swift’s possibilities is beyond the scope of this book, we highlight a few key

characteristics here.

Thanks to Swift, Waterwheel.swift benefits from considerable performance

advantages over its antecedent, the Drupal iOS SDK, which was implemented in

Objective-C. As a result, developers building Swift applications can take advantage of the

language’s closures among other language features.

For example, for iOS, Waterwheel.swift provides a ready-made login button

that developers can subclass or place into any desired space in the view. This

Chapter 16 Software Development Kits and Reference Builds

300

button can be employed in concert with a customized LoginViewController

(waterwheelLoginViewController) that provides username and password fields out of

the box to allow developers to include Drupal user login and logout functionality into a

Swift application with minimal overhead.

In conclusion, Waterwheel.swift transforms the Swift developer experience for

Drupal and renders it effortless. Thanks to Swift, you can take advantage of next-

generation syntactic features for Apple technologies and exchange data with Drupal

without having to learn or understand Drupal’s complex and often unwieldy web

services ecosystem.

Note W aterwheel.swift is available on GitHub at https://github.com/
kylebrowning/waterwheel.swift, and a demo application is also available
at https://github.com/kylebrowning/waterwheel.swift/tree/4.x/
waterwheelDemo.

�ember-drupal-waterwheel
In this section and the next, we dig into elements of the add-ons, plug-ins, and reference

builds that are available for developers building consumer applications in Ember and

React as part of the Waterwheel ecosystem. In later sections, we move into the Contenta

ecosystem.

The ember-drupal-waterwheel add-on, authored by Chris Hamper (hampercm),

aids Ember developers building consumer applications backed by Drupal. As an

example, ember-drupal-waterwheel is compatible with the FastBoot add-on, which

provides server-side rendering for Ember applications.

We can use the ember-drupal-waterwheel add-on at different stages of Ember

application development, whether we are connecting an existing Ember application

to a Drupal web services provider (e.g., Contenta, Reservoir, or Headless Lightning) or

creating a new Ember application from scratch.

Although Ember ships out of the box with a generic JSONAPIAdapter that handles

requests and responses from a variety of APIs adhering to the JSON API specification, the

ember-drupal-waterwheel add-on’s included adapter and serializer work with Drupal-

specific JSON API requests and responses, along with OAuth 2.0 authentication provided

by the Simple OAuth module (see Chapter 9).

Chapter 16 Software Development Kits and Reference Builds

https://github.com/kylebrowning/waterwheel.swift
https://github.com/kylebrowning/waterwheel.swift
https://github.com/kylebrowning/waterwheel.swift/tree/4.x/waterwheelDemo
https://github.com/kylebrowning/waterwheel.swift/tree/4.x/waterwheelDemo

301

To begin, use Ember CLI, Ember’s own command-line interface, to install the add-on.

$ ember new my-app

$ cd my-app

$ ember install ember-drupal-waterwheel

ember-drupal-waterwheel allows you to quickly generate Ember models, routes,

and templates that reflect Drupal entity types on the fly. By using the ember generate

command (or its shorthand, ember g) with drupal-prefixed arguments, we can create

ready-made Ember application assets that can be modified from their foundation.

$ ember g drupal-article

$ ember g drupal-tag

We can also generate the required models, routes, and templates for custom Drupal

entities by passing in the custom entity name as an argument following the generic entity

type name.

$ ember g drupal-entity my_custom_entity

Note T he ember-drupal-waterwheel add-on is available on GitHub at
https://github.com/acquia/ember-drupal-waterwheel.

�react-waterwheel-app
The react-waterwheel-app reference application (see Figure 16-2) integrates with a

Drupal back end using the Waterwheel.js library in conjunction with a boilerplate React

application, which offers a simple editorial interface for CRUD on content entities.

Chapter 16 Software Development Kits and Reference Builds

https://github.com/acquia/ember-drupal-waterwheel

302

Another similarity between the React- and Ember-driven reference applications in the

Waterwheel ecosystem is easy configurability thanks to the src/config.js file. In react-

waterwheel-app, you can connect the React application to a Drupal web services provider by

saving the file with the appropriate Drupal hostname and credentials needed for OAuth 2.0.

To kick things off with react-waterwheel-app and a connected Drupal site, clone the

repository from GitHub and run the commands shown here. The react-waterwheel-

app project employs Yarn as a dependency manager, which is in line with many modern

JavaScript ecosystems.

$ git clone https://github.com/acquia/react-waterwheel-app

$ cd react-waterwheel-app

$ yarn install

Figure 16-2.  A user’s page on react-waterwheel-app that shows a listing of
content associated with that user

Chapter 16 Software Development Kits and Reference Builds

303

Note T he react-waterwheel-app reference build is available on GitHub at
https://github.com/acquia/react-waterwheel-app.

�The Contenta Ecosystem
As discussed in Chapter 15, the community-led Contenta distribution is an effort to

provide a comprehensive back end for decoupling Drupal that is feature-rich and

integrates seamlessly with a variety of demonstrations and reference builds that are

optimized for use with Contenta rather than with a generic Drupal back end. The

Contenta team has also made significant efforts in reaching other communities that have

graciously contributed referenceable consumers.

Although Contenta has a wider range of reference builds than the Waterwheel

ecosystem, as of this writing these often tend to be in a great deal of flux and as a result

unstable. However, some of the reference builds are robust enough to figure in this

chapter. At the end of this section, we also cover Contenta.js, which was released in July

2018 to provide a full Node.js middleware layer specifically for the Contenta CMS.

�Contenta Reference Builds
Unlike the Waterwheel ecosystem, which aims to provide generic SDKs that developers

can use with any decoupled Drupal back end, the Contenta ecosystem places greater

emphasis on demoable applications that adhere to a single design, namely the Umami

theme produced by the Out of the Box initiative. This has the particular advantage of

facilitating comparisons across multiple consumers, which benefits evaluators.

Although a comprehensive and in-depth look at each of the reference builds is

beyond the scope of this volume, and the reference builds themselves are less stable

than the Contenta CMS, here we cover a few of the most popular Contenta consumers.

�contenta_angular

The contenta_angular reference application aims to provide a set of best practices for

building not only Drupal-backed Angular applications but also Angular applications

in general. To this end, contenta_angular employs Angular CLI as its command-

line interface of choice (see Chapter 19 for more about Angular CLI), which includes

functionality for application scaffolding, testing, and more.

Chapter 16 Software Development Kits and Reference Builds

https://github.com/acquia/react-waterwheel-app

304

In addition, contenta_angular is offline-capable thanks to the use of service

workers. The contenta_angular service worker caches external API calls and files loaded

from Drupal on the client side, which means that the entire application is capable of

functioning offline. The contenta_angular application also includes support for HTTP/2

server push, which allows the server to initiate transmission of JavaScript and CSS assets

as soon as the first request is issued.

Finally, contenta_angular makes use of several other elements of the Angular

ecosystem such as a Material Design-based design that includes Sass compilation

provided for free by Angular CLI. It also adheres to the ngrx 4 library’s approach to state

management, in which requests to remote APIs are considered side effects so that a failing

request does not lead to an overly optimistic state change that is difficult to revert.3

We can install contenta_angular using the following steps as of this writing. At the

end of this process, the local build is made available at http://localhost:4200.

$ npm install -g @angular/cli

$ git clone https://github.com/contentacms/contenta_angular.git

$ cd contenta_angular

$ npm install

$ ng serve

From there, you can change configurations present in ngsw-manifest.json, src/

environments/environment.prod.js, and src/environments/environment.js to

provide a different decoupled Drupal host besides the public Contenta host.

Note  contenta_angular is available on GitHub at https://github.com/
contentacms/contenta_angular, and a demo application is available as of
this writing at https://contenta-angular.firebaseapp.com.

�contenta_ember

The contenta_ember reference application also uses the official command-line interface

of its framework, Ember (see Chapter 21 for more about Ember). With Ember CLI,

developers have access to scaffolding tools similar to those of Angular CLI, built-in

3�“Contenta Angular.” GitHub. 10 January 2018. Accessed 24 July 2018. https://github.com/
contentacms/contenta_angular/blob/master/README.md

Chapter 16 Software Development Kits and Reference Builds

https://github.com/contentacms/contenta_angular
https://github.com/contentacms/contenta_angular
https://contenta-angular.firebaseapp.com
https://github.com/contentacms/contenta_angular/blob/master/README.md
https://github.com/contentacms/contenta_angular/blob/master/README.md

305

testing (Ember places a heavy emphasis on automated testing), and bundling that

produces production-ready code.

One of the most compelling features of contenta_ember is its capability for Ember

code generation. With the help of Ember CLI, you can generate bare-metal Ember

models, components, and other code with a single command.4

Installing contenta_ember is just as straightforward as installing contenta_angular.

$ git clone https://github.com/contentacms/contenta_ember.git

$ cd contenta_ember

$ npm install

$ ember serve

To run tests locally once, or to run tests on every change to a file, use the following

commands, respectively.

$ ember test

$ ember test --server

To build your Ember application for production-ready use, you can use the ember

build command, which also accepts a variety of flags.

$ ember build --environment production

Note  contenta_ember is available on GitHub at https://github.com/
contentacms/contenta_ember, and a demo application is available as of this
writing at http://umami.emc23.com.

�contenta_react

The contenta_react reference application leverages an emerging project in the React

ecosystem, namely Create React App, the objective of which is to resolve many of the

challenges for those beginning their journeys with React by providing a ready-made

boilerplate with some of the most important React features.

4�“Contenta – Ember Frontend.” GitHub. 3 January 2018. Accessed 24 July 2018. https://github.
com/contentacms/contenta_ember/blob/master/README.md

Chapter 16 Software Development Kits and Reference Builds

https://github.com/contentacms/contenta_ember
https://github.com/contentacms/contenta_ember
http://umami.emc23.com
https://github.com/contentacms/contenta_ember/blob/master/README.md
https://github.com/contentacms/contenta_ember/blob/master/README.md

306

Note  Create React App is available on GitHub at https://github.com/
facebook/create-react-app.

contenta_react also employs Redux (a predictable state container for JavaScript

applications), Aphrodite (a provider of framework-agnostic CSS-in-JavaScript), and

server-side rendering.5

As of this writing, to install contenta_react and to get started quickly with a local

server at https://localhost:3000, use the following commands.

$ git clone https://github.com/contentacms/contenta_react.git

$ cd contenta_react

$ yarn install

$ yarn start

To run the application in development mode, where the page reloads on every edit

to a file and the console logs development errors, you can use the following command.

$ yarn run start:dev

To create a production-ready build that is placed in the build folder, use the

following commands. Running yarn start after the build command will initialize the

application in production with server-side rendering of the initial page state.

$ yarn build

$ yarn start

Note  contenta_react is available on GitHub at https://github.com/
contentacms/contenta_react.

5�“Contenta React Demo.” GitHub. 10 July 2017. Accessed 24 July 2018. https://github.com/
contentacms/contenta_react/blob/master/README.md

Chapter 16 Software Development Kits and Reference Builds

https://github.com/facebook/create-react-app
https://github.com/facebook/create-react-app
https://github.com/contentacms/contenta_react
https://github.com/contentacms/contenta_react
https://github.com/contentacms/contenta_react/blob/master/README.md
https://github.com/contentacms/contenta_react/blob/master/README.md

307

�contenta_vue_nuxt

The contenta_vue_nuxt reference application states a vision of reflecting the same

characteristics that popularized Vue.js (for more about Vue.js, see Chapter 20). This

ideal state denotes a low barrier to entry, incremental adoptability, code readability, and

learnability for easy onboarding.6

Contenta’s Vue.js consumer also leverages Nuxt.js, which provides server-side rendering

for Vue.js, but it does not use Vue CLI. Both of these projects are discussed in Chapter 20.

To install contenta_vue_nuxt, use the following commands.

$ git clone https://github.com/contentacms/contenta_vue_nuxt.git

$ cd contenta_vue_nuxt

$ npm install

To spin up a local environment with hot reloading (refresh on every code edit),

execute the following.

$ npm run dev

To run unit tests, generate a build for production, and launch a production server,

execute the following commands in order.

$ npm test

$ npm run build

$ npm run start

Note  contenta_vue_nuxt is available on GitHub at https://github.com/
contentacms/contenta_vue_nuxt, and a demo application is available as of
this writing at https://contentanuxt.now.sh.

If the discussions of Waterwheel and Contenta reference applications felt overly

superficial and introductory, it is due to the fact that we have not yet introduced the

JavaScript technologies that undergird them. We return to each of these for inspiration in

the process of building our own Drupal-backed JavaScript consumers in Part 5.

6�“Drupal 8 Headless Example with Contenta CMS / JSON API and Vue.js.” GitHub. 25 April 2018.
Accessed 24 July 2018. https://github.com/contentacms/contenta_vue_nuxt/blob/master/
README.md

Chapter 16 Software Development Kits and Reference Builds

https://github.com/contentacms/contenta_vue_nuxt
https://github.com/contentacms/contenta_vue_nuxt
https://contentanuxt.now.sh
https://github.com/contentacms/contenta_vue_nuxt/blob/master/README.md
https://github.com/contentacms/contenta_vue_nuxt/blob/master/README.md

308

�Contenta.js
Released to complement the use of Contenta CMS for JavaScript consumers, Contenta.js

addresses the pressing need for a canonical Node.js proxy acting as middleware between

the Drupal content API layer and a JavaScript application on the front end. As more

users began to adopt Contenta CMS for their own projects, the Contenta team noticed

that this requirement was rapidly leading to fragmentation in the form of agencies each

having their own unique Node.js proxy to serve Drupal content to a variety of JavaScript

consumers.7

There are several reasons why a Node.js middleware layer is essential. First, when

a decoupled Drupal architecture requires the aggregation of data from multiple

sources, Node.js is a better mechanism for retrieving those data due to its nonblocking

I/O. Second, Node.js is an explicit requirement when performing server-side rendering

for universal applications. Finally, a middleware layer in Node.js provides caching,

which allows for requests to retrieve data from the cache in Node.js rather than resorting

directly to the data’s origin. Because of the varied motivations for Contenta.js, the stated

philosophy for the middleware is to “fork and go.”8

The stated goal of Contenta.js is “to bring consistency and collaboration—a set of

common practices so agencies can focus on creating the best software possible with

Node.js.” Indeed, it comes with certain features that developers consider important for a

Node.js proxy.

First, Contenta.js contains seamless integration with any Contenta CMS installation

that exposes APIs as long as the URI of the site is provided in configuration. Contenta

installations that have the JSON API, JSON-RPC (see Chapter 23), Subrequests

(see Chapter 23), and OpenAPI (see Chapter 24) modules enabled need no further

configuration.

Second, Contenta.js includes several useful features for development, including a

multithreaded Node.js server, a Subrequests server that facilitates request aggregation, a

Contenta-provided Redis integration, a type-safe development environment making use

of Flow, and a more developer-friendly approach to configuring CORS.

7�Aguiló Bosch, Mateu. “Introducing Contenta JS.” Human Bits. 16 July 2018. Accessed 24 July 2018.
http://humanbits.es/web-development/2018/07/16/contentajs/

8�“ContentaJS.” GitHub. 21 July 2018. Accessed 24 July 2018. https://github.com/contentacms/
contentajs/blob/master/README.md

Chapter 16 Software Development Kits and Reference Builds

http://humanbits.es/web-development/2018/07/16/contentajs/
https://github.com/contentacms/contentajs/blob/master/README.md
https://github.com/contentacms/contentajs/blob/master/README.md

309

Note  Contenta.js is available on GitHub at https://github.com/
contentacms/contentajs.

�Conclusion
Whereas headless CMSs only traffic in open source when it comes to their consumer

SDKs, decoupled Drupal touts the unique benefit of being an open source CMS from

end to end, whether you are employing reference builds or SDKs from the Contenta or

Waterwheel ecosystems. With SDKs for a variety of languages and reference builds for a

variety of JavaScript technologies, Contenta and Waterwheel both articulate a promising

future for developers of consumer applications backed by decoupled Drupal.

Indeed, the better integrated Drupal can become with other technologies, namely

JavaScript frameworks and native mobile technologies such as Swift, the more assured

Drupal’s API-first future becomes, and the more robust Drupal’s web services can

be based on feedback from consumer application developers. With capable libraries

and references, decoupled Drupal can unlock adoption by other technologies and

communities that might never even have searched for Drupal in the first place.

In Part 5, after spending all of our time in Drupal or between Drupal and its

consumers, we turn now to the front end and the consumer. Because every consumer

is different, it is impossible to consider each technology in these subsequent chapters.

As a result, we focus solely on the most important JavaScript frameworks that also have

native equivalents, namely Angular, Ember, React, and Vue. After introducing each of

these projects, we build a simple application with an identical interface across all four

that highlights the differences between them and that leverages all of the foundations we

have established so far.

Chapter 16 Software Development Kits and Reference Builds

https://github.com/contentacms/contentajs
https://github.com/contentacms/contentajs

PART V

Integration with
Consumers
In Part 4, we conducted a brief survey of the burgeoning decoupled Drupal ecosystem

and its most frequently leveraged components, including API-first distributions like

Contenta, Reservoir, and Headless Lightning and SDKs and reference builds that assist

developers with a starting point for their own implementations.

In these chapters, we delve into some of the most commonly used JavaScript

technologies that power Drupal-backed applications, namely React, React Native,

Angular, Vue.js, and Ember. In the process, we explore the spectrum of opinionatedness

across all of these technologies and constructed applications that interact with

Drupal’s web services. It is, of course, impossible to cover these projects with the

comprehensiveness needed to explain all of their concepts, as each would warrant its

own book and more.

The JavaScript technologies we scrutinize in these chapters run the gamut between

limited view-focused libraries and highly opinionated MV* (model–view–anything)

frameworks. Both categories of JavaScript technologies have seen large-scale adoption

in the front-end development community. Nonetheless, there are significant differences

between these tools along multiple dimensions.

For instance, although React falls on the less opinionated end of the spectrum, it also

leaves many of the necessary decisions about other tools up to the developer, which can

result in a challenging learning curve. Other tools, namely Angular and Ember, are highly

opinionated about how they expect developers to use their features. As an example,

Ember includes JSON API support as a default, whereas Angular obligates the use of

312

TypeScript. Meanwhile, React and Vue.js are often considered by many in the JavaScript

community to be more flexible and to allow different solutions. For instance, whereas

we can leverage Waterwheel.js freely by including it as a dependency in React, because

Ember has a default adapter for JSON API, Waterwheel.js is superfluous.

Because React is the most popular of the JavaScript projects employed in the

JavaScript community and it is well-represented in decoupled Drupal architectures

today, we start our tour there. Afterward, we cover Drupal-backed applications in React

Native, Angular, Vue.js, and Ember.

Part V  Integration with Consumers

313
© Preston So 2018
P. So, Decoupled Drupal in Practice, https://doi.org/10.1007/978-1-4842-4072-4_17

CHAPTER 17

React
React is a popular JavaScript view library frequently used in conjunction with

other technologies to create single-page JavaScript applications. Started in 2013 by

Facebook, React has quickly outpaced other similar projects in popularity due to its

declarative approach to state, colocation of templates with view logic, and relative

lack of opinionatedness about the stack, which means it is most dissimilar to Angular

(see Chapter 19) and Ember (see Chapter 21). In the last several years, an extensive

ecosystem has developed surrounding the core React library.

React calls itself a “JavaScript library for building user interfaces” and states the

following on its home page:

React makes it painless to create interactive UIs. Design simple

views for each state in your application, and React will efficiently

update and render just the right components when your data

changes.1

Unlike other frameworks, React emphasizes its unique character as a library, not

a traditional model–view–controller (MVC) framework. Due to its focus on providing

reusable and nestable components, many choose to think of React as the view layer

within an MVC architecture. Because it is solely a view library, architects frequently pair

other technologies with React, and there is often less guidance when it comes to tooling

choices.

Traditionally, MVC frameworks using a declarative approach and two-way data

binding were obligated to apply changes directly on the DOM. AngularJS, for instance,

manually updated DOM nodes. Meanwhile, React uses a Virtual DOM, which is an

abstract DOM that allows different user interface states to be diffed (compared with

all differences accounted for), thus facilitating the most efficient DOM manipulation

possible.

1�“React.” React. 2018. Accessed 17 September 2018. https://reactjs.org

https://reactjs.org

314

Due to the lack of tooling coverage across the stack, React builds can be particularly

challenging and burdensome. In many React architectures, decisions need to be made

about whether to use the Flux architectural approach, the Redux binding library, and other

smaller libraries such as react-router, now the most commonly used routing library for

React applications. One final drawback of React is its spotty support for Web Components,

which contrasts it with frameworks like Ember and presents issues of forward compatibility.2

Note  For more information about React, consult the web site at https://
reactjs.org. For more information about Web Components support in
React, consult the documentation at https://reactjs.org/docs/web-
components.html.

�Key Concepts in React
Whereas in previous years, the React ecosystem had a notoriously difficult learning

curve, today the process of creating a React application is much simpler thanks to the

create-react-app project, which provides a fully functioning React application without

the need for additional build configuration in tools like Webpack and Babel.

�Scaffolding a React Application and Installing
Dependencies
To create a new create-react-app application, execute the following commands.

$ npx create-react-app ddip-react

$ cd ddip-react

$ yarn start

The final command triggers a local server to start and to make your React application

available at http://localhost:3000. You can easily create a minified client-ready

bundle with the following command.

$ yarn build

2�So, Preston. “Decoupled Drupal with React.” 8 April 2016. Accessed 17 September 2018.
http://prestonso.github.io/decoupled-drupal-react

Chapter 17 React

https://reactjs.org
https://reactjs.org
https://reactjs.org/docs/web-components.html
https://reactjs.org/docs/web-components.html
http://prestonso.github.io/decoupled-drupal-react

315

Note  npx is available on versions of npm 5.2 and higher.

We also need to include and install several dependencies that we will need in our

code base, particularly react-router-dom, which, as one of the most common routing

libraries in the React ecosystem, provides all of the capabilities of react-router along

with the ability to create links across routes. We cover how to perform routing in React

in due course. Note that to execute the following command, you will need to open a new

terminal window or stop the local server.

$ yarn add react-router-dom

We will use axios to perform retrievals from the Drupal site that will back our

application; we need to include it as well. If you require OAuth 2.0 authentication (see

Chapter 9) as well, you might wish to consider Waterwheel.js (see Chapter 16), which

comes with it included.

$ yarn add axios

At the end of this process, your package.json file should look like the following.

{

 "name": "ddip-react",

 "version": "0.1.0",

 "private": true,

 "dependencies": {

 "axios": "^0.18.0",

 "react": "^16.5.2",

 "react-dom": "^16.5.2",

 "react-router-dom": "^4.3.1",

 "react-scripts": "2.0.3"

 },

 "scripts": {

 "start": "react-scripts start",

 "build": "react-scripts build",

 "test": "react-scripts test",

 "eject": "react-scripts eject"

 },

Chapter 17 React

316

 "eslintConfig": {

 "extends": "react-app"

 },

 "browserslist": [

 ">0.2%",

 "not dead",

 "not ie <= 11",

 "not op_mini all"

]

}

Your directory structure should appear as follows (excluding the node_modules

directory).

├── README.md
├── package.json
├── public
│ ├── favicon.ico
│ ├── index.html
│ └── manifest.json
├── src
│ ├── App.css
│ ├── App.js
│ ├── App.test.js
│ ├── index.css
│ ├── index.js
│ ├── logo.svg
│ └── serviceWorker.js
└── yarn.lock

Note T he remainder of this chapter is loosely based on and inspired by the
code for react-waterwheel-app, authored by Matt Grill (drpal) and covered in
Chapter 16.

Chapter 17 React

317

�The Index Component
As mentioned before, React has a concept of nestable and reusable components that

include the overarching root component. Whenever we use those components in

the context of the application, we often need to pass in properties that provide that

component with differentiated information that it should render.

Within the src directory, we can create our first component, which create-react-

app has already scaffolded for us and will be the index (root) component into which all

other components will render. We need to fetch all of our dependencies. Change the

contents of src/App.js to the following.

// src/App.js

import React, { Component } from 'react';

import {

 BrowserRouter as Router,

 Route,

 Link

} from 'react-router-dom';

class App extends Component {

 constructor(props) {

 super(props);

 this.state = {};

 }

 componentWillMount() {

 this.setState({

 articles: [

 {

 id: '3ca469da-b905-4a77-8d97-954abcdc4cf6',

 attributes: {

 title: 'Capto',

 uuid: '3ca469da-b905-4a77-8d97-954abcdc4cf6',

 created: 1526387013,

 body: {

 value: 'Camur'

 }

Chapter 17 React

318

 }

 },

 {

 id: '1e1a4598-f9c7-4ce7-adbd-7603401cc23b',

 attributes: {

 title: 'Esse Ex Nibh Valde Valetudo',

 uuid: '1e1a4598-f9c7-4ce7-adbd-7603401cc23b',

 created: 1526387013,

 body: {

 value: 'Illum loquor persto plaga premo.'

 }

 }

 }

]

 });

 }

 render() {

 return (

 <div className="App">

 <h1>React app</h1>

 </div>

);

 }

}

export default App;

It will be useful for us to look at each section of this code in turn to understand how

React is handling certain important elements. First, we introduce all of our dependencies.

import React, { Component } from 'react';

import { render } from 'react-dom';

import {

 BrowserRouter as Router,

 Route,

 Link

} from 'react-router-dom';

Chapter 17 React

319

Then, we implement a Component class and populate it with any properties that are

defined when the component is instantiated by React.

class App extends Component {

 constructor(props) {

 super(props);

 this.state = {};

 }

Finally, we hook into React’s component life cycle by using the

componentWillMount() method to retrieve data. In this case, because we have not yet

introduced Drupal, we are providing dummy data.

 componentWillMount() {

 this.setState({

 articles: [

 {

 id: '3ca469da-b905-4a77-8d97-954abcdc4cf6',

 attributes: {

 title: 'Capto',

 uuid: '3ca469da-b905-4a77-8d97-954abcdc4cf6',

 created: 1526387013,

 body: {

 value: 'Camur'

 }

 }

 },

 {

 id: '1e1a4598-f9c7-4ce7-adbd-7603401cc23b',

 attributes: {

 title: 'Esse Ex Nibh Valde Valetudo',

 uuid: '1e1a4598-f9c7-4ce7-adbd-7603401cc23b',

 created: 1526387013,

 body: {

 value: 'Illum loquor persto plaga premo.'

 }

 }

Chapter 17 React

320

 }

]

 });

 }

Finally, we render the component, but as you can see, we have not yet provided the

data, and if you open your application with npm run start, the application is empty. In

the next section, we cover React’s native templating language, JSX.

Note  For more information about React components, consult the documentation
at https://reactjs.org/docs/components-and-props.html.

�React State and Declarative Rendering
Like other major frameworks and libraries, React includes a native approach to perform

declarative rendering by colocating incoming properties with the markup of the

components they concern. This leads to a highly legible template written in JSX, React’s

syntax extension to JavaScript that looks similar to HTML or XML. JSX can be used to

render both traditional HTML elements as well as React components.

The first thing we will do is update our render() method with the logic necessary to

render the articles into the application. Consider the following example and update

src/App.js to reflect this current state.

// src/App.js

import React, { Component } from 'react';

import {

 BrowserRouter as Router,

 Route,

 Link

} from 'react-router-dom';

class App extends Component {

 constructor(props) {

 super(props);

 this.state = {};

 }

Chapter 17 React

https://reactjs.org/docs/components-and-props.html

321

 componentWillMount() {

 this.setState({

 articles: [

 {

 id: '3ca469da-b905-4a77-8d97-954abcdc4cf6',

 attributes: {

 title: 'Capto',

 uuid: '3ca469da-b905-4a77-8d97-954abcdc4cf6',

 created: 1526387013,

 body: {

 value: 'Camur'

 }

 }

 },

 {

 id: '1e1a4598-f9c7-4ce7-adbd-7603401cc23b',

 attributes: {

 title: 'Esse Ex Nibh Valde Valetudo',

 uuid: '1e1a4598-f9c7-4ce7-adbd-7603401cc23b',

 created: 1526387013,

 body: {

 value: 'Illum loquor persto plaga premo.'

 }

 }

 }

]

 });

 }

 render() {

 return (

 <div className="App">

 <h1>React app</h1>

 {this.state.articles && this.state.articles.map(article => (

 <li key={article.id}>

Chapter 17 React

322

 {article.attributes.title}

 {article.attributes.created}

 {article.attributes.body.value}

))}

 </div>

);

 }

}

export default App;

Scrutinize the render() method just shown. As you can see, we are verifying that the

data are present within the state object before accessing its values in a list underneath. In

the process, we have created a simple content listing that you can also see in Figure 17-1.

Note  For more information about JSX, consult the documentation at https://
reactjs.org/docs/introducing-jsx.html. For more information about
declarative rendering, consult the documentation at https://reactjs.org/
docs/rendering-elements.html.

Figure 17-1.  The current state of our React application renders our dummy data

Chapter 17 React

https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/rendering-elements.html
https://reactjs.org/docs/rendering-elements.html

323

�React Routing and Components
Now, we can split our application into the primary view and a component that displays

information about individual articles. To do this, we need to use React Router and

provide a new component to React. In your src directory, create a new file named

Article.js. This will be our new article detail component.

Insert the following into src/Article.js. As you can see, we are placing the

information formerly contained inside the nested list within its own individual article

detail component. We are also associating a type with article data for easier debugging

thanks to type-checking in PropTypes.

// src/Article.js

import React from 'react';

import PropTypes from 'prop-types';

const Article = ({article}) => (

 <div className="article-detail">

 {article && (

 <article>

 <h2>{article.attributes.title}</h2>

 {article.id}

 {article.attributes.created}

 <div>{article.attributes.body.value}</div>

 </article>

)}

 </div>

);

Article.propTypes = {

 article: PropTypes.object

};

export default Article;

Chapter 17 React

324

Now, we can update our index component with logic that allows us to select articles.

First, we need to import our new Article component so that our index component is

aware of it. Then, we need to provide a routing mechanism that allows for articles to be

selected and rendered based on their identifiers. Consider the following new state of

src/App.js.

