
www.allitebooks.com

http://www.allitebooks.org

Documentum Content
Management Foundations

EMC Proven Professional Certification Exam
E20-120 Study Guide

Learn the technical fundamentals of the EMC
Documentum platform while effectively preparing
for the E20-120 exam

Pawan Kumar

 BIRMINGHAM - MUMBAI

Documentum Content Management Foundations
EMC Proven Professional Certification Exam E20-120 Study Guide

Copyright © 2007 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2007

Production Reference: 1310507

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847192-40-0

www.packtpub.com

Cover Image by www.visionwt.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Pawan Kumar

Reviewers

Gaurav Kathuria

Brian Williamson

Senior Acquisition Editor

Douglas Paterson

Development Editor

Nikhil Bangera

Technical Editor

Ved Prakash Jha

Editorial Manager

Dipali Chittar

Project Manager

Patricia Weir

Project Coordinator

Abhijeet Deobhakta

Indexer

Bhushan Pangaonkar

Proofreader

Chris Smith

Production Coordinators

Manjiri Nadkarni

Shantanu Zagade

Cover Designer

Shantanu Zagade

About the Author

Pawan Kumar is a Technical Architect with current expertise in Enterprise
Content Management with EMC Documentum. His expertise spans solution
architecture, document management, system integration, web content management,
business process management, imaging and input management, and custom
application development.

Pawan has experience developing products as well as delivering business solutions
on the Documentum platform. He is intimately familiar with effective processes
and tools for achieving business objectives through Documentum-based technology
solutions. He has led and executed requirements and design workshops, architecture
design, scoping, estimation, project planning, resource planning, technical
design, software development, software testing, solution roll-out, and ongoing
support for the deployed solutions. He has also created two products for the
Documentum platform.

Pawan has been architecting, designing, and developing enterprise applications
for ten years. He has developed software systems for financial services, healthcare,
pharmaceutical, logistics, energy services, and retail industries.

Pawan has a BS in Electrical Engineering from the Indian Institute of Technology,
New Delhi (India) and MS in Computer Science from the University of North
Carolina at Chapel Hill.

Currently, Pawan provides consulting and training services through doQuent
(http://doquent.com), which was founded with the vision of enabling client
success in content-related business initiatives. He also believes in giving back to
the community. He founded the free online Documentum community—dm_cram
(http://dmcram.org), which is a test preparation resource for Documentum exams.
He is also an active contributor to the documentum-users Yahoo! User group, where
Documentum community members seek help for their technical challenges. He can
be reached at pk@doquent.com.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgement

I dedicate this book to my parents.

This book would not have been possible without the unrelenting support of my wife
Rashmi. Working on this book also kept me away from my four-year old daughter
Shreya, who often contended with me for using my laptop. My brother Ramesh
has been my model of perseverance whenever I needed to keep going in the face
of adversity.

I am immensely indebted to the technical reviewers—Gaurav Kathuria and Brian
Williamson, for the quality of the contents of this book. Both of them provided
painstakingly detailed feedback, which helped improve the accuracy and suitability
of the text. Gaurav is the author of Web Content Management with Documentum, the
book that inspired me to write this one. I have worked with Brian in the past—he is a
brilliant Documentum architect and a WDK expert.

The entire Packt team working on this book has made the experience of writing my
first book a thoroughly pleasant one. I would like to thank Douglas Paterson, Nikhil
Bangera, Abhijeet Deobhakta, Patricia Weir, and everyone else who worked on this
book behind the scenes.

I thank Armedia for giving me the opportunity to work with Documentum.

I thank my friends who have been exceptionally patient and understanding while
I worked on this book. I particularly thank Sumitra Tyagi, Manmohan Singh, and
Katie Leland for their unconditional support and encouragement during some
personally and professionally challenging time while I worked on this book.

Finally, I thank the members of dm_cram (http://dmcram.org) who confirmed the
need for this book.

About the Reviewers

Gaurav Kathuria completed his B. Tech. (Hons.) in Chemical Engineering from
I.I.T. Kharagpur in the year 2000 and has since been a prominent performer in
diverse software fields, from IT services through product development to
software consultancy.

He has a rich experience of designing, developing, and managing software systems
using object-oriented languages and technologies like Java/J2EE and Documentum.
He started working with Documentum 4i in the year 2001 and has ever since had
an extensive experience architecting/designing complex Documentum 4i and
5x projects.

He has also given in-house training on Documentum system architecture,
fundamentals, and Web Publisher in many of the organizations he has worked in.

Brian Williamson is a Senior Consultant with Crown Partners. He has extensive
experience in both software development and document management. He has
worked with Documentum software for a number of years with specialization
in both WDK and Web Content Management with Web Publisher. Brian lives in
Atlanta with his wife and dogs and in his spare time enjoys reading and baseball.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Introduction 3

Enterprise Content Management (ECM) 3
EMC Documentum 4
EMC Certification 5

Why? 6
How? 7

Approach 7
Logistics 8

Useful Resources 8
What This Book Covers 9
Conventions 10
Reader Feedback 11
Customer Support 11

Errata 11
Questions 12

Part 1 – Fundamentals
Chapter 1: ECM Basics 15

Content and Metadata 15
Repository 16
Content Server 17

Content Management Services 18
Process Management Services 19
Security Services 20
Distributed Services 20

Checkpoint 21
Test Your Understanding 21

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Working with Content 23
Interacting with Content 23
Importing Content 24
Exporting Content 25
Checking Out 25
Checking In 26
Versioning 27
Branching 28
Formats 29
Renditions 30
Documentum Product Notes 31
Checkpoint 31
Test Your Understanding 31

Chapter 3: Objects and Types 33
Objects 33
Object Types 35

Type Names and Property Names 37
Type Hierarchy 38

Object Persistence 39
Querying Objects 41

SELECT Query 41
Basics 42
WHERE Clause 43

UPDATE Query 44
DELETE Query 45

API 46
Documentum Product Notes 46
Checkpoint 46
Test Your Understanding 47

Chapter 4: Architecture 49
Documentum Platform 49
Layered Architecture 50
Repository Layer 51
Content Services Layer 52
Component and Development Layer 54

Documentum Foundation Classes 54
Standards-Based APIs 54
Business Object Framework 55
Other Components 56

Application Layer 56

Table of Contents

[iii]

Integration Services 57
Communication Patterns 58

Key Components 59
Fundamental Communication Pattern 60
WDK Application Communication Pattern 61

Documentum Product Notes 62
Checkpoint 63
Test Your Understanding 64

Part 2 – Security
Chapter 5: Users and Privileges 69

Documentum Security 69
Users 71

Authentication 71
Special Users 74

Authorization 74
Client Capability 74
Basic Privileges 75
Extended Privileges 76

User Management 77
Help—Some DQL Queries 79
Documentum Product Notes 80
Checkpoint 81
Test Your Understanding 81

Chapter 6: Groups and Roles 83
Authorization 83
Groups 84

Group Management 86
Roles 87
Domain 88
Help—Some DQL Queries 88
Documentum Product Notes 88
Checkpoint 89
Test Your Understanding 89

