
T E C H N O L O G Y I N A C T I O N ™

Developing
Games on the
Raspberry Pi

App Programming with
Lua and LÖVE
—
Seth Kenlon

www.allitebooks.com

http://www.allitebooks.org

Developing Games on
the Raspberry Pi
App Programming with

Lua and LÖVE

Seth Kenlon

www.allitebooks.com

http://www.allitebooks.org

Developing Games on the Raspberry Pi: App Programming with

Lua and LÖVE

ISBN-13 (pbk): 978-1-4842-4169-1 ISBN-13 (electronic): 978-1-4842-4170-7
https://doi.org/10.1007/978-1-4842-4170-7

Library of Congress Control Number: 2018966138

Copyright © 2019 by Seth Kenlon

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-4169-1.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Seth Kenlon
Wellington, New Zealand

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4170-7
http://www.allitebooks.org

This book is dedicated to all programmers
who work tirelessly on free (as in “liberty”) and open

software, not the least of whom are the Lua devs.

www.allitebooks.com

http://www.allitebooks.org

v

About the Author ���xiii

About the Technical Reviewer ��xv

Table of Contents

Chapter 1: Getting Started with the Raspberry Pi ��������������������������������1

Preparing Your Pi ���3

Installing Linux onto Your Pi with Etcher ���4

Preparing Your Off-Brand SoC ���6

Using This Book Without a SoC Device ��7

First Boot ���8

Writing Your First Lua Script ��10

Using Variables and User Input ��14

Homework ���17

Chapter 2: Scripting with LÖVE ���19

Establishing a Development Environment ��19

Navigating the Desktop ���19

Installing Development Applications ���21

Exploring Your Desktop ��23

Creating a Graphical Game ���24

Load and Main Loop ��27

Graphics ��34

Tables ��36

Game and GUI Logic ��38

Mouse Click ���40

www.allitebooks.com

http://www.allitebooks.org

vi

Packaging ���44

Homework ���45

Chapter 3: Modular Programming with LÖVE �������������������������������������47

Project Directory ���48

Classes and Objects ��50

Randomized Cards ��53

Graphics ��60

Competition ���63

Winning ���68

Homework ���71

Chapter 4: Analog Programming ��73

Game Theory ���74

Experimental Design ���75

Iteration One ��76

Iteration Two ��77

Iteration Three ���80

Pseudo Code for Battlejack ���81

Documentation ��82

Homework ���84

Chapter 5: Database and Libraries ���85

Installing New Libraries ��87

Configuration Files ��89

Setting the Package Path ��90

Deck Building ��94

Homework ���98

Table of ConTenTsTable of ConTenTs

vii

Chapter 6: Graphics ��99

Design by Genre ��99

Let the Fonts Do the Talking ��101

Color Scheme ��104

Graphics ��106

Card Design with GIMP ��107

Exporting from GIMP ���120

Homework ���120

Chapter 7: Menu Design ���123

Main Framework ���124

Switching Modes ��126

Menu Selection ���128

Git ��133

Tracking ���134

Adding Files ���135

Restoring ���138

Chapter 8: Battling It Out ��141

Card Table ���142

Game State ���144

Deck Building ��150

Playable Cards ��154

Battle ���157

Visual Effects ��159

Resolving Conflict ���162

Table of ConTenTsTable of ConTenTs

viii

Chapter 9: Balance of Power ��167

Git Commit ��171

Leveling Up ���172

Powerup ��175

Powerup Double Draw ��183

Font and UI Consistency ��184

Garbage Collection ��186

Homework ���187

Chapter 10: Save Files and Game States ��189

Fullscreen ���189

Usability ��193

Scaling Adjustments ���194

Save States ���199

User Configuration ��201

Game Data ��203

Loading a Save File ���205

Homework ���210

Chapter 11: Sound ��211

Finding Audio ��211

LMMS ��212

Building a Sound Effect ���214

Listening to Your Effects ���216

Adjusting Export Length ��217

Creating Music ��218

Sound Code ���220

Table of ConTenTsTable of ConTenTs

ix

Fixing the Raspberry Pi Sound Settings ��221

Homework ���224

Chapter 12: Roguelike Dungeon Crawler ��225

What’s Roguelike? ��225

It Looks Good on Paper ���227

Assets ���228

Treasure ��230

Traps ���231

Monsters ���233

Hero ��235

Bolt ��237

Floor Tiles ��238

Room ���239

Doors ���242

Rogue Code ���243

Draw Function ���250

Keypressed ���253

Monster Movement ���257

Bolts and Updates ���259

Homework ���261

Chapter 13: Game Distribution ���263

Packaging ���263

Versioning ���265

Help Message ���267

Table of ConTenTsTable of ConTenTs

x

Executable ��268

Distribution��269

Online ��270

Configuring SSH for Git ���274

Pushing to Git ��275

Itch�io ��277

Lutris ���277

Mobile Market ���280

Installing LÖVE on Android ��280

Limitations of LÖVE on Mobiles ���282

Chapter 14: Next Steps ���285

How to Practice ���285

How to Learn ���286

How to Read Technical Documentation ���287

Leveraging Open Source ���288

Learning Other Languages ��289

Homework ���290

 Appendix A: Drag and Drop���293

 Draggable object ���294

 Code ��294

Appendix B: Using Git ���297

git add ���298

git commit ���300

Reverting Changes ��301

Table of ConTenTsTable of ConTenTs

xi

Restoring with git reset ���303

Restoring with git checkout ��303

git branch ��306

git merge ���309

git push ���311

Index ���313

Table of ConTenTsTable of ConTenTs

xiii

About the Author

Seth Kenlon is a teacher, artist, D&D dungeon master, free software

and free culture advocate, and UNIX geek. He has worked in the visual

effects (VFX) (The Hobbit, Deadpool, Valerian) and computing industries

(IBM, Red Hat), often at the same time. He is one of the maintainers of a

Slackware-based multimedia production project.

xv

About the Technical Reviewer

Sai Yamanoor is an IoT (Internet of Things) applications engineer working

for an industrial gases company in Buffalo, NY. His interests, deeply rooted

in DIY and open-source hardware, include developing gadgets that aid

behavior modification. He has published two books with his brother and in

his spare time, he likes to contribute to open source projects. You can find

his project portfolio at http://saiyamanoor.com.

http://saiyamanoor.com/

1© Seth Kenlon 2019
S. Kenlon, Developing Games on the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-4170-7_1

CHAPTER 1

Getting Started with
the Raspberry Pi
Welcome to the exciting world of the Raspberry Pi and the Lua

programming language. Whether you’re already a programmer looking

to learn about Lua, or the proud but confused new owner of a Raspberry

Pi looking for a fun project, or a budding freelancer looking to get into

mobile app development, or just a curious computer user looking to

learn more, this book is your gateway into an exciting new world of fun

with software.

To get through this book, you’ll use two main tools: Lua and the

Raspberry Pi.

Note This book requires no previous experience with computers or
programming. Everything you need to know, you can learn from this
book and diligent practice.

Lua is a small, fast, modern programming language that can be used

for everything from system maintenance to graphics and standalone

games. It’s a leading scripting language in the video game and visual effects

industry, and it is used for front-end development in several popular game

engines. Learning Lua is not only a great way to learn programming, it’s a

pathway into the software development industry.

2

The Raspberry Pi is, of course, a groundbreaking computer roughly

the size of a mobile phone. It costs just $35 USD. Against all odds, the

non-profit Raspberry Pi Foundation competes with dominating mega-

corporations by selling an educational product loaded with open source

software to students, teachers, and hobbyists like you. It’s a great,

affordable way to learn programming, open source, and how computers

really work.

You may have acquired a Raspberry Pi for any variety of reasons, but

here are the reasons that it was a good choice, and why it’s the platform

that this book uses:

• The Pi uses the ARM architecture, as opposed to the

x86 architecture made popular by AMD and Intel. Most

mobile phones use ARM chips, and mobile technology

is the fastest-growing market for games. You don’t have

to develop games on ARM to publish games for mobile,

but if you believe that knowing technology starts with

using that technology, then $35 for a mobile game dev

kit is a smart investment.

• The Raspberry Pi runs Linux, a free version of

UNIX. You might not know UNIX yet, but if you’re

heading into the tech industry, the more you know

about it, the better. UNIX knowledge is invaluable

because most of the Internet is run on it, and it’s

the basis for Android phones, Steam machines, the

PlayStation 4, and most of the film and TV visual FX

industry. Besides that, it’s a lot of fun.

• When computers first came out, it was expected that

they would be tools that people could use to bring their

ideas to life. It didn’t matter whether your idea was

great or small, you could make a computer do what you

wanted it to do.

ChapTEr 1 GETTinG STarTEd wiTh ThE raSpbErry pi

3

• Computers today are largely struggling to meet that

goal. While programming on a Mac or a Windows PC

is common, access to the full OS is restricted, and it

can be expensive to keep up with the latest releases.

There shouldn’t be a barrier into computing. Use this

book, a Raspberry Pi, and your passion for creativity

and discovery to prove that programming is still for

everyone.

• You can learn Windows or you can learn macOS, and

either way, you learn either Windows or macOS. If you

learn Linux, however, you learn computing. There will

always be differences in how different platforms work,

but an open source system like Linux lets you gain

familiarity with the low-level computational basics

shared by all computers, whether desktop, laptop, or

mobile.

 Preparing Your Pi
Believe it or not, one of the strengths of the Raspberry Pi is that it is low

power. If you develop on a low-powered computer, then you broaden

your audience because not everyone has the latest and greatest gaming

rig or mobile device. Indeed, developing on a Pi is perfect for targeting the

mobile market, because the Pi shares a lot with the internal hardware of

mobile phones.

In the same spirit of inclusiveness, you don’t actually have to have a

Raspberry Pi to follow along with this book. You can buy any System-on-

a-Chip (SoC) device; common ones include the BeagleBone, Banana Pi,

Odroid, and the Pine64.

ChapTEr 1 GETTinG STarTEd wiTh ThE raSpbErry pi

4

This book is general enough to cover whatever SoC device you use and

any Linux or UNIX operating system. Technically, you can even use a spare

computer instead, although you’ll need to install Linux on it first or boot

from a Linux USB drive. The important thing is to get through this section

and end up with some computing device loaded with a UNIX or Linux

operating system.

The advantage of a genuine Raspberry Pi is that it is thoroughly

documented. There are lots of tutorials on raspberrypi.org to help

you through anything you don’t understand, and there’s little to no

variation in what you see on a Pi compared to what you see in this

book.

Depending on where you buy your Raspberry Pi, you might find that

the OS (called either Raspbian or NOOBS) is included in the box. That’s

fine for normal use, but when programming, it’s best to have access to the

latest development libraries. Raspbian isn’t known for providing the most

recent software tools, so this book uses a Linux OS called Fedberry, derived

from the popular Fedora distribution of Linux. You can either purchase

a spare microSD card to use with this book, or use the microSD card that

came with your Pi, as long as you accept that the contents of your card will

be replaced with a different OS.

If you purchased a Raspberry Pi that didn’t include the OS on an SD

card, or if you purchased a different SoC device that doesn’t come already

set up, then you have a computer that doesn’t know what to do when you

turn it on. It needs an operating system, and it’s a great learning experience

for you to install one.

 Installing Linux onto Your Pi with Etcher
To install an operating system on your Pi or SoC device, you need

a microSD card and an OS image file. OS images are available from

fedberry.org/#download. Use the Fedberry “minimal” image file.

ChapTEr 1 GETTinG STarTEd wiTh ThE raSpbErry pi

5

Caution This process erases the card, so don’t use one containing
photos, videos, or other data that you care about.

There are many ways to get a disk image onto a microSD card. The

following is the easy method, and it’s the same whether you run Linux,

macOS, or Windows on your personal computer.

 1. If you have not already done so, download the

Fedberry LXQT image from https://github.

com/fedberry/fedberry/releases. This image

provides a basic OS with a few extra applications.

You will manually install a full development

environment later.

 2. On your personal computer, download and install

the Etcher application from www.balena.io/

etcher/. For both Etcher and Fedberry, you

need a tool to unzip archives. If you run Linux on

your personal computer, then you already have

one; otherwise, download and install 7zip from

www.7-zip.org for Windows or Keka from

www.keka.io for macOS.

 3. Put the microSD card into your computer. If your

computer doesn’t have an SD card slot, you must

purchase a microSD card reader.

 4. Once the OS image has downloaded and Etcher has

been installed, launch the Etcher application.

 5. In the Etcher window, select the Fedberry image file

from where it is saved on your hard drive, probably

in your Downloads directory (see Figure 1-1).

ChapTEr 1 GETTinG STarTEd wiTh ThE raSpbErry pi

https://github.com/fedberry/fedberry/releases
https://github.com/fedberry/fedberry/releases
http://www.balena.io/etcher/
http://www.balena.io/etcher/
http://www.7-zip.org
http://www.keka.io

6

 6. Select the SD card as the destination.

 7. And finally, click the Flash button.

You can now skip to the “Writing Your First Lua Script” section.

 Preparing Your Off-Brand SoC
If you only have a SoC board that is not made by the Raspberry Pi

Foundation, then the OS images for the Raspberry Pi probably won’t work

on your device. But you can still use this book!

Your first step is to visit the website of your device’s manufacturer.

They probably offer an OS for the device they produce, and since they are

targeting their own device, the OS image is likely a prebuilt image to copy

to your SD card using the Etcher application. This process is described in

Installing Linux onto your Pi with Etcher.

If you cannot find an official image for your device, the next step is

to do an Internet search for the name of your device plus a query such

as “Linux image”. It helps to know which chip your device is based upon,

Figure 1-1. Etcher in action

ChapTEr 1 GETTinG STarTEd wiTh ThE raSpbErry pi

7

too, since sometimes generic OS images target the chip rather than every

possible brand name applied to a system built around that chip. Whether

you have an Allwinner, armv6, armv7, Tegra, or something else entirely,

there’s a good chance that somewhere on the Internet, there are a few

hardworking hackers supporting your device.

Finally, if all else fails, you can turn to the two most reliable OS

providers in the modern world: Debian Linux and NetBSD. These groups

justifiably pride themselves on providing an operating system that runs

on nearly every device you can think to put an OS onto (and a few that you

wouldn’t).

Debian Linux is available from debian.org. Depending on your

device, you may have to do a little research on wiki.debian.org/

InstallingDebianOn to understand how an install is done, but the good

news is that it’s almost certainly possible.

NetBSD is available from wiki.netbsd.org/ports/evbarm. The

install process for NetBSD is remarkably easy, but the setup afterward

is considerably more complex, especially if you’re not familiar with

UNIX yet.

If this is the route you are taking, you should take a little extra time to

set up your system and to get familiar with it before continuing this book.

The instructions in this book are mostly universal, but instructions on

installing software or configuring sound outputs and other details may

differ depending on your device and operating system.

 Using This Book Without a SoC Device
If you don’t have and cannot get a Raspberry Pi or other SoC, then you

can use a traditional computer to work through this book, even a very

old one. You’ll get all the same benefits as those using a Pi: you’ll learn

programming, you’ll learn Linux, and you’ll learn all about the software

development process, but you will have to work a little harder to

get set up.

ChapTEr 1 GETTinG STarTEd wiTh ThE raSpbErry pi

8

To set up a computer to use with this book, install Fedora Linux from

spins.fedoraproject.org/en/lxqt/ so that your environment mirrors

the one in this book.

Caution This erases all the content on your computer, so use a
spare computer that doesn’t contain data you care about.

It’s out of the scope of this book, but there are many ways to run Linux

on a computer, and technically, any of them are probably acceptable for

this book. For instance, you can run Linux off of a USB drive or DVD using

porteus.org, or you can run Linux in a virtual machine using virtualbox.org.

Whatever you choose, you have to translate what is in this book for what

you are using. In other words, it’s easier to just get a Pi and follow along,

but it’s not strictly required.

If this is the route you are taking, you should take a little extra time to

set up your system and to get familiar with it before continuing this book.

The instructions in this book are mostly universal, but instructions on

installing software or configuring sound outputs and other details may

differ, depending on your device and operating system.

 First Boot
Assuming that you have your Pi plugged into a monitor, keyboard, mouse,

and Ethernet, you can finally boot into your fresh, new Linux operating

system. The first time you boot, you are asked to configure your system.

 1. Configure your network to connect wirelessly to the

Internet. If you are connected to the Internet over an

Ethernet cable, then you can skip this category.

 2. Set your time zone. To have your Pi get the correct

time and day from the Internet, enable NTP in the

upper-right corner of the time zone screen.

ChapTEr 1 GETTinG STarTEd wiTh ThE raSpbErry pi

9

 3. Set the administrative password.

 4. Create a user and set a user password. Set the

user as an administrator (see Figure 1-2). Take

note of your username and password. You will

need them often!

 5. Click the Finish Configuration button in the bottom

right of the main screen to continue booting.

Note From this point on, the term Pi is meant to encompass
whatever device you are using to follow along with this book.

When Fedberry has booted, you are left at the login screen. You’ll log in

to the desktop soon, but you got this book so that you could learn to code,

so it’s worth looking behind the scenes. Press Ctrl+Alt+F3 to switch to a

text login screen instead.

Figure 1-2. Setting up FedBerry with the Anaconda installer

ChapTEr 1 GETTinG STarTEd wiTh ThE raSpbErry pi

10

 Writing Your First Lua Script
The modern computing public likes to think that computers have evolved

into interactive virtual worlds, but programmers know the truth: computers—

whether it’s a server, a desktop, or a mobile phone—are merely highly

efficient calculators that get instructions in the form of plain text. When you

switch a Linux computer to a text console, you’re seeing the not-so-secret

side of the operating system that responds to text commands. That’s great if

you’re an experienced UNIX user, but it can be crippling if you don’t know

what commands exist, much less which commands to use. Throughout the

course of this book, you’ll get familiar with useful commands for Linux. Most

commands you learn apply to any UNIX system, although some are particular

to Fedora. Instead of listing common commands and expecting you to

memorize them, however, this book uses and explains commands throughout

so that you get familiar with them by using them.

First, you need to log in with a username and password. Use the

username and user password that you created during setup. When you

type in your password, it appears that nothing is happening; that’s to be

expected, just keep typing.

Once you’re logged in, you are given a shell prompt that ends with a

dollar sign ($). This means that your computer is ready for a command.

To program in Lua, you need to have Lua installed. In Linux, most

of the “obvious” software that users need is stored in repositories of

applications on remote servers. You can think of it as an app store

(although it predates app stores by at least a decade).

Fedberry includes Lua by default, but this is a good exercise

nevertheless, as it demonstrates how to confirm that an application you

need is indeed installed.

The Fedora dnf command searches and installs software from

Fedberry repositories. You will use this command a lot throughout this

book, so you will become familiar with it, but for now just type this:

 $ sudo dnf install lua

ChapTEr 1 GETTinG STarTEd wiTh ThE raSpbErry pi

11

Enter your password when prompted. Remember, when you type your

password, the cursor won’t move.

Note if you installed a different OS onto your pi, then the command
is probably different. For example, on netbSd the command is pkg_
add lua53. refer to the OS image’s documentation for help.

For your first foray into Lua, you’re going to program a simple dice-

rolling game that pits the user against the computer to see who can roll the

highest number on a 20-sided virtual die.

So far, you’ve been controlling your computer with a language called

Bash. To switch to Lua, launch a Lua interpreter by typing

 $ lua

It may not look that different, but you probably notice that your

shell prompt has changed from a $ to a > symbol. Not all programming

languages have an interactive prompt like this, but it’s a good way to get to

know a language before embarking on a big project with it.

Programming languages have lots of built-in functions that you can

use. These functions are called methods or, unsurprisingly, functions. They

are organized into libraries.

For instance, the print() function in Lua’s basic library prints text to

the screen. Try this:

 > print("hello world")

 hello world

You can also have Lua print numbers.

 > print(23)

 23

 > print(21+(378/18))

 42.0

ChapTEr 1 GETTinG STarTEd wiTh ThE raSpbErry pi

12

Or both.

 > print("The answer is "..21+(378/18))

 The answer is 42.0

 Rolling Virtual Dice

For your first program, you need random numbers so that you can mimic

a die roll competition. Computers are producing numbers all the time, but

how do you access those numbers? Can you think of something within

a computer’s normal routine that would produce numbers? If you can’t

think of anything, try looking up from your screen at the room around you.

Is there anything in your physical space that could provide a more or less

random number at a glance?

After some thought, you might realize that computers usually keep

track of time, just like a clock in the real world does. It’s not perfect, but it’s

a reliable source of numbers.

Lua has many libraries filled with specialized functions. The os library

contains the time function, which returns the current time, in seconds,

since 1 January 1970 (the UNIX Epoch). That’s a lot of numbers, especially

in the context of a dice game where you only need up to 20. Setting that

aside for now, try using the os.time() function yourself.

 > os.time()

 1524967695

When you use a function, you are “calling” it. The empty

parentheses at the end of the os.time() function call allows you

to send information to the function when calling it. The os.time()

function doesn’t require any information from you to do its job, so the

parentheses are left empty. Functions like print(), and other advanced

functions that you will use later (some of which you yourself will write),

require more information.

ChapTEr 1 GETTinG STarTEd wiTh ThE raSpbErry pi

13

There are a few problems with using os.time()as a stand-in for a die

roll. The os.time() function returns a very large number, and it’s not very

random.

There are a few ways to take a large number and reduce it to something

within a given range. One easy way uses grade school math: take any

number and divide it by your maximum desired value, and use the

remainder (the “modulo” in computer terminology) as your result. For

instance, if you have the number 103 and divide it by 20, you get 5 with

a modulo of 3. In computer science, the % sign is used to do division and

return only the modulo. Try it in Lua.

 > 103%20

 3

 > os.time()%20

 6

 > os.time()%20

 12

The modulo of os.time() has some degree of variance, depending on

the time at which you call it. This introduces a perception of randomness.

You can test this by trying to predict what your “roll” will be just before

calling os.time(). It’s pretty difficult to predict.

Note press the up arrow on your keyboard to recall the previous
Lua function call without all the typing.

After trying to predict your roll 20 or 30 times, do you see any problems

or patterns in the os.time() solution?

You might notice that making the same call to os.time() in rapid

succession betrays its very predictable pattern of incrementing steadily

once per second.

ChapTEr 1 GETTinG STarTEd wiTh ThE raSpbErry pi

14

 Using Variables and User Input
Computers are programmed. They don’t exactly produce random events,

because they only do exactly as they have been programmed. Yet few

computers are dormant; usually, they have been programmed to interact

and respond to human input. There’s nothing quite as unpredictable as

the human mind, so why not use it to introduce some randomness to the

dice roll?

It’s too obvious to just ask the human player for a random number,

especially if they know the goal of the game. If you know the goal of a

game is to roll 20 on a virtual 20-sided die, then any good gamer is going

to “randomly” choose 20 the majority of the time. So instead, you can ask

your human player for some input and then use that input as a seed of

randomness.

Ignoring that this is happening on a computer in a programming

language you don’t know yet, try to think of some ways you could trick a

player into providing you with a random value.

Here are some ideas:

• Ask the user to provide a three-digit number and add it

to os.time() as an offset.

• Ask the user for two numbers. Use the difference

between the two numbers as an offset.

• Ask the user for the name of an animal or a color.

Count the number of letters in the answer and use that

number as an offset.

• Ask for two numbers, divide their sum by 20, and use

the modulo as the offset.

ChapTEr 1 GETTinG STarTEd wiTh ThE raSpbErry pi

15

You can probably imagine even more ways, but to implement any of

them, you need to know how to get input from your user. As you might

guess, getting input from a user is a common task in programming, so

Lua has a function for that as a part of its input/output library, called io.

The problem is that Lua doesn’t inherently know what to do with input.

Watch what happens if you use the read function, and then type hello

world as input.

 > io.read()

 hello world

 hello world

Lua just repeats what you give it. That’s not very useful, and that’s

exactly why variables were invented. A variable is like an empty box, and

you can put anything into the box that you need to store for later. You can

put a word (or string in programming lingo), a number, or even an image

or sound effect. Variables are surprisingly easy to set and easy to use once

you need them.

 > seed=io.read()

 103

 > seed%20

 3.0

A new variable, in this example called seed, is created because you use

the = after a word that Lua otherwise does not recognize. Whatever io.

read gets from the user is placed into the variable you created. From then

on, you can call the variable just as you call functions, and use whatever is

inside.

Using variables, you can create interactive applications. Write a

dice- rolling application based on your new understanding of variables.

Of course, since you’re running Lua as an interactive session, your

program gets written and runs all at the same time, but that’s enough

for a proof of concept.

ChapTEr 1 GETTinG STarTEd wiTh ThE raSpbErry pi

16

Here is a version of a simple dice rolling game:

 > computer=os.time()

 > seed=io.read()

 104

 > player=os.time()+seed

 > print("The computer rolled "..computer%20)

 The computer rolled 6

 > print("You rolled "..player%20)

 You rolled 18.0

You have written your first fully functional program! It’s not a fancy

game, and the only way to play it is to type it manually into a Lua prompt,

but the logic and the results are sound. In the next chapter, you will

create a Lua script file so that a more advanced version of this simple

dice game can be run like a normal application. In the meantime,

practice creating and using variables, and try to come up with alternative

random number engines.

When you’re ready to leave the Lua prompt, call the Lua exit function.

> os.exit()

When you see a $ prompt again, you’re back at your Bash shell.

To power off your Pi for the day, use the poweroff command.

 $ sudo poweroff

ChapTEr 1 GETTinG STarTEd wiTh ThE raSpbErry pi

17

 Homework
I may as well admit to you that Lua actually already has a random number

function as part of its math library. Like your own versions of random

number generation, it too requires a seed, but it uses a lot of math tricks

and entropy to generate a number within whatever range you specify.

Here’s how it works:

 > math.randomseed(os.time())

 > math.random(1,20)

 6

 > math.random(1,20)

 11

 > math.random(1,20)

 1

 > math.random(1,20)

 17

How did I find out that Lua had a random number function? How can

you find out what other features Lua has that I haven’t told you about? The

answer to both questions is documentation.

Any good programming language is fully documented so that

programmers know what the language can do. You’re a programmer

now, so you should browse through Lua’s reference manual, available at

lua.org/manual/5.3/#index. Much of it won’t make sense to you yet,

and there are several conventions of code documentation that can be

confusing, but knowing where to find the functions available to you is a

hugely important part of learning to code.

ChapTEr 1 GETTinG STarTEd wiTh ThE raSpbErry pi

18

Here are some challenges for you. Use the Lua documentation to find

the answers.

• One of the ideas for tricking the user into providing

a random number was to ask the user for the name

of an animal and to count the letters of whatever the

user typed. How would you find the length of a string

in Lua?

• Find the cosine of a number provided by the user. You

can do this even if you have no idea what a cosine is.

• Write a program that takes an input string from the

user and then prints that string in capital (uppercase)

letters. There’s a way to do this both with and without a

variable.

Don’t worry about getting these exercises right or wrong. The

important thing is to try, because trying means that you are practicing,

and practice is the only way to really learn how to code. When you feel

ready, or you just get bored of trying these exercises, continue to the

next chapter.

ChapTEr 1 GETTinG STarTEd wiTh ThE raSpbErry pi

19© Seth Kenlon 2019
S. Kenlon, Developing Games on the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-4170-7_2

CHAPTER 2

Scripting with LÖVE
In the previous chapter, you got your Pi or SoC device to boot, and then

explored Lua from an interactive text console. That’s more than some

first-year computer science students learn about how computers work, so

consider yourself a success. There’s a lot more to learn, but first, it’s time to

set up a development environment.

 Establishing a Development Environment
Having a development environment means having all the tools you need to

develop software, and having a place where you can do that development

without affecting the rest of your system or letting the rest of your system

affect your work.

 Navigating the Desktop
Log in to your Pi using the same username and password as before. If

you’ve never used a Linux desktop before, you’ll find that it’s similar to any

other computer (see Figure 2-1).

20

An application menu is located in the bottom left corner, but the three

most common applications are pinned to the panel along the bottom. The

first icon is for a terminal, which is software that emulates the text console

you used in the first chapter. The second icon is a file manager. With it,

you can create new folders, move and copy files, move old files to the

trash, browse and launch applications, and so on. The third icon is a web

browser (see Figure 2-2).

Figure 2-1. The LXQT desktop

Figure 2-2. Your basic applications

Chapter 2 SCripting with LÖVe

21

There are also some unique features developed by Linux that are

slowly making their way to other platforms. For instance, in the lower-

left corner, there are two boxes labeled 1 and 2. These represent virtual

desktops. You can open a few applications while on desktop 1, and

then switch to desktop 2 to open another application to avoid clutter. It

can be useful to leave a Bash shell open on one desktop so you can run

commands or test out Lua functions while your code editor is open on

another desktop.

 Installing Development Applications
You won’t be programming complex games in the Lua prompt, as you did

for your simple dice game, so you need all the usual programming tools

that software developers use on a daily basis. There are lots of tools that a

programmer might use, depending on what a project demands, but there are

some things that are expected no matter what. These include the following.

• Text editor. A person who codes needs an application

to write code in. Most programmers use a special

kind of text editor called an integrated development

environment (IDE), which not only edits text but also

knows enough about the language being used to add

convenience features, such as word completion, syntax

highlighting, and file management. Popular IDEs

include Eclipse, Qt Creator, and NetBeans. This book

uses Geany, a lightweight IDE.

• Terminal. It’s helpful to have direct access to the

platform you’re programming. A terminal gives you a

shell prompt as an application inside your desktop. No

more switching back to a text console with Ctrl+Alt+F3!

There are many terminal emulators for Linux; this book

uses QTerminal.

Chapter 2 SCripting with LÖVe

22

• Git. Programming is all about iteration. You try

something, test it, improve it, and then try it again.

With so many iterations, it’s helpful to have a historical

record of each attempt you make at solving a problem.

Git is the basis for popular sites like GitLab and GitHub,

so it’s a good version control system to learn. There

are many interfaces to Git. This book uses a plain old

terminal as well as git-cola.

• Web browser. If you are going to refer to the Lua

reference manual, you need a way to access the

Internet. Fedberry provides the Chromium browser, the

open source basis for Google’s Chrome.

• Software catalog. To make it easy to find software,

Fedberry provides the dnfdragora repository browser.

That’s not all you’ll need to complete this book, but it’s a good start for

now.

There’s a lot of great software out there for Linux, so you could search

for packages by description and then try each one out until you find the

one you like best. You are encouraged to do that sometime when you

have a free month or two, but for the sake of efficiency, install these fine

applications:

 $ sudo dnf install geany vte291 git-cola

If you prefer to work in graphical applications, click the application

menu in the bottom left of the screen and select Administration ➤

dnfdragora.

In the dnfdragora window, set the search scope to All, All, and in
names. The first time dnfdragora launches, it syncs with the application

servers, so give it some time to pull an updated application list from the

Internet. When it’s finished, the main panel is populated with a list of

applications.

Chapter 2 SCripting with LÖVe

23

Once the applications are listed, search for each of these installer

packages: geany, vte291, and git-cola. Mark each one for installation (see

Figure 2-3) and then click the Apply button in the lower-left corner of the

dnfdragora window.

 Exploring Your Desktop
Before you start the next section, take some time to explore your desktop.

Here are some things you might try:

• Launch the Chromium web browser, download a

desktop wallpaper from the Internet, and set it as your

desktop background.

• Try to locate hidden files in your home directory. Don’t

do anything with them, just learn how to view and hide

them again.

Figure 2-3. The dnfdragora application installer

Chapter 2 SCripting with LÖVe

24

• Customize some of the settings of your desktop, like the

position of the panel, or the fonts used in window titles,

and so on.

• Learn to use virtual desktops fluidly and also how to

switch between active applications.

Getting comfortable with your workstation is important, and there’s no

limit to the ways that Linux can be customized. Explore your new world,

and when you’re feeling at home and ready to code, start the next section.

 Creating a Graphical Game
The dice game you experimented with in the previous chapter

demonstrated some of the very basic principles of code, but now it’s time

to program a game with graphics, and that someone else can play without

having to type the code first. To keep things simple, the next exercise is a

revised, graphical version (see Figure 2-4) of the dice game.

Figure 2-4. Your very first graphical game in Lua

Chapter 2 SCripting with LÖVe

25

You may as well start off with proper organization, so create a folder

(or directory in UNIX terminology) for your first Lua project.

You can do this two different ways. Maybe the most obvious way is just

as you would on any computer you’re used to: click the file manager icon

in the lower-left corner of the desktop panel to open a window to your

home directory, and then right-click in the empty space of the window and

choose Create New ➤ Folder. Name your new directory dice.

The other way is slightly faster. Launch a terminal from the application

menu on the left end of the shelf at the bottom of the screen. In the

terminal window, type

 $ mkdir ~/dice

Remember that the $ is your shell prompt, so don’t type that. The tilde

(~) character is shorthand meaning your home directory, and the slash (/)

serves as a path delimiter between one directory (your home in this case)

and another (in this case, dice).

Whatever way you choose, the end result is a new directory in your

home, called dice. This is where the data files for this, your first game,

must be stored.

You are going to write your code in your IDE called Geany. Launch

Geany now from the application menu (in the Programming category).

Alternatively, you can launch it from a terminal, if you have one open, as

follows:

 $ geany&

Note the & character tells your shell to launch an application and
then returns you to your shell prompt. Sometimes when debugging,
it’s useful to leave off the & so that you maintain a link with the
running application and get to see any messages that it sends.

Chapter 2 SCripting with LÖVe

26

The Geany IDE is highly configurable, with many themes and

plugins. You can spend time customizing it, but at the very least click

the Tools menu and select Plugin Manager. In the Plugin Manager

window, activate the File Browser extension to add a display of your

files in the left panel.

Additionally, go to the Edit menu and select Plugin Preferences. In the

Plugin Preferences window, enable the file browser to follow the path of

the current file (see Figure 2-5).

Figure 2-5. Geany’s file browser preferences

Finally, select Preferences from the Edit menu and enable the same

feature for Geany’s built-in terminal (see Figure 2-6).

Chapter 2 SCripting with LÖVe

27

With these features activated, both the file browser and the terminal

synchronize their displays with whatever file you are editing at any

moment. It won’t make much of a difference now, but once you’re working

on complex projects, this makes it easy for you to run test commands in

the correct location.

 Load and Main Loop
Once you’ve configured Geany, coding can begin. Before coding dice

rolls as you did in the first iteration of the game, there’s some setup

to make this a graphical game. First, you need the libraries to let Lua

produce graphics. There are a few different libraries that could be used for

Figure 2-6. Geany’s terminal settings

Chapter 2 SCripting with LÖVe

28

this, because there are several GUI frameworks that provide Lua hooks.

However, you are specifically looking to make games, and conveniently

there are game engines that can be controlled by Lua scripts. Just as Lua

itself has built- in functions for common tasks, such as math.random, game

engines have functions for common game tasks, such as a window that

can go full- screen on demand, listeners for joystick and mouse input,

physics, and so on.

The LÖVE engine is a game framework written specifically for Lua.

Normally, you install it with either dnfdragora or the dnf command in a

terminal, but to get the very latest version of LÖVE with all of its newest

features, you should install using the .rpm file included with the code

for this book or from klaatu.fedorapeople.org/love-99f37ac-1.

fc27.armv7hl.rpm. An RPM file is an installer file for Linux. It’s the

same kind of file stored on application servers (or repositories in Linux

terminology), but can also be downloaded directly in a web browser.

You use the same command as you used to install Geany to install an

RPM you have downloaded, providing the path to the file you want to

install.

 $ sudo dnf install ~/Downloads/love-99f37ac-1.fc27.

armv7hl.rpm

The installer asks you for permission to install several libraries that

LÖVE depends upon. Accept and wait for the install to finish, which

returns you to the usual prompt ($).

 Writing Lua Code with LÖVE

LÖVE is a set of libraries for Lua, so it isn’t an application you launch to

write code. Instead, you use LÖVE functions in your code.

If Geany isn’t still running, launch it now. Go to the File menu and

select New. This creates an empty untitled file in your workspace. Select

File ➤ Save As to save this file as main.lua in your dice project directory.

Chapter 2 SCripting with LÖVe

29

First, create two variables to set the window size for your game. This is

a simple dice game and the Pi isn’t a very powerful computer, so keep the

window size small. At the very top of your file, type this:

 view_w = 777

 view_h = 472

Creating variables for the size of the window doesn’t do anything

special. These are normal variables containing normal numbers. It’s how

the game script uses these variables that actually sets the window size.

The LÖVE game engine is programmed to do just two things

automatically when it’s launched: call the love.load() function once, and

then call the love.draw() function until the user quits. So for LÖVE to do

anything with your game, you need to create both of those functions. LÖVE

doesn’t care what’s in those functions; in fact, it expects you to fill that in

yourself. In other words, it’s in these functions that the actual game code

goes.

Make your game code look like this:

 view_w = 777

 view_h = 472

 function love.load()

 -- loads once at launch

 end

 function love.draw()

 -- main loop

 end

Notice that functions in Lua end with the keyword end. The text now

within each function block is called a comment, which is a line of code that

the computer ignores. They’re just notes for the programmer.

 -- in Lua, this is a comment

Chapter 2 SCripting with LÖVe

30

You’ve already used functions in Lua, but this time you are creating

your own. A function in programming is a block of self-contained code

that optionally accepts input and optionally renders data as output. You’ll

also hear them called methods or even algorithms, but it’s all the same

concept: you’re writing instructions for a computer, and by wrapping those

instructions in a named function, you allow your program to use and reuse

those instructions as often and whenever needed.

Spawning a window for your game is a one-time task. When the user

launches your game, the window’s attributes—like the size, title, and

background color—only need to happen once. After those attributes are

set, LÖVE can move on to the rest of the code. This means, of course, that

window setup should happen in the love.load() function.

Add this to your game code:

 function love.load()

 -- loads once at launch

 love.window.setMode(view_w,view_h,{resizable=false,

vsync=false})

 love.window.setTitle('DiCE')

 love.graphics.setBackgroundColor(0,0,0)

 end

It’s customary to indent code blocks to signify a kind of lineage.

For instance, everything is indented after function love.load() to

demonstrate that the lines of code are inside that function. The word end

is not indented, and closes the function. In some programming languages,

like Python, this is required, but in Lua, it’s entirely optional. Lua doesn’t

use indentation to determine programming logic; it’s just a visual

convention for programmers.

Most of the names of the functions are pretty descriptive, so you can

probably surmise what they do. love.window.setMode sets the width and

height of the window by using the variables view_w for width and view_h

for height.

Chapter 2 SCripting with LÖVe

31

The love.window.setTitle function sets the title in the window’s

title bar. love.graphics.setBackgroundColor sets the background of the

window to the RGB value 0,0,0 (black).

It’s not much to look at, but you can launch your game as is. To see

what you’ve created so far, first save your file. If you don’t remember to

save before previewing your game, you won’t see your changes, so get used

to saving often.

After your changes are saved, click the terminal tab in the bottom left

of the Geany window. The bottom panel of Geany now gives you a shell

prompt. The working directory in the terminal is already set to your project

folder. If it isn’t, change to that directory now (and check your Geany

configuration later, as described earlier in this chapter).

 $ cd ~/dice

The cd command stands for change directory. The ~ symbol is

shorthand for your home directory.

From within the dice directory, start LÖVE, pointing it to your

current directory. In Linux, your current position in the shell is represented

by a dot.

 $ love .

An empty window appears. Notice that its title is DiCE.

Close the window once your excitement has subsided. For this second

iteration of the dice game, don’t worry about how the game looks, just

focus on the code. Making the game look good happens in the next

iteration.

 Game Code

You know from the previous version of the dice game that there are three

events that must happen for the game to work. The computer must roll die,

the player must roll die, and then the values of the roll must be revealed.

Chapter 2 SCripting with LÖVe

32

This process is familiar to you. There’s nothing specific to LÖVE here,

this is plain old Lua. Add die rolling to the code (the first and last lines are

already in your code, but are here for context).

 love.graphics.setBackgroundColor(0,0,0) --context

 math.randomseed(os.time())

 player = math.random(1,20)

 computer = math.random(1,20)

end –-for context

In the previous version of the game, it was up to the user to compare

the rolls and to determine who had won. This time, let Lua compare the

values and determine the winner. To do that, you must use two of the most

common logic tools in programming: math operators and an if/then

statement.

This will not work, but it’s a good lesson, so add this to your code. The

first line is for context.

 computer = math.random(1,20) –-for context

 love.graphics.setColor(1,1,1)

 if player > computer then

 love.graphics.printf("Player wins!", 0,

view_h*0.5,view_w*0.5, 'center')

 print("Player wins!")

 else

 love.graphics.printf("Computer wins!", 0,

view_h*0.5,view_w*0.5, 'center')

 print("Computer wins!")

 end

An if/then conditional statement does exactly what an if/then

statement does when you use one in everyday speech. If one thing is

true, then do one thing; otherwise, do something else. In this example,

the if/then statement hinges upon whether or not the contents of the

Chapter 2 SCripting with LÖVe

33

player variable is greater than the contents of the computer variable.

It would be equally effective if it depended upon computer being less

than player.

From the LÖVE library, the code uses the graphics.setColor function

to set the foreground color and the graphics.printf to print text on the

screen. Just as the standard Lua print function requires a parameter—

specifically what to print, the love.graphics.printf function requires

several parameters: what to print, when to wrap text to the next line, the

location along the X and Y axes, and text justification. These parameters

must be given in the order specified by the function’s documentation,

located at love2d.org/wiki/love.graphics.printf.

Try your game to see what happens.

 $ love .

The game window opens, but it’s still just a blank window. This

makes it seem like your game doesn’t work, but if you look at the

terminal, assuming you launched the game in Geany, then you see that

Lua did print a winner to your standard output. So the underlying game

logic is sound.

The problem, in fact, is that your game’s text was written to the

screen but only persisted for a millisecond or so. The love.load()

function is only called once per launch, but a screen is refreshed

constantly and at a rate much faster than your eye can detect. To

generate graphics that are refreshed for as long as the game is running,

use the love.draw() function.