// src/App.js

import React, { Component } from 'react';

import {

 BrowserRouter as Router,

 Route,

 Link

} from 'react-router-dom';

import Article from './Article.js';

class App extends Component {

 constructor(props) {

 super(props);

 this.state = {};

 }

 componentWillMount() {

 this.setState({

 articles: [

 {

 id: '3ca469da-b905-4a77-8d97-954abcdc4cf6',

 attributes: {

 title: 'Capto',

 uuid: '3ca469da-b905-4a77-8d97-954abcdc4cf6',

 created: 1526387013,

 body: {

 value: 'Camur'

 }

 }

 },

 {

 id: '1e1a4598-f9c7-4ce7-adbd-7603401cc23b',

Chapter 17 React

325

 attributes: {

 title: 'Esse Ex Nibh Valde Valetudo',

 uuid: '1e1a4598-f9c7-4ce7-adbd-7603401cc23b',

 created: 1526387013,

 body: {

 value: 'Illum loquor persto plaga premo.'

 }

 }

 }

]

 });

 }

 render() {

 return (

 <div className="App">

 <h1>React app</h1>

 <Router>

 <div className="articles">

 {this.state.articles && this.state.articles.map(article => (

 <li key={article.id}>

 �<Link to={`/article/${article.id}`}>{article.attributes.

title}</Link>

))}

 {this.state.articles &&

 <Route path="/article/:articleID" render={

 ({match}) => {

 �let article = this.state.articles.find(article =>

article.id === match.params.articleID);

 return (<Article article={article}/>);

 }

 }/>

 }

Chapter 17 React

326

 </div>

 </Router>

 </div>

);

 }

}

export default App;

When we look at our application again, we can see that on clicking one of the article

links given, the detail component renders, as depicted in Figure 17-2.

Note  For more information about React components, consult the documentation
at https://reactjs.org/docs/components-and-props.html.

�Backing React with Drupal and JSON API
To back our React application with actual data exposed by an API, we employ the final

state of the Drupal web site we built in Chapters 8 and 12 that provisions a JSON API-

compliant web service. If you have not yet stood up a Drupal site with generated content

and with JSON API enabled, return to Chapters 8 and 12 to proceed.

Figure 17-2.  When we click one of the links, we see that the detail component
updates and that the URL is changed to /articles/ followed by the UUID of the
selected article

Chapter 17 React

https://reactjs.org/docs/components-and-props.html

327

�Retrieving Drupal Data with axios
With axios in tow, we can now issue a request to Drupal to retrieve the content items

that we need to populate our application with authentic data. Replace src/App.js with

the following, which replaces our dummy data in componentWillMount() with an axios-

driven promise. Note that we have now included our axios dependency with a new

import statement.

// src/App.js

import React, { Component } from 'react';

import {

 BrowserRouter as Router,

 Route,

 Link

} from 'react-router-dom';

import axios from 'axios';

import Article from './Article.js';

class App extends Component {

 constructor(props) {

 super(props);

 this.state = {};

 }

 componentWillMount() {

 axios.get('http://jsonapi-test.dd:8083/jsonapi/node/article')

 .then(res => this.setState({ articles: res.data.data }))

 .catch(console.log);

 }

 render() {

 return (

 <div className="App">

 <h1>React app</h1>

 <Router>

 <div className="articles">

 {this.state.articles && this.state.articles.map(article => (

 <li key={article.id}>

Chapter 17 React

328

 �<Link to={`/article/${article.id}`}>{article.attributes.

title}</Link>

))}

 {this.state.articles &&

 <Route path="/article/:articleID" render={

 ({match}) => {

 �let article = this.state.articles.find(article =>

article.id === match.params.articleID);

 return (<Article article={article}/>);

 }

 }/>

 }

 </div>

 </Router>

 </div>

);

 }

}

export default App;

When we return to our application, we can see that Drupal data are now populating

the React application correctly. This is also illustrated in Figure 17-3.

Chapter 17 React

329

Note  For more information about axios, consult the documentation at
https://github.com/axios/axios.

�Handling Errored and Loading States
Now, we can add some error handling and a loading state in case our Drupal site is

taking a while to respond. To do this, though, we need to account for errored and loading

states in our React application as well as our handling of promises. Replace the contents

of src/App.js with the following to see this in action.

// src/App.js

import React, { Component } from 'react';

import {

 BrowserRouter as Router,

 Route,

 Link

} from 'react-router-dom';

import axios from 'axios';

import Article from './Article.js';

Figure 17-3.  Returning to our application indicates that we now have Drupal
data populated

Chapter 17 React

https://github.com/axios/axios

330

class App extends Component {

 constructor(props) {

 super(props);

 this.state = {

 articles: [],

 loading: true,

 errored: false

 };

 }

 componentWillMount() {

 axios.get('http://jsonapi-test.dd:8083/jsonapi/node/article')

 .then(res => this.setState({ articles: res.data.data }))

 .catch(err => {

 console.log(err);

 this.setState({ errored: true });

 })

 .finally(() => this.setState({ loading: false }));

 }

 render() {

 return (

 <div className="App">

 <h1>React app</h1>

 {this.state.errored ? (

 <p>Sorry, {'this'} information is not available at the moment.</p>

) : (

 <section>

 {this.state.loading ? (

 <p>Loading ...</p>

) : (

 <Router>

 <div className="articles">

 �{this.state.articles && this.state.articles.map

(article => (

 <li key={article.id}>

Chapter 17 React

331

 �<Link to={`/article/${article.id}`}>{article.

attributes.title}</Link>

))}

 {this.state.articles &&

 <Route path="/article/:articleID" render={

 ({match}) => {

 �let article = this.state.articles.find(article =>

article.id === match.params.articleID);

 return (<Article article={article}/>);

 }

 }/>

 }

 </div>

 </Router>

)}

 </section>

)}

 </div>

);

 }

}

export default App;

There is quite a bit to dig into here, so let us dissect this code example piece by piece.

First, we indicate to React’s state machine that there are initial states for errored and

loading, which are set to false and true, respectively.

 constructor(props) {

 super(props);

 this.state = {

 articles: [],

 loading: true,

 errored: false

 };

 }

Chapter 17 React

332

Then, in the componentWillMount() method, we add better error handling and

adjust the loading state to true once the promise is fulfilled fully.

 componentWillMount() {

 axios.get('http://jsonapi-test.dd:8083/jsonapi/node/article')

 .then(res => this.setState({ articles: res.data.data }))

 .catch(err => {

 console.log(err);

 this.setState({ errored: true });

 })

 .finally(() => this.setState({ loading: false }));

 }

Then, in our render() method, we have logic that uses the ternary operator to check

whether the loading and errored states are true. In the first conditional statement, if

the errored state returns true, then only the error statement is displayed. Otherwise, if

the loading state is true, a loading placeholder displays until the promise is fulfilled, at

which point rendering continues.

Note in the code section that follows that because this is a reserved word in

JavaScript and thus JSX, we have wrapped it in an expression in the second line. In

addition, because JSX expressions require a surrounding tag, we have added a <section>

element that contains the control structure handling the loading state.

 {this.state.errored ? (

 <p>Sorry, {'this'} information is not available at the moment.</p>

) : (

 <section>

 {this.state.loading ? (

 <p>Loading ...</p>

) : (

 <Router>

 <div className="articles">

 �{this.state.articles && this.state.articles.map

(article => (

 <li key={article.id}>

Chapter 17 React

333

 �<Link to={`/article/${article.id}`}>{article.

attributes.title}</Link>

))}

 {this.state.articles &&

 <Route path="/article/:articleID" render={

 ({match}) => {

 �let article = this.state.articles.find(article =>

article.id === match.params.articleID);

 return (<Article article={article}/>);

 }

 }/>

 }

 </div>

 </Router>

)}

 </section>

)}

You can see the result of what we just completed in Figures 17-4 and 17-5.

Figure 17-4.  When our promise throws an error, we receive an error message in
response

Figure 17-5.  When our promise is still pending, we see a loading message until the
promise is fulfilled

Chapter 17 React

334

Note  For more information about conditional rendering in React, consult the
documentation at https://reactjs.org/docs/conditional-rendering.
html.

�Conclusion
React popularized many ideas that are now widely adopted in the JavaScript community,

including the Virtual DOM and the philosophy underlying JSX. Due to its limited scope

but robust feature set, React is a sought-after choice as a consumer of decoupled Drupal.

Nonetheless, it can be an unwieldy and challenging tool to work with due to its lack of

opinionatedness and codified best practices, although this outcome is improving rapidly

in the wider ecosystem.

In the next chapter, we move to React Native, which leverages many of React’s

principles to facilitate the creation of robust native desktop or mobile applications

through React. Although other examples are available that enable the use of JavaScript to

create native applications, including but not limited to Ionic and Electron, we choose to

focus on React Native due to its wide-ranging popularity and adoption.

Chapter 17 React

https://reactjs.org/docs/conditional-rendering.html
https://reactjs.org/docs/conditional-rendering.html

335
© Preston So 2018
P. So, Decoupled Drupal in Practice, https://doi.org/10.1007/978-1-4842-4072-4_18

CHAPTER 18

React Native
React Native is a popular framework that leverages some of React’s most familiar

features, such as its nestable component architecture and the nuances of the JSX

templating system. However, there are several crucial differences that distinguish React

Native from other JavaScript frameworks. First and foremost, because React Native

focuses on native application development, it does not allow any traditional HTML

elements.

React Native’s web site states the following about its unique positioning:

With React Native, you don’t build a “mobile web app,” an “HTML5 app,”
or a “hybrid app.” You build a real mobile app that’s indistinguishable from
an app built using Objective-C or Java. React Native uses the same funda-
mental UI building blocks as regular iOS and Android apps. You just put
those building blocks together using JavaScript and React.1

Because we have some familiarity already with React (see Chapter 17), we move

quickly to the elements that differentiate React Native from React and to the process of

consuming Drupal data from the context of a React Native consumer.

Note  For more information about React Native in general, consult the web site at
https://facebook.github.io/react-native.

1�“React Native.” React Native. 2018. Accessed 18 September 2018. https://facebook.github.io/
react-native

https://facebook.github.io/react-native
https://facebook.github.io/react-native
https://facebook.github.io/react-native

336

�Key Concepts in React Native
If you are already familiar with the development approach we detailed in the previous

chapter with regard to React, the next section will be well-worn territory. However, there

are many peculiarities of React Native that are characteristic of its emphasis on native

mobile applications rather than traditional web applications.

�Scaffolding a React Native Application
Like the React ecosystem, React Native also has an application scaffolding tool that

accelerates the process of beginning a React Native project. To install Expo CLI, execute

the following command.

$ npm install -g expo-cli

Once the package is installed, you can invoke the expo command to scaffold a new

React Native project locally. Expo CLI will ask whether you want an application with

tabbed navigation already included or a blank template. We select blank as our template.

$ expo init DdipReactNative

$ cd DdipReactNative

To spin up the packager that allows us to test our application in a variety of ways,

execute the following command.

$ expo start

Once the packager is running, within the terminal window running the packager,

you can type a to launch an Android emulator you have available or i to launch the iOS

emulator. In this chapter, we use Xcode’s built-in iOS simulator. You can also provide

other commands, such as s to send the application’s URL to a phone number or e-mail

address or q to display a Quick Response (QR) code instead.

Because we will again be leveraging the axios library to issue requests to Drupal, we

can include that in our dependencies as follows.

$ yarn add axios

Chapter 18 React Native

337

At the end of the installation process, your package.json manifest should look like

the following.

{

 "name": "empty-project-template",

 "main": "node_modules/expo/AppEntry.js",

 "private": true,

 "scripts": {

 "start": "expo start",

 "android": "expo start --android",

 "ios": "expo start --ios",

 "eject": "expo eject"

 },

 "dependencies": {

 "axios": "^0.18.0",

 "expo": "^30.0.1",

 "react": "16.3.1",

 "react-native": �"https://github.com/expo/react-native/archive/sdk-

30.0.0.tar.gz"

 }

}

In addition, your directory structure should appear as follows, excluding the node_

modules directory.

├── App.js
├── app.json
├── assets
│ ├── icon.png
│ └── splash.png
├── package.json
└── yarn.lock

With these steps complete, we can now move into discussion of the most salient

differences between React and React Native.

Chapter 18 React Native

338

Note  For more information about setting up React Native, consult the
documentation at https://facebook.github.io/react-native/docs/
getting-started.

�React Native Views
Like React, React Native primarily operates with views, which are displays of data. The

default View component is a view that occupies the entire screen and is not scrollable.

In certain scenarios, because we expect considerable textual content, we will later also

leverage the ScrollView component. ScrollView can scroll both vertically by default

and horizontally if we set the horizontal property (<ScrollView horizontal/>).

In addition, we will be leveraging the FlatList component to provide a list of

articles. FlatList components accept two properties: data (the data that the list needs

to render) and renderItem (representing one item from the list and returning the

component that each item will render into).

Let us begin with an intermediate state of our React application from Chapter 17 by

adjusting some initial code so it accommodates nuances of React Native. Replace App.js

with the following code, scrutinizing in particular the fact that we have substituted all

HTML elements for React Native elements. Note also the import statement referring to

React Native.

// App.js

import React from 'react';

import { FlatList, StyleSheet, Text, View } from 'react-native';

export default class App extends React.Component {

 constructor(props) {

 super(props);

 this.state = {};

 }

 componentWillMount() {

 this.setState({

 articles: [

 {

 id: '3ca469da-b905-4a77-8d97-954abcdc4cf6',

Chapter 18 React Native

https://facebook.github.io/react-native/docs/getting-started
https://facebook.github.io/react-native/docs/getting-started

339

 attributes: {

 title: 'Capto',

 uuid: '3ca469da-b905-4a77-8d97-954abcdc4cf6',

 created: 1526387013,

 body: {

 value: 'Camur'

 }

 }

 },

 {

 id: '1e1a4598-f9c7-4ce7-adbd-7603401cc23b',

 attributes: {

 title: 'Esse Ex Nibh Valde Valetudo',

 uuid: '1e1a4598-f9c7-4ce7-adbd-7603401cc23b',

 created: 1526387013,

 body: {

 value: 'Illum loquor persto plaga premo.'

 }

 }

 }

]

 });

 }

 render() {

 return (

 <View style={styles.container}>

 <FlatList

 data={this.state.articles}

 keyExtractor={(item, index) => item.id}

 �renderItem={({item}) => <Text style={styles.item}>{item.

attributes.title}</Text>}

 />

 </View>

);

 }

}

Chapter 18 React Native

340

const styles = StyleSheet.create({

 container: {

 flex: 1,

 backgroundColor: '#fff',

 paddingTop: 22

 },

 item: {

 padding: 10,

 fontSize: 18,

 height: 44,

 },

});

We cover each of the unfamiliar portions of this code one by one. First, our render()

method renders a FlatList component using the dummy data we have provided to

the state object. In turn, we render each of the items from the list. FlatList’s default

behavior expects a unique and cacheable key key to be available in each data item, but

because we are using JSON API, we need to override this behavior to instead use the id

attribute, which contains our UUID.

 render() {

 return (

 <View style={styles.container}>

 <FlatList

 data={this.state.articles}

 keyExtractor={(item, index) => item.id}

 �renderItem={({item}) => <Text style={styles.item}>{item.

attributes.title}</Text>}

 />

 </View>

);

 }

Finally, we include several style objects that we invoke within the View and FlatList

components. Note in particular that because traditional CSS is unavailable in the React

Native context, we are using certain unique conventions, including camelCase for CSS

property names.

Chapter 18 React Native

341

const styles = StyleSheet.create({

 container: {

 flex: 1,

 backgroundColor: '#fff',

 paddingTop: 22

 },

 item: {

 padding: 10,

 fontSize: 18,

 height: 44,

 },

});

The resulting application in our iOS emulator can be seen in Figure 18-1.

Note  For more information about FlatList and list views, consult the
documentation at https://facebook.github.io/react-native/docs/
using-a-listview.

�React Native Styles
Before we proceed, because we plan to provide an article detail component that includes

pertinent information about the article, we can adjust our application to include some

additional attributes and an enhanced set of styles. Modify your App.js file so it appears

as follows, scrutinizing the additional import of ScrollView.

Figure 18-1.  Our iOS emulator shows our dummy articles rendered into a
FlatList component

Chapter 18 React Native

https://facebook.github.io/react-native/docs/using-a-listview
https://facebook.github.io/react-native/docs/using-a-listview

342

// App.js

import React from 'react';

import { FlatList, ScrollView, StyleSheet, Text, View } from 'react-

native';

export default class App extends React.Component {

 constructor(props) {

 super(props);

 this.state = {};

 }

 componentWillMount() {

 this.setState({

 articles: [

 {

 id: '3ca469da-b905-4a77-8d97-954abcdc4cf6',

 attributes: {

 title: 'Capto',

 uuid: '3ca469da-b905-4a77-8d97-954abcdc4cf6',

 created: 1526387013,

 body: {

 value: 'Camur'

 }

 }

 },

 {

 id: '1e1a4598-f9c7-4ce7-adbd-7603401cc23b',

 attributes: {

 title: 'Esse Ex Nibh Valde Valetudo',

 uuid: '1e1a4598-f9c7-4ce7-adbd-7603401cc23b',

 created: 1526387013,

 body: {

 value: 'Illum loquor persto plaga premo.'

 }

 }

 }

]

Chapter 18 React Native

343

 });

 }

 render() {

 return (

 <ScrollView style={styles.container}>

 <FlatList

 data={this.state.articles}

 keyExtractor={(item, index) => item.id}

 renderItem={({item}) => (

 <View style={styles.item}>

 �<Text style={styles.itemHeading}>{item.attributes.title}

</Text>

 <Text style={styles.itemAttribute}>ID: {item.id}</Text>

 �<Text style={styles.itemAttribute}>Created: {item.attributes.

created}</Text>

 �<Text style={styles.itemAttribute}>Body: {item.attributes.

body.value}</Text>

 </View>

)}

 />

 </ScrollView>

);

 }

}

const styles = StyleSheet.create({

 container: {

 flex: 1,

 backgroundColor: '#fff',

 paddingTop: 22,

 },

 item: {

 padding: 10,

 backgroundColor: '#eee',

Chapter 18 React Native

344

 borderBottomColor: '#ccc',

 borderBottomWidth: 5,

 },

 itemHeading: {

 marginTop: 10,

 paddingTop: 10,

 paddingBottom: 10,

 fontSize: 24,

 },

 itemAttribute: {

 paddingTop: 10,

 paddingBottom: 10,

 }

});

The result of these most recent changes is depicted in Figure 18-2.

Chapter 18 React Native

345

Note  For more information about ScrollView, consult the documentation
at https://facebook.github.io/react-native/docs/using-a-
scrollview. For more information about React Native styles, consult the
documentation at https://facebook.github.io/react-native/docs/
style.

Figure 18-2.  Our React Native application now sports a few styles to improve the
user experience and to separate our individual articles from one another

Chapter 18 React Native

https://facebook.github.io/react-native/docs/using-a-scrollview
https://facebook.github.io/react-native/docs/using-a-scrollview
https://facebook.github.io/react-native/docs/style
https://facebook.github.io/react-native/docs/style

346

�React Native Components
All of this code in one file is quickly becoming unwieldy. As we did successfully in the

previous chapter, we can also split out our list logic into a separate component to keep

our concerns well-separated. First, add the following Article.js component.

// Article.js

import React from 'react';

import { StyleSheet, Text, View } from 'react-native';

import PropTypes from 'prop-types';

const Article = ({article}) => (

 <View style={styles.item}>

 <Text style={styles.itemHeading}>{article.attributes.title}</Text>

 <Text style={styles.itemAttribute}>ID: {article.id}</Text>

 �<Text style={styles.itemAttribute}>Created: {article.attributes.

created}</Text>

 �<Text style={styles.itemAttribute}>Body: {article.attributes.body.

value}</Text>

 </View>

);

Article.propTypes = {

 article: PropTypes.object

};

const styles = StyleSheet.create({

 item: {

 padding: 10,

 backgroundColor: '#eee',

 borderBottomColor: '#ccc',

 borderBottomWidth: 5,

 },

 itemHeading: {

 marginTop: 10,

 paddingTop: 10,

 paddingBottom: 10,

 fontSize: 24,

Chapter 18 React Native

347

 },

 itemAttribute: {

 paddingTop: 10,

 paddingBottom: 10,

 }

});

export default Article;

Then, we can adjust our App.js file to reflect the presence of the new component.

Scrutinize in particular the import statement that declares a dependency on the

component.

// App.js

import React from 'react';

import { FlatList, ScrollView, StyleSheet, Text, View } from 'react-

native';

import Article from './Article.js';

export default class App extends React.Component {

 constructor(props) {

 super(props);

 this.state = {};

 }

 componentWillMount() {

 this.setState({

 articles: [

 {

 id: '3ca469da-b905-4a77-8d97-954abcdc4cf6',

 attributes: {

 title: 'Capto',

 uuid: '3ca469da-b905-4a77-8d97-954abcdc4cf6',

 created: 1526387013,

 body: {

 value: 'Camur'

 }

 }

 },

Chapter 18 React Native

348

 {

 id: '1e1a4598-f9c7-4ce7-adbd-7603401cc23b',

 attributes: {

 title: 'Esse Ex Nibh Valde Valetudo',

 uuid: '1e1a4598-f9c7-4ce7-adbd-7603401cc23b',

 created: 1526387013,

 body: {

 value: 'Illum loquor persto plaga premo.'

 }

 }

 }

]

 });

 }

 render() {

 return (

 <ScrollView style={styles.container}>

 <FlatList

 data={this.state.articles}

 keyExtractor={(item, index) => item.id}

 renderItem={({item}) => (

 <Article article={item} />

)}

 />

 </ScrollView>

);

 }

}

const styles = StyleSheet.create({

 container: {

 flex: 1,

 backgroundColor: '#fff',

 paddingTop: 22,

 },

});

Chapter 18 React Native

349

When we reload the application, there should be no change from what we witnessed

in Figure 18-2, as we have merely moved code around.

Note  For more about native components in React Native, consult the
documentation at https://facebook.github.io/react-native/docs/
components-and-apis. Coverage of stack navigation in React Native, the
analogue to React routing, is beyond the scope of this chapter due to its relative
instability, but documentation is available at https://reactnavigation.org.

�Backing React Native with Drupal and JSON API
We will be backing our React Native application with an existing Drupal site exposing

JSON API that we configured and built in Chapters 8 and 12. If you do not have a fully

functioning Drupal site with JSON API enabled and some content populated, return to

Chapters 8 and 12 for a full overview of Drupal’s JSON API implementation.

�Retrieving Drupal Data with axios
Just as we did in Chapter 17, we can use axios to replace our dummy data with actual

data originating from Drupal. Consider the following new state of our App.js, the result

of which is illustrated in Figure 18-3.

// App.js

import React from 'react';

import { FlatList, ScrollView, StyleSheet, Text, View } from 'react-

native';

import axios from 'axios';

import Article from './Article.js';

export default class App extends React.Component {

 constructor(props) {

 super(props);

 this.state = {};

 }

Chapter 18 React Native

https://facebook.github.io/react-native/docs/components-and-apis
https://facebook.github.io/react-native/docs/components-and-apis
https://reactnavigation.org

350

 componentWillMount() {

 axios.get('http://jsonapi-test.dd:8083/jsonapi/node/article')

 .then(res => this.setState({ articles: res.data.data }))

 .catch(console.log);

 }

 render() {

 return (

 <ScrollView style={styles.container}>

 <FlatList

 data={this.state.articles}

 keyExtractor={(item, index) => item.id}

 renderItem={({item}) => (

 <Article article={item} />

)}

 />

 </ScrollView>

);

 }

}

const styles = StyleSheet.create({

 container: {

 flex: 1,

 backgroundColor: '#fff',

 paddingTop: 22,

 },

});

Chapter 18 React Native

351

Figure 18-3.  The presence of full article bodies indicates that our articles are
originating correctly from our Drupal site as we intended

Chapter 18 React Native

352

Note  For more information about networking in React Native, consult the
documentation at https://facebook.github.io/react-native/docs/
network. For more information about axios, consult the documentation at
https://github.com/axios/axios.

�Handling Errored and Loading States
As is often the case with web applications, it is important for us to indicate to the user

different scenarios that account for why a view of data has not rendered yet. Fortunately,

we simply need to repeat our work in Chapter 17 to provide errored and loading states

for our React Native application. Consider the following new state of App.js.

// App.js

import React from 'react';

import { FlatList, ScrollView, StyleSheet, Text, View } from 'react-

native';

import axios from 'axios';

import Article from './Article.js';

export default class App extends React.Component {

 constructor(props) {

 super(props);

 this.state = {

 articles: [],

 errored: false,

 loading: true

 };

 }

 componentWillMount() {

 axios.get('http://jsonapi-test.dd:8083/jsonapi/node/article')

 .then(res => this.setState({ articles: res.data.data }))

 .catch(err => {

 console.log(err);

 this.setState({ errored: true });

 })

Chapter 18 React Native

https://facebook.github.io/react-native/docs/network
https://facebook.github.io/react-native/docs/network
https://github.com/axios/axios

353

 .finally(() => this.setState({ loading: false }));

 }

 render() {

 return (

 <ScrollView style={styles.container}>

 {this.state.errored ? (

 �<Text>Sorry, {'this'} information is not available at the

moment.</Text>

) : (

 <View>

 {this.state.loading ? (

 <Text>Loading ...</Text>

) : (

 <FlatList

 data={this.state.articles}

 keyExtractor={(item, index) => item.id}

 renderItem={({item}) => (

 <Article article={item} />

)}

 />

)}

 </View>

)}

 </ScrollView>

);

 }

}

const styles = StyleSheet.create({

 container: {

 flex: 1,

 backgroundColor: '#fff',

 paddingTop: 22,

 },

});

Chapter 18 React Native

354

�Conclusion
React Native is a powerful and robust alternative to writing native mobile applications

in mobile technologies such as Objective-C and Swift, because it enables us to employ

conventions in React to which we are already accustomed. Thanks to the similarities

between both technologies, it is relatively simple for those knowledgeable in React to

begin building React Native applications rapidly. Nonetheless, React Native’s ecosystem

is still expanding, with tools such as React Navigation quickly maturing.

In the next chapter, we investigate Angular, a wholly distinct framework with many

unique characteristics that make it both deeply fascinating and occasionally frustrating.

Although a full introduction to TypeScript and its nuances as well as a comprehensive

survey of Angular is impossible in the brief span we have available, we nevertheless

construct an equivalent Angular application backed by decoupled Drupal.

Now, we can disconnect our Drupal web site and see that rather than our application

returning a network error, it shows our error message, as depicted in Figure 18-4. In

addition, we see a loading state that gives us feedback that our application is indeed

running properly, as seen in Figure 18-5.

Figure 18-5.  When we first load our application, our promise is being fulfilled,
and our application displays a loading message

Figure 18-4.  When we disconnect our Drupal site, our promise remains
unfulfilled, and our application displays an error message

Chapter 18 React Native

355
© Preston So 2018
P. So, Decoupled Drupal in Practice, https://doi.org/10.1007/978-1-4842-4072-4_19

CHAPTER 19

Angular
Angular is a JavaScript framework that has a storied history but has undergone

significant evolution over the last several years, to the point where it is nearly

unrecognizable in comparison to its predecessor AngularJS. Today, Angular leverages

TypeScript and emphasizes its mission to be a single unified framework for building

experiences that straddle the web, mobile, and native mobile and desktop applications.

The Angular documentation states the following:

Angular is a platform that makes it easy to build applications with the web.
Angular combines declarative templates, dependency injection, end to end
tooling, and integrated best practices to solve development challenges.
Angular empowers developers to build applications that live on the web,
mobile, or the desktop.

Like Ember (see Chapter 21), Angular has a reputation for being quite opinionated

with its development practices, most overtly evidenced by its requirement that

developers use TypeScript. Nonetheless, its rich ecosystem, paired with its cross-device

capabilities, make Angular a compelling candidate for those selecting a JavaScript

technology for decoupled Drupal architectures.

Note  For complete documentation about Angular, see the Angular web site at
https://angular.io.

�Key Concepts in Angular
Because Angular uses TypeScript, it might be useful to install a package that recognizes

TypeScript syntax for your code editor. If you are using Atom as your code editor, you can

install the TypeScript package for Atom with the following command.

$ apm install atom-typescript

https://angular.io

356

Note  The Atom code editor can be downloaded at https://atom.io.

�Scaffolding an Angular Application
Like Ember and Vue.js (see Chapter 20), Angular has an official command-line interface

that simplifies certain tasks during Angular development known as Angular CLI. To

install Angular CLI globally, execute the following command.

$ npm install -g @angular/cli

Both Angular CLI and any Angular CLI-generated project require Node 8.9 or higher

and NPM 5.5.1 or higher. You can verify that your versions are up-to-date using the node -v

and npm -v commands, respectively.

Note  For more information about installing Node.js, consult the web site at
https://nodejs.org/en/download. For more information about installing
NPM, consult the web site at https://docs.npmjs.com/getting-started/
installing-node#install-npm--manage-npm-versions. If you have other
projects relying on other versions of Node, consider using a tool such as Node Version
Manager, available on GitHub at https://github.com/creationix/nvm.

We can create a new project and launch a new local development server with hot

reload using the following commands. In sequence, the following commands scaffold

a new Angular application in our chosen directory, access the directory, and spin up a

local server. The --open flag will open a tab in your browser containing the application.

$ ng new ddip-ng

$ cd ddip-ng

$ ng serve --open

Once you have scaffolded a new Angular application, your directory structure will

look like the following (excluding the node_modules directory).

Chapter 19 Angular

https://atom.io
https://nodejs.org/en/download
https://docs.npmjs.com/getting-started/installing-node#install-npm--manage-npm-versions
https://docs.npmjs.com/getting-started/installing-node#install-npm--manage-npm-versions
https://github.com/creationix/nvm

357

├── README.md
├── angular.json
├── e2e
│ ├── protractor.conf.js
│ ├── src
│ │ ├── app.e2e-spec.ts
│ │ └── app.po.ts
│ └── tsconfig.e2e.json
├── package-lock.json
├── package.json
├── src
│ ├── app
│ │ ├── app.component.css
│ │ ├── app.component.html
│ │ ├── app.component.spec.ts
│ │ ├── app.component.ts
│ │ └── app.module.ts
│ ├── assets
│ ├── browserslist
│ ├── environments
│ │ ├── environment.prod.ts
│ │ └── environment.ts
│ ├── favicon.ico
│ ├── index.html
│ ├── karma.conf.js
│ ├── main.ts
│ ├── polyfills.ts
│ ├── styles.css
│ ├── test.ts
│ ├── tsconfig.app.json
│ ├── tsconfig.spec.json
│ └── tslint.json
├── tsconfig.json
└── tslint.json

Chapter 19 Angular

358

Now, we can use Atom to open the application and begin writing code.1 You can also

employ a code editor of your choice that includes TypeScript support.