Chapter 7: Object Security 91
Security—A Recap 91
Object Permissions 91

Basic Permissions 92
Extended Permissions 92

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Special Users 93
Object Owner 94

Managing Object Ownership 94
Superuser Permissions 94

Permission Sets (ACLs) 95
Resolving Permissions 96
Managing Permission Sets 96

Creating Permission Sets 96
Assigning Permission Sets 97

Folders and Permission Sets 99
Help—Some DQL Queries 100
Documentum Product Notes 101
Checkpoint 101
Test Your Understanding 101

Part 3 – User Interface
Chapter 8: Searching 105

Locating Objects 105
Search Process 106
Simple Search 107

Search—without Full-Text Indexing 108
Search—with Full-Text Indexing 108

Advanced Search 108
Interacting with Results 110

Saving Searches 111
Search Preferences 113
Full-Text Indexing 115
Frequently Accessed Objects 117

Subscriptions 117
Shortcuts 117

Help—Some DQL Queries 118
Documentum Product Notes 119
Checkpoint 120
Test Your Understanding 120

Part 4 – Application Development
Chapter 9: Custom Types 125

Custom Types 125
Managing Custom Types 125

Creating a Custom Type 126

Table of Contents

[v]

Events for Types 129
Properties 130
Search Support for Properties 131
Displaying Properties 132
Validation 133
Value Assistance 134
Value Mapping 135

Modifying a Custom Type 135
Using Custom Types 136

Data Dictionary 136
Help—Some DQL Queries 137
Documentum Product Notes 137
Checkpoint 138
Test Your Understanding 138

Chapter 10: DocApps 141
Documentum Customization 141
DocApps 143
Managing DocApps 144

Creating and Modifying DocApps 144
Archiving DocApps 146
Installing DocApps 148

Prerequisites 149
Installation Process 149

Help—Some DQL Queries 150
Documentum Product Notes 150
Checkpoint 150
Test Your Understanding 151

Chapter 11: Workflows 153
Business Processes 153
Workflow Concepts 154
Workflows and Customization 155
Analysis 156
Modeling and Definition 156

Activities 158
Performers 160
Activity Transitions 162

Use 163
Modification 166
Documentum Product Notes 166
Checkpoint 167
Test Your Understanding 167

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[vi]

Chapter 12: Lifecycles 169
Business Process and Content Management 169
Lifecycle Concepts 170
Lifecycles and Customization 171
Analysis 171
Modeling and Definition 172

States 173
State Transitions 176

Use 179
Modification 179
Help—Some DQL Queries 180
Documentum Product Notes 180
Checkpoint 181
Test Your Understanding 181

Part 5 – Advanced Concepts
Chapter 13: Aliases 185

Customization—Reusability and Portability 185
Aliases 186
Alias Sets 188
Managing Alias Sets 188
Referencing Aliases 190
Resolving Aliases 191

Workflow Alias Resolution 192
Default Sequence 192
Package Sequence 193
User Sequence 193
Resolution Process 193

Sysobject Alias Resolution 194
Permission Set Template Alias Resolution 194

Object with Lifecycle 195
Object without Lifecycle 195

Lifecycle Alias Set Resolution 195
Help—Some DQL Queries 196
Documentum Product Notes 196
Checkpoint 196
Test Your Understanding 197

Chapter 14: Virtual Documents 199
Managing Content Hierarchically 199
Virtual Documents 201
Managing Virtual Documents 202

Table of Contents

[vii]

Creating Virtual Documents 203
Exploring a Virtual Document Structure 203
Modifying Virtual Documents 204
Virtual Documents—Versions 205

Help—Some DQL Queries 208
Documentum Product Notes 209
Checkpoint 210
Test Your Understanding 211

Practice Tests
Practice Test 1 213
Practice Test 2 229
Answers 245

Chapter 1 245
Chapter 2 246
Chapter 3 246
Chapter 4 247
Chapter 5 247
Chapter 6 248
Chapter 7 248
Chapter 8 249
Chapter 9 249
Chapter 10 250
Chapter 11 250
Chapter 12 251
Chapter 13 251
Chapter 14 252
Practice Test 1 252
Practice Test 2 257

Index

www.allitebooks.com

http://www.allitebooks.org

Preface
A few years ago (feels like ages now) I dove head first into the EMC Documentum
space and was overwhelmed in spite of the significant enterprise technology
experience I had under my belt. A simple Documentum deployment involves
about five components and there are over 50 products available today in the EMC
Documentum suite, not counting the third-party products that have mushroomed
around the platform.

I wondered if there was any documentation that would enable me to wrap my arms
around this challenge. Indeed, there was documentation—way more than what I was
ready to handle as a beginner. I needed something, maybe a book, to get me started
in one place and then help me navigate the documentation as a reference by ordering
things in an effective fashion.

I am glad to finally see some books on Documentum making it to the market. Web
Content Management with Documentum by Gaurav Kathuria guides readers in setting
up and configuring Documentum for a Web Content Management solution. It also
provides an overview of the platform essentials. A Beginner’s Guide to Developing
Documentum Desktop Applications by M. Scott Roth guides readers in desktop
application development for Documentum.

When EMC announced the addition of Documentum exams to their Proven
Professional certification program, I was excited to see an opportunity to make a
contribution. I value certification exams for one benefit above any other—rapid
learning. Preparation for these exams exposes the candidate to the breadth and depth
of the subject in a short period. Test preparation, when done right, can stimulate
rapid growth in knowledge. I consider practice questions and tests to be the best
mechanism for identifying gaps in knowledge and, thus, guiding the study effort for
maximum effect.

www.allitebooks.com

http://www.allitebooks.org

Author's Preface

[2]

In this book, I share this approach and provide over 250 practice questions to
nudge the reader in the directions that would help them the most. I also hope
that this book will prove to be a gentle introduction to the breadth of the core
Documentum platform and will facilitate entry of technology professionals into
the Documentum community.

Pawan Kumar

Introduction
EMC Documentum is the leading enterprise content management (ECM) platform
globally. EMC Proven Professional certification is an exam-based certification
program, which introduced a new EMC Proven Content Management Application
Developer (EMCAD) track in early 2007. The first exam in this track is Content
Management Foundations Associate-level Exam, whose exam code is E20-120.

This book is a complete study guide and includes study material and practice
questions to prepare for this exam. Even though this book focuses on certification
preparation, it strives to serve Documentum beginners and practitioners irrespective
of their interest in the certification exam. It can also serve as a handy guide and quick
reference to the technical fundamentals that is fully up to date for Documentum 5.3.
Beginners are introduced to concepts in a logical manner while practitioners can use
it as a reference to jump to relevant concepts directly.

Enterprise Content Management (ECM)
Content management is a rapidly growing discipline today as new technologies
attempt to bring the same rigor to managing unstructured content (documents,
for example) that databases brought to structured data decades ago. Content
management includes various aspects of creating, manipulating, and accessing
content including lifecycle and business process automation.