Update your code to match this:

 computer = math.random(1,20) –-for context

 end –-for context

 function love.draw()

 love.graphics.setColor(1,1,1)

Chapter 2 SCripting with LÖVe

34

 if player > computer then

 love.graphics.printf("Player wins!", 0,

view_h*0.5,view_w*0.5, 'center')

 print("Player wins!")

 else

 love.graphics.printf("Computer wins!", 0,

view_h*0.5,view_w*0.5, 'center')

 print("Computer wins!")

 end

 end

Try your game again.

 $ love .

This time, the winner is printed to the graphical game screen. The

message also prints infinitely in your terminal, which provides you with

some insight about why the text remains visible in the game window. The

message isn’t just being written once, but several times as your screen

refreshes.

 Graphics
There are a few problems with the game in its current state. First, it isn’t

very interactive. A player isn’t likely to feel that they’re rolling the die,

virtual or otherwise, because the game just launches and declares a

winner. In a related issue, there’s no way to roll again except by closing the

game and launching it again. And finally, the game isn’t much to look at. It

has no graphics, the font it uses is boring, and there’s nothing that visually

suggests that this humble application is a game.

To incorporate graphics and an attractive font, you must have graphics

and a font to not only use but that you’re permitted to ship with your

game when you distribute it. You probably aren’t going to distribute this

Chapter 2 SCripting with LÖVe

35

first dice game that you make, but it’s a good habit to get familiar with the

three kinds of assets that you can use in your games: original, Creative

Commons, and commissioned. The latter is art that you have someone

else make for you, with the express permission granted for you to use

the artwork in your game. Creative Commons is the same, in principle;

someone else makes art, posts it to the Internet along with some level of

permission for you to reuse it (usually you are required, at least, to give

them credit for their work, which seems only fair). Failing those resources,

you can just make your own artwork.

For the sake of brevity, take a look at OpenClipArt.org, a website full

of Creative Commons artwork. You can search for dice and find several

results, but to roll dice and show the result, you need one image per side

of dice. To simplify the effort, this example uses six-sided dice instead of

twenty. To make the game look a little more high-tech than it actually is,

this example eschews traditional dice and instead uses a two-dimensional

design. Traditional dice would be very familiar, but the results would be

immediately obvious. Since there’s not that much going on in this game,

using a non-traditional representation of a dice roll forces an unsuspecting

user to solve a little puzzle to figure out why the player or the computer wins

with each roll. In other words, the game adds a game to the game. If you

don’t care for something so esoteric, use any graphic you like, as long as you

name your image files to match those used in the example code in this book.

 Fonts

Fonts have the same requirements as graphics. To use them in your

game, you have to send the font file along with your game, and to do that

legally, you must respect the license of whatever font you choose. You

might not think about it often, but the default fonts on Windows and

Apple computers are mostly owned by Microsoft, Apple, Adobe, or other

companies. You’re allowed to use them, but not necessarily to redistribute

or sell them. Luckily, there are plenty of free and open source fonts

available online.

Chapter 2 SCripting with LÖVe

36

Fonts don’t often use a Creative Commons license, but have their own

special Open Font License or GNU General Public License, or similar.

There are several good sites offering fonts. This example uses the boldly

futuristic font Orbitron from TheLeagueOfMoveableType.com. It is a good

source of openly licensed fonts but does not have so many options as to be

overwhelming.

Create two new directories in your dice folder: one called font and the

other called img. To create a new directory, right-click your dice folder and

select New ➤ Folder.

The following creates the new directories from the terminal:

 $ mkdir ~/dice/{img,font}

Download the dice graphics as PNG files and also download the font.

Place the dice graphic files in the img directory and the font TTF and

LICENSE files in the font directory.

Graphics from OpenClipArt.org do not require attribution, so you do

not have to credit the creator. Obligation is one thing and being a good

sport is another, so create a new file in Geany called CREDIT. Open the file

and list the assets that you are using.

 Dice graphics by Orsonj

 https://openclipart.org/detail/117277/digital-die-0

 Font by the League of Moveable Type

 https://www.theleagueofmoveabletype.com

 Tables
In the current iteration of the game, the computer and player variables

contain one piece of information each. The new iteration, like probably

any game you create from this point, is more complex. One attribute per

“object” in your program is not enough. For instance, the player in your

Chapter 2 SCripting with LÖVe

37

game must contain a number representing its dice roll as well as a graphic

that shows your user what that roll was. That’s at least two data for one

variable. Surely, that’s not possible!

Of course, Lua has a way to make this possible. Lua uses tables to store

a list of variables along with what those variables contain. At the very top of

your file, create two new tables, one for each player.

 human = {}

 comp = {}

The tables don’t contain variables yet, but you can add them as

needed. For instance, give each player a name in the love.load function.

The first three lines are for context.

 math.randomseed(os.time()) –-for context

 computer = math.random(1,20) –-for context

 player = math.random(1,20) –-for context

 player.name = "You"

 comp.name = "Computer"

You can also set the graphic of each player to a neutral position.

In terms of the digital die graphic used in this example, neutral is die

position 0.

 player.img = love.graphics.newImage('img/d0.png')

 comp.img = love.graphics.newImage('img/d0.png')

You also need some useful variables outside of the players. For

instance, set the font for the game.

 font = love.graphics.setNewFont("font/orbitron-bold-

webfont.ttf",72)

The font size is set to 72 points. That will be important later.

Chapter 2 SCripting with LÖVe

38

 Game and GUI Logic
When you were running your dice game from the Lua shell, everything was

instantaneous. Applications with graphical user interfaces, by nature, tend

to sit idly until the user tells it to do something. Currently, your GUI dice

game launches, rolls the dice, and announces a winner. You need to slow it

down so that it waits for the user before taking action.

Common conventions for making a GUI application do something

are buttons and menus. Both of these are usually triggered by a mouse

click. Why not make the dice game wait to roll die until the user clicks

the mouse? The act of clicking the game screen helps the user feel that

they have more involvement with the game, and also makes the game

something that can be played several times without having to be closed

and the reopened.

You already know that the main loop of a LÖVE game is the love.draw

function, so that’s the part of your code that you need to control. The first

task is to force love.draw to wait for input before displaying any change.

A common trick for such control is to create a variable and then force the

main loop to wait for that variable to change before taking action.

For this game, use a variable called start, set to true, to indicate that

a new game has been launched, but that the main loop is waiting for input

from the user. Create the variable in love.load so that the game begins in

the start mode.

 start = true

Erase whatever you have in the love.draw function, replacing it with a

conditional statement that checks whether start is true or not. If it is not

true, then the game commences. If true, it draws the neutral die graphic.

There’s quite a bit of math involved in positioning the graphics. You

originally set the game window sizes in the global variables cw (canvas

width) and ch (canvas height), so you know the area you have to work

with.

Chapter 2 SCripting with LÖVe

39

In most computer graphic applications, LÖVE included, the upper-left

corner of the canvas is 0, and the X and Y axes increase to the right and

down screen (see Figure 2-7).

Technically, you could start the first dice display at 0, but so that it’s

not crowded against the left window edge, the example code indents it by

33 pixels. The same holds true for the distance from the top edge, which is

indented by 30 pixels. The offset of the dice are set to 0, and the scale is set

to 0.2, because the source graphics are larger than the screen.

The dice display on the right of the screen is slightly different. To

determine its position along the X axis, the width of the canvas is divided

in half (or multiplied by 0.5, as the case may be). You could do that math

yourself, and then put in the number manually (777*0.5=388), but if you

ever changed the canvas size, you’d have to go through your code and find

all the wrong numbers and recalculate. Well, that’s exactly what computers

are for, so it’s much smarter to take the time to figure out the correct

equation rather than doing the math yourself.

Figure 2-7. Screen coordinates

Chapter 2 SCripting with LÖVe

40

function love.draw()

 love.graphics.setColor(1,1,1)

 if start == false then

 -- do something here

 end

 love.graphics.draw(human.img,33,30,0,0.2,0.2)

 love.graphics.draw(computer.img,cw*0.5,30,0,

 0.2,0.2)

 end

Save and then launch the game. At the very least, it shows you the

neutral positions of the die. Not terribly exciting, but it’s a good start.

 Mouse Click
One of the nice things about using a game engine is that there’s a lot of

code already written for you. Listening and processing mouse events is a

perfect example of that. Imagine having to write the code to monitor the

system for mouse clicks, especially given that different operating systems

and platforms send mouse click events differently. LÖVE takes care of all of

that for you.

Interestingly, it’s technically not the mouse click that you want, but the

mouse release. If you set your game to start its main loop when a mouse

is clicked, then it might get very confused if a user clicks and holds the

button down for 10 seconds before releasing. A release, on the other hand,

only happens once. To start the game when the mouse button is released,

set the start variable to false.

Add this function at the bottom of your code:

 function love.mousereleased()

 start = false

 end

Chapter 2 SCripting with LÖVe

41

It’s when the mouse button is released that the dice are actually rolled,

so instead of putting the dice rolls in love.load, that dice rolls must happen

in the love.mousereleased function. Remove these lines from love.load:

 player = math.random(1,20)

 computer = math.random(1,20)

And add dice rolls to the love.mousereleased function, storing the

result in the appropriate human or computer table. After the rolls happen,

change the graphic in the img variable of each player to the corresponding

dice image.

To tell LÖVE which image to use, you must construct the full image

name using the number contained in the roll variable. You join strings

together in Lua with two dots; for example, if the comp.roll variable

contains 3, then 'img/comp-die'..comp.roll..'.png' translates to img/

comp-die3.png.

Here’s the relevant code:

 start = false

 comp.roll = math.random(1,6)

 human.roll = math.random(1,6)

 -- set graphics

 human.img = love.graphics.newImage('img/die'..human.

roll..'.png')

 comp.img = love.graphics.newImage('img/comp-die'..comp.

roll..'.png')

 Winner and Loser

To drive home the point, your game should declare a winner. This

logic happens in the love.mousereleased function, since it only needs

to happen when the mouse button is released. Add this conditional

statement to the bottom of your code, and then close the love.

mousereleased function.

Chapter 2 SCripting with LÖVe

42

 if human.roll > comp.roll then

 human.win = true

 else

 human.win = false

 end

 end

With all the important variables set depending on how the dice roll,

the main loop has relatively little to do in terms of logic. However, the main

loop is still important to keep the graphics going, so now it’s time to make

sure that the interface responds appropriately to input.

You’ve already set the main loop to appear dormant until it receives

input from the user, but it should also react once a mouse button is

released. Specifically, it should look at the variables of the players to

determine who has won the roll and announce the winner.

Insert another conditional statement in the main loop that checks for

a winner. Announce the winner by printing a message to the screen using

the love.graphics.printf function. To help differentiate between the

human user and the computer, this example changes the foreground color

to either green or red when writing the font to screen, and then back to

white for general-purpose drawing.

Note if you fail to reset the color to white, your other graphic
elements may be rendered incorrectly.

You can choose whatever color you prefer. If you don’t think in RGB

colors, use a color picker online. Traditionally, RGB values use 0 as empty

and 255 as full, but LÖVE uses 0 as black and 1 as white, with all shades

in between being a decimal value. You can convert from a 0–255 value to

a decimal value by dividing by 255. For example, a color picker value of

(188,54,0) is (188/255,54/255,0/255) or (0.73,0.21,0).

Chapter 2 SCripting with LÖVe

43

Determining the correct position of the text and graphics also takes a

little bit of math. Notice that the cw (canvas width) and ch (canvas height)

variables are used to create a sort of invisible “text box” that is as wide as

the canvas and that extends all the way down the canvas height minus

76 pixels. Why 76 pixels? Because the font was set to 72 points in the

love.load function, so taking the height of the canvas minus the size of the

font ensures that the text is printed, more or less, along the bottom border

of the window.

 if start == false then

 if human.win == true then

 love.graphics.setColor(0.2,1,0.2)

 love.graphics.printf("human wins!", 0, ch-76,

cw, 'center')

 love.graphics.setColor(1,1,1)

 else

 love.graphics.setColor(1,0.2,0.2)

 love.graphics.printf("Computer wins!", 0, ch-76,

cw, 'center')

 love.graphics.setColor(1,1,1)

 end

Try your game now. It responds to your click, changes the dice

graphics, and announces a winner. What more could a user possibly want?

Well, since there’s no visual cue for the user that the game is waiting for

a mouse click and hasn’t just crashed, it would be better user interface (UI)

design to provide guidance for a new user. This can be implemented as

an alternative to the start condition. If start is true, then that means the

user has just started the game and has not yet clicked the mouse button

(if the button had been clicked, the screen would display the winner and

start would be set to false).

Add a friendly start message. The first three lines are for context.

Chapter 2 SCripting with LÖVe

44

 love.graphics.printf("Computer wins!", 0, ch-76,cw, 'center')

 love.graphics.setColor(1,1,1)

end

else

-- start message

 love.graphics.printf("Click to roll", 0, ch-76,cw, 'center')

end

 Packaging
You now have a fully functional dice-rolling game. It’s simple, but it’s only

about 50 lines of code and demonstrates many important principles of

game logic, UI design, and programming fundamentals.

It’s programmed in LÖVE, so any of your friends or family can play it

as long as they install LÖVE on their platform. However, if you send them

a folder of code, images, and fonts, they won’t know what to do with it. It’s

time to package your game for distribution.

LÖVE files are nothing more than ZIP files with a special suffix, so

redistributable LÖVE games are remarkably easy to build. In a terminal

(you can use the one in Geany or you can launch a separate terminal

window), use the zip command to bundle up the main.lua file, the font

directory, and the img directory into a game file called dice.love.

 $ cd ~/dice

 $ zip dice.love -r main.lua font img

Open a desktop window to your dice folder and double-click dice.

love. Your game launches just like any normal application would. You can

send this file to anyone you want to, and as long as they install LÖVE, they

can play your game.

Chapter 2 SCripting with LÖVe

45

 Homework
The love.mousereleased function accepts three parameters from your

operating system: the X and Y coordinates on which the mouse was clicked

and the button that was released.

Try these hacks:

• The game doesn’t account for a tie game. There are at

least two ways to deal with a tie; try changing the code

to acknowledge when the player and computer roll the

same result.

• Create a version of the game that only responds to a

left-click (button 1).

• Add a cheat to the game such that the computer

automatically wins if the right mouse button (button 2)

is released, and the player automatically wins if the

middle button (button 3) is released.

• If you are feeling particularly brave, try this advanced

exercise: change which dice display represents the

player depending on which side of the screen the

player clicks to roll.

Chapter 2 SCripting with LÖVe

47© Seth Kenlon 2019
S. Kenlon, Developing Games on the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-4170-7_3

CHAPTER 3

Modular Programming
with LÖVE
The dice game in Chapter 2 was created in one file. Small programs,

usually called scripts, are often only one file, but the larger an application

gets, the less convenient it is to write it all in one monolithic file. After all,

most large applications aren’t written by just one developer but a whole

team, and only one person can work on a file at a time. Game engines are

pieces in a modular system, since the engine is useless to users without a

game. Additionally, if you keep your code modular, you might be able to

reuse a file from one project in the next project.

In this chapter, you set up a typical project directory and program

a modular Blackjack game using a custom card dealer library (see

Figure 3- 1). The game allows a player to click an empty deck of cards

to draw a card and compete against the computer in an effort to get

as close to 21 without exceeding it. When the player decides to stop

drawing new cards for fear of exceeding 21, the player clicks the game

table to signal that their hand is complete. The game keeps a running

total of card values, and detects and announces a winner. The player

may click the deck again to start a new game.

48

 Project Directory
There is no rule for how you organize your code, but there is a general

convention, especially within the open source software world. You can

get a feel for this convention if you browse a few open source projects

online, and you’ve already implemented some principles as you created

your dice game.

First, your code should have its own directory. You already have a

directory called dice in your home folder, so create one for your new game.

You can make a new directory from your Enlightenment desktop or in a

terminal.

$ mkdir ~/blackjack

Figure 3-1. The card game you’re about to make with Lua

Chapter 3 Modular prograMMing with lÖVe

49

For your dice game, you created directories for images and fonts, so

create those directories in your new project directory.

$ mkdir ~/blackjack/img

 $ mkdir ~/blackjack/font

One of the primary goals of this project is to learn to use more than one

file of Lua code. Your project directory would get pretty untidy if you kept

all of your code files in the main folder, so make a directory for your source

code. It’s common for source code to be kept in a directory called src.

$ mkdir ~/blackjack/src

That takes care of the obvious folders, but there are also a few files

that most people expect to find in a software source directory: README and

LICENSE.

A README file tells a casual observer what your project is, what code

it contains, and so on. You can create the file now and fill it in later.

Give it the .md extension to help online hosting services recognize it as

documentation.

$ mkdir ~/blackjack/README.md

The LICENSE file tells anyone looking at your source how they may use

your code. There are several varieties of open source licenses, listed in

detail at gnu.org/licenses/license-list.html.

As the author of the code, I license the program that you are about

to copy and learn from under the GNU Public License version 3 (GPLv3).

This grants you permission to redistribute, or even sell, and modify it as

you wish, as long as you give everyone else permission to do the same.

As open source licenses go, this is a common and sensible agreement: you

get to do whatever you want to do with the code as long as you let the next

person in line do whatever they want.

Chapter 3 Modular prograMMing with lÖVe

50

Many popular open source licenses are aggregated for convenient

download at https://gitlab.com/everylicense/everylicense. As a

developer, you use a license every time you start a project, so you may as

well have the common ones handy. Since the everylicense project is kept

as a Git repository, the process of downloading and keeping it updated is

best done with Git, which you installed while setting up your developer

environment. The act of downloading a Git project (or repository in Git

terminology) from the Internet to your computer is called making a clone.

In this command, the \ character allows you to type one command on

several lines. If your terminal automatically wraps your text (most do),

then you don’t have to type the \ character (but it won’t hurt if you do).

$ git clone \

https://gitlab.com/everylicense/everylicense.git \

~/everylicense.clone

Copy the GNU Public License version 3 from the everylicense

directory into your code directory, and then rename it LICENSE. You know

how to do this in your graphical file manager, but you can do it all in one

step from a terminal.

$ cp ~/everylicense.git/gnu_gpl_3/gpl-3.0.txt ~/blackjack/LICENSE

That takes care of all the bureaucracy and preparation. Now you need

to build a virtual card deck.

 Classes and Objects
In the dice game, you had two dice “objects” to code. An object in code is

a little bit like a mold in real life: the code defines the basic properties of

an object, and usually allows customization, as needed. Object-oriented

programming (OOP) is the prevailing means of developing software today,

so learning to structure your code into objects is important, and by the end

of this book, it’s something you’ll do naturally.

Chapter 3 Modular prograMMing with lÖVe

https://gitlab.com/everylicense/everylicense

51

For the dice game, you coded each object separately because there were

only two die. This time, you are writing a game involving 52 playing cards, so

it doesn’t make sense to code each card separately, just as programmers in

major game studios don’t manually code every single enemy you have to fight.

When a program requires lots of different objects with basically the

same properties, you can use a class. A class is a snippet of code—usually

stored in its own unique file—that your main program uses as a template

when building an object in your game. This template not only generates

an object for your program, it creates a whole infrastructure with variables

and other properties unique to that one instance of the object.

Open Geany and create a new, empty file called card.lua. Technically,

Lua doesn’t have classes, but it has tables that can be treated like classes.

You’ve already created a table for the dice game, so some of this process

may seem familiar to you.

First, establish a table called Card to represent a single card in a deck.

In this case, the table can be empty.

Card = {}

Next, create a function called Card.init (the word init is a common

programming term meaning initialize or create). For the dice game, you

used functions, such as math.random()and love.load(), included in Lua.

This time, you are creating your own function.

The same way the math.random function requires numbers as

arguments, your Card function needs to know what kind of card to create.

Since that is expected to be different each time you create a card, you use

variables to represent them in this template.

function Card.init(suit,value)

 local self = setmetatable({}, Card)

 self.suit = suit

 self.value = value

 return self

end

Chapter 3 Modular prograMMing with lÖVe

52

In this Card.init function, you establish a local variable called

self, which uses a special Lua extension called a metatable, as a kind of

container for all the properties about that individual instance of a card.

A card’s self variable ensures that each card can keep track of whatever

makes it unique.

Since each card created gets unique memory out of your computer’s

RAM, each one can track properties such as its suit and value. At the end

of the creation process, the Card class alerts your main program of its self

data, which you can use in your game.

Save the card.lua file and create a new one called main.lua.

A Lua program knows where to look for the standard Lua functions,

but Lua doesn’t know anything about your own custom Card class. So that

you can use your custom function, you use the require keyword.

require("card")

This prompts Lua to search the current directory for a library called

card.

To create a card using your function, create a new variable and invoke

your function, along with two arguments: one for the suit you want your

new card to belong to and one for the face value.

Since this is just a simple example, you won’t see your card on screen,

so use Lua’s print function to print the specifics about the card you have

just created.

local card = Card.init("hearts",8)

print(card.suit)

print(card.value)

Use the terminal at the bottom of the Geany interface to run the

program.

Chapter 3 Modular prograMMing with lÖVe

53

$ cd ~/blackjack

$ lua ./main.lua

hearts

8

Try adding some more cards, and then print the results.

local card0 = Card.init("hearts",8)

local card1 = Card.init("diamonds",2)

local card2 = Card.init("spades",6)

print(card0.suit .. " " .. card0.value)

print(card0.suit .. " " .. card1.value)

print(card0.suit .. " " .. card2.value)

$ lua ./main.lua

hearts 8

diamonds 2

spades 6

Your class produces, upon request, a card “object.” It’s not a physical

object, but it’s a virtual playing card with unique properties from the next. Each

“object” is produced by filling a variable with a table containing preset variables

that you have defined as an inherent attribute of the object. This is an important

principle in modern programming because it lets you make templates for

constructs in your program that you want to use over and over again.

 Randomized Cards
Now that you have a card-producing Lua library, you must use it in a way

that is useful in a game of Blackjack.

Blackjack is a simple game of chance and calculated risk. Each player

draws a card and adds it to their hand until they are as close to 21 as

possible. When both players are satisfied, they compare their hands. The

player closest to 21 wins. If a player goes over 21, they lose.

Chapter 3 Modular prograMMing with lÖVe

54

It’s important for Blackjack to be random. Your dice game also used

random numbers, so you know that when producing a random number,

you constrain Lua with a minimum and a maximum value. But Lua has no

knowledge of playing cards, so you can’t just tell it to randomly pick a suit

or a face card. However, you can create a table listing each suit and a table

listing each possible face value and then tell the computer to pick from

those numbered lists.

Change your main.lua file so that it matches this simple LÖVE project:

require("card")

WIDE = 900

HIGH = 600

suits = { "hearts","spades","clubs","diamonds" }

values = { "Ace","2","3","4","5","6","7","8","9","10","Jack",

"Queen","King" }

hand = {} -- player hand

total = 0 -- player score

comp = {} -- computer hand

ai = 0 -- computer score

love.window.setTitle(' Blackjack ')

love.window.setMode(WIDE,HIGH)

function love.load()

end

function love.draw()

end

This sets up a LÖVE window, an empty table to represent the player

and their computer opponent, and a basic skeleton for your code.

Chapter 3 Modular prograMMing with lÖVe

55

This also creates two tables containing card data. Like many languages,

Lua can extract an item from a list by number (although unlike many

languages, Lua starts counting a list at 1 rather than 0). You can see this

at work by launching a Lua shell in a terminal either in the lower pane of

Geany or elsewhere on your system.

$ lua

> suits = { "hearts","diamonds","spades","clubs" }

> print(suits[1])

hearts

> print(suits[4])

clubs

You can also analyze the table itself. For instance, with the # symbol,

you can see the number of items that are in the table.

> print(#suits)

4

You can also add items to the end of a table.

> suits[5] = "joker"

> print(suits[5])

joker

Since you already know how to get a random value from Lua, you can

use your card generator library to produce a card object with a random suit

and value.

There are a lot of drawing cards in Blackjack, and there are two players

that need cards. If you tried to write the code for a new card every time

your game needs to generate a card, you’d end up with hundreds of lines

Chapter 3 Modular prograMMing with lÖVe

56

of inefficient code. What your program needs is a card generation function

that you can call whenever a new card is required. At the very bottom of

your file, enter this code:

function cardgen()

 local c = math.random(1,4)

 local s = suits[c]

 local c = math.random(1,13)

 local v = values[c]

 card = Card.init(s,v)

 return card

end

To use the random function, you must initiate a random seed, so

change your love.load() function to

function love.load()

 math.randomseed(os.time())

end

This function creates a temporary variable called c and gives it a

random number between 1 and 4. Then it creates another temporary

variable called s and uses c to select one item from the suits table. It does

basically the same thing with the values table for a variable called v, and

then it calls your card generator library to create a new card with whatever

random results are in the s and v variables.

At the end of the function, there is a return statement. This means that

after the function runs, it outputs information, which can be assigned to a

variable.

If a player draws a card, then the player also needs a hand where those

cards can be placed. That’s what the empty player and comp tables are for.

Add this to the bottom of your file:

function love.mousereleased(x,y,button)

Chapter 3 Modular prograMMing with lÖVe

57

 if button == 1 then

 var = cardgen()

 hand[#hand+1]=var

 total = total+var.value

 end

end

Like your dice game, user interaction is a simple mouse click. The

mousereleased function of LÖVE sends a variety of information, including

where on the screen the mouse was released, and which physical button

on the mouse was released. You don’t have to use the information, but it

lets you be precise about what input you want your game to respond to.

In this code, the left mouse button triggers the creation of a new card

object by creating a variable called var, which is assigned the output of your

card generator function. Your card generator function, of course, calls your

card library so that var contains a table detailing the suit and value of a card.

Once the card has been created, the var variable containing the card is

copied into the player’s hand. When you add an item to a table, you must

add it to the end of the list; so to specify where in the table the new card goes,

you use the #hand shorthand to get the current length of the table plus 1.

After the card has been added to the player’s hand, tally up the current

total score for the player. The value of each card is contained in the card’s

table. The current card is still going by the name var, so you add whatever

is contained in total to var.value.

There are still no graphics being drawn, so add some text to help

you see that your application is working up to this point. You can

use whatever font you want, but this sample code uses Ostrich from

TheLeagueofMoveableType.com.

Note as a courtesy to the person who created the font you use,
credit the font in your readMe file.

Chapter 3 Modular prograMMing with lÖVe

58

function love.load()

 math.randomseed(os.time())

 font = love.graphics.setNewFont("font/ostrich-sans-

regular.ttf",72)

 love.graphics.setColor(1,1,1)

end

To print the card and total score on screen, you must loop over

each card in the player’s hand table. For each entry in a table, there are

technically at least two values: an index number and the actual entry.

Lua’s ipairs function unpacks a table for you, placing each pair into two

variables of your choice.

function love.draw()

 for i, card in ipairs(hand) do

 love.graphics.clear()

 love.graphics.printf(card.suit .. " " .. total, 0,

HIGH- 76,WIDE, 'center')

 end

end

At this point, the application runs, but there’s a serious bug. Launch

it and see if you encounter the bug. Better still, see if you can identify the

problem.

$ cd ~/blackjack/

$ love .

The problem lies in how the cards are scored. Some cards are listed as

numbers, but others are face cards. Lua can’t very well add “Jack” to the

total score, so it crashes.

The obvious solution to this problem is to change the King, Queen, and

Jack values to 10, and the Ace value to 1. However, if the King and Queen

and Jack are all changed to 10, there’s no way to tell them apart when

randomly choosing which to display.

Chapter 3 Modular prograMMing with lÖVe

59

So instead, create a function to process the cards’ values. In this

sample, the value passed to the function becomes c while being processed.

That means that when you call the function, it requires an argument. Add

this to the bottom of your file:

function face(c)

 if c == "Jack"

 or c == "King"

 or c == "Queen" then

 val=10

 elseif c == "Ace" then

 val=1

 else

 val=tonumber(c)

 end

 return val

end

Use this function before adding the value of a card to the total score so

that you are no longer trying to do mathematics on words and numbers.

Notice that when you call the face function, you pass var.value to it so

that it knows what to process.

function love.mousereleased(x,y,button)

 if button == 1 then

 var = cardgen()

 hand[#hand+1]=var

 val = face(var.value)

 total = total+val

 end

end

Launch your game again. You can keep drawing cards endlessly. No

bugs!

Chapter 3 Modular prograMMing with lÖVe

60

 Graphics
A game of cards using names and numbers is effective, but not pretty. To

make this a real people-pleasing game, you need graphics. Then again,

52 cards are a lot of graphics to come up with. Luckily, a few people on

OpenClipArt.org have already done the work for you, posting them as free

assets with no recompense required. Download the cards from this book’s

code repository, or make your own.

Note while openClipart.org requires nothing in return, it’s
considered good form to credit those who have helped you make a
project. For this reason, you should open your readMe file in geany
and thank the openClipart.org artists whose work you are using:
mariotomo, nicubunu, and notklaatu.

Place the .png files in the img folder of your code directory. They must be

named in the Value-of-suit.png format; for example, 2-of-hearts.png.

When drawing objects in a window, it’s typically useful to establish

variables for padding and scale. These both act as an easy, standard

location to make global changes in the event that your screen size changes

or you start running out of room. Add these variables to the top of your file

(the first two lines are for context):

WIDE = 900

HIGH = 600

pad = WIDE*0.04

scale = 0.66

When your game uses your card library to generate a new card, it can

use these graphics as the card’s visual representation. For that to work,

Chapter 3 Modular prograMMing with lÖVe

61

though, your card library must have a space in its table to hold a reference

to the appropriate graphic. You did this sort of assignment in your dice

game. Open card.lua and change it to look like this:

Card = { }

function Card.init(suit,value)

 local self = setmetatable({}, Card)

 self.suit = suit

 self.value = value

 self.img = love.graphics.newImage("img/" .. self.value ..

"-of-" .. self.suit .. ".png")

 return self

end

Now whenever a new card is created, the card object is assigned a

graphic with a filename corresponding to its randomly selected suit and

name.

Start with the easy graphic first: the one that doesn’t change. The

deck from which a player draws new cards is represented by the back of a

playing card. This virtual deck sits in the upper-right corner of the game

screen, serving as a visual cue for the player, as well as an actual button. To

render this graphic, you must generate a card object for it using your card

library; but since it’s only needed once, you create it in the love.load()

function.

function love.load()

 math.randomseed(os.time())

 playback= Card.init("card","back") -- create a deck

graphic

 slot = playback.img:getWidth()*scale -- calculate

card sizes

 love.graphics.setBackgroundColor(0.3,0.5,0.3) -- green

Chapter 3 Modular prograMMing with lÖVe

62

 font = love.graphics.setNewFont("font/ostrich-sans-

regular.ttf",72)

 love.graphics.setColor(1,1,1)

end

Since your game will draw multiple cards on the screen, it’s helpful

to have a variable representing the size of a virtual card. In the preceding

code, the slot variable is assigned to the results of the getWidth function

performed on the playback card multiplied by the current scale. This

allows you to use slot to represent any space occupied by a card. In the

real world, you would use inches or centimeters, but those don’t mean

much on screens, so for this game, you use slot instead.

In addition to creating the deck and a variable for one unit of card

measure, this code sample sets the background of the game window to

green.

Next, draw the card deck and some instructions for the player using

your new padding and scale variables to control placement. Additionally,

instead of just rendering text describing the cards that the player has

drawn, you can draw the actual cards by looping through the hand table

and drawing whatever image is assigned to each entry.

function love.draw()

 love.graphics.printf("Click deck to deal.",pad,66,

WIDE,'left')

 love.graphics.printf("Click anywhere to hold.",pad,122,

WIDE,'left')

 love.graphics.draw(playback.img,WIDE-slot-pad,pad,0,scale,

scale,0,0)

 for i, card in ipairs(hand) do

 love.graphics.draw(card.img,pad*i,pad*i,0,scale,scale,0,0)

 end

end

Chapter 3 Modular prograMMing with lÖVe

63

The instructions state that a player must click the card deck to draw

a card, and click anywhere else to hold, which is Blackjack jargon for not

drawing any more cards. So instead of accepting any click as a draw action,

limit the “hot” area of the screen to just the location of the deck. To do this,

you analyze the X and Y coordinates of each click, which is sent to you

automatically by LÖVE’s mousereleased function.

function love.mousereleased(x,y,button)

 if button == 1

 and x > WIDE-slot-pad

 and y < slot*1.5 then

 var = cardgen()

 hand[#hand+1]=var

 val = face(var.value)

 total = total+val

 else

 hold = true

 end

end

Launch your project. The deck should appear in the upper-right

corner; the instructions are on the right. If you click the green tabletop,

nothing happens, but if you click the card deck, you are dealt a new card.

This happens until the cards flow right off the screen.

 Competition
Blackjack can be a solitaire game in real life, but people playing

competitive computer games usually expect a definitive win and lose

condition. That means you need to program an opponent.

Chapter 3 Modular prograMMing with lÖVe

64

According to the Internet, the prevailing opinion on Blackjack is

to hold at around 17. This being the only real “strategy” (such as it is),

programming an AI is a simple conditional: if the computer’s hand is 17

or higher, then the computer must hold. To make the game a little more

exciting, you can make the computer more reckless than popular strategy

dictates by setting its hold tolerance to 16 or 15.

The AI’s draw action is basically the same as the player’s, except that

the computer’s hand table is called comp and its score is ai.

function love.mousereleased(x,y,button)

 if ai < 16 then

 var = cardgen()

 var = cardgen()

 comp[#comp+1]=var

 val = face(var.value)

 ai = ai+val

 print(var.value)

 end

 if button == 1

 and x > WIDE-slot-pad

 and y < slot*1.5 then

 var = cardgen()

 hand[#hand+1]=var

 val = face(var.value)

 total = total+val

 else

 hold = true

 end

end

Chapter 3 Modular prograMMing with lÖVe

65

Notice that the computer takes its turn before the player. This means

that whether or not the player is drawing a card or holding, the computer

still has the opportunity to take a turn.

Drawing the computer’s hand on the screen is also basically the same

as drawing the player’s hand. It uses a loop over the computer’s hand, with

a different offset so that the computer’s cards aren’t rendered on top of the

player’s. To further help the player differentiate between hands, add a tint

to the computer’s hand.

function love.draw()

 love.graphics.printf("Click deck to deal.",pad,66,WIDE, 'left')

 love.graphics.printf("Click anywhere to hold.",pad,122,WIDE,

'left')

 for i, card in ipairs(hand) do

 love.graphics.draw(card.img,pad*i,pad*i,0,scale,scale,0,0)

 end

 for i, card in ipairs(comp) do

 love.graphics.setColor(0.7,0.8,0.7)

 love.graphics.draw(card.img,(WIDE*0.33)+(76)+(pad*i),pad*i,

0,scale,scale,0,0)

 love.graphics.setColor(1,1,1)

 end

 love.graphics.draw(playback.img,WIDE-slot- pad,pad,0,

scale,scale,0,0)

end

Just because the computer chooses to hold doesn’t necessarily mean

that the player is going to hold, so a hold flag can only be set by the player,

which is currently the else statement in the player’s mousereleased

action.

Once a player chooses to hold, the game is over. At that point, you

could program a pop-up box to ask if the player wants to play another

hand. However, when designing an interface, it’s better to default to

Chapter 3 Modular prograMMing with lÖVe

66

success as often as possible. A player knows how to exit the game, so

there’s no reason to bother them with prompts. That means if the player

has decided to hold, the game should just start over. For that to happen,

you need a reset function.

For a new game to start, hands and scores must be set back to empty,

and the hold flag must be cleared. Your reset function doesn’t need any

information and it doesn’t return any data, it just clears everything out

when called. Add it to the bottom of your main.lua file.

function reset()

 total = 0

 hand = {}

 comp = {}

 ai = 0

 hold = false

end

It’s good practice to declare globally significant variables early, so add

a hold variable set to false at the top of your file. The first two lines are for

context.

pad = WIDE*0.04

scale = 0.66

hold = false

A reset is called when two things are true: the player has decided

to hold, but the player has clicked somewhere on the screen. However,

since clicking the table is also a sign to hold, some safeguards need to be

introduced to prevent clicking the table from both starting a new game and

signaling the end of that new game. A simple way to prevent a premature

endgame signal is to ensure that the player has at least one card on the

table before flagging a hold or a reset.

Chapter 3 Modular prograMMing with lÖVe

67

Change your mousereleased function to its final version.

function love.mousereleased(x,y,button)

 if hold == true

 and total > 1 then

 reset()

 end

 -- computer

 if ai < 16 then

 var = cardgen()

 var = cardgen()

 comp[#comp+1]=var

 val = face(var.value)

 ai = ai+val

 end

 if button == 1

 and x > WIDE-slot-pad

 and y < slot*1.5 then

 var = cardgen()

 hand[#hand+1]=var

 val = face(var.value)

 total = total+val

 elseif #hand >= 1 then

 hold = true

 end

end

Launch the game to verify that it’s working and to see what’s missing.

Chapter 3 Modular prograMMing with lÖVe

68

 Winning
All that’s left now is to detect and declare a winner. Sometimes, it’s

easier to detect failure than success, so the first thing you can do is add

a watcher function to check whether or not the player has exceeded 21.

If ever a player’s hand exceeds 21, then there’s no way for the player to

win, so the hold flag can be set immediately to bring the game to

an end.

LÖVE’s love.update(dt) function is similar to the love.draw()

function, except it doesn’t draw anything on screen, it just runs logic code

in the background.

function love.update(dt)

 if tonumber(total) > 21 then

 hold = true

 end

end

The Lua tonumber method is a safeguard to ensure that the content of

total is definitely treated as a number and not a string. It’s not very likely

that LÖVE would get confused about that, or that total would contain a

string, but since it’s a math operation, it doesn’t hurt to ensure that both

sides of the equation are numbers.

Detecting a winner is a little more complex. The player wins if

• Their hand is less than or equal to 21

• But also greater than the computer’s hand

• If the computer’s hand is greater than 21

Furthermore,

• It’s a tie if both hands are equal

• It’s a bust if both hands are greater than 21

Chapter 3 Modular prograMMing with lÖVe

69

Add a winner function at the end of your file. It returns data about the

winner. The if statement happens in the order it is written, so if you check

only to see whether the computer’s hand is more than 21, then no other

condition in which that is true will ever happen.

function winner()

 if tonumber(total) <= 21

 and tonumber(total) > tonumber(ai) then

 win = "You"

 elseif tonumber(total) <= 21

 and tonumber(ai) == tonumber(total) then

 win = "Tie"

 elseif tonumber(ai) > 21

 and tonumber(total) > 21 then

 win = "Bust"

 elseif tonumber(ai) > 21

 and tonumber(total) <= 21 then

 win = "You"

 else

 win = "Computer"

 end

 return win

end

There can be no win condition unless a hold has either been chosen

or imposed, so it’s safe to only call the winner function if hold is true.

You can check this in the love.draw() section of your code, using this as

an opportunity to display on screen a running total of each hand until a

winner is announced.

Chapter 3 Modular prograMMing with lÖVe

70

Add this code to the end of your love.draw() function, just above the

final end line. The first line is for context.

 love.graphics.draw(playback.img,WIDE-slot- pad,pad,0,scale,

scale,0,0)

 if hold == false then

 love.graphics.printf("You: " .. total .. " vs. Computer: "

.. ai, 0, HIGH-76,WIDE, 'center')

 else

 win = winner()

 love.graphics.printf("Winner: " .. win .. "!!", 0,

HIGH-76,WIDE, 'center')

 end

The game is complete. Launch it to try it out.

To distribute your new game easily, you can follow the same procedure

as you did for your dice game. Zip the files and directories required to play,

and then launch from the desktop.

$ cd ~/blackjack

$ zip blackjack.love -r main.lua card.lua font img

Open a desktop window to your blackjack folder and double-click

blackjack.love. Your game launches just like any normal application. You

can send this file to anyone you want to, and as long as they install LÖVE,

they can play your game.

Chapter 3 Modular prograMMing with lÖVe

71

 Homework
Here are some tasks to explore after reading this chapter.

• The computer only gets one final turn if the player

holds. Introduce a second hold variable, such as

aihold, to detect when the computer has decided to

hold, regardless of what the player has done. Calculate

the winner only after both the computer and the player

have decided to hold.

• Ostensibly, your deck of cards should only have one

of each card in it, but in the current state of the code,

there is a chance that the same card could be generated

twice. Can you come up with a way to ensure that once

a card has been drawn, there is no chance of it being

drawn again until the next round? Hint: the answer

may involve another set of tables.

• The Planter application at https://gitlab.com/

planter/planter allows you to create project directory

templates so that you don’t have to manually set up a

project’s skeleton every time you start something new.

Try to install it, and then try to use it.

Chapter 3 Modular prograMMing with lÖVe

https://gitlab.com/planter/planter
https://gitlab.com/planter/planter

73© Seth Kenlon 2019
S. Kenlon, Developing Games on the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-4170-7_4

CHAPTER 4

Analog Programming
Now that you’ve gotten the feel for how programming happens on the

computer, it’s time to stop and consider how projects get from concept

to code. In the previous chapters, this book has dictated what you

programmed, and each time you ended up with exactly what the book

proscribed.

In the real world, though, you have to plan what you’re going to

program before you sit down to write code. If you fail to do that, you

generally end up with a game that’s so poorly coded that you have to

throw it out and start from scratch, or else it runs slowly and inefficiently.

Planning reduces your time fumbling around with code and increases the

time you get to spend on successful programming, graphics, sound, and

other non-essential additions to your game.

The good news is that the planning process is still programming,

only instead of writing code, you’re using logic and mental equations to

program with pen and paper. Any good system can be implemented on

paper, so don’t fool yourself into thinking that computers are unique. It’s

just as important to understand programming and game design in the

physical world as it is to understand how those concepts get translated into

digital bytes.

74

 Game Theory
What is a game? Most of us play games in some form, but few of us stop to

consider what makes a game feel like a game. You have now programmed

at least two games, and if you think about what you have learned, you will

likely detect a few common elements not only in what you have made but

also in other games you may have played.

You might think, at first, that a game requires competition. While some

games do require players to compete against one another, other games

require them to work together to defeat a common threat. In some games,

a player is just trying to beat his or her own best score. So in broad terms, a

game requires a win condition.

Once a win condition is declared, it’s natural to add obstacles that

block players from making the win condition true. In some games,

the obstacles are other players or a computer playing the part of other

players. In other games, the obstacles are forces of nature, physics, or

time itself.