$ atom .

�The Root Component
Like other popular JavaScript application frameworks, Angular uses components that are

reusable and nestable, including the application root component. When we open src/

app/app.component.ts, we see that we can change the overarching title of the application.

// src/app/app.component.ts

import { Component } from '@angular/core';

@Component({

 selector: 'app-root',

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.css']

})

export class AppComponent {

 title = 'ddip-ng';

}

In this chapter, we build a simple content browser that is capable of accessing

content entities in Drupal. To do this, because TypeScript is a statically typed language,

we need to define a class that matches Drupal bundles (Drupal content types) and

accounts for their attributes’ types, as you can see in the following example.

For the time being, we will use dummy data until we connect our Angular

application to Drupal.

// src/app/app.component.ts

import { Component } from '@angular/core';

export class Article {

 attributes: object;

}

1�So, Preston. “Decoupled Drupal and Angular 2.” DrupalCon Baltimore. 25 April 2017.
Accessed 14 September 2018. https://events.drupal.org/baltimore2017/sessions/
decoupled-drupal-and-angular-2

Chapter 19 Angular

https://events.drupal.org/baltimore2017/sessions/decoupled-drupal-and-angular-2
https://events.drupal.org/baltimore2017/sessions/decoupled-drupal-and-angular-2

359

@Component({

 selector: 'app-root',

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.css']

})

export class AppComponent {

 title = 'ddip-ng';

 article: Article = {

 attributes: {

 uuid: '7ac282af-81d1-4d88-925d-9a3a9f6d304f',

 title: 'Neque Nisl',

 body: {

 value: 'At interdico letalis modo qui.'

 }

 }

 }

}

�Two-Way Data Binding
We can also modify our root component to display our single dummy article along with

an <input> element to demonstrate two-way data binding. In this case, ngModel is a

directive that we need to add by declaring an additional dependency on FormsModule, as

seen here in app.module.ts.

// src/app/app.module.ts

import { BrowserModule } from '@angular/platform-browser';

import { NgModule } from '@angular/core';

import { FormsModule } from '@angular/forms';

import { AppComponent } from './app.component';

@NgModule({

 declarations: [

 AppComponent

],

Chapter 19 Angular

360

 imports: [

 BrowserModule,

 FormsModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

Now, replace the contents of app.component.html with the following.

<!-- src/app/app.component.html -->

<h1>

 {{title}}

</h1>

<h2>{{article.attributes.title}} details</h2>

<div>

 <label>Title: </label>

 <input [(ngModel)]="article.attributes.title" placeholder="Title">

</div>

Because Angular enforces two-way data binding, we can edit this <input> element

and see it reflected in the title. You can see the current state of our application in

Figure 19-1.

Figure 19-1.  When we perform an edit in the <input> element, two-way data
binding ensures that the value is updated immediately

Chapter 19 Angular

361

Note  For more information about forms in Angular, consult the documentation at
https://angular.io/guide/user-input. From this example forward, many
of the examples in this chapter are inspired by the Tour of Heroes tutorial in the
Angular documentation located at https://angular.io/tutorial.

�Angular Components
To achieve improved maintainability, we can generate a component to house all of

the logic that will handle the display of our articles. To generate a new component,

execute the following command, after either exiting out of the running server (Ctrl+C) or

opening a new terminal window.

$ ng generate component articles

If you navigate to src/app/app.module.ts, you will see that Angular has updated our

root module with a reference to the new component.

// src/app/app.module.ts

import { BrowserModule } from '@angular/platform-browser';

import { NgModule } from '@angular/core';

import { FormsModule } from '@angular/forms';

import { AppComponent } from './app.component';

import { ArticlesComponent } from './articles/articles.component';

@NgModule({

 declarations: [

 AppComponent,

 ArticlesComponent

],

 imports: [

 BrowserModule,

 FormsModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

Chapter 19 Angular

https://angular.io/guide/user-input
https://angular.io/tutorial

362

Now, within our root component, we can refer to the new component we have just

created and move all of our logic into the articles component. Note that this example is

split into two separate files delineated by HTML comments.

<!-- src/app/app.component.html -->

<h1>

 {{title}}

</h1>

<app-articles></app-articles>

<!-- src/app/articles.component.html -->

<h2>{{article.attributes.title}} details</h2>

<div>

 <label>Title: </label>

 <input [(ngModel)]="article.attributes.title" placeholder="Title">

</div>

We need to update our root component and articles component behavior

accordingly as well.

// src/app/articles/articles.component.ts

import { Component } from '@angular/core';

export class Article {

 attributes: object

}

@Component({

 selector: 'app-articles',

 templateUrl: './articles.component.html',

 styleUrls: ['./articles.component.css']

})

export class ArticlesComponent {

 title = 'ddip-ng';

 article: Article = {

 attributes: {

 uuid: '7ac282af-81d1-4d88-925d-9a3a9f6d304f',

 title: 'Neque Nisl',

Chapter 19 Angular

363

 body: {

 value: 'At interdico letalis modo qui.'

 }

 }

 }

}

// src/app/app.component.ts

import { Component } from '@angular/core';

@Component({

 selector: 'app-root',

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.css']

})

export class AppComponent {

 title = 'ddip-ng';

}

Let’s provide some dummy data as a constant that allows us to iterate over several

articles. To do this, we create a public property that is accessible to our component, as

you can see in this example.

// src/app/articles/articles.component.ts

import { Component } from '@angular/core';

export class Article {

 attributes: object;

}

const ARTICLES: Article[] = [

 {

 attributes: {

 uuid: '7ac282af-81d1-4d88-925d-9a3a9f6d304f',

 title: 'Neque Nisl',

 body: {

 value: 'At interdico letalis modo qui.'

 }

Chapter 19 Angular

364

 }

 },

 {

 attributes: {

 uuid: 'dfca8a65-a214-470c-ae39-6e7c1ab9c87f',

 title: 'Aptent Immitto',

 body: {

 value: 'Exputo molior nobis patria quadrum saepius valde.'

 }

 }

 },

 {

 attributes: {

 uuid: 'df334ec5-216f-487e-8aa5-29a9224acb8f',

 title: 'In Interdico Nibh Nisl Utinam',

 body: {

 value: 'Cui refoveo similis.'

 }

 }

 }

];

@Component({

 selector: 'app-articles',

 templateUrl: './articles.component.html',

 styleUrls: ['./articles.component.css']

})

export class ArticlesComponent {

 title = 'ddip-ng';

 articles = ARTICLES;

}

Note  For more information about Angular components, consult the
documentation at https://angular.io/guide/architecture-components.

Chapter 19 Angular

https://angular.io/guide/architecture-components

365

�Angular Directives
In Angular, directives indicate logic that should be followed to render the template in

a form desired by the developer. It is also possible to create our own directives, which

enforce custom behavior on elements in the DOM.

We can drill into our articles component and enrich the template by providing a list

of articles rather than a field to edit article titles. We can use the ngFor directive to iterate

over the dummy articles we just provided to the component. Eventually, we will enable

users to edit titles when an individual article is selected.

<!-- src/app/articles.component.html -->

<h2>List of articles</h2>

<ul class="articles">

 <li *ngFor="let article of articles">

 Article {{article.attributes.uuid}}: {{article.attributes.title}}

The result of this can be seen in Figure 19-2.

To restore our functionality of editing article titles, we will provide click behavior.

When an article is clicked, we need the form with which we demonstrated two-way data

binding earlier to display. To accomplish this, we can add a click event binding to each

list item.

<!-- src/app/articles.component.html -->

<h2>List of articles</h2>

<ul class="articles">

Figure 19-2.  Our dummy articles are displaying correctly

Chapter 19 Angular

366

 <li *ngFor="let article of articles" (click)="onSelect(article)">

 Article {{article.attributes.uuid}}: {{article.attributes.title}}

We define the onSelect() method in articles.component.ts, as you can see in this

example.

// src/app/articles/articles.component.ts

import { Component } from '@angular/core';

export class Article {

 attributes: object;

}

const ARTICLES: Article[] = [

 {

 attributes: {

 uuid: '7ac282af-81d1-4d88-925d-9a3a9f6d304f',

 title: 'Neque Nisl',

 body: {

 value: 'At interdico letalis modo qui.'

 }

 }

 },

 {

 attributes: {

 uuid: 'dfca8a65-a214-470c-ae39-6e7c1ab9c87f',

 title: 'Aptent Immitto',

 body: {

 value: 'Exputo molior nobis patria quadrum saepius valde.'

 }

 }

 },

 {

 attributes: {

 uuid: 'df334ec5-216f-487e-8aa5-29a9224acb8f',

 title: 'In Interdico Nibh Nisl Utinam',

Chapter 19 Angular

367

 body: {

 value: 'Cui refoveo similis.'

 }

 }

 }

];

@Component({

 selector: 'app-articles',

 templateUrl: './articles.component.html',

 styleUrls: ['./articles.component.css']

})

export class ArticlesComponent {

 title = 'ddip-ng';

 articles = ARTICLES;

 selectedArticle: Article;

 onSelect(article: Article): void {

 this.selectedArticle = article;

 }

}

Then, in the template, we can reinsert the previous logic that is now absent and bind

to the selectedArticle property we have newly defined instead of the article property.

To make it easier to identify the selected article, we also include the UUID. Finally,

we can use the ngIf directive to ensure that we do not throw any errors by attempting

to refer to a not-yet-selected article’s title. The result of this example is illustrated in

Figure 19-3.

<!-- src/app/articles.component.html -->

<h2>List of articles</h2>

<ul class="articles">

 <li *ngFor="let article of articles" (click)="onSelect(article)">

 Article {{article.attributes.uuid}}: {{article.attributes.title}}

Chapter 19 Angular

368

<div *ngIf="selectedArticle">

 �<h2>{{selectedArticle.attributes.title}} details ({{selectedArticle.

attributes.uuid}})</h2>

 <div>

 �<label>Title: </label>

 �<input [(ngModel)]="selectedArticle.attributes.title"

placeholder="Title">

 </div>

</div>

In the future, we might wish to apply certain styling to this article so that its active

state is clear. Update articles.component.html to the following.

<!-- src/app/articles.component.html -->

<h2>List of articles</h2>

<ul class="articles">

 <li *ngFor="let article of articles"

 [class.selected]="article === selectedArticle"

 (click)="onSelect(article)">

 Article {{article.attributes.uuid}}: {{article.attributes.title}}

<div *ngIf="selectedArticle">

 �<h2>{{selectedArticle.attributes.title}} details ({{selectedArticle.

attributes.uuid}})</h2>

Figure 19-3.  In this example, we have clicked the third article from the list and
edited the title, which updates the bound property rendered above it

Chapter 19 Angular

369

 <div>

 <label>Title: </label>

 �<input [(ngModel)]="selectedArticle.attributes.title"

placeholder="Title">

 </div>

</div>

Then, add the following selector to articles.component.css so that selected articles

are distinguishable. The result of this can be seen in Figure 19-4.

/* src/app/articles.component.css */

.selected {

 font-weight: bold;

 color: green;

}

Note  For more information about Angular directives, consult the documentation
for attribute directives at https://angular.io/guide/attribute-
directives and structural directives at https://angular.io/guide/
structural-directives.

Figure 19-4.  Thanks to a small amount of CSS, it is now clear which article has
been selected from the list

Chapter 19 Angular

https://angular.io/guide/attribute-directives
https://angular.io/guide/attribute-directives
https://angular.io/guide/structural-directives
https://angular.io/guide/structural-directives

370

�Angular Services
Now that we have covered some of the nuances of components (a comprehensive

exploration is beyond the scope of this book), we can direct our attention to services. As

we will also see in Ember (see Chapter 21), it is not a best practice for our components

to also be providers of data, as we eventually expect to connect our application to a web

service. In Angular, services are a broad concept that represents a dependency in an

application—whether it is on a value, function, or other feature—and generally serves a

single, well-defined purpose.

As such, we should provide a service that furnishes the data to any components that

depend on it. This means that we can decouple data from individual components and

offer a generic means of retrieving data. For instance, in our scenario, we wish to create a

service that provides the article data to components. To generate a new service, execute

the following command.

$ ng generate service article

This creates an article.service.ts file in our src/app directory. Because we

know we will eventually need to retrieve articles from a web service, we can add a

getArticles() method.

// src/app/article.service.ts

import { Injectable } from '@angular/core';

@Injectable({

 providedIn: 'root'

})

export class ArticleService {

 getArticles(): void {}

}

Then, we can remove the dummy articles from our articles component and place it

into a separate file. We will do this to make it easier for our service to retrieve the articles.

Create dummy-articles.ts and insert the following.

// src/app/dummy-articles.ts

import { Article } from './articles/articles.component';

Chapter 19 Angular

371

export const ARTICLES: Article[] = [

 {

 attributes: {

 uuid: '7ac282af-81d1-4d88-925d-9a3a9f6d304f',

 title: 'Neque Nisl',

 body: {

 value: 'At interdico letalis modo qui.'

 }

 }

 },

 {

 attributes: {

 uuid: 'dfca8a65-a214-470c-ae39-6e7c1ab9c87f',

 title: 'Aptent Immitto',

 body: {

 value: 'Exputo molior nobis patria quadrum saepius valde.'

 }

 }

 },

 {

 attributes: {

 uuid: 'df334ec5-216f-487e-8aa5-29a9224acb8f',

 title: 'In Interdico Nibh Nisl Utinam',

 body: {

 value: 'Cui refoveo similis.'

 }

 }

 }

];

In our export from our articles component, we remove the constant containing our

dummy data and indicate to Angular that the articles property consists of an array of

articles.

// src/app/articles/articles.component.ts

import { Component } from '@angular/core';

Chapter 19 Angular

372

export class Article {

 attributes: object;

}

@Component({

 selector: 'app-articles',

 templateUrl: './articles.component.html',

 styleUrls: ['./articles.component.css']

})

export class ArticlesComponent {

 title = 'ddip-ng';

 articles: Article[];

 selectedArticle: Article;

 onSelect(article: Article): void {

 this.selectedArticle = article;

 }

}

Then, we can adjust our article service to employ the dummy articles instead.

// src/app/article.service.ts

import { Injectable } from '@angular/core';

import { Article } from './articles/articles.component'

import { ARTICLES } from './dummy-articles';

@Injectable({

 providedIn: 'root'

})

export class ArticleService {

 getArticles(): Article[] {

 return ARTICLES;

 }

}

In our articles component, we add the service as a dependency via an import

statement, use dependency injection to add a private articleService property, and

denote that property as an ArticleService injection destination through a constructor.

Chapter 19 Angular

373

Then, we add ArticleService to a providers array at the bottom of our @Component

decorator to ensure that Angular knows to create a new ArticleService each time a new

articles component is initialized. Finally, we can add a dedicated method for retrieving

articles by adding the getArticles() method to our export.

// src/app/articles/articles.component.ts

import { Component } from '@angular/core';

import { ArticleService } from '../article.service'

export class Article {

 attributes: object;

}

@Component({

 selector: 'app-articles',

 templateUrl: './articles.component.html',

 styleUrls: ['./articles.component.css'],

 providers: [ArticleService]

})

export class ArticlesComponent {

 title = 'ddip-ng';

 articles: Article[];

 selectedArticle: Article;

 constructor(private articleService: ArticleService) { }

 getArticles(): void {

 this.articles = this.articleService.getArticles();

 }

 onSelect(article: Article): void {

 this.selectedArticle = article;

 }

}

Chapter 19 Angular

374

To ensure that Angular calls getArticles() as soon as it initializes, we include the

method inside the ngOnInit() life cycle hook. Note that in the following example we

have also included OnInit as a dependency and noted that the articles component

implements OnInit in the export statement.

// src/app/articles/articles.component.ts

import { Component, OnInit } from '@angular/core';

import { ArticleService } from '../article.service'

export class Article {

 attributes: object;

}

@Component({

 selector: 'app-articles',

 templateUrl: './articles.component.html',

 styleUrls: ['./articles.component.css'],

 providers: [ArticleService]

})

export class ArticlesComponent implements OnInit {

 title = 'ddip-ng';

 articles: Article[];

 selectedArticle: Article;

 constructor(private articleService: ArticleService) { }

 getArticles(): void {

 this.articles = this.articleService.getArticles();

 }

 ngOnInit(): void {

 this.getArticles();

 }

 onSelect(article: Article): void {

 this.selectedArticle = article;

 }

}

Chapter 19 Angular

375

Note  For more about Angular services, consult the documentation at https://
angular.io/guide/architecture-services.

�Backing Angular with Drupal and JSON API
Now that we have provided a service for our Angular application to retrieve data from

a dummy data set, we need to prepare our Angular application to consume a Drupal

implementation of JSON API. To do this, we need to refactor our getArticles() method

in our article service so that it can handle observables.

If you have not set up and prepared a JSON API back end in Drupal, as covered in

Chapters 8 and 12, return to those chapters to ensure you can proceed.

�Adding HttpClient to Angular
We now need to point our article service to our Drupal implementation of JSON API so

we can directly retrieve data from our back end. First, include HttpClientModule in your

application module, as follows. Scrutinize the new import statement and the additional

member in the imports array.

// src/app/app.module.ts

import { BrowserModule } from '@angular/platform-browser';

import { NgModule } from '@angular/core';

import { FormsModule } from '@angular/forms';

import { HttpClientModule } from '@angular/common/http';

import { AppComponent } from './app.component';

import { ArticlesComponent } from './articles/articles.component';

@NgModule({

 declarations: [

 AppComponent,

 ArticlesComponent

],

Chapter 19 Angular

https://angular.io/guide/architecture-services
https://angular.io/guide/architecture-services

376

 imports: [

 BrowserModule,

 FormsModule,

 HttpClientModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

Note  For more information about HttpClient, consult the documentation at
https://angular.io/guide/http.

�Retrieving Data from Drupal and Handling Observables
Now that we have our dependencies, including HttpClient and HttpHeaders contained

within HttpClientModule, we can update our article service to retrieve the data we need

from the Drupal implementation of JSON API we have prepared previously.

Consider the following example, noting in particular the other dependencies we

have brought in to handle observables and errors. Note that due to differences across

environments, it is a recommended best practice to store URIs referring to your Drupal

back end in a separate configuration file (e.g., config.ts).

// src/app/article.service.ts

import { Injectable } from '@angular/core';

import { HttpClient, HttpHeaders } from '@angular/common/http';

import { Observable, of } from 'rxjs';

import { catchError, map } from 'rxjs/operators';

import { Article } from './articles/articles.component'

const httpOptions = {

 headers: new HttpHeaders({ 'Content-Type': 'application/json' })

}

Chapter 19 Angular

https://angular.io/guide/http

377

@Injectable({

 providedIn: 'root'

})

export class ArticleService {

 private articlesUrl = 'http://jsonapi-test.dd:8083/jsonapi/node/article';

 constructor(private http: HttpClient) {}

 getArticles(): Observable<Article[]> {

 return this.http.get<Article[]>(this.articlesUrl, httpOptions)

 .pipe(

 map(res => res['data'])

)

 .pipe(

 catchError(this.handleError([]))

);

 }

 private handleError<T> (result?: T) {

 return (error: any): Observable<T> => {

 console.error(error);

 return of(result as T);

 }

 }

}

Scrutiny of some of these elements can be edifying from the Drupal perspective.

Note that because JSON API requires a Content-Type header with a value of

application/json, we import HttpHeaders in addition to HttpClient. Later, we

set the URL against which requests should be issued. Then, we define the method

getArticles(), which returns an observable that notifies us whenever the articles

contained therein change.

Because JSON API returns all data as part of a data object rather than as a simple

array (see Chapter 8 for more on this), we need to use the map() function to map the

response to its constituent data object so that we can access the array of resources

underneath. Finally, we perform some rudimentary error handling and log any errors

that are thrown to the console.

Chapter 19 Angular

378

Note  For more information about observables, consult the documentation at
https://angular.io/guide/observables. For more information about
observables in Angular, consult the documentation at https://angular.io/
guide/observables-in-angular.

�Subscribing to Observables in Components
As we have now updated our article service to use observables populated by retrievals

from JSON API rather than a dummy constant, our final step now is to modify our

articles component so that it handles the observables from our article service properly.

Update your articles component to match the following.

// src/app/articles/articles.component.ts

import { Component, OnInit } from '@angular/core';

import { ArticleService } from '../article.service'

export class Article {

 attributes: object;

}

@Component({

 selector: 'app-articles',

 templateUrl: './articles.component.html',

 styleUrls: ['./articles.component.css'],

 providers: [ArticleService]

})

export class ArticlesComponent implements OnInit {

 title = 'ddip-ng';

 articles: Article[];

 selectedArticle: Article;

 constructor(private articleService: ArticleService) { }

 getArticles(): void {

 this.articleService.getArticles()

 .subscribe(articles => this.articles = articles);

 }

Chapter 19 Angular

https://angular.io/guide/observables
https://angular.io/guide/observables-in-angular
https://angular.io/guide/observables-in-angular

379

 ngOnInit(): void {

 this.getArticles();

 }

 onSelect(article: Article): void {

 this.selectedArticle = article;

 }

}

As you can see, in this case we are now subscribing to observables to be notified of

any changes in the data that our application needs to be aware of. In turn, we pass an

observer into the subscribe() method that handles the notifications we receive.

When we return to our application in the browser, we can see that it is now fully

populated with articles from our JSON API rather than our dummy list, and our form still

appears as expected whenever we click on one of the articles displayed. This final state is

depicted in Figure 19-5.

Note  For other practical scenarios in which observables are useful in Angular
applications, consult the documentation at https://angular.io/guide/
practical-observable-usage.

Figure 19-5.  The final state of our Angular-driven content browser uses content
retrieved directly from JSON API in Drupal

Chapter 19 Angular

https://angular.io/guide/practical-observable-usage
https://angular.io/guide/practical-observable-usage

380

�Conclusion
Angular is a powerful and robust candidate for developing Drupal-backed consumer

applications. Among its richest features are built-in observables support, a full-featured

HTTP client, a component-driven approach akin to other frameworks, and a helpful

developer experience thanks to the statically typed TypeScript language. Nonetheless,

some developers might find the Angular learning curve steepened due to the adoption of

TypeScript, particularly those more accustomed to the former paradigms of AngularJS.

In the next chapter, we switch gears entirely and turn to Vue, which is noticeably

different from Angular due to its unique approach to incremental adoption. Whereas

Angular is a powerhouse that offers a bevy of complex but highly effective features, Vue

favors a less opinionated orientation that articulates a spectrum of directions developers

can pursue. Like Angular, Vue benefits from a component-based architecture with the

use of directives in templates.

Chapter 19 Angular

381
© Preston So 2018
P. So, Decoupled Drupal in Practice, https://doi.org/10.1007/978-1-4842-4072-4_20

CHAPTER 20

Vue.js
Vue.js is one of the most vaunted JavaScript projects in recent years due to its flexibility

and adoption by communities such as Laravel. Its vision focuses first and foremost on

the ideal of incremental adoptability, whereby Vue.js can be used as a library and solely

a decorator of user interfaces or as a full-fledged framework for highly opinionated

architectures. This mission distinguishes Vue.js from some of the other projects we

consider in these chapters.

The Vue.js documentation states the following:

Vue (pronounced /vjuː/, like view) is a progressive framework for building
user interfaces. Unlike other monolithic frameworks, Vue is designed from
the ground up to be incrementally adoptable. The core library is focused on
the view layer only, and is easy to pick up and integrate with other libraries
or existing projects.

Vue.js emphasizes three characteristics that it aspires to:

•	 Approachable: Vue.js is intended to be easy for developers who write

HTML, CSS, and JavaScript to understand.

•	 Versatile: Vue.js aims to be flexible across a limited-scope library to a

fully fledged framework.

•	 Performant: Vue.js has a 20KB min+gzip runtime and highly

performant Virtual DOM.

Several distinguishing traits differentiate Vue.js from other common tools used to

create JavaScript applications. For instance, Vue.js makes use of a Virtual DOM, like

React, and provides reactive and composable view components. In addition, although

Vue.js supports JSX, React’s XML-like declarative syntax (see Chapter 17), Vue.js also

offers HTML-based templates by default, similar to the AngularJS approach (compare

the AngularJS directive ng-if and Vue.js directive v-if).

382

Thanks to the incremental adoptability of Vue.js, it is possible to use it in varying

scopes, including as an embed in a <script> element rather than a full Node.js build.

You can download a development or production-ready version from the Vue.js web site

and embed that, or you can include a version from a content delivery network (CDN), as

we have done here.

<script src="https://cdn.jsdelivr.net/npm/vue@2.5.17/dist/vue.js"></script>

This characteristic also highlights the limited prescriptiveness of Vue.js compared

to Angular and Ember. In addition, others in the PHP community, most notably Laravel,

have explored and adopted Vue.js as a standard base for front-end development.

Note  For complete documentation about Vue.js, see the Vue.js web site at
http://vuejs.org. See https://vuejs.org/v2/guide/installation.
html#Direct-lt-script-gt-Include for information about direct embeds of
Vue.js.

�Key Concepts in Vue.js
Some of the core concepts in Vue.js include declarative rendering, directives,

conditionals and loops, and components. Over the course of this section, we also

examine elements of the maturing Vue.js ecosystem such as Vue CLI, Vue.js plug-ins,

and Vue.js presets. First, however, it is useful to survey the model–view–viewmodel

(MVVM) architectural pattern from which Vue.js takes considerable inspiration.

�The Vue.js MVVM-Inspired Pattern
The MVVM architectural pattern is similar to MVC architectures with the exception of

the view model, which is a value converter responsible for transforming data objects

present in the data model such that that data can be easily rendered and maintained.

As such, the view model can be considered much more model-like than view-like and

handles most, if not all, of the view’s display behavior.

Chapter 20 Vue.js

http://vuejs.org
https://vuejs.org/v2/guide/installation.html#Direct-lt-script-gt-Include
https://vuejs.org/v2/guide/installation.html#Direct-lt-script-gt-Include

383

In Vue.js, the viewmodel is an abstraction layer above the view layer that provides

properties in an options object, which includes data and methods (for defining

behaviors). Viewmodels can also be thought of as the current state of the data within

the model or as a binder that manages all communication between the view and logic

handling data binding in the application. In this sense, the viewmodel is analogous to

the controller in MVC architectures or model–view–presenter (MVP) architectures.

Consider, for instance, the following example, which defines a viewmodel and

comprises the foundation of our Vue.js application.

// vm is short for ViewModel.

var vm = new Vue({

 // options object

});

When we create a Vue.js instance, we need to provide an options argument as an

object that contains both data and methods to be employed in the application. A Vue.

js application typically consists of a root Vue.js instance that can also be organized

electively into a tree of nested and reusable components. As such, all components

themselves are also Vue.js instances and accept options objects.

When we instantiate a Vue.js instance, as in the preceding example, it provides all of

the properties within the data object to the Vue.js reactivity system, such that whenever

the data are updated, the view reacts accordingly to the change. Because properties are

only reactive within the data object on instantiation of a Vue.js instance, initial values

must be provided if a property is not used immediately.1

�Declarative Rendering and Directives
Vue.js makes use of HTML templates stored as .vue files (or HTML files in the case of

a <script> embed) and JavaScript files written in either ES5 or ES6 that define Vue.js

application behavior. Consider the following example, which initializes a Vue application

on the .app class and passes in data to be rendered within the {{ greeting }}

element.

1�So, Preston. “Decoupled Drupal and Vue.js.” Drupal Developer Days Lisbon 2018. 4 July
2018. Accessed 13 September 2018. https://lisbon2018.drupaldays.org/sessions/
decoupled-drupal-and-vuejs

Chapter 20 Vue.js

https://lisbon2018.drupaldays.org/sessions/decoupled-drupal-and-vuejs
https://lisbon2018.drupaldays.org/sessions/decoupled-drupal-and-vuejs

384

Insert the following into a newly created index.html file and an index.js file, which

we have also embedded into our HTML.

<!-- index.html -->

<html lang="en">

 <head>

 <title>Vue.js app</title>

 �<script src="https://cdn.jsdelivr.net/npm/vue@2.5.17/dist/vue.js">

</script>

 </head>

 <body>

 <div class="app">

 {{ greeting }}

 </div>

 <script src="index.js"></script>

 </body>

</html>

// index.js

var app = new Vue({

 el: '.app',

 data: {

 greeting: 'Hello world!'

 }

});

Similar to AngularJS, Vue.js directives are prefixed with v- and deliver specific

reactive behavior to the rendered DOM. For instance, consider the following example,

which ensures that the link’s href attribute remains in sync with any modifications made

to the url property in Vue.js.

<!-- index.html -->

<html lang="en">

 <head>

 <title>Vue.js app</title>

 �<script src="https://cdn.jsdelivr.net/npm/vue@2.5.17/dist/vue.js">

</script>

 </head>

Chapter 20 Vue.js

385

 <body>

 <div class="app">

 <a v-bind:href="url">What year is this?

 </div>

 <script src="index.js"></script>

 </body>

</html>

// index.js

var app = new Vue({

 el: '.app',

 data: {

 url: 'https://en.wikipedia.org/wiki/'

 + new Date().getFullYear().toString()

 }

});

We can also handle dynamic user input thanks to the v-on directive, which includes

certain user actions that we might wish to handle in Vue.js. Consider the following

example, which allows the user to click a button to update the year that is generated

when the application initializes.

<!-- index.html -->

<html lang="en">

 <head>

 <title>Vue.js app</title>

 �<script src="https://cdn.jsdelivr.net/npm/vue@2.5.17/dist/vue.js">

</script>

 </head>

 <body>

 <div class="app">

 <p>{{ year }}</p>

 <button v-on:click="updateYear">Update year</button>

 </div>

 <script src="index.js"></script>

 </body>

</html>

Chapter 20 Vue.js

386

// index.js

var app = new Vue({

 el: '.app',

 data: {

 year: '2018'

 },

 methods: {

 updateYear: function() {

 this.year = new Date().getFullYear().toString();

 }

 }

});

Consider an example implementation in which we have retrieved a collection of

nodes in Vue.js through JSON API. Using the v-for directive, we can construct a for loop

that runs through the collection and renders certain attributes available in the JSON API

response.