Content lifecycle helps move content through various states, often starting with
creation and ending with expiration and archiving. Automating content-centric
business processes can bring efficiency to operations and can create a searchable
record of events, actions, and performers involved in these processes.

www.allitebooks.com

http://www.allitebooks.org

Introduction

[4]

ECM takes these content management aspects to enterprise scales (large number of
users, high availability, distributed deployments, high performance, etc.) and
enables integration with other systems, which can act as sources or consumers of
managed content.

While ECM refers to management of electronic documents in general, several
specialized forms of content management have evolved to meet specific needs in
more effective ways:

Web Content Management (WCM) is a popular form of content
management. It provides rich features for managing web content. For
example, web content authors can create content using simple user interfaces
without knowing much about technology. The content can be routed
to reviewers and approvers and, once approved, can be automatically
published to the target website.
Record Management is another form of content management that creates
and controls records in various forms that typically serve the legal needs
of enterprises.
Compliance Management enables organizations to comply with legal
requirements and to prove their compliance with law.

Each of these different forms of content management is implemented on the
Documentum platform as a combination of applications and services.

EMC Documentum
Gartner research produces an annual report on the global ECM space. The 2006
report (http://mediaproducts.gartner.com/reprints/emc/vol2/article3/
article3.html) forecasts a compound annual growth at 12.8% through 2010
and shows EMC Documentum as the clear leader in this space. EMC has been a
well-known leader in enterprise storage hardware and technologies and it has
enhanced that position with the acquisition of Documentum. The magic quadrant
from the Gartner report is shown in the next figure.

•

•

•

Introduction

[5]

EMC Certification
EMC Proven Professional certification is an exam-based certification program,
which has introduced a new EMC Proven Content Management Application
Developer (EMCAD) track. The first exam in this track is Content Management
Foundations (CMF) Associate-level Exam (E20-120). This exam tests knowledge
about technical fundamentals of Documentum and is sufficient for achieving the
Associate-level certification.

www.allitebooks.com

http://www.allitebooks.org

Introduction

[6]

Associate-level certification along with Content Management Server Programming
Exam (E20-405) grants a Specialist-level certification. Currently only these two exams
are available for Documentum. Another exam for Web Development Kit (WDK)
programming is expected to become available soon. However, the CMF exam is
likely to be a requirement for all Documentum-related certifications.

Why?
What is the value of possessing a certification? Should I take this certification
exam? Such questions arise inevitably when one considers working towards
any certification.

The answers to these questions are also inevitably specific to the individual asking the
question. The answer depends on various factors including the industry, the supply
and demand of skilled professionals in the space, the individual's demonstrable
experience, and the employer's policies around certifications.

In a rapidly growing niche space like EMC Documentum, demand far outweighs the
supply of skilled professionals and this is reflected in the (average) compensation for
EMC Documentum services relative to other areas like enterprise Java. As a result, it
is a burden on the entity paying for these services to ensure that the services are well
worth the costs. A certification provides an assurance of a baseline skill level for the
professional providing these services. Therefore, possession of a certification makes
the professional's services more marketable.

Along the same lines, a professional seeking to enter the space may have little
specific experience to show and may find it hard to compete with people already in
this space. Possession of a certification may push the individual's credibility just high
enough to provide an opening from where the professional can prove his or
her worth.

Irrespective of your reason for taking a certification exam, it would take commitment
(and money, currently US$200) to pass such an exam. Certification exams tend to
be more academic than reflective of the real-life practice for the subject. Typically,
these exams are based on a well-defined syllabus and tend to test the candidate's
awareness or understanding of the concepts, though a smaller number of exams are
oriented towards the application of the knowledge as well. Real-life practice typically
utilizes a small section of the overall subject knowledge (the clichéd 80-20 term
comes to mind) and additional knowledge of related areas to make effective use of
the subject.

Introduction

[7]

I recall crossing the fence over to the certified side with the Java Programmer
certification exam about six years ago. The preparation experience was incredibly
enriching as well as humbling as I systematically nailed my weak areas and worked
on them to come out stronger each time. In the next section, I share this preparation
approach that essentially ferrets out and eliminates one's weaknesses.

How?
Now that we know why we should take the certification exam, let's see how to
proceed for this exam. You should now be keen to know how to approach and
where to register for this professional exam. The following sections will give you the
required information.

Approach
Preparation for a professional certification typically competes with other individual
responsibilities including work and family. As such, it often becomes an exercise in
resource (time, effort, and money) allocation to maximize the results with minimal
contention of conflicting demands. In order to make the most of the effort and
resources being spent, one needs to prioritize the order in which the topics need
attention and the amount of attention required by each topic.

There are probably several good approaches for preparing for exams and their
effectiveness varies for individuals due to differences in learning styles. However, I
believe that the following approach is a high-level guideline and can be used to tune
specific styles of preparation.

If you are familiar with the concept of bottlenecks (as in performance tuning) you
will easily identify with this preparation approach. Even if this is a new concept
for you it is not very difficult to grasp. It is also similar to what is known as theory
of constraints, where you systematically remove constraints to achieve higher
performance relative to the goals. The key concept in the approach is to identify your
weakest area (bottleneck or constraint) and spend time and resources on learning
about it. Now repeat and move on to the next bottleneck. This won't be an exact
science but you should be able to see tangible returns in terms of the new knowledge
gained (and improving scores).

As may be obvious to the keen mind, the key step in this process is identification of the
bottleneck. We need a good tool for identifying our weak areas so that we can focus
our efforts and mock tests or practice tests fit this bill wonderfully. Of course, the
quality of the questions will matter but if you have a large number of questions to
practice with, you are very likely to see the benefits in a short period.

www.allitebooks.com

http://www.allitebooks.org

Introduction

[8]

This book attempts to provide a good set of questions to help you focus your
learning. Each chapter provides content around the concepts to fill the gaps in your
knowledge, but in my opinion the biggest value is added by the rich set of practice
questions. Take this approach as a general guideline and tweak your style to make
the most out of this book.

Logistics
Once you decide to take this exam, you will need to take care of a few formalities.
You will need to register for the exam E20-120 with either of these two:

Pearson Vue (http://www.vue.com)

Thomson Prometric (http://www.prometric.com)

The exam currently costs US$200. Check for your local test center and find the exact
details and policies.

Useful Resources
This book offers an economical option that coherently presents the relevant
information in one place along with a large number of practice questions. While this
book strives to be the key preparation aid for the CMF exam, there are other valuable
resources that can help you excel in this exam and carry on the learning process
beyond it. Some of these resources are as follows:

1. dm_cram (http://dmcram.org) is a free online community to support test
preparation for Documentum exams and it offers practice tests, useful tips,
and discussion forums.

2. Product documentation is a good reference whenever you need to learn about
a concept or clarify a doubt. It may be hard to read the documentation end
to end like a book. The following product documents may be worthwhile
to reference in your preparation—Content Server Fundamentals, Content
Server Administration Guide, Content Server Object Reference, Content
Server DQL Reference, Documentum Application Builder User Guide, User
Guide/Help for Webtop and Documentum Administrator, Documentum
System Development Guide, and Documentum Architecture White Paper.
However, the number of documents and their level of detail have made it
challenging to use them efficiently and effectively as a study aid.