Since most games are intended to be played more than once, the

obstacles also must change from play to play. Games that don’t change are

predictable and eventually cease to challenge the player, which is usually

considered the thing that makes games fun.

In fact, if you think about the most enduring games, there are ones

that are never the same, like chess, poker, and Dungeons & Dragons,

and those that have had their challenges completely redefined, as speed

runners have done for Super Mario Bros. and other relatively stagnate

games.

You already learned about randomness in the previous two games you

made, so creating obstacles that change with each play-through is familiar

to you.

The next game that you program in this book is a fantasy card game

inspired by games like Magic: The Gathering, Hearthstone, Pathfinder

Adventure Card Game, and other trading card games. It will teach

Chapter 4 analog programming

75

you the concepts necessary for all kinds of games, including collision

detection, saved game states, graphics, and more. But first, the game

must be designed—keeping the game theory principles that you just

learned in mind.

 Experimental Design
Step away from your Raspberry Pi for this section. If you have a deck of

playing cards, you can use that during this exercise; otherwise, find some

blank index cards or a few sheets of paper cut down to approximate

playing-card size.

Tip at minimum, a game designer’s toolkit should contain a deck
of playing cards and some dice. neither are items that you will
necessarily use in your final version, but they both provide important
templates for common game elements; the cards are quick and
easy representations of different game elements, and dice produce
randomness.

You’re going to invent a new game that modernizes the game that you

just programmed, Blackjack. Although the initial design uses a standard

deck of cards as a tool, ultimately, you will style the game as a battle

scenario, so the game’s name is Battlejack.

There will be several iterations of this new game, and while this book

proscribes much of the game to you, you are encouraged to add your own

variations along the way. There are no right or wrong answers here. Any

idea is worth trying. And if something breaks the game, then you can adapt

it or throw it out as needed.

Chapter 4 analog programming

76

 Iteration One
The goal in Blackjack is to be the player with cards adding up to 21,

so the goal of Battlejack is the same, only in Battlejack, it’s the dealer

trying to get to 21 while the player attempts to prevent it. The player

may cancel out a card that the dealer attempts to use in the journey to

21 with a card of an equal or greater number. For example, if the dealer

puts down a 5 of clubs, the player can “kill” that card with a 5 of hearts

or greater.

Each player takes a suit: the dealer is clubs, and the player is hearts.

The player starts with a hand of three cards. On the player’s turn, one

action may be taken: either a card may be drawn from the deck, or a card

may be played against the dealer. On the dealer’s turn, a card from the

deck is revealed and placed on the table. If the card is a club, then it counts

toward the dealer’s goal of 21. If it is a heart, it is discarded.

Using only the hearts and clubs from a deck of cards, try playing a hand

with these rules and see how the game goes. Here’s some sample play.

 1. Player: draws initial hand: 2♣, 3♣, 5♣.

 2. Dealer: 9♣. Total score is now 9.

 3. Player: draws Ace♣.

 4. Dealer: draws a 3♥, which is discarded.

 5. Player: draws 7♥.

 6. Dealer: draws 10♣. Total score is now 19.

 7. Player: draws Ace♥.

 8. Dealer: draws 8♣. Total score is now 27. Game over.

Regardless of how your own play test went, you probably see

some problems with the game’s current state. The central mechanic

of canceling out a card with a more powerful one never even had a

Chapter 4 analog programming

77

chance to be used, so that’s a clear indication that something is amiss.

The player’s initial hand consisted entirely of cards from the dealer’s

suit, which didn’t make for a very empowering start. And finally, the

likelihood of the dealer reaching exactly 21 is extremely low. In Blackjack,

a game can end without anyone reaching 21 because the closest one

wins; but in this game, only one side is trying to reach 21, leaving no

basis for comparison.

Before proceeding to the next section, take a moment to modify some

of the rules and play another hand of Battlejack to see how your changes

affect the game.

 Iteration Two
It’s obvious that the player and dealer drawing from the same deck is

problematic, because it means that each side of the game ends up with

cards that are useless to them. You can try to think of a solution to this

yourself, but here are two suggestions.

• Instead of limiting the total deck to just two suits, use

all four available suits. The player uses all red cards and

the dealer uses all black cards.

• The player and the dealer get separate decks, such that

the player always draws from a red deck, and the dealer

always draws from a black deck.

The first option adds variety, but it doesn’t actually change game play.

The second option helps, but it alienates the two players from one another.

Each player has a unique deck, both players know exactly what one

another’s deck contains, and it more or less turns into a matching game or

a reverse game of Go Fish.

Another serious problem with the game is that there’s actually no

win condition for the player. The dealer wins by reaching 21. Since the

probability of the dealer hitting exactly 21 is so low, you might loosen

Chapter 4 analog programming

78

the constraints and declare the winner at 21 or more, but there’s still

no way for the player to win until the dealer runs out of cards. In effect,

that does emulate a survival game, so maybe this is a path you want to

explore. You could design some cards with common survival themes,

such that what is now the black deck consists of various zombies and

related threats, and what is now the red deck contains the usual anti-

zombie measures.

But even with a cool survival game theme, the game is still very

much limited to action and reaction. The game does have some

randomness, because the decks are shuffled, but interestingly, the

knowledge of what each deck contains lessens the effectiveness of the

randomness. Even though the player doesn’t know the order of the

cards in the dealer’s deck, the player knows exactly what it contains.

When deciding which cards to “spend” to kill a black card, the player

can budget using their knowledge of the enemy deck. And worse still,

sometimes the order of the cards creates an unbeatable game for the

player, so the player has no sense of control over the game, and the

stakes are always exactly the same.

Try playing again, this time with this revised rule set.

 1. Split a standard deck of cards into a red deck and a

black deck. Place one Joker in each deck.

 2. Take six black cards from the black deck and shuffle

them into the red deck. These are, effectively,

penalties that add unpredictable randomness in the

player’s deck.

 3. The player draws three cards at the start of the game.

 4. On the dealer’s turn, one card from the dealer’s deck

is drawn and placed face up on the table. This is the

dealer’s “stash.” When a dealer’s stash adds up to 21

or more, the dealer wins.

Chapter 4 analog programming

79

If the player has a black card in their hand, then the

dealer compels that card from the player’s hand into

the dealer’s stash.

 5. On the player’s turn, the player draws one card from

the player deck. There is no hand limit. If a black

card is drawn, the player must hold it; it cannot be

played or discarded.

The player may then either “stash” a card by placing

one card face up in front of them. When a player’s

stash reaches 21 or more, the player wins.

Alternatively, a player may “attack” the dealer

by eliminating one card in the dealer’s stash. To

eliminate a card in the dealer’s stash, the player

must sacrifice one or more cards that add up to the

face value of the dealer’s card. Jacks, Kings, and

Queens all count as 10, and Aces as 1.

Only one card may be eliminated per turn.

At the end of the player’s turn, they draw enough

cards to bring their hand back to three.

 6. If a Joker is drawn, it destroys all cards in the dealer’s

stash.

A few play tests reveal that the game is in much better shape. Even if

you can’t express why, you probably find that the game feels better. It feels

better because the choices and calculations that the player has to make

are now subjective. The player has no way of knowing which six cards

from the black deck are in their own deck, so there’s true randomness

in the decks at play. There are moments of surprise when a black card is

drawn. And each player’s strategy is inherently different: the dealer uses

Chapter 4 analog programming

80

brute force, marching heedlessly onward toward 21, while the player is

forced to choose on each turn whether to fight or bolster their own stash.

Sometimes, a player has the perfect hand to achieve 21 but needs two

turns to stash, and so must gamble that the dealer’s stash, hovering though

it may be at 17, won’t reach 21 on the dealer’s next turn.

In other words, there’s some skill, there’s risk, and there are some good

turns of luck and some bad turns of luck. And every game is different.

 Iteration Three
The game is functional now, and fun too. For the third iteration, try to

think abstractly about the game. It has been designed with a standard

set of playing cards, but think about your favorite genre and imagine

how that might be applied to this game. Instead of just playing by

numbers, the player could take the role of a barbarian chieftain

battling an onslaught of orcs, or a doctor fighting the spread of a global

pandemic, or a starbase captain deploying star fighters against an

invading empire.

There may also be an opportunity to add more resource variety. Right

now, all cards drawn by the player are cards that get stashed or played,

and they are all basically the same. For a few play tests, use all red Jacks,

Kings, and Queens as powerup cards: they don’t count as 10, but as a +1,

+2, and +3, respectively. In this version of the game, the player can beat

a 9 in the dealer’s stash with a 6 and a +3 Queen powerup, or a 4 with a

2 and a +2 powerup, and so on. This could potentially cause a balance

problem, because now the dealer has six cards worth 10 points that the

player doesn’t have, but it adds flexibility to play, so it may be worth the

imbalance. Try it out and see what you think.

Try out other changes of your own design, too. Some changes will

break the game, making it too easy or impossible to win, but other changes

will make the game uniquely yours.

Chapter 4 analog programming

81

 Pseudo Code for Battlejack
Once you’re happy with a game concept, it’s time to write what’s called

pseudo code. Pseudo code is an informal but structured method of

planning out a program without worrying about syntax and other details.

It’s purely an exercise in logic and planning. Pseudo code doesn’t have to

be right, it can be changed later, but it serves as a good guide for you when

you sit down at a blank screen to start writing code.

By design, there are several similarities between Battlejack and

Blackjack, which you have already programmed. In fact, you will reuse

your card dealer library from Blackjack for Battlejack. Think about the

programming tricks you know, and how they apply to Battlejack.

Construct a player deck and a dealer deck.

Construct a table to track which cards have already been drawn.

Construct a table to track the player's current hand,

Construct a table to track the dealer's hand.

if player[#player] < 3 then

 draw another card

end

if card dragged to stash then

 add card.val to total

elseif cards dragged to dealer_stash then

 compare player_card.val to dealer_card.val

 if player_card.val > dealer_card.val then

 remove dealer card from dealer_stash

 else

 wait for another card to be added

 end

end

Chapter 4 analog programming

82

if total > 21 then

 player wins

elseif ai > 21 then

 dealer wins

end

At just 20 lines, this is obviously a very simplified picture of what the

game requires, but it’s a good “big picture” view of what is needed. Having

it as a guide will help you stay focused when it comes time to write the

actual code.

 Documentation
It’s just as useful for you as a programmer, and even more useful for your

players, if you document your game before you even begin writing code.

In big companies, this step is typically done by the UX (user experience)

team. They literally draw out what a program is intended to look like,

where buttons and menus appear, and what each button or widget does.

This is helpful to you while coding because you know where to put your

interface elements, and it’s good for your users because you can usually

repurpose the design specs as user-facing documentation explaining how

to play the game.

Figure 4-1 shows a sample spec for Battlejack.

When the game launches, the player is greeted with a menu screen that

allows the user to resume a saved game or start a new game, adjust settings

for full-screen or windowed display, and determine whether or not tutorial

tips are displayed during play.

During game play, the user clicks their own deck to draw a card.

During their turn, the player clicks and drags cards to either the

dealer’s stash to cancel out a card in play, or to their own score box to

add their card to their own stash. Onscreen prompts alert the player of

their choices.

Chapter 4 analog programming

83

If a player attempts to cancel a dealer card out with a less powerful

card (trying to cancel a five-strength card with a three-strength card, for

example), nothing happens. The player may add powerups or additional

cards to complete the action, or click and drag the card back into their

hand to continue.

There are no undo functions. Once a move has been made, the move is

not retractable.

A spec document doesn’t necessarily have to be followed to the letter,

but it serves as a guide and a target while coding. Some adjustments might

have to be made. Some features might have to be dropped, others added,

and still others changed. If you were hired to program to a specification,

changes would have to be negotiated to ensure that you’re not cheating

your client out of something you assured them you could do. In this case,

Figure 4-1. Design spec for Battlejack

Chapter 4 analog programming

84

however, you are your own client, and so this spec document is just a

gentle guide and a helpful map of what needs to get coded and what needs

to be produced for the game.

In the next chapter, you’ll learn about code libraries, data storage, and

deck definition files, which are essential for a feature-rich video game.

 Homework
Even high-tech video games can be reduced down to tabletop mechanics.

Learning why games are fun to play is an important part of designing good

games.

Try these analog hacks.

• Take a game that you like to play on the computer

or console, and mentally deconstruct it. Determine

what its game mechanics are. For instance, in Portal,

the mechanic is solving intricate puzzles with fantasy

portal physics. In Half Life, the mechanic is to shoot

enemies while unraveling elements of a detailed story.

In the Fallout series, the mechanic is storytelling and

exploration.

Try to come up with a card game version of your favorite game.

It doesn’t have to be an exact match, but see how close you can get.

Incorporate dice as needed.

Chapter 4 analog programming

85© Seth Kenlon 2019
S. Kenlon, Developing Games on the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-4170-7_5

CHAPTER 5

Database and
Libraries
There are lots of ways to store data. In the Blackjack game, you stored

the building blocks for a deck of playing cards in two tables—one for

suits and one for values. That’s a good method for small data sets that

don’t change from game to game, but it won’t work if, for instance, it was

possible for a player to level up and earn the ability to play with Jokers

in the deck, because the tables defining the deck is hard-coded into the

application.

To make permanent changes to a game environment, or to track player

progress, scores, or preferences, you must create a data file outside of the

.love file on your user’s computer. Any game that keeps track of a player’s

progress has to do this, so it’s a common task, but it does require additional

Lua libraries designed to read and write data files.

The problem with pulling in more libraries than what Lua and LÖVE

provide is that there’s no reason to expect your users to coincidentally

also have those libraries installed on their computer (and why would

they, unless they were also Lua programmers?). There are two ways

around this.

• Bundle the library with your game.

• Tell your users to install the libraries before trying to

play your game.

86

The first option is most common in the game industry, but sometimes

a library’s license doesn’t allow you to distribute it along with your own

application. There’s a strong culture of open source around Lua, so most

Lua libraries are licensed to permit you to use them as you please as long

as you credit their authors.

Some Lua libraries, however, depend on other applications running

on a system, so they must be built especially for those systems. If you

use advanced libraries, you have to maintain different builds—one

for each platform. Usually, that means one build for Linux, one for

Windows, and one for the Mac (unfortunately, Macs are hardware

dependent, so you must have a recent Mac available, upon which you

can build your release.)

Note Some game developers choose not to bundle libraries to
ensure that their users are free to manage which libraries are on
their computer. While most users don’t care about which obscure
programming library is on their computers, they probably do care
about getting security updates. A library “hidden away” in your .love
file isn’t updated along with the rest of a system. So when you do
distribute a library, you owe it to your users to check in often with
those libraries for important bug fixes and security updates, and then
update your own application with the new versions.

Building libraries for each operating system you want your game to run

on is an advanced topic outside the scope of this book. There are several

good tools, such as win-builds.org, to help you, but this does require

advanced knowledge of compiling software. For this reason, this book uses

pure Lua libraries that can be bundled with your game and run on any

platform with LÖVE installed.

ChApter 5 DAtAbASe AnD LibrArieS

87

 Installing New Libraries
In most games, the kind of data needing storage is not very complex,

so usually a simple configuration text file is sufficient. For Lua to know

what to do with a text file, the text must have a predictable structure.

Highly structured text storage forms a non-relational database that

Lua loads into memory and uses just like any other variable you might

create in Lua.

There are many popular formats for these kinds of files, including

YAML, JSON, and INI. These formats allow you to store data in a

consistent structure, which enables its parent application to accurately

parse it.

One library (sometimes also called a module) that enables plain text

configuration files is inifile. As its name suggests, it interacts with INI

configuration files (if you don’t know what that is, you’ll write one soon, so

don’t worry).

The best place to find libraries for Lua is luarocks.org, a website

dedicated to tracking and distributing Lua libraries. The site is useful for a

new Lua programmer because it has several methods for you to search for

libraries that you may not even know exist. As you become more familiar

with programming, you’ll get a feel for what to expect from any language.

The luarocks command will prove far more efficient.

To install the luarocks command, either look for it in the dnfdragora

application installer, or do the following in a terminal.

$ sudo dnf install luarocks

Once luarocks is installed, type it into a terminal to see a helpful

message.

As the help message indicates, use the search argument to search for

inifile, the library you need to parse text files in the INI format.

ChApter 5 DAtAbASe AnD LibrArieS

88

$ luarocks search inifile

Search results:

inifile

 1.0-2 (rockspec) - https://luarocks.org

 1.0-2 (src) - https://luarocks.org

 1.0-1 (rockspec) - https://luarocks.org

A common trap that programmers fall into is installing a library they

need on their system, and then forgetting to bundle the library with their

application. For that reason, you will not install inifile to your own

system the way that you installed Lua or LÖVE. Instead, create a new folder

in your home directory called config.

$ mkdir ~/config

Use luarocks to download and install the inifile package directly

into your sample game folder.

$ cd ~/config

$ luarocks install --tree=local inifile

The --tree option tells luarocks to create a new folder, called

local in this example, for all the files that would normally get installed.

With this simple trick, you install all the dependency code you want to

use in your project into the project directory itself. Your user doesn’t

have to worry about installing anything extra, because it’s all contained

in your project.

Now you know why you might want to add a library to a project and

how to do it.

Now it’s time to try some libraries to help with configuration files.

ChApter 5 DAtAbASe AnD LibrArieS

89

 Configuration Files
To see how to interact with a text-based configuration file, open Geany and

create a new file and enter the following sample data in INI format.

[player1]

name= slasher

defeated = zombie,vampire

level=7

[player2]

name= vecna

defeated = vampire,gug,shantak

level=8

Save the file as sample.ini into your home directory, not the config

directory. After all, saving the configuration file into your LÖVE project

directory is exactly what you’re trying to avoid, because you want the

configuration file to be separate from your application.

Imagine that this file is a save file for a game, with the progress of each

player in each configuration block. Were this a real game, you would save a

configuration file in a hidden folder named ~/., but for now, you can keep

this sample unhidden.

Create a second file named main.lua and enter this simple program to

parse the sample.ini file, change a value, and then update the config.

inifile = require('inifile')

-- find home directory

home = os.getenv('HOME')

-- detect path separator

-- returns '/' for Linux and Mac

-- and '\' for Windows

d = package.config:sub(1,1)

ChApter 5 DAtAbASe AnD LibrArieS

90

-- parse the INI file and

-- put values into a table called conf

conf = inifile.parse(home .. d .. 'sample.ini')

-- print the data for review

print(conf['player1']['name'])

print(conf['player1']['level'])

print(conf['player1']['defeated'])

-- level up player1

conf['player1']['level'] = tonumber(conf['player1']['level'])+1

-- save the change

inifile.save(home .. d .. 'sample.ini', conf)

This simple application detects the user’s home directory, detects how

the operating system finds its way to the home directory, parses the INI

file, and then increments the level entry for player1 by 1.

Save the file. Change to the ~/config directory in a terminal, and then

try running the application (it will fail, but that’s intentional).

$ lua ./main.lua

lua: ./main.lua:4: module 'inifile' not found...

This tells you that Lua attempted to use the inifile library, but

couldn’t locate it because the library isn’t installed on your system; it’s

installed in your project directory.

 Setting the Package Path
When you created your own card dealer class for Blackjack, you used the

require keyword to include your library with your main code. You must do

the same for the inifile library.

ChApter 5 DAtAbASe AnD LibrArieS

91

Just as you generally know where you keep your files on your computer,

Lua knows where libraries are normally kept on whatever system it’s

installed on. It keeps track of this information in a variable called package.

path. If you tell Lua to require a package called foo, then Lua looks in all

the locations listed in package.path. When it finds foo, it stops looking

and proceeds to execute code. If foo is nowhere to be found, then it throws

an error and the application crashes.

If you are adding a library to Lua (or a Lua-based application like

LÖVE) that is outside the normal Lua package.path, then you must tell

Lua where to look. If you don’t, your program will crash because Lua can’t

find a library that you have told it to require.

You can see package.path yourself by launching Lua in a terminal.

$ Lua

> print(package.path)

./?.lua;/usr/share/lua/5.3/?.lua;/usr/share/lua/5.33/?/init.

lua;/usr/lib64/lua/5.3/?.lua;/usr/lib64/lua/5.3/?/init.lua

For a prettier view (and for a little practice with Lua), use the gmatch

function of Lua to split each entry, separated by semicolons.

> for s in package.path:gmatch("([^;]+)") do print(s) end

./?.lua

/usr/share/lua/5.3/?.lua

/usr/share/lua/5.3/?/init.lua

/usr/lib64/lua/5.3/?.lua

When require is used in these examples, Lua first searches the current

directory for anything ending in .lua. If nothing applicable is found, Lua

knows to search /usr/share/lua/5.3 and then /usr/share/lua/5.3/?

(Lua itself substitutes ? with the name of the library you provide in require

statements).

ChApter 5 DAtAbASe AnD LibrArieS

92

You can append entries to package.path in your program so that if you

add a new library outside of Lua or LÖVE, Lua knows where to find it. To

do that, you must know where to find the libraries yourself.

You told Luarocks to install inifile to local, so you know where to

start. There are two easy ways to find the actual code of the library you

installed: the ls command and the find command.

If you’re not entirely sure what you’re looking for, you can use the

ls --recursive command to list all directories and all the directories in

those directories (and so on).

$ ls --recursive ./local

local/:

lib/ share/

local/lib:

luarocks/

local/lib/luarocks:

rocks/

local/lib/luarocks/rocks:

inifile/ manifest

local/lib/luarocks/rocks/inifile:

1.0-2/

local/lib/luarocks/rocks/inifile/1.0-2:

inifile-1.0-2.rockspec rock_manifest

local/share:

lua/

local/share/lua:

5.3/

local/share/lua/5.3:

inifile.lua

At the very bottom of the list is the inifile.lua file, which is—as its

file extension .lua suggests—the Lua library that you seek.

ChApter 5 DAtAbASe AnD LibrArieS

93

Note there is a related package path called package.cpath that
locates complex libraries written in the C programming language.
these libraries use the file extension .so on Linux, .dll on
Windows, and .dylib on Macs.

If you had already known you were looking for a .lua file, then you

could also have used the find command.

$ find ./local -name "*.lua"

./local/share/lua/5.3/inifile.lua

The end results of the commands are the same: you get the path to

the library or libraries you need to add to the very top of your main.lua

code.

package.path = package.path .. ';local/share/lua/5.3/?.lua'

This simple statement sets package.path to be whatever it already is,

and then appends (..) the local directory. It also replaces any instance of ?

with whatever is required.

Note if you read other people’s Lua code, you might see the
alternate method of pointing Lua to a library. Sometimes, a
programmer provides the path to the library manually in the require
statement, using dots as delimiters: require('lib.inifile.
inifile'). this isn’t wrong or bad, but it is very specific to a single
library file. not all libraries consist of just one file, so that method is
less flexible than providing the package.path.

ChApter 5 DAtAbASe AnD LibrArieS

94

Try your program again. This time, it is successful.

$ lua ./main.lua

slasher

7

zombie,vampire

The file was parsed correctly. Now check the original sample.ini file to

see if player1’s level was updated. To see the contents of a file quickly in a

terminal, you can use the cat command, which is short for concatenate (so

you are, in effect, concatenating the file to nothing, so its contents are just

printed to your terminal).

$ cat ~/sample.ini

[player1]

name= slasher

defeated = zombie,vampire

level=8

[player2]

name= vecna

defeated = vampire,gug,shantak

level=8

Lua has parsed, read, and written a plain text configuration using a

local library.

 Deck Building
Having completed the exercise in this chapter, you not only know how to

store data on your user’s computer, but you also know how to define data

structures in a file to have it imported by your application. That means you

ChApter 5 DAtAbASe AnD LibrArieS

95

don’t have to define a deck of complex battle cards in the main code of

your application, which means a smaller file for your executable code and

a lot less clutter in your main script.

For the Blackjack game, the card deck was a simple 52-card poker

deck. Your current project, Battlejack, can use a standard card deck, but

part of the fun of programming digitally is that you can generate game

assets without the costly manufacturing bills involved in creating a new

deck of cards in the physical world. It doesn’t make sense to limit the game

to a standard poker deck when you can invent any theme you want for

your game.

Regardless of your artistic skill or access to artwork, 52 cards is a lot of

cards to make. It’s not impossible (there are more than 10,000 Magic: The

Gathering cards, and 2,000 in Magic Online), but for an independent game

developer, it’s a tall order. When determining the assets for a game, it’s

important to look critically at what is necessary and what is just nice to have.

For this project, even though the design assets were 52 cards, there

were actually only 10 unique values: 1 through 10. For every iteration of

cards 1 to 10, there were three cards worth 10 (Jack, King, and Queen).

Furthermore, although the dev deck had four suits, the suits actually had

no effect on the game, so those can be thrown out.

To create player identities, the alpha version of the game used red and

black, and since that’s easy and classic, the digital version can keep that.

For accessibility, the digital version will also use a symbol along with the

opposing colors, since not everyone can see the color red.

To make the game a little more exciting, the digital version of Battlejack

will enable players to “level up” as they continue to play. Levels in any

game are a mix of rewards and, essentially, penalties; the players level up

and become more powerful, but only to face new challenges. That means

the digital deck will have a small subset of extra cards that are shuffled into

the game, throwing off the predictability of how often certain values are

drawn, and a second subset of cards that serve as “power ups” granting the

player a free bonus (anywhere from a +1 to +3) to their hand.

ChApter 5 DAtAbASe AnD LibrArieS

96

There isn’t much to this dataset, but it should be expressed separately

from the user data because it is not data that is meant to change. It defines

the virtual deck of cards, and that’s all. Tracking which cards have been

drawn during a game must be done by the application itself, because it gets

reset every time a new game is started. Any permanent rewards, penalties,

or level data is written to the user data file.

Take a moment to think about what kind of deck you want to use for

your Battlejack implementation, or download and use the deck provided

with this book. (The art is licensed under a Creative Commons license,

so you may use the artwork for any purpose). Once you have decided on

a theme, create a project folder called battlejack. Create font and img

directories within your project folder, as usual.

Create a deck definition file called deck.ini and save it into your

project directory. You can customize the definition file to suit your custom

theme, or if you are using the art available with this book, you can use the

following.

[red]

mystic = 1

bard = 2

arcanist = 3

archer = 4

goblin = 5

construct = 6

cavalry = 7

priest = 8

fighter = 9

wizard = 10

cavalry = 10

knight = 10

ChApter 5 DAtAbASe AnD LibrArieS

97

[black]

mystic = 1

bard = 2

arcanist = 3

archer = 4

goblin = 5

construct = 6

cavalry = 7

priest = 8

fighter = 9

wizard = 10

cavalry = 10

knight = 10

[earn]

zealot = 6

cultist = 7

charm = 8

orc = 9

god = 10

[up]

sun = 1

bird = 1

sword = 1

ram = 2

skull = 2

templar = 2

weep = 3

plague = 3

ChApter 5 DAtAbASe AnD LibrArieS

98

That’s just 25 cards to generate; although in a pinch it can be done

with just three (one for all face cards, one for all earned cards, and one for

all powerup cards). That’s manageable, so now all that’s left to do is make

them. And that’s just what you’ll do in the next chapter.

 Homework
Installing and learning new libraries is an important part of programming.

Nobody codes everything from scratch unless absolutely necessary,

because there are so many great libraries out there with much of your work

already done for you.

Try the following hacks.

• INI files store key and value pairs; one word correlates

to exactly one other word or number. For more complex

data structures, there is a format called YAML, which

allows you to define multiple levels of information for

everything in your data set.

Install lua-yaml or a similar library for parsing YAML and try to parse

some sample data.

For an example of a working script, download the code files for this

chapter from this book’s code repository.

ChApter 5 DAtAbASe AnD LibrArieS

99© Seth Kenlon 2019
S. Kenlon, Developing Games on the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-4170-7_6

CHAPTER 6

Graphics
Everyone knows graphics are important for games, but gamers

acknowledge that there’s something even more important than graphics:

the game. A good game is a game that’s challenging and fun. Graphics,

while important, don’t make a game.

But most modern players expect graphics in their games, and given

that you’re programming for a graphical game engine, you do need

graphics. And if you’re going to have graphics in your game, you want them

to look as good as possible.

If you’re not a natural illustrator and don’t have access to one, making

your graphics look good seems like a tall order. And if you’re not familiar

with graphic applications on Linux, it seems impossible. This chapter

teaches you the basics of a few of the best Linux graphics applications and

provides you with some tips and tricks to make great graphics, even if you

think you have no artistic skills.

 Design by Genre
The word genre is an art term meaning a category or style. It’s a term meant

to be broad and nonspecific. If you’re fortunate enough to be able to hire

an artist to do artwork for your game, then a genre is useful to convey to

the artist what they should be aiming for. When it’s entirely up to you to

design the game’s graphics, a genre gives you a target to aim for when

gathering and creating all the different artistic elements that you need.

100

When the same person programming a game also has to design the

game’s look and feel, one of the greatest concerns is investment of time

and effort. After all, you can’t afford to just spend your time on art when

there’s still code to be written. To help you stay on track, keep in mind

three basic tenants to successful graphics.

• Genre. Limit yourself to elements within your declared

genre.

• Consistency. Design once, and then duplicate. If you do

anything consistently enough, it becomes your style.

• Minimalism. Convey only the most vital information

and let your players read between the lines. The less

you do, the less you can mess up.

Before you sit down to create your game art, stop and think of a genre

to serve as your central design theme. Your theme can be anything, just

think about what appeals to you or to your intended audience. Think in

terms of a broad genre. The more general your initial concept, the easier

it is to hit your mark in the end. Much of the frustration that non-artists

experience when they attempt to make art is because they see clearly in

their mind what they want, but lack the artistic skills to make it happen.

Protect yourself by avoiding specifics.

Here are some examples of some broad themes.

• Retro 8-bit video games

• Victorian England

• Horror

• Mysteries of the ancient world

• Saturday morning cartoons

• Anime or manga

Chapter 6 GraphiCs

101

• Comic book

• Fantasy

• Urban

• Cyberpunk

It can also be fun to mash up two different genres. Instead of settling

for just a fantasy game, why not make rock-a-billy fantasy? Or cyberpunk in

the Old West? Or a cartoon horror game? Mix it up. Force yourself to invent

a rationale for an unlikely combination, and see what happens.

 Let the Fonts Do the Talking
Once you have thought of a genre (or two) for your game, go on a font

hunt. Fonts are a great way to convey a theme quickly, and since there are

so many open source fonts out there, it’s one of the lowest investments

of effort on your part (see Figure 6-1). There’s a font out there for every

genre, so go find one and bring it into your project to kick-start your

thematic vision.

Note Fonts are just like everything else you find online or on most
computers. they’re licensed for use, meaning that if you find a font
you like on a Windows or Mac computer, it’s only licensed for you to
use on that one computer. You’re not allowed to redistribute it with
your game. so when looking for fonts, make sure its license permits
it to be redistributed.

Some of the best open or redistributable font websites include

• FontLibrary.org

• slackermedia.info/sprints

Chapter 6 GraphiCs

http://fontlibrary.org
http://slackermedia.info/sprints

102

• FontSquirrel.com

• TheLeagueofMoveableType.com

• DaFont.com (use the site’s filters to view only free and

open source fonts)

If you choose a highly stylized font, then you might need two fonts: one

for big titles consisting of only a few words at a time, and one simpler font

that’s easier to read for text that users need to read often or quickly.

The important thing is that the font or fonts you choose speak to your

theme. It’s alright if your fonts are a little cliché as long as they enforce your

genre. If you’re not sure of what type of font to use, go look at some movie

posters or book covers to get an idea of how fonts are used to convey the

genre of the story being told.

Figure 6-1. Fonts are worth 1000 words

Chapter 6 GraphiCs

http://fontsquirrel.com
http://theleagueofmoveabletype.com
http://dafont.com

103

Before continuing, download a font or two to your Downloads folder.

This example uses the Arkham font from DaFont.com (www.dafont.com/

arkham.font), a free font with no restrictions on redistribution.

To install a font, do the following.

 1. Open a file manager window and navigate to your

Downloads directory. Most font downloads are

zipped, so you must unarchive them to install them.

 2. If you prefer to work with GUI tools, install xarchiver

in dnfdragora.

 3. If you prefer to work in a terminal, install p7zip-full

with apt.

 $ sudo dnf install p7zip-full

 4. Next, create a local font folder located at ~/.local/

share/fonts.

 $ mkdir -p ~/.local/share/fonts

 5. To do this in the GUI, open a file manager by

double- clicking the Home icon on your desktop.

Right-click in any blank space in the file manager

window. Select Options ➤ Show Hidden Files,

and then navigate to .local/share. In the share

directory, right-click any blank area and select

New ➤ Directory. Name the new directory fonts.

 6. Create a subdirectory in ~/.local/share/fonts for

the first letter of each font you are installing, and

then copy the TTF or OTF files to the appropriate

place.

Chapter 6 GraphiCs

http://dafont.com
http://www.dafont.com/arkham.font
http://www.dafont.com/arkham.font

104

 7. To copy the files, you must unarchive your font

downloads. Most font archives can be unarchived

with p7zip, but you can also use other unarchiver

tools as needed.

 $ cd Downloads

 $ 7z x arkhamfonts.zip

 $ tar xvf nouveau.tar.bz2

 8. Once unarchived, you can copy the files to their

destination.

 $ mkdir -p ~/.local/share/fonts/a

 $ cp ~/Downloads/arkhamfonts/ark*ttf ~/.local/

share/fonts/a

In the GUI, right-click a font archive and select Open with ➤ xarchiver.

Drag and drop font files from the xarchiver window to the directory

matching the first letter of the font name.

 Color Scheme
The last thematic element you must decide upon is a color scheme. While

some genres have specific colors associated with them, there’s a lot of

freedom in this aspect of design. While the Old West is often associated

with browns and yellows, and a technical future world often is painted in

black and neon green, you can use your own color palette in any genre as

long as your colors are consistent and somehow relate to one another in a

pleasing way.

The problem for non-artists is finding colors that match.

To solve this problem, all you have to do is generate a color palette

from an existing image. Search the Internet or your own hard drive for

an image that you like. It doesn’t have to be a free-licensed photo and it

Chapter 6 GraphiCs

105

doesn’t have to match the genre for your game, because the image is only

going to be used to generate colors. Just pick an image that you enjoy

looking at.

To generate a color scheme from a photograph, do the following.

 1. Install Image Magick.

 $ sudo dnf install imagemagick

 2. Download the image to your Pi.

 3. Run the following Image Magick command,

adjusting ~/path/to/image.png to match whatever

photo you have downloaded.

 $ convert ~/path/to/image.png -geometry 16x16

-colors 8 \

 -unique-colors -scale 4000% ~/scheme.png

 4. Take a look at the resulting color scheme.

 $ display ~/scheme.png

The colors you get back as scheme.png are more or less an average

of dominant colors (it’s not mathematically sound, but it’s a rough

approximation). Use these colors to guide your design (see Figure 6-2).

Figure 6-2. Color scheme

Chapter 6 GraphiCs

106

 Graphics
When it comes to the actual graphics for a game, there are three areas

of interest you must consider: the background, the foreground, and

widgets.

Widgets and menu screens are where the theme is most obvious,

because everything is largely static. You can use a thematic background

and some genre-appropriate buttons, and the stage is set.

The background of each level is a good place to set mood and tone. It

usually needs to be minimal so that it doesn’t take attention away from the

elements that the player is interacting with, but it’s a good opportunity for

you to convey elements of your theme. For instance, if your game is set in

Victorian England, then decorating the corners of the background with a

damask print or a regal design can help convey the setting. It’s also a good

opportunity to use some of the colors of your primary scheme, which can

also help set the mood: a bright and cheerful background sends a different

message than a dark one.

The foreground consists of all the elements your player cares about,

such as their player character, their enemies, loot, tutorial messages, and

so on. These elements can also be themed to match your color scheme and

game theme.

Finding graphics can be difficult, but there are online repositories of

free game art, including

• Itch.io/game-assets/free

• GameArt2d.com/freebies.html

• Kenney.nl/assets

• OpenGameArt.org

• OpenClipArt.org

Chapter 6 GraphiCs

http://gameart2d.com/freebies.html
http://opengameart.org
http://openclipart.org

107

There’s a lot of flexibility in the foreground elements. As long as

the game world matches your genre, you can drop characters—good or

evil—into it, and gamers won’t think twice about it. After all, one of the

most famous games of all time is ostensibly about the exciting world

of plumbing, and yet the main enemies are sentient toadstools and

turtles.

Even though you may gather game assets from the Creative Commons,

you’re still probably going to find that you have to adapt or modify them.

The Raspberry Pi comes fully equipped for game development, graphic

design included.

 Card Design with GIMP
GIMP (GNU Image Manipulation Program) is an all-purpose graphics

creation application. You can use it to modify photographs, textures,

and existing graphics, and combine them all together to provide you

with your game assets, or you can create graphics from nothing but

your own ideas.

The barrier to getting started with GIMP isn’t artistic skill so much

as comprehending and learning the many tools that GIMP has to offer.

Entire books have been written about it, there are tutorial websites

dedicated to it, and it has thorough documentation, so this section steps

you through the process of using the tools that apply to the current goal:

creating playing cards for Battlejack. Stepping through this won’t teach you

everything about GIMP, but it demonstrates the general process and some

of the common tools.

 Install

There are a few different ways to install GIMP. The easiest way gets you

an old version of GIMP, and while there’s nothing wrong with that under

normal circumstances, you’re a software developer now so there’s no

Chapter 6 GraphiCs

108

reason to settle for second best. Instead of installing using the Synaptic

application installer or the dnf command in a terminal, you can install the

latest version, as described at www.gimp.org/downloads/.

The latest build of GIMP is delivered using Flatpak, a software installer

method similar in spirit to dnf. To use Flatpak, it must be installed.

$ sudo dnf install flatpak

Once Flatpak has been installed, use it to install GIMP.

$ sudo flatpak install \

https://flathub.org/repo/appstream/org.gimp.GIMP.flatpakref

Once GIMP and all of its dependencies have been installed, you

must log out of the Enlightenment desktop, and then log back in so that

it recognizes updates from Flatpak. If you don’t want to do that just now,

you can launch GIMP manually, as described in the gimp.org download

instructions.

$ flatpak run org.gimp.GIMP//stable

In the future (after a reboot), you can find GIMP in your application

menu.

The GIMP interface consists of three main regions: the toolbox is full of

all the tools that you use to compose graphics, the main window contains

any graphics that you are working on, and the contextual docks provide

extra options based on what you’re doing.

In the first part of this chapter, you defined a theme or a combination

of themes, and collected suitable assets, such as fonts and clip art. GIMP

allows you to composite them together.

Chapter 6 GraphiCs

http://www.gimp.org/downloads/
http://gimp.org

109

 New Document

To create a new document in GIMP, do the following.

 1. In the GIMP window, click File ➤ New.

 2. In the Create a New Image dialog box that appears,

set the unit of measure to mm. Set the image

width to 63.5mm and the height to 88.9mm. These

measurements are those of a standard US poker

playing card.

 3. Since screen size and printed size are different,

click the Advanced Options link at the bottom of

the window and set the resolution of your image

to 100 DPI. Any lower, and your image may look

too small or pixelated on standard displays. Any

higher, and your image will be too large to fit on

the screen.

Note For serious design work, it’s not uncommon to design at a
higher resolution, just in case you want to also print the designs you
create for onscreen display or to account for the eventual increase
in graphic resolution. For instance, as of this writing, it’s common
for gamers to own 100 Dpi monitors sized 1920×1080, but in a few
years, 4K monitors and greater will be the default. if you design in
higher resolutions, you safeguard against increasing resolution, but if
you do that during this chapter, you have to scale the image down in
LÖVe.

Chapter 6 GraphiCs

110

 Color Scheme

So that you have it handy, open the scheme.png color scheme file you

created earlier. If you didn’t create a color scheme file, that’s alright, just

keep your color scheme in mind.

Color selection in a graphics application is a lot like variables in

programming. It’s something you end up doing a lot more often than you

think you should have to, although GIMP makes it easy. GIMP is smart

enough to map a color scheme to a palette.

 1. To see your GIMP palettes, go to the Window menu

➤ Dockable Dialogs ➤ Palettes. This embeds a new

panel displaying color palettes, including one called

Colormap of Image, which is your color scheme

imported as a palette (Figure 6-3).

Figure 6-3. Creating a colormap in GIMP

Chapter 6 GraphiCs

111

 2. Right-click your palette and select Duplicate Palette

to create an editable copy.

 3. Double-click the duplicate and give it a name,

such as cardscheme. A named palette becomes

permanent.

 4. You may now close the color scheme file so that only

your blank card appears in your workspace.

 5. Your named color scheme remains. Right-click it

and select Edit Palette to open the Palette Editor tab.

This displays your color scheme so that you can use

it as a reference when choosing the colors in your

design.

 6. GIMP uses a tabbed interface to manage open

files, so to get back to your card design, click the

appropriate tab at the top of the window.

 Text Elements

Eventually, you must create cards for each card listed in the deck.ini file,

but this example creates a wizard card with a value of 10 to ensure that the

initial design accounts for a long title and a double-digit value.

 1. Select the Text tool from the Tool Options panel, or

press T on your keyboard.

Chapter 6 GraphiCs

112

 2. Click near the top-left corner of your card, but

don’t start typing anything yet. When you click, a

contextual tool-based panel appears below your

toolbox. Since the text tool is active, you see options

for text. Pick a font within your theme, and set the

size to 60 or so.

 3. To set the color of your text, click the box labelled

Color. A color picker window appears. Its default

view is the GIMP color picker, but there are tabs

along the top of window Figure 6-4.

Figure 6-4. Viewing a color scheme in GIMP

 4. Click the right-most tab to view your custom palette

and choose a color for your text.

 5. Click the OK button.

Chapter 6 GraphiCs

113

 6. Now that you have your tool configured, type

the title of the card: Wizard. Don’ worry if you

positioned your text too far to the right such that the

whole word won’t fit; you can fix that later.

 7. Press the Esc key to exit text mode.

 Time to Save

It’s never too early to start saving your work. To save your document, go to

the File menu and select Save. You can save the document anywhere you

please, but it’s best to keep project work together, so saving it into your

battlejack directory is best.

However, GIMP files are a special .xcf format intended as an

uncompressed master copy, not as a file for everyday use, so in the end

you’ll export to .png or .jpg. Intermediate files that are necessary to create

assets but that do not ship with a game are generically called source files.