<!-- index.html -->

<html lang="en">

 <head>

 <title>Vue.js app</title>

 �<script src="https://cdn.jsdelivr.net/npm/vue@2.5.17/dist/vue.js">

</script>

 </head>

 <body>

 <div class="app">

 <li v-for="node in nodes">{{ node.attributes.title }}

 {{ node.attributes.created }}

 {{ node.attributes.body.value }}

 </div>

Chapter 20 Vue.js

387

 <script src="index.js"></script>

 </body>

</html>

// index.js

var app = new Vue({

 el: '.app',

 data: {

 nodes: [

 {

 attributes: {

 title: 'Capto', created: 1526387013, body: {

 value: 'Camur'

 }

 }

 }

]

 }

});

�Vue.js Components
Consider the following example, in which we define a Vue.js component and provide it

some dummy data, which are then rendered into HTML through directives.

<!-- index.html -->

<html lang="en">

 <head>

 <title>Vue.js app</title>

 �<script src="https://cdn.jsdelivr.net/npm/vue@2.5.17/dist/vue.js">

</script>

 </head>

 <body>

 <div class="app">

Chapter 20 Vue.js

388

 <node-item

 v-for="node in nodeList"

 v-bind:node="node"

 v-bind:key="node.id">

 </node-item>

 </div>

 <script src="index.js"></script>

 </body>

</html>

// index.js

Vue.component('node-item', {

 props: ['node'],

 template: `{{ node.attributes.title }}

 {{ node.attributes.created }}

 {{ node.attributes.body.value }}

 `

});

var app = new Vue({

 el: '.app',

 data: {

 nodeList: [

 {

 id: '3ca469da-b905-4a77-8d97-954abcdc4cf6',

 attributes: {

 title: 'Capto', created: 1526387013, body: {

 value: 'Camur'

 }

 }

 }

]

 }

});

Chapter 20 Vue.js

389

As you can see, we are defining in this code example a component named node-

item with certain properties that we pass in from the data represented in a dummy API

response.

Note  Backticks are used in JavaScript to denote multiline strings.

�The Vue.js Ecosystem
Before we turn to developing a fully functional Drupal-backed Vue.js application, we

should first consider some of the important elements in the Vue.js ecosystem that aid

developers in building applications quickly.

For instance, for larger projects and to initiate development rapidly, it might be

useful to employ the official command-line interface of Vue.js, Vue CLI, which makes

many project templates available for use. To install Vue CLI globally, execute the

following npm or yarn command.

Using npm

$ npm install -g @vue/cli

To install yarn, first execute the following command before moving to the yarn

command underneath.

$ npm install -g yarn

Using yarn

$ yarn global add @vue/cli

Once Vue CLI is installed, you can use it to scaffold new applications complete with

the expected directory structure for large Vue.js projects and also launch a helpful user

interface that allows you to create a new application in only a few easy steps. In the first

command here, a further prompt offers additional options on application creation.

The second provides a list of available options and the third provides a user interface to

scaffold a new Vue.js application instead.

$ vue create my-vue-app

$ vue create --help

$ vue ui

Chapter 20 Vue.js

390

To use an existing template instead, execute the following commands to initialize

Vue.js with a template instead of using the vue create command. For instance, the

following commands create a new Vue.js app using the webpack-simple template.

$ vue init webpack-simple my-vue-app

$ cd my-vue-app

$ npm install

$ npm run dev

Vue.js also offers an extensive plug-in ecosystem that you can leverage to add

functionality to your application. For instance, the vue add command permits us to

install plug-ins into an existing project by adding it to our development dependencies.

$ vue add @vue/eslint

$ vue add @vue/cli-plugin-eslint

Within the ~/.vuerc configuration file in your project root, you can also register

certain settings with Vue.js such that particular plug-ins behave a certain way. In the

following example, we set @vue/cli-plugin-eslint to use the Drupal-adopted Airbnb

JavaScript style guide.

{

 "useConfigFiles": true,

 "router": true,

 "vuex": true,

 "cssPreprocessor": "sass",

 "plugins": {

 "@vue/cli-plugin-babel": {},

 "@vue/cli-plugin-eslint": {

 "config": "airbnb",

 "lintOn": ["save", "commit"]

 }

 }

}

Chapter 20 Vue.js

391

�Backing Vue.js with Drupal and JSON API
In the course of building our Drupal-backed Vue.js application, we turn back to the

end state of our Drupal site that we created in Chapter 12. If you have not set up a site

containing content with JSON API enabled, return to Chapter 12 and ensure you follow

the steps to declare JSON API as a dependency and to enable the module.

�Scaffolding a Vue.js Application
To begin, we can scaffold a new Vue.js application using the following command. In

these examples, we use yarn to handle our dependencies. For our purposes, we will

select default when scaffolding a new Vue.js application, which will include plug-ins for

babel (ES6 transpilation) and eslint (linting).

$ vue create ddip-vue

$ cd ddip-vue

To test our Vue.js application on a local server, we can execute the following

command, which will serve a standard welcome message at http://localhost:8080.

$ yarn serve

In our Vue.js application, we will use the axios HTTP client to provide the

bidirectional communication with Drupal that we need. axios is a promise-based HTTP

client that is also part of the Waterwheel.js library (see Chapter 16) and is capable of

issuing HTTP requests to arbitrary back ends. axios can be included as a dependency

either as part of an eventual client build using npm or yarn or through an embed pointing

to a content delivery network (CDN).

For our purposes, we include axios as a dependency with the following command.

Note that you will need to stop the server (Ctrl+C) or open a new terminal window to

proceed to this next step.

$ yarn add axios

Chapter 20 Vue.js

392

Your directory structure will look like the following (excluding the node_modules

directory).

├── README.md
├── babel.config.js
├── package.json
├── public
│ ├── favicon.ico
│ └── index.html
├── src
│ ├── App.vue
│ ├── assets
│ │ └── logo.png
│ ├── components
│ │ └── HelloWorld.vue
│ └── main.js
└── yarn.lock

�Retrieving Drupal Data with axios
Replace HelloWorld.vue with a component named Articles.vue that contains the

following. In this example, we are creating a view of our article collection and assigning it

to the articles property that is then passed to the template for rendering.

<!-- src/components/Articles.vue -->

<template>

 <div class="articles">

 <li v-for="article in articles"

 v-bind:key="article.id">

 {{ article.attributes.title }}

 {{ article.attributes.created }}

 {{ article.attributes.body.value }}

Chapter 20 Vue.js

393

 </div>

</template>

<script>

import axios from 'axios';

export default {

 name: 'Articles',

 data () {

 return {

 articles: []

 };

 },

 mounted () {

 this.getArticles();

 },

 methods: {

 getArticles () {

 axios.get('http://jsonapi-test.dd:8083/jsonapi/node/article')

 .then(res => this.articles = res.data.data)

 .catch(err => {

 throw new Error(err);

 });

 }

 }

}

</script>

Then, replace App.vue with the following.

<!-- src/App.vue -->

<template>

 <div id="app">

 <h1>ddip-vue</h1>

 <Articles />

 </div>

</template>

Chapter 20 Vue.js

394

<script>

import Articles from './components/Articles.vue'

export default {

 name: 'app',

 components: {

 Articles

 }

}

</script>

�Handling Errored and Loading States
Consider the following example adapted from the Vue.js documentation that displays an

error message if the promise throws an error and an in-progress loading message while

the promise is fulfilled. If we disable Acquia Dev Desktop, you will see the error message

appear.

<!-- src/components/Articles.vue -->

<template>

 <section v-if="errored">

 <p>Sorry, this information is not available at the moment.</p>

 </section>

 <section v-else>

 <div v-if="loading">Loading ...</div>

 <div v-else class="articles">

 <li v-for="article in articles"

 v-bind:key="article.id">

 {{ article.attributes.title }}

 {{ article.attributes.created }}

 {{ article.attributes.body.value }}

Chapter 20 Vue.js

395

 </div>

 </section>

</template>

<script>

import axios from 'axios';

export default {

 name: 'Articles',

 data () {

 return {

 articles: [],

 loading: true,

 errored: false

 };

 },

 mounted () {

 this.getArticles();

 },

 methods: {

 getArticles () {

 axios.get('http://jsonapi-test.dd:8083/jsonapi/node/article')

 .then(res => this.articles = res.data.data)

 .catch(err => {

 this.errored = true;

 throw new Error(err);

 })

 .finally(() => this.loading = false);

 }

 }

}

</script>

Now, we can see the end result of our Vue.js application and proceed to add other

elements crucial to the user experience such as CSS. You can see this in Figure 20-1.

You can also see the errored state in Figure 20-2. From here, we can apply various filters

Chapter 20 Vue.js

396

and sort operations to our request against JSON API or provide other components that

handle other Drupal bundles.

Note  For axios documentation regarding how to conduct PATCH, POST, and
DELETE requests, see https://github.com/axios/axios.

�Conclusion
As you saw in the examples in this chapter, the flexibility of Vue.js and its incremental

adoptability distinguish it from the other JavaScript projects we have covered in these

pages. In this chapter, we covered certain foundational concepts in Vue.js including

Figure 20-1.  The result of our Vue.js application displays the collection we
requested from JSON API

Figure 20-2.  When we disable our local environment, our application displays an
error message thanks to our error handling

Chapter 20 Vue.js

https://github.com/axios/axios

397

declarative rendering, directives, and forming components. We also used embedded

scripts to demonstrate how Vue.js can be used not only through a full-fledged

command-line interface, but also as an asset. Finally, we examined the process of

using axios in conjunction with Vue.js to retrieve resources from Drupal’s JSON API

implementation.

In the next chapter, we direct our attention to Ember, which despite being a highly

opinionated framework emphasizes a pleasant developer experience. As we will see, it

includes a built-in data adapter for JSON API, which significantly accelerates the process

of building Drupal-backed Ember applications. In the process, we touch on some of the

unique nuances in Ember and how they figure during application development.

Chapter 20 Vue.js

399
© Preston So 2018
P. So, Decoupled Drupal in Practice, https://doi.org/10.1007/978-1-4842-4072-4_21

CHAPTER 21

Ember
Ember is a JavaScript framework with an established history in the JavaScript

community. Its own community describes its project as an “SDK for the Web” that

esteems convention over configuration. In other words, the Ember community places

greater value on a common set of practices than explicit settings. As such, Ember is

often considered to be more advantageous than other common JavaScript frameworks

due to its extensive standardization, including a canonical directory structure for

most applications, which simplifies on-boarding onto other code bases, and a clean,

interoperable approach to templating.

Historically speaking, Ember is a successor to the SproutCore project, which

included both an application framework and a widget library containing user interface

components. In 2011, the SproutCore 2.0 application framework was renamed Ember to

distinguish it from the SproutCore widget library.

Ember emphasizes the notion of ambitious web applications that aim to

approximate the user experience of native applications as closely as possible. Due to this

characteristic, Ember can be distinguished from other JavaScript model–view–anything

(MV*) frameworks due to its highly opinionated nature, which can be less desirable for

developers preferring more lightweight view libraries such as React. From a cultural

perspective, Ember’s community is more similar to Drupal’s in that it does not have the

backing of corporate heavyweights such as Google (Angular) and Facebook (React).1, 2

1�So, Preston. “Decoupled Drupal with Ember: Introducing Ember and JSON API.” Acquia
Developer Center. 14 December 2016. Accessed 14 September 2018. https://dev.acquia.com/
blog/decoupled-drupal-with-ember-introducing-ember-and-json-api/14/12/2016/17366

2�So, Preston. “Decoupled Drupal and Ember.” DrupalCon Baltimore. 28 September 2016.
Accessed 14 September 2018. https://events.drupal.org/dublin2016/sessions/
decoupled-drupal-and-ember

https://dev.acquia.com/blog/decoupled-drupal-with-ember-introducing-ember-and-json-api/14/12/2016/17366
https://dev.acquia.com/blog/decoupled-drupal-with-ember-introducing-ember-and-json-api/14/12/2016/17366
https://events.drupal.org/dublin2016/sessions/decoupled-drupal-and-ember
https://events.drupal.org/dublin2016/sessions/decoupled-drupal-and-ember

400

Note  For more information about Ember, consult the web site at https://www.
emberjs.com.

�Key Concepts in Ember
Ember provides a variety of tooling that eases the process of building Ember

applications, including the Ember CLI command-line interface. To begin, we summarize

here some of the most important components of the Ember ecosystem that anyone

beginning work with Ember should be aware of.

�The Ember Ecosystem
Although Ember is usable by itself as a client-only framework without any need for

additional extension, many surrounding tools exist that can be particularly useful to new

developers. The Ember core team maintains some of these projects, whereas others are

part of the traditional starting point for Ember. Other projects listed here are community-

maintained plug-ins, much like Drupal’s contributed module ecosystem, that provide

additional features.

•	 Ember CLI: This official command-line interface used to scaffold

Ember applications brings Ember’s emphasis on convention to the

Ember build process. Much like the Vue.js application templates (see

Chapter 20), Ember CLI also provides blueprints that allow for rapid-

fire generation of Ember applications. In addition, it offers other

advantages such as ES6 transpilation, a local development server

with hot reload (automatic reload on any file change), a full-featured

testing framework, and robust asset and dependency management.

•	 Ember Data: This feature provides data persistence that maps

client-side models to server-side data. Although Ember Data is not

a strict requirement of the Ember framework, the vast majority of

Ember applications use it to load and save records as well as their

relationships. Out of the box, Ember Data performs often-requested

data operations without requiring additional configuration.

Chapter 21 Ember

https://www.emberjs.com
https://www.emberjs.com

401

•	 Ember Inspector: This browser extension can be employed on Google

Chrome or Mozilla Firefox and offers helpful debugging functionality

geared toward Ember applications. Thanks to Ember Inspector,

developers can introspect templates and components at any point in

the application’s bootstrap. When used in conjunction with Ember

Data, Ember Inspector can also access records loaded for Ember

models.

•	 Ember FastBoot: This Ember CLI add-on offers server-side rendering

for Ember applications that leverage universal JavaScript and a Node.

js stack.

•	 Liquid Fire: This popular Ember add-on offers a declarative means to

include animations and transitions in Ember applications.

Note  For more information about available Ember plug-ins, consult Ember
Observer at https://www.emberobserver.com.

�Scaffolding an Ember Application
We can install Ember CLI globally using the following command.

$ npm install -g ember-cli

To check if Ember CLI is installed properly, execute the following.

$ ember -v

Once it is installed, we can scaffold a new Ember application using the ember new

command.

$ ember new ddip-ember

$ cd ddip-ember

Chapter 21 Ember

https://www.emberobserver.com

402

The resulting directory structure after scaffolding should look like the following

(excluding the node_modules directory).

├── README.md
├── app
│ ├── app.js
│ ├── components
│ ├── controllers
│ ├── helpers
│ ├── index.html
│ ├── models
│ ├── resolver.js
│ ├── router.js
│ ├── routes
│ ├── styles
│ │ └── app.css
│ └── templates
│ ├── application.hbs
│ └── components
├── config
│ ├── environment.js
│ ├── optional-features.json
│ └── targets.js
├── ember-cli-build.js
├── package-lock.json
├── package.json
├── public
│ └── robots.txt
├── testem.js
├── tests
│ ├── helpers
│ ├── index.html
│ ├── integration
│ ├── test-helper.js
│ └── unit
└── vendor

Chapter 21 Ember

403

To launch a local server with hot reload, we can use the following command, which

will create a build and deploy it to http://localhost:4200. If you navigate to that

URL, you should see Tomster, Ember’s friendly mascot, with a hard hat and a welcome

message.

$ ember server

We can now open a code editor such as Atom and modify the generated code to our

liking.

$ atom .

Note T he Atom code editor can be downloaded from https://atom.io. For
more information about Ember CLI, consult the documentation at https://
ember-cli.com.

�Ember Templates
The Ember framework uses Handlebars as its standard templating language. Although

this will look familiar to Drupal developers accustomed to Twig, Handlebars is

substantially different. In Ember, templates are responsible for displaying properties that

have been exposed to the template’s context, which can either be a route or a component

(more to come on this later). The characteristic double curly braces of Handlebars can

also contain a variety of other helpers and invoke other components.

To see how templates operate, navigate to app/templates/application.hbs from

your project root and open it in your code editor of choice. This template represents our

root application template, into which all of our constituent templates and components

will render. Replace the contents with the following example, noting in the process the

comment syntax and {{outlet}}, which represents templates nested within the current

template.

{{! app/templates/application.hbs }}

<h1>Ember app</h1>

{{outlet}}

Chapter 21 Ember

https://atom.io
https://ember-cli.com
https://ember-cli.com

404

As a note, anytime we need to generate a new template, we can do so using the

convenient ember generate command (ember g for short), which will scaffold a new

template in the templates directory akin to our root application template. The following

two commands are equivalent.

$ ember generate template my-new-template

$ ember g template my-new-template

Note  If a template already exists with the same name, Ember CLI will ask
whether you wish to overwrite the existing template or cancel. For more
information about Ember templates, consult the documentation at https://
guides.emberjs.com/release/templates/handlebars-basics.

�Ember Routes
In the Ember framework, URLs, or routes, represent application states. Each individual

URL is tied to a route object that controls what renders in the user’s browser. Ember

routes encompass both templates, which determine what should render on the route,

and route handlers, which perform the rendering and load models that Ember exposes

to the template.

In our case, we will build a simple content browser for articles much like past

chapters. We can use the following command to generate a new route. Note that here, we

are using the shorthand from the previous section.

$ ember g route articles

In the route template, insert the following.

{{! app/templates/articles.hbs }}

<h2>List of articles</h2>

When you navigate to http://localhost:4200/articles, you will now see two

headings, one representing the <h1> we provided in our root application template and

the other representing the <h2> we provided in the articles template.

Now that we know the template is working properly, we can provide some initial

dummy data to render on the route by opening the route handler. Luckily, Ember CLI

has already generated an empty articles.js file as our route handler. Replace the

Chapter 21 Ember

https://guides.emberjs.com/release/templates/handlebars-basics
https://guides.emberjs.com/release/templates/handlebars-basics

405

contents with the following code, in which we are providing some dummy data as an

array into the model hook (to be covered shortly).

// app/routes/articles.js

import Route from '@ember/routing/route';

export default Route.extend({

 model () {

 return [

 {

 title: 'Capto',

 uuid: '3ca469da-b905-4a77-8d97-954abcdc4cf6',

 created: 1526387013,

 body: {

 value: 'Camur'

 }

 },

 {

 title: 'Esse Ex Nibh Valde Valetudo',

 uuid: '1e1a4598-f9c7-4ce7-adbd-7603401cc23b',

 created: 1526387013,

 body: {

 value: 'Illum loquor persto plaga premo.'

 }

 }

]

 }

});

Now, within our route template, we can iterate over this array within our articles

route template.

{{! app/templates/articles.hbs }}

<h2>List of articles</h2>

 {{#each model as |article|}}

 {{article.title}}

Chapter 21 Ember

406

 {{article.created}}

 {{article.body.value}}

 {{/each}}

When we navigate to our articles route once more, we will see our familiar headings

followed by an unordered list consisting of our dummy articles.

Note  For more information about Ember routes, consult the documentation at
https://guides.emberjs.com/release/routing.

�Ember Components
In Ember, components are reusable and nestable, just like the other commonly leveraged

frameworks in the JavaScript community. Components typically consist of a Handlebars

template, which describes how the component should present itself, and a JavaScript file

tied to the component, which determines its behavior. Because Ember has a specific aim

of following the Web Components specification, its handling of components is similar to

Custom Elements.

Consider the article browser that we have begun to construct. If we wanted to build

a browser for Drupal pages as well, it would be tedious and ultimately less maintainable

to repeat the same code as is for pages and other content entities. If we can generalize

across all entity types, however, we can use a generic component that only varies by

Drupal bundle.

Generate a new component using the following command.

$ ember g component entity-list

Within our component template, we can copy the contents of the article template

and provide more generic code that is agnostic to the type of entity we are handling.

As you can see, because the title of each component will vary, we need to provide

{{title}} as a property.

Chapter 21 Ember

https://guides.emberjs.com/release/routing

407

{{! app/templates/components/entity-list.hbs }}

<h2>{{title}}</h2>

 {{#each entities as |entity|}}

 {{entity.title}}

 {{entity.created}}

 {{entity.body.value}}

 {{/each}}

Now, within the overarching articles template, we can replace the contents with

an invocation of our entity-list component. Because Ember adheres to the Custom

Elements specification, all component names need to be hyphenated for the sake of

forward compatibility.

{{! app/templates/articles.hbs }}

{{entity-list title="List of articles" entities=model}}

When we also wish to include a list of pages in our content browser, we can generate

a new route and provide a similar template without having to change the underlying

properties.

$ ember g route pages

The pages route would look exactly the same as our articles route, with the exception

of the type property, as seen in the following example.

{{! app/templates/pages.hbs }}

{{entity-list title="List of pages" entities=model}}

Now, we need to provide our dummy data consisting of example pages.

// app/routes/pages.js

import Route from '@ember/routing/route';

export default Route.extend({

 model () {

Chapter 21 Ember

408

 return [

 {

 title: 'Humo',

 uuid: 'bc4acb41-d3fe-4e19-a43b-c51665dab367',

 created: 1526387013,

 body: {

 value: 'Commoveo cui ille modo pecus valde.'

 }

 },

 {

 title: 'Hos Ille Olim',

 uuid: '1e343b8a-3bb5-4c3e-aba2-665cb2cfbece',

 created: 1526387013,

 body: {

 value: 'Esse genitus ibidem mos quidne utrum valde.'

 }

 }

]

 }

});

When we navigate to http://localhost:4200/pages, we will see the dummy data

appear.

As an additional step to improve the user experience of our application, we can provide

a rudimentary navigation bar at the top of the root application template that allows us to

navigate between the routes we have created. Replace the contents with the following.

{{! app/templates/application.hbs }}

<h1>{{#link-to "index"}}Ember app{{/link-to}}</h1>

 {{#link-to "articles"}}Articles{{/link-to}}

 {{#link-to "pages"}}Pages{{/link-to}}

{{outlet}}

The current state of our application at our two routes can be seen in Figures 21-1

and 21-2.

Chapter 21 Ember

409

Note  For more information about Ember components, consult the documentation
at https://guides.emberjs.com/release/components/defining-a-
component.

Figure 21-2.  Our listing of dummy articles at http://localhost:4200/articles

Figure 21-1.  Our listing of dummy pages at http://localhost:4200/pages

Chapter 21 Ember

https://guides.emberjs.com/release/components/defining-a-component
https://guides.emberjs.com/release/components/defining-a-component

410

�Ember Models
Up to this point, we have provided dummy data through Ember’s model hooks. In

Ember, models represent persistent state on the client side and also normally persist data

to a web server, although they can represent data saved remotely anywhere. When we

modify data, or when we add new data, the model is saved.

We can generate models as we did previously with routes, templates, and

components. Because we will be consuming Drupal’s JSON API implementation, each

model we generate should represent each bundle (Drupal content type) that we will be

handling.

$ ember g model node--article

$ ember g model node--page

With the models generated, we need to inform Ember about the properties we wish

to expose to the templates that will render them by using the .attr() method in Ember

Data. In the following examples, we are registering particular JSON API attributes with

Ember.

// app/models/node--article.js

import DS from 'ember-data';

export default DS.Model.extend({

 uuid: DS.attr(),

 title: DS.attr(),

 created: DS.attr(),

 body: DS.attr()

});

// app/models/node--page.js

import DS from 'ember-data';

export default DS.Model.extend({

 uuid: DS.attr(),

 title: DS.attr(),

 created: DS.attr(),

 body: DS.attr()

});

Chapter 21 Ember

411

The .attr() method is often invoked to cast inputs to a different type. For instance,

we can transform an integer in the API response into a string (.attr('string')). In

addition, because Ember Data intelligently captures all of the child data captured within

attributes, there is no need to include an additional value property for the body value.3

Note  For more information about Ember models, consult the documentation at
https://guides.emberjs.com/release/models.

�Backing Ember with Drupal and JSON API
Now that we have created our models, we are ready to connect our Drupal back end to

our Ember application. Once again, we will be leveraging the Drupal site with JSON API

installed that we worked with in Chapters 8 and 12. Return to Chapters 8 and 12 if you

need further background in enabling and using JSON API in Drupal.

�Ember Adapters and JSONAPIAdapter
In Ember, adapters are used to facilitate communication with APIs via XMLHttpRequests.

Although multiple adapters are possible on Ember applications when backed by

multiple data sources, in our case we only need a single adapter that straddles our entire

application and represents the JSON API implementation in our Drupal site. If you need

multiple adapters, you can provide a different argument in lieu of application shown

here to facilitate multiple data sources.

$ ember g adapter application

By default, Ember generates a JSONAPIAdapter, as the Ember community has

adopted JSON API as their API specification of choice. Ember Data makes other adapters

available for REST APIs that do not adhere to the JSON API specification, although these

usually obligate developers to perform other steps for setup.

3�So, Preston. “Decoupled Drupal with JSON API and Ember: Consuming Drupal with Ember
Adapters and Models.” Acquia Developer Center. 21 December 2016. Accessed 14 September
2018. https://dev.acquia.com/blog/decoupled-drupal-with-json-api-and-ember-
consuming-drupal-with-ember-adapters-and-models/21/12/2016/17411

Chapter 21 Ember

https://guides.emberjs.com/release/models
https://dev.acquia.com/blog/decoupled-drupal-with-json-api-and-ember-consuming-drupal-with-ember-adapters-and-models/21/12/2016/17411
https://dev.acquia.com/blog/decoupled-drupal-with-json-api-and-ember-consuming-drupal-with-ember-adapters-and-models/21/12/2016/17411

412

To connect to the Drupal content repository we have available thanks to our previous

setup, we need to provide a host and namespace to the adapter, as you can see in this

example.

// app/adapters/application.js

import DS from 'ember-data';

export default DS.JSONAPIAdapter.extend({

 host: 'http://jsonapi-test.dd:8083',

 namespace: 'jsonapi'

});

Note  For more information about Ember adapters, consult the documentation
at https://guides.emberjs.com/release/models/customizing-
adapters.

�Fetching Data in Route Handlers
Within our route handlers, where we had originally provisioned dummy data, we

can now leverage Ember’s data store to replace the contents of our model hooks with

retrievals of Drupal data. Consider the following example route handlers, in which we

import Drupal data issued by JSON API into the routes for use in route templates.

// app/routes/articles.js

import Route from '@ember/routing/route';

export default Route.extend({

 model () {

 return this.get('store').findAll('node--article');

 }

});

// app/routes/pages.js

import Route from '@ember/routing/route';

Chapter 21 Ember

https://guides.emberjs.com/release/models/customizing-adapters
https://guides.emberjs.com/release/models/customizing-adapters

413

export default Route.extend({

 model () {

 return this.get('store').findAll('node--page');

 }

});

You might have noticed that on saving, our Ember application no longer works as

expected. If we navigate to our Drupal site and inspect the Drupal error log (/admin/

reports/dblog), we encounter 404 Not Found errors against URLs that do not match

the format expected by Drupal’s JSON API implementation (e.g., /jsonapi/node--

articles, etc.). In addition, when we open the developer console in a browser such as

Google Chrome, you can see errors like those depicted in Figure 21-3.

Figure 21-3.  Our adapter needs further customization to reflect the expected paths
in Drupal’s JSON API implementation

Further work is needed to ensure that our Ember application is retrieving data from

Drupal correctly.

�Customizing JSONAPIAdapter
To have our JSONAPIAdapter recognize Drupal’s unique JSON API paths, we need to

customize our adapter further with additional code that allows it to recognize Drupal’s

JSON API. This can be achieved in a number of different ways, and we can see one

example here, optimized by Chris Hamper (hampercm).

// app/adapters/application.js

import DS from 'ember-data';

Chapter 21 Ember

414

export default DS.JSONAPIAdapter.extend({

 host: 'http://jsonapi-test.dd:8083',

 namespace: 'jsonapi',

 pathForType(type) {

 let entityPath;

 switch(type) {

 case 'node--article':

 entityPath = 'node/article';

 break;

 case 'node--page':

 entityPath = 'node/page';

 break;

 }

 return entityPath;

 },

 buildURL() {

 return this._super(...arguments);

 }

});

We can now see our completed and fully functional content browser in Figures 21-4

and 21-5.

Chapter 21 Ember

415

Figure 21-4.  Our content browser displays articles originating directly from JSON
API on our Drupal site

Figure 21-5.  Our content browser displays pages originating directly from JSON
API on our Drupal site

Chapter 21 Ember

416

�Conclusion
In this chapter, we finished our journey through JavaScript technologies with a

circumnavigation of the Ember ecosystem. Thanks to the wide array of tools that Ember

makes available, along with its relatively opinionated orientation, we can anticipate

a variety of use cases and develop our application quickly. In the process, we dove

into key elements of the Ember framework such as templates, routes, route handlers,

components, models, and adapters. Although Ember might be far too opinionated

for some developers, a rich ecosystem of plug-ins makes it a compelling choice for

decoupled Drupal practitioners.

Moreover, the Ember community’s adoption of JSON API and the consequent

offering of JSONAPIAdapter by default mean that Ember is a particularly well-suited

option for architects planning to build consumers based on Drupal’s JSON API

implementation. With minimal overhead and a limited amount of customization on the

adapter, we can create a rich consumer without any need to rely on third-party libraries

like axios.

In Part 6, we end our exploration of decoupled Drupal with consideration of

advanced topics. In the coming chapters, we focus on both core and contributed

solutions for extending the capabilities of Drupal’s web services for decoupled

architectures, including creating custom REST resources, leveraging contributed

modules to enhance Drupal’s JSON API implementation. We also navigate some of the

challenges in ensuring good performance through caching and in providing a pleasant

developer experience for consumers through schemas and generated documentation.

Finally, we consider some of the implications of decoupled Drupal on the future of the

Drupal front end and of the CMS more broadly.