•

•

Introduction

[9]

3. EMC Documentum training—Technical Fundamentals of Documentum
(http://mylearn.documentum.com/portals/home/ml.cfm?actionID=38&
courseID=23844) is the course recommended by EMC for preparing for this
exam. EMC Documentum training is a great resource as well, though it is a
relatively expensive option.

4. documentum-users (http://groups.yahoo.com/group/documentum-
users/) is a very active user group (Yahoo! Groups) where the Documentum
community members ask questions and share their knowledge and expertise.

5. dm_developer (http://dmdeveloper.com/) is another online community
where members ask questions and share their knowledge and expertise. It
also features technical articles and case studies.

What This Book Covers
This book is organized in chapters based on the structure of the recommended
training for the CMF exam (http://mylearn.documentum.com/portals/home/ml.
cfm?actionID=65&subjectID=3259).

The chapters are grouped together in parts to provide a logical grouping and order
of topics as described below.

Part 1: Fundamentals (Chapters 1 - 4)

ECM Basics introduces the basic concepts of content management. Working with
Content describes the aspects of creating and manipulating content. Objects and Types
lays the foundation of designing and using metadata. Architecture describes the key
components of the EMC Documentum platform and how they interact to provide the
content management capabilities.

Part 2: Security (Chapters 5 - 7)

Users and Privileges describes the core concepts related to users for implementing
security in Documentum. Groups and Roles provides additional capabilities for
facilitating security management for groups of users. Object Security introduces
permissions and ties them to users, groups, and privileges to realize the
security model.

Part 3: User Interface (Chapter 8)

Searching describes the features for finding relevant content stored in a repository.
While other user interface aspects are covered throughout the book, searching is
described separately because of its fundamental importance to content management.

www.allitebooks.com

http://www.allitebooks.org

Introduction

[10]

Part 4: Application Development (Chapters 9 - 12)

Custom Types describes how to create user-defined metadata structures and
fundamental customization aspects. DocApps describes how to package the
development artefacts for reuse and portability across repositories. Workflows and
Lifecycles describe how to model and implement business processes in Documentum.

Part 5: Advanced Concepts (Chapters 13 - 14)

Aliases describes a mechanism for dynamic assignment of ownership, locations, and
permissions. Virtual Documents describes how multiple documents can be managed
as one larger document to facilitate collaboration.

There are two practice tests at the end of this book.

There is a set of questions at the end of each chapter. These questions are meant to
test your understanding. A good way to prioritize and focus your efforts is to use the
questions to identify the areas where you score low and then work on those areas.

The answers to all the questions and the solutions to the practice tests have been
provided at the end.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "Each
Content Server client that installs the DFC runtime has a local file named dmcl.ini."

A block of code will be set as follows:

SELECT user_name, user_login_name, user_state
FROM dm_user
WHERE user_login_name = 'jdoe'

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"In this example, John gets permissions in four ways—as the owner of the object, as a
specific user, as a member of a specific group, and as an implicit member of World."

Introduction

[11]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

www.allitebooks.com

http://www.allitebooks.org

Introduction

[12]

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Good luck! Let's get started.

Part 1
Fundamentals

ECM Basics

Working with Content

Objects and Types

Architecture

www.allitebooks.com

http://www.allitebooks.org

ECM Basics
In this chapter, we will explore the following concepts:

Content and metadata
Repository and Content Server
Various features of the Documentum platform

This chapter introduces key content management concepts in Documentum
terminology. The concepts are described at a high level to provide an overview
of the breadth of the platform. These concepts are explored in detail in the
following chapters.

Content and Metadata
Databases are ubiquitous in modern technology solutions. This is a mature field and
well-known best practices are routinely used for deploying databases. Databases
provide standard means for accessing and manipulating structured data. Structured
means that the data components (fields) are of specific type (integer, string, etc.) and
this knowledge helps in querying and manipulating the data.

On the other hand, files stored on the file system are generally unstructured and
can contain information in any form. Such files and the unstructured information
contained therein are collectively referred to as content.

While databases provide standard means of managing structured data, content
management systems (CMS) are a relatively new phenomenon. Since the content
itself is unstructured, it is not possible to read and understand the content without
any prior knowledge about it. Therefore, some structured data is attached to each
content item, which describes the content item. This data that provides information
about the attached content item is called metadata.

•

•

•

www.allitebooks.com

http://www.allitebooks.org

ECM Basics

[16]

Content management systems utilize metadata extensively to provide sophisticated
functionality. For example, metadata is essential for making documents searchable
in terms of their author, title, subject, or keywords. It is hard to imagine any
functionality of Documentum that does not utilize metadata in one form or another.
The following figure shows two content items and their associated metadata:

Repository
Content management systems need to manage both content and metadata. EMC
Documentum uses the host file system (by default) to store the content and a
database to manage metadata and its association with the content items. Note
that the content can also be stored in other types of storage systems, including a
Relational Dababase Management System (RDBMS), a content-addressed storage
(CAS), or external storage devices.

EMC coined the term content-addressed storage (CAS) in 2002 when it
released its Centera product. CAS provides a digital fingerprint for a
stored content item. The fingerprint (also known as an ID or logical
address) ensures that it is exactly the same item that was saved.
No duplicates are ever stored in CAS.

Chapter 1

[17]

A repository is a managed unit of content and metadata storage and includes areas
on the file system and a database. However, the details of the organization of the files
and metadata in a repository are hidden from the users and applications that need
to interact with the repository. The repository is managed and made available to
the users and applications via standard interfaces by a Content Server process. The
following figure shows the basic structure of a repository:

The repository was known as docbase in pre-5.3 versions of the Documentum
platform. These two terms are used interchangeably by the Documentum community.

Content Server
Content Server serves content to applications, which in turn provide friendly
interfaces to human users. Content Server brings the stored content and metadata
to life and manages its lifecycle. It exposes a known interface for using the content
while hiding the details of how and where files and metadata are stored.

The term Content Server is used in two contexts—the Content Server software that is
installed and resides on the file system and the Content Server instance, which is the
running process that resides in memory and serves content at run time. However,
there is little chance of confusion since the usage is often clear from the context and
the term Content Server is typically used without additional qualification (software or
process/instance).

www.allitebooks.com

http://www.allitebooks.org

ECM Basics

[18]

A Content Server instance is dedicated to and manages only one repository.
However, we will see later in architecture discussion that multiple Content Server
instances can be dedicated to the same repository. This is typically done for
performance reasons where the multiple Content Server processes divide up the
load for serving content from the same repository. The following figure shows two
Content Servers serving one repository:

Content Server is the foundation of the Documentum platform and provides the
following services:

1. Content management services
2. Process management services (workflows)
3. Security service for content and metadata in the repository
4. Distributed services

These features are described here briefly and in more detail in later chapters.

Content Management Services
Content management services include library services (checkin and checkout of
objects stored in the repository), version control, and archiving. The Content Server
uses an object-oriented model and stores everything as an object in the repository.