It’s not uncommon to place them in a directory all their own, and then

exclude that directory from your final .love package.

 1. Using the GIMP save dialog, create a new directory,

called src, in your battlejack project.

 2. In src, create another directory called img, and save

your file into it with the name red-10-wizard.xcf.

 Moving Layers

When you typed text onto your card, you created a new layer. If you don’t see

a Layers docker in your GIMP window, go to the Window ➤ Dockable Dialogs

menu and select Layers to open it or bring it to the top of a docking panel.

Layers are like sheets of cellophane placed on top of a canvas. They’re

transparent until you “paint” something on them, and even then you can

always move or remove the layer entirely because you haven’t painted on

your canvas, but on a transparent layer above it.

Chapter 6 GraphiCs

114

As long as the text layer is selected (and it is, by default, because it was

the most recent one you created), its bounding box is a yellow and black

dotted-line. By default, a layer uses up only as much space as it needs, but

if you need to make a layer bigger, go to the Layer menu and select Layer to

Image Size.

 1. To move a layer, select the Move tool in the Tool

Options panel, or press M. As always, the Tool

Options panel displays configuration choices for

that tool. Select the “Move the active layer” option.

 2. Click your card and drag your mouse to move the

active layer. Position your text where you think the

title of each card looks best.

 Backdrops

To help the player focus on what’s important, it often helps to add

backdrops. A backdrop separates important information, especially text,

from the background image.

 1. To add a layer between the background and a

foreground layer, right- click the background layer

and select New Layer.

 2. In the New Layer window, name the layer backdrop

and set the “Fill with” field to Transparency so that

the layer is filled with a transparent alpha channel.

 3. Select the Rectangle Select tool from the Tool

Options panel, or press R on your keyboard. Using

this selection tool, select an area around the title.

It might be hard to tell, but you’re not selecting

the title text or the white background behind it.

You’re selecting a portion of the invisible layer

between them.

Chapter 6 GraphiCs

115

 4. Click the top color swatch under the toolbox. In the

color picker that appears, select the Palette tab and

select a color within your color scheme.

 5. Click the Edit menu at the top of the GIMP window,

and select Fill with FG Color (FG stands for

foreground).

 6. To exit selection mode, press the Esc key on your

keyboard.

 Color Code and Value

The card still needs a value. According to deck.ini, its value is 10. Repeat

the previous process to create a value indicator.

Since Battlejack’s opposing sides are differentiated by color (red

against black), use red as the backdrop color. If you don’t have red in your

color scheme, you must adapt. You can still use your color scheme as a

guide, though. RGB colors are defined by three numbers ranging from 0

to 255: the first number is for red, the second for green, and the third for

blue. These values are visible in the right column of the GIMP color picker

window. Look at a color in your palette and shift its numbers such that the

highest number is in the color you want to create within the same scheme.

For instance, assume you have a green defined in your palette with

these values: Red 11, Green 14, Blue 8. To produce a red similar in “feel”,

shift each number one position to the left so that the number in the Blue

slot now goes to Green, the number in the Green slot goes to Red, and the

number in Red wraps around to Blue: Red 14, Green 8, Blue 11.

The resulting red shade may not be exactly what you want, but this

trick produces something in the same mood as the rest of your color

scheme, and you can adjust it manually with one of the color wheels in the

color picker tabs.

Chapter 6 GraphiCs

116

 Background Image

The card design is basically finished. It has the requisite information on it,

so all it needs now is an image. Find an image that you feel might represent

a wizard. Think abstractly. It’s easier to find an image that suggests

wizardry than to find a free image of exactly what you see in your mind’s

eye when you think of a wizard.

For example, you might be able to find a series of icons for fantasy roles

consisting of wands, swords, battle axes, and so on. Even if you only find

five or six icons, you could reuse those depending on the broad category of

each card (a wand for each magic user, a sword for generic fighters, an axe

for particularly powerful fighters, and so on.

Figure 6-5. Card design

Chapter 6 GraphiCs

117

Alternatively, you can borrow from Magic: the Gathering, which bases

all player abilities on five different types of land. Backgrounds for video

games or even landscape photography are easy to find. Add some “flavor

text” on the card to explain how the land depicted has influenced the

wizard that the card represents.

The possibilities are endless, so use your imagination. If you can’t find

suitable images for this project, you can use images provided along with

the source code for this book. The images are from the tabletop game

Petition, designed by the author, and illustrated by Nikolai Mamashev

in Krita on Linux. All assets are provided under the Creative Commons

Attribution-ShareAlike license.

 1. To bring in an image, click the layer named

Background. This layer is the base layer of your

GIMP document.

 2. Click the File menu and select Open as layers.

 3. The image you choose from the file chooser

is imported into your document above the

Background layer but below your backdrops and

text. The image may be too large, but you can fix that

with the Scale tool.

 4. As needed, select the Scale tool from the toolbox, or

press Shift+S on your keyboard.

 5. Click the image that you want to resize and use the

selection bounding box or the dialog box to scale the

image to better fit into your card design.

 6. Press the Return key or click the Scale button to

accept the change.

Other tools you can use to fit an image into your design include the

Rotate and Flip tools. Try them out and see what looks best.

Chapter 6 GraphiCs

118

 Integration

To bring elements of the card design together, and as an excuse to learn

more GIMP tricks, the final step is to make the card look more like an

intentional design and less like something cobbled together from disparate

sources. You can try one or none of these techniques, depending on what

you like in card design.

The first technique is to add a subtle drop shadow to the backdrop

to suggest that the “meta” game information is not part of the wizard.

In other words, you’re acknowledging that in real life, people don’t

walk around with banners and titles and a number value assigned to

them.

 1. To add a drop shadow, select a backdrop layer and

then click Filters ➤ Light and Shadow.

 2. There are currently two different drop shadow

filters: one is permanent and the other (“legacy”)

creates a new layer just for the drop shadow. Use

either one, but remember: less is more. A subtle

shadow says more than a big, bold shadow that

draws attention to itself.

 3. Another integration technique is to merge the meta

information of the card with the “flavor” (graphic).

You can do that by blending text into the image.

First, right-click the 10 layer in the Layers docker

and select Text to Path.

 4. Locate the Paths docker by clicking the Windows

menu and selecting Dockable Dialogs ➤ Paths.

Chapter 6 GraphiCs

119

 5. In the Paths palette, there is now an outline of the

text element 10. The outline is a vector path— a

mathematical formula that GIMP doesn’t see as a

graphic but as a guide for graphical manipulation.

Right-click the path and select Path to Selection. The

text on the card is now selected.

 6. Navigate back to the Layers docker. Click the eye

icon to the left of the 10 layer to hide the text, and

then select the red backdrop layer.

 7. With the shape of the 10 still selected, press the

Delete key on your keyboard, or go to the Edit menu

and select Clear. This erases red from your backdrop

in the shape of the number 10. You can see right

through the backdrop to the image beneath.

 8. To remove the active selection, go to Select and

choose None, or press Shift+Ctrl+A on your

keyboard.

There’s a lot more you can do in GIMP, so try out some subtle effects,

brushes, and composite modes. Work in layers, so that anything you do

can’t be undone later if necessary. GIMP is a powerful tool, so investing in

a good tutorial book or spending time on some tutorial sites is effort well

spent.

Of course, you don’t have to use this example as a blueprint for your

design. Come up with your own ideas, tap into what appeals to you, and

create it Figure 6-6.

Chapter 6 GraphiCs

120

 Exporting from GIMP
The native format of GIMP files is a multilayered and uncompressed

.xcf file. It’s intended as a project file for use within GIMP. It wouldn’t

make sense to use it anywhere else, especially not in a LÖVE game. After

completing each card, you must export it to a common graphic format like

PNG or JPEG.

To export an image from GIMP, go to the File menu and select

Export as.

In the file chooser that appears, navigate to your battlejack project

directory, name the file in a standard format, such as red-10-wizard.png,

and then export the image to the img directory.

 Homework
Getting to know GIMP is important if you plan on doing graphics work,

whether you anticipate creating promotional web banners or all the

graphics in your game. Spend some time getting to understand how GIMP

Figure 6-6. Art by Shiroikuro, Dogchicken, and Solkap

Chapter 6 GraphiCs

121

works, and enjoy the freedom of doing complex graphical work without

having to pay a “rental” fee each month the way that designers tied down

to big-name competitors do.

There are several other excellent graphic applications on Linux. GIMP

is good at collage (professionally known as compositing), and can be used

for digital painting if you download a good set of brushes.

The following are some other graphic applications.

• Inkscape is a vector drawing application, good for

precision illustration, layout, and graphics that scale

infinitely.

• mtPaint is a bitmap drawing application good for pixel

art. It’s a small application that runs very well on the

Raspberry Pi.

• Krita is a digital painting application. It’s a big

application and doesn’t run well on the current

Raspberry Pi.

• MyPaint is a digital painting application for small

drawings; it runs on the latest Pi.

Chapter 6 GraphiCs

123© Seth Kenlon 2019
S. Kenlon, Developing Games on the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-4170-7_7

CHAPTER 7

Menu Design
With all of your designs and assets ready, it’s finally time to start coding

Battlejack. When you sit down to write code, it’s essential to have the

design specs on hand. Here’s a review of how Battlejack works.

When the game launches, the player is greeted with a menu screen

that allows the user to start a new game, resume a saved game, adjust

settings for full-screen or windowed display, or return to a game already

in session.

During game play, the user clicks their own deck to draw a card.

During their turn, the player clicks and drags cards to either the

dealer’s stash to cancel out a card in play, or to their own score box to

add their card to their own stash. Onscreen prompts alert the player of

their choices Figure 7-1.

If a player attempts to cancel a dealer card out with a less powerful

card (trying to cancel a five-strength card with a three-strength card, for

example), nothing happens. The player may add powerups or additional

cards to complete the action, or click and drag the card back into their

hand to continue.

124

The first task for this chapter is to build a basic menu screen that

successfully proceeds to an empty game screen, with an option to return to

the menu screen so a player can save or quit.

 Main Framework
Launch Geany and navigate to your battlejack project directory.

Create three new files: main.lua, menu.lua, and game.lua. Since LÖVE

always launches a file called main.lua, you must use that as a kind of

control center for the different parts of your game. The main.lua file serves

as the engine keeping the game open; it invokes the menu and game states.

The menu.lua and game.lua files are the game states, so you must

require them in the main file. In the main.lua file, enter the usual setup

code.

Figure 7-1. Rough draft for the game UI

Chapter 7 Menu Design

125

require("menu")

require("game")

WIDE, HIGH = 960,720

love.window.setTitle(' Battlejack ')

love.window.setMode(WIDE, HIGH)

function love.load()

end

function love.draw()

end

Your application can only be in one state at a time. A player cannot be

in the menu while playing the game. So whenever a game state is activated,

it creates a token to designate that it is the current active state.

The token can be called anything, but for clarity, call it STATE and set it,

initially, to nothing. Place it near the top of the main.lua file.

WIDE, HIGH = 960,720

STATE = nil

The main loop’s job is relatively simple: draw on screen whatever

happens to be the active STATE.

function love.draw()

 STATE.draw()

end

The first thing that you want your player to see is the menu, so for

the first action upon launch, make a call to your (currently empty)

menu code. Since your menu is devoid of code, invent a function name

to designate the act of switching to the menu; the term activate seems

logical, so use that.

Chapter 7 Menu Design

126

function love.load()

 menu.activate()

end

Your game won’t launch yet, because you’re referencing two empty

files, and you call functions that don’t yet exist and use variables that never

get set. You fix that in the next section.

 Switching Modes
A menu screen needs, at the very least, a few menu selections. It also needs

to set the STATE token so that the main loop knows the current game state.

In previous exercises, you have treated all variables equally, but in

fact, there are broadly two different kinds of variables: local variables

and global variables. A local variable only needs to be used within one

Lua file (in other languages, a class), but a global variable can be used

across files.

In context of this project, the STATE variable must be a global variable

because it is set by either the menu or game, and then is sent back to main

for use. Something local to only the menu can be a local variable because

no other file in this project ever draws a menu.

Pragmatically, all variables can be global; however, it’s better to

differentiate when possible so that your application can manage its

memory more effectively.

Start your menu.lua file with the following code.

menu = {}

local entries = { "New game", "Load saved",

 "Window mode", "Save", "Quit" }

function menu.activate()

 STATE = menu

end

Chapter 7 Menu Design

127

This code includes a few vital elements: it sets the STATE global

variable so that main.lua knows the game state, and it creates the

.activate function as a gateway into the menu from the main loop. It also

sets up the menu entries.

To print the menu entries on the screen, use a .draw function specific

to the menu file. Your main.lua file call this function as long as menu is the

active state, because in love.draw() you call STATE.draw().

function menu.draw()

 love.graphics.setBackgroundColor(0.1,0.1,0.1)

 for i=1,5 do

 -- menu text x y

 love.graphics.print(entries[i], 45, 10+i*16)

 end

end

In this code, you use a for loop to cycle through the number of entries

in the menu. For each iteration of the loop, LÖVE prints the corresponding

menu entry as defined at the top of the file.

Since the menu is the first and only thing invoked by main.lua, you

can now launch your application now to see what you have so far.

The first problem you are likely to notice is that there’s no way to

select any of the menu entries. One of the many benefits of LÖVE is its

keypressed function, which is perfect for game and menu navigation (this

is discussed in the next section).

First, you may as well put in some basic code for the game screen, so

that once the menu is operational, you can tell the difference between the

menu screen and the game world.

The bare minimum is sufficient.

game = {}

function game.activate()

 STATE = game

end

Chapter 7 Menu Design

128

function game.draw()

 love.graphics.setBackgroundColor(0.2,0.3,0.5)

end

You can’t get there yet, but at least it exists, and with a background

color set, you’ll know it when you see it.

 Menu Selection
There are two aspects of menu selection: the code that drives the actual

selection and the onscreen representation of that selection so that the

player knows what’s selected. Both need a designator, so create a variable

to keep track which menu entry is the current selection.

function menu.activate()

 STATE = menu

 selection = 1

end

For the player, a visual cue is useful. There are several ways to

implement a selection marker for a text menu, but for now, just draw

a simple character next to the active entry by checking the value of the

selection variable. Of course, at this point, the selection variable can

only be 1 because nothing has changed yet in your code; but that won’t be

true for much longer.

Update your menu.draw() function so it matches this:

function menu.draw()

 love.graphics.setBackgroundColor(0.1,0.1,0.1)

 for i=1,5 do

 if i == selection then

 love.graphics.print(">", 30, 10+i*16)

 end

Chapter 7 Menu Design

129

 -- menu text

 love.graphics.print(entries[i], 45, 10+i*16)

 end

end

You can launch the game to see the > marker on the first selection.

When a user presses a key on the keyboard, the computer receives

a keycode signal. This is known as an input event. Depending on your

language and keyboard layout, your operating system translates keycodes

to specific letters, numbers, or characters. That’s built into any operating

system, and it’s why you can interact with your computer.

The only reason a specific application reacts to a number or character

or symbol, however, is because it is programmed to do something when

a keypress event is received. LÖVE features the keypressed() function,

which listens for keypress events and lets you define what should happen

with each keypress event.

For menu navigation, you must define what the menu must do

when it receives an Up arrow or a Down arrow event. These events both

toggle the active selection, which is currently set to 1 by default. Since

the selection variable is set to 1 when the application starts, the active

selection is the first in the list. To make the active selection second on the

list, the selection variable must be incremented when the Down arrow

is pressed, and decremented when the Up arrow is pressed. If you’re

good with math, you might detect an exception to this rule already; if not,

you’ll discover it soon.

In addition to moving the selection designator around, the menu

should respond when the Return key is pressed.

A keypress event sends LÖVE three pieces of information: the key that

was pressed, the scancode of the key (layout-independent code of a key),

and whether or not the key was pressed once or pressed repeatedly (the

definition of a repeat depends on the user’s system settings). For this menu

screen, all you need to process is which key has been pressed. Detecting

the key and taking action upon it is achieved with an if loop.

Chapter 7 Menu Design

130

function menu.keypressed(k)

 if k == "down" then

 selection = selection+1

 elseif k == "up" then

 selection = selection-1

 elseif k == "return" or k == " " then

 if selection == 1 then

 game.new()

 elseif selection == 2 then

 game.load()

 elseif selection == 3 then

 window.activate()

 elseif selection == 4 then

 save()

 elseif selection == 5 then

 love.event.quit()

 end

 elseif k == "escape" then

 game.activate()

 end

end

It’s a common convention in games to use the Esc key to call and

dismiss a menu screen, so pressing the Esc key goes back to the game

screen.

To differentiate when a user is starting a new game and resuming

a saved game, the preceding code sample invents some nonexistent

functions, such as game.new() and game.load(). It’s alright that these

don’t work yet, because you’ll create them later.

Chapter 7 Menu Design

131

If you test the application, you will probably notice that the

application crashes if you try to move up from the top selection or

down from the bottom selection. If you’re not new to programming,

you probably predicted this issue, but if you’re new to all of this, then

it’s useful to witness the crash and then to follow the logic and math

that causes it.

The selection starts out as 1. Pressing the Down arrow increments

selection to 2, then 3, 4, and 5. All of these numbers correspond to the

existing five menu entries. If selection gets incremented once more to 6,

however, LÖVE doesn’t know what to do because there is no sixth menu

entry next to which it can draw the > selection symbol.

To solve this bug, you must catch when selection would normally

become either 0 or 6 and impose an existing number. A user would expect

a menu selection to wrap: when you scroll past the bottom of a list, the

active selection becomes the top of the list.

First, define in one place the number of menu entries there are by

adding the following line near the top of your code and near your other

local variable.

local menmax = 5

To do the math to fix a selection that goes out of bounds, create a new

function called wrap that requires one argument: the value of selection

plus or minus 1, depending on which key was pressed. If that value would

result in something less than 1 or higher than menmax, then reset selection

to the lowest or highest value, as appropriate, and hand it back to the

process that called the function. To save lazy programmers from too much

typing, selection is renamed sel for use within this function.

As always, you can place this function anywhere in your code file.

function wrap(sel)

 if sel > menmax then

 sel = 1

 end

Chapter 7 Menu Design

132

 if sel < 1 then

 sel = menmax

 end

 return sel

end

And finally, you must use this function when the arrow keys are

pressed. Change the arrow key lines of your keypressed code.

function menu.keypressed(k)

 if k == "down" then

 selection = wrap(selection+1)

 elseif k == "up" then

 selection = wrap(selection-1)

Try your game now. You’re able to select different menu items,

and some even work. You can start a new game, and you can quit the

application. You might notice that there’s no way to get back to the menu

once you’ve started a new game, but that’s an easy fix. Add this code to you

game.lua file:

function game.keypressed(k, uni)

 if k == "escape" then

 menu.activate()

 end

end

Try your application once more. Scroll through the menu, start a new

game, return to the menu, and then quit. The first milestone has been

reached: you have the framework that you need for a game and a menu

system.

Chapter 7 Menu Design

133

 Git
As you have seen by now, there are times during development when an

application just can’t be launched, even for testing. Sometimes your

code is incomplete, or sometimes you make some choices that render

your project unusable. These are all important stages of development,

and since it’s through experimentation that most of the really good stuff

gets done, it’s not something you ever want to discourage in yourself.

And yet, there’s something significant about reaching an important

milestone like the one you have just reached. Your project is in a pretty

good state right now. Even though there’s really not much to it, your

current codebase serves as a solid foundation upon which the rest of

the project can be built.

Furthermore, your project is divided into three files at the moment. If

you had an assistant, you could save a lot of time by working on the game

part and letting your assistant programmer work on the menu part. You’d

probably both need access to main.lua, though, so eventually you’d have

to come together and figure out what you each added or changed in each

file, and then merge your combined work.

In the world of professional software development, this is known as

version control, and the most popular version control system right now

is Git.

Git was developed when Linus Torvalds and his fellow Linux kernel

developers were ejected from a proprietary version control system, and

suddenly found that they needed a way to manage lots of changes to

hundreds of files between hundreds of developers. The lesson was clear:

open source gives the users control of their own data and their own

destiny. So, Torvalds developed his own system for managing code. Since

then, Git is synonymous with software development. It’s used by Linux,

a huge portion of open source projects, Microsoft, Apple, and movie

studios (i.e., Weta Digital, Sony, and Industrial Light & Magic), and it’s the

backbone of popular coding sites like GitLab and GitHub.

Chapter 7 Menu Design

134

Git has no effect on your application; it’s purely a tracking tool that

enables you to maintain fluid backups and different development paths

in one place. With Git, you get a running history of your project, with

snapshots (called commits in Git terminology) of important moments in

each file’s life. This gives you the ability to (figuratively) go back in time

and reverse mistakes you made along the way.

Learning Git is more a journey than a destination, but the sooner you

start, the better. You already installed Git back when you installed Geany

and several other tools, so it’s ready to use.

 Tracking
First, mark your code directory as a place you want Git to keep track of. You

can do this in a terminal; first, change the directory to your project folder,

and then run the git init command.

$ cd ~/battlejack

$ git init .

Alternatively, you can use a Git GUI called git-cola. This application

is available from dnfdragora, but the latest version available at the time of

this writing is included with the this book’s source code. Install the latest

version available from these two choices.

After you install git-cola, launch it from the applications menu or from

a terminal.

$ git-cola &

The first window prompts you to select either a directory that is

tracked by Git or (as in this case) a directory where you want to enable Git

tracking. Click the New button and select your project folder. By selecting

an untracked directory, you allow git-cola to enable Git tracking of that

location.

Chapter 7 Menu Design

135

In both cases, you can tell that Git tracking is enabled in a directory by

listing the directory along with hidden files.

$ ls --all

./ ../ deck.ini font/ game.lua .git/ img/ main.lua

menu.lua

A directory being tracked by Git is usually called a Git repository, or a

Git repo for short.

 Adding Files
Git tracking is enabled for your project now, but Git only tracks what you

tell it to track. You can see which files are (or are not) being tracked.

$ git status

On branch master

Initial commit

Untracked files:

 (use "git add <file>..." to include in what will be

committed)

 deck.ini

 font/

 game.lua

 img/

 main.lua

 menu.lua

nothing added to commit but untracked files present (use "git

add" to track)

In git-cola, untracked files are listed in the Status pane.

Chapter 7 Menu Design

136

All files in the directory are currently untracked Figure 7-2. Since

they’re all in a healthy state (your game launches and you have code that

you want to keep), add them all to Git using the wildcard character * as

shorthand for everything here.

$ git add *

$ git status

On branch master

Initial commit

Figure 7-2. Untracked files in git-cola

Chapter 7 Menu Design

137

Changes to be committed:

 (use "git rm --cached <file>..." to unstage)

 new file: deck.ini

 new file: font/arkham.ttf

 new file: game.lua

 new file: img/red-10-wizard.png

 new file: main.lua

 new file: menu.lua

Now the files have been added to a special staging area. They’ve been

marked for tracking, but you have yet to actually commit them. You can

think of a Git commit as a sort of snapshot of the current state of a file.

Commit everything in your staging area now.

$ git commit --message "game can switch between menu and game

screens"

[master (root-commit) 99dd051] game launches and switches

betwe[...]

 6 files changed, 46 insertions(+)

 create mode 100644 deck.ini

 create mode 100644 font/arkham.ttf

 create mode 100644 game.lua

 create mode 100644 img/red-10-wizard.png

 [...]

If you prefer to work within git-cola, add files by selecting them in the

Status pane, and then right-click and select Stage Selected. This stages

those files to be committed.

To commit all staged files, enter a commit message in the Commit

pane, and then click the Commit button Figure 7-3.

Chapter 7 Menu Design

138

With your files committed, you can continue to develop with a peace of

mind, knowing that if you ever get too far off track, you can always return

to this point in your project’s history.

 Restoring
With everything safely committed to your Git repository, try breaking your

project and then restoring from a previous commit.

First, change something arbitrary in game.lua to simulate some bad

coding choices. Change this line

function game.new()

to this:

function game.run()

Now launch the game and try to start a new game. Previously, starting

a new game shows a new screen, but now that you’ve made a bad edit, it

crashes LÖVE.

Figure 7-3. Git commit in git-cola

Chapter 7 Menu Design

139

Of course, in this example, the error is very small and easy to fix, but

in the future, these kinds of problems will arise unintentionally, and after

extensive changes have been made to several different files. The following

reverts back to the most recent commit of a file in Git.

$ git checkout game.lua

Run your game now and start a new game. The game is back in

working order.

If it’s not just one file you need to revert, then you can reset your entire

workspace back to the state of the most recent commit.

$ git reset --hard HEAD

To revert a file to the most recent commit using git-cola, find the

changed file in the Modified section of the Status pane. Right-click it and

select Revert Unstaged Edits.

You’ll get a chance to do more with Git as you continue to work. The

next logical step in your game’s development is to focus on the part of the

game that really matters: the game!

Chapter 7 Menu Design

141© Seth Kenlon 2019
S. Kenlon, Developing Games on the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-4170-7_8

CHAPTER 8

Battling It Out
As of the previous chapter, both the menu and game screens are accessible

when your program launches. In this chapter, you code the main game

mechanics. The logic is similar to what you have already done to create

your Blackjack game, so elements of this chapter will feel familiar, although

there are unique features to Battlejack that pose new challenges.

The central game mechanic is this: like Blackjack, the goal is to reach

21 first. Unlike Blackjack, an excess of 21 is not a bust but still wins, and the

player can “attack” the dealer’s stash of cards.

During the game, the player clicks their deck to draw a card. On their

turn, the player may select cards to cancel out a card in the AI’s stash. This

is an attack, and an attack may be bolstered by a powerup card if the player

has one available. In the meantime, a player’s cards are tallied for their

own score in an attempt to reach 21 before the AI does. If the player draws

a black card, then at the start of the dealer’s turn, one black card from the

player’s hand is added to the dealer’s stash.

If a joker is drawn from either deck, then it destroys the stash of the

opposition.

In code, this game requires a lot of data tracking. Your code must keep

track of what cards remain in each deck, what cards are in the player’s

hands, which of those cards are currently selected as cards to go into

battle against the dealer, which cards are in the dealer’s hand, which of

the dealer’s cards have been eliminated, the location of each card on the

screen, and much more. In Lua terminology, that means you need tables

(“classes” or “fields” in other languages).

142

 Card Table
In your Blackjack game, each card was its own Lua table, with a unique

self.suit, self.value, and self.img all its own, which you were able

to call from your main script when you needed to calculate the total

score or when you needed to tell LÖVE which image to draw on the

screen.

Create a card.lua file in your project directory. This file is the card

table: any time a card is generated for display on screen, it inherits all the

attributes contained in this file. As you might expect, each card requires

a face image and a numeric value and also a color. Each card also needs

to keep track of its own location on the screen, which is useful in games

because by updating one item’s attributes, you can always restore or

redraw the game state after major events.

Card = { }

function Card.init(c,v,f,x,y)

 -- generate card

 local self = setmetatable({}, Card)

 self.color = c

 self.value = v

 self.face = f

 self.x = x

 self.y = y

 self.r = 0 --rotation

 return self

end

This is a slightly more complex version of your Blackjack card table. Of

course, none of these values mean anything yet. They’re just empty fields

that need to be populated by data you feed into the table when generating

a new card.

Chapter 8 Battling it Out

143

There are still a few more fields needed. First of all, each card needs

an image. This would be identical to your Blackjack game were in not for

the addition of the Joker to this deck. In fact, you could render the Joker

and back images basically the same as all the other cards by naming their

image files as you named the face cards (0-joker.png, 0-back.png) but

then you need a copy of each in the red and black directories, which is

redundant data. There’s nothing wrong, necessarily, with that approach,

but it wouldn’t scale were this a much larger game with really big assets,

while allowing for deviations in the code is cheap, and worthwhile.

Add this block of code above the return self line of your card.lua

file:

 if self.face == "back" or self.face == "joker" then

 self.img = love.graphics.newImage("img" .. d .. self.face

.. ".png")

 else

 self.img = love.graphics.newImage("img" .. d .. self.

color .. d .. self.value .. "-" .. self.face .. ".png")

 end

And finally, it’s always important to be able to ascertain an object’s

size. A game object’s size is vital for collision detection: it’s how you tell

where to draw the next object without drawing on top of the previous

one, and it’s how you detect whether the player has clicked one object or

another.

Lua has functions specifically for the task of determining image size,

but your program is going to scale your graphics down (as in the Blackjack

game) so that the screen size can be changed. Technically, you could use

Lua’s size detection and multiply the result by your scale. Or, you can enter

the size value as part of each card. Both do the same thing, but since the

size of objects is used frequently, it’s “cheaper” to do the calculation once

and enter the value as a variable than to do the math every time a user

interacts with the screen.

Chapter 8 Battling it Out

144

Add this above the return self line of your card.lua file:

 self.wide = self.img:getWidth()*scale

 self.high = self.img:getHeight()*scale

The value of the scale variable has yet to be created, but as long as it is

defined before card.lua is actually used, there won’t be a problem.

 Game State
Currently, entering the game state of your application sets the active STATE

to game, which in turn causes the main loop to invoke your custom game.

draw() function, which renders a colored background. This all happens in

the game.lua file, so open that in Geany so you can make some changes.

The game.lua file is the logical place to define important game-related

variables, because it’s within this file that the mechanics and game data

tracking happens.

To begin with, the game logic needs access to your card class and to the

configuration file that defines what cards exist. Add the top two lines of the

following sample code to the top of your game.lua file.

require("card")

local inifile = require('inifile')

game = {}

If you have not already done so, use luarocks to install the inifile Lua

library into your project directory.

$ cd ~/battlejack

$ luarocks install --tree=local inifile

Based on both the card.lua file and your previous experience with

your Blackjack game, you can anticipate a few important variables that can

be defined whether or not your code has a need for them yet.

Chapter 8 Battling it Out

145

Start by defining some environment variables. Eventually, LÖVE

needs to know who is running the game so that it can store save files.

Lua provides the os.getenv('HOME') function to discover a user’s home

directory. In Linux, this is a folder in a directory literally called home,

whereas on the Mac, it is a folder within the Users directory, and on

Windows it is a location usually on the C drive. The point is, you don’t have

to worry about where a user keeps their personal data files, because Lua

finds that out for you.

Another thing that changes from system to system is the separator

character used to delimit directories from one another. For instance,

on the Raspberry Pi, as on any Linux or Mac system, the separator

character is a forward slash. The location to any file or folder on the

system can be predictably written out in plain text; for example, /home/

pi/battlejack/img/joker.png. On Windows, however, the separator

character is traditionally a backslash: C:\\My Documents\example\img\

joker.png. Lua can detect this for you, too, with its package.config

function.

Add the following lines to your game.lua file. The first line is already in

your file and is shown for context.

game = {}

home = os.getenv('HOME')

d = package.config:sub(1,1) -- path separator

Next, your game needs several tables to serve as decks of cards in

various states of play. Create tables called hand and horde to serve as the

player and AI active hands, tables called deck and ai to serve as shuffled

draw decks for player and AI, a table called back containing the backside of

the player and AI decks to serve as the clickable item when a player wants

to draw a new card, and a grab table to serve as a staging area for cards a

player is about to send into battle.

Chapter 8 Battling it Out

146

Finally, create a winner variable to mark whether or not a winner has

been found. By default, set it to nil. Pull card data from your configuration

file into a variable called set using the inifile function.

Here’s the code you need to add. The first two lines are for context.

home = os.getenv('HOME')

d = package.config:sub(1,1)

hand = {} --player hand

horde = {} --ai hand

deck = {} --player deck

ai = {} --ai deck

back = {} --clickable deck icons

grab = {} --selected for battle

winner = nil

-- parse the INI file and

-- put values into a table called set

set = inifile.parse('deck.ini')

Your game world needs a scale variable to use when scaling down

large card images to something that fits on the game screen. Since

checking for the appropriate scale is something that has to be done

any time a player changes the screen mode between windowed and

fullscreen, setting the scale needs to be a function that can be called as

necessary. Create a new function called game.scaler() in game.lua and

use math to determine the optimal scale factor given the current size of

the screen.

function game.scaler(WIDE,card)

 slot = WIDE/6

 scale = slot/card

 pad = WIDE*0.04

 return scale

end

Chapter 8 Battling it Out

147

The first logical place to call this function is any time a new game

begins. The function takes the width of the screen, which is a global

variable established in main.lua, and the native size of a card graphic. If

you’ve made your own graphics for this game, then you must determine

the size of your graphic yourself (you can find it in GIMP, if you’re not

sure). The example graphics included with the source code of this book are

790 pixels wide.

The game.scaler() function assumes that approximately six cards

should fit horizontally across the screen (WIDE/6). This calculation

renders the width of each card in pixels, which itself is important

enough to keep in a global variable called slot, which keeps cards from

overlapping when being drawn. The slot value divided by the unscaled

size of a card provides a decimal number by which all cards may be scaled

to fit six across the screen.

Add this line of code to your game.new() function:

scale = game.scaler(WIDE,790)

With these functions and variables in place, you can at least draw the

most rudimentary of cards screen.

Setting the card table is an activity that needs to happen at the

beginning of each new round, so it deserves its own function. Create one

now, called game.setup(), and use your card library to generate cards to

represent the player deck and the AI deck.

function game.setup()

 -- create GUI deck for player

 card = Card.init("c","v","back",pad,HIGH-slot-(pad*2))

 back[#back+1] = card

 -- create GUI deck for ai

 card = Card.init("c","v","back",WIDE-(slot/2)-pad,slot-(pad))

 back[#back+1] = card

Chapter 8 Battling it Out

148

 -- draw table background

 ground = love.graphics.newQuad(0,0,WIDE,HIGH,150,150)

 tile = love.graphics.newImage('img' .. d .. 'tile.jpg')

 tile:setWrap('repeat','repeat')

end

The first card you generate is the “top” of the draw deck for the player.

Since it’s the back of a card, it has no color or value, so you pass in the "c"

and "v" dummy values, which the card library ignores once it sees that

the card being generated is of the back type. The card’s X position is set at

the left plus the value of pad, a variable set in main.lua to provide padding

around the edges of the screen. The card’s Y position is calculated from the

height of the screen.

The card generated is added to the back table. Then the same variable

is used to generate a second card to represent the AI’s draw deck, using

new X and Y values so that the card’s placement is in the top right (across

the virtual table) instead of the bottom left. This second card is also added

to the back table.

Finally, a proper tabletop is defined. Currently, the game mode only

renders a flat color in the background, but Battlejack deserves something

more exciting. Rendering an array based on a texture or pattern is pretty

common for a game engine, and LÖVE provides the love.graphics.

newQuad function to map tiles across a given space. Specifically, this code

defines a quad of the width and height of the screen, with tiles sized

150×150 pixels (which happens to be the size of the tile pattern included

with the source code of this book). The tile is defined using the d variable

to ensure compatibility with whatever system the game is running on, and

the tile mode is set to wrap seamlessly across all available space.

Currently, nothing calls the game.setup() function, so trigger it at the

end of the game.new() function, since a user starting a new game certainly

expects their game to be set up.

 game.setup()

Chapter 8 Battling it Out

149

Of course, nothing is actually drawn unless it appears in the love.

draw() function, which in this program is aliased to the draw() function of

whatever STATE the user is in. For game play, the user is in the game state,

so you must add your draw commands to game.draw().

Clear out the code currently in the game.draw() function, replacing it

with this:

function game.draw()

 love.graphics.setColor(1,1,1)

 -- set background

 love.graphics.draw(tile,ground,0,0)

 --hand player

 card = back[1]

 love.graphics.draw(card.img,card.x,card.y,0,scale,scale,0,0)

 --horde ai

 card = back[2]

 love.graphics.draw(card.img,card.x,card.y,0,-1*scale,-

1*scale,card.img:getWidth()/2, card.img:getHeight()/2)

end

After setting the color to white to ensure that everything is drawn at

100% opacity, the tiles are drawn to create the tabletop. Order is important

here, so the tabletop must be drawn before cards are drawn, or else the

cards will be drawn “under” the table.

To draw the two card decks, you populate a temporary card variable

with one object from the back table and use that data to draw the graphic.

Since the back table contains relatively little data, manually pulling out an

entry is simple (the contents of the other tables that you have created are

far more dynamic and require for loops).

Launch your game to verify that all of your code is correct so far.

Correct any errors and make adjustments as needed, and then it’s time to

set up the deck creation functions.

Chapter 8 Battling it Out

150

 Deck Building
Like any card game, a key element of Battlejack is the random nature of the

game elements. Functionally, that means your program needs a reliable

set of methods that you can use repeatedly to create freshly randomized

decks of cards based on the card definitions you have set forth in your card

definition INI file.

To create decks for Battlejack, you must fill two distinct tables with

card definitions: one filled with red cards and the other with black cards.

However, it’s part of the game design that there are six black “mole” cards

inserted into the player deck, so six cards must be stolen from one deck

and inserted into the other. Additionally, a Joker must be placed in each

deck but not accidentally stolen when the black “mole” cards are inserted

into the player deck. And finally, each deck must be shuffled to ensure

unpredictability.

In your game.lua file, create four new functions: game.setsplit(),

game.mole(), game.joker(), and game.shuffle().

First, to create two distinct tables containing card definitions for

each color, you need to know which part of the INI file to use. For lack of

better terminology, call this a stack (as in a stack of cards). You also need

to know which deck you are building: red or black. Essentially, you need

to determine whether the deck is meant for a human player or for the

computer, so call this attribute human. Finally, you need a table to build

the deck into, and you need to know the number of stacks to put into each

deck, because it would be a very quick game were there only one copy of

each card.

function game.setsplit(stack,human,tbl,n)

 for count = 1, n do

 for i,card in pairs(set[stack]) do

 if human == 1 then

 color="red"

Chapter 8 Battling it Out

151

 else

 color="black"

 end

 tbl[#tbl+1]=color .. "," .. card

 end

 end

 return tbl

end

This code uses a for loop to repeat the same action for as many times

(n) as you proscribe when calling the function. The action that it takes is

another for loop that iterates over the set variable, which contains the

contents of the card section of your INI file, assigns a color to the card

definition, and then places the card definition into whatever table you

have told it to build into.

The table is returned at the end of the function, so you call the function

as a constructor method, with its results placed into a destination of your

choosing. For now, call the function in the game.setup() function.

-- create sets

deck = game.setsplit("card",1,deck,2)

ai = game.setsplit("card",0,ai,2)

Next, you need to steal six cards from the black deck. If you do that

immediately after building the decks, however, the same black cards are

stolen every time because no randomness has been introduced into the

decks. For this reason, you need to develop the shuffle method first.

As you might expect, asking a computer to do something randomly

requires the use of Lua’s math.random() function. This needs a random

seed, and the easiest ever-changing source of numbers in a computer

is its clock. Activate a random seed at the top of your game.new()

function.

math.randomseed(os.time())

Chapter 8 Battling it Out

152

To cause a table to “shuffle” its order, you take the table into a function,

determine the number of items it has in it, and then take a random

number between 1 and the number of items in the table. Take the current

item and swap it with the random numbered item. Repeat this until each

item has traded places with some other item.

function game.shuffle(tbl)

 local len = #tbl

 for i = len, 1, -1 do

 local j = math.random(1, i);

 tbl[i], tbl[j] = tbl[j], tbl[i];

 end

 return tbl;

end

Now that you have a way to shuffle decks, it’s safe to steal cards from

one to sabotage the other. For the game.mole() function, you first shuffle

the AI deck to ensure that you’re grabbing random cards. Then you take

the first number of cards (the rules say six, but in case the function is used

for some other purpose later, use n to signify a configurable number) and

insert those cards into your target deck. Once inserted into the new deck,

remove the stolen entry from the source table.

function game.mole(src,tgt,n)

 -- shuffle

 src = game.shuffle(src)

 for count = 1, n do

 tgt[#tgt+1] = src[count]

 table.remove(src,count)

 end

end

Chapter 8 Battling it Out

153

The last function inserts a Joker card into a deck. It’s a straightforward

table append.

function game.joker(tbl,human)

 if human == 1 then

 color="red"

 else

 color="black"

 end

 tbl[#tbl+1] = color .. ",joker,0"

 return tbl;

end

Now that the functions to build decks exist, you must use them. It’s

reasonable to first call these functions in the game.setup() function, since

that is presumably called any time that a new game is started. Add this

code to your setup:

-- create sets

deck = game.setsplit("card",1,deck,2)

ai = game.setsplit("card",0,ai,2)

-- steal cards from black

game.mole(ai,deck,6)

-- insert joker

deck = game.joker(deck,1)

ai = game.joker(ai,0)

-- shuffle

deck = game.shuffle(deck)

ai = game.shuffle(ai)

If you launch your game now, it runs successfully but very quietly. For

temporary insight into the inner workings of the game, add this block of

code to the end of the setup() function:

Chapter 8 Battling it Out

154

 print("deck -----------------")

 for i,card in pairs(deck) do

 print(card)

 end

 print("ai -----------------")

 for i,card in pairs(ai) do

 print(card)

 end

Launch the game and look at the terminal to see a text list of the cards

in each deck.

The next step is to transform all of this setup work into a playable

game.

 Playable Cards
Playing Battlejack is a three-step process: the user must draw a card, the

user must select cards to use in an attack, and then the user must choose

a target for an attack. That means your code needs functions to visually

produce a card into the player’s hand, to mark cards as selected, and

finally, to resolve a battle.

Create a new function called game.cardgen() that accepts a deck

as an argument. This function’s job is to parse the next available card

definition from a deck to use your card library to create a card object

with all the necessary attributes (image, width, height, position, and

so on), and to add it to the table representing the player’s hand or the

AI horde.

As cards are drawn from a deck, they must be removed from that deck

or else the same card would be drawn for eternity. For that reason, the

deck table becomes populated with nil entries as the game progresses, so

your function must be programmed to skip over empty entries.