Chapter 21 Ember

PART VI

Advanced Topics in
Decoupled Drupal
In Part 5, we covered some of the major JavaScript technologies currently used to build

decoupled Drupal consumers, such as React, Angular, Ember, and Vue, including

motivations for choosing one over the other with regard to Drupal’s web services

solutions, conceptual introductions, and a guide to construct a Drupal-backed

application. In these chapters, we end our odyssey across the stack to cover advanced

topics in decoupled Drupal, such as the REST plug-in system, contributed modules for

advanced use cases, schemas and generated API documentation, caching, and the future

of decoupled Drupal.

We visit many different areas in these chapters, the content of which is intended

not as an exhaustive inspection, but rather as a survey of both rapidly evolving and

long standing solutions in the decoupled Drupal landscape. For instance, we first

turn to the REST plug-in system in Drupal core, which uses Drupal 8 development

paradigms that have been present for many years. Immediately afterward, however, we

shift to groundbreaking contributed modules that offer features such as an OpenAPI

implementation, derived schemas, and subrequests. We also cover caching, a topic that

is essential for the success of live production builds.

Although it is relatively straightforward to create custom resources that extend the

existing core REST functionality, the process does require creating a custom module

in Drupal and some knowledge of PHP. Luckily, the Drupal plug-in system is well-

represented in Drupal’s documentation and expertise with the Plugin API opens the door

to many other extensions of functionality in Drupal available to novice Drupal developers.

418

Thanks to projects like JSON API Extras, JSON API Defaults, JSON-RPC,

Subrequests, and Decoupled Router, the advantages of the contributed module

ecosystem for decoupled Drupal architectures cannot be understated. This is also

true of modules providing schemas and generated documentation like Schemata

and OpenAPI. Although many of these projects are unstable and still under heavy

development, they reveal promising ways forward for feature roadmaps in core features

and in upcoming core functionality such as Drupal’s JSON API implementation.

Finally, any decoupled Drupal architecture must consider the implications of

its decisions on performance once live in production. Many features are available

that specifically improve performance outcomes for decoupled Drupal, particularly

Drupal’s cache tag system and external tooling such as reverse proxies and content

delivery networks (CDNs). Although there is no one-size-fits-all solution when it

comes to caching, a frank consideration of these issues is critical to the success of your

architecture.

To bring our journey through the world of decoupled Drupal to an end, the final

chapter in this volume deals with current and forthcoming issues in decoupled Drupal

and the outlook for decoupled Drupal in the medium to long term. We start with the

active Admin UI and JavaScript Modernization Initiative, a team that is working to

bring decoupled Drupal advantages to Drupal’s own administrative interface. To finish

things off, we discuss issues in Drupal’s theme layer, the future of Drupal’s promises to

developers and editors alike, and Drupal’s place in the decoupled CMS landscape.

Part VI A dvanced Topics in Decoupled Drupal

419
© Preston So 2018
P. So, Decoupled Drupal in Practice, https://doi.org/10.1007/978-1-4842-4072-4_22

CHAPTER 22

The REST Plug-in System
Like many other modules in Drupal, the RESTful Web Services module (see Chapter 7)

can be extended with additional resource plug-ins that add new resources to the Drupal

core REST API. Because the RESTful Web Services module is part of Drupal core, and

because we should not modify Drupal core code under any circumstances, we can add

resource plug-ins via a custom module.

For Drupal developers familiar with PHP, the process of creating a custom module,

detailed in the first section, will be familiar and can be safely skipped in favor of the

subsequent section. For those who are interested in Drupal development from the PHP

standpoint and wish to extend core REST to include bespoke resources, the entirety of

this chapter will confer useful knowledge.

�Creating a Custom Module
In Drupal 8, downloaded contributed modules are located in the /modules directory. A

best practice is to place all custom modules that are not part of the Drupal contributed

module ecosystem within the /modules/custom directory for differentiation. Within the

/modules/custom directory, create a new directory with a name of your choice, such as

extended_rest.

Every Drupal module must have a YAML file known as the .info.yml file in Drupal

parlance. YAML files express certain key pieces of information about the Drupal module,

such as its human name, the description that will appear on the Extend page (/admin/

modules), the Drupal version it works with, and any dependencies the module has.

Consider, for instance, the .info.yml file for our new extended_rest module, which

has the name extended_rest.info.yml and is located within the /modules/custom/

extended_rest directory. Note that we have declared a dependency on the RESTful Web

Services module, as we will be implementing one of the plug-ins it provides.

420

name: Extended REST

description: 'Adds custom resources to the Drupal core REST API.'

package: Custom

type: module

core: 8.x

dependencies:

 - drupal:rest

Without any further action, it is possible at this juncture to navigate to the Extend

page (/admin/modules) and see your module represented in the list, although enabling

it will do nothing, as we have not written any of the code that will add a new resource to

our core REST API.1

Note  You can also use Drupal Console to scaffold a custom module that
already contains a generated resource plug-in using the command drupal
generate:plugin:rest:resource. For more information about using
this command, consult the Drupal Console documentation at https://
hechoendrupal.gitbooks.io/drupal-console/content/en/commands/
generate-plugin-rest-resource.html. For more information about Drupal
Console, consult https://drupalconsole.com.2

�Implementing REST Resource Plug-ins
To add our custom REST resource, we need to use Drupal plug-ins. In Drupal 8, plug-ins are

small pieces of functionality that are swappable. Typically, plug-ins that are responsible for

similar functionality are members of the same plug-in type. In the case of REST resources,

the plug-in in question is the ResourceBase plug-in, which is used in other provisions of

REST resources such as the database log resource and general entity resources.

1�“Custom REST resources.” Drupal.org. 14 July 2018. Accessed 28 August 2018. https://www.
drupal.org/docs/8/api/restful-web-services-api/custom-rest-resources

2�“RESTful Web Services API overview.” Drupal.org. 18 April 2018. Accessed 28
August 2018. https://www.drupal.org/docs/8/api/restful-web-services-api/
restful-web-services-api-overview

Chapter 22 The REST Plug-in System

https://hechoendrupal.gitbooks.io/drupal-console/content/en/commands/generate-plugin-rest-resource.html
https://hechoendrupal.gitbooks.io/drupal-console/content/en/commands/generate-plugin-rest-resource.html
https://hechoendrupal.gitbooks.io/drupal-console/content/en/commands/generate-plugin-rest-resource.html
https://drupalconsole.com
http://drupal.org
https://www.drupal.org/docs/8/api/restful-web-services-api/custom-rest-resources
https://www.drupal.org/docs/8/api/restful-web-services-api/custom-rest-resources
http://drupal.org
https://www.drupal.org/docs/8/api/restful-web-services-api/restful-web-services-api-overview
https://www.drupal.org/docs/8/api/restful-web-services-api/restful-web-services-api-overview

421

The next step is for us to create an implementation of the ResourceBase plug-in

within the Extended REST module. To do this, we adhere tightly to Drupal’s file and

directory structure for modules. Create a file named CustomResource.php (or whatever

you prefer to name your resource) in the directory /modules/custom/extended_rest/

src/Plugin/rest/resource.

Note that your directory structure should appear as follows.

modules

├── custom
│ └── extended_rest
│ ├── extended_rest.info.yml
│ └── src
│ └── Plugin
│ └── rest
│ └── resource
│ └── CustomResource.php

In the following example, we set a namespace for the PHP class that will house our

logic and use the ResourceBase and ResourceResponse classes, the latter of which will

handle sending the response.

<?php

namespace Drupal\extended_rest\Plugin\rest\resource;

use Drupal\rest\Plugin\ResourceBase;

use Drupal\rest\ResourceResponse;

Note  For more information about the Drupal plug-in system, refer to the Plugin
API overview available on Drupal.org at https://www.drupal.org/docs/8/
api/plugin-api/plugin-api-overview.

Chapter 22 The REST Plug-in System

https://www.drupal.org/docs/8/api/plugin-api/plugin-api-overview
https://www.drupal.org/docs/8/api/plugin-api/plugin-api-overview

422

�Annotating REST Resource Plug-ins
The next step, which adds plug-in annotations, is perhaps the most important, as it

allows the plug-in implementation to be discovered and determines both how our

resource will appear in Drupal and the URI at which the resource will be available. We do

this by expressing a @RestResource annotation within the documentation block of the

CustomResource class.

/**

 * Adds a custom resource to the core REST API.

 *

 * @RestResource(

 * id = "custom_resource",

 * label = @Translation("Custom resource"),

 * uri_paths = {

 * "canonical" = "/custom_resource/{id}",

 * "https://www.drupal.org/link-relations/create" = "/custom_resource"

 * }

 *)

 */

class CustomResource extends ResourceBase {

}

The uri_paths definition shown, which accepts link relation types as keys and

partial URIs as values, is essential to the plug-in implementation. If you opt not to specify

anything within the uri_paths definition, Drupal will automatically generate URIs based

on the plug-in identifier rather than relying on paths that we have defined. To explain

this further, consider the situation in which our preceding definition lacks a uri_paths

definition.

Without the uri_paths definition, Drupal will automatically allow the following

methods against the following paths. Note the difference between POST and the other

methods.

GET /custom_resource/{id}

PATCH /custom_resource/{id}

DELETE /custom_resource/{id}

POST /custom_resource

Chapter 22 The REST Plug-in System

423

Defining uri_paths also allows us to conduct API versioning through REST resource

plug-ins by enabling the addition of new resources with different uri_paths every

time we need to increment the version of our API. Consider the following example

documentation block and annotation.

/**

 * Adds a custom resource to the core REST API.

 *

 * @RestResource(

 * id = "custom_resource",

 * label = @Translation("Custom resource"),

 * uri_paths = {

 * "canonical" = "/api/v1/custom_resource/{id}",

 * �"https://www.drupal.org/link-relations/create" =

"/api/v1/custom_resource"

 * }

 *)

 */

Note  For more information about annotations in Drupal’s Plugin API, consult the
documentation at https://www.drupal.org/docs/8/api/plugin-api/
annotations-based-plugins. For insight about the unusual uri_paths key
for POST requests, consult https://www.drupal.org/node/2811757.

�Serving Responses in Resource Plug-ins
Now that we have annotated our resource, we can define a method and instruct Drupal

how we would like it to respond to a request having that method. For instance, consider

how we handle the GET method in the following example. In this example, because our

resource will be read-only, as the other methods remain unimplemented, we exclude all

but the canonical path and provide a single resource.

Chapter 22 The REST Plug-in System

https://www.drupal.org/docs/8/api/plugin-api/annotations-based-plugins
https://www.drupal.org/docs/8/api/plugin-api/annotations-based-plugins
https://www.drupal.org/node/2811757

424

/**

 * Adds a custom resource to the core REST API.

 *

 * @RestResource(

 * id = "custom_resource",

 * label = @Translation("Custom resource"),

 * uri_paths = {

 * "canonical" = "/custom_resource",

 * }

 *)

 */

class CustomResource extends ResourceBase {

 /**

 * Issues responses to GET requests.

 * @return \Drupal\rest\ResourceResponse

 */

 public function get() {

 $response = ['message' => 'Hello world!'];

 return new ResourceResponse($response);

 }

}

If you have enabled the REST UI module (see Chapter 8), you will now see the

custom resource present in the list of available REST resources, and the GET method

will now be configurable on that resource, as you can see in Figure 22-1. The manual

configuration process that we detailed earlier will also be possible.

Chapter 22 The REST Plug-in System

425

We can now test that this resource is indeed serving a response by issuing the

following request.

GET /custom_resource?_format=json HTTP/1.1

Authorization: Basic YWRtaW46YWRtaW4=

Content-Type: application/json

We will receive the following response in return from Drupal, as illustrated in

Figure 22-2.

{

 "message": "Hello world!"

}

Figure 22-1.  When we add GET request handling to our custom resource, it
appears in the list of configurable resources in REST UI

Chapter 22 The REST Plug-in System

426

Note  For more examples of REST resource plug-ins in active use, consult the
DBLogResource and EntityResource plug-in implementations, located at
https://github.com/drupal/drupal/blob/8.6.x/core/modules/
dblog/src/Plugin/rest/resource/DBLogResource.php and https://
github.com/drupal/drupal/blob/8.6.x/core/modules/rest/src/
Plugin/rest/resource/EntityResource.php, respectively.

�Conclusion
As you can see, the REST plug-in system is an effective means of quickly provisioning

new resources for use by your consumers. In this chapter, we covered some of the most

important elements of REST resource plug-in implementations, including module

creation, annotations, and response handling. Armed with this and other plug-in

implementations, you can have Drupal provide a wide variety of resources.

In the next chapter, we cover some of the contributed modules in the decoupled

Drupal ecosystem that aid advanced use cases such as remote procedure calls (RPCs),

improved performance, handling modified paths, and configuring defaults and other

settings for JSON API. In turn, we explore the JSON API Extras, JSON API Defaults, JSON-

RPC, Subrequests, and Decoupled Router modules.

Figure 22-2.  Our custom resource greets us with a 200 OK response code and our
expected response payload

Chapter 22 The REST Plug-in System

https://github.com/drupal/drupal/blob/8.6.x/core/modules/dblog/src/Plugin/rest/resource/DBLogResource.php
https://github.com/drupal/drupal/blob/8.6.x/core/modules/dblog/src/Plugin/rest/resource/DBLogResource.php
https://github.com/drupal/drupal/blob/8.6.x/core/modules/rest/src/Plugin/rest/resource/EntityResource.php
https://github.com/drupal/drupal/blob/8.6.x/core/modules/rest/src/Plugin/rest/resource/EntityResource.php
https://github.com/drupal/drupal/blob/8.6.x/core/modules/rest/src/Plugin/rest/resource/EntityResource.php

427
© Preston So 2018
P. So, Decoupled Drupal in Practice, https://doi.org/10.1007/978-1-4842-4072-4_23

CHAPTER 23

Contributed Modules
for Advanced Use Cases
Whereas the JSON API, RELAXed Web Services, and GraphQL modules (see

Chapters 12–14) are all implementations of specifications and provide web services,

other contributed modules provide features that are adjacent or tangential to the

provision of web services but advantage the developer in various ways, whether that

means an improved developer experience or user experience. In this chapter, we cover

some of the most popular modules in this arena.

For instance, JSON API Extras and JSON API Defaults extend the JSON API module

to provide the ability to override the JSON API module’s out-of-the-box configuration.

Meanwhile, JSON-RPC allows developers to access certain operations in Drupal that are

not RESTful and cannot be performed easily through API requests. Finally, Subrequests

alleviates performance concerns by facilitating chained requests, and Decoupled Router

allows for resources to resolve correctly even when their URLs change over time.

�JSON API Extras
One of the most important advantages of the JSON API module is that it requires zero

configuration. We can simply enable the module and a JSON API-compliant API is

available to us. However, there are many situations where you might wish to override

certain defaults that the module provides out of the box. For these purposes, we need to

leverage the JSON API Extras module, which also ships with the Contenta distribution

(see Chapter 15) and is authored by Mateu Aguiló Bosch (e0ipso).

428

The JSON API Extras module provides interfaces to override default settings and

establish new ones that the resulting API should follow. Currently, features include

common requirements such as enabling and disabling individual resources, aliasing

resource names and paths, disabling individual fields in entities, aliasing field names,

and modifying field output through the use of Drupal field enhancers.1

To install the JSON API Extras module, use the following commands. If JSON API is

not also installed, Composer can fetch it for you.

$ composer config repositories.drupal composer

https://packages.drupal.org/8

$ composer require drupal/jsonapi_extras

$ drush en -y jsonapi_extras

Navigate to Configuration ➤ JSON API Overwrites (/admin/config/services/

jsonapi), where a JSON API Resource Config page lists all of the resources enabled and

exposed through JSON API, reflecting each preordained default. Consider, for instance,

the node--article resource by clicking the Overwrite button on the right side of the row.

As you can see in Figure 23-1, it is possible for us to institute a variety of changes that

might improve the developer experience when it comes to consumer applications, where

Drupal bundles are completely meaningless. The first portion of the interface allows

us to disable the resource in question, change the type name that would be invoked on

collection retrievals (e.g., from node--article to articles), or change the path at which

the resource is available (e.g., /jsonapi/node/article to /jsonapi/articles).

1�“JSON API Extras.” Drupal.org. 28 April 2017. Accessed 23 August 2018. https://www.drupal.
org/project/jsonapi_extras

Chapter 23 Contributed Modules for Advanced Use Cases

https://www.drupal.org/project/jsonapi_extras
https://www.drupal.org/project/jsonapi_extras

429

In the second part of the interface, seen in Figure 23-2, we see that we can disable

individual fields from appearing in responses, alias field names, and (on clicking the

Advanced button) select a field enhancer to decorate the field value differently in the

response. Thanks to JSON API Extras, we can leverage a wide-ranging feature set to

enrich our responses in a way that accelerates consumer development downstream.

Figure 23-1.  Use JSON API Extras to disable individual resources, override
resource types, and override the path at which a resource can be requested

Chapter 23 Contributed Modules for Advanced Use Cases

430

Note T he JSON API Extras module is available on Drupal.org at https://www.
drupal.org/project/jsonapi_extras.

�JSON API Defaults
Maintained by Martin Kolar (mkolar), the JSON API Defaults module allows us to set

default includes and filters for resources, but it remains unstable and in development.

JSON API Defaults is particularly useful in use cases where consumers prefer issuing

slimmer requests without the parameters needed to yield a particular response that

includes relationships. In short, you can issue a request against a resource without

any parameters and receive a response that has predetermined defaults, even when

parameters dictating such characteristics in the response are absent.2

2�“JSON API Defaults.” Drupal.org. 12 July 2017. Accessed 23 August 2018. https://www.drupal.
org/project/jsonapi_defaults

Figure 23-2.  We can also disable individual fields so that they are absent from
responses, alias field names for consumers, or employ Drupal field enhancers to
modify a field’s output before it figures in the serialized response

Chapter 23 Contributed Modules for Advanced Use Cases

https://www.drupal.org/project/jsonapi_extras
https://www.drupal.org/project/jsonapi_extras
https://www.drupal.org/project/jsonapi_defaults
https://www.drupal.org/project/jsonapi_defaults

431

Note T he JSON API Defaults module is available on Drupal.org at https://
www.drupal.org/project/jsonapi_defaults, but it remains unstable and
under active development.

�JSON-RPC
Sometimes, more of the functionality present in Drupal needs to be available to

developers of consumers, because retrieving and manipulating content is inadequate for

a consumer application’s requirements. Moreover, many decoupled Drupal practitioners

are now exploring editorial interfaces that, although based in Drupal, often need to be

able to perform key Drupal operations such as running cron jobs or rebuilding the cache

registry.

Maintained by Mateu Aguiló Bosch (e0ipso) and Gabriel Sullice (gabesullice), the

JSON-RPC module in Drupal provides a stateless, lightweight protocol for performing

remote procedure calls (RPCs),3 which execute a procedure (or subroutine) on another

system but are written as if they were local actions, without direct coding of the remote

action.4 It is intended for use with any function in Drupal that is not representable

through REST, with a mission to serve as the canonical foundation for building Drupal

administrative and introspective interfaces. Although core REST provides the ability to

create custom resources, certain Drupal actions, like a cache rebuild, are impossible

through any RESTful API.

In simpler terms, developers of consumer applications can use the JSON-RPC

module to include interfaces in JavaScript or native applications that trigger certain

tasks in Drupal such as placing the site into maintenance mode. In addition, JSON-RPC

exposes certain internal details in Drupal’s database, such as permissions and the list of

enabled modules.

3�“JSON-RPC.” Drupal.org. 4 April 2018. Accessed 23 August 2018. https://www.drupal.org/
project/jsonrpc

4�Aguiló Bosch, Mateu. “JSON-RPC to Decouple Everything Else.” Lullabot. 1 May 2018.
Accessed 23 August 2018. https://www.lullabot.com/articles/
jsonrpc-to-decouple-everything-else

Chapter 23 Contributed Modules for Advanced Use Cases

https://www.drupal.org/project/jsonapi_defaults
https://www.drupal.org/project/jsonapi_defaults
https://www.drupal.org/project/jsonrpc
https://www.drupal.org/project/jsonrpc
https://www.lullabot.com/articles/jsonrpc-to-decouple-everything-else
https://www.lullabot.com/articles/jsonrpc-to-decouple-everything-else

432

To install the JSON-RPC module, use the following commands. Be sure to

enable permissions on roles you wish to have access to JSON-RPC using the Use

JSON-RPC services permission. For certain tasks you might also need the

Administer site configuration permission.

$ composer config repositories.drupal composer

https://packages.drupal.org/8

$ composer require drupal/jsonrpc

$ drush en -y jsonrpc jsonrpc_core

To discover what JSON-RPC methods are available, you can introspect the JSON-

RPC API by first installing the JSON-RPC Discovery submodule, which depends on the

Serialization module.

$ drush en -y jsonrpc_discovery

From that point, you can issue a GET request to /jsonrpc/methods on the Drupal

back end to retrieve documentation and view details on usage.

To issue JSON-RPC calls that trigger a non-RESTful action on the Drupal server,

we need to create a POST request that includes an Authorization header with Basic

Authentication. The request body needs to adhere to the JSON-RPC specification.

For content delivery networks (CDNs) that enforce only GET requests, there is also

an alternative approach, which involves sending a GET request to / with a ?query=

parameter. This, however, requires JSON to be URL-encoded.

Consider the following request, which we can use to remotely rebuild Drupal’s cache

registry. You can also see the request in Figure 23-3.

POST /jsonrpc HTTP/1.1

Authorization: Basic YWRtaW46YWRtaW4=

Content-Type: application/json

{

 "jsonrpc": "2.0",

 "method": "cache.rebuild"

}

Chapter 23 Contributed Modules for Advanced Use Cases

433

In the GET case, the request would appear as follows.

GET /?query=%7B%22jsonrpc%22%3A%222.0%22%2C%22method%22%3A%22cache.

rebuild%22%7D HTTP/1.1

Authorization: Basic YWRtaW46YWRtaW4=

Content-Type: application/json

As you can see, we have now rebuilt our cache registry remotely from the standpoint

of our consumer.

Figure 23-3.  A 204 No Content response indicates that our JSON-RPC call was
successful in the case of clearing all caches

For a more involved example, we can request a list of all the permissions available in

the Drupal site, which we can then use in the consumer to create a view of permissions.

Consider the following request, which requests a list of permissions with an upper limit

of 5 and no offset for the user with a uid of 2.

POST /jsonrpc HTTP/1.1

Authorization: Basic YWRtaW46YWRtaW4=

Content-Type: application/json

Chapter 23 Contributed Modules for Advanced Use Cases

434

{

 "jsonrpc": "2.0",

 "method": "user_permissions.list",

 "params": {

 "page": {

 "limit": 5,

 "offset": 0

 }

 },

 "id": 2

}

Table 23-1 lists some of the most common JSON-RPC methods you might use during

development.

Table 23-1.  JSON-RPC Methods and Their Parameters

JSON-RPC Method Description Parameters

cache.rebuild Rebuilds the system cache None

maintenance_mode.

isEnabled

Enables or disables the

maintenance mode

enabled

user_permissions.add_

permission_to_role

Add the given permission to the

specified role

permission, role

user_permissions.list List all the permissions available

in the site

page (limit, offset)

plugins.list List defined plug-ins page (limit, offset),

service

route_builder.rebuild Rebuilds the application’s router

(result is TRUE if the rebuild

succeeded, FALSE otherwise)

None

Chapter 23 Contributed Modules for Advanced Use Cases

435

Note T he JSON-RPC module is available on Drupal.org at https://www.
drupal.org/project/jsonrpc. Use it with care, as it remains in beta.
Examples of JSON-RPC calls can be found in the Postman collection located
at https://www.getpostman.com/collections/04e08782cde9fbf6
4f44. A list of unimplemented APIs can be found at https://www.drupal.
org/project/drupal/issues/2913790. For more information about the
motivations behind JSON-RPC, see Mateu Aguiló Bosch’s Lullabot article “JSON-
RPC to Decouple Everything Else” at https://www.lullabot.com/articles/
jsonrpc-to-decouple-everything-else.

�Subrequests
One of the areas that we have not covered when it comes to leveraging JSON API as a web

services solution is its impact on performance. After all, one of the primary motivators

for using JSON API over alternatives like core REST is the reduced need for multiple

consecutive requests, thanks to the availability of includes to handle related entities.

Nonetheless, if you are using HTTP/1.1, there is frequently the need for sequential requests,

as often not everything that we need in a consumer can be handled in a single request.

Mateu Aguiló Bosch, maintainer of the JSON API module, cites article creation as

an example of some of the performance drawbacks incurred. For example, to remotely

create an article tied to many taxonomy terms, we need to create the taxonomy terms

first because article creation requires that we furnish taxonomy term IDs.

To do this, though, we also need to create a vocabulary to handle the taxonomy

terms. Although many of these operations are possible in parallel on certain consumers,

many others don’t have that luxury. As Aguiló Bosch stated eloquently, “Each consumer

can have its own ideas on how to make requests and if they can be parallelized or not.”5

Rather than issuing consecutive requests and damaging performance, we can

leverage the Subrequests module to handle many JSON API operations within a single

request, particularly operations that are simple enough to obviate the need for human

input. Figure 23-4 illustrates how Subrequests works.

5�Aguiló Bosch, Mateu. “Decoupled Drupal Hard Problems.” DrupalCon Nashville. 10 April
2018. Accessed 28 August 2018. https://events.drupal.org/nashville2018/sessions/
decoupled-drupal-hard-problems

Chapter 23 Contributed Modules for Advanced Use Cases

https://www.drupal.org/project/jsonrpc
https://www.drupal.org/project/jsonrpc
https://www.getpostman.com/collections/04e08782cde9fbf64f44
https://www.getpostman.com/collections/04e08782cde9fbf64f44
https://www.drupal.org/project/drupal/issues/2913790
https://www.drupal.org/project/drupal/issues/2913790
https://www.lullabot.com/articles/jsonrpc-to-decouple-everything-else
https://www.lullabot.com/articles/jsonrpc-to-decouple-everything-else
https://events.drupal.org/nashville2018/sessions/decoupled-drupal-hard-problems
https://events.drupal.org/nashville2018/sessions/decoupled-drupal-hard-problems

436

To install Subrequests, execute the following commands. Note that Subrequests

depends on several third-party libraries, the handling of which requires Composer or

Composer Manager.6

$ composer require drupal/subrequests:^2.0

$ drush en -y subrequests

Note T he Subrequests module is available on Drupal.org at https://www.
drupal.org/project/subrequests. It is also included with the Contenta
distribution (see Chapter 15) and integrates with Contenta.js (see Chapter 16).

6�“Subrequests.” Drupal.org. 18 March 2017. Accessed 28 August 2018. https://www.drupal.org/
project/subrequests

Figure 23-4.  How Subrequests chains requests that have dependencies on prior
requests

Chapter 23 Contributed Modules for Advanced Use Cases

https://www.drupal.org/project/subrequests
https://www.drupal.org/project/subrequests
https://www.drupal.org/project/subrequests
https://www.drupal.org/project/subrequests

437

�Subrequests Blueprints
In Subrequests, a JSON document known as a blueprint contains a set of instructions

on how to perform consecutive requests that depend on one another in a single Drupal

bootstrap. Subrequests blueprints use placeholders instead of unfulfilled values that

Drupal will create. In this way, we can think of blueprints as a request without identifiers.

Successive responses that fulfill those values will fill those placeholders with the correct

identifiers.

Requests to Subrequests take the following format. Note that the Content-Type

header is required so that the front controller processing the blueprint can interpret the

request.

POST /subrequests HTTP/1.1

Authorization: Basic YWRtaW46YWRtaW4=

Content-Type: application/json

There is also an alternative approach using GET, similar to how we issued a GET

request in JSON-RPC (see previous section), with the request body contained in a

percent-encoded string appended to /subrequests?query=.

Note A s a note about usage, from this point forward, we use Subrequests
(capitalized) to refer to the Subrequests module, and we will use subrequest
(lowercase) to refer to individual subrequests or constituent requests.

Blueprints themselves are formed as an array with multiple request objects, each

of which represents a request that Drupal is expected to perform. Each subrequest

contained within the blueprint contains the properties listed in Table 23-2. The action

and uri properties are recommended, and the others are optional.7

7�“SPECIFICATION.md.” Drupalcode.org. 24 March 2018. Accessed 28 August 2018. http://cgit.
drupalcode.org/subrequests/tree/SPECIFICATION.md?h=8.x-2.x

Chapter 23 Contributed Modules for Advanced Use Cases

http://cgit.drupalcode.org/subrequests/tree/SPECIFICATION.md?h=8.x-2.x
http://cgit.drupalcode.org/subrequests/tree/SPECIFICATION.md?h=8.x-2.x

438

Note F or a more complete specification that details how to form requests
in Subrequests, consult the documentation at https://www.drupal.org/
project/subrequests.

�Handling Request Dependencies
There are two ways in which previous requests manifest themselves as dependencies

in later requests recorded in Subrequests blueprints: request dependencies and response

pointers (also referred to as response embedding).

As seen in the previous section, the waitFor key is important because it expresses a

dependency on the response of a foregoing request. Although each subrequest can only

declare a dependency on a single other subrequest, we can declare a dependency on a

Table 23-2.  Subrequest Properties

Subrequest Property Description Example Value

action The type of action the subrequest will

execute

view, create, update,

replace, delete,

exists, discover

uri The URI for the subrequest /jsonapi/node/article

requestId A unique identifier for the subrequest

used to match it with one of the partial

responses

req-2

body The serialized content of the request body

for the subrequest

An article represented in JSON

headers An object of key/value pairs, with keys

representing header names and values

representing values

{

"Content-Type":

"application/json"

}

waitFor Expresses the requestID from a

different subrequest as a dependency; this

subrequest cannot run until the waitFor

request has given a response

req-1

Chapter 23 Contributed Modules for Advanced Use Cases

https://www.drupal.org/project/subrequests
https://www.drupal.org/project/subrequests

439

series of multiple subrequests by collecting them in a separate blueprint and declaring

the subrequest represented by that blueprint as a dependency.

Frequently, subrequests need information that originates from responses to other

subrequests. As such, subrequests can include replacement tokens (response pointers)

that need to be resolved given previous successful subrequests in their shared blueprint.

Replacement tokens for unfulfilled responses are formed as follows, where <request_

id> represents the request identifier of the subrequest dependency, <location>

represents the place in the subrequest object where the token is present (e.g., body if the

pointer is in the request body), and <path_expression> represents a string that specifies

which portion of the response in the subrequest dependency should replace the token.