Metadata can be retrieved using Document Query Language (DQL), which is a
superset of Structured Query Language used with databases (ANSI SQL). DQL can
query objects and their relationships, in addition to any database tables registered to
be queried using DQL.

Chapter 1

[19]

Data dictionary stores information about object types in the repository. The
default data dictionary can be altered by addition of user-defined object types
and properties. Properties are also known as attributes and the two terms are used
interchangeably to refer to metadata.

Virtual documents link multiple component documents together into a larger
document. An individual document can be part of multiple virtual documents. The
assembly of virtual documents can also be controlled by business rules and data
stored in the repository.

Collaborative services can be deployed with an optional license and make
collaboration features available in client applications. Collaborative features
(Documentum 5.3) include:

Room: This is a secured area within a repository with defined membership
and access restrictions.
Discussion: This is a comment thread associated with an object.
Contextual folder: This is a folder with attached description and discussion.
Note: This is simple document with built-in discussion and rich text content.

Documentum 6 is expected to introduce new collaborative features such
as polls and calendars.

Retention Policy Services (RPS) is an optional product and enables use of policies
to manage the lifecycle of the objects stored in the repository. A retention policy
defines the phases through which such an object passes and how it is finally
disposed of or exported.

Process Management Services
Process management services (features) include the following:

Workflows: Workflows typically represent business processes and model
event-oriented applications. Workflows can be defined for documents,
folders (representing the contained documents), and virtual documents. A
workflow definition acts like a template and multiple workflow instances can be
created from one workflow definition.
Lifecycle: A lifecycle defines the stages through which a document passes.
For each stage, prerequisites can be defined and actions can be defined that are
performed prior to an object's entry into that stage.

•

•

•

•

•

•

www.allitebooks.com

http://www.allitebooks.org

ECM Basics

[20]

Security Services
A repository uses access control lists (ACLs), also known as permission sets, as the
security mechanism by default. The repository security can be turned off as well.

While the repository security model is ACL, each object has an associated ACL. The
ACL provides object-level permissions to users and groups.

When the repository security is enabled, the Content Server enforces seven levels of
basic permissions and six levels of extended permissions. There are additional privileges
and security components, which are discussed in later chapters.

Content Server provides robust accountability and capability via auditing and
tracing facilities. Auditing can track operations such as checkin or checkout that have
been configured to be audited. Tracing can provide detailed run-time information
useful for debugging applications.

Electronic signatures can enforce sign-offs in business processes. A sign-off is a way
of authorizing or approving a decision similar to signing off on paper.

Distributed Services
A Documentum installation can include multiple repositories and the Content Server
is aware of distributed configurations that deployments can take.

The Content Server provides an application programming interface (API) and
therefore needs a layer in front of it to expose its capabilities to human users.
Documentum provides desktop and web-based client applications and supports
creation of custom applications of either type. The following figure shows several
client applications:

Chapter 1

[21]

The full set of Content Server features is exposed via Documentum Foundation
Classes (DFC) and Documentum Client Library (DMCL). DFC provides the API for
interacting with the Content Server programmatically.

Documentum also provides a Web Development Kit (WDK) to facilitate
development and customization of web-based client applications.

Documentum provides two interactive utilities for interacting with the Content
Server using queries—IDQL and IAPI. These utilities are typically used by
administrators and developers.

Checkpoint
At this point you should be able to answer the following key questions:

1. What is content and what is metadata?
2. What is a repository and what is Content Server? What is the relationship

between the two?
3. What services are provided by EMC Documentum platform? What features

are enabled by these services?

Test Your Understanding
1. A comma-separated value (CSV) file is not content since it contains

structured information (True/False).
2. Where is metadata stored in a repository?

a. Files
b. File properties
c. Database
d. None of the above

3. Content and metadata are served by the repository (True/False).
4. Which of the following statements are correct?

a. One Content Server instance can serve two repositories
b. One repository can be served by two Content Server instances
c. One Content Server instance can serve only one repository

5. DQL can be used to query database tables (True/False).

www.allitebooks.com

http://www.allitebooks.org

ECM Basics

[22]

6. The collaborative service feature(s) offered by the Content Server is/are:
a. Discussions
b. Calendars
c. Chat
d. Notes

7. Workflows can be defined for:
a. Documents
b. Jobs
c. Folders
d. Lifecycles

8. Content Server provides accountability features via:
a. Jobs
b. Audit trail
c. Tracing
d. Documentum Administrator

9. Documentum offers the following interactive query utilities:
a. WDK
b. IDQL
c. DMCL
d. IAPI

10. The default repository security mechanism is:
a. ACL
b. Permission set
c. Alias set
d. Login

Working with Content
In this chapter, we will explore the following concepts:

Importing and exporting content
Checking out and checking in
Versioning
Formats and renditions

We have placed this chapter before Objects and Types (Chapter 3) because it is more
intuitive to think about working with files than with the metadata associated
with them. However, there are some concepts in this chapter that refer to object
properties. We recommend that you revisit these concepts after going through
Objects and Types (Chapter 3).

Interacting with Content
Content and metadata stored in the repository are managed and served by the
Content Server. However, human users interact with the Content Server through
several types of applications. Depending upon their roles, the users may use one of
the following means to interact with the Content Server:

1. A web application such as Webtop or Documentum Administrator. This is
the most common means of interacting with the Content Server.

2. A desktop application such as Documentum Desktop.
3. A query tool such as IDQL or IAPI. These tools are often used by

administrators or developers for precise and low-level interaction with the
Content Server.

•

•

•

•

www.allitebooks.com

http://www.allitebooks.org

Working with Content

[24]

4. A custom application, which uses DFC or integration technologies (EMC
Documentum Business Process Services, EMC Documentum Web Services
Framework, etc.) to interact with the Content Server. Such an application
may provide higher-level operations appropriate for the business, which
bundle multiple low-level operations in some sequence.

Irrespective of the interface used by the end users, the Content Server offers the
same core capabilities to all entities directly interacting with it. This is shown in the
following figure:

These core capabilities are the subject of this chapter, though their typical
manifestation via Webtop is also described.

Importing Content
Importing content into a repository brings it under the management of the
Content Server. This is how content existing outside the repository gets added to
the repository.

Importing results in a new Documentum object containing metadata for this content
item and the content item is associated with this object. This object gets version labels
1.0 and CURRENT. Versions are described later in this chapter.

Chapter 2

[25]

Exporting Content
Exporting content from a repository creates a copy of the content outside the
repository, typically on a file system. This is how content is copied outside the
repository and this external copy is no longer associated with the content inside the
repository. This operation does not modify the content inside the repository.

Checking Out
Checking out a content item from the repository allows it to be modified by the user
performing the checkout. This operation locks the content item in the repository (in
an exclusive manner), preventing other users from modifying the content item. The
user checking out the item is known as the lock owner for that item.

Applications such as Webtop also create a copy of the content outside the repository,
typically on a user's desktop where the user can work on this content item. Other
users can still access the locked object or any of its versions for viewing or exporting.