Chapter 8 Battling it Out

155

When a valid entry is found, the text must be parsed. Card data (as

you were able to see when you wrote the temporary introspection for your

last functions) is separated by commas; for example, black,goblin,5

or red,arcanist,3. To extract information from this, you use the Lua

match function, which permits you to provide a regular expression

representing the pattern of text you expect to see in each card entry of a

deck. Specifically, you tell LÖVE to expect any text followed by a comma,

and then any text followed by another comma, and finally, any text. Each

component found by match is placed into a unique variable, which is

passed to your card library.

function game.cardgen(src)

 local count = 0

 while src[count] == nil do count = count+1 end

 local c,f,v = src[count]:match("([^,]+),([^,]+),([^,]+)")

 card = Card.init(c,v,f,nil,nil)

 src[count] = nil

 if src == deck then

 hand[#hand+1] = card

 card.y = HIGH-(pad*2)-slot

 else

 horde[#horde+1] = card

 card.y = pad/4

 end

 return card

end

Now you need something to trigger your new function. Clicking the

back of the player’s deck should produce one card for the player, and

one card for the AI. Unlike in your Blackjack game, there are several

clickable objects in this game, so your mousereleased function needs to

be able to detect exactly what clicked. This is best done with a dedicated

Chapter 8 Battling it Out

156

click detection function that analyzes the X and Y coordinates of a click,

compares it with the dimensions of some given object, and determines

whether or not the X and Y of the click falls within the boundaries of the

object.

function game.clicker(x,y,tgt)

 return (

 x < tgt.x + tgt.wide and

 x > tgt.x and

 y < tgt.y + tgt.high and

 y > tgt.y

)

 -- returns True or False

end

Notice that this function is a little different than any of the functions

you’ve written so far; it returns either true or false, depending on the

results of its calculation. This is a convenience that lets you use the result

of a call to the function as a sort of switch; if it returns false, then you know

that there’s no reason to continue analyzing a click.

Now when the player releases mouse button 1, look at both cards in the

back table. Check whether either deck was clicked, but restrict the check to

the lower half of the screen (rendering clicks in the AI deck meaningless).

If so, generate one card for the player and one card for the AI.

function game.mousereleased(x,y,btn)

 if btn == 1 then

 --take a card

 for i,obj in pairs(back) do

 if game.clicker(x,y,obj) and y > HIGH-slot-pad then

 card = game.cardgen(deck)

 card = game.cardgen(ai)

 end --if

Chapter 8 Battling it Out

157

 end --for

 end --if

end

As usual, nothing is actually drawn to screen unless it’s accounted for

in the draw() function; so add two new for loops (one for each hand) to

your draw loop. The first two lines are for context.

 -- set background

love.graphics.draw(tile,ground,0,0)

-- draw cards

for i,obj in pairs(horde) do --ai

 obj.x = WIDE-(slot*i)-slot-pad

 love.graphics.draw(obj.img,obj.x,obj.y,0,scale,scale,0,0)

end

for i,obj in pairs(hand) do --player

 obj.x = pad+(slot*i)

 love.graphics.draw(obj.img,obj.x,obj.y,obj.r,scale,scale,0,0)

end

Launch the game and draw some cards.

 Battle
Sending cards into battle is also all about click detection. Since the user

can select more than one card to combat an enemy card, you must mark

selected cards as selected until an enemy target is clicked. You already

have a table called grab, and so it serves as a kind of extension of the

player’s hand, containing any cards that have been clicked in preparation

for battle. Of course, clicking an already grabbed card causes it to be

deselected.

Chapter 8 Battling it Out

158

To detect whether a card is selected or not, you need a function to

check for the presence of a specific card (the one that a player has clicked)

in a table (the grab table). Create a function called game.isselected()

and use it to cycle through a table in search of a specific card.

function game.isselected(src,tgt)

 for k,v in pairs(tgt) do

 if v==src then

 return k

 end

 end

end

Now that you have the ability to detect whether a card has been

grabbed yet, you can process mouse clicks. For the action of grabbing a

card and adding it to the grab table, you can use a the LÖVE mousepressed

function, simply to avoid overloading the mousereleased function with too

many checks.

The logic is simple. If mouse button 1 is pressed, check to see whether

the object clicked is in the player’s hand table. If it is, but it is not in the

grab table, then change its position slightly to show that it is selected, and

add it to the grab table. If it’s already in the grab table, then move it back in

line with the other cards and remove it from the table.

function love.mousepressed(x,y,btn)

 if btn == 1 then

 for i,obj in pairs(hand) do

 if game.clicker(x,y,obj) and not game.isselected(obj,grab)

then

 obj.y = obj.y - (slot*2*scale)

 grab[#grab+1] = obj

 elseif game.clicker(x,y,obj) and game.isselected(obj,grab)

> 0 then

Chapter 8 Battling it Out

159

 obj.y = HIGH-(pad*2)-slot

 k = game.isselected(obj,grab)

 grab[k] = nil

 end

 end

 end

end

Launch the game and try selecting some cards from your hand.

 Visual Effects
Selecting cards for battle should be an exciting prospect in the game. After

all, it’s the central mechanic; without this, the game is basically Blackjack.

While elevating the card on the table is pragmatically effective, it’s not very

flashy.

One way to “sweeten” the act of selecting cards for battle is to add

a simple visual effect. You can imagine, for instance, that in a fantasy

battle, warriors chosen to go out onto the front line might glow with a

magical aura. In video game design terms, that translates to a particle

effect.

Particle effects are relatively expensive, so you don’t want to over-

use them, especially on a relatively weak platform like the Pi. But as an

indicator that something is “hot” and ready for battle, it’s justified.

To set up a particle effect, you must point LÖVE to a graphic that

is to be used as the actual particles. This particle serves as the raw

material for the effect, and there are a few important attributes to set to

keep the effect from devouring your processor and spreading particles

all over the screen.

Add the following particle setup code to the top matter of your game.

lua file. The first line is for context.

Chapter 8 Battling it Out

160

set = inifile.parse('deck.ini')

local mana = love.graphics.newImage('img' .. d .. 'part.png')

parti = love.graphics.newParticleSystem(mana, 12)

parti:setParticleLifetime(2,5) -- Particles live span min,max

parti:setEmissionRate(4)

parti:setSizeVariation(1)

parti:setLinearAcceleration(-12,-12,12,0) --xmin,ymin,xmax,ymax

parti:setColors(255,255,255,255,255,255,255,0) --Fade

To use the effect, add it to your draw function. Its placement is

important, since you probably want it to be rendered under the player

cards so that the particles appear to be rising up from within or behind the

selected cards.

for i,obj in pairs(grab) do

 local count = 1

 while count < obj.wide/mana:getWidth() do

 love.graphics.draw(parti,obj.x+(mana:getWidth()*count+1),

obj.y+(pad/3))

 count = count+1

 end

end

for i,obj in pairs(hand) do -- this line for context

Since the particle graphic itself is quite small, this code uses a while

loop to place a particle seed along the top edge of any card in the grab

table.

Finally, use the LÖVE update function to detect and update changes in

the particles. It only needs to take action if the grab table is not empty.

Chapter 8 Battling it Out

161

function love.update(dt)

 if #grab > 0 then

 parti:update(dt)

 end

end

Launch your game again and select some cards for battle to see the

effect Figure 8-1.

Figure 8-1. Particle effects used to highlight a selection

Chapter 8 Battling it Out

162

 Resolving Conflict
To settle the outcome of a card battle, you must compare the player’s cards

selected for battle against the AI card being targeted. This happens only if

1 or more cards is present in the grab table, and only when a card in the AI

horde has been clicked.

There’s also one important exception to any attack: if the card is a

Joker, then all cards in the horde are wiped out.

To obliterate an entire hand, you can use a new function. Call it game.

blast() and make it clear out whatever table it is provided.

function game.blast(tgt)

 local count = #tgt

 for i=0, count do tgt[i]=nil end

end

This function is useful not only for a Joker attack, but also as a way to

make sure a player is starting with an empty hand, horde, grab, and other

tables, at the start of a new game. In fact, why not add summary blasts to

the game.new() function now.

function game.new()

 game.blast(deck)

 game.blast(ai)

 game.blast(hand)

 game.blast(horde)

 game.blast(back)

 game.blast(grab)

 winner = nil

 scale = game.scaler(WIDE,790)

Chapter 8 Battling it Out

163

 -- start new game

 STATE = game

 math.randomseed(os.time())

 game.setup()

end

If you launch your game and draw a few cards, and then press Esc to

bring up the menu, and then start a new game, you find that a new game is

now, finally, truly a new game.

Resolving battle is still incomplete. Aside from the blast function, it

mostly happens within the mousereleased function.

Order is important now. Currently, your mousereleased function

checks whether the mouse button is button 1 and then takes action. But

the button is always button 1, so new qualifiers are required. For instance,

if the mouse button is 1 and there are cards currently grabbed, then check

to see if it was a card in the horde table that was clicked. If so, then it’s time

to battle. If not, then check that the click was button 1 and that a card in the

back table was clicked, and draw a card.

In addition to removing the attacked horde cards, the player’s

resources require adjustment. The cards used in the attack are also

removed from the player hand. However, this must only happen if the

attack is successful, since a player could attempt to attack without enough

power to actually remove cards from the field. You must decide through

play testing whether a successful attack must be greater than a black card,

or if a card that is equal to or greater than a black card is victorious. The

sample code here allows for cards both equal in value and greater in value

to defeat the opponent.

Create a new function called game.postbattle() to perform the

menial task of removing cards from a table.

Chapter 8 Battling it Out

164

function game.postbattle(src,tgt)

 for i,card in ipairs(src) do --remove grabbed cards

 k = game.isselected(card,src)

 src[k] = nil

 k = game.isselected(card,tgt)

 table.remove(tgt,k)

 end

end

And then perform the checks and balances of battle in the

mousereleased function.

function game.mousereleased(x,y,btn)

 local attack = 0

 if btn == 1 and #grab > 0 then

 for i,obj in pairs(horde) do --examine each card in

horde

 if game.clicker(x,y,obj) then --get horde card that got

clicked

 for i,card in pairs(grab) do --check value of grabbed

cards

 attack >= attack+tonumber(card.value) --add value to

total attack

 if card.face == "joker" then

 game.blast(horde)

 game.postbattle(grab,hand)

 end --if

 end --for

Chapter 8 Battling it Out

165

 if attack > tonumber(obj.value) then

 -- remove from horde

 k = game.isselected(obj,horde)

 table.remove(horde,k)

 game.postbattle(grab,hand)

 end --if

 end

 end

 elseif btn == 1 then

 --take a card

 for i,obj in pairs(back) do

 if game.clicker(x,y,obj) and y > HIGH-slot-pad then

 card = game.cardgen(deck)

 card = game.cardgen(ai)

 end --if

 end --for

 end --elseif

end

Launch your game and take out the opposition. There’s no win or lose

condition yet, and there may be a few crashes, but the basic mechanic and

game play is complete. Your game is now firmly in alpha.

Chapter 8 Battling it Out

167© Seth Kenlon 2019
S. Kenlon, Developing Games on the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-4170-7_9

CHAPTER 9

Balance of Power
There are a few small bugs in Battlejack, and a few opportunities for a

better user experience. This chapter fixes the bugs and adds some features

to make the game flow better.

The first bug you may not have noticed yet: if you click the mouse on

the menu screen, the game crashes. This is caused by the main.lua file

forwarding any detected mouse press or release to STATE.mousepressed()

or STATE.mousereleased(), and finding no corresponding menu.

mousepressed() or menu.mousereleased() function.

The fix is simple: create functions to process mouse events on the

menu screen. Since no action is required on a mouse event, a dummy

response is all that’s needed.

function menu.mousereleased(x,y,btn)

 return false

end

function menu.mousepressed(x,y,btn)

 return false

end

Another noticeable bug is the lack of feedback from the game. The

progress of the game is very difficult to follow without a running tally of

each player’s score, and without the declaration of who has won and who

has lost.

168

To print the current totals of each hand, you must calculate a running

total that updates as frequently as each hand changes. The two functions

that update most frequently are the draw() and update(dt) functions, and

there’s not necessarily any reason to use one over the other. However, since

the draw() function is busy drawing cards and hands, put the calculation

in the update function.

For context, the whole update function is as follows.

function love.update(dt)

 if #grab > 0 then

 parti:update(dt)

 end

 handval=0

 hordeval=0

 for i,obj in pairs(hand) do

 handval = handval+tonumber(obj.value)

 end

 for i,obj in pairs(horde) do

 hordeval = hordeval+tonumber(obj.value)

 end

end

Notice that the values of handval and hordeval are each reset

at the beginning of each update. This ensures that the total score is

recalculated with every update rather than compounded upon itself.

The total for each hand is the sum of each card in each hand, using the

tonumber Lua method to translate the value of each card from a string

into an integer.

Drawing the tally on screen is done the same way as drawing any text

on screen, and for added effect you can add a graphical element to suggest

a magical glow. Sample graphics are included in the code files for this

book.

Chapter 9 BalanCe of power

169

Create the effect graphics for each deck near the top of your game.lua

file.

local glow = love.graphics.newImage('img' .. d .. 'glow.png')

local shadow = love.graphics.newImage('img' .. d .. 'shadow.

png')

Then add the graphics and running total to your game.draw() function.

The draw function is getting crowded, and order does matter for layering

effects, so here is the complete function so far.

function game.draw()

 love.graphics.setColor(1,1,1)

 -- set background

 love.graphics.draw(tile,ground,0,0)

 --hand player

 font = love.graphics.setNewFont("font/Arkham_reg.TTF",36)

 card = back[1]

 love.graphics.draw(glow,card.x,card.y-(card.y/4),0,scale,

scale,0,0)

 love.graphics.draw(card.img,card.x,card.y,0,scale,scale,0,0)

 love.graphics.setColor(0,0,0)

 love.graphics.printf(tostring(handval),(slot)-slot/2,card.y-

pad,slot/2,'center')

 love.graphics.setColor(1,1,1)

 --horde ai

 card = back[2]

 love.graphics.draw(shadow,card.x,(card.y*2)+card.y/2,0,

scale,scale,card.img:getWidth()/2, card.img:getHeight()/2)

 love.graphics.draw(card.img,card.x,card.y,0,-1*scale,-

1*scale,card.img:getWidth()/2, card.img:getHeight()/2)

 love.graphics.setColor(0.8,0.1,0.1)

Chapter 9 BalanCe of power

170

 love.graphics.printf(tostring(hordeval),card.x-pad,card.

y+card.y,slot/2,'center')

 love.graphics.setColor(1,1,1)

 font = love.graphics.setNewFont("font/Arkham_reg.TTF",72)

 -- draw cards

 for i,obj in pairs(horde) do --ai

 obj.x = WIDE-(slot*i)-slot/2

 love.graphics.draw(obj.img,obj.x,obj.y,0,scale,scale,0,0)

 end

 for i,obj in pairs(grab) do

 local count = 1

 while count < obj.wide/mana:getWidth() do

 love.graphics.draw(parti,obj.x+(mana:getWidth()*

count+1),obj.y+(pad/3))

 count = count+1

 end

 end

 for i,obj in pairs(hand) do --player

 obj.x = pad+(slot*i)

 love.graphics.draw(obj.img,obj.x,obj.y,obj.r,scale,

scale,0,0)

 end

end

Try playing the game now to test the new functions, taking note of bugs

or missing features.

Chapter 9 BalanCe of power

171

 Git Commit
A lot of progress has been made up to this point, so it makes sense to

commit the changes to Git, just in case changes you make later render the

game unplayable by mistake.

Open git-cola and look in the Status pane to see which files you have

changed but not yet committed. A Git commit is like a snapshot, so even

though you have committed an earlier version of a file, you must take a

new snapshot of any changes since the original commit.

You can also review your Git repository in a terminal.

$ cd ~/battlejack

$ git status

On branch master

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 modified: game.lua

 modified: menu.lua

no changes added to commit (use "git add" and/or "git commit -a")

In git-cola, right-click the updated files in the Status pane and select

“Stage selected”.

Or in a terminal, enter the following.

$ git add game.lua menu.lua

To commit the files to Git with git-cola, fill in a brief commit message

and then click the Commit button. To do the same in the terminal.

$ git commit -m 'click interception and running total score'

In the future, you should commit code whenever you make a

significant change that has not broken your codebase. It’s a good habit to

get into, and in case of disaster, it can save you hours of work.

Chapter 9 BalanCe of power

172

 Leveling Up
Game difficulty is a tricky to get right. What’s gratifyingly difficult for one

player is discouraging to another, so the level of challenge in your game is

ultimately up to you. However, playing through the game as it is now, it’s

arguable that the Joker card in both decks is imbalanced. For the player, it

buys valuable time as the AI brute forces its way toward a winning hand,

but it would be a guaranteed loss for the player should a Joker be played

against them. For that reason, comment out the addition of a Joker card to

the AI deck.

deck = game.joker(deck,1)

--ai = game.joker(ai,0)

That balances the game, and catching it early prevents you from having

to write the code associated with the AI playing a Joker card. If you decide

to add it back later because you want the extra challenge, you can use the

game.blast function when the player draws a Joker card, and you can

write the necessary code.

Balancing a game isn’t just crippling the opposition, but also bolstering

the player. The human player in Battlejack is up against a relentless march

of cards that are drawn but never spent. Tipping the scales in the player’s

favor has two important effects: it makes the player feel more powerful as

they achieve victories, and it assures the player that all their hard work is

paying off.

To create a leveling system, instantiate a variable at the top of game.

lua, setting it to 0 by default. The first line in the code sample is for context.

winner = nil

level = 0

The level can be printed on screen using the usual love.graphics.

printf function, which you’ve already used in both Blackjack and

Battlejack. However, the player doesn’t really need a constant reminder of

Chapter 9 BalanCe of power

173

what level they’re on, so it’s a good idea to create some marker variable to

signal the level text to disappear. You could use the Lua os.clock function

to measure the passage of time, but in a turn-based game like Battlejack,

time is more or less relative compared to when the player clicks, so it’s

more meaningful to use clicks as a measure of “time” than actual time.

Create a new variable called progress to represent how far into a game

the player has progressed. This variable needs to be reset each time a new

game is started, so create and set the variable in the game.new function.

progress = 0

Increment the variable whenever the mouse is released. The first two

lines are for context.

function game.mousereleased(x,y,btn)

 local attack = 0

 progress = progress+1

And finally, in the draw function, draw the level text until progress is 2

or greater.

if progress < 2 then

 love.graphics.printf("Level " .. level,0,pad+HIGH/3,WIDE,

'center')

end

To increment a level, you need a way to determine the winner. You

wrote similar code for the Blackjack game, and it only needs minor

adjustment for this game. Here is the complete update function.

function love.update(dt)

 if #grab > 0 then

 parti:update(dt)

 end

Chapter 9 BalanCe of power

174

 handval=0

 hordeval=0

 for i,obj in pairs(hand) do

 handval = handval+tonumber(obj.value)

 if obj.color == "bonus" then

 handval = handval-tonumber(obj.value)

 end

 end

 for i,obj in pairs(horde) do

 hordeval = hordeval+tonumber(obj.value)

 end

 -- ID the winner

 if handval >= 21 and handval > hordeval then

 winner = "hand"

 elseif hordeval >= 21 and hordeval > handval then

 winner = "horde"

 elseif handval >= 21 and handval == hordeval then

 winner = "tie"

 end

end

Each mouse release, check to see whether a winner has been declared

and either increment the level or start a new round. This check must be

performed before anything else so that as soon as there’s a valid winner,

game play stops.

The first three lines are for context.

function game.mousereleased(x,y,btn)

local attack = 0

progress = progress+1

Chapter 9 BalanCe of power

175

if btn == 1 and winner ~= nil then

 if winner == "hand" then

 level = level+1

end

 game.sleep(1)

 game.new()

end

This code refers to a new function that doesn’t exist yet: game.sleep.

This function causes the game to “sleep” to ensure that the player isn’t

missing important information. Without a brief pause, the game would go

from “You win” to “Level 1” messages in the blink of an eye.

Unlike many programming languages, there is no function in Lua’s

standard library for sleeping, but it’s an easy function to implement. Add

this to game.lua:

function game.sleep(s)

 local ntime = os.clock() + s

 repeat until os.clock() > ntime

end

You can play the game now to see the latest improvements.

Remember to commit your changes with Git, as long as everything works

as expected.

 Powerup
The game increases the player’s levels but so far doesn’t actually reward

them with anything substantial. Now that the level mechanism is in place,

you can use it to add new cards into the player’s deck any time they gain

a level. This gives the player the feeling of growing power, and a sense of

accomplishment.

Chapter 9 BalanCe of power

176

First, you need some way to alert the player of their accomplishment.

You could print a message on the game screen, but for something as

significant as an hard-earned powerup, a special message screen seems

more important and means less clutter in the game play area.

On the message screen, you can display the new cards added to the

deck after each victory. It can do double duty as an alert message when the

player draws a black card from their own deck, underscoring that their luck

has changed for the worst.

You need a few new tables and variables for this mechanism. Since

there are sets of cards involved, you need new tables, earn for earned

bonuses and up for powerups. Since the winner variable is set back to nil

with each new game, you need a new persistent variable called lastwon to

represent whether the player won the last round or not.

You also need to create a new file called msg.lua to serve as your

message screen.

Add these new elements to the top of your game.lua file.

require("card")

require("msg")

up = {} --powerups

earn = {} --earned bonuses

winner = nil

level = 0

lastwon = 0

In a new file called msg.lua, build a new game state called msg. This is

similar to the menu game state. When activated, the STATE variable changes

to msg, meaning all user input is directed to msg.lua, meaning you need

the same mouse click interception as other modes. Since the point of this

message screen is to convey information to the player, create an OK button

to dismiss the screen.

Chapter 9 BalanCe of power

177

msg = {}

function msg.activate()

 STATE = msg

 font = love.graphics.setNewFont("font/Junction_regular.

otf",24)

 button_ok = love.graphics.newImage("img" .. d ..

"button_ok.png")

end

function msg.mousereleased(x,y,btn)

 return false

end

function msg.keypressed(k)

 game.activate()

end

You also need a function to detect clicks made on the OK button, and a

mouse click function to respond to those clicks. It’s arbitrary, in this case,

whether you respond to a mouse press or a mouse release, since in either

case the result is the dismissal of the message screen and the activation of

the game state.

function msg.clicker(x,y,tgt)

 return (

 x < (WIDE/2)-(button_ok:getWidth()/2) + tgt:getWidth()

and

 x > (WIDE/2)-(button_ok:getWidth()/2) and

 y < HIGH/2 + tgt:getHeight() and

 y > HIGH/2

)

 -- returns True or False

end

Chapter 9 BalanCe of power

178

function msg.mousepressed(x,y,btn)

 if btn == 1 and msg.clicker(x,y,button_ok) then

 game.activate()

 end

end

And finally, you must generate the content of the message. Since the

message screen is going to serve as an alert for bonuses and powerups as

well as the unfortunate instance of drawing a black card from the player

deck, you must use an if statement to determine whether you need to

display two cards (a bonus and a powerup) or just one card (a single black

card drawn from the player deck).

function msg.draw()

 love.graphics.setBackgroundColor(0.1,0.1,0.1)

 if earncard ~= nil then

 love.graphics.draw(upcard.img,((WIDE-upcard.wide)/2)-

upcard.wide,pad,0,scale,scale,0,0)

 love.graphics.draw(earncard.img,(WIDE+earncard.

wide)/2,pad,0,scale,scale,0,0)

 else --only one card to display

 love.graphics.draw(upcard.img,((WIDE-upcard.wide)/2),pad,

0,scale,scale,0,0)

 end

 love.graphics.printf(message,0,pad+HIGH/3,WIDE,'center')

 love.graphics.draw(button_ok, (WIDE/2)-(button_ok:getWidth()

/2),HIGH/2,0,1,1,0,0)

end

This introduces two new variables: an earncard and an upcard. These

variables don’t exist yet, but you will create them before calling the new

msg screen. They will contain the card or cards that have been generated

from either a victory or an unfortunate hand.

Chapter 9 BalanCe of power

179

As with the card sets for your player and AI, you must populate your

earned bonus and powerup tables in the game.setup() function.

up = game.setsplit("up",1,up,1)

earn = game.setsplit("earn",1,earn,1)

You also need a method for inserting new cards into the player’s deck.

You have already created a method to insert a Joker card into a deck, and

while it seemed like a sensible function at the time, you can see now that

it could be expanded into a generic method for inserting any card type

into a deck. An additional argument is required so that the function can

differentiate between a normal card and a bonus or powerup card, and the

function name should change to better reflect its new generic purpose.

Change the game.joker function to this:

function game.adder(tbl,human,card,v,bonus)

 if bonus == 1 then

 color="bonus"

 elseif bonus == 0 and human == 1 then

 color="red"

 else

 color="black"

 end

 tbl[#tbl+1] = color .. "," .. card .. "," .. tostring(v)

 return tbl;

end

Accordingly, change the Joker addition to the player deck in the game.

setup function.

deck = game.adder(deck,1,"joker",0,0)

And then add the bonus and powerup cards to the deck. These

cards are only added after level 0 has been won, and the player is only

alerted to new additions that have been won from the previous victory.

Chapter 9 BalanCe of power

180

Once the cards have been earned, they are silently added to the deck.

This means that a message screen is only shown when lastwon is set to 1.

It also means that which cards are added can be controlled according

to the current value of the level variable. That is, starting at level 1,

all cards in the earn and up tables, from 1 to 1, are added. At level 2, all

cards from 1 to 2 are added. At level 3, all cards from 1 to 3 are added,

and so on. When you have no further cards to add, the limit is capped

to the highest number of cards defined in the earn and up sets of deck.

ini.

Add the following code to your game.setup function. The first two and

last two lines are for context.

 deck = game.adder(deck,1,"joker",0,0)

 --ai = game.adder(ai,0,"joker",0)

 -- power ups

 if level > 0 then

 local limit = level

 if level > 8 then limit = 8 end

 for i = 1, limit, 1 do

 c,f,v = up[i]:match("([^,]+),([^,]+),([^,]+)")

 deck = game.adder(deck,1,f,v,1)

 end

 upcard = Card.init("bonus",v,f,WIDE/2,HIGH/2)

 -- earned bonuses

 local limit = level

 if level > 5 then limit = 5 end

 for i = 1, limit, 1 do

 c,f,v = earn[i]:match("([^,]+),([^,]+),([^,]+)")

 deck = game.adder(deck,1,f,v,0)

 end

 earncard = Card.init(c,v,f,WIDE/2,HIGH/2)

Chapter 9 BalanCe of power

181

 --alert player if recent win

 if lastwon == 1 then

 message="New cards added to your deck!"

 msg.activate(earncard,upcard,message)

 end

 end

 -- shuffle

 deck = game.shuffle(deck)

 ai = game.shuffle(ai)

The alert mechanism requires that lastwon is kept updated across

rounds. It is only set to 1 when the player has just won a round. It is set to

0 in a loss or a tie. Add lastwon management to the game.draw function

code that monitors for a winner. Most of the following code exists in your

function already, so only add the lastwon lines to your existing code.

 if winner == "hand" then

 lastwon = 1

 love.graphics.printf("You have won!",0,pad+HIGH/3,WIDE,

'center')

 elseif winner == "horde" then

 lastwon = 0

 love.graphics.printf("You have lost.",0,pad+HIGH/3,WIDE,

'center')

 elseif winner == "tie" then

 lastwon = 0

 love.graphics.printf("Tied game.",0,pad+HIGH/3,WIDE,

'center')

 end

Chapter 9 BalanCe of power

182

The other purpose for the message screen is to alert the player when

a traitor has been discovered among their ranks, or in mechanical terms,

they have drawn a black card from their own red deck.

This requires an if statement in the game.mousereleased function,

when a new card is drawn from the player deck. When a card is generated,

you assign it to the card variable, and since card generation uses your

own card.lua code, you know that you can look at its color by looking at

card.color. If the color is black, then you can trigger a few actions. First, a

message should be given to the player, telling them of the bad news. Then,

the card must be placed into the AI hand and removed from its default

destination of the player’s hand.

Adjust the final elseif clause in your game.mousereleased function.

 elseif btn == 1 then

 --take a card

 for i,obj in pairs(back) do

 if game.clicker(x,y,obj) and y > HIGH-slot-pad then

 card = game.cardgen(deck)

 if card.color == "black" then

 -- insert card into horde

 card.y = pad/4

 horde[#horde+1] = card

 message="Black card drawn!"

 earncard = nil

 upcard = card

 msg.activate()

 -- remove card from hand

 hand[#hand] = nil

Try playing a few rounds to see how the new bonus and powerup cards

perform.

Chapter 9 BalanCe of power

183

 Powerup Double Draw
Now that the game is more complex and more complete, play testing is a

little difficult. You have to play longer, and press more keys or click more

things to find the bugs. Don’t let that deter you, though; there are bugs to

fix yet.

One notably missing feature is the way powerup cards are treated. First

of all, they’re counting toward the total of the player’s hand, but they’re

meant to be powerups, not just another card. Contrariwise, the powerup

cards count as one card draw, meaning that in a sense they penalize the

player because the game’s most urgent mechanic is the need for more

cards. If a “powerup” card takes up a turn but adds nothing to the player’s

points stash, then the player is arguably better off without the powerup.

The way to make a powerup feel like a powerup is to give the player a

second card any time a powerup card is drawn. That way, a powerup card

adds temporary ammunition to the player’s hand but doesn’t cost them

any points toward their score.

Add the following exemption to the score calculation in the update

function.

handval=0

hordeval=0

for i,obj in pairs(hand) do

 handval = handval+tonumber(obj.value)

 if obj.color == "bonus" then

 handval = handval-tonumber(obj.value)

 end

end

And then add a free additional card draw whenever a bonus card is

detected in the game.draw function. This requires an additional elseif

clause at the end of the final if code. The first line and last five lines are for

context (and are marked as such).

Chapter 9 BalanCe of power

184

 hand[#hand] = nil --context

 elseif card.color == "bonus" then

 card = game.cardgen(deck)

 if card.color == "black" then

 -- insert card into horde

 card.y = pad/4

 horde[#horde+1] = card

 hand[#hand] = nil

 end

 end

 card = game.cardgen(ai) --context

 end

 end

 end --if

end

The logic here is fairly simple, but for the one exception when a player

draws a bonus card and then a black card. The code first checks for a

bonus card. If the card is a bonus card, then a new card is immediately

drawn. If that card is a black card, then that card is silently moved into

the AI’s hand and removed from the player’s hand. This is done without

a message to avoid too many alerts. You can change this, if you prefer

verbosity, but during play testing pay close attention to how often the

game is interrupted so that you don’t annoy your players.

 Font and UI Consistency
There’s another bug hidden in the code that you might not have discovered

yet. Because the game uses two different fonts and font sizes, going back

to the menu screen after a game has started results in unreadable menu

options. The fix for this is to monitor font settings closely. Specifically,

you can enforce the “default” font for each game state in the activate

functions.

Chapter 9 BalanCe of power

185

For instance, the only font needed for the menu state is the rather plain

Junction font at 14 points. Make sure that the font variable is set to that

every time the menu is activated.

function menu.activate()

 STATE = menu

 selection = 1

 font = love.graphics.setNewFont("font/Junction_regular.

otf",14)

end

Similarly, the primary font for the game state is the stylish Arkham font

at 72 points.

function game.activate()

 -- switch to game screen

 STATE = game

 font = love.graphics.setNewFont("font/Arkham_reg.TTF",72)

end

And the message screen uses plain old Junction, for readability. This

should already exist in your code, but confirm that your msg.activate

function is as follows.

function msg.activate()

 STATE = msg

 font = love.graphics.setNewFont("font/Junction_regular.

otf",24)

 button_ok = love.graphics.newImage("img" .. d .. "button_

ok.png")

end

This resolves any inconsistencies in the user interface.

Chapter 9 BalanCe of power

186

 Garbage Collection
The final bug to squash is a rather serious crash that you only see after several

rounds. The crash renders an out of memory error, which is caused by the vast

amounts of data being moved in and out of this game. This is a niche problem

caused by this type of game; usually, Lua is fully capable of managing memory,

but with all the cards and graphics that Battlejack cycles through, it’s difficult

for Lua to know what information we expect to have access to.

Part of memory management is called garbage collection. Most

modern programming languages have it built in, although some low-

level languages like C and C++ do not. Although built upon C, Lua has

automated garbage collection but allows for manual memory management

when needed.

Garbage collection, as its name suggests, is a signal you can send

to Lua to assure it that it’s safe to cycle through old variables and clear

them from memory. There are a few places that you can expect this to be

safe: at the beginning of a new game, there’s certainly no reason to keep

information from previous rounds, and when the player uses the Joker

card, which only happens once per round, it can be safely assumed that

very old data is no longer required. This is mostly guess work, of course;

you have no way of monitoring exactly what Lua is keeping track of in the

recesses of its memory allotment, but the Lua collectgarbage() function

is a trigger for Lua to run a garbage collection cycle sooner than its default

schedule. You’re still leaving it up to Lua to decide what to remove from

memory, and Lua is smart enough to know that, for instance, the lastwon

variable is still important and must not be erased, while the structure of the

previous decks are safe to discard.

Add a collectgarbage() flag to the game.new() function.

function game.new() --for context

collectgarbage()

game.blast(deck) --for context

And when a Joker is used:

Chapter 9 BalanCe of power

187

if card.face == "joker" then

 game.blast(horde)

 game.postbattle(grab,hand)

 collectgarbage() --added

end

For most Lua programs, you won’t run into memory management

problems. However, if you do, you now know how to prompt Lua to review

its resources and clear out unused data.

 Homework
The game, strictly speaking, is now complete. There are a few features, like

save files and screen size, implemented in the next chapter, but otherwise,

game play is smooth and (ideally) bug free. Here are a few things to look at

between now and the next chapter:

• Before moving on, commit your changes to Git.

• Play a few rounds of Battlejack to get a feel for difficulty.

Is it challenging enough? Is it too difficult? What

adjustments can you make?

• You can leverage your new level system to adjust

difficulty. For instance, you might want to start the

game with fewer traitor cards in the red deck, and then

ramp up the number as the player progresses.

if level >= 4 and level < 6 then

 game.mole(ai,deck,4)

elseif level >= 6

 game.mole(ai,deck,6)

else

 game.mole(ai,deck,2)

end

Chapter 9 BalanCe of power

188

• Or you might want to do the opposite, such that

the game appears to become easier as the player

progresses. This is an alternate theory of game design,

in which to give the player the illusion of increasing

power, you “nerf” the enemies.

if level < 2 then

 game.mole(ai,deck,6)

else

 game.mole(ai,deck,4)

end

• Try the game again to see how it progresses.

• Think of some other ways to help the balance of power

in Battlejack and try them out.

• It’s not easy, but it is possible to exhaust a full deck with

no winner or loser. There’s no code to handle this event,

so the game crashes.

• Invent a reliable way for the game to respond to empty

draw decks. There are several ways to do this. You could

declare a winner based on the state of the game when

the decks are exhausted (closest to 21 wins). You could

hold a final death-match to decide the winner, in which

the player and AI each draw a card from a fresh deck;

the best card wins. Or you could just create fresh decks

and continue the game seamlessly.

Chapter 9 BalanCe of power

189© Seth Kenlon 2019
S. Kenlon, Developing Games on the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-4170-7_10

CHAPTER 10

Save Files and
Game States
The Battlejack game is fully functional, but there are still convenience

functions to add, including saving and loading game progress, and

switching between fullscreen and windowed mode.

Realistically, Battlejack doesn’t exactly demand a fullscreen mode,

since it’s a relatively simple game. But for more complex games with a

complex story, you might want to encourage immersion, and one way to

help the player focus on the game and only the game is to give them the

option for the game to take over their entire screen.

The problem with switching between fullscreen and windowed

mode is that the graphic sizes must be recalculated. You may even see,

in some games, that changing the resolution of the game requires the

game to be relaunched before it can redraw. LÖVE can change dimension

dynamically, as long as your code adjusts for the change.

 Fullscreen
In its current state, your Battlejack code requires some changes to

account for a sudden change in game window size. If you’re not a fan of

math, many of the changes will seem a little mysterious, but the most

important concept is the use of relative measurements. You must base

190

the size of game elements on the width and height of the user’s current

window size, but in order to do that you must ask the user’s system

what that size is. In practice, this often means that you have to adjust

the location of elements to account for a potential change in empty (or

“negative”) space.

The first file that needs an update is the place where fullscreen mode is

toggled on and off: the menu screen. There are a few LÖVE functions that

deal with window sizes.

love.window.getFullscreen()

Whether or not the current window is in fullscreen mode. This

function returns a Boolean value: true or false.

love.window.setFullscreen()

Activates fullscreen mode.

love.window.getMode()

Returns the mode of the window.

love.window.setMode()

Sets the window dimensions.

love.window.updateMode()

Forces the window to update its mode settings.

With these functions, you can always determine whether your game

screen is fullscreen or windowed, and extract the dimensions of the space

you have available.

The fullscreen toggle selection in menu.lua is option 3 (it’s the third

selection in the menu entries array). Currently, there’s a placeholder

there: it returns true, which in this context is Lua shorthand for not an

error.

Chapter 10 Save FileS and Game StateS

191

Erase the placeholder and fill in some useful logic to determine

whether the window is currently in fullscreen mode. If it is not in

fullscreen, place it in fullscreen mode and get the dimensions of the screen

so that the variables WIDE and HIGH have accurate numbers in them for use

by calculations in the game code. If the window is currently in fullscreen

mode, set the width and height back to the default size. In either case,

update the mode to make sure that LÖVE forces a redraw of the entire

window.

elseif selection == 3 then

 if not love.window.getFullscreen() then

 love.window.setFullscreen(true, "desktop")

 WIDE,HIGH = love.window.getMode()

 else

 WIDE,HIGH = 960,720

 love.window.setMode(WIDE,HIGH)

 end

 love.window.updateMode(WIDE,HIGH,{resizable=true,

vsync=false,minwidth=WIDE,minheight=HIGH})

 fsupdated = 1

At the end of this code, a new variable called fsupdated is created and

set to 1. This variable serves as a flag signaling that the window mode has

been changed, which in turn lets you write code in game.lua that only runs

when a window mode change is made.

For the game to resize, several adjustments are required. Some

game elements in Battlejack have been purposefully misconfigured in

earlier chapters so that you can see the difference between a reasonable

first attempt and, ultimately, the correct code. The important thing to

understand is that when scaling a game, you must think about many

different factors, and these factors may be unique to your game, depending

on the assets you use. The examples in this section are specific to

Chapter 10 Save FileS and Game StateS

192

Battlejack, but the principles of using variables for calculations, detecting

changes in screen settings, and knowing what can and cannot scale, are

broadly applicable no matter what your game is like.

Open game.lua for editing. The various states of the game are defined

by the variable STATE. Any time a user enters game mode, it is by triggering

the game.activate function, whether by selecting New game or pressing

Esc. That means that any time a user is in the menu screen, the game.

activate function is the entry point to the game, and the ideal place to

detect whether the screen size has changed.

Change game.activate() function to match this code.

function game.activate()

 -- switch to game screen

 STATE = game

 ground = love.graphics.newQuad(0,0,WIDE,HIGH,150,150)

 font = love.graphics.setNewFont("font/Arkham_reg.TTF",72)

 if fsupdated == 1 then

 scale = game.scaler(WIDE,790)

 local arr = {hand,horde,back,grab}

 for i,tbl in ipairs(arr) do

 for n,obj in pairs(tbl) do

 obj.wide = obj.img:getWidth()*scale

 obj.high = obj.img:getHeight()*scale

 end

 end

 fsupdated = 0

 end

end

If the fsupdated variable is 1, this function now your game.scaler

function to recalculate a new scale for each card relative to the size of the

screen.

Chapter 10 Save FileS and Game StateS

193

Additionally, the function cycles through each of the hand, horde, back,

and grab decks and applies the new size to the cards in play.

Finally, it sets the fsupdated to 0 so that no further size updates are

triggered until the user changes the screen settings again.

Launch the game and change the screen setting now. Take note of what

scales properly and what does not. Spend some time thinking about the

problems you see, and try to predict what function contains the problem

code.

 Usability
One point of confusion you might detect after testing is that there’s no

explicit way to return to the game from the menu screen. On one hand,

it’s reasonable to expect that since the user had to press Esc to get to the

menu screen in the first place, the user can probably guess that pressing

Esc again returns to the game. On the other hand, making the user think

too hard about an interface can be frustrating, so there’s no reason to leave

it up to chance.

Add a menu option to return to a game already in progress. Phrases

like “Exit menu” and “Resume game” can be taken many different ways:

exiting the menu could also mean exiting the application, and resuming

a game could mean loading a previously saved game. A good interface

uses the clearest possible language, which in this case is simply “Return to

game”.

First, add the new option to the menu entry array in menu.lua.

local entries = { "New game", "Load saved",

 "Window mode", "Save", "Return to game", "Quit" }

Change the menu maximum value, which is used by the wrap function

to move the selection marker from the bottom of the menu back to the

top, to match the number of menu entries. Previously, the menmax value

Chapter 10 Save FileS and Game StateS

194

was hard coded to 5, but by now you are familiar with some new array

shortcuts, so it makes sense to make the menmax a dynamic value that sets

itself to whatever number of items in the entry array.

local menmax = #entries

In the menu.draw function, change the for loop to repeat itself from 1

to whatever value is contained in the menmax variable. The first and last line

in this code block are for context.

love.graphics.setBackgroundColor(0.1,0.1,0.1) --for context

for i=1,menmax do

 if i == selection then --for context

The addition of a new entry has pushed the Quit option back to item 6,

so adjust the menu code.

elseif selection == 5 then

 game.activate()

elseif selection == 6 then

 love.event.quit()

end

 Scaling Adjustments
Generally, measurements that need to change dynamically are more

predictable when they are based on a single point of authority. All the

scaling problems you are witnessing in your test are bugs in the game.draw

function, where there is heavy reliance on card.x and card.y values. Since

there are several arrays defining cards, the values stored in various card

values are unpredictable. There is also some dependence on the pad value,

which defines a margin around the edges of the screen, but it changes

depending on the screen size. And finally, while the slot variable provides

the width of the cards, there’s no value at all for the height of cards in

relation to the screen size.

Chapter 10 Save FileS and Game StateS

195

In summary, the layout of a dynamically resizable game must be based

on the size of its parent window.