{{/<request_id>.<location>@<path_expression>}}

For instance, consider the following example response pointer. In this example,

we are identifying the prior request in which the value needed to replace the token is

present (req-1), where in the prior response the needed value is available (body), and

how to access it by traversing the object contained therein ($.data.id). Note that $, part

of the JSONPath specification, represents the value of body in this case.

{{/req-1.body@$.data.id}}

Note I f the overarching request has a Content-Type header with the value
application/json, the response pointer should adhere to the JSONPath
specification, located at http://goessner.net/articles/JsonPath. If
the Content-Type is application/xml instead, the response pointer should
adhere to the XPath 2.0 specification, located at https://www.w3.org/TR/
xpath20.

Warning D o not use response pointers as values for the requestId or
waitFor properties.

Chapter 23 Contributed Modules for Advanced Use Cases

http://goessner.net/articles/JsonPath
http://www.w3.org/TR/xpath20
http://www.w3.org/TR/xpath20

440

�Using Subrequests Blueprints
Once all constituent subrequests have completed and all responses have been filled,

Drupal issues a unified response to the overarching request that includes the responses

to every subrequest as members of an array. Each of these final responses employs the

207 Multi-Status response code, as every subrequest will include its own response

code. Responses to the overarching request will carry a Content-Type header of

multipart/related.

Consider the following example blueprint, which creates a taxonomy term that is

then used within the creation of an article. Note in particular the use of waitFor in the

second request req-2 and replacement token {{/req-1.body@$.data.id}}, which

targets the id property underneath the data object in the response to req-1 as the

information that should fill in the placeholder.

[

 {

 "requestId": "req-1",

 "uri": "/jsonapi/taxonomy_term/tags",

 "action": "create",

 �"body": "{\"data\":{\"type\":\"taxonomy_term--tags\",\"attributes\":

{\"name\":\"Cetaceans\",\"description\":{\"value\":\"Species that are

cetaceans\"},\"weight\":5},\"relationships\":{\"vid\":{\"data\":{\

"type\":\"taxonomy_vocabulary--taxonomy_vocabulary\",\"id\":\"b4708a6b-

5df8-4019-adab-870cbfb09fd6\"}}}}}",

 "headers": {

 "Accept": "application/vnd.api+json",

 "Content-Type": "application/vnd.api+json",

 "Authorization": "Basic YWRtaW46YWRtaW4="

 }

 },

 {

 "requestId": "req-2",

 "waitFor": ["req-1"],

 "uri": "/jsonapi/node/article",

 "action": "create",

Chapter 23 Contributed Modules for Advanced Use Cases

441

 �"body": "{\"data\":{\"type\":\"node--article\",\"attributes\":{\

"langcode\":\"en\",\"title\":\"Porpoises\",\"status\":\"1\",\"promote\

":\"1\",\"sticky\":\"0\",\"default_langcode\":\"1\",\"body\":{\"v

alue\":\"Porpoises are a group of fully aquatic mammals that are

sometimes referred to as mereswine, all of which are classified under

the family Phococenidae, parvorder Odontoceti, which means toothed

whales.\",\"format\":\"plain_text\",\"summary\":\"Porpoises are a group

of fully aquatic mammals that are sometimes referred to as mereswine.\

"}},\"relationships\":{\"type\":{\"data\":{\"type\":\"node_type--

node_type\",\"id\":\"article\"}},\"uid\":{\"data\":{\"type\":\"user--

user\",\"id\":\"1\"}},\"field_tags\":{\"data\":[{\"type\":\"

taxonomy_term--tags\",\"id\":\"{{/req-1.body@data.id}}\"}]}}}}",

 "headers": {

 "Accept": "application/vnd.api+json",

 "Content-Type": "application/vnd.api+json",

 "Authorization": "Basic YWRtaW46YWRtaW4="

 }

 }

]

Note  You can use methods such as json_encode() in Drupal PHP and JSON.
stringify() in JavaScript to create the serialized JSON objects you just saw.

As you can see, Subrequests facilitates considerable improvements in terms of

performance using an approach that can be shared across multiple consumers that can

implement the same specification. No matter what, Drupal will always interpret these

chained requests in the same way.

Note  You can use Page Cache to accelerate the delivery of constituent
subrequests. See Chapter 25 for more on caching techniques. For more
information about motivations for Subrequests, see Mateu Aguiló Bosch’s
Lullabot article “Incredible Decoupled Performance with Subrequests,” located
at https://www.lullabot.com/articles/incredible-decoupled-
performance-with-subrequests.

Chapter 23 Contributed Modules for Advanced Use Cases

https://www.lullabot.com/articles/incredible-decoupled-performance-with-subrequests
https://www.lullabot.com/articles/incredible-decoupled-performance-with-subrequests

442

�Decoupled Router
Also authored by Mateu Aguiló Bosch (e0ipso), the Decoupled Router module is

particularly relevant to those considering an architecture with many web-based

consumers rather than native mobile consumers. Search engine optimization (SEO)

and routing are primarily browser-based concerns, and the URL that the user sees is of

paramount importance.

Drupal has always been strongly opinionated in terms of allowing content editors

and site builders to designate different URLs for pages rendered by Drupal, using a

Drupal feature known as URL aliasing. However, whereas Drupal users can easily

change those paths, such as with Views REST exports (see Chapter 11), consumers can

sometimes be more brittle and therefore unaware of URL changes until requests fail.

For example, consider a case where a resource available at a URL such as /api/

airports/amsterdam-schiphol is no longer available at the same location due to the

URL changing to /api/airports/ams. Decoupled Router allows for any consumer that

lacks the updated path to have Drupal redirect the request to the correct route.

Decoupled Router does this by answering the frequent question: “What entity is

present at this path, regardless of how the path has changed?” It tracks modifications in

URLs such that whenever such a change occurs, Drupal will resolve the path to the new

location using a common identifier (e.g., node:21) and return the correct entity data

from the new path, without the consumer knowing.8

Note T he Decoupled Router module is available on Drupal.org at https://
www.drupal.org/project/decoupled_router. For more information about
Decoupled Router, consult Mateu Aguiló Bosch’s Lullabot article “Decoupled
Drupal Hard Problems: Routing” at https://www.lullabot.com/articles/
decoupled-hard-problems-routing. Decoupled Router is also included with
the Contenta distribution (see Chapter 15) and integrates with Contenta.js (see
Chapter 16).

8�“Decoupled Router.” Drupal.org. 20 November 2017. Accessed 28 August 2018. https://www.
drupal.org/project/decoupled_router

Chapter 23 Contributed Modules for Advanced Use Cases

https://www.drupal.org/project/decoupled_router
https://www.drupal.org/project/decoupled_router
https://www.lullabot.com/articles/decoupled-hard-problems-routing
https://www.lullabot.com/articles/decoupled-hard-problems-routing
https://www.drupal.org/project/decoupled_router
https://www.drupal.org/project/decoupled_router

443

�Conclusion
In this chapter, we covered several modules that improve the decoupled Drupal

practitioner experience in various ways, namely JSON API Extras, JSON API Defaults,

JSON-RPC, Subrequests, and Decoupled Router. Whereas JSON API Extras and JSON

API Defaults both provide additional user interfaces that allow for richer configuration,

JSON-RPC extends the manipulability of Drupal through RPCs. Meanwhile, for

production use cases, Subrequests and Decoupled Router address performance pitfalls

and changes in resource URLs, respectively.

In the next chapter, we shift gears to discuss schemas and generated documentation

that can significantly enhance the developer experience for those building consumers.

In particular, we discuss the promise of generated API documentation, including

Reservoir’s introduction of side-by-side previews, and the tools that govern such schema

awareness (OpenAPI and the Schemata module). Finally, we take a brief look at how the

features of generated API documentation can lead to the promise of generated forms

and even entire editorial interfaces.

Chapter 23 Contributed Modules for Advanced Use Cases

445
© Preston So 2018
P. So, Decoupled Drupal in Practice, https://doi.org/10.1007/978-1-4842-4072-4_24

CHAPTER 24

Schemas and Generated
Documentation
For decoupled Drupal practitioners, one of the best ways to improve the developer

experience of those building consumer applications is to provide a clear means both to

access a schema that outlines resources available in Drupal’s web services and to employ

generated documentation based on that schema. In this chapter, we focus on some of

the innovative work that contributors are doing in these two areas.

Schemas enrich decoupled Drupal architectures not solely because of their role

in providing introspection of web services, but also value that transcends software

development. For instance, organizations can benefit from the ability to describe a

logical data model (LDM) that can straddle all of the APIs and consumer applications

across their digital ecosystem for more shared understanding and better harmonization

of data. For many such organizations, Drupal occupies this central role.

�Schemata
Schemas are declarative descriptions that outline the shape of a JSON document, such as

a typical entity response from a Drupal web service. They allow developers from the back

end and the front end to understand how the API handles requests and how the server

forms responses. Schemas are essential for all web services because they provide a level

of introspection that simple tested queries against the API cannot provide.

In short, schemas are responsible for capturing the structure of any JSON document

returned from a web service and presenting that information in a machine-readable way

such that other systems that require integration can understand and work with the same

schema. In Drupal 8, the Schemata module, maintained by Adam Ross (Grayside), is

responsible for providing schemas and facilitating generated documentation (see next

section).

446

Robust schema definitions open the door not only to generated documentation,

which is a crucial feature for developers building consumer applications, but also to

generated code (see the last section of this chapter) in which we can generate working

forms against a schema. Another key advantage of schemas is the potential for client-side

validation, where knowledge of how requests should be formed on the consumer can

avoid a round trip to the server to perform that validation.

One of the biggest disadvantages of having many consumers in a decoupled Drupal

architecture is the fact that those consumers will implement their own forms according

to the technology’s particularities, causing greater repetition of work. The situation

worsens when we need to add a new field to a content type or delete a field from a

response, as all forms in consumers need to be refactored.

Schemas describe the shape of the data exposed by the API, but they also are

responsible for other important information about the web service, such as whether a

resource can be deleted, whether it is public, or whether a POST interaction is possible.

As these things are not housed in the Drupal data model, we require a schema provider

such as the Schemata module to provide that information in a commonly understood

fashion.1

The Schemata module derives schema definitions of data models provided by the

Serialization module in core REST (see Chapter 7) and supports the JSON Schema

specification for entities serialized in JSON, HAL+JSON, and JSON API (content entities

only). Using Drupal 8’s new Typed Data system, Schemata enables a range of other

compelling features, such as testing, code generation, documentation generation, and

others.

To install Schemata, use the following commands.

$ composer require drupal/schemata

$ drush en -y schemata

1�Aguiló Bosch, Mateu. “Decoupled Drupal Hard Problems.” DrupalCon Nashville. 9 April
2018. Accessed 29 August 2018. https://events.drupal.org/nashville2018/sessions/
decoupled-drupal-hard-problems

Chapter 24 Schemas and Generated Documentation

https://events.drupal.org/nashville2018/sessions/decoupled-drupal-hard-problems
https://events.drupal.org/nashville2018/sessions/decoupled-drupal-hard-problems

447

Schemata is a dry module in the sense that it underpins the submodule Schemata

JSON Schema, which implements the JSON Schema specification for derived schemas.

As such, we should only install Schemata in conjunction with an additional module that

includes a Serializer implementation to define a schema.2

To enable Schemata JSON Schema, use the following command. When enabled,

the Schemata JSON Schema module will add the Access the different data models

permission.

$ drush en -y schemata_json_schema

To browse the schema in the browser, or to issue GET requests that return schema

responses, we need to use paths that adhere to the Schemata URL format. Consider the

following path, where {entity_type} represents the entity type, {bundle} represents the

bundle (Drupal content type), {output_format} represents the desired output format

(schema_json unless you are using a different serialization), and {described_format}

represents the format (e.g., json, hal_json, api_json) described by the schema.

/schemata/{entity_type}/{bundle}?_format={output_format}&_

describes={described_format}

For instance, consider the following example, which fetches a JSON schema for

Drupal articles in JSON API. When we issue a GET request against that path with the

proper permissions, we receive a 200 OK response as shown in Figure 24-1.

/schemata/node/article?_format=schema_json&describes=api_json

Unlike type handling in JSON API (see Chapter 12), Schemata requires us to omit the

bundle if the entity type has no bundles, as you can see in the following example, which

retrieves a JSON schema for users according to the HAL+JSON format.3

/schemata/user?_format=schema_json&describes=hal_json

2�“Schemata.” Drupal.org. 26 July 2016. Accessed 29 August 2018. https://www.drupal.org/
project/schemata

3�“Schemata.” Drupal.org. 19 August 2018. Accessed 29 August 2018. https://cgit.drupalcode.
org/schemata/tree/README.md

Chapter 24 Schemas and Generated Documentation

https://www.drupal.org/project/schemata
https://www.drupal.org/project/schemata
https://cgit.drupalcode.org/schemata/tree/README.md
https://cgit.drupalcode.org/schemata/tree/README.md

448

Note T he Schemata module is available on Drupal.org at https://www.
drupal.org/project/schemata. For more information about the JSON
Schema specification, consult http://json-schema.org. For information
about how to work with Schemata within PHP in Drupal, consult the README at
https://cgit.drupalcode.org/schemata/tree/README.md.

Figure 24-1.  In this example, we retrieve a schema describing the structure of a
Drupal article according to the JSON API specification

Chapter 24 Schemas and Generated Documentation

https://www.drupal.org/project/schemata
https://www.drupal.org/project/schemata
http://json-schema.org
https://cgit.drupalcode.org/schemata/tree/README.md

449

�Generated API Documentation
Generated API documentation is not a new concept, with popular examples like

OpenAPI (formerly known as the Swagger specification) and API Blueprint. In

many cases, practitioners use these technologies to describe and prototype an API

specification. In Drupal’s case, we use API documentation technologies to describe an

already existing API specification.

Specifications like OpenAPI and API Blueprint are also frequently part of API

design tools as they can be used by developers who simply wish to experiment and

test different scenarios within working prototypes of APIs. In addition, the promise of

pipelined development (see Chapter 5) is much more achievable because tools like

API Blueprint can facilitate the creation of dummy APIs, which developers of consumer

applications can work against as back-end developers provision the web services that

will provide the API.

For developers of consumer applications, generated API documentation can be a

massive boon because it obviates the need to issue test requests to the API to ascertain

the structure of the schema and expectations of requests by the back end. Reservoir (see

Chapter 15), for instance, was the first to introduce the idea of side-by-side previews

of JSON representations of resources and their Drupal renderings for the benefit of

consumer developers, an idea that was rapidly adopted by Contenta and Headless

Lightning (see Chapter 15).

Note  For more information about API Blueprint, see the web site at https://
apiblueprint.org. We cover OpenAPI in the next section.

�OpenAPI
OpenAPI (formerly known as the Swagger specification) is a specification for

describing RESTful web services, among other features such as producing, consuming,

and visualizing those services. Its intention is to create a shared standard among

developers for documenting APIs. OpenAPI was originally part of an overarching

Swagger framework, but in 2016 it became part of a separate initiative led by the Linux

Chapter 24 Schemas and Generated Documentation

https://apiblueprint.org
https://apiblueprint.org

450

Foundation. Note that OpenAPI is synonymous with the Swagger specification, whereas

the term Swagger refers to the tooling ecosystem that implements the specification.4

Given an interface file that contains details about the API, the Swagger ecosystem is

capable of generating documentation, test cases, and even working code based on an

available web service. Some of the tools in the Swagger ecosystem include Swagger UI,

Swagger Codegen, and Paw.5

The OpenAPI module, the Drupal implementation of API maintained by Rich Gerdes

(richgerdes) and Ted Bowman (tedbow), integrates with core REST (see Chapter 7) and

Drupal’s JSON API implementation (see Chapters 8 and 12) to document available entity

routes in those web services. You can also create plug-ins that facilitate other custom

integrations. The OpenAPI module depends on the Schemata (see first section of this

chapter), Serialization, and Schemata in JSON Schema modules.

A separate module, the OpenAPI UI module, handles the provision of user-

facing documentation on the rendered Drupal front end that describes compatible

APIs. However, you will need to install a user interface library that parses OpenAPI

documentation. The recommended choice of the OpenAPI UI module is ReDoc, a

JavaScript library that allows users to explore the API documentation for a web service

and is captured in the ReDoc for OpenAPI UI module. There is also a Swagger for

OpenAPI UI module, which integrates with Swagger UI.6

The easiest way to generate API documentation for the available web services on

your Drupal site is to install all of these modules. Execute the following commands

on a Drupal site with existing web services in core REST or JSON API. Because ReDoc

for OpenAPI UI relies on OpenAPI UI, the OpenAPI UI dependency will be fetched

automatically.

$ composer require drupal/openapi

$ composer require drupal/openapi_ui_redoc

$ drush en -y openapi openapi_ui_redoc

To install Swagger for OpenAPI UI instead, use the following commands.

4�Pinkham, Ryan. “What Is the Difference Between Swagger and OpenAPI?” Swagger. 26
October 2017. Accessed 20 September 2018. https://swagger.io/blog/api-strategy/
difference-between-swagger-and-openapi

5�“OpenAPI Specification.” Wikipedia. 27 July 2018. Accessed 29 August 2018. https://
en.wikipedia.org/wiki/OpenAPI_Specification

6�“OpenAPI.” Drupal.org. 16 March 2017. Accessed 29 August 2018. https://www.drupal.org/
project/openapi

Chapter 24 Schemas and Generated Documentation

https://swagger.io/blog/api-strategy/difference-between-swagger-and-openapi
https://swagger.io/blog/api-strategy/difference-between-swagger-and-openapi
https://en.wikipedia.org/wiki/OpenAPI_Specification
https://en.wikipedia.org/wiki/OpenAPI_Specification
https://www.drupal.org/project/openapi
https://www.drupal.org/project/openapi

451

$ composer require drupal/openapi

$ composer require drupal/openapi_ui_swagger

$ drush en -y openapi openapi_ui_swagger

We can now view our documentation by navigating to Configuration ➤ OpenAPI

(/admin/config/services/openapi), where we can either download the Swagger

specification JSON file for our own personal use or explore the documentation with

ReDoc, as you can see in Figure 24-2.

Note T he OpenAPI module is available on Drupal.org at https://www.drupal.
org/project/openapi. The OpenAPI UI module is available on Drupal.org at
https://www.drupal.org/project/openapi_ui. The ReDoc for OpenAPI
UI module is available on Drupal.org at https://www.drupal.org/project/
openapi_ui_redoc. The Swagger for OpenAPI UI module is available on Drupal.
org at https://www.drupal.org/project/openapi_ui_swagger.

Figure 24-2.  The OpenAPI Resources page offers us the ability to either download
our API specification file or explore the generated documentation with whichever
library we have installed

Chapter 24 Schemas and Generated Documentation

https://www.drupal.org/project/openapi
https://www.drupal.org/project/openapi
https://www.drupal.org/project/openapi_ui
https://www.drupal.org/project/openapi_ui_redoc
https://www.drupal.org/project/openapi_ui_redoc
https://www.drupal.org/project/openapi_ui_swagger

452

�Generated Code
One of the most compelling reasons to provide a standards-compliant API specification

document such as an OpenAPI specification is that the same document can be used

to generate not only documentation and test cases, but also actual working code. The

current frontier of API specification tooling is the ability to generate generic forms and

even full interfaces based on an API specification.

An example of this is Swagger Codegen, which is capable of generating server stubs

and SDKs for building consumer applications.7

Another example of generated forms is react-jsonschema-form, which generates a

React (see Chapter 15) component according to Bootstrap conventions that interprets

a JSON schema such as the one provided by the Schemata module and generates a

complete HTML form that integrates with the schema.8

Comprehensive coverage of both of these projects is well outside the scope of this

volume, but code generation based on API specifications and schemas stands among the

most important current trends in working with web services and portends a paradigm

shift in how we couple forms on the front end to business logic on the back end.

Note  For more information about Swagger Codegen, visit https://
swagger.io/tools/swagger-codegen. For more information about react-
jsonschema-form, visit https://github.com/mozilla-services/react-
jsonschema-form.

7�“Swagger Codegen.” Swagger. 2018. Accessed 29 August 2018. https://swagger.io/tools/
swagger-codegen

8�“react-jsonschema-form.” GitHub. 16 December 2015. Accessed 29 August 2018. https://
github.com/mozilla-services/react-jsonschema-form

Chapter 24 Schemas and Generated Documentation

https://swagger.io/tools/swagger-codegen
https://swagger.io/tools/swagger-codegen
https://github.com/mozilla-services/react-jsonschema-form
https://github.com/mozilla-services/react-jsonschema-form
https://swagger.io/tools/swagger-codegen
https://swagger.io/tools/swagger-codegen
https://github.com/mozilla-services/react-jsonschema-form
https://github.com/mozilla-services/react-jsonschema-form

453

�Conclusion
The current momentum toward commonly understood API specifications and

generated API documentation points to a new era in how consumers interact with web

services. In particular, schemas can aid in better introspection of data, and generated

documentation can substantially improve developer experience outcomes when it

comes to building consumer applications. Finally, more recent entrants that generate

working code in response to a schema or API specification are reinventing how we

conceive of the client/server relationship.

In the next chapter, we cover some of the best practices that have more recently

figured in decoupled Drupal projects, including reverse proxies and the use of Drupal’s

cache tag system in conjunction with decoupled Drupal consumers. In the process, we

discuss some of the most well-known technologies that are used to power caching in

decoupled Drupal architectures.

Chapter 24 Schemas and Generated Documentation

455
© Preston So 2018
P. So, Decoupled Drupal in Practice, https://doi.org/10.1007/978-1-4842-4072-4_25

CHAPTER 25

Caching
For any performant decoupled Drupal architecture, the topic of caching is of

paramount importance but also fraught with extreme variation due to differences across

implementations. It is further complicated by the fact that there is a limited range of

open source solutions, Contenta.js (see Chapter 16) notwithstanding, which act as a

reverse proxy for improved performance on consumer applications.

In this chapter, we cover some of the use cases for caching in decoupled Drupal

as opposed to monolithic Drupal architectures, why reverse proxies are better choices

for caching than internal object caches, how the Drupal cache tag system works, and

best practices for cache indexing and invalidation. As no two implementations are

like, no single chapter can exhaustively cover every possible caching scheme for every

performance scenario, but this chapter gives you some potential directions to pursue for

your own decoupled Drupal architecture.

�Use Cases for Caching in Decoupled Drupal
In his “Effective API Caching: Achieving High Hit Rates When Your Client Is a Decoupled

Front End” talk at Decoupled Drupal Days 2018, David Strauss identified three of the

most common use cases for leveraging a caching architecture for decoupled Drupal,

many of which resonate with the advantages of decoupled Drupal outlined in Chapter 5.

One of the primary arguments in favor of using a robust caching layer in between

your Drupal instance and any consumer instances is security. Monolithic Drupal

architectures are highly exposed to attack vectors, and leveraging a cache system such as

a reverse proxy can mitigate some of the conduits by which nefarious actors can exploit

vulnerabilities.

Another motivation is personalization. Today, as many user experiences become

increasingly dynamic and personalized according to the tastes of the user, the burden

on the server becomes severe when many users begin to request content. Generating

456

entire pages based on personalized data in monolithic Drupal can be straightforward,

but preventing requests for highly personalized API responses from invoking a full

Drupal bootstrap can be uniquely challenging. Robust caching is a hard requirement for

personalized experiences at scale in decoupled Drupal.

Finally, the dissemination of technology across the globe has led to the proliferation

of geodistributed dynamic users who access content from areas distant from the actual

location of the data center. These users from around the world increasingly demand the

same positive experience as those who are close by.1

�The Drupal Cache Tag System
One of the most important and compelling features in Drupal 8 is the cache tag

system, which allows for cache items to declare dependencies on other cache items

through cache tags. In short, cache tags provide a declarative way for us to keep track

of how cache items depend on data that Drupal manages. Cache tags are strings and

transmitted within sets of strings, most commonly in headers.2 A useful and evocative

way to think of sets of cache tags is as an ingredient list that identifies which items are

present; when one ingredient is changed, the entire product needs to reflect that update.

Before we explain how cache tags work, we should first identify some of the

scenarios in which Drupal’s cache tag system is useful. In Drupal today, many users

produce content that renders not only on its own page but also in blocks (repeatable

page components), Views displays, or Views REST exports (see Chapter 11). When the

content is updated, we want every single instance of that content, regardless of where it

lies, to reflect the most up-to-date state of that content. In short, we need to invalidate a

content item no matter where it lies.

By declaring a cache tag on a particular content entity in Drupal, we can ensure that

wherever a cache item also includes the content entity’s cache item, that cache item is

invalidated in favor of a more updated version of that content.

1�Strauss, David. “Effective API Caching: Achieving High Hit Rates When Your Client Is a
Decoupled Front End.” Decoupled Drupal Days 2018. 18 August 2018. Accessed 29 August 2018.
https://2018.decoupleddays.com/session/effective-api-caching-achieving-high-hit-
rates-when-your-client-decoupled-front-end

2�“Cache tags.” Drupal.org. 4 December 2017. Accessed 30 August 2018. https://www.drupal.
org/docs/8/api/cache-api/cache-tags

Chapter 25 Caching

https://2018.decoupleddays.com/session/effective-api-caching-achieving-high-hit-rates-when-your-client-decoupled-front-end
https://2018.decoupleddays.com/session/effective-api-caching-achieving-high-hit-rates-when-your-client-decoupled-front-end
https://www.drupal.org/docs/8/api/cache-api/cache-tags
https://www.drupal.org/docs/8/api/cache-api/cache-tags

457

Cache tags take the following form, where {object} is an object that needs to be

cached (e.g., a node, user, configuration, etc.) and {identifier} is the identifier for the

object within Drupal.

{object}:{identifier}

When there is only one instance of the object or multiple instances cannot exist,

the identifier is not needed (thus forming {object}). There are no restrictions on cache

tag syntax, apart from the fact that it cannot contain spaces. Consider the following

examples of cache tags in Table 25-1 reflecting common needs.

Table 25-1.  Examples of Cache Tags

Cache Tag Description

node:53 Cache tag for the node entity with an identifier of 53, invalidated whenever the

entity changes

user:2 Cache tag for the user entity with an identifier of 2, invalidated whenever the

entity changes

node_list List cache tag for all node entities, invalidated whenever any node entity is

added, modified, or removed

library_info Cache tag for asset libraries, invalidated whenever an asset library is added,

modified, or removed

Drupal handles cache tags for entities (cache tag format: {entity_type}:{entity_

identifier}), configuration (cache tag format: config:{configuration_name}), and

custom cases (e.g., library_info).

In the coming sections, we discuss how to use cache tags in the context of reverse

proxies and content delivery networks (CDNs), the two most common approaches for

caching data in decoupled Drupal architectures.

Note  For more detailed information about the Drupal cache tag system, consult
the documentation at https://www.drupal.org/docs/8/api/cache-api/
cache-tags.

Chapter 25 Caching

https://www.drupal.org/docs/8/api/cache-api/cache-tags
https://www.drupal.org/docs/8/api/cache-api/cache-tags

458

�Reverse Proxies and Content Delivery Networks
Although some Drupal developers choose to maintain all caching within Drupal itself

and rely on cache invalidations internally using tools such as the Internal Page Cache,

this makes less sense in a decoupled Drupal architecture, as we need to conduct caching

of API responses after they are issued to consumer servers. Many Drupal developers opt

to use reverse proxies and CDNs for monolithic use cases, but they are perhaps even

more useful in decoupled use cases.

To define some terminology, reverse proxies are proxy servers that act on behalf of

a consumer to a server and issue requests on the consumer’s behalf.3 Reverse proxies

are popular tools not only when it comes to caching, but also to create a unified way

for requests to be forwarded to a Drupal instance. Meanwhile, CDNs are distributed

networks of proxy servers that ensure high availability and high performance for end

users regardless of where they are located.4 In many cases, CDNs can be substituted for

reverse proxies in decoupled Drupal architectures.

In Drupal, it is common to use Varnish, an HTTP reverse proxy that can lie in front

of any server communicating in HTTP, in front of Drupal instances.5 Other Drupal

practitioners opt to use solutions such as Redis, a key/value cache and store that is also

referred to as a data structure server, or Memcached, a distributed memory caching

system.

In his presentation, Strauss cautioned against using object caches located on the

front-end instance to power caching in decoupled Drupal architectures due to issues of

coherency that surface, as illustrated by Figure 25-1. As an example, if you have a Node.

js server lying in front of a Memcached instance such that Node.js performs retrievals

from Memcached in lieu of Drupal, Drupal now needs to have an understanding of how

to invalidate the Memcached instance in front of the Node.js server. In other words, all

front-end and back-end instances are now communicating with the same cache.

3�“Reverse Proxy.” Wikipedia. 26 August 2018. Accessed 30 August 2018. https://en.wikipedia.
org/wiki/Reverse_proxy

4�“Content Delivery Network.” Wikipedia. 24 August 2018. Accessed 30 August 2018. https://
en.wikipedia.org/wiki/Content_delivery_network

5�“Introduction to Varnish.” Varnish. 2016. Accessed 30 August 2018. https://varnish-cache.
org/intro/index.html

Chapter 25 Caching

https://en.wikipedia.org/wiki/Reverse_proxy
https://en.wikipedia.org/wiki/Reverse_proxy
https://en.wikipedia.org/wiki/Content_delivery_network
https://en.wikipedia.org/wiki/Content_delivery_network
https://varnish-cache.org/intro/index.html
https://varnish-cache.org/intro/index.html

459

Coherency issues can arise when the consumer evolves the way it caches content

in Memcached. If the consumer modifies the way it caches content in Memcached and

Drupal is not updated to reflect those modifications, incoherency can occur, leading to

stale content for end users.

Although it is highly recommended to leverage Drupal’s own internal caching system

as well, Drupal’s own object cache should also not be used for caching API responses,

as it would require bootstrapping Drupal on every single request to the cache, thus

nullifying the performance benefits of using a cache in the first place. This is illustrated

in Figure 25-2.

Figure 25-1.  In this scenario, the consumer and Drupal both rely on an object
cache on a consumer, requiring Drupal to be aware of how the front end’s cache
stores cache items and how to invalidate them. Adapted from a figure by David
Strauss with permission.