Conventionally, applications display a checked-out item with a key for its lock
owner. Other users see a lock on the item. This is shown in the following figure:

Typically, the application checking out the item for a user remembers the association
of the external copy with the Documentum object that was checked out. The primary
purpose of checking out content is to modify the content and then check it back
in as an update. A user working on modifying the content can take a long time
before the content is ready to be checked back into the repository. Therefore, the
application needs to utilize this memory at the time of checking in to identify the
object being updated.

Applications like Webtop also have an edit operation, which checks out
the document and launches an appropriate application, based on the
format of the document, to edit the document. In this process, Content
Server is only involved in the checkout step.

www.allitebooks.com

http://www.allitebooks.org

Working with Content

[26]

A checkout can also be canceled. Canceling checkout results in the lock being
released from the document and no changes are made to the document in the
repository. All changes made locally may be discarded. A checkout can be canceled
by the lock owner or a superuser. We will learn about superusers in the chapters
dealing with security.

Checking In
An item checked out for modification can be checked into the repository. This
operation applies the changes to the content stored in the repository.

Content Server maintains a history of the changes applied to objects using versions.
When a checked out object is checked back in, a new version is created. Each version
is a separate object (content and metadata) but is aware of the object from which it
was created. A version tree is a visualization of multiple versions derived directly or
indirectly from the same root object. Duplicate versions are not allowed in a version
tree, since the purpose of the version tree is to enable distinction among objects based
on their versions. Versioning is described in detail in the following section.

Applications such as Webtop offer several options for altering the behavior
of checkin:

1. The user can choose not to create a new version and replace the existing
content with the content being checked in.

2. The user can choose to increment the major version or the minor version. See
the next section for information about major and minor versions.

3. The user can choose to make the new version the current version for the
version tree.

4. The user can choose to keep the object checked out for more changes
(also known as retain lock as opposed to release lock).

5. The user can add another version label.
6. The user can modify the metadata for the new version.

The following additional options are also available:

1. The user can keep a local copy of the document.
2. The user can subscribe to the document. Subscriptions provide bookmark-like

functionality and are described in Searching.
3. The user can manually select another local file to use as the new content.

Chapter 2

[27]

Checkout and checkin are also referred to as library services.

Versioning
As mentioned earlier, importing or creating a new object creates the version 1.0 for
that object. This object becomes the root of the version tree that will be created by
checking out and checking in this object and the versions derived from this object.
Each version is a separate object with its own content and metadata. The versions
are as shown:

The Content Server applies an implicit version label to each object in the repository
and the label is of the form Major.minor. Additional symbolic version labels can be
added to an object's metadata, which are descriptive and more appropriate for the
end user.

If the checkin operation increments the minor version, the major portion is left
unchanged. For example, the version label changes from 2.3 to 2.4 when the object
is checked in as minor version. If the checkin operation increments the major version,
the minor portion is reset to 0. For example, the version label changes from 2.3 to
3.0. In general, the version labels of the form x.0 are referred to as major versions
and the others are referred to as minor versions.

Normally, checkin sets the new version as the current version. However, an older
version can be left as current instead. Typically, applications and DFC queries use
the current version as the default where multiple versions could be considered.
Applications require explicit actions for accessing non-current versions.

A folder object inside the repository cannot be versioned. However,
applications can allow users to check out a folder with the semantics that
the documents linked to that folder need to be checked out. This is just a
usability enhancement for the user interface.

www.allitebooks.com

http://www.allitebooks.org

Working with Content

[28]

Branching
Branching enables users to work from an older version while still retaining the latest
changes. However, as we will see in a moment, branching is a part of the version
numbering scheme rather than a feature for end users.

Content Server allows checking out a version older than the highest one. When this
object is checked in, two options are available as usual—check in as major version
or as a minor version. If major version is chosen, the next higher (higher than the
highest major version present) major version is used. If minor version is chosen,
there are two possibilities—the next minor version is already present or it is not.

If the next minor version is not present, that one is just used. However, if the
next minor version is already present, a branch is created in the version tree. The
sequence of versions splits off as a new branch at this point. The version for the
checked in object at the point of branch origin is obtained by appending .1.0 to the
implicit version of the object that was checked out.

Let's look at an example to clarify these concepts. For the version tree shown in the
next figure, assume that the versions were created in this order—1.0, 1.1, 1.2, 2.0,
1.1.1.0, 1.1.1.1. Now consider the point in time just after 2.0 was created. The
version 1.1 was checked out and then checked back in as a minor version. The
next minor version, 1.2, was already present in the version tree, so a branch was
created with version 1.1.1.0. Note that even though this label ends in .0 it is a
minor version.

Major versions have this form—x.0. If a major version were selected for checkin, no
branch would be created and the new version would be 3.0. Further, if 1.2 were
checked out and then checked in as minor (1.3) or major (3.0) version, no branch
would be created. Checking in a branch also defaults the new version to CURRENT.

If a second branch is created at the same branch point as the first one, the
new version will be created by appending 2.0, and so on.

Chapter 2

[29]

Once there are branches in the version tree, checking in becomes more interesting.
Incrementing minor version works in the same way, with the rightmost number
getting incremented. However, incrementing the major version results in the next
higher major version after the highest major version in the complete tree. So 2.3.1.6
can lead to 5.0 if 3.0 and 4.0 are already present in the version tree. This is obvious
once we remember that duplicate version numbers are not allowed in a version tree.

When a branch is being created, it is not possible to check in the document
as the same version.

How can we find out if two objects are part of the same version tree? In other words,
how can we know whether two objects represent different versions of the same
root object? Each object has a unique identifier called object ID stored in a property
(metadata element) called r_object_id. Each object in a version tree has a property
called i_chronicle_id. All the objects in a version tree have the same value of this
property and it is the value of the r_object_id property of the root object in the
version tree. These two properties are demonstrated in the following figure:

Another property important for versioning is i_antecedent_id, which relates a
version to its previous version (parent) in the tree. We will learn more about objects,
properties, and object relationships in later chapters.

Formats
A format identifies the organization of document contents. Typically, it is used to
identify the application that can understand the contents of the document and use it
meaningfully. Within Documentum, a format captures information such as file name
extensions related to the format. For example, pdf and doc are document formats.

www.allitebooks.com

http://www.allitebooks.org

Working with Content

[30]

Renditions
Each content item has a primary format. However, it is possible to represent the
same document in other formats and attach it to the same object. These other formats
(non-primary formats) are called renditions. Thus, it is possible to have text and pdf
renditions of a document whose primary format is doc.

Differences between the renditions are not limited to format, though it is
probably the most common criterion; other criteria can be resolution (for
images) and language (for translations).

Renditions can neither be edited nor versioned.

A rendition is not stored as a separate object within the repository. Each rendition is
attached to one object representing the primary format. In fact, the only properties
tied to a rendition are the object ID of the primary format and the format of the
rendition itself. This is shown in the following figure:

Rendition generation can be automated by installing additional EMC Documentum
software components:

DTS: Document Transformation Services can create PDF and
HTML renditions.
ADTS: Advanced DTS adds more formats to the list supported by DTS.
MTS: Media Transformation Services can create various media formats, such
as a TIFF file from a Photoshop file.
Custom converters: Custom converters can be plugged in to support formats
not covered by the above services or to use alternative means of creating
these renditions.