To fix your scaling bugs, first determine the aspect ratio (width divided

by height) of your cards. This value will help determine the relative height

of cards regardless of size. Create a global variable for this value at the top

of game.lua.

ratio = 1.37

Next, change the values for the player’s draw deck (the card back). The

first and last lines are for context.

card = back[1] --for context

love.graphics.draw(glow,pad,HIGH-slot-(slot*ratio),0,scale,

scale,0,0)

love.graphics.draw(card.img,pad,HIGH-(slot*ratio)-pad,0,scale,

scale,0,0)

love.graphics.setColor(0,0,0) --for context

Notice that the new method of placing the glow and the deck relies

exclusively on values derived from the screen size, and not at all on

card-specific variables. As usual in programming, there are actually

several different ways to arrive at the same solution, but this is the most

efficient; an alternative is to leave the code unchanged, and use screen

size calculations to update the important card variables, but that requires

updating values in several places, whereas the screen size calculations

are made once and then can be used many times. Any time you have the

opportunity to require the computer to do less work, you are optimizing

your code, and that’s always a good thing.

The same principles apply to the AI’s deck.

Chapter 10 Save FileS and Game StateS

196

card = back[2] --for context

love.graphics.draw(shadow,WIDE-(slot)-pad,slot+(slot/4),0,scale,

scale,0,0)

love.graphics.draw(card.img,WIDE-pad,slot+pad+slot/4,0,-1*scale,

-1*scale,0,0)

The running score for the player’s hand also needs an update.

love.graphics.printf(tostring(handval),(slot)-slot/2,HIGH-

(slot*ratio)-pad-pad,slot/2,'center')

And for the running score for the AI.

love.graphics.printf(tostring(hordeval),WIDE-(slot/2)-pad*2,

(slot*ratio)+pad,slot/2,'center')

The screen text announcing the winner and loser requires the same

adjustment, because the screen size ratio is not necessarily the same

between its windowed mode and its fullscreen mode (depending on the

resolution the user’s physical monitor is). Still in the game.draw function,

update the printf statements to match this code block.

if progress < 2 then

 love.graphics.printf("Level " .. level,0,HIGH-(slot*ratio)-

(pad*ratio)-72,WIDE,'center')

end

if winner == "hand" then

 lastwon = 1

 love.graphics.printf("You have won!",0,(slot*ratio)+

(pad*ratio)-72,WIDE,'center')

elseif winner == "horde" then

 lastwon = 0

 love.graphics.printf("You have

lost.",0,(slot*ratio)+(pad*ratio)-72,WIDE,'center')

Chapter 10 Save FileS and Game StateS

197

elseif winner == "tie" then

 lastwon = 0

 love.graphics.printf("Tied

game.",0,(slot*ratio)+(pad*ratio)-72,WIDE,'center')

end

The 72 in each line is the font size of the onscreen text. By now,

you’re hopefully suspicious of any hard coded value, so you’re probably

wondering whether even this value ought to become relative. In fact, you

could make the font size more dynamic by either using some calculation to

determine the optimal size depending on screen size, or you could create

an array of font sizes for specific ranges of screen sizes. As screen sizes vary

wildly in sizes, from mobile phones to 4k monitors, this is a worthwhile

exercise, but one left for you to manage on your own.

All of these changes have affected the grab code. When a player selects

a card, it’s added to the grab array, but it’s also moved up the screen and

given a particle effect, very precisely placed just under its top border.

In this case, changing the values of one or two or even three grabbed

cards is manageable, so for each card in the grab array, adjust the Y

position and then use that value to calculate the position of the particle

effect. Since all values are relative to the screen size, the particle effect is

anchored to the card size even when the card size has changed to fit a new

screen size. Find and update this code block in your game.draw function.

for i,obj in pairs(grab) do --for context

 local count = 1 --for context

 while count < obj.wide/mana:getWidth() do --for context

 obj.y=HIGH-(slot*ratio)-pad*2

 love.graphics.draw(parti,obj.x+(mana:getWidth()*count+1),

obj.y+32/2)

 count = count+1 --for context

 end --for context

end -- for context

Chapter 10 Save FileS and Game StateS

198

Notice that the particle effect line uses 32/2 instead of the old pad/3

calculation to position the particle image below the card’s top border. This

is dependent on the particle image, so if you have changed or plan on

changing the particle seed image, you must adjust the value 32 to match

the height of your custom image. To make this kind of change even easier,

you could create a variable at the top of the file to define the height of the

particle image, and then use that variable in this code. That way, all the

values you need to change are easily found at the very top of your file,

saving you from having to search through your code for all the hard coded

values requiring updates. Again, this exercise is left to you to do on your

own time.

When the player’s hand is drawn, you must change the code so that

items in the grab table are moved up to their new Y position, and items in

the hand table stay in position.

 for i,obj in pairs(hand) do --for context

 if game.isselected(obj,grab) then

 love.graphics.draw(obj.img,obj.x,obj.y,0,scale,

scale,0,0)

 else

 obj.x = pad+(slot*i)

 obj.y = HIGH-(slot*ratio)-pad

 love.graphics.draw(obj.img,obj.x,obj.y,obj.r,scale,

scale,0,0)

 end

 end --for context

Try playing the game again to experience dynamic switching of screen

sizes. Make adjustments and changes as required, and remember to

commit your changes to Git once satisfied.

Chapter 10 Save FileS and Game StateS

199

 Save States
Save states for games are a nice convenience for users, and generally

expected in modern gaming. Luckily, there’s a wide range in what users

accept for save states. Some games save every last detail of a game so

that when you resume a saved game, it’s as if you had only paused the

game. Others save less information, placing you back at a waypoint or

checkpoint. Still others only save your level and nothing else.

Considering that Battlejack falls within the puzzle or card game genre,

saving just the player’s level would probably be acceptable by most users.

However, Lua’s heavy use of tables makes saving and restoring complex

data easy, so Battlejack can have full save state support.

There are two bundles of information that need to be saved: there’s

the player information and the game state. Player information is anything

that remains true regardless of a game round, such as whether or not the

game is in fullscreen mode, and what level the player has reached. Game

information is anything specific to the current round, such as the contents

of the draw decks and the player’s hands.

You will use two different methods of saving this information, and the

information is saved to two separate locations on the user’s drive. Player

information is generally referred to as the user configuration and the game

information is game data or just data.

Create a new file called saver.lua in your project directory. Open it

and add a package.path and a requirement of the inifile module. Also,

establish a table to hold the functions you will create for it.

package.path = package.path .. ';local/share/lua/5.3/?.lua'

inifile = require('inifile')

saver = {}

Chapter 10 Save FileS and Game StateS

200

One of the most common errors when saving and loading data in an

application’s code are missing files or directories. For instance, if you write

Lua code to save a the file bar.conf in a directory called foo, if Lua can’t

find the foo directory, then Lua crashes.

Lua has no way of knowing whether a file or a directory exists, so you

must write a function for this. This is a low level operation that is usually

the domain of the operating system, and as such Lua’s os function has

some tools that can help solve this puzzle. Lua functions are documented

on the Lua website (www.lua.org/manual) and also in the book

Programming in Lua by Roberto Ierusalimschy (Lua.org, 2016), the official

Lua guide from the language creators.

While there is no function to determine whether a file or directory

exists, the os.rename function requires that a file or directory exists in

order to successfully rename it. It’s a little bit of a hack, but by invoking os.

rename on a file path, you can parse its output to determine whether it was

able to find a file or not.

For example, here’s what a successful os.rename action looks like.

$ touch foo

$ lua

> os.rename("foo","bar")

true

An unsuccessful os.rename action:

> os.rename("foo","baz")

nil No such file or directory 2

And finally, here is an edge case in which os.rename finds a file but is

unable to rename it.

> os.rename("foo","bar")

nil Permission denied 13

Chapter 10 Save FileS and Game StateS

http://www.lua.org/manual
http://lua.org

201

By assigning each part of the output to a variable, you can determine

whether or not a file path exists. Add this code to your saver.lua.

function saver.exists(path)

 local success, err, num = os.rename(path, path)

 if not success and num == 13 then

 return true

 end

 --returns true or false

 return success

end

 User Configuration
To save user configuration, you must create a global table in game.lua

called conf, and establish a default location for where the configuration

file is to be saved. Add the last line from this code block.

grab = {} --for context

up = {} --for context

earn = {} --for context

conf = {} --user config

This default location is not arbitrary. In the computer world, everyone

benefits from standards. Standards are conventions that programmers

mutually agree to follow in order to ensure compatibility. Most modern

low-level computing standards are defined by the open source POSIX

specification, while user-level specifications for Linux are defined by

freedesktop.org. Operating systems that are not open source often follow

a combination of open standards and their own standards. You have the

option of following one or the other, but since the open standards are

available to all, this book follows those.

Chapter 10 Save FileS and Game StateS

http://freedesktop.org

202

Freedesktop.org defines two hidden directories in a user’s home

for configuration and application data. The .config directory contains

configuration data and .local/share contains application-specific data

files.

Enter these new variables near the top of the game.lua file.

home = os.getenv('HOME') --for context

d = package.config:sub(1,1) --for context

confdir = home .. d .. '.config' .. d .. 'battlejack' .. d

datadir = home .. d .. '.local' .. d .. 'share' .. d

Use these variables to build a table containing user configuration

options, and write those options to the drive in a new userdata function in

saver.lua.

function saver.userdata()

 conf.user = {}

 conf.user.level = tostring(level)

 conf.user.fullscreen,fstype = love.window.getFullscreen()

 -- does config directory exist?

 if not saver.exists(confdir) then

 os.execute("mkdir " .. confdir)

 end

 inifile.save(confdir .. d .. 'battlejack.ini', conf, "io")

end

The if statement that invokes saver.exists is a subroutine that

ensures the destination for the save file exists. If it does not exist, the os.

execute function runs the mkdir command on the operating system to

create the directory. The mkdir command works on Linux, MacOS, BSD,

and Windows.

The last line of the code block uses the inifile library to save the conf

table to a file. It uses the io Lua module to create the file.

Chapter 10 Save FileS and Game StateS

http://freedesktop.org

203

Now modify menu.lua so that it uses your new saver library. Place the

requirement at the top of the file.

require("saver")

When you originally created the menu, you used a placeholder for

selection 4. Erase it and put in a call to the function you have just created.

elseif selection == 4 then

 saver.userdata()

 Game Data
Saving the game data is theoretically a simple matter of taking all the tables

that contain game information and dumping their contents into a file.

That’s a lot of code to write, and also potentially prone to error if a table is

very complex. It’s also a common task, however, so a user on the lua-users.

org website created a handy script to save and load tables. This is the sort

of script you might usually find with Luarocks, but it just happens that this

script has never been entered into the Luarocks repository, so it just exists

on the Internet.

Download the script from lua-users.org/wiki/SaveTableToFile

or from the code included with this book. However you obtain it, save it

in your project directory, in the local/share/lua/5.3/ folder, as table_

save.lua.

Caution You must rename the file from its default table.save- -
1.0.lua to table_save.lua to avoid lua from interpreting the file
name as a table.

Chapter 10 Save FileS and Game StateS

http://lua-users.org
http://lua-users.org
http://lua-users.org/wiki/SaveTableToFile

204

The functions from table_save.lua are going to be used by both

saver.lua and game.lua, since the former needs to save table to files

and the latter needs to load those files back into tables. To keep with the

convention of keeping global variables all in one place, add table_save.

lua as a requirement for game.lua (the functions will be available to

saver.lua because the functions become part of the application’s global

namespace).

require("card")

require("msg")

require("table_save")

In saver.lua, create a new function to process the game data, and

make sure the appropriate directory structure exists, using the variable for

your datadir you created in game.lua.

function saver.gamedata()

 if not saver.exists(datadir .. 'battlejack') then

 os.execute("mkdir " .. datadir .. 'battlejack')

 end

Next, add the code to save the card decks to files. The syntax of the

save function provided by table_save.lua are given in comments at the

top of the file.

table.save(table , filename)

on failure: returns an error msg

Of course, if you only provide a filename, Lua would do exactly as it is

told and save the files into your current directory, so you must interpret

filename broadly to mean the path to the file you want to create.

Add this to the saver.gamedata function.

Chapter 10 Save FileS and Game StateS

205

 --current hand

 table.save(hand,datadir .. 'battlejack' .. d .. 'hand.tbl')

 --current horde

 table.save(horde,datadir .. 'battlejack' .. d .. 'horde.tbl')

 --current masterdecks

 table.save(deck,datadir .. 'battlejack' .. d .. 'deck.tbl')

 table.save(ai,datadir .. 'battlejack' .. d .. 'ai.tbl')

end

Launch the game and start a round. Once you have drawn one or two

cards, go to the menu screen. Save the game and then quit.

In a terminal, view the user config file that has been created.

$ ls ~/.config/battlejack

battlejack.ini

cat ~/.config/battlejack/battlejack.ini

[user]

level=0

fullscreen=false

Confirm that the decks have also been created.

$ ls ~/.local/share/battlejack/

ai.tbl deck.tbl hand.tbl horde.tbl

 Loading a Save File
The inverse of saving a game is loading a game. This is a little more

complex than the save process, because there is so much setup when

starting a new game, which is “clobbered” by loading in existing data.

Because loading a game replaces the game.new and game.setup functions

when invoked, the loading process happens in the game.lua file.

Chapter 10 Save FileS and Game StateS

206

First of all, you want to ensure that you’re facing a clean workspace

when loading a saved game. Currently, the slate is cleaned by game.new,

but if you move the cleanup code to its own function, then you can use it

again in your loading code.

Take these lines from game.new and place them into a new function

called game.cleanup.

function game.cleanup()

 collectgarbage()

 game.blast(deck)

 game.blast(ai)

 game.blast(hand)

 game.blast(horde)

 game.blast(back)

 game.blast(grab)

 winner = nil

 progress = 0

 game.scaler(WIDE,790)

end

Call the game.cleanup function at the top of the game.new function.

function game.new()

 game.cleanup()

Create a new function called game.load for loading in user and

game data. Call the game.cleanup function at the top, and load the user

configuration in using the inifile library.

function game.load()

 game.cleanup()

 if saver.exists(confdir .. 'battlejack.ini') then

 local userconf = inifile.parse(confdir .. 'battlejack.

ini', "io")

 level = userconf['user']['level']

Chapter 10 Save FileS and Game StateS

207

 else

 print("no user INI found")

 end

The next logical step would seem to be loading the game data, but

first there’s another bit of code that usually only happens in game.new:

generating a background.

Any time you can, you generally should reuse code. Move the following

lines of code from the game.new function into a new game.background

function.

function game.background()

 ground = love.graphics.newQuad(0,0,WIDE,HIGH,150,150)

 tile = love.graphics.newImage('img' .. d .. 'tile.jpg')

 tile:setWrap('repeat','repeat')

end

Similarly, the draw decks (the card backs) are generated in the game.

setup function. You can’t call game.setup because it clobbers several

settings that game.load performs, such as building the decks, shuffling the

decks, adding a Joker card, and so on. Move this code from game.setup

into a new function called game.backs.

function game.backs()

 -- create GUI decks

 -- hand back

 card = Card.init("c","v","back",pad,HIGH-(slot*ratio)-pad)

--HIGH-slot-(pad*2))

 back[#back+1] = card

 -- horde back

 card = Card.init("c","v","back",WIDE-(slot/2)-pad,slot-(pad))

 back[#back+1] = card

end

Chapter 10 Save FileS and Game StateS

208

Call the function at the top of game.setup.

function game.setup()

 game.backs()

 deck = game.setsplit("card",1,deck,2) --for context

Call both of your new functions in your game.load routine:

 else --for context

 print("no user INI found") --context

 end --for context

 game.background()

 game.backs()

Loading tables back into Lua is explained in the comments at the top

of the table_save.lua file.

table.load(filename or stringtable)

Loads a table that has been saved via the table.save function

on success: returns a previously saved table

on failure: returns as second argument an error msg

The tricky thing about Battlejack’s tables are that some contain card

descriptions and others contain cards saved as tables. Luckily, you have a

card building library that converts card descriptions to drawable cards, so

reconstructing hand and horde is a trivial for loop. Enter this code at the

bottom of your game.load function.

 game.background() --for context

 game.backs() --for context

 --get deck states

 if saver.exists(datadir .. d .. 'battlejack' .. d .. 'hand.

tbl') then

Chapter 10 Save FileS and Game StateS

209

 tbl = table.load(datadir .. d .. 'battlejack' .. d ..

'hand.tbl')

 end

 --build decks

 for i,obj in pairs(tbl) do

 card = Card.init(obj['color'],obj['value'],obj['face'],

obj['x'],obj['y'])

 hand[#hand+1] = card

 end

 if saver.exists(datadir .. d .. 'battlejack' .. d ..

'horde.tbl') then

 tbl = table.load(datadir .. d .. 'battlejack' .. d ..

'horde.tbl')

 end

 for i,obj in pairs(tbl) do

 card = Card.init(obj['color'],obj['value'],obj['face'],

obj['x'],obj['y'])

 horde[#horde+1] = card

 end

 --get deck states

 if saver.exists(datadir .. d .. 'battlejack' .. d .. 'deck.

tbl') then

 deck = table.load(datadir .. d .. 'battlejack' .. d ..

'deck.tbl')

 end

 if saver.exists(datadir .. d .. 'battlejack' .. d .. 'ai.

tbl') then

 ai = table.load(datadir .. d .. 'battlejack' .. d ..

'ai.tbl')

 end

Chapter 10 Save FileS and Game StateS

210

 game.activate()

end

Once the load process is finished, it calls game.activate to put the

user back in the game.

Launch the game and load your saved game. Try this process a few

times, and play through a few games. Take note of any errors or glitches

you encounter.

 Homework
The next chapter makes no further changes to the game code aside from

adding sounds to the experience. That means the game is basically feature-

complete, so any glitches or unoptimized code you find are permanent

unless you change it.

Here are some examples, but don’t limit yourself to this list.

• Only one save is supported. Program a method to

permit different save slots.

• If a user forgets to save their game before quitting, they

lose their progress. Devise a system to avoid this.

• The text of the message screen isn’t always positioned

correctly for all screen sized. Change the code of msg.

lua to fix this problem.

Remember to commit your changes to Git to preserve snapshots of

your progress.

Chapter 10 Save FileS and Game StateS

211© Seth Kenlon 2019
S. Kenlon, Developing Games on the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-4170-7_11

CHAPTER 11

Sound
Real video games have sound effects. Everyone knows that. So if you

deliver a game to someone without sound, they immediately notice that

it’s missing the audio. This chapter introduces the most important love.

audio functions and integrates sound into Battlejack.

 Finding Audio
As with any game asset, the first problem with adding sound effects to

your game is that you need sound effects. Of course, open culture on the

Internet has a few potential solutions, and so does your Raspberry Pi, if

you’re up for some manual labor.

Before continuing, create a folder in your project directory for your

sounds. To save on typing, name the directory snd.

 $ cd ~/battlejack

 $ mkdir snd

The website freesound.org is a treasure trove of sound effects. Search

for terms like level up, power up, ambient music, game, and so on, to

rummage through thousands of professional sound effects that are free to

use. The licensing of each sound can differ, so look at the requirements set

by the creator; some require attribution, some forbid using their work in

commercial products, and others require nothing.

http://freesound.org

212

There are other websites loaded with sounds, but you don't have to

limit yourself to reusing other people’s work. You can create your own

high-quality sounds on your Raspberry Pi with Linux Multimedia Studio,

better known as LMMS.

 LMMS
LMMS is a music production suite available for free on your Raspberry Pi.

Whether or not you call yourself a musician, LMMS makes it easy to lay

down a beat, synthesize new sounds, sample, loop, distort, enhance, and

mix. LMMS comes with ready-to-use instruments, presets, and samples,

making it one of the easiest music applications on any platform to get

started on.

Install LMMS as usual.

 $ sudo dnf install lmms

It takes a while for the full package to install, since there are so many

synths and effects bundled with it, so be patient. Once installed, launch

LMMS from the application menu.

Whatever you make in LMMS ends up in the Song Editor window.

This is where you sequence, or schedule, sounds. If you are using LMMS

to create sound effects, then everything you sequence should happen

immediately in the left-most block. If you are using LMMS to make

background music for your game, then the sounds happen gradually, over

several blocks from left to right.

By default, the Song editor (see Figure 11-1) has four channels

(triple oscillator, sample track, beat/bassline, automation) already

populated, but these are only example tracks. As you create sounds, you

add your own.

Chapter 11 Sound

213

On the far left of the LMMS window are vertical tabs. When clicked, each

tab opens a panel. Click the star icon tab for a Presets panel (see Figure 11-2)

containing sounds and synthesizers that you can use to create your sound

effects and music bed. More can be found in the musical note tab.

Click and hold some of the sounds to get a feel for what’s available.

Figure 11-1. The Song Editor window

Figure 11-2. LMMS preset panel

Chapter 11 Sound

214

 Building a Sound Effect
Once you find a sound that you like, drag the sound into the left panel of

the Song editor. This creates a new track in the Song editor, which is the

one that you work in to create your sound effect.

This example uses Presets ➤ ZynAddSubFX ➤ Fantasy ➤

0037-ImpossibleDream5.xlz.

In the Song editor, double-click the first black square in the

ImpossibleDream5 track. This opens the Piano Roll editor (see Figure 11- 3).

As the name implies, this is the digital equivalent to the rolls used in old-

fashioned player pianos. Notes are entered into the matrix of the roll so that

they are triggered automatically as your song plays.

Since you’re only designing a sound effect, keep your “song” (such as it

is) under 2 or 3 seconds. This example creates a sound effect for messages

announcing that new cards have been added to the player’s deck, so the

mood is happy and empowering.

Figure 11-3. Piano Roll (or matrix) editor

Chapter 11 Sound

215

The important buttons in the Piano Roll editor are the pencil and

the eraser. The pencil enters new notes into the matrix, while the eraser

removes them. You can hear (but not enter) notes by pressing the keys of

the keyboard along the left side of the window.

If you’re unfamiliar with making music, don’t be afraid to experiment.

Discover the wonders of a well-constructed arpeggio, or the raw thrill of a

power chord. There’s no wrong way to design sound effects. If something

sounds good to you, then use it.

When you’re happy with your first sound effect, go to the File menu

and select Export.

In the Export window (see Figure 11-4), navigate to the snd folder in

your project directory. At the bottom of the Export window, set Files of

type to Compressed OGG-File (*.ogg). This format is common in the game

industry because it is an open source format that renders a very small file

size, meaning your sound files don’t result in an impossibly large game

package once you’re ready to distribute. Name the file powerup.ogg and

click Save.

Figure 11-4. Export window

Chapter 11 Sound

216

In the Export project window that appears, keep the default settings

and click the Start button.

Repeat this process for each sound effect that you want to create. So

that you only have one LMMS file per project, you can use the same Song

editor for each sound effect. Just mute the tracks that you’re finished with

as you go. The Mute button for each track is the green light on the left end

of the Song Editor track label, as in shown in Figure 11-5.

As you work, be sure to save your LMMS project. By default, you

are prompted to save into a lmms folder in your home directory. This is

acceptable, since you won’t be distributing the LMMS project along with

your game. The sound effect exports, however, must always be saved into

the snd folder in your Battlejack project directory.

 Listening to Your Effects
To hear your sound effects as they will play in your game, navigate to your

snd directory on your desktop and click the .ogg file that you want to hear.

The default music player, called Sayonara (see Figure 11-6), opens with

that file as the sole item in a playlist in the left panel.

Figure 11-5. Muting a track

Chapter 11 Sound

217

 Adjusting Export Length
Depending on your aesthetic, some sounds that you use may have a long

“tail,” meaning that they echo for a few seconds after the notes themselves

have ended. The synth preset ImpossibleDream5 is an example of such

an effect, and if you listen to the file in Sayonara, you can hear that the file

ends before the sounds fade.

To fix this, return to LMMS. Mute any of the tracks that you don’t need,

and unmute the one that you do. Play the track and watch the timer in

the top left of the LMMS window while listening for the sound to fade.

It doesn’t need to fade out completely, especially if you intend to play

background music during the game. When the sound is mostly faded, take

a mental note of how many seconds have elapsed.

Figure 11-6. Sayonara player

Chapter 11 Sound

218

Stop playback and move the playhead in the Song editor to the

position, in seconds, when the sound faded. With a sound clip using

ImpossibleDream5 notes that last about 2.5 seconds, you might position

the playhead at 10 seconds.

Finally, click the black grid boxes between the sound clip and the

playhead (see Figure 11-7). This marks those squares as occupied with

sound, even though there are no notes being played.

Export the track again and play it in Sayonara for quality assurance.

 Creating Music
Making music for your game is basically the same process as making

sound effects, only longer. There’s plenty of Creative Commons and

royalty-free music online, so you don’t have to compose your own game

music. However, creating your own music for your game can be fun and

rewarding.

Figure 11-7. Creating a buffer at the end of a track

Chapter 11 Sound

219

Since Battlejack is just a battle card game, the music doesn’t need to be

much more than a background soundscape, without too much activity or

complexity to distract the player from the actual game. In fact, regardless

of what kind of game you are composing for, the music you use must be

capable of looping, since you can never predict just how long it will be

needed.

Unlike most simple sound effects, music composition will probably

require more than one track in your Song editor. The sample code

included with this book includes two LMMS project files so that you can

see how tracks and sound clips in a song fit together.

When you’re ready to export your music, use the same settings as

you did for your sound effects, with one exception. In the Export project

window (see Figure 11-8), select “Export as loop (remove end silence)” so

that your music can be looped in LÖVE.

Figure 11-8. Exporting

Chapter 11 Sound

220

LMMS can’t guarantee that your music will loop seamlessly; designing

seamless loop points is an art all its own, but you can experiment with

ways to disguise loops that don’t work, or you can just incorporate a fade-

out and fade-in so that the loop, while noticeable, is at least innocuous.

 Sound Code
To add sounds to your game, you must create a variable for each sound file

that you want to play, classifying it as either a static file for sound effects or

a stream for background music. You use this variable to trigger the sound

as needed.

For instance, for the powerup message alert, first create a variable at

the top of the game.lua file.

fxp = love.audio.newSource("snd" .. d .. "powerup.ogg", "static")

function game.load() --for context

game.cleanup() --for context

Trigger the sound when the message screen loads to announce a

new powerup. Add this code to the msg.activate function of msg.

lua:

if earncard ~= nil then

 love.audio.play(fxp)

else -- only one card to display

 return true

end

The if statement establishes whether the message screen is displayed

to announce a powerup or because a black card was drawn. If a black card

was drawn, nothing is done for now, but if a powerup has been earned,

then the powerup sound effect plays. Of course, if you have a sound effect

for a traitor card, then you can trigger that sound in the else clause.

Chapter 11 Sound

221

Background music is established in main.lua. It’s up to you whether

you create separate music for the menu screen and the game, but in this

example, the same music plays behind the music and the game.

Since the music is both instantiated and played immediately,

everything happens in the love.load function of main.lua.

 music = love.audio.newSource("snd" .. d .. "darkbattle.ogg",

"stream")

 music:setLooping(true)

 love.audio.play(music)

For sound files greater than a few seconds, set the file type to stream so

that the entire file isn’t loaded into memory.

Since the background music is meant to loop, the variable is also set to

loop with the :setLooping(true) LÖVE function.

Go through the code of your game and add background music and

sound effects for important events.

If you try to play your game, you may notice that all of your audio is

badly distorted. This is a known issue and is easy to fix. You will fix it in the

next section.

 Fixing the Raspberry Pi Sound Settings
LÖVE uses a technology called OpenAL to play sound. OpenAL is

a powerful audio driver providing head-related transfer function

(HRTF), more commonly known as 3D audio. For this reason, it’s very

popular for gaming. As you know, the Raspberry Pi is a low-powered

computer, and not exactly known as a “gaming rig.” So when you

attempt to play high- powered, specialized OpenAL audio through a

mini-computer designed for everyday computer tasks, you experience

distortion.

Chapter 11 Sound

222

Note this audio issue is specific to openaL on a raspberry pi
or other low-powered computers. If you’re using something more
powerful than a pi, then you do not need to complete this section
unless you’re experiencing distorted audio in LÖVe.

OpenAL can be configured to be gentler with its host system. By

default, global configuration files on Linux are stored in the directory

/etc (no one’s quite sure any more what that stands for, but there’s some

evidence that it does indeed mean et cetera, which is an oddly imprecise

name for such an important folder). Since this directory exists outside

of your home directory, it’s only accessible by the root user, which you

invoke with the sudo command. Edit the OpenAL configuration file using

the sudo command to open it in Geany.

 $ sudo geany /etc/openal/alsoft.conf

You must change two lines in the file. First, you need to edit the

number of audio frames that occur between audio mixing updates. This

is something that usually OpenAL determines on its own, but in the

Raspberry Pi, OpenAL is overly optimistic about what its host system is

capable of achieving. Find this line:

 #period_size = 1024

The hash (#) character means this line is “commented out,” meaning

that OpenAL is currently ignoring the line entirely. Delete the hash

character (or as programmers usually say, “uncomment”). Change the

number of frames in each update period to 2048. The line should now

match this:

 period_size = 2048

Chapter 11 Sound

223

Next, find this line:

 #periods = 0

This line is also commented out, so uncomment it by deleting the

hash character. A low number here (it is explained in the comments of the

configuration file) means faster response from the computer when playing

sounds. That’s the ideal but obviously the Raspberry Pi isn’t up to the

challenge, so set this value to 8. This tells OpenAL to mix audio in advance

so that they’re prepared for playback when needed, rather than trying to

mix all the audio on demand.

 periods = 8

Save the file and close Geany.

Try playing the game now and you will find that all of your audio

problems are solved.

Since this is a known issue that you have now solved, create a README

file in your project directory, documenting the problem and its solution in

the event that you distribute the game to other Pi users.

 # Audio issues

 If you experience audio distortion when playing

 this game, edit /etc/openal/alsoft.conf and set these

 values.

 period_size = 2048

 periods = 8

This is good practice, since you can’t possibly predict what platform

any given user will use to play your game.

Chapter 11 Sound

224

 Homework
Many games provide some control over sound settings. You could add

sound options to your menu screen, such as the following.

• Allow the background music to be silenced, leaving

only sound effects.

• Allow all sound in the game to be muted.

Chapter 11 Sound

225© Seth Kenlon 2019
S. Kenlon, Developing Games on the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-4170-7_12

CHAPTER 12

Roguelike Dungeon
Crawler
Dice games and card games are time-honored time wasters, but you

probably want to make other kinds of games, too. No book can possibly

cover all the different game styles, and how to code them, but by learning

dice and cards so thoroughly, you have learned everything you need to

generate the mechanics for any genre.

In this chapter, you learn to apply the principles of game design from

earlier chapters to a roguelike game.

 What’s Roguelike?
The exact definition of roguelike is the topic of much debate within

gamer culture, but generally it’s characterized as an exploration

game, often set in a top-down dungeon or tomb in a fantasy setting. It

emphasizes tactics, with combat being the central mechanic. There’s

no story, and randomly generated levels and monster encounters are

usually revealed little by little as the player progresses through the map.

Furthermore, death is permanent, a frustrating tradition mitigated by the

fact that there’s no win condition, and the next game will be completely

different anyway.

226

The classic roguelike is Nethack, a very old game that uses ASCII

characters to represent the hero, monsters, items, and the map itself

(see Figure 12-1). More recent examples include Pokemon Mystery

Dungeon, Pixel Dungeon, Diablo, Darkest Dungeon, and Runestone

Keeper.

The roguelike genre is useful because it demonstrates how to

translate the same mechanics from dice and card games into a

character-driven video game. This chapter emphasizes how to translate

what you have learned so far into a game that, on the surface, bears no

resemblance to the example games you have created up to this point.

There are fewer explanations of the Lua syntax than examples of how

all the code you already know is capable of being used in ways that are

new to you.

Figure 12-1. An old-school roguelike

Chapter 12 roguelike Dungeon Crawler

227

 It Looks Good on Paper
As with Battlejack, the smartest thing you can do before writing any code

at all is to interpret the game you want to make into a tangible system

you can test. As it happens, dynamically generated dungeons for tabletop

games have existed for years in the form of random tables. If you’ve

never seen or used a random table, it’s worth looking at any Dungeons &

Dragons (D&) Dungeon Master Guide as a study of game design. In the

context of randomness, Dungeon Master Guides provide tables of various

attributes for items that a player might find in an imaginary dungeon

while playing this popular tabletop RPG. If a player finds an item, the

Dungeon Master may roll dice and then refer to the table to mutually

discover, along with the adventurer, what exactly it was that they found.

For instance, a die roll of 11 on Table 98 means that the player has found

a pair of Bracers of Defense, while a roll of 16 means the player has found

Gauntlets of Ogre Power.

The same principle can be applied to the layout of the dungeon itself.

For a paper-based example, visit. The system is simple: roll a 12-sided die

(d12) for the subjective size of a room, then a d12 again for the general

shape of the room, and then a d4 to discover the number of exits that exist

in the room.

It’s easy to translate this into a digital Lua-based system, and it is easily

extended to include all aspects of the game world; the number of monsters

in a room, the amount of treasure, the presence of discarded weapons or

shields or other gear, and so on.

Most elements of this game can be abstracted out of main.lua into

their own tables. Start with the most basic element of a dungeon crawl: the

rooms.

Chapter 12 roguelike Dungeon Crawler

228

 Assets
If you’re going to build dungeons, you need raw material. Either create or

download a few basic elements as tiles, like you did for the tabletop texture

of Battlejack. The perspective must be top-down (“bird’s-eye). For this

game, you need the following.

• Dungeon floor

• Dungeon walls

• Hero

• Two types of monsters

• Two types of traps

• Treasure

• A fireball or similar projectile

The source code for this example game includes the Underworld tile

set by Poikilos and Redshrike on OpenGameArt.org, a 32×32–pixel tile set

laid out in spritesheets. You can use this set or you can make your own,

but this example assumes that your sprites are in spritesheets rather than

individual image files, because spritesheets are very common and you

should know how to use them.

Once you have your assets in your project’s img directory, open a new

file called main.lua and set up the basics framework for your code.

require("room")

require("door")

require("hero")

require("chest")

require("trap")

require("monster")

require("floor")

require("bolt")

Chapter 12 roguelike Dungeon Crawler

http://opengameart.org

229

WIDE,HIGH = 960,720

love.window.setTitle(' Ultradimensional Permadungeon ')

love.window.setMode(WIDE, HIGH)

d = package.config:sub(1,1) -- path separator

t = 32 -- tile size

hist = {} --previous rooms, map not implemented

card = {'n','e','s','w'}

doors = {} --all doors in a room

chests = {} --all treasure chests in a room

traps = {} --all traps in a room

monsters = {} --all monsters in a room

bolts = {} --magic missiles

local fsize = t+4 --font size

local progress = 0 --steps before a door is hot

local permadeath = 0 --is player dead yet

math.randomseed(os.time())

function love.load()

 -- underworld_load CC-BY-3.0 by poikilos

 -- based on these Redshrike's overworld sprites:

 -- door, quad swirl, basis for wall & creatures

 -- Stephen Challener (Redshrike)

 -- hosted by OpenGameArt.org)

 sheet = love.graphics.newImage("img" .. d .. "underworld_

load- atlas- 32x32.png")

 skull = love.graphics.newImage("img" .. d .. "underworld_

load-sprites-flameskull-32x32.png")

end

Chapter 12 roguelike Dungeon Crawler

230

As you can tell from the requires list, you will create a custom library

for each major element of your dungeon. This code also creates a table

to store similar elements together, defines the tile size as specified by the

spritesheet artist, and starts a random seed.

In the love.load function, two new variables are created. The sheet

variable contains the main spritesheet, and skull contains the object that

will serve as a projectile weapon (yes, the hero of this game throws magical

flaming skulls at monsters).

So far, this is the same process you used to create the table texture in

Battlejack.

 Treasure
The simplest library in this game is the treasure chest library, called chest.

lua. This game uses the simplified mechanic of combining health points

and wealth points, meaning that the more treasure the player finds, the

longer the player lives.

Chest = { }

function Chest.init(w,h)

 local self = setmetatable({}, Chest)

 self.x = math.random(t*2,(w*t)-(t*2))

 self.y = math.random(t*2,(h*t)-(t*2))

 self.xp = math.random(10,100)

 self.full = true --set to false when player gets treasure

 --treasure images

 self.state = {}

 --closed by default

Chapter 12 roguelike Dungeon Crawler

231

 self.state[1] = love.graphics.newQuad(6*t,2*t,t,t,sheet:getD

imensions())

 --opened

 self.state[2] = love.graphics.newQuad(8*t,2*t,t,t,sheet:getD

imensions())

 self.img = self.state[1]

 return self

end

Images are each defined with the newQuad function. Each one extracts

some portion of the sheet image. The syntax specifies the X and Y

position of the image you want to “cut out” from the spritesheet. Since the

spritesheet is laid out in columns and rows, all you have to do is count,

starting at 0, and then multiply the result by the tile size. Since this is

programming, you’re better off letting the computer do the multiplication

for you, so the X and Y positions are defined with small equations, such as

6*t and 2*t.

The size of each image is always the same, so t,t is used to set the

width and height of the sprite. Finally, sheet:getDimensions()is called to

set the source and size of the image that the quad is using as its source.

 Traps
Next, create a trap class in a file called trap.lua and add the following

code to it.

Trap = { }

function Trap.init(w,h)

 local self = setmetatable({}, Trap)

 self.x = math.random(t*2,(w*t)-(t*2))

 self.y = math.random(t*2,(h*t)-(t*2))

Chapter 12 roguelike Dungeon Crawler

232

 self.state = {}

 --crack

 self.state[1] = love.graphics.newQuad(6*t,15*t,t,t,sheet:

getDimensions())

 --pit

 self.state[3] = love.graphics.newQuad(11*t,14*t,t,t,sheet:

getDimensions())

 --spike trap

 self.state[2] = love.graphics.newQuad(6*t,13*t,t,t,sheet:

getDimensions())

 --spikesprung

 self.state[4] = love.graphics.newQuad(8*t,13*t,t,t,sheet:

getDimensions())

 self.sel = math.random(1,2)

 self.img = self.state[self.sel]

 self.live = true

 -- damage

 if self.sel == 1 then

 self.dmg = math.random(1,3)

 else

 self.dmg = math.random(3,6)

 end

 return self

end

This library generates a trap object located somewhere within a room

of a given size (specified by the w and h arguments). There are two different

traps, each with two states: there’s a crack in the floor that opens into a pit,

and pinholes from which spikes spring. For ease of selection, the image

Chapter 12 roguelike Dungeon Crawler

233

for the first type of trap is stored in self.state[1] and the second in

self.state[3]. This way, the virtual die only has to choose between

two numbers, which can be directly applied to which image is used for its

un- sprung state.

 Monsters
Create a file called monster.lua and open it in Geany. Monsters are similar

to traps. They are placed randomly within the room (defined by w and h

arguments), as is their type. Unlike traps, they have natural armor, which

determines how many bolts the hero must hit it with to kill it.

Monster = { }

function Monster.init(w,h)

 local self = setmetatable({}, Monster)

 self.x = math.random(t*3,(w*t)-(t*2))

 self.y = math.random(t*3,(h*t)-(t*2))

 self.face = {}

 self.dmg = 1

 -- armour strength

 if math.random(1,20)%2 == 0 then -- fungus

 self.ac = math.random(5,10)

 self.name = "fungus"

 self.face[1] = love.graphics.newQuad(0*t,0*t,t,t,sheet:

getDimensions()) --fungus up

 self.face[2] = love.graphics.newQuad(1*t,0*t,t,t,sheet:

getDimensions()) --fungus up

 self.face[3] = love.graphics.newQuad(2*t,0*t,t,t,sheet:

getDimensions()) --fungus up

Chapter 12 roguelike Dungeon Crawler

234

 self.face[4] = love.graphics.newQuad(0*t,2*t,t,t,sheet:

getDimensions()) --fungus down

 self.face[5] = love.graphics.newQuad(1*t,2*t,t,t,sheet:

getDimensions()) --fungus down

 self.face[6] = love.graphics.newQuad(2*t,2*t,t,t,sheet:

getDimensions()) --fungus down

 else

 self.ac = math.random(10,20)

 self.name = "golem"

 self.face[1] = love.graphics.newQuad(9*t,5*t,t,t,sheet:

getDimensions())

 self.face[2] = love.graphics.newQuad(10*t,5*t,t,t,sheet:

getDimensions())

 self.face[3] = love.graphics.newQuad(11*t,5*t,t,t,sheet:

getDimensions())

 self.face[4] = love.graphics.newQuad(9*t,7*t,t,t,sheet:

getDimensions())

 self.face[5] = love.graphics.newQuad(10*t,7*t,t,t,sheet:

getDimensions())

 self.face[6] = love.graphics.newQuad(11*t,7*t,t,t,sheet:

getDimensions())

 end

 -- damage

 if self.face == "fungus" then --fungus

 self.dmg = math.random(6,18)

 else --golem

 self.dmg = math.random(8,24)

 end

 -- xp value for battle

 self.xp = self.ac*3

Chapter 12 roguelike Dungeon Crawler

235

 self.go = 1 --or 4

 self.img = self.face[1]

 self.battle = false --is it engaged in battle

 self.alive = true

 return self

end

Setting images for the monsters is similar to setting images for

traps, except that there are many more states for each monster. On this

spritesheet, there are at least three images of each monster walking east,

and at least three more of each monster walking west. This is significant,

because in the animation cycles for the monster, the grouping of images

for each monster matters: starting at self.face[1] has the monster facing

one way, and starting at self.face[3] has the monster face the opposite

direction.

 Hero
Create a file called hero.lua and open it in Geany. The code for the hero

is as simple as the treasure or trap libraries, although it may look more

complex at first.

Hero = { }

function Hero.init()

 local self = setmetatable({}, Hero)

 self.ani = {}

 for i=0,2,1 do

 self.ani[#self.ani+1] = love.graphics.newQuad((10+i)*t,

3*t,t,t,sheet:getDimensions()) --right 123

 self.face = "e"

 end

Chapter 12 roguelike Dungeon Crawler

236

 for i=0,2,1 do

 self.ani[#self.ani+1] = love.graphics.newQuad((10+i)*t,

1*t,t,t,sheet:getDimensions()) --left 456

 self.face = "w"

 end

 for i=0,2,1 do

 self.ani[#self.ani+1] = love.graphics.newQuad((10+i)*t,

2*t,t,t,sheet:getDimensions()) --down 789

 self.face = "s"

 end

 for i=0,2,1 do

 self.ani[#self.ani+1] = love.graphics.newQuad((10+i)*t,

0*t,t,t,sheet:getDimensions()) --up 10-12

 self.face = "n"

 end

 self.img = self.ani[7]

 self.x = t

 self.y = t

 self.speed = t/2

 --self.hp = math.random(8,20) --health

 self.xp = 10 --experience .. and health

 return self

end

This code is lazy, in a good way. There are a total of 12 states for the

hero’s image: a three-frame walk cycle for each cardinal direction. Instead

of typing out all 12 quad definitions, a for loop is used for each direction.