Chapter 25 Caching

460

Strauss recommended using reverse proxies to serve as API response caches, where

a reverse proxy lies in between the consumer and the Drupal instance as an independent

entity. Optionally, you could also configure a reverse proxy or CDN to cache initial

renders by JavaScript frameworks. This approach, illustrated in Figure 25-3, carries

the particular advantage of Drupal both populating a cache and managing the cache

according to its own patterns (in this case, Drupal cache tags).

Figure 25-2.  In this case, whenever the consumer fetches cache items from within
Drupal’s native cache system, a Drupal bootstrap is incurred on each lookup.
Adapted from a figure by David Strauss with permission.

Figure 25-3.  The architecture recommended by David Strauss to ensure that the
cache records Drupal cacheability metadata while preventing excessive Drupal
bootstraps. Adapted from a figure by David Strauss with permission.

Chapter 25 Caching

461

Note  For more information about how to provide caching for your decoupled
Drupal architecture, see David Strauss’s Decoupled Drupal Days 2018 talk
“Effective API Caching: Achieving High Hit Rates When Your Client Is a Decoupled
Front End” at https://2018.decoupleddays.com/session/effective-
api-caching-achieving-high-hit-rates-when-your-client-
decoupled-front-end.

�Cache Indexing
To indicate to reverse proxies and CDNs which cache tags are associated with cache

items, we can issue the cache tags within a header. Currently, for debugging purposes,

Drupal provides an X-Drupal-Cache-Tags header. Drupal can also send headers that

cater to the particularities of certain reverse proxies and CDNs.

For instance, some CDNs disallow spaces or commas in cache items. As such, Drupal

can issue a Surrogate-Keys header, which separates values with spaces, or a Cache-Tag

header, which separates values with commas. It is generally recommended that both the

web server where your Drupal site is located and your reverse proxy have support for

response headers that can fit up to 16 KB of cache tags.

If you exceed the 16 KB recommended size, which accounts for approximately 1,000

cache tags, you should inspect the way you are assigning cache tags and whether you are

serving overly complex responses. Moreover, once you exceed the limit, many services

will simply ignore the remaining cache tags, leading to stale data.

Table 25-2 lists some of the common equivalents for cache tag headers in popular

CDN products and reverse proxies.

Chapter 25 Caching

https://2018.decoupleddays.com/session/effective-api-caching-achieving-high-hit-rates-when-your-client-decoupled-front-end
https://2018.decoupleddays.com/session/effective-api-caching-achieving-high-hit-rates-when-your-client-decoupled-front-end
https://2018.decoupleddays.com/session/effective-api-caching-achieving-high-hit-rates-when-your-client-decoupled-front-end

462

Note  For more information about using cache tags in reverse proxies and CDNs,
consult the documentation at https://www.drupal.org/docs/8/api/
cache-api/cache-tags.

�Cache Invalidation
Thanks to cache tags, you can selectively invalidate particular items and also those items

that contain the invalidated cache item. Note that if you are leveraging Varnish in its

open source flavor and a module that provides an integration, you will need to configure

Varnish to enable these cache tags to be purged. If you are using CDNs instead, many

CDNs have their own purge APIs that can handle invalidations of cache items having

cache tags. Some of these purge APIs can handle multiple invalidations in a single

request, whereas others require multiple requests.

Consider the following example Varnish configuration (written in Varnish

Configuration Language [VCL]), which handles incoming purge requests from Drupal.

sub vcl_recv {

 if (req.method == "PURGE") {

 xkey.softpurge(req.http.xkey-purge);

 }

}

Table 25-2.  Cache Tag Headers in Popular

CDNs and Reverse Proxies

Cache Tag Header Service

Cache-Tag Cloudflare Enterprise

Edge-Cache-Tag Akamai

HashTwo Varnish Pro

Surrogate-Keys Fastly

xkey Varnish mod

Chapter 25 Caching

https://www.drupal.org/docs/8/api/cache-api/cache-tags
https://www.drupal.org/docs/8/api/cache-api/cache-tags

463

An incoming purge request from Drupal could be written as follows using cURL,

where {cache_tag} represents the cache tag needing to be invalidated, formed

according to the particularities of the proxy, and {cache_host} represents the host of the

cache.

curl -XPURGE -H"xkey-purge: {cache_tag}" {cache_host}

This cache invalidation, rather than performing a purge of a single item, purges

everything that contained this particular node, thus highlighting the advantages of

Drupal’s cache tag system.

Now, we can perform cache invalidations, but we have not yet accounted for why we

are using the softpurge() method rather than a traditional hard purge. A hard purge

refers to a forced removal of designated items out of the cache such that those items

do not appear anywhere after the purge. Strauss recommended only conducting hard

purges when dealing with extremely sensitive data or data requiring the utmost real-time

accuracy.

Meanwhile, soft purges, supported by most CDN APIs, set the time-to-live (TTL) of

cache items to zero but still allow the item to appear during the intermediate time in

which a new copy of the cache item has not been delivered yet. The advantage of this is

that cached requests that contain the updated object will serve the ever-so-slightly stale

object until it is replaced. This prevents stampedes on the server and slow responses to

the end user while the fresh copy travels to the cache.

Note I f you are using open source Varnish, you will likely need a second module
to support soft purging.

�Conclusion
In this chapter, we inspected the landscape for caching best practices in decoupled

Drupal. We covered the Drupal cache tag system, which provides cacheability metadata

useful for highly granular cache invalidations; defined reverse proxies and CDNs as the

most effective means of caching responses from Drupal web services; and explored

some of the existing ways to perform cache indexing and invalidation in real-world

scenarios.

Chapter 25 Caching

464

The next chapter marks the end of our foray into decoupled Drupal together. In the

final chapter, we zoom out to the larger context once more as we grapple with some

of the most timely but challenging questions in Drupal’s entire life span, especially as

decoupled Drupal architectures gain steam in the Drupal community. We also consider

some of the implications of evolving Drupal’s mission and joining forces with other

communities and movements. At stake is nothing less than the future and promise of

Drupal.

Chapter 25 Caching

465
© Preston So 2018
P. So, Decoupled Drupal in Practice, https://doi.org/10.1007/978-1-4842-4072-4_26

CHAPTER 26

The Future of Decoupled
Drupal
As we have seen in these chapters, in many ways, decoupled Drupal has the potential

to determine Drupal’s trajectory for many years to come. Its ability to expose Drupal

content for a variety of consumers, without regard for how that consumer is built, is one

of the key advantages of decoupled Drupal and, indeed, of API-first architectures in

general. Drupal is not alone in this paradigm shift, as many other long-standing software

projects such as WordPress entertain significant evolutions of their own.

Drupal is at a unique crossroads in its history. Until now, organizations have mostly

selected Drupal due to its capabilities for building web sites and providing editorial

experiences with a rich array of features. Today, organizations are going further with

Drupal and serving entire digital ecosystems with content, centralizing all of their data

into a single CMS. In addition, Drupal’s user experience is undergoing an overhaul not

only in its design and user experience, but also in its front-end developer experience

with the modernization of its JavaScript.

In this chapter, we take a brief look at some of the ongoing work to continue

preparing Drupal for a promising future and issues that will have a direct impact on

Drupal’s medium- and long-term future as a CMS with horizons that reach well beyond

the humble web site.

466

�The Admin UI and JavaScript Modernization
Initiative
In September 2017, at DrupalCon Vienna, a group of Drupal core contributors and

JavaScript maintainers in the Drupal community agreed to adopt the React library for

experimentation in administrative interfaces in Drupal core.1 A lengthy process that

began with this author’s proposed adoption of a JavaScript framework in early 2016,2

the adoption of React opened the door to fundamental changes in the way Drupal’s

administrative interface operates. Other alternatives considered included Angular,

Ember, Vue.js, Elm, and other frameworks, and some in the community still support the

consideration of Vue.js as an alternative owing to its adoption by the Laravel community

and incremental adoptability (see Chapter 20).

The Admin UI and JavaScript Modernization Initiative is a joint effort between

user experience specialists and designers in the Drupal community and JavaScript

maintainers to reimagine Drupal’s internal user experience to match the expectations

of other editorial experiences that consist of single-page applications and seamless

interactions. Since the release of Drupal 8, Drupal’s administrative experience has

mostly remained the same. A pertinent question is whether it has grown so obsolete as to

threaten Drupal’s primacy as a CMS.

The Admin UI and JavaScript Modernization Initiative is led by Angie Byron

(webchick), Cristina Chumillas (ckrina), Matt Grill (drpal), and Sally Young (justafish),

and has the following objectives, as found on the Drupal.org initiative page.3

	 1.	 Create a new “design system” for Drupal’s editing and

administrative interface, and implement this incrementally.

	 2.	 Create a decoupled, single-page React application that manages

Drupal administration.

	 3.	 Modernize the underlying JavaScript code and enhance Drupal’s

APIs to better support all types of decoupled applications.

1�Buytaert, Dries. “Drupal Looking to Adopt React.” 2 October 2017. Accessed 8 September 2018.
http://dri.es/drupal-looking-to-adopt-react

2�“[META] Start Using Reactive Declarative JS Programming for Some New Core Admin UIs.”
6 January 2016. Accessed 8 September 2018. https://www.drupal.org/node/2645250

3�“Admin UI & JavaScript Modernisation.” Drupal.org. Accessed 8 September 2018. https://www.
drupal.org/about/strategic-initiatives/admin-ui-js

Chapter 26 The Future of Decoupled Drupal

http://dri.es/drupal-looking-to-adopt-react
https://www.drupal.org/node/2645250
https://www.drupal.org/about/strategic-initiatives/admin-ui-js
https://www.drupal.org/about/strategic-initiatives/admin-ui-js

467

In recent years, Drupal has made significant strides in advancing its JavaScript

development experience, including adoption of the Airbnb JavaScript style guide, the

introduction of a JavaScript build process, and upgrades to the latest versions of jQuery

and jQuery UI during the Drupal 8 release cycle. As of this writing, Drupal 8.6 also ships

with support for Nightwatch.js, a common and popular tool for writing automated tests

in JavaScript. This represents a significant improvement over the previous testing system,

which lacked versatility on the client side, and replaces the now-deprecated PhantomJS.

In the Drupal 8.7 development cycle, several large-scale advancements are

planned. Among them is the creation of a stand-alone single-page React application

that replicates every extant Drupal administrative interface within a more dynamic

user interface. This collaboration between the user experience and JavaScript teams

in Drupal will yield not only an improved administrative experience, but also an

opportunity to test the limits of Drupal’s web services.4

Note  For more information about the Admin UI and JavaScript Modernization
Initiative, consult the initiative page on Drupal.org at https://www.drupal.
org/about/strategic-initiatives/admin-ui-js and the roadmap issue
at https://www.drupal.org/project/drupal/issues/2926656.

�The Future of the Drupal Front End
One of the primary reasons for Drupal’s success thus far is that its value proposition

satisfies a variety of personas. In other words, there is no single persona that benefits

significantly more than the other. Drupal has long prided itself on its unique location at

the nexus of three distinct personas.

	 1.	 The developer, who benefits from a flexible developer experience

and high extensibility.

	 2.	 The marketer, who benefits from contextualized administration

tools and editorial access.

	 3.	 The user, who benefits from whatever user experiences are built

by both other personas.

4�“[plan] Modernize Drupal’s JavaScript.” Drupal.org. 27 November 2017. Accessed 8 September
2018. https://www.drupal.org/project/drupal/issues/2926656

Chapter 26 The Future of Decoupled Drupal

https://www.drupal.org/about/strategic-initiatives/admin-ui-js
https://www.drupal.org/about/strategic-initiatives/admin-ui-js
https://www.drupal.org/project/drupal/issues/2926656
https://www.drupal.org/project/drupal/issues/2926656

468

There are many ways in which the Drupal front end could figure in a future

where decoupled Drupal becomes an increasingly preferred architecture for Drupal

architectures. The most stable approach would be to retain the current state of the

Drupal front end for those who prefer to make use of theme layer components like Twig

and preprocess functions in Drupal. This would allow for the site-and-repository use

case (see Chapter 4) to become the primary way in which Drupal is used.

Nonetheless, this comes with its own problems. Today, site builders and content

editors have an expectation, however unrealistic, that the same tools that they use to

create and lay out content in Drupal will be available for experiences that are not driven

by the front end available in monolithic Drupal. Anecdotes abound of frustrated clients

who selected fully decoupled Drupal as a solution, paired with a JavaScript application,

only to discover that they are now unable to perform the same in-place editing and

layout management that had been previously accessible.

For instance, some marketers might find it of paramount importance that the same

layout tools used to position content on a web site be available for digital signage and

augmented reality interfaces as well, despite the fact that both of these channels could

depend on completely unrelated—and infrastructurally distinct—technologies.

This mismatch between the expectations of site builders and content editors and

the dispersed reality of multiple channels relying on wildly variant technologies is

what I term Drupal’s new incongruity, which is illustrated in Figure 26-1. In particular,

marketers who have come to accept that seamless experiences on multiple devices

are a must-have have expectations that might be completely incongruous, and even

irreconcilable, with the technologies underpinning them.

Chapter 26 The Future of Decoupled Drupal

469

�Universal Editing
During the days of the Spark initiative in the early 2010s, when Drupal began to provide

responsive administrative interfaces that worked seamlessly across mobile and desktop

devices (as seen in Figure 26-2), it was still possible to imagine that content editors

would be able to create and administer content on all devices. Colocating the editorial

experience and the end-user experience on mobile devices in addition to the desktop

was possible thanks to responsive design.

Figure 26-1.  As the number of channels that end users expect increases, a better
outcome for end users relies on more custom work by developers to make user
experiences work on more channels and leads to less flexibility for marketers

Chapter 26 The Future of Decoupled Drupal

470

However, this came with certain disadvantages. Because of limited screen real estate,

the extent of functionality available to content editors and site builders was restrictive.

Layout management, for instance, is difficult to imagine on mobile devices. The Spark

initiative found that many users preferred to switch to desktop platforms to perform

complex operations and that such mobile editing interfaces were of limited usefulness.

Today, with the advent of devices like the Apple Watch, it is clear that attempting

to place editorial interfaces on every device is untenable. For marketing professionals

with high expectations, though, it is similarly complicated to envision a desktop-

based interface that can sufficiently administer and manipulate the range of end-user

experiences now in existence.

In that sense, perhaps universal editing should refer to the concept of administering

diverse experiences from a single desktop interface to attain the most versatility.

Indeed, in early 2016, Drupal project lead Dries Buytaert argued in favor of an evolution

Figure 26-2.  The Spark initiative introduced mobile editing interfaces that reacted
responsively to changes in the viewport

Chapter 26 The Future of Decoupled Drupal

471

of editorial interfaces in Drupal to be more outside-in, or decontextualized from the

content of the page. Terrence Kevin O’Leary also referred to this as Literal UI.

In Drupal’s traditional approaches to in-place editing and contextual links, these

features are adjacent to the content they manipulate. This is an impossibility, though,

when Drupal is employed to edit and preview content destined for other channels, such

as JavaScript applications and digital signage driven by other technologies. By placing

all of these formerly contextual tools in a separate area of the page where they do not

interfere with the preview, we can open the door to administering other channels within

the same space.

Nonetheless, the notion of providing high-fidelity previews of other channels

within a Drupal-powered interface raises several important questions. What level of

fidelity is attainable when the technologies underpinning digital signage or augmented

reality interfaces are irreconcilable with web technologies? Is it possible to provide the

necessary emulators, or are the infrastructural demands simply too prohibitive?5

Note  For more insight into this topic, see this author’s DrupalCon Vienna talk,
“Decoupled Site Building: Drupal’s Next Challenge” at https://events.
drupal.org/vienna2017/sessions/decoupled-site-building-
drupals-next-challenge.

�Progressive Decoupling and Decoupled Blocks
Whereas other channels require significant effort to support when it comes to matching

the expectations that marketing professionals have in terms of editing and administering

experiences besides web sites, JavaScript applications, like Drupal, are also based on web

technologies and should theoretically be much easier to support within a Drupal context.

Progressive decoupling (see Chapter 4) has long been touted in the Drupal

community as a balance between the needs of JavaScript developers yearning for a

developer experience more attuned to their desires and the requirements of marketing

professionals and content editors who demand a means to edit and lay out their pages

5�So, Preston. “Decoupled Site Building: Drupal’s Next Challenge.” DrupalCon Vienna 2017. 28
September 2017. Accessed 10 September 2018. https://events.drupal.org/vienna2017/
sessions/decoupled-site-building-drupals-next-challenge

Chapter 26 The Future of Decoupled Drupal

https://events.drupal.org/vienna2017/sessions/decoupled-site-building-drupals-next-challenge
https://events.drupal.org/vienna2017/sessions/decoupled-site-building-drupals-next-challenge
https://events.drupal.org/vienna2017/sessions/decoupled-site-building-drupals-next-challenge
https://events.drupal.org/vienna2017/sessions/decoupled-site-building-drupals-next-challenge
https://events.drupal.org/vienna2017/sessions/decoupled-site-building-drupals-next-challenge

472

as easily as they did traditionally in Drupal. It involves the interpolation of a single-page

JavaScript application into the Drupal front end so that contextual tools such as block

placement can still be leveraged, and ES6 and other modern development techniques

can be employed to power more interactive experiences.

Nonetheless, as seen in Figure 26-3, progressive decoupling comes with its own

issues, as not all of Drupal’s vaunted contextual features are available to marketers

and content editors. Moreover, progressive decoupling makes it more challenging for

JavaScript developers to use server-side rendering in improving their applications’

performance, as the Drupal front end is responsible for providing the JavaScript

application’s assets.

Decoupled Blocks, a module developed by Matt Davis (mrjmd), is a framework-

agnostic approach that forges an equilibrium between site builders and content editors

who manipulate layouts and place content and front-end developers who need to be

able to manipulate JavaScript behavior. In the Decoupled Blocks module, Drupal renders

JavaScript components into blocks and allows for those JavaScript components to access

certain block configurations that can provide state or other information.

Decoupled Blocks is a graceful solution to a difficult problem; it manages to

compromise between the needs of site administrators who need to manage layout

according to familiar drag-and-drop paradigms that have always existed in Drupal

Figure 26-3.  The spectrum of progressively decoupled Drupal approaches

Chapter 26 The Future of Decoupled Drupal

473

and the desires of JavaScript developers to exercise greater control over the behavior of

interactive components on the page.

One significant problem is not unique to Decoupled Blocks and applies to all

progressively decoupled Drupal implementations. Whereas certain features, such

as block placement, remain intact, progressive decoupling leads to “black boxes” in

which expected Drupal functionality such as in-place editing becomes unavailable. An

illustration of this problem can be seen in Figure 26-4.

Note  Decoupled Blocks is available on Drupal.org at https://www.drupal.
org/project/pdb. For more information about progressively decoupled Drupal
approaches, also see this author’s Acquia blog post, “Progressively Decoupled
Drupal Approaches,” at https://dev.acquia.com/blog/progressively-
decoupled-drupal-approaches/22/08/2016/16296.

�Shared Templating, Rendering, and Routing
Due to the substantial distance between JavaScript and Drupal development practices,

community-driven efforts like the Admin UI and JavaScript Modernization Initiative

emphasize an entirely separate approach to modernizing Drupal’s administrative

Figure 26-4.  The primary issue with progressive decoupling is the unavailability
of certain Drupal functionality such as in-place editing within the portions of the
page that are delegated to JavaScript

Chapter 26 The Future of Decoupled Drupal

https://www.drupal.org/project/pdb
https://www.drupal.org/project/pdb
https://dev.acquia.com/blog/progressively-decoupled-drupal-approaches/22/08/2016/16296
https://dev.acquia.com/blog/progressively-decoupled-drupal-approaches/22/08/2016/16296

474

interfaces by producing a distinct React application that does not depend on any aspect

of Drupal’s front end; instead, it relies entirely on Drupal’s available web services.

Nonetheless, some Drupal users have explored the possibility of sharing

responsibilities across JavaScript and Drupal so that they can coexist on the Drupal front

end. After all, one of the primary motivations for adopting universal JavaScript is to share

code across the server- and client-side manifestations of JavaScript applications. What

if there were a way to do the same across a server-side Drupal implementation and a

client-side JavaScript application?

The ideal of shared templating, whereby Drupal and JavaScript both rely on the same

templating system across server and client, is within the realm of possibility thanks to

projects such as Twig.js, which is a JavaScript implementation of the Twig templating

language used in Drupal 8. Nonetheless, Drupal 8’s implementation of Twig includes

many Drupal-specific nuances that significantly hinder any effort to provide a universal

version of Twig across Drupal’s rendering layer and a JavaScript-driven front end.

Shared rendering, in which Drupal and JavaScript both render the same way, has also

been proposed as a solution to allow Drupal’s front end to evolve into a more JavaScript-

friendly environment. However, although this is possible in universal JavaScript due to

the mutual intelligibility of the language across client and server, Drupal is written in

PHP. Any endeavor to perform rendering across both the client and server in Drupal

would require either a rewrite of the Drupal rendering layer into JavaScript (thus

obligating the use of Node.js as a rendering proxy and the consideration of relevant

infrastructural challenges) or the use of the library php-v8-js, which implements the V8

JavaScript engine in PHP but remains highly experimental.

Instead of pursuing these two untested directions, some Drupal users have

instead opted to pursue shared routing, in which Drupal and a JavaScript framework

share routes on a single domain but perform differentiated rendering. For instance,

a JavaScript framework could render a particular route if it has that route available

within the application, whereas Drupal could render routes that are not accounted for

in the JavaScript application. This would allow for Drupal routes to serve as a fallback

mechanism when JavaScript routes are unavailable. The notion of Drupal routes as a

superset of JavaScript routes is illustrated in Figure 26-5.

Chapter 26 The Future of Decoupled Drupal

475

Nonetheless, shared routing presents some additional difficulties, especially when

client-side rendering becomes part of the picture. Template duplication will necessarily

occur, because JavaScript frameworks perform dynamic rendering when users click

links, whereas this sort of dynamic rendering only occurs in Drupal when a module such

as RefreshLess (created by Wim Leers and inspired by the Turbolinks project in Ruby on

Rails) is enabled.

Due to many users disabling JavaScript, there must be an alternative that provides

server-side rendering in the event that JavaScript is unavailable. As a result, when

JavaScript is disabled, a route would fall back to the Drupal version of the route, using

the Twig template, but when JavaScript is enabled, the JavaScript template would

be used instead. Although for some architects template duplication might not be

a significant issue, it can lead to maintainability issues further down the road. This

dilemma is illustrated in Figure 26-6.

Figure 26-5.  Drupal routes as a superset of JavaScript routes

Chapter 26 The Future of Decoupled Drupal

476

Note T he RefreshLess module is available on Drupal.org at https://www.
drupal.org/project/refreshless. For more insight into this topic, see this
author’s DrupalCon Vienna talk, “Decoupled Site Building: Drupal’s Next Challenge,”
at https://events.drupal.org/vienna2017/sessions/decoupled-
site-building-drupals-next-challenge.

�Decoupling Drupal by Design
As a result of the challenges that many architects face in attempting to have Drupal

and JavaScript coexist in the same implementation, many users, this author included,

have argued that Drupal should not attempt to integrate other technologies but instead

should be decoupled by design, in which every single feature of Drupal possible today is

available through web services or RPCs as well. In July 2018, Lauri Eskola (lauriii) and

this author presented a session at Drupal Developer Days in Lisbon that articulated

motivations and a vision for such a trajectory.

Figure 26-6.  Client-side rendering challenges the use of shared routing, because it
creates template duplication when JavaScript can be enabled or disabled

Chapter 26 The Future of Decoupled Drupal

https://www.drupal.org/project/refreshless
https://www.drupal.org/project/refreshless
https://events.drupal.org/vienna2017/sessions/decoupled-site-building-drupals-next-challenge
https://events.drupal.org/vienna2017/sessions/decoupled-site-building-drupals-next-challenge

477

One of the most compelling rationales to decouple by design comes from the many

challenges that developers face in Drupal’s steep front-end learning curve and perceived

obsoleteness. Developers by and large have flocked to decoupled Drupal architectures

to pursue JavaScript implementations that adhere to development practices that

are currently in vogue. Meanwhile, however, editors and site builders declaim the

unavailability of contextual tools and other features in Drupal that require a monolithic

orientation.

Decoupling Drupal by design would also provide that a Drupal installation process

would offer to the user monolithic (Standard), enhanced monolithic (Standard plus API-

first), and decoupled (API-first) profiles and thus result in three flavors of Drupal in wide

usage. In the former, all Drupal functionality available on the front end would remain

intact. In the latter, all Drupal functionality would instead be accessible through web

services and RPCs, and contextual tools such as in-place editing would be disabled.

Note  In Drupal, installation profiles provide site features and functionality for a
particular type of Drupal implementation that a developer intends to build. This is
made available through a single download that includes Drupal core, any additional
contributed modules, and prefabricated configuration.

However, the prospect of decoupling Drupal by design also presents several

important unaddressed questions, such as the outlook for Drupal’s user base. Does

a Drupal that is decoupled by design translate into a permanent schism between

JavaScript and other consumer developers on one side, creating universal JavaScript and

native applications; and PHP developers leveraging Twig, enabling content creators, site

builders, and themers on the other? Would contextual tools such as in-place editing and

contextual links be unavailable in a decoupled context?

In a hypothetical decoupled installation profile in Drupal, every contributed

module would need to provide API-first functionality through web services to match the

functionality of core modules. The experience would be optimized particularly for the

decoupled use case, thus obviating the need for all modules with front-end functionality

such as Quick Edit (in-place editing) and Contextual Links. In the process, the Drupal

community can ensure that there are fallbacks for cases in which a JavaScript-powered

user interface is unavailable; we can instead leverage Twig and Drupal’s Form API to

produce the sort of flexibility required to support both models.

Chapter 26 The Future of Decoupled Drupal

478

Whatever the result of the ongoing discussion regarding decoupling Drupal by

design and the future of Drupal’s administrative interface, one of the most important

notions to take into account is that whereas developers yearn for Drupal architectures

that are fully decoupled, editors and marketers still have strict requirements for a fully

functional implementation out of the box, no matter what its architectural makeup.

In that sense, perhaps Drupal needs to be decoupled in architecture but monolithic in

experience, even if the latter is in perception only.6

Note  For more insight into this topic, see the Drupal Developer Days Lisbon
2018 presentation, “Drupal 9: Decoupled by Design?” by Lauri Eskola and this
author at https://lisbon2018.drupaldays.org/sessions/drupal-9-
decoupled-design.

�Conclusion
In this chapter, we covered some of the issues that confront decoupled Drupal in the

short, medium, and long term. First, concerning short-term endeavors, we described the

present work of the Admin UI and JavaScript Modernization Initiative, whose efforts in

the community have already yielded actionable results. Second, with regard to medium-

term visions, we considered some of the ways in which the community has addressed

richer integration with JavaScript.

Perhaps the most immediately relevant portion of this chapter to the Drupal

community is that covering the potential of Drupal transforming itself into a truly API-

first CMS. As Lauri Eskola and I argue, now that the benefits of web services are widely

acknowledged in decoupled Drupal architectures, it is high time that we leverage this

functionality within Drupal core and the contributed modules that comprise Drupal’s

ecosystem. By doing so, we can broaden Drupal’s audience to include developers of

novel experiences that we could not have imagined only a few years ago.

Here, our journey exploring decoupled Drupal comes to an end. We have roamed

across a rapidly expanding and richly diverse universe, containing an astonishing range

6�Eskola, Lauri, and Preston So. “Drupal 9: Decoupled by Design?” Drupal Developer Days
Lisbon 2018. 6 July 2018. Accessed 10 September 2018. https://lisbon2018.drupaldays.org/
sessions/drupal-9-decoupled-design

Chapter 26 The Future of Decoupled Drupal

https://lisbon2018.drupaldays.org/sessions/drupal-9-decoupled-design
https://lisbon2018.drupaldays.org/sessions/drupal-9-decoupled-design
https://lisbon2018.drupaldays.org/sessions/drupal-9-decoupled-design
https://lisbon2018.drupaldays.org/sessions/drupal-9-decoupled-design

479

of possibilities that point to a promising frontier for Drupal. Nonetheless, Drupal’s future

is not yet guaranteed. Much work remains to cement Drupal’s place among true API-first

CMSs and to encourage developers in other ecosystems to adopt Drupal and its newly

compelling features. Yet with the foundation built by countless contributors up to now,

and with the eager early adoption of decoupled Drupal architectures across our industry,

Drupal is at both a critical and a momentous inflection point in its history.

Countless contributors in the Drupal community have worked tirelessly to bring

important functionality to decoupled Drupal practitioners around the world. Please

consider helping the Drupal community map the future of those trajectories by joining

contribution efforts, whether that means reporting bugs on issue queues, authoring

documentation, reviewing patches and pull requests, or improving design and usability

outcomes.

Thanks to decoupled Drupal, and thanks to the efforts of indefatigable contributors

from every corner of the globe, the future of Drupal is bright and brimming with

unbridled possibility.