•

•

•

•

Chapter 2

[31]

Documentum Product Notes
Content Server offers the content-related operations in fine granularity. Most of the
options described above for these features (such as options available on checkin) are
offered by applications such as Webtop, which bundle these together as one unit.

Similar considerations apply to portions of the interaction that take place on the
user's desktop. For example, launching an application to view or edit content is a
capability of the client application and not of the Content Server.

DTS, ADTS, and MTS are optional EMC Documentum products for converting one
format into another and for creating renditions.

Checkpoint
At this point you should be able to answer the following key questions:

1. What are the core Content Server features for working with content?
2. What is the difference between import and checkin? What is the difference

between export and checkout?
3. What are versions? What is a version tree? What are branches?
4. What are formats? What are renditions?

Test Your Understanding
1. When a new content item is imported it gets the following version

label automatically:
a. 0.1
b. 1.0
c. NEW
d. CURRENT

2. The following operations create a copy of the content item outside
the repository:

a.	Import
b. Export
c. Checkout
d. Cancel Checkout

www.allitebooks.com

http://www.allitebooks.org

Working with Content

[32]

3. There can only be one lock owner for one object (True/False).
4. Only the lock owner can cancel a checkout (True/False).
5. A checkin always results in a new version of the document (True/False).
6. If the following versions are all present in a version tree, which of these can

be the CURRENT version:
a. 1.0
b. 1.1
c. 2.0.1.0
d. 2.1

7. What can be the new version if a folder at version 1.3 is checked in:
a. 1.4
b. 2.3
c. 2.0
d. None of the above

8. If version 3.4 of an object is checked out, it can be checked in with the
following new version:

a. 3.5
b. 4.0
c. 5.0
d. 3.4.2.0

9. Which of the following aspects of a document identifies the editing
application for the document:

a. Version
b. Format
c. Rendition
d. Object type

10. The i_chronicle_id property of a rendition identifies:

a. r_object_id of the root object of the version tree
b. r_object_id of the previous version
c. version label of the previous version
d. None of the above

Objects and Types
In this chapter, we will explore the following concepts:

Objects and types
Type hierarchies
Object persistence
Querying objects

Objects
Documentum uses an object-oriented model to store information within the
repository. Everything stored in the repository participates in this object model
in some way. For example, a user, a document, and a folder are all represented as
objects. An object stores data in its properties and has methods that can be used to
interact with the object.

A content item stored in the repository has an associated object to store its metadata.
For example, a document stored in the repository may have its title, subject, and
keywords stored in the associated object. However, note that objects can exist in the
repository without an associated content item. Such objects are sometimes referred
to as contentless objects. For example, a user object or a permission set object does not
have any associated content.

Note that the term method may be used in two different contexts within
Documentum. A method as a defined operation on a type is usually
invoked programmatically through DFC. There is also the concept of
a method representing code that can be invoked via a job, workflow
activity, or a lifecycle operation. This qualification will be made explicit
when the context is not clear.

•

•

•

•

www.allitebooks.com

http://www.allitebooks.org

Objects and Types

[34]

Each object property has a data type, which can be boolean, integer, string,
double, time, or ID. A boolean value is true or false. A string value consists of text.
A double value is a floating point number. A time value represents a timestamp,
including dates. An ID value represents an object ID that uniquely identifies an
object in the repository.

A property can be single-valued or repeating. Each single-valued property holds
one value. For example, the object_name property of a document contains one value
and it is of type string. This means that the document can only have one name.
On the other hand, keywords is a repeating property and can have multiple string
values. In this example, a document can have object_name='invoice.pdf' and
keywords='invoice.pdf','ABC Corp.','Trading'.

The following figure shows a visual representation of this object. Typically, only
properties are shown on the object while methods are shown when needed.

r_object_id is a special property of every persistent object. It is used
to uniquely identify an object and encodes some information within the
property itself. It is a 16-character string value where each character is a
hex (hexadecimal) digit. The first two digits constitute a tag representing
the type of the object.
For example, 09 means that the object has a type that is dm_document or
its subtype—the object represents a document rather than a user, group,
or something else. Subtypes are explained later in this chapter. The next
6 digits represent the repository ID—a numeric identifier assigned to the
repository. The last 8 digits represent a unique ID within the repository and
this ID is generated by the Content Server.
Note that EMC Documentum assigns a unique range of repository IDs to
each of its customers for the various repositories served by their Content
Server installations. As long as these assigned repository IDs are used
uniquely, r_object_id will uniquely identify an object across
all repositories.

Chapter 3

[35]

Methods are operations that can be performed on an object. An operation often
alters some properties of the object. For example, the checkout method can be used
to check out an object. Checking out an object sets the r_lock_owner property with
the name of the user performing the checkout. Methods are usually invoked using
Documentum Foundation Classes (DFCs) programmatically, though they can be
indirectly invoked using DQL and API.

Object Types
Different objects may represent different kind of entities—one object may represent a
workflow while another object may represent a document, for example. As a result,
these objects may have different properties and methods. Each time an object is
created in the repository, it needs to be determined what properties and methods it is
going to have. This information comes from an object type.

An object type is a template for creating objects. In other words, an object is an
instance of its type. A Documentum repository contains many predefined types
and allows addition of new user-defined types (also known as custom types). User-
defined types offer important capabilities and are described in detail in a separate
chapter—Custom Types.

The most commonly used predefined object type for storing documents in the
repository is dm_document. Objects in a repository can be organized using folders,
which are stored as objects of type dm_folder. The root folder in a folder tree is
called a cabinet and is stored as an object of type dm_cabinet. Users are represented
as objects of type dm_user in the repository. A group of users is represented as an
object of dm_group. Workflows use a process definition object of type dm_process,
while the definition of a lifecycle is stored in an object of type dm_policy. These
object types are described in more detail at various places in later chapters.

www.allitebooks.com

http://www.allitebooks.org

Objects and Types

[36]

Here is a figure displaying the object types:

While the obvious use of a type is to define the structure and behavior of one kind
of objects, there is another very important application of types. A type can be
used to refer to all the objects of that type as a set. For example, queries restrict the
scope of search by specifying a type and as a result only the objects of that type are
considered for the results. Queries are introduced later in this chapter.

As another example, audit events can be restricted to a particular object type
resulting in only the objects of this type being audited. Auditing is described in more
detail in User and Privileges (Chapter 5).

Chapter 3

[37]

Type Names and Property Names
Each object type uses an internal type name, such as dm_document, which is used for
uniquely identifying the type within queries and application code. Each type also
has a label, which is a user-friendly name often used by applications for displaying
information to the end users. For example, the type dm_document has the label
Document. Conventionally, internal names of predefined (defined by Documentum)
types start with dm_.