Additionally, a variable called self.face is set to make it easy to find

out which direction the hero is facing. This is an important variable to

determine whether the hero is passing by a doorway or actually passing

through a door, and also for determining which way a magic missile (or a

flaming skull, as the case may be) is fired.

Chapter 12 roguelike Dungeon Crawler

237

The self.speed variable defines how quickly the hero moves each

turn. The self.xp variable grants the hero 10 points of XP. Other variables,

such as self.x and self.y, are created as placeholders, since they will be

overwritten almost immediately, when the hero is placed in the room.

 Bolt
Create a file called bolt.lua and open it in Geany.

Bolt = { }

function Bolt.init(x,y)

 local self = setmetatable({}, Bolt)

 self.ani = {}

 self.ani[1] = love.graphics.newQuad(0*t,0*t,t,t,skull:getDim

ensions())

 self.ani[2] = love.graphics.newQuad(0*t,1*t,t,t,skull:getDim

ensions())

 self.ani[3] = love.graphics.newQuad(0*t,2*t,t,t,skull:getDim

ensions())

 self.ani[4] = love.graphics.newQuad(0*t,3*t,t,t,skull:getDim

ensions())

 self.img = self.ani[1]

 self.x = x

 self.y = y

 -- direction of fire

 self.face = hero.face

 self.speed = t/2 -- pixels per step

 return self

end

Chapter 12 roguelike Dungeon Crawler

238

This library creates a table for the bolt’s images from the spritesheet

skull. It sets an initial origin point of self.x and self.y, both of which are

defined by the x and y arguments when the bolt is created. Since the bolt

is meant to originate from the hero’s magical hands, the origin point will

always be the same as the hero’s current position.

 Floor Tiles
The last library you need isn’t really a library or class in any traditional

sense. It is kept separate from main.lua, because in theory it’s easy to swap

out with something different. The floor.lua file defines all of the images

used to draw the dungeon itself. Everything from floor tiles, wall tiles, doors,

dead space, and anything else you want to use when drawing a room.

Floor = { }

function Floor.init()

 local self = setmetatable({}, Floor)

 -- floor

 self[1] = love.graphics.newQuad(3*t,10*t,t,t,sheet:

getDimensions())

 -- wall

 self[2] = love.graphics.newQuad(15*t,10*t,t,t,sheet:

getDimensions())

 -- door

 self[3] = love.graphics.newQuad(10*t,14*t,t,t,sheet:

getDimensions())

 -- forbidden zone

 self[4] = love.graphics.newQuad(13*t,6*t,t,t,sheet:

getDimensions()) -- space

 self[5] = love.graphics.newQuad(3*t,9*t,t,t,sheet:

getDimensions()) -- lava

Chapter 12 roguelike Dungeon Crawler

239

 -- passageway

 self[6] = love.graphics.newQuad(0*t,14*t,t,t,sheet:

getDimensions())

 return self

end

 Room
In your project directory, create a new file called room.lua. Design an init

function that creates a room of a random size, with a random number of

traps, treasure, and monsters in side of it.

Room = { }

function Room.init(w,h)

 local self = setmetatable({}, Room)

 -- room dimensions

 self.w = math.random(4,24);

 self.h = math.random(4,14);

 -- how much treasure

 -- how many monsters

 -- how many traps

 if self.w < 7 or self.h < 7 then

 self.treasure = math.random(0,1)

 self.monster = math.random(0,1)

 self.trap = math.random(0,1)

 else

 self.treasure = math.random(0,2)

 self.monster = math.random(0,2)

 self.trap = math.random(0,2)

 end

Chapter 12 roguelike Dungeon Crawler

240

 self.phlogiston = floor[4] --texture for space outside dungeon

 return self

end

All decisions about the room and its contents are made with the digital

equivalent of rolling a die. The room size is based on the assumption that

this game works on a tiled setup, so the room width, for instance, will never

be less than 4 tiles nor larger than 24 tiles.

This library isn’t finished yet, because it lacks doors. Doors are

significant enough, however, to deserve their own class. However, the

existence of a door in any given wall is determined by the room itself, so

add some code to decide which wall has a door.

 self.phlogiston = floor[4] --for context

 -- number of doors

 self.north = bool(math.random(1,20)%2) --row

 self.east = bool(math.random(1,20)%2) --col

 self.south = bool(math.random(1,20)%2) --row

 self.west = bool(math.random(1,20)%2) --col

 return self --for context

end --for context

This code plays a little with probability. Instead of having the computer

decide between 0 and 1 for whether or not a door is in a wall, it “rolls” a

20-sided die (d20) and then divides the result by 2, returning the modulo

(the “remainder”). The result is the same: either a 0 or a 1, but the

probability is a little better distributed.

To transform the 0 and 1 result to a Lua-friendly Boolean value, a custom

function is used. The bool function returns false unless a value is 1.

Add the following function to room.lua.

 return self --for context

end --for context

Chapter 12 roguelike Dungeon Crawler

241

function bool(value)

 return (value == 1 and true or false)

end

Finally, it’s important to know which door the hero stepped through

in the previous room so that the hero can be drawn at the opposite door in

the next room. Create a hot table in main.lua to track this information.

local permadeath = 0 -- is player dead yet

hot = {}

hot['x'] = nil

hot['y'] = nil

hot['name'] = nil

math.randomseed(os.time()) --for context

This reveals a problem with randomness, though. Normally, if a hero

goes through a door in the east wall, then the hero should emerge in the

next room from the west wall. But if the next room has been randomly

generated, there may not be a door on the west wall. To fix this, open the

room.lua file and create an override for the randomness of door existence.

If a door is marked hot, then force a door to exist on its opposite wall.

 -- if a door is marked hot then

 -- there must be a door in the next room

 if string.sub(hot['name'], 1, 1) == 'n' then

 self.south = true

 self.north = true

 elseif string.sub(hot['name'], 1, 1) == 's' then

 self.north = true

 self.south = true

 elseif string.sub(hot['name'], 1, 1) == 'e' then

 self.east = true

 self.west = true

Chapter 12 roguelike Dungeon Crawler

242

 else

 self.east = true

 self.west = true

 end

 self.phlogiston = floor[4] --for context

 Doors
Your room library decides whether or not a door exists in a given wall, but

it doesn’t determine a door’s physical position. Create a door.lua file and

add the following code to it.

Door = { }

function Door.init(face,w,h)

 local self = setmetatable({}, Door)

 self.face = face

 if self.face == "n" then

 self.x = (math.random(t,w*t)-t)

 self.y = t

 elseif self.face == "e" then

 self.x = (w*t+(t/2))-t

 self.y = (math.random(t,h*t)-t)

 elseif self.face == "s" then

 self.x = (math.random(t,w*t)-t)

 self.y = (h*t)-t

 else

 self.x = (0+(t/2))+t

 self.y = (math.random(t,h*t)-t)

 end

Chapter 12 roguelike Dungeon Crawler

243

 self.go = true

 return self

end

The location of each door is determined from a random range from tile

1 (not 0, since a door in a corner would be inaccessible) to the maximum

length of a wall (minus 1 tile, to avoid a door in the corner). The door is

marked active with the self.go variable, and a field called self.face is

created to track which direction the door is facing.

 Rogue Code
The code for main.lua is only about 400 lines of code. Most of it is code

similar to what you have already done for the previous games in this book,

but there are a few new tricks specific to character-driven games for you to

learn.

Open main.lua and finish up the love.load function. Create a floor

variable containing all tiles from the dungeon, create a font variable and

set the drawing color to white, and create a music variable for background

ambiance. Finally, create the hero using your hero.lua library, and then

call a nonexistent love.first function to place the hero in the first room

of a nonexistent dungeon.

 floor = Floor.init() -- images for room tiles

 font = love.graphics.setNewFont("font/pixlashed-15.otf",fsize)

 love.graphics.setColor(1,1,1) -- values 0 to 1

 hero = Hero.init()

Chapter 12 roguelike Dungeon Crawler

244

 music = love.audio.newSource("snd" .. d .. "happybattle.ogg",

"stream")

 music:setLooping(true)

 love.audio.play(music)

 love.first()

end --for context

The love.first function is arbitrarily named. You can call it anything,

such as love.start or love.begin. The point is, you need some function

to serve as the starting point for a new dungeon. The first entrance into

the dungeon is unique from entering any other room in the dungeon

because there is no “hot” door; that is, the hero hasn’t left one room to

enter another, so the game must generate a random starting position for

the player.

function love.first()

 if hot['name'] == nil then

 hot['name'] = card[math.random(1,4)]

 end

 room = Room.init() --create the room

 love.door() --create the doors

 if hot['x'] == nil then

 print("You enter a dark dungeon.")

 -- set where hero is entering

 if hot['name'] == "n" then

 hot['x'] = doors['n'].x

 hot['y'] = doors['n'].y

 elseif hot['name'] == "e" then

 hot['x'] = doors['e'].x

 hot['y'] = doors['e'].y

 elseif hot['name'] == "w" then

 hot['x'] = doors['w'].x

Chapter 12 roguelike Dungeon Crawler

245

 hot['y'] = doors['w'].y

 else

 hot['x'] = doors['s'].x

 hot['y'] = doors['s'].y

 end

 hero.x = hot['x'] --place hero at hot door

 hero.y = hot['y'] --place hero at hot door

 hist[#hist+1] = room --add room to history stack

 end

 love.treasure() --place treasure

 love.monster() --place monsters

 love.trap() --place traps

end

You can probably understand this code, even though you’ve never

done anything like this for your other games. The global hot table

is analyzed. If the hot['name'] field is found to be nil, then a value

is randomly generated from the contents of the card (as in cardinal

directions) table. A corresponding X and Y value is assigned to hot table,

the hero is placed at whatever door has been designated as the hot door,

and then functions are called to place treasure, monsters, and traps.

In previous games, you mostly used automatic indexing with your

tables. That is, when you created a table, the key you used to get a value

from it was always a number. For example, open a terminal and launch an

interactive Lua session.

$ lua

> hand = {}

> hand[#hand+1] = "red,wizard,1"

> hand[#hand+1] = "red,fighter,7"

> hand[#hand+1] = "red,goddess,9"

Chapter 12 roguelike Dungeon Crawler

246

Given such a table, you can reference values with numbers as the key.

> print(hand[1])

red,wizard,1

> print(hand[3])

red,goddess,9

A different convention is used for this dungeon game, though. For

some tables, custom keys are defined, allowing you to reference data with

strings. Try this:

> card = {}

> card['color'] = "red"

> card['type'] = "fighter"

> card['value'] = 7

> print(card['type'])

fighter

Obviously each convention is useful for different reasons. Since the

doors table contains other tables (each one called door), you can access

information inside each table using the standard dot notation, as in

doors['n'].x or doors['e'].y. It’s a lot of data to manage, and it can get

overwhelming to try to keep track of which table contains data and which

table contains more tables, and what data those tables contain. When in

doubt, iterate through a table and print the values. If you see more tables,

then you know that you either need to iterate through another level of

tables, or else call table fields directly. There are more examples of both

later in this game, so look at them with this in mind.

Doors, for instance, are the means by which a player progresses

through the game. You could just arbitrarily throw them into a table, but to

make it easy to identify each door object, you can give each one created a

custom key. Add this function to your code:

Chapter 12 roguelike Dungeon Crawler

247

function love.door()

 if room.north then

 door = Door.init("n",room.w,room.h)

 doors['n'] = door

 end

 if room.east then

 door = Door.init("e",room.w,room.h)

 doors['e'] = door

 end

 if room.south then

 door = Door.init("s",room.w,room.h)

 doors['s'] = door

 end

 if room.west then

 door = Door.init("w",room.w,room.h)

 doors['w'] = door

 end

end

This function looks at the room table to discover whether a door at a

certain position is meant to exist. If it is, then a door is generated with your

door.lua class, and placed into the doors table with a key identifying its

position as n, e, s, or w.

Monsters and treasures and traps are less important than doors,

because it doesn’t matter where they are in the room. Create some

functions to reference the room table, find out how many of the objects

(treasure chest, monster, or trap) are meant to be in the room, and then

generate that number of objects.

Chapter 12 roguelike Dungeon Crawler

248

function love.treasure()

 for i=0,room.treasure,1 do

 local j = Chest.init(room.w,room.h)

 chests[#chests+1] = j

 end

end

function love.monster()

 for i=0,room.monster,1 do

 local j = Monster.init(room.w,room.h)

 monsters[#monsters+1] = j

 end

end

function love.trap()

 for i=0,room.trap,1 do

 local j = Trap.init(room.w,room.h)

 traps[#traps+1] = j

 end

end

The next job is similar to what you have already done so far, except that

it covers entrances into all other rooms that are not the first room. In other

words, the love.first function will only ever be called once per game: the

first room generated. After that, the love.entrance function generates new

rooms, monsters, and so on.

function love.blast(tgt)

 local count = #tgt

 for i=0, count do tgt[i]=nil end

end

Chapter 12 roguelike Dungeon Crawler

249

function love.entrance()

 love.blast(chests)

 love.blast(bolts)

 love.blast(monsters)

 love.blast(traps)

 progress = 0

 room = Room.init()

 love.treasure()

 love.monster()

 love.trap()

 love.door()

 --[[ACTIVE DOOR]]--

 if hot['name'] == 'n' then

 hero.x = doors['s'].x

 hero.y = doors['s'].y

 elseif hot['name'] == 's' then

 hero.x = doors['n'].x

 hero.y = doors['n'].y

 elseif hot['name'] == 'e' then

 hero.x = doors['w'].x

 hero.y = doors['w'].y

 else

 hero.x = doors['e'].x

 hero.y = doors['e'].y

 end

 hist[#hist+1] = room --add room to history stack

end

You might remember the blast function from Battlejack. It clears out

the old data from tables. It’s used here because rooms are disposable; once

a player leaves a room, they can never return to it. This is a design decision

Chapter 12 roguelike Dungeon Crawler

250

made exclusively to keep the code simple (and it’s why there is a hist table

tracking each room as they are created, but never actually used for any

mechanic).

 Draw Function
The draw function is, of course, the place where all the graphics really

happen. You already know the basics of this function, so read the code

once for comprehension, and then add it to your main.lua file.

First, create a background to fill the game window in places where

there is not a dungeon.

function love.background(room)

 for c=0, WIDE, 1 do -- for each column of the window

 for r=0, HIGH, 1 do -- for each row of the window

 love.graphics.draw(sheet,room.phlogiston,t*c,t*r)

 end

 end

end

Placing doors on walls is a dangerous prospect, because if they are

inaccessible then the room looks poorly coded. To protect yourself from

accidentally having doors in corners, create a trim function that forcefully

forbids any value greater than or equal to the length of a wall or less than 1 tile.

function trim(room,n)

 if n >= room.w*t then

 n=n-t

 elseif n < t then

 n=n+t+t

 end

 return n

end

Chapter 12 roguelike Dungeon Crawler

251

And then draw the room by filling in any outer edge with a wall tile,

and any area that is not the outer edge with a floor tile. If a door is meant to

exist on the wall, draw a door.

function love.draw()

 --[[WORLD]]--

 love.graphics.setColor(1,1,1)

 love.background(room)

 for c=0, room.w, 1 do -- for each column in room

 for r=0, room.h, 1 do -- for each row in room

 if c == 0 then -- west wall

 love.graphics.draw(sheet,floor[2],t*c,t*r)

 if room.west then love.graphics.draw(sheet,floor[3],

doors['w'].x- t,trim(room,doors['w'].y),math.rad(-90),1,

1,t/2,t/2) end

 elseif c == room.w then -- east wall

 love.graphics.draw(sheet,floor[2],t*c,t*r)

 if room.east then love.graphics.draw(sheet,floor[3],

doors['e'].x+t,trim(room,doors['e'].y),math.rad(90),1,

1,t/2,t/2) end

 else -- middle ground

 love.graphics.draw(sheet,floor[1],t*c,t*r)

 end -- if i

 if r == 0 then -- north wall

 love.graphics.draw(sheet,floor[2],t*c,t*r)

 if room.north then love.graphics.draw(sheet,floor[3],

trim(room,doors['n'].x),doors['n'].y-t) end

 end -- if j

Chapter 12 roguelike Dungeon Crawler

252

 if r == room.h then -- south wall

 love.graphics.draw(sheet,floor[2],t*c,t*r)

 if room.south then love.graphics.draw(sheet,floor[3],

trim(room,doors['s'].x),doors['s'].y+t,0,1,-1,0,t) end

 end -- if j

 end --for j

 end --for i

The rest of the love.draw function is pretty routine. Draw the traps,

treasures, monsters, update the player about their score or death, draw any

bolts that have been fired, and then draw the player.

 --[[TRAPS]]--

 for k,v in pairs(traps) do

 love.graphics.draw(sheet,v.img,v.x,v.y)

 end

 --[[TREASURE]]--

 for k,v in pairs(chests) do

 love.graphics.draw(sheet,v.img,v.x,v.y)

 end

 --[[MONSTERS]]--

 for k,v in pairs(monsters) do

 love.graphics.draw(sheet,v.img,v.x,v.y)

 end

 --[[STATS]]--

 if permadeath == 0 then

 love.graphics.printf("XP " .. hero.xp,t*2,HIGH- fsize,

WIDE,'left')

 else

 love.graphics.printf("You have experienced PERMADEATH.",

hero.x,hero.y,WIDE,'left')

 end

Chapter 12 roguelike Dungeon Crawler

253

 --[[BOLTS]]--

 for k,v in pairs(bolts) do

 love.graphics.draw(skull,v.img,v.x,v.y)

 end

 --[[CHARACTER]]--

 love.graphics.draw(sheet,hero.img,hero.x,hero.y)

end --draw

 Keypressed
Permadungeon is a turn-based game, meaning that the hero moves and

then the monsters move. For that reason, player movement happens on

each key press, and monster movement happens on each key release.

For movement to happen, the player and monster sprites must be

updated to proceed to their next animation frame. Since there are only

3 or 4 animation frames, depending on the object being animated, you

need frame counters that can be cycled constantly as the game progresses.

Create these at the top of the main.lua file along with your other local

variables.

bolts = {} --for context

local frame = 1 --turn-based frame

local aframe = 1 --animated frame

local fsize = t+4 --for context

Another counter is the progress variable. This is a convenience

counter that ensures a player is a few steps from the door through which

they entered before the game starts looking for doorway collisions;

otherwise, the player might accidentally step back through a door as soon

as they enter a room. The progress counter is reset each time a room is

created.

Chapter 12 roguelike Dungeon Crawler

254

Here is the player movement block of the love.keypressed function.

function love.keypressed(key)

 frame = frame+1

 progress = progress+1

 if frame >= 3 then

 frame = 1

 end

 if hero.x < (room.w*t)-t and

 key == "right" or key == "d" then

 hero.x = hero.x+hero.speed

 hero.img = hero.ani[frame]

 hero.face = "e"

 elseif hero.x > t and

 key == "left" or key == "a" then

 hero.x = hero.x-hero.speed

 hero.img = hero.ani[3+frame]

 hero.face = "w"

 elseif hero.y > t and

 key == "up" or key == "w" then

 hero.y = hero.y-hero.speed

 hero.img = hero.ani[9+frame]

 hero.face = "n"

 elseif hero.y < (room.h*t)-t and

 key == "down" or key == "a" then

 hero.y = hero.y+hero.speed

 hero.img = hero.ani[6+frame]

 hero.face = "s"

 end

Chapter 12 roguelike Dungeon Crawler

255

The next block of code checks for collisions. For that to happen, steal a

simplified version of the collide function from Battlejack.

function collide(x1,y1,x2,y2)

 return x1 < x2+t and

 x2 < x1+t and

 y1 < y2+t and

 y2 < y1+t

end

When a collision is detected, things happen. Sometimes, damage is

dealt or XP is rewarded. Trap images change to show that the trap has been

sprung, and treasure chest images change to the opened state. Combat is

kept simple; if the player collides with a monster, the hero takes damage.

 --[[TREASURE]]--

 for k,v in pairs(chests) do

 if collide(hero.x,hero.y,v['x'],v['y']) and v.full then

 hero.xp = hero.xp+v.xp --take gold

 v.img = v.state[2] --close

 v.full = false --mark empty

 end

 end

 --[[TRAPS]]--

 for k,v in pairs(traps) do

 if collide(hero.x,hero.y,v['x'],v['y']) and v.live then

 hero.xp = hero.xp-v.dmg --take damage

 v.img = v.state[v.sel+2] --change image

 v.dmg = 1 --disarm

 v.live = false --mark not live

 end

 end

Chapter 12 roguelike Dungeon Crawler

256

 --[[start BATTLE]]--

 for k,v in pairs(monsters) do

 if collide(hero.x,hero.y,v['x'],v['y']) and v.alive then

 hero.xp = hero.xp-v.dmg --take damage

 v.battle = true

 end

 end

Door detection is more complex. It only starts when the hero is at

least 2 key presses into the room, which prevents accidentally going

back through the same door the player entered through. Similarly, you

don’t want a player to accidentally fall through a door just by crossing

its threshold, so you must reference hero.face to verify that the hero is

intentionally walking through the door (because the hero and the door

are both facing the same way). When a player does willfully pass through

a door, you must record what wall the door was on so that the player can

emerge from the opposite wall in the next room.

 if progress > 2 then

 for k,v in pairs(doors) do

 if collide(hero.x,hero.y,v.x,v.y) and v.go then

 if hero.face == v.face then

 hot['x'] = v.x

 hot['y'] = v.y

 hot['name'] = tostring(k)

 love.entrance()

 end -- if

 end -- if

 end --for

 progress = 0

 end --if progress

end

Chapter 12 roguelike Dungeon Crawler

257

 Monster Movement
In the love.keyreleased function, two important things happen: the

monsters move, and any bolts that the hero fires are generated. Placing the

fire power trigger in the keyreleased function rather than the keypressed

function is a good way to reinforce that your player can’t just hold down

a button and spray bolts out at their enemy. While LÖVE distinguishes

between a key press and a key repeat, not all game engines do, so it’s good

practice to put fire power where you really mean for it to happen.

Creating a bolt is the same as creating a trap or a treasure or monster,

except that it only happens when a specific key is released.

function love.keyreleased(key)

 if key == "f" or key == "u" then

 local j = Bolt.init(hero.x,hero.y)

 bolts[#bolts+1] = j

 hero.xp = hero.xp-math.random(0,6)

 end

Monster movement is similar to player movement, except that their

movement is automated. To keep things simple, the monsters move the

length or depth of a room, reversing direction if they get within one or two

tiles of a wall. To mix things up a little, some of the monsters move with a

variable speed.

 --[[MONSTERS]]--

 for k,v in pairs(monsters) do

 if v.name == "fungus" then

 if v.y < t*2 then

 v.go = 0

 elseif v.y > (room.h*t)-(t*2) then

 v.go = 1

 end

Chapter 12 roguelike Dungeon Crawler

258

 v.img = v.face[v.go+frame]

 if v.go == 0 then

 v.y = v.y+math.random(0,1)*t

 else

 v.y = v.y-math.random(0,1)*t

 end

 elseif v.name == "golem" then -- ice golems

 if v.x > (room.w*t)-(t*1) then ---(t*1) then

 v.go = 1

 elseif v.x < t*2 then

 v.go = 0

 end

 v.img = v.face[v.go+frame]

 if v.go == 0 then

 v.x = v.x+t --math.random(0,1)*t

 else

 v.x = v.x-t --math.random(0,1)*t

 end

 end

 end

At the end of the function, check the permadeath variable. If it is greater

than 0, then the hero has died. As a quick hack around an abrupt stop, this

function increments the permadeath counter and then ends the game once

the counter is greater than 2.

 if permadeath > 0 then

 permadeath = permadeath+1

 end

Chapter 12 roguelike Dungeon Crawler

259

 if permadeath > 2 then

 os.exit()

 end

end --function

 Bolts and Updates
The final function to write for the game is the love.update function.

This is a standard LÖVE function. You’ve used it before to check for win

conditions and to update particle effects. In this game, the update function

is needed for out-of-turn motion, specifically for the bolts fired by the

hero. While it might be a valid mechanical choice to make weapon fire

move within the structure of game turns, it’s more common that fire power

moves in real time.

Since the bolt animation happens to have four states on its spritesheet

rather than three, a dedicated frame counter that goes all the way up to

four is used. Bolt movement is basically the same as hero and monster

movement, except that when it reaches the limits of a room, it is removed

from the bolts table. If it hits a monster, it deals damage to the monster

and is removed from the table.

Lastly, the function checks the status of the hero.xp variable. If it’s less

than one, then permadeath is activated. This variable, of course, signals the

end of the game.

function love.update(dt)

 aframe = aframe+1

 if aframe >= 4 then

 aframe = 1

 end

Chapter 12 roguelike Dungeon Crawler

260

 for k,v in pairs(bolts) do

 v.img = v.ani[aframe]

 if v.face == "e" then

 v.x = v.x+v.speed

 elseif v.face == "w" then

 v.x = v.x-v.speed

 elseif v.face == "n" then

 v.y = v.y-v.speed

 elseif v.face == "s" then

 v.y = v.y+v.speed

 end

 -- still in room?

 if v.x > (room.w*t)-(t*2) then

 table.remove(bolts,k)

 elseif v.x < t then

 table.remove(bolts,k)

 elseif v.y > (room.h*t)-(t*2) then

 table.remove(bolts,k)

 elseif v.y < t then

 table.remove(bolts,k)

 end

 --hit or miss

 for i,j in pairs(monsters) do

 if collide(v.x,v.y,j['x'],j['y']) and j.alive then

 j.xp = j.xp-math.random(0,6)

 table.remove(bolts,k)

 if j.xp < 1 then

 table.remove(monsters,i)

 end

 end

 end

 end

Chapter 12 roguelike Dungeon Crawler

261

 if hero.xp < 1 then

 permadeath = 1

 end

end

That’s all the code there is for a basic dungeon crawler. Launch it, fix

any bugs you find, and make your own improvements.

 Homework
To keep the code samples concise, there are many deficiencies in the

Permadungeon game. Here are some improvements you could make to

the game using the principles you have learned from this and previous

exercises.

• The monsters are very passive in this game and they

move in predictable patterns. Alter the code for the

monsters so that after some number of the hero’s steps,

the monsters move toward the hero until they swarm

and kill the hero.

• The combat system in this game consists only of

monsters with collision attacks and a hero with a fire

bolt. It could be more challenging if some monsters had

ranged attacks, as well.

• A more ambitious change would be to equip the hero

with two weapon slots, one for melee attacks and one

for ranged attacks. The player should have the freedom

to switch weapons at the expense of one turn.

Chapter 12 roguelike Dungeon Crawler

262

• It’s difficult to tell when combat is happening. Invent a

system that displays hit values and health points on the

hero and the monster when combat occurs.

• Make some treasure chests into traps.

• When a monster dies, make it drop loot or healing

potions instead of just disappearing.

• Add sound effects.

• Devise a better end game.

Chapter 12 roguelike Dungeon Crawler

263© Seth Kenlon 2019
S. Kenlon, Developing Games on the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-4170-7_13

CHAPTER 13

Game Distribution
People used to go to computer stores to buy video games. That tradition

is mostly relegated to console gaming now, with most PC game and all

mobile game purchases happening online. If you want to get your game

into the hands of the gaming public, you need to know how to package it

and where to post it.

 Packaging
Game packaging, from the perspective of a programmer, has nothing to do

with literal packaging and marketing. Packaging, in the coding business,

refers to how you gather up all the libraries and assets your game depends

on so you can effectively deliver it to the public. LÖVE makes it easy,

but as every programmer knows, you never package software only once.

Inevitably, your users are going to find bugs you never noticed, or request

features you never imagined, and you’re going to have to release updates.

That means packaging your game not once but several times over the

course of its life, but since you’re a programmer now, you should already

be asking how you can automate the process so you never have to do the

actual work more than once.

As you know from the dice game early in this book, the simplest

possible LÖVE game file is a ZIP file containing a valid main.lua file. So to

package a LÖVE game, all you need to do is gather all of the game’s code

files, assets, and libraries, and then compress them into a ZIP file.

264

Throughout this book, each game has been developed in a unique

project directory. Even the external libraries you’ve installed from

Luarocks or the Internet at large were placed in a local folder in your

project directory. So that’s the first requirement sorted.

One of the most common methods of automating software releases

is the make file. Not all software projects use a make file, but most use

something like it: a script designed to perform routine tasks to save you

from making a stupid mistake while packaging up your game.

Open Geany and create a new file called luamake in your Battlejack

project directory.

You might recall the command you used to create a game file for your

dice project. Lua can use the same command, thanks to the os.execute

function, which runs any command you would normally run from the

operating system. Add this line to luamake.

os.execute("zip battlejack.love -r *.lua deck.ini font img

local snd")

Open a terminal window and run the luamake file.

$ cd battlejack

$ lua ./luamake

 adding: card.lua (deflated 54%)

 adding: game.lua (deflated 72%)

 adding: main.lua (deflated 55%)

 ...

$ ls -1

battlejack.love

...

The make file works as expected. Scripting this simple command

ensures that you never accidentally package your game but forgetting

to include the images, or the local libraries, or anything essential to the

application.

Chapter 13 Game Distribution

265

 Versioning
One problem with updating an application is that once you release an

update, there are different versions of the same application. The last thing

anyone wants is to run an old, buggy version of an application after a fix

has been released, so it’s smart for you and smart for your users to use a

versioning scheme.

There are many versioning schemes out there. Applications that

develop rapidly and release often tend to use semantic versioning, as

described on semver.org. Applications that only release once a year might

just use a major version number, like 5 or the release year. Others use code

names, or something entirely unique.

You can choose your own schema, but for simplicity’s sake this

example uses the date to automatically generate a version. In a terminal,

try out the standard Linux date command.

$ date +%Y

2019

$ date +%Y-%m

2019-06

$ date +%Y%m%d

20190603

The date command syntax uses shorthand to request specific aspects

of the current date. The final command in the example output displays

the year, month, and date with no delimiter. Normally, a version string

is separated with dots, but some file managers on Android have trouble

opening .love files that contain any more dots but the final one, so for

compatibility, avoid complex version strings for now.

Lua has a similar syntax in its os.date function. Update luamake to

match this.

Chapter 13 Game Distribution

http://semver.org

266

d = os.date("%Y%m%d")

os.execute("zip battlejack-" .. d .. ".love -r *.lua deck.ini

font img local snd")

The output of luamake would be, for example, battlejack-20190603.

love. That’s better than just battlejack.love but it ignores the possibility

that you might make two updates to your application in one day. Ideally,

you would only actually publish the most recent update, but crazy things

happen in software development.

Commands issued directly to the operating system are described by

the POSIX standard, and the convention is that the first string you type

into a terminal is the command itself, followed by optional options or flags

(which are often, appropriately, optional), and then by an argument. For

example.

$ readlink --canonicalize luamake

/home/pi/battlejack/luamake

In this example, readlink is the command, --canonicalize is the

option, and luamake is the argument.

Lua is a command, and so it uses the same syntax, which means

your luamake file can accept an optional version number chosen by you

at run time.

When you run a Lua application, even a simple script like luamake,

everything you type into the terminal is recorded by Lua in a table called

arg. For example, if you were to type this.

$ lua ./luamake --foo bar

The arg table for luamake contains luamake in arg[0], --foo in arg[1]

and bar in arg[2].

By looking at the arg table in a Lua script, you can get extra parameters

from the user (in this case, you).

Chapter 13 Game Distribution

267

Add this if statement to luamake to detect an optional version number.

d = os.date("%Y%m%d")

for k,v in ipairs(arg) do

 if v == "-v" or

 v == "--version" then

 ver = arg[k+1]

 end

end

if ver == nil then

 ver = 0

end

os.execute("zip battlejack-" .. d .. "-" .. ver .. ".love -r *.

lua deck.ini font img local snd")

Its syntax is now.

$ lua ./luamake --version 1

...

$ ls *love

battlejack-20190602-1.love

If you provide no version, then it is assumed to be 0, producing a file

like battlejack-20190603-0.love.

 Help Message
Since your formerly simple one-line script now has an optional flag, you

should document how to use it. It might seem obvious now, but you’ll

thank yourself in a month when you go back to fix a bug and suddenly

realize you don’t remember how to generate a release package.

Chapter 13 Game Distribution

268

Help messages are best when they’re intuitive. You shouldn’t need a

help message to tell you how to get a help message. The traditional flag for

help is --help and, for lazy typists, -h. However, you can add other flags if

you have other ideas. It’s your toolchain, after all. Change the for loop in

luamake file to match this.

for k,v in ipairs(arg) do

 if v == "-v" or

 v == "--version" then

 ver = arg[k+1]

 end

 if v == "-h" or

 v == "--help" then

 help()

 os.exit()

 end

end

There is no help function yet, so add one that explains to your future

self how to use your custom luamake command.

local function help()

 print("luamake : generate a .love package")

 print("luamake -v 2 : set the iteration version to 2")

 print("luamake -h : print this help message")

end

 Executable
On Linux, you’re encouraged to write your own commands. You’ve just

written one, but it doesn’t feel like a command because you have to use

Lua to run your script.

Chapter 13 Game Distribution

269

The lua command is what’s called a binary executable, meaning that it

has been translated from code to a machine language. If you were to open

lua in Geany, you wouldn’t see code, you’d see garble.

The Lua programs you have been writing are scripts that are

interpreted by either LÖVE or Lua directly. Without LÖVE or Lua, your

scripts are just plain text files.

You can, however, make your Lua script act like a binary executable file

by adding a special line, shebang or magic cookie, of text at the very top of

the file.

#!/usr/bin/env lua

This defines what application to use to run the text contained in the

script.

Not just any file can be launched as if it were an application. Linux

won’t run the contents of a file unless it is explicitly marked as executable.

This is done with the chmod command. Make sure you are in your project

folder and run this command.

$ chmod +x ./luamake

Now you can treat luamake as an independent command.

$./luamake --version 3

 Distribution
You can distribute your LÖVE games anywhere online. If you have a

website, then you can post your game for download and you’re officially a

game distributor. Posting something online and people knowing that your

game exists, however, are two different things.

For better exposure, you can also post your game on established indie

game distribution sites.

Chapter 13 Game Distribution

270

 Online
Open source programming is everywhere, and several very large websites

are eager to host your code. Popular code hosting sites include GitLab.

com, GitHub.com, NotABug.org, Bitbucket.org, SourceForge.net, and

many others. Most are based on Git, which you have been using during the

course of this book to track your work.

These hosting services provide not only a no-cost online storage

space for your game projects, they also provide the ability to open your

code for others to see. Sometimes that means other people will learn from

your hard work, and other times it means someone smarter than you will

improve your code and teach you something new. It’s the open source

model, and it’s popular for a good reason.

Some of the hosting services even provide basic homepages so you can

design a simple page or two to advertise your game’s features.

Because GitLab itself is open source and can be installed on private

servers, it’s become popular among both hobbyists and professional

software houses, so its web interface is worth learning. All of them are

practically the same, so learning GitLab teaches you the same principles

you need to use the others.

Register an account on GitLab.com (you are required to confirm your

email address, so use a valid email) and log in.

Chapter 13 Game Distribution

http://gitlab.com
http://gitlab.com
http://github.com
http://notabug.org
http://bitbucket.org
http://sourceforge.net
http://gitlab.com

271

In User Settings Figure 13-1, click the SSH Keys link in the left panel.

An SSH key is a pair of files used to authenticate one computer to another.

This level of trust isn’t necessary when you’re just downloading a file from

the Internet, but when you upload something to someone else’s servers,

they want to make sure you’re always the same person you claim to be.

You must generate an SSH key to authenticate to your remote Git server.

Open a terminal and create a new hidden folder in your home directory

called .ssh, and then make it private with chmod 600, meaning that only you

have access to the folder (do this even if you are the only person using your

computer, because SSH requires it as part of its security policy).

$ mkdir --parents ~/.ssh

$ chmod 600 ~/.ssh

$ ssh-keygen -t ed25519 -f ~/.ssh/git.key

You are prompted for an optional password. This is a password for

access to the key itself, in the event that your key should fall into the wrong

hands. You don’t have to use a password, in which case anyone with your

SSH key files would have access to your online Git account.

Figure 13-1. The Settings menu item in Gitlab

Chapter 13 Game Distribution

272

The result of the command are two files in a hidden directory called .ssh.

One file is a private key file, which you must never post anywhere. It’s

like a password; you would never tell anyone your password, regardless

how official they may appear or however nicely they may ask. Treat your

private SSH key file the same. Your private SSH key is named git.key,

because you named it that as part of your command.

The other file created by your command is git.key.pub, and it is

meant specifically to be distributed publicly. If you place your public key

on a server, then when you try to access that server using your private

key, authentication is successful. You can think of these SSH keys as a

“friendship necklace”, with two interlocking pieces that are relatively

meaningless on their own but perfectly complete together. In more

technical terms, the public file is like a padlock and the private file is the

key that unlocks it.

View your SSH public file by opening it in Geany, or in a terminal with

this command.

$ cat ~/.ssh/git.key.pub

Select the text of your key from ssh-ed25519 to the very end and select

Edit ➤ Copy.

In your web browser, paste your public key text into the Key text field,

and then click the “Add key” button Figure 13-2.

Chapter 13 Game Distribution

273

Click the Projects menu in the top left of the GitLab interface and select

Your Projects. This takes you back to your GitLab home screen. Since you

haven’t created any projects yet, click the “Create a project” button.

On the New Project screen, provide a name for your project, such as

battlejack. Optionally, you can provide a short description of the project.

Set the project visibility, keeping in mind that public code increases your

chances of getting useful feedback and also that others will be able to learn

from you.

Click the “Create project” button to instantiate the project on GitLab’s

servers.

Figure 13-2. Adding an SSH key to Gitlab

Chapter 13 Game Distribution

274

After the project is created, you are brought to the project’s page,

which provides instructions on how to post your code to the empty

project. It assumes you know how to configure SSH, however, so there

are some additional steps you must take before pushing your code to

GitLab.

 Configuring SSH for Git
You’ve configured your SSH keys on both your computer and on the Git

server, but the git on your computer doesn’t know what SSH key to use (or

even that you want to use SSH, since Git is capable of using many different

protocols). If you provide the git command or git-cola an SSH address,

then Git knows to use your SSH configuration. The problem is, you don’t

have a SSH configuration yet.

Create a file in the hidden .ssh folder in your home directory, and call

it config. You can do this in a terminal.

$ touch ~/.ssh/config

Open this file in Geany. Since it’s a hidden file, it may be easiest to do

this from a terminal.

$ geany ~/.ssh/config &

Enter this configuration into your config file.

host gitlab

 hostname gitlab.com

 user git

 identityfile /home/pi/.ssh/git.key

The user value must be git. That’s not your username, but most online

Git hosts use git as the generic username for all of their users, since they

rely exclusively on SSH keys to actually identify each person.

Chapter 13 Game Distribution

275

The value of identityfile, however, may differ on your computer. For

instance, this example assumes that your username is pi, which is often

the default user on a Raspberry Pi Linux distribution. If you’ve created

your own user, or changed your username, or aren’t using a Pi at all, then

change pi for your actual username.

If you don’t know your username, use the whoami command to find

it out.

Save the config file.

 Pushing to Git
Now that SSH is fully configured for Git, you can add your remote Git

project to your local project directory. This example uses the Battlejack,

but this process is the same for any project you work on, as long as you

have a local directory that is being tracked by Git and a remote Git server

upon which you’ve created an empty project.

First, go to your project directory on your computer.

$ cd ~/battlejack

Add your remote Git server to your Git project. The URL you use in

your command must include your GitLab account name rather than

demo2019. Find the Git project location on your GitLab project page,

either in the instructions at the bottom of the page or near the top of

the page under the project name (make sure you get the SSH version of

the URL, not the HTTPS version, since the latter doesn’t provide write

access).

$ git remote add server git@gitlab.com:demo2019/battlejack.git

This command does exactly like it reads: Git is adding a remote (that

is, not in the same location as you) destination called server, with the

address of git@gitlab.com:demo2019/battlejack.git. The name server

Chapter 13 Game Distribution

276

is arbitrary, and exclusively for your own use. It is the shortened term that

refers to git@gitlab.com:demo2019/battlejack.git. Some users name it

origin, others call it upstream, and so on.

If you prefer to use git-cola, open your project and select File ➤ Edit

Remotes. In the Edit Remotes window, click the + button in the lower left

corner.

In the git-cola dialogue box that appears, enter server for the name

field, and the Git project location, such as git@gitlab.com:demo2019/

battlejack.git, for the URL field.

You can now push your code to your remote Git server. In a terminal.

$ cd ~/battlejack

$ git push --set-upstream server HEAD

This command is very specific; it tells Git to push your code and

to set the remote location (called server) as an “upstream” location.

That’s fancy software development terminology meaning that Git is not

only pushing code to your server, but also should, in the future, pull

changes from it.

In the future, you need only issue this simpler command.

$ git push server HEAD

If you prefer git-cola, go to the Actions menu and select Push. In the

Push window that appears, set Remote, along the top of the window, to

server. Select the Set upstream option along the bottom of the window

(you only need to do that the first time you push to a project on your

server), and then click the Push button.

git-cola warns you that the target server is devoid of any of your code,

so a new branch is being created to mirror your local project directory.

Click the Create Remote Branch to accept.

Chapter 13 Game Distribution

277

 Itch.io
Itch is a leading indie game distribution site, offering video games for

Linux, Windows, and Mac. Developers can post games and set either a

fixed price, no price, or pay-what-you-want. Some games, like Mr. Rescue,

are even programmed with LÖVE.

Itch is not curated or moderated. This means that you can post nearly

anything to it. There’s no approval process. With this freedom comes

great responsibility; don’t post the games that you’ve written haven’t had

anyone else test, don’t post half-baked games that are bound to frustrate

your users. Post your games after extensive testing and refinement. The

Itch audience and your own reputation will thank you.