Chapter 26 The Future of Decoupled Drupal

481
© Preston So 2018
P. So, Decoupled Drupal in Practice, https://doi.org/10.1007/978-1-4842-4072-4

Index

A
Access token, 125–126
Acquia Dev Desktop, 72
Admin UI and JavaScript Modernization

Initiative, 466–467
advantages, decoupled Drupal, 45

content syndication, 45–46
front-end developer experience, 47
pipelined development, 48
separation of concerns, 46
user-centered user

experience, 46–47
Angular, 355, 466

AngularJS, 355
components, 358, 361, 363–364
dependency injection, 372
directives, 359, 365–369

ngFor directive, 365
ngIf directive, 367
two-way data binding, 365

HttpClient, 375
observables, 375–376, 379
retrieving data from Drupal,

375–377, 379
reusable and nestable components, 358
scaffolding, 356, 358
services, 370–372, 374–375
subscribe() method, 379
subscribing to observables, 378–379
two-way data binding, 359–360

Angular CLI, 356
installation, 356

API Blueprint, 449
API design, 449
API-first distributions, 269–281, 283

Contenta (see Contenta)
Headless Lightning (see Headless

Lightning)
Reservoir (see Reservoir)
variations, 269

API-first Drupal, 18
API-first initiative, 18
API specifications, 449
Apple Watch, 470
Application programming

interface (API), 15
Asynchronous JavaScript and

XML (Ajax), 22–23
Atom, 28
Augmented reality (AR), 468
Authentication, 113

basic authentication (see Basic
authentication)

cookie-based authentication
(see Cookie-based authentication)

OAuth2 Bearer Token authentication
(see OAuth 2.0 Bearer token
authentication)

Authorization code grant, 121
Authorization header, 115, 116
Axios, 285, 327, 329, 391

https://doi.org/10.1007/978-1-4842-4072-4

482

B
Basic authentication, 113, 204

access tokens, 125–127
authorization header, 115, 116
generating keys, 122
grants, 121
handling expired tokens, 128–129
HTTP Basic protocol, 114
installation, 122
scopes, 123
scopes are permissions, 123
session cookie, 117–119
Simple OAuth installation (see Simple

OAuth module)
user roles, 123–125

BigPipe, 52
Black box problem, 50
Block placement, 472–473
Bluetooth Low Energy (BLE), 8

C
Cacheability metadata, 52
Cache invalidation, 52
Cache tags, 52, 456–457
Caching, 455, 458

cache indexing, 461
cache invalidation, 462–463
cache tags, 457
content delivery networks (CDNs), 457
hard purges, 463
incoherency, 459
monolithic Drupal architectures, 455
personalization, 455
purge requests, 462
reverse proxies, 458, 460
soft purges, 463

Surrogate-Keys header, 461
time-to-live (TTL), 463
use cases, decoupled

Drupal, 455–456
personalization, 455
security, 455

VCL, 462
X-Drupal-Cache-Tags header, 461

Cascading Style Sheets (CSS), 4
Chatbots, 7
Client credentials grant, 121
Client-side validation, 289, 446
Composer, 69

downloading Drupal and
dependencies, 70–72

installation, 69
Conference Organizing Distribution

(COD), 269
Consumer Electronics Show (CES), 8
Content

AR and VR, 7–8
channels, 9
conversational, 7
responsive web design (RWD), 5
situational, 8–9

Contenta, 270, 303
Contenta.js, 308
installation, 272–273
mission, 271
reference builds

contenta_angular, 303–304
contenta_ember, 304
contenta_react, 305–306
contenta_vue_nuxt, 307

contenta_angular, 303–304
Contenta ecosystem, 303
contenta_ember, 304
Contenta.js, 308, 455

Index

483

contenta_react, 305–306
Content as a service (CaaS), 19, 284
contenta_vue_nuxt, 307
Content delivery networks (CDNs), 382,

391, 432, 457–458, 460–462
purge APIs, 462

Contentful, 284
Content management system (CMS), 11
Content modeling, 168
Content staging, 91, 94, 96–97
Content syndication, 45
Contextual administration, 53
Contextual links, 50, 477
Contextual tools, 53
Conversational content, 7
Cookie-based authentication, 116, 117
Cordova, 6
Core REST, 73

configuration, 74–76
content entities

creation, 148–150, 152
deletion, 158, 160
retrieval, 146–147
updating, 153, 157

DELETE requests, 158, 160
GET requests, 146–147
HTTP verbs (request methods), 144
issuing HTTP requests, Drupal core

safe and unsafe methods, 144
serialization formats, 145
X-CSRF-Token request

header, 145
modules, 73
PATCH requests, 153, 157
POST requests, 147, 152
safe and unsafe methods, 144
serialization formats, 145, 151
Views REST exports, 161

X-CSRF-Token request
header, 145, 148

CouchDB, 92–93, 203, 206
databases, 206
documents, 206

Cross-origin resource sharing (CORS), 77
configuration in Drupal, 77, 79

Cross-site content staging, 92
Cross-site request forgery (CSRF), 145
Cross-site scripting (XSS)

attacks, 50
CSV Serialization module, 63
Custom modules, 419–420

.info.yml file, 419

D
Decoupled Blocks, 472–473
Decoupled CMS architectures, 12–14
Decoupled content management, 13, 19
Decoupled Drupal, 29, 468

caching (see Caching)
choosing architectures, 42
definition, 29
disadvantages (see disadvantages,

decoupled Drupal)
Drupal as site and repository, 38–39
flowchart for decision makers, 43
fully decoupled Drupal, 31–32
JavaScript developer experience, 471
performance (see also Caching), 435, 441
preview, 471
progressive decoupling

(see Progressive decoupling)
pseudo-decoupled Drupal, 32–34
security, 50
use cases, 40, 468

site-and-repository, 270, 468

Index

484

Decoupled Router, 442
DELETE requests, 158

core REST, 158, 160
JSON API, 200

Derived schemas, see Schemas
Devel module, 73, 185

content generation, 73
Devel Generate submodule, 73

Digital signage, 468
disadvantages, decoupled Drupal, 49

additional point of failure, 49
lack of content workflows, 51
lack of contextualized tools, 50
lack of layout and display

management, 51
lack of security and input

sanitization, 50
lack of system notifications, 51
need for accessibility and usability, 53
performance drawbacks, 52

Display Suite, 51
Distributed denial-of-service (DDoS)

attacks, 77
Document object model (DOM), 24
Drupal, 12, 467

administrative interface, 478
community, 12
custom modules (see Custom modules)
decoupling by design, 476–478
distributions, 269
editorial experience, 469
end-user experience, 469
front end, 468

preprocess functions, 468
shared routing, 475–476

installation profiles, 477
new incongruity, 468

personas, 467
user experience, 465

Drupal 8, 82
cache tags, 457
cache tag system, 455–456
Form API, 477
plug-ins, 420
Typed Data system, 446
web services, 82

Drupal-aware decoupled Drupal, 32
Drupal Console, 420

scaffolding custom modules, 420
Drupal 8 core

entity access system, 67
Hypertext Application Language (HAL)

module, 68
OAuth module, 67
serialize() and deserialize()

methods, 63
web services, 82

Drupal Deploy ecosystem, 91–92, 203
Drupal ecosystem, 81
Drupal front end

decoupled blocks, 471–473
progressive decoupling, 471
shared rendering, 474
shared routing, 474
shared templating, 474
universal editing, 470

Drupal iOS SDK, 299
Drupalisms, 12
Drupal-powered interface, 471
drupalSettings, 38
Drupal web services ecosystem, 81
dummy APIs, 449
Dynamic HTML (DHTML), 4
dynamic pages, 22

Index

485

E
ECMAScript 6 (ES6), 27, 472
Electron, 28
Elm, 466
Ember, 399, 466

adapters, 411–412
customization, 413
JSONAPIAdapter, 411, 415

components, 406–409
ecosystem, 400–401
JSONAPIAdapter, 412
launching a local server, 403
models, 410–411
retrieving data from Drupal, 412–413
route handlers, 404, 412–413
routes, 404–406
scaffolding, 401, 403
templates, 403–404

Ember CLI, 400
installation, 401

Ember Data, 400, 410
ember-drupal-waterwheel, 300

installation, 301
Ember FastBoot, 300, 401
Ember Inspector, 401
Entity Access system, 67
Entity Query API module, 285
Entity resolvers, 64
Expo CLI, 336

installation, 336
Extensible Markup Language (XML), 15

F
Fielding constraints, 16–18
File Transfer Protocol (FTP), 4
Filtering entity collections, 255

Flux, 314
Flux architectural approach, 314
Fully decoupled Drupal, 31–32, 40

G
Generated API documentation, 449
Generated code, 452
GET request, 146

core REST, 146–147
GraphQL, 239
JSON API, 184
JSON-RPC, 432–433
RELAXed Web Services, 207
Schemata module, 447
Subrequests, 437
Views REST exports, 178

Graphical user interface (GUI), 14
GraphiQL, 108, 239

keyboard shortcuts, 240
GraphQL, 18, 98, 239

aliases, 243–244
condition groups, 256, 262–263
directives, 105–106
filter operators, 255
fragments, 103–105, 244
GET requests, 239
limitations in typical RESTful

architectures, 98, 100
module, 107–108
motivations, 98, 100
mutations, 106–107, 263–264
permissions, 239
queries and mutations, 101
retrieving entities, 239

entity collections, 247–249
entityLabel field, 240
entityOwner field, 243

Index

486

filtering entity collections, 252
individual entities, 240
individual entities with

relationships, 243
sorting entity

collections, 249, 251
selection sets and fields, 101–103
variables, 105–106

H
HAL+JSON format, 59
HAL+JSON normalization, 64
HAL module, 59

HAL+JSON format, 59
normalize() implementation, 64
Serialization API, 59

Handlebars, 403
Headless Lightning, 270, 279

installation, 280
mission, 280

Headless software, 14
Hoodie, 97
HTTP Basic protocol, 114

authorization field, 114
HTTP/2 server push, 304
Hydrant, see Waterwheel.js
Hypermedia as the engine of application

state (HATEOAS), 17
Hypertext Application

Language (HAL), 58, 68
Hypertext Markup Language (HTML), 4

I
Incremental adoptability, 381, 466
In-place editing, 50, 468, 477
Input sanitization, 50

Installation profiles, 477
Internal Page Cache, 458
Internet of Things (IoT), 9
Isomorphic JavaScript, see Universal

JavaScript

J, K
JavaScript, 5, 23

JavaScript renaissance, 5–6
single-page applications (SPAs), 466
universal JavaScript, 5

JavaScript Object Notation (JSON), 15
JavaScript renaissance, 23–24, 28
JavaScript-to-native frameworks, 6
jQuery, 24, 467
JSON API, 18

condition groups, 189
creating resources, 195–198
DELETE requests, 200
deleting resources, 200
Drupal 8 implementation, 84
GET requests, 184
JSON API, 200
module, 83, 88
module API

request headers and response
codes, 90–91

types, 89
URLs, 89–90

pagination links and definitions, 186
PATCH requests, 198, 200
POST requests, 196–197
retrieving resources, 184

common filtering scenarios, 194
entity references, 195
field subsets, 195
filtering resource collections, 188,

190, 192

GraphQL (cont.)

Index

487

filtering resource collections with
condition groups, 191

paginating resource collections, 185
relationships, 195
request headers and response

codes, 198
retrieving resource collections, 185
retrieving single resources, 184
sorting resource collections,

187–188
specification

attributes and
relationships, 87

document structure, 85
relationships, 87–88, 183
resource objects, 86

updating resources, 198, 200
JSON API Defaults, 430
JSON API Extras, 271, 427–430

configuration, 428
installation, 428

json_encode() method, 441
JSON-RPC, 431, 433–434, 437

GET requests, 432–433
installation, 432
methods, 432, 434
permissions, 432
POST requests, 432

JSONPath, 439
JSON Schema specification, 446, 448
JSON.stringify() method, 441
JSON Web Token Authentication module,

130, 135
generating keys, 135, 138
HMAC Key, 135
installation, 134–135, 139
RSA Key, 135
validating keys, 138–139

JSON Web Tokens (JWT), 130
advantages, 133
authenticated requests, 139
authentication workflow, 133–134
file-based keys, 135
headers, 130
HMAC algorithm, 130
installation, 134–135
payload, 131–133
private claims, 131
public claims, 131
registered claims, 131
signature, 132
stateless, 133
validating, 138

JSX, 320, 322, 335

L
LAMP stacks, 49
Laravel, 381–382
Layout management, 468, 470
Lightning, 279
Liquid Fire, 401
Literal UI, 471
Logical data models (LDMs), 445

M
MEAN stacks, 49
Memcached, 458–459
MERN stacks, 49
Mobile back end as a service (mBaaS), 19
Model–view–anything (MV*), 399
Model–view–controller (MVC), 313
Model–view–presenter (MVP), 383
Model–view–viewmodel (MVVM), 382
MongoDB, 25

Index

488

Monolithic CMS architectures, 12
Monolithic content management, 12
Monolithic Drupal, 29–30, 39, 40, 455, 468

N
Native applications, 11, 477
Native mobile applications, 28
Nightwatch.js, 467
Node.js, 356

installation, 356
Node Package Manager (NPM), 24
Node Version Manager (NVM), 356
Normalization, 59
NoSQL, 25

O
OAuth 2.0 bearer token authentication

access token, 125–126
grants, 121

implicit grants, 121
handling expired tokens, 128–129
headers, 132
installation, 122

generating keys, 122
Simple OAuth, 122

refresh tokens, 128
scopes, 123
user roles, 123–125

OpenAPI module, 275, 289, 291
OpenAPI UI module, 450

ReDoc for OpenAPI UI
module, 450

Swagger for OpenAPI UI
module, 450

Open Social, 269
Outside-in interfaces, 471

P
Page Cache, 441
Panels, 33, 51
Password grant, 121
PATCH requests, 199

core REST, 153, 157
JSON API, 198

PhoneGap, 6
php-v8-js, 474
Pipelined development, 48
Postman, 75
POST requests, 148

core REST, 147, 152
JSON API, 195, 198
JSON-RPC, 432
Subrequests, 437

PouchDB, 97
Preprocess functions, 468
Previewable content workflow, 51
Prismic, 284
Private claims, 131
Progressive decoupling, 34–38, 40, 45, 47,

50, 52, 472–473
approaches, 37
black box problem, 50
issues, 473

Progressive enhancement, 37
Progressive loading, 52
Progressively decoupled Drupal, 34–38,

40, 45, 47
Pseudo-decoupling, 32–34, 40
Public claims, 131
PUT requests, 217

Q
Quick Edit, 477

Index

489

R
React, 313, 466

application creation, 314
components, 317–318, 326
conditional rendering, 334
create-react-app, 314
declarative rendering, 320, 322
ecosystem, 314
handling errored and loading

state, 329–333
index (root) component, 317–320
launching a local server, 314
React Router, 323
render() method, 320, 322
retrieving data from Drupal, 326–329
routing, 323–324, 326
state, 322
Virtual DOM, 313

React Native, 335
App.js, 340–342
components, 346–349
Expo CLI, 336
FlatList component, 338, 340
handling errored and loading

states, 352, 354
launching a packager, 336
retrieving data from Drupal, 349,

351–352
scaffolding, 314, 336–337
ScrollView component, 338
styles, 340–341, 344–345
views, 338–341

react-jsonschema-form, 452
react-waterwheel-app, 301–302
Redis, 458
ReDoc, 275, 450
Reference builds, 283, 300

RefreshLess, 475
Registered claims, 131
Rehydration, 25–26
RELAXed Web Services, 203

creating resources
document collections, 229–235
documents, 220, 223, 225
file attachments, 219
multiple documents, 230–231
workspace collections, 207–209
workspaces, 217–219

deleting resources
documents, 237
file attachments, 237
workspaces, 236–237

GET requests, 207
permissions, 204
PouchDB and Hoodie, 97
retrieving resources, 207

document collections, 210
documents, 211–213
file attachments, 213–216
workspace collections, 207–208
workspaces, 208–209

updating resources
document collections, 229–235
documents, 226, 228–229
file attachments, 217

workspace nomenclature, 220
RELAXed Web Services module

installation, 94–95
settings page, 95

Remote procedure calls (RPCs), 431
Representational State Transfer (REST),

16–18
Reservoir, 270

characteristics, 275
differences from Contenta, 276

Index

490

ecosystem, 279
reservoir-docker, 279
well, 279

generated API documentation, 275
goal, 274
installation, 277–278
limitations, 279
minimalist orientation, 275
mission, 274
sample content, 278
side-by-side previews, 274

Resource discovery, 289
Responsive web design (RWD), 5, 469
RESTful APIs, 11, 15, 18, 29–30

architectural constraints, 16
cacheable, 16
client/server separation, 16
code on demand, 17
Fielding constraints, 18
layered system, 17
server side, 29
specification, 18
stateless, 16
uniform interface, 17

RESTful Panels, 33, 51
RESTful Web Services module, 65

authentication, 67
Entity Access system, 67

REST module, 65
REST resource configuration, 65–66
REST resource plug-ins, 420

annotations, 422–423
HTTP methods, 422
serving responses, 423–426
uri_paths definitions, 422–423

REST UI, 108–110, 127, 425
Reverse proxies, 455, 458, 460

S
Same-origin policy, 77
Safe and unsafe methods, 144
Schemas, 445–446

definitions, 446
permissions, 447

Schemata module, 445–448
GET requests, 447
installation, 446

Search engine optimization (SEO), 442
Security Assertion Markup Language

(SAML), 133
Separation of concerns, 46
Serialization API

encoding and decoding serialization
formats, 63

HAL module, 59
normalization, 64
resolve(), 64
serialization formats, 63
serialize() and deserialize()

methods, 63
Serialization formats, 145
Serialization module, 59

encode() and decode() methods, 62
normalization, 60–61
normalization and encoding

process, 59–60
Server-side rendering, 472, 475
services.yml, 77
Short Message Service (SMS), 7
Simple OAuth module, 120

Simple OAuth Extras module, 128
Simple Object Access Protocol (SOAP), 15
Single-page application frameworks, 24
Single-page JavaScript applications

(SPAs), 29, 466

Reservoir (cont.)

Index

491

Single-site content staging, 92
Software development

kits (SDK), 283–284
API-first distributions, 283
ecosystem

Contenta (see Contenta)
Waterwheel (see Waterwheel

ecosystem)
SproutCore, 399
Spark initiative, 469–470
Subrequests, 435

blueprints, 437–438, 440–441
GET requests, 437
installation, 436
performance, 435, 441
POST requests, 437
properties, 437–438
request dependencies, 438–439

superagent, 285
Swagger Codegen, 452
Swagger ecosystem, 450

Paw, 450
Swagger Codegen, 450
Swagger UI, 450

Swagger specification, see OpenAPI
module

Swift, 284

T
Thunder, 269
Time to first interaction, 25
Time to first paint, 25
Time-to-live (TTL), 463
Titanium, 6
Twig, 468, 474
TypeScript, 355

syntax packages, 355

U
Umami theme, 271
Uniform resource identifiers (URIs), 16
Universal (isomorphic) JavaScript, 477
Universal JavaScript, 25, 27–28
Universally unique identifiers (UUIDs), 64
URL aliasing, 442

V
V8 JavaScript engine, 474
Varnish, 458, 462

configuration, 462
open source Varnish, 462–463

Varnish configuration language (VCL), 462
Views

REST export displays, 161
Views module, 161
Views REST exports, 161, 456

aliases on field names, 176
configuration, 166, 171
field selection, 172–173
filter criteria, 164–165
GET requests, 178
preview, 164
retrieval, 178
sort criteria, 167
style options, 178

Virtual DOM, 313
Virtual reality (VR), 8
Voice assistants, 6–7
Vue CLI, 389

installation, 389
scaffolding, 389

Vue.js, 381, 466
characteristics, 381
components, 387, 389
declarative rendering, 383

Index

492

directives, 384–385, 387
ecosystem, 389–390
handling errored and loading

states, 394–396
incremental adoptability, 381–382
launching a local server, 391
MVVM-inspired pattern, 382–383
reactivity system, 383
retrieving data from Drupal, 392–394
scaffolding, 391
templates, 383
viewmodel, 383

W
Waterwheel ecosystem, 284

ember-drupal-waterwheel, 300–301
react-waterwheel-app, 301–302
Waterwheel.js (see Waterwheel.js)
Waterwheel.swift, 299–300

Waterwheel.js, 284
built-in functionality, 286
bundling, 286
configuration, 287–288
creating content, 292
deleting content, 294
dependencies, 286
HTTP client, 285
installation, 285–286
instantiating, 286–287
populating resources, 289
resource discovery, 289
running tests, 286
updating content, 293

Waterwheel.swift, 299–300
Web 1.0, 21–22
Web 2.0, 22
Web Components, 314, 406

Custom Elements, 406–407
Web services, 15, 81

Drupal 8
GraphQL (see GraphQL)
JSON API (see JSON API)
RELAXed Web Services (see

RELAXed Web Services module)
REST UI, 108

Web Services and Context Core Initiative
(WSCCI), 18

Web Services Description Language
(WSDL), 15

Web sites
CMS, 4
CSS-based layouts, 4
web applications, 4
web developers, 4

Workspaces, 91
Workspaces, RELAXed Web Services

creation, 217–219
deletion, 236–237
retrieving, 206–207

World Wide Web Consortium (W3C), 4

X
Xamarin, 6
X-CSRF-Token request header, 145
XPath 2.0, 439
XMLHttpRequest (XHR), 4, 115

Y
YAML, 419
Yarn, 389

installation, 389

Z
Zero user interfaces, 6–7

Vue.js (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Foreword
	Acknowledgments
	Introduction
	Part I: Decoupled Drupal Fundamentals
	Chapter 1: The Changing Web
	Web Sites Are Now Just the Starting Point
	From Web Sites to Web Applications
	Responsive Web Design
	Native Desktop and Mobile Applications
	Zero User Interfaces
	Conversational Content
	Content in Augmented and Virtual Reality
	Situational Content
	Other Channels
	Conclusion

	Chapter 2: The Server Side: From Monolithic to Decoupled CMS
	Monolithic Content Management
	Decoupled Content Management
	Web Services
	REST and RESTful APIs
	RESTful and API-First Drupal
	Content as a Service
	Conclusion

	Chapter 3: The Client Side: From Static to Dynamic Pages
	From Web 1.0 to Web 2.x
	The JavaScript Renaissance
	Universal (Isomorphic) JavaScript
	JavaScript-to-Native Applications
	Conclusion

	Chapter 4: Decoupled Drupal
	Fully Decoupled Drupal
	Pseudo-Decoupled Drupal
	Progressively Decoupled Drupal
	Drupal as a Site and Repository
	Use Cases for Decoupled Drupal
	Conclusion

	Chapter 5: Advantages of Decoupled Drupal
	Content Syndication
	Separation of Concerns
	User-Centered User Experiences
	Front-End Developer Experience
	Pipelined Development
	Conclusion

	Chapter 6: Disadvantages of Decoupled Drupal
	Additional Point of Failure
	Security and Input Sanitization
	Contextualized Editing and Administration
	Layout and Display Management
	Previewable Content Workflows
	System Notifications
	Monolithic Performance Benefits
	Accessibility and User Experience
	Conclusion

	Part II: Decoupling Drupal
	Chapter 7: Decoupling Drupal 8 Core
	The Web Services and Context Core Initiative
	The Serialization Module
	How Serialization Works
	Adding a New Encoding

	The Serialization API
	Serializing and Deserializing
	Encoding and Decoding Serialization Formats
	Normalizing and Denormalizing
	Using Entity Resolvers

	The RESTful Web Services Module
	The RESTful Web Services API
	Configuring REST Resources

	Using the RESTful Web Services Module
	Exposing Resources with Entity Access
	Customizing a REST Resource’s Format and Authentication Method

	Hypertext Application Language
	Setting Up Drupal 8 as a Web Service Provider
	Installing Composer
	Downloading Drupal and Drupal Dependencies with Composer
	Provisioning a Drupal Site
	Generating Content and Enabling Core REST Modules

	Configuring Core REST
	Configuring CORS
	Conclusion

	Chapter 8: Decoupling Drupal 8 with Contributed Modules
	The Drupal Web Services Ecosystem
	JSON API
	The JSON API Specification
	JSON API Document Structure
	JSON API Resource Objects
	JSON API Attributes and Relationships

	The JSON API Module
	The JSON API Module API
	JSON API Types
	JSON API URLs
	JSON API Request Headers and Response Codes

	RELAXed Web Services
	The Drupal Deploy Ecosystem
	The CouchDB Replication Protocol
	The RELAXed Web Services Module
	The RELAXed Web Services REST API
	PouchDB and Hoodie

	GraphQL
	Motivating GraphQL
	The GraphQL Specification
	GraphQL Operations
	GraphQL Selection Sets and Fields
	GraphQL Fragments
	GraphQL Variables and Directives
	GraphQL Mutations

	The GraphQL Module

	REST UI
	Conclusion

	Chapter 9: Authenticating Requests in Drupal 8
	Basic Authentication
	HTTP Basic Authentication
	The Authorization Header

	Cookie-Based Authentication
	Retrieving Cookies in Fully Decoupled Consumers
	Authenticating Using Cookies

	OAuth 2.0 Bearer Token Authentication
	OAuth 2.0 Grants
	Installing Simple OAuth and Generating Keys
	OAuth 2.0 Scopes and Drupal Roles
	Creating and Verifying Access Tokens
	Issuing OAuth 2.0-Authenticated Requests
	Handling Expired Tokens

	JSON Web Tokens
	The JSON Web Tokens Standard
	How JSON Web Tokens Work
	Installing JSON Web Tokens
	Creating JWT HMAC and JWT RSA Keys
	Issuing and Validating JWTs
	Issuing JWT-Authenticated Requests

	Conclusion

	Part III: Consuming and Manipulating Drupal 8
	Chapter 10: Core REST
	Issuing REST Requests Against Drupal Core
	Safe and Unsafe Methods
	The X-CSRF-Token Header
	Specifying Serialization Formats

	Retrieving Content with Core REST
	Creating Content with Core REST
	Updating Content with Core REST
	Deleting Content with Core REST
	Conclusion

	Chapter 11: Using Views with Core REST
	Using Views for Content Listings
	Creating Views for REST Export Displays
	Custom Content Types with Views REST Exports
	Retrieving Views REST Exports with Core REST
	Conclusion

	Chapter 12: JSON API in Drupal
	Retrieving Resources with JSON API
	Retrieving Single Resources
	Retrieving Resource Collections
	Paginating Resource Collections
	Sorting Resource Collections
	Filtering Resource Collections
	Filtering Resource Collections with Condition Groups
	Examples of Common Filtering Scenarios

	Retrieving Limited Subsets of Fields
	Retrieving Entity References

	Creating Resources with JSON API
	Updating Resources with JSON API
	Deleting Resources with JSON API
	Conclusion

	Chapter 13: RELAXed Web Services
	Retrieving Resources with RELAXed Web Services
	Retrieving Workspaces and Workspace Collections
	Retrieving Documents and Document Collections
	Retrieving File Attachments

	Creating and Updating Resources with RELAXed Web Services
	Creating Workspaces
	Creating Documents
	Updating Documents
	Creating and Updating Documents in Bulk

	Deleting Resources with RELAXed Web Services
	Deleting Workspaces
	Deleting Documents
	Deleting File Attachments

	Conclusion

	Chapter 14: GraphQL in Drupal
	Retrieving Entities with GraphQL
	Retrieving Individual Entities
	Retrieving Entity Collections
	Sorting Entity Collections
	Filtering Entity Collections
	Filtering Entity Collections with Condition Groups

	GraphQL Mutations in Drupal
	Conclusion

	Part IV: The Decoupled Drupal Ecosystem
	Chapter 15: API-First Distributions
	Contenta
	Installing Contenta

	Reservoir
	Installing Reservoir
	Using Reservoir

	Headless Lightning
	Installing Headless Lightning

	Conclusion

	Chapter 16: Software Development Kits and Reference Builds
	The Waterwheel Ecosystem
	Waterwheel.js
	Installing and Building Waterwheel.js
	Instantiating Waterwheel.js
	Resource Discovery
	Populating Resources with Resource Discovery

	Consuming and Manipulating Drupal with Waterwheel.js
	Retrieving Content with Waterwheel.js
	Creating Content with Waterwheel.js
	Updating Content with Waterwheel.js
	Deleting Content with Waterwheel.js
	Retrieving Content with JSON API and Waterwheel.js
	Creating Content with JSON API and Waterwheel.js
	Deleting Content with JSON API and Waterwheel.js

	Waterwheel.swift
	ember-drupal-waterwheel
	react-waterwheel-app

	The Contenta Ecosystem
	Contenta Reference Builds
	contenta_angular
	contenta_ember
	contenta_react
	contenta_vue_nuxt

	Contenta.js

	Conclusion

	Part V: Integration with Consumers
	Chapter 17: React
	Key Concepts in React
	Scaffolding a React Application and Installing Dependencies
	The Index Component
	React State and Declarative Rendering
	React Routing and Components

	Backing React with Drupal and JSON API
	Retrieving Drupal Data with axios
	Handling Errored and Loading States

	Conclusion

	Chapter 18: React Native
	Key Concepts in React Native
	Scaffolding a React Native Application
	React Native Views
	React Native Styles
	React Native Components

	Backing React Native with Drupal and JSON API
	Retrieving Drupal Data with axios
	Handling Errored and Loading States

	Conclusion

	Chapter 19: Angular
	Key Concepts in Angular
	Scaffolding an Angular Application
	The Root Component
	Two-Way Data Binding
	Angular Components
	Angular Directives
	Angular Services

	Backing Angular with Drupal and JSON API
	Adding HttpClient to Angular
	Retrieving Data from Drupal and Handling Observables
	Subscribing to Observables in Components

	Conclusion

	Chapter 20: Vue.js
	Key Concepts in Vue.js
	The Vue.js MVVM-Inspired Pattern
	Declarative Rendering and Directives
	Vue.js Components
	The Vue.js Ecosystem

	Backing Vue.js with Drupal and JSON API
	Scaffolding a Vue.js Application
	Retrieving Drupal Data with axios
	Handling Errored and Loading States

	Conclusion

	Chapter 21: Ember
	Key Concepts in Ember
	The Ember Ecosystem
	Scaffolding an Ember Application
	Ember Templates
	Ember Routes
	Ember Components
	Ember Models

	Backing Ember with Drupal and JSON API
	Ember Adapters and JSONAPIAdapter
	Fetching Data in Route Handlers
	Customizing JSONAPIAdapter

	Conclusion

	Part VI: Advanced Topics in Decoupled Drupal
	Chapter 22: The REST Plug-in System
	Creating a Custom Module
	Implementing REST Resource Plug-ins
	Annotating REST Resource Plug-ins
	Serving Responses in Resource Plug-ins

	Conclusion

	Chapter 23: Contributed Modules for Advanced Use Cases
	JSON API Extras
	JSON API Defaults
	JSON-RPC
	Subrequests
	Subrequests Blueprints
	Handling Request Dependencies
	Using Subrequests Blueprints

	Decoupled Router
	Conclusion

	Chapter 24: Schemas and Generated Documentation
	Schemata
	Generated API Documentation
	OpenAPI
	Generated Code
	Conclusion

	Chapter 25: Caching
	Use Cases for Caching in Decoupled Drupal
	The Drupal Cache Tag System
	Reverse Proxies and Content Delivery Networks
	Cache Indexing
	Cache Invalidation
	Conclusion

	Chapter 26: The Future of Decoupled Drupal
	The Admin UI and JavaScript Modernization Initiative
	The Future of the Drupal Front End
	Universal Editing
	Progressive Decoupling and Decoupled Blocks
	Shared Templating, Rendering, and Routing
	Decoupling Drupal by Design

	Conclusion

	Index