You can sign up for Itch for free and post your game. Tag your game

with relevant information, such as the genre and game engine, to help

people find your game, and set it as fully cross-platform, since LÖVE itself

runs on Linux, Windows, and Mac.

 Lutris
Lutris is not exactly a game distributor, but a game aggregator. For fans

of retro, indie, and open source gaming, Lutris is a unified library for

thousands of games. Unlike Itch, it is a curated collection, meaning that

not just any game gets posted. However, you can write your own Lutris

installer and distribute that independently, or you can wait until game is

nearly perfect, well-tested, and ready to stand up to the scrutiny of serious

gamers, and then post it.

Lutris is something of a hybrid system. Lutris.net is an online

community, with a library filled with installer files. It does not distribute

games, only scripts to make games already downloaded by a user appear

in the user’s Lutris desktop application.

Chapter 13 Game Distribution

http://lutris.net

278

Lutris, the desktop application, is a game library that makes it easy

for a user to browse through their personal collection and launch a game

regardless of whether it was written for Linux, Windows, a web browser,

LÖVE, and many other platforms.

A Lutris install file is a simple script written in YAML, a popular

configuration format. A Lutris installer needs to communicate to Lutris

where a game executable is located, and what application on the user’s

computer must be used to launch it.

Using the Battlejack project as an example, create a file called

battlejack.yml in your home directory. Open this file in Geany.

First, you must identify where the game file is located. Assuming your

game is freely available online with no purchase required, then you can

have the Lutris installer download it for your user.

files.

- lovefile: https://example.com/games/battlejack-2018.09.03-3.

love

Lutris has no storefront, so if you are charging money for your game,

then you must prompt the user to point Lutris to the game (the .love file)

they have already purchased and downloaded.

files.

- lovefile: N/A:Please select the Battlejack.love file.

This configuration option tells Lutris that there is one file required for

this game, but that the location is not yet known. When a user installs the

game, Lutris prompts the user to select the .love file on their hard drive.

Regardless of how the game is acquired, the location of the game file is

assigned to a new variable called lovefile.

Next, you must tell Lutris how to run the game. You know the full

command to run Battlejack is love battlejack.love, and that’s exactly

the same command that Lutris must use, although the syntax is specific to

the YAML configuration.

Chapter 13 Game Distribution

279

game.

- args: $GAMEDIR/$lovefile

- exe: love

This configuration block tells Lutris that the actual executable

command is love, and the argument to pass to LÖVE is a variable

containing the name of the game directory (which is defined by the user

during install) and a variable containing the name of the game file.

Next, the actual install is described in YAML. For LÖVE games, there

isn’t really an installer; they just play in LÖVE. All your configuration file

needs to do is make sure that the .love file is placed in whatever directory

the user has told Lutris to use as their game folder. This value is $GAMEDIR,

defined by Lutris.

move.

- dst: $GAMEDIR/$lovefile

- src: $lovefile

Finally, you must alert Lutris that this game requires LÖVE to run.

LÖVE has its own Lutris installer, so should anyone install your game, they

have a similar one-click access to LÖVE, as well.

requires: love2d

Your installer is finished. Log in to lutris.net, add a new game, paste

in your installer, and submit it for moderation. While you’re at it, add a

screenshot of your game, a description, and other data so that people can

see that it’s a legitimate, playable game.

Chapter 13 Game Distribution

http://lutris.net

280

 Mobile Market
The mobile market, including phones and tablets, is a major game

outlet, and LÖVE is perfectly suited for creating mobile games. LÖVE

is available for both Android and, technically, iOS. Android is open

source, so it’s easier for both users and developers to install LÖVE onto

it than onto iOS.

Note even the android version of LÖVe lacks a few important
features at the time of this writing, although it’s being updated
constantly and new features are appearing rapidly.

Apple places restrictions on what users and developers may do

on Apple devices. Highly technical users can load LÖVE onto their

Apple mobile device, but most will not. Until Apple decides to permit

independent app usage and development, iOS is a difficult market

for small app developers. However, now that you understand Lua and

advanced programming concepts, you can explore Apple-sanctioned app

development if that’s your primary target.

It is smart, however, to at least plan for both, even if you don’t

guarantee full compatibility with the platform you cannot, for whatever

reason, test. The more universal you make your game, the more people are

able to play them.

 Installing LÖVE on Android
To play a LÖVE game on your Android mobile device, you have to install

LÖVE itself. You might find LÖVE in the Google Play store or in F-Droid.

org, but it’s best to download the latest available version directly from

love2d.org.

Chapter 13 Game Distribution

http://f-droid.org
http://f-droid.org
http://love2d.org

281

Android packages are delivered as .apk files. Your mobile device might

warn you that such a file is dangerous or harmful, presumably for fear that

you are installing malware. It’s safe to ignore this particular warning (see

Figure 13-3) since you’re familiar with the LÖVE project, and download the

package.

Your mobile may offer to install the APK file once it’s downloaded.

If not, you must install a file manager so you can get to your files. Your

mobile probably doesn’t have one, or else not a very good one, so

download the open source Amaze file manager from https://play.

google.com/store/apps/details?id=com.amaze.filemanager.

Figure 13-3. Installing LÖVE on Android

Chapter 13 Game Distribution

https://play.google.com/store/apps/details?id=com.amaze.filemanager
https://play.google.com/store/apps/details?id=com.amaze.filemanager

282

Once installed, launch Amaze, locate the .apk file you downloaded,

and tap it to install.

You may be warned again that the APK installer is from an unknown

source. It’s perfectly safe to ignore this error.

There’s no use in launching LÖVE directly once it’s installed. It’s just

the game engine, so what the user actually launches is a .love file. The

Amaze file manager, and many others, prompts the user to select which

application to use.

The game launches, and reads taps as mousepressed and

mousereleased events Figure 13-4.

Figure 13-4. Blackjack on Android

 Limitations of LÖVE on Mobiles
LÖVE on Android and iOS is a rapidly developing technology, so there

are fewer and fewer limitations every month. Whatever state the engine

is in, however, there are a few things to keep in mind when developing for

mobiles.

Chapter 13 Game Distribution

283

• There’s no expectation that mobile devices have a

keyboard, so mousereleased and mousepressed should

be favored in a mobile game.

• For menus, define buttons rather than text entries so

it’s easier for a finger or stylus to trigger a click event.

• Screen sizes on mobile devices vary wildly, and as the

popularity of Android continues to grow, so will the

range of resolutions. If you want your game to run on

palm-sized phones, paper-sized tablets, and big-screen

TVs, you must design your game to scale.

• Furthermore, the aspect ratio and pixel density on

some mobile devices won’t match your computer

screen. If what you see on your screen isn’t matching

what’s ending up on your device, try doubling a

value or similarly adjusting your game dimensions

(or better yet, make your game resolution

independent with proper scaling). For example, the

spec sheet of a phone with a high pixel density might

report that its screen is 300 pixels wide, but your

game only fills the screen if you design it with at 600

pixels wide instead.

• At the time of this writing, LÖVE lacks permission to

write data to the phone’s internal storage. That means

you can’t get the os.getenv('HOME') location or create

save files yet.

Watch love2d.org for updates.

Chapter 13 Game Distribution

http://love2d.org

285© Seth Kenlon 2019
S. Kenlon, Developing Games on the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-4170-7_14

CHAPTER 14

Next Steps
With this book, you have learned the foundations of not just Lua, but of

programming. You have access to the building blocks of very advanced

code. All you have to do now is use the knowledge you have gained for new

projects.

 How to Practice
You’re familiar with the old saying practice makes perfect, and it should be

no surprise that it applies as much to programming as to anything else.

You cannot hope to become an efficient, comfortable programmer without

weeks and weeks, and then months and months, of practice. The key is to

find an excuse to use Lua. Make Lua work for you. Make it do stuff that you

don’t feel like doing yourself. You have already learned how to use Lua to

build and release your software, for example, so find other small tasks for

Lua to do for you.

Note If you want to create a GUI application in Lua, there are
several toolkits you can use. Obviously, there is LÖVE itself, but it
is intended as a game engine. For a generic GUI libraries providing
common widgets like buttons and text fields, try TekUI at tekui.
neoscientists.org, SUIT for LÖVE at github.com/vrld/SUIT, and Luce at
github.com/peersuasive/luce.

286

Sometimes, learning new tricks on computers seems like a waste

of time. For instance, you already know how to start a basic LÖVE

project, but imagine how much you would learn by creating a Lua

script to generate fresh project directories and even basic file starters.

Find common, everyday tasks that you find yourself doing frequently,

and spend time programming an application or command to help you

accomplish them. The task itself may only take you a minute or two to

do, and programming a solution might take you a few days, but you’ll

learn a lot, and after the 300th time of doing the same old task, you’ll

thank yourself for the application you created. And after your 300th

script, you won’t even be able to remember when you didn’t think like a

programmer.

 How to Learn
Of course, practice in principle is one thing, but actually generating code

that functions is another. Sometimes, you will want to do something in

code that you have no experience with, and no reference point for where to

begin.

The Lua and LÖVE functions you have learned from this book were

relatively easy for you to discover because this book presented them to you

and showed you how to use them.

A big part of learning a programming language is learning what

functions it has to offer you. Lua functions are documented in full at www.

lua.org/manual/5.3, in the Index section. Every function of Lua is listed

and documented. For LÖVE, see love2d.org/wiki/love.

The Lua site is highly technical and doesn’t provide many examples,

so it can be difficult to understand. However, Programming in Lua by

Roberto Ierusalimschy (Lua.org, 2016), the principle architect of Lua

itself, is an excellent resource for both the language and usage of its

functions.

ChapTEr 14 NExT STEpS

http://www.lua.org/manual/5.3
http://www.lua.org/manual/5.3

287

 How to Read Technical Documentation
Any time you are about to use a new library (like inifile or table_save.

lua) or even a new programming language, you should go to its technical

documentation or to the source code itself and read it. You don’t

necessarily have to read it like a novel, but you should have a passing

familiarity with what the library or language provides you so that you know

where to start, and you don’t spend a day implementing something that a

library gives you for free.

As you’ve probably started to notice from writing them yourself,

functions have two parts: input and output. As long as you keep that in

mind, you can read technical documentation easily and use any function

you dig up.

For example, assume that you are using Lua to program an interface to

help users create a password that is at least 15 characters long. You need a

way to count the letters in a string (the string foo contains three letters, the

string foobar has six, and so on).

You already know some tricks that count items. For instance, you can

find the number of items in a table with the #table notation, and you know

how to create loops with counters. You could probably spend some time

researching this problem and find a reasonable example online on how to

implement it. But what you’d also find is that Lua already has a function

called string.len that solves your problem.

You have never used the string.len function, so it might

be intimidating to understand how to use it. Here is its online

documentation:

string.len (s)

Receives a string and returns its length. The empty string ""

has length 0. Embedded zeros are counted, so "a\000bc\000" has

length 5.

ChapTEr 14 NExT STEpS

288

To read how to use this function, find out those two essential

components of every function: input and output. The input to a function is

an argument, so (s) is its input. The documentation says that s is a string.

The output of a function is what it returns. Sometimes this is a literal

return statement in its code, while other times it’s variables that get set

while the function runs. In this example, the function returns the length of

s, so you can expect an integer.

Knowing the required input and expected output, you can guess how

to use the string.len function. Since Lua has an interactive mode, you

can even test it before adding it to your actual code.

$ lua

> print(string.len("foo"))

3

> print(string.len("foobar"))

6

Use this learning method with all the technical documentation for

Lua, LÖVE, and any other programming library or language that you are

using.

 Leveraging Open Source
Finally, Lua is open source. It has a worldwide community of users who

openly communicate with one another about how the language is used,

how common problems are solved, how specific functions work, and much

more. If you’re not used to the culture of open source, then you’re probably

not accustomed to this kind of sharing of knowledge. It’s a conversation, so

join in, be polite and respectful, answer questions when you can, and ask

well-researched questions with lots of context and code samples when you

need help.

ChapTEr 14 NExT STEpS

289

 Learning Other Languages
You should spend more time with Lua once you have finished this

book, at least until you are comfortable programming in the language.

Lua is a simple, efficient, and cohesive language, so there are relatively

few functions to learn. It’s a manageable language, especially when

compared to bigger ones like Python, Ruby, Java, and PHP. That’s

a feature that you’ll come to appreciate after trying more complex

languages.

On the other hand, Lua’s minimalism renders a sparse language,

meaning that you have to create your own functions for things that other

languages have as built-in features.

Some languages, like Python and Java, are so widely known that it

seems everything is already done for you; all you have to do is download

a library, and most of the hard work is done. Of course, this is not true in

practice, because every program ends up requiring customization, but

the more popular a language, the greater the choice you have between

libraries and frameworks.

The good news is that once you’re comfortable enough with Lua to

sit down and code something from scratch in an afternoon or two (or

seven, depending on the size of the project!), you’ll find that learning

a new language comes easy. Once you internalize the “grammar” of

programming, learning the vocabulary is easy, and often something you

can do as you code.

The question is: do you need to learn another language?

Learning a second or third programming language can be useful

primarily for compatibility. For instance, if you want to write a plugin for

an application that only offers plugin support for Python, then it’s useful

to know Python. If you want to write native applications for Android, then

you should learn Java. If you want to get a job at a company that has built

its business on Ruby, then you should learn Ruby.

ChapTEr 14 NExT STEpS

290

You might hear murmurings that one language isn’t good for

one task, and that another language is better for other tasks, as if

programming languages were built with a specific set of applications in

mind. While it’s true that sometimes a language is designed in such a way

that its available functions happen to favor one type of job or another,

strictly speaking, a programming language is just an interface to machine

instructions. Don’t be confused by the mélange of choice. Learning

additional programming languages add to your perspective on code,

your toolkit for getting things done efficiently, and your curriculum vitae

when looking for work.

And learning a new language can be done with this book. LÖVE is

specific to Lua, but most major languages have game engines. And even

if your target language lacks a game engine, you can still use the structure

of these lessons to learn. Start with simple programs, like a dice roller,

and then try something more ambitious, like a simple card game. Explore

arrays and other data constructs. Learn to read data from disk and

how to write it back out. Learn to write your own libraries or modules

and how to require or include them. And finally, try a bigger project

like Battlejack or Permadungeon to stretch your understanding of the

language.

 Homework
As this book’s final assignment, you are encouraged to sit down with a pen

and some paper to design the next game or application you want to create

with Lua. Spend some time on it. Design something useful and slightly

more ambitious than you think you can manage.

Next, break the application down into learnable components. You

haven’t learned how to drag and drop GUI elements, for example, and

yet you know everything you need to make it work (hint: mousepressed

ChapTEr 14 NExT STEpS

291

combined with a custom collide function ought to work). Look at your

long-term goals and write small applications that may not even serve a

purpose other than to teach you a new trick or two.

Once you have learned all the parts of what you want to build, then it’s

just a matter of implementing it all in one big code base.

Whether or not you feel like you understand everything there is to

understand about Lua, programming, game design, Linux, and software

development in general, you are a programmer now. So go program

something!

ChapTEr 14 NExT STEpS

293© Seth Kenlon 2019
S. Kenlon, Developing Games on the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-4170-7

 APPENDIX A

Drag and Drop
The examples in this book have primarily used clicking or key presses for

user interaction. LÖVE is capable of responding to other forms of input,

such as gamepads, touch screens, and mouse movement.

All of the input functions are documented on love2d.org/wiki, so

mostly you can use them as easily as key presses and mouse clicks.

However, dragging and dropping requires more code than simple if

statements.

A word of caution: dragging and dropping as the only way to interact

with an application has accessibility issues. Selecting a source and a

target with either a click or a series of key presses is easier for both users

who need a screen-reader or have limited mobility or are just plain

uncoordinated, while controlling a mouse can be difficult. Dragging and

dropping also assumes that whatever device your application is running

on has the ability to process a drag and a drop; while most devices today

have either a touch screen or a mouse, you never know what tech will bring

in the future.

On the other hand, dragging and dropping is a valid mechanic, and it

can be useful for some styles of games.

https://doi.org/10.1007/978-1-4842-4170-7

294

 Draggable object
For this demo, you need an object that you can drag. In practise, this

object would be whatever game asset you want your user to move. For this

example, create a file called dot.lua and create the essential attributes:

the X and Y coordinates, the item rotation, and whether or not the item is

currently moving.

Dot = { }

function Dot.init(x,y)

 local self = setmetatable({}, Dot)

 self.img = love.graphics.newImage("img.png")

 self.x = x

 self.y = y

 self.moving = 0 --is it being dragged

 self.r = 0 --rotation

 return self

end

 Code
The main code doesn't contain anything you haven't already encountered,

it just uses concepts in a way that's new to you.

A mouse press uses collision detection to determine whether the user

has clicked on a movable object. Even though there's only one movable

object in this example, all movable objects are in a table, which this code

calls hot. If the object that has been clicked is movable, then it is rotated as

a visual cue and its moving variable is set to 1. The love.update function

ensures that the X and Y values of any moving object in the hot table are

constantly updated.

APPENDIX A DrAg AND DroP

295

A mouse release action sets the object's rotation back to its original

orientation and sets its moving variable back to 0.

Create a second file called main.lua, and add this code:

require("dot")

hot = {}

function love.load()

 Dot = Dot.init(300,300)

 hot[#hot+1] = Dot

end

function love.update(dt)

 for i,obj in ipairs(hot) do

 if obj.moving == 1 then

 --DEBUG print(obj.x,obj.y)

 obj.x,obj.y = love.mouse.getPosition()

 end

 end

end

function love.draw()

 for i,obj in ipairs(hot) do

 love.graphics.draw(obj.img,obj.x,obj.y,obj.r,1,1,79,79)

 end

end

function love.mousepressed(x,y,btn)

 for i,obj in ipairs(hot) do

 if x > obj.x and

 x < obj.x + obj.img:getWidth() and

 y > obj.y and

APPENDIX A DrAg AND DroP

296

 y < obj.y + obj.img:getHeight() then

 obj.moving = 1

 obj.r = 0.3

 end

 end

end

function love.mousereleased(x,y,btn)

 for i,obj in ipairs(hot) do

 obj.moving = 0

 obj.r = 0

 end

end

Add any image file, called img.png to your project and test the code.

You should be able to drag and drop the object around your game window.

To detect whether one object has been dragged onto another object,

add more collision detection to this code to detect whether two objects are

overlapping or not. It's the same principle as detecting mouse clicks.

APPENDIX A DrAg AND DroP

297© Seth Kenlon 2019
S. Kenlon, Developing Games on the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-4170-7

 APPENDIX B

Using Git
Git is vital technology in modern software development, so the more

comfortable you are with it, the better. Researching Git online can be

overwhelming, though, because writing software is a complex industry,

and Git can adapt to nearly every development style. Learning Git in this

book is useful because it limits the scope of what you need to learn. This

appendix covers the Git basics that you need to follow the coding exercises

in this book and in your daily computing life.

You can create a Git repository within any directory. While it is

technically possible to make your entire home directory one big Git

repository, it is not recommended. Logically, a Git repository is best when

it has clearly defined boundaries. A Git repository makes the most sense

when it encompasses a specific project or set of data. For instance, if you

have set up Geany in a specific way, you could manage its configuration

folder with Git; that’s not what you would traditionally think of as a project,

but it has a single, clear purpose and set of data.

To create a Git repository, change the directory to the folder you want

to use as the basis of the repo. In this example, the directory is called

project. Then issue this command:

$ mkdir ~/project

$ cd ~/project

$ git init .

https://doi.org/10.1007/978-1-4842-4170-7

298

The command is git, and the option is init. The argument, a single

dot, means here; in other words, it ensures that Git initiates a repository

precisely where you are currently “parked” in your terminal.

A directory is a Git repository if it contains a hidden folder called .git.

$ ls --almost-all

.git/

If you prefer to use git-cola, launch it, and then click the New button

in the lower-left corner of the git-cola window. You can either select an

existing directory or create a new one, and git-cola instantiates the .git

directory.

 git add
To add a file to a Git repository, use the git add command. This command

marks a file as a trackable object for Git.

To try this out yourself, you must create a sample file. You can use

Geany or another text editor to do this, if you want, but it’s also valid to

use the echo command in the Bash shell. The echo command does exactly

what you probably imagine: it echoes whatever you type back at you.

$ echo "print('hello world')"

print('hello world')

However, in a terminal, you can redirect anything the computer prints

back at you into a file with two >> symbols. If a file doesn’t exist, one is

created automatically.

$ echo "print('hello world')" >> hello.lua

$ ls

hello.txt

Appendix B Using git

299

Create a second file called dummy.lua. It can contain whatever text

you like.

$ echo "print('Dummy file')" >> dummy.lua

You have just created two files, but Git is not aware of either file

because they have not been added to Git.

If you’re working with git-cola, select File ➤ Refresh or press Ctrl+R to

refresh. Your files appear in the Status panel.

Tell Git to track the hello.lua file.

$ git add hello.lua

In git-cola, right-click the file in the Status panel and select Staged.

The result is shown in Figure B-1.

Figure B-1. Git add in git-cola

Appendix B Using git

300

 git commit
Letting Git track a file and actually committing a change made to a file

are two different things. Adding a file gives Git permission to manage the

file. Committing a file tells Git to record changes made to a file, which in

turn lets you play those changes back, or rewind the changes to revert to

a previous version, or even fast-forward to changes that don’t yet exist

(because those changes were made by someone else on your team).

Commit your sample hello.lua file now.

$ git commit --message "created hello.lua"

The git commit command doesn’t take a specific file as an argument.

It commits the current state of your repository, which includes anything

you have told Git to track.

In git-cola, add the commit message to the text field in the Commit

panel, and then click the Commit button, as shown in Figure B-2.

You can view a log of your commits with the git log command.

$ git log

Press Q to exit your Git log screen.

In git-cola, select View ➤ DAG to view your log.

Figure B-2. Git commit in git-cola

Appendix B Using git

301

 Reverting Changes
Git’s stated goal is to provide version tracking. That means it lets you keep

a record of all the changes made to files, allowing you to revert, or undo,

a change when, for instance, some code you thought worked well later

reveals a serious bug.

There are many ways to access the history of a Git repository, and in

practice, you might have to search the Internet for the best way to grab

data from an older version. The most important thing is understanding the

basic principles of the process.

To demonstrate, you need a file that’s changed. Open your hello.lua

file and change its text from hello world to hello git. If you prefer to do

that in the terminal, you can.

$ sed -i 's/world/git/' hello.lua

However you choose to make the change, verify that the file has been

altered.

bash-4.3$ git diff hello.lua

diff --git a/hello.lua b/hello.lua

index 3b18e51..8d0e412 100644

--- a/hello.lua

+++ b/hello.lua

@@ -1 +1 @@

-print('hello world')

+print('hello git')

In git-cola, the Status and Diff panels (see Figure B-3) show what has

changed.

Appendix B Using git

302

Look at the state of your repository.

$ git status

On branch master

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in

working directory)

 modified: hello.lua

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 dummy.lua

no changes added to commit (use "git add" and/or "git commit -a")

You can see from Git’s report that the hello.lua file has been modified

but not yet committed, and that the dummy.lua file exists, but it is not being

tracked by Git at all.

Figure B-3. Git diff in git-cola

Appendix B Using git

303

 Restoring with git reset
At this point, with a file that has changed but has not yet been committed,

you can reset your repository state back to the last known committed

version with the git reset command.

$ git reset --hard HEAD

The --hard HEAD options tell Git to wipe the slate clean and to reset

all tracked files to their state as of the latest commit. This is important to

understand, because a git reset doesn’t just reset one file, but all the files

in your repository. This is very efficient if you have spoiled multiple files

in your repository, and you want to start from a safe place again, yet it’s

overkill and possibly detrimental if you have many good changes but you

only want to reset one or two files.

Confirm that hello.lua is back to its original state.

$ lua ./hello.lua

hello world

The dummy.lua file remains entirely unaffected by your reset because it

is not being tracked by Git.

$ git status

...

Untracked files:

 dummy.lua

 Restoring with git checkout
If you only want to resurrect one or two files from your history, then use

the git checkout command. The checkout option manipulates a file tree,

which includes pulling a file from a previous commit into your current

workspace.

Appendix B Using git

304

To demonstrate this, change the file again and then commit the

change.

$ sed -i 's/world/git/' hello.lua

$ git diff

...

-hello world

+hello git

$ git add hello.lua

$ git commit --message "changed world to git"

Now assume that you need to restore hello.lua to its original state.

You can’t reset, because reset always restores the latest commit.

First, use git log to obtain the unique ID (or hash, in technical

terminology) of each commit. The hashes in this example and your

workspace may differ.

$ git log --oneline

42e6b85 (HEAD -> master) changed world to git

ef5288a created hello.lua

The commit you want to restore from is not the latest (the one marked

HEAD, at the top of the log), but the original commit, with the ef5288a

hash.

The git checkout command can take a hash and a specific file name

as an argument. To signal Git that you are giving it a file name, however,

you must use two dashes as a break point in the command.

$ git checkout ef5288a -- hello.lua

Confirm that your file has changed back to its original form.

$ cat hello.lua

hello world

Appendix B Using git

305

If you’re happy with your new old file, then you can add it and then

commit it back into your master timeline.

The dummy.lua file is still untouched, because it isn’t being tracked

by Git.

To perform the same operation in git-cola, select View ➤ DAG to

launch the Git log interface so that you can find the file that you want

to restore. Once you’ve located it, right-click it and select Grab File (see

Figure B-4), and then save the file to your drive.

Figure B-4. Restoring with git-cola

Appendix B Using git

306

 git branch
When you reach a point that involves many changes to many different files,

erasing mistakes with resets and checkouts becomes complex. If there are

several people working on a single code base, then resets and checkouts

become nearly impossible due to all the changes constantly happening.

Luckily, Git provides an infinite number of workspaces, called a branch.

When Git initializes a repository, it creates a branch named master.

A branch is meant to serve as a kind of overlay, or if you’re inclined to

science fiction, an alternate timeline or parallel universe. Branches let you

look at the natural timeline of your Git repository and then “branch” off

into any direction you think you might want to go. If the work you’re doing

in a branch turns out to be less successful than expected, you can abandon

the branch and return to the original master timeline, but if it goes well,

then you can merge it into the master—even if the master timeline has

changed since you last left it.

To test this out, first confirm that a master branch exists.

$ git branch

* master

Create a new branch.

$ git branch dev

$ git branch

dev

* master

And then switch to the new branch.

$ git checkout dev

$ ls

dummy.lua hello.lua

Appendix B Using git

307

To do this in git-cola, select Branch ➤ Create and create a new branch

called dev with all the default options. You are automatically switched to

your new branch, as indicated by the star icon in the Branches panel.

Make a change to hello.lua.

$ echo "print('I am practising Git')" >> hello.lua

Confirm that your change has been made.

$ git diff hello.lua

diff --git a/hello.lua b/hello.lua

index 3b18e51..0eb0a16 100644

--- a/hello.lua

+++ b/hello.lua

@@ -1 +1,2 @@

 print('hello world')

+print('I am practising Git')

Add and commit your change, and finally, add dummy.lua to your

repository.

$ git add hello.lua dummy.lua

$ git commit -m "added a second line to hello.lua"

Get a summary of your dev branch.

$ git log --oneline

db5968c (HEAD -> dev) added a second line to hello.lua

42e6b85 (master) changed world to git

ef5288a created hello.lua

$ lua ./hello.lua

hello world

I am practising Git

$ lua ./dummy.lua

Dummy file

Appendix B Using git

308

Now check out the master branch to see what your original timeline

is like.

$ git checkout master

In git-cola, right-click the master branch in the Branches panel and

select Checkout.

View your Git log in the terminal, or use DAG in git-cola.

$ git log --oneline

42e6b85 (HEAD -> master) changed world to git

ef5288a created hello.lua

$ lua ./hello.lua

hello world

$ lua ./dummy.lua

lua: cannot open ./dummy.lua: No such file or directory

The change that you made to hello.lua in the dev branch doesn’t

exist in your master branch, and the dummy.lua has seemingly vanished

entirely.

You haven’t lost your work—it just doesn’t exist in this workspace. The

version of hello.lua in the master branch is the original version, before

you added a second line. And dummy.lua is no longer floating around the

repository; it has been added to the dev branch exclusively so that it no

longer shows up as an untracked file in the master branch.

Jump back over to your dev branch again to verify this.

$ git checkout dev

$ git log --oneline

db5968c (HEAD -> dev) added a second line to hello.lua

42e6b85 (master) changed world to git

ef5288a created hello.lua

$ lua ./hello.lua

Appendix B Using git

309

hello world

I am practising Git

$ lua ./dummy.lua

Dummy file

Generally, you can and should work with Git branches so that you

always have a safe, functional code base at the core of your project.

 git merge
When two Git branches have diverged, at some point you might want to

merge them together. This is a common task in software development just

before a release date; the development branch is merged into an official

release branch, and then the update is announced to users.

When you’re ready to merge two branches, check out the target

branch—the one you want to bring your work into.

$ git checkout master

$ git merge dev

In git-cola, the process is similar: check out the master branch, and

then right-click the dev branch and select “Merge into current branch”

(see Figure B-5).

Appendix B Using git

310

Verify that the merge has brought in all of your changes.

$ ls

dummy.lua hello.lua

$ lua ./hello.lua

hello world

I am practising Git

$ lua ./dummy.lua

Dummy file

This is a common workflow in software development: clone a Git

repository, create a personal branch for yourself, do your work, and then

merge your work into the master branch. When you’re finished with a

branch, you can delete it.

$ git branch --delete dev

Deleted branch dev (was b5dbe64).

Figure B-5. Git merge with git-cola

Appendix B Using git

311

 git push
Using Git locally on your Pi is not very different from using it with a coding

website like GitLab or GitHub. The most significant difference with Git

hosting sites is that you must also perform a git push in order to upload

the state of your repository to your Git hosting site. For example, if you had

a Git repository on GitLab for this practice exercise, the final step would be

$ git push origin HEAD

In this example, origin is the default alias for your Git hosting site,

whether it’s GitLab, NotABug.org, GitHub, or any other service. In this

example, the term HEAD refers to the current commit.

As with Lua, practice with Git makes perfect. It’s a big system with lots

of options and many different ways to achieve many different results. As

long as you commit your work often, you run little chance of losing work

by mistake, and you stand a good chance of recovering work that’s been

spoiled by buggy code. Understanding how Git works is what enables

you to ask sensible and clear questions when looking online for specific

commands.

Appendix B Using git

313© Seth Kenlon 2019
S. Kenlon, Developing Games on the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-4170-7

Index

A
Android, 265, 280–282
Animation, 235, 253, 259
audio, 244

B
Battlejack

assets, 228, 230
bolt, 237–238
bolts and

updates, 259, 261
doors, 242–243
draw function, 250–252
floor tiles, 238
hero, 235–237
monster movement, 257–259
monsters, 233–235
rogue code, 243, 245–249
room, 239–241
trap, 231–232
treasure, 230–231

Battlejack game, 75
framework, 124–126
menu selection, 128–132
modes, 126–128
pseudo code, 81–82
tricks, 81–82

Blackjack game
competition, 63, 65, 67
directory, 48–50
graphics, 60–63
objects, 50–53
random cards, 53–59
winning, 68–70

bolt.lua file, 237

C
Card.init function, 51–52
card.lua file, 51
Cards

conflict, resolving, 162–163, 165
into battle, 157–158
playable, 154–157
visual effects, 159, 161

Card table, 142–143
chest.lua library, 230
Clip art, 108
collide function, 255
Colormap, 110
Color scheme, 104–105, 110–111
Configuration

parsing, 89–90
Consistency, 100
Creating directories, 199–200,

202, 204

https://doi.org/10.1007/978-1-4842-4170-7

314

D
Debian Linux, 7
Deck building, 94, 96, 98
deck.ini file, 96
Decks, building

for loop, 151
game.mole() function, 152
game.setup() function, 151
Joker card, 153
math.random() function, 151
setup() function, 153
setup() function, 154
shuffling, 152
stacks, 150

Desktop, 19–24, 44
explore, 23–24

Desktop Navigation
icon, 20
installing, 21–23
LXQT, 20

dnfdragora, 22–23, 28
Documentation, 82–83
door.lua class, 247
door.lua file, 242
dot.lua file, 294
Drag-and-drop, 293–296
draw function, 250
draw() function, 168–170

E
Etcher, 4–6
Even algorithms, 30

F
F-droid, 280
Fedberry, 4–5, 9–10
Fedora Linux, 8
FG Color, 115
Flatpak, 108
floor.lua file, 238
Font, 35–36, 49, 57
Fonts, 101–104
Fullscreen mode, 189–193

G
game.activate function, 192
game.activate function, 192
Game and GUI logic, 38–39
game.backs function, 207–208
game.cleanup function, 206
game.cleanup function, 206
Game data, 203–205
Game distributor, 269
game.load function, 206, 208, 210
game.load function, 209
game.new function, 206
Game state, 144–149
Game theory, 74
Garbage collection, 186–187
Geany, 25–26

configuration, 26–27
installation, 25

Genre, 99
basic tenants, 100
broad themes, 100–101

Index

315

color scheme, 104–105
font, 101–104
GIMP. GNU Image Manipulation

Program (GIMP)
graphics, 106–107

Git
add, 135–138, 298–299
checkout, 139, 303–305
commit, 137, 300
merge, 309–310
reset, 139, 303
restore, 138–139
status, 135–137
tracking, 134

Git-cola, 134–135, 137, 139, 276,
298–302, 305, 307–310

Git commit, 171
Gitlab, 270, 273–275
Global variable, 126
gmatch() function, 91
GNU Image Manipulation

Program (GIMP)
backdrop, 114–115
color code and value, 115–116
color scheme, 110–111
exporting, 120
images, 116–117
installation, 107–108
integration, 118–120
layers, 113–114
new document, 109
rotate and flip tools, 117
text element, 111–113
.xcf format, 113

GNU Public License, 36, 49–50
Graphical game creation, 24

game code, 31–34
graphics, 34–35
load and loop, 27–28
Lua, 25
mouse, 40–41

win/lose, 41–43
package, 44
tables, 36–37

Graphics, 106–107
GUI libraries, 285

H
Head-related transfer function

(HRTF), 221
Health points, 230
heets, 259
hero.lua file, 235
hot. code, 294

I
img.png file, 296
inifile module, 199
inifile, 87–88, 90, 92
INI format, 87, 89
Input

io.read() function, 15
Install

dnf, 10
Geany, 25
Linux, 4, 6

Index

316

LÖVE, 28
Lua, 10

iOS, 280, 282
Itch.io, 277
Iteration one, 76–77

sample play, 76
Iteration three, 80
Iteration two, 77–78

rule set, 78–79
suggestions, 77

J
Join string, 41

K
keypressed() function, 127, 129

L
lastwon variable, 176
Leveling up, 172–175
LICENSE file, 49
Linux image, 6
Linux Multimedia

Studio (LMMS), 212–213
Local variable, 126
Loot, 262
love.draw function, 252
love.draw() function, 29, 33,

38, 68, 70
love.first function, 244, 248

love.keypressed function, 254
love.keyreleased function, 257
love.load function, 221, 230, 243
love.load() function, 29–30, 33,

37–38, 41, 43, 51, 56, 61
love.mousereleased function, 41
LÖVE on Mobiles,

limitations, 282–283
love.update function, 259, 294
love.update(dt) function, 68
lua command, 269
Lua code, 200
Lua code with LÖVE, 28–31
Lua documentation, 18
Lua, learing, 286
Lua library, configuration, 89–90

path, 90–92, 94
Lua library, installation, 85–88
luamake file, 264–269
Lua pratice, 285–286
Luarocks, 87–88, 92
Lua script, 10–11

die roll, 12–13
variables, 14–16

ideas, 14
Lua scripting, 266, 269
Lutris, 277–279
LXQT, 20

M
main.lua file, 124–127
main.lua file, 52, 89, 228, 295
Making music, 218–220

Install (cont.)

Index

317

math.random, 28
math.random() function, 51
Menu, 123–124
menu.draw() function, 128
menu.mousepressed()/

menu.mousereleased()
function, 167

MicroSD card, disk image, 5–6
Minimalism, 100
Mobile market, 280
monster.lua file, 233
Mouse, 293–295

click, 158
collision detection, 156
press, 158
release, 156

msg.lua, 176

N
newQuad function, 231
newQuad() function, 148

O
Object-oriented programming

(OOP), 50
OGG-File, 215
OpenAL, 221–223
Open source, 288
os.clock() function, 173
os.execute() function, 202
os.rename() function, 200

os.rename() function, 201
os.time() function, 12–14

P, Q
package.path, 91, 93
Packaging, 263–264
Palette, 110
Particle effects, 159
POSIX, 201
Poweroff, 16
Powerup, 179

game.draw function, 181
game.mousereleased

function, 182
game.setup() function, 179–180
lastwon variable, 176
mechanism, 175
mouse click function, 177
msg.lua, 176

Powerup Double Draw, 183–184
Programming languages, 286–287,

289–290
Pseudo code, 81–82

R
Raspberry Pi, 221–223
Raspbian/NOOBS, 4
README file, 49
Reset, 66, 253
Resolution, 109
Rogue-like, 225–226

Index

318

Roguelike
definition, 225

room.lua file, 239

S
Save file, loading, 205–208, 210
Save states, 199

Lua code, 200
inifile module, 199
os.rename() function, 200
os.rename() function, 201
saver.lua, 201

Scale, 143, 146
Scaling, 194–198
Self, 142
self.face variable, 236
setWrap(), 148
sheet:getDimensions()

function, 231
Shuffling cards, 150, 152
Sleep, 175
snd directory, 211, 216
Sound code, 220–221
Sound effects, 214

exporting track, 217–218
export window, 215–216
LMMS, 212–213
making music, 218–220
Piano Roll editor, 214–215
Sayonara player, 216–217
track label, 216

Sprites, 228, 253
Spritesheets, 228, 230–231, 235, 238
SSH, 272, 275
.ssh directory, 272
SSH for Git, 274–275
STATE.mousepressed()/

STATE.mousereleased()
function, 167

string.len function, 287–288
System configuration, 8–9
System-on-a-Chip (SoC), 3–4, 6–8

T
Tables, 141, 145, 149–150, 162
Technical documentation, 287–288

online, 287
understanding, 287

Tile, 148
Tiles, 228, 238, 240, 243, 257
tonumber() method, 68
trap.lua file, 231
Treasure, 228, 230–231
trim function, 250

U
UI consistency, 184–185
update(dt) function, 168
Usability, 193–194
User configuration, 201–203
User settings, 271

Index

319

V
vcollision

detection, 255
Versioning, 265–267

W, X, Y, Z
Web browser, 272
Win condition, 74, 77
winner function, 69

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Getting Started with the Raspberry Pi
	Preparing Your Pi
	Installing Linux onto Your Pi with Etcher
	Preparing Your Off-Brand SoC
	Using This Book Without a SoC Device
	First Boot
	Writing Your First Lua Script
	Rolling Virtual Dice

	Using Variables and User Input
	Homework

	Chapter 2: Scripting with LÖVE
	Establishing a Development Environment
	Navigating the Desktop
	Installing Development Applications
	Exploring Your Desktop

	Creating a Graphical Game
	Load and Main Loop
	Writing Lua Code with LÖVE
	Game Code

	Graphics
	Fonts

	Tables
	Game and GUI Logic
	Mouse Click
	Winner and Loser

	Packaging
	Homework

	Chapter 3: Modular Programming with LÖVE
	Project Directory
	Classes and Objects
	Randomized Cards
	Graphics
	Competition
	Winning
	Homework

	Chapter 4: Analog Programming
	Game Theory
	Experimental Design
	Iteration One
	Iteration Two
	Iteration Three

	Pseudo Code for Battlejack
	Documentation
	Homework

	Chapter 5: Database and Libraries
	Installing New Libraries
	Configuration Files
	Setting the Package Path

	Deck Building
	Homework

	Chapter 6: Graphics
	Design by Genre
	Let the Fonts Do the Talking
	Color Scheme
	Graphics
	Card Design with GIMP
	Install
	New Document
	Color Scheme
	Text Elements
	Time to Save
	Moving Layers
	Backdrops
	Color Code and Value
	Background Image
	Integration

	Exporting from GIMP
	Homework

	Chapter 7: Menu Design
	Main Framework
	Switching Modes
	Menu Selection
	Git
	Tracking
	Adding Files
	Restoring

	Chapter 8: Battling It Out
	Card Table
	Game State
	Deck Building
	Playable Cards
	Battle
	Visual Effects
	Resolving Conflict

	Chapter 9: Balance of Power
	Git Commit
	Leveling Up
	Powerup
	Powerup Double Draw
	Font and UI Consistency
	Garbage Collection
	Homework

	Chapter 10: Save Files and Game States
	Fullscreen
	Usability
	Scaling Adjustments
	Save States
	User Configuration
	Game Data
	Loading a Save File
	Homework

	Chapter 11: Sound
	Finding Audio
	LMMS
	Building a Sound Effect
	Listening to Your Effects
	Adjusting Export Length
	Creating Music
	Sound Code
	Fixing the Raspberry Pi Sound Settings
	Homework

	Chapter 12: Roguelike Dungeon Crawler
	What’s Roguelike?
	It Looks Good on Paper
	Assets
	Treasure
	Traps
	Monsters
	Hero
	Bolt
	Floor Tiles
	Room
	Doors
	Rogue Code
	Draw Function
	Keypressed
	Monster Movement
	Bolts and Updates
	Homework

	Chapter 13: Game Distribution
	Packaging
	Versioning
	Help Message
	Executable
	Distribution
	Online
	Configuring SSH for Git
	Pushing to Git
	Itch.io
	Lutris
	Mobile Market
	Installing LÖVE on Android
	Limitations of LÖVE on Mobiles

	Chapter 14: Next Steps
	How to Practice
	How to Learn
	How to Read Technical Documentation
	Leveraging Open Source
	Learning Other Languages
	Homework

	Appendix A: Drag and Drop
	Draggable object
	Code

	Appendix B: Using Git
	git add
	git commit
	Reverting Changes
	Restoring with git reset
	Restoring with git checkout
	git branch
	git merge
	git push

	Index