Just like an object type each property also has an internal name and a label. For
example, the label for property object_name is Name. There are some additional
conventions for internal names for properties. These names may begin with the
following prefixes:

1. r_: (read only) This prefix normally indicates that the property is controlled
by the Content Server and cannot be modified by users or applications. For
example, r_object_id represents the unique ID for the object. On the other
hand, r_version_label is an interesting property. It is a repeating property
and has at least one value supplied by the Content Server, while others may
be supplied by users or applications.

2. i_: (internal) This prefix is similar to r_ except that this property is used
internally by the Content Server and normally not seen by users and
applications. As discussed in the last chapter, i_chronicle_id binds all the
versions in a version tree together and is managed by the Content Server.

3. a_: (application) This prefix indicates that this property is intended to be
used by applications and can be modified by applications and users. For
example, the format of a document is stored in a_content_type. This
property helps Webtop launch an appropriate desktop application to open a
document. The other three prefixes can also be considered to imply system or
non-application attributes, in general.

4. _: (computed) this prefix indicates that this property is not stored in the
repository and is computed by Content Server as needed. These properties
are also normally read-only for applications. For example, each object has a
property called _changed, which indicates whether it has been changed since
it was last saved. Many of the computed properties are related to security
and most are used for caching information in user sessions.

www.allitebooks.com

http://www.allitebooks.org

Objects and Types

[38]

Type Hierarchy
It is common for different types to be related in some sense and share properties and
methods. In true object-oriented style, Documentum allows persistent types to be
organized in an inheritance-based type hierarchy. A type can have one supertype
and inherit all the supertype properties as its own. The complete set of properties
belonging to a type is the union of the inherited properties and properties explicitly
defined for that type. In this relationship, the new type is called a subtype.

The super and sub prefixes are based on the visual representation of this relationship
where the supertype is positioned logically higher than the subtype, as shown in the
following figure:

Note that supertype and subtype are relative terms. This means that when using
either of these terms we refer to two types. A type can be a subtype for one type
and supertype for another type at the same time. When many of these related
relationships are visually represented together, they create a structure similar to
an inverted tree (root at the top) known as a type hierarchy. Readers familiar with
object-oriented modeling will recognize this type hierarchy as a class-inheritance
hierarchy. The following figure shows a portion of the type hierarchy for the
predefined Documentum types:

Chapter 3

[39]

dm_document is an important type since it is almost always involved with document
storage and that is a key capability of the Documentum platform. It is an interesting
type because it has no properties of its own and it inherits all its properties from
dm_sysobject.

One may question the point of having a separate type without any properties of its
own. Remember the comment about using a type for treating the objects of that
type as a set? dm_document as a separate type enables us to refer to all the objects
of this type and subtypes as a set. It can also be used for the complementary set,
for example, identifying all the objects of type dm_sysobject but not of the type
dm_document.

Object Persistence
Objects that are stored in the repository are called persistent objects and their types
are referred to as persistent types. All persistent types are part of a type hierarchy
rooted in the internal type persistent object, which has the following properties:

1. r_object_id: This is used for unique identification, assigned to the object by
the Content Server. This property is described earlier in this chapter.

2. i_vstamp: This is used internally for version control; it holds the number of
committed transactions that have altered this object.

3. i_is_replica: This is used in replication and determines whether an object
is a replica of another in a different repository. Object replication replicates
(copies) objects, both content and metadata, from a source repository to a
target repository. The object copies in the target repository are known as
replica objects.

Objects are stored in the repository using object-relational technology where
properties are stored in (relational) database tables. Each persistent type is
represented by two tables in the repository database—one for storing the
single-valued properties and the other for storing the repeating properties.
Single-valued properties for a type are stored in a table named type_name_s, while
repeating properties are stored in a table named type_name_r.

For both single-valued and repeating properties, the property names map to the
column names in the tables. Further, all of the _s and _r tables also have a column
named r_object_id. The r_object_id column is used to join the single-valued and
repeating properties along with the inherited properties to bring all the properties of
an object together.

www.allitebooks.com

http://www.allitebooks.org

Objects and Types

[40]

The structure of the _r tables is worth paying extra attention to. Each object can have
multiple rows in the _r table where each column represents one repeating property.
Usually, two repeating properties of an object are not related to each other. For
example, authors and i_folder_id are two repeating properties of dm_sysobject
and there is no relation between an author and the ID of a folder that the object
is linked to. Yet, these two values may be present in the same record in
dm_sysobject_r.

This storage scheme of shared records lets us determine the number of records for
an object in its _r table. It is equal to the maximum number of values in any of the
repeating properties that is not an inherited property for the object's type.

The following figure illustrates persistence for an object of a custom type my_course:

Note that the tables used for persisting objects of a particular type only
store the properties explicitly defined for that type. Inherited properties
are stored in the tables for the supertypes where they belong. Since
dm_document does not have any properties of its own, there is no table
named dm_document_s or dm_document_r in the repository database.

It is useful to know how properties are stored in database tables but all the properties
of objects can be queried together using DQL without any reference to these tables.
Internally, the Content Server uses database views that join appropriate tables to
retrieve all the needed properties of the type together.

While most of the types represent persistent objects, there are some types whose
objects are used for temporarily storing information in memory. These objects are not
stored in the repository and are called non-persistent objects. For example, collection
objects are used to store query results and they reside only in memory at run time.

Chapter 3

[41]

Querying Objects
Document Query Language (DQL) is a query language for Documentum just as
Structured Query Language (SQL) is a query language for databases. In fact, DQL
is a superset of ANSI SQL, which means that a valid query in ANSI SQL is also a
valid DQL query. DQL queries can be executed using IDQL (Interactive DQL
shell), Documentum Administrator, Webtop, or programmatically through
DFC applications.

DFC provides a rich set of functionality for interacting with objects, including
creating, querying, and modifying objects. DFC is a programmatic means of
interacting with objects and is used in applications. DQL is used both for scripting
and with DFC in applications. In this section, we will examine some DQL queries
used for manipulating objects. However, this is just a small overview of DQL
capabilities and the DQL Reference Documentation should be used to explore the full
set of DQL capabilities.

SELECT Query
A DQL query can be used to inspect or affect one or more objects in a repository.
The most common type of DQL query is the SELECT query, which retrieves the
properties of one or more objects. For example, consider the following query:

SELECT r_object_id, r_creation_date
FROM dm_document
WHERE object_name = 'mydoc.txt'

This query shows three keywords—SELECT, FROM, and WHERE. These keywords
divide up the query into three parts:

1. SELECT clause (selected values list): The selected values list specifies the
properties to be retrieved.

2. FROM clause: The FROM clause specifies the object types to be queried.
3. WHERE clause: The WHERE clause is optional and specifies the conditions for

the objects to meet whose properties will be returned by the query. When the
WHERE clause is present, the query is also called a conditional query.

A DQL query can also directly query database tables, though the
tables need to be registered first. A registered table is a table from the
underlying database that has been registered with the repository. This
registration allows the table to be specified in a DQL query, either by itself
or in conjunction with a type. A registered table can be used as an object
type and its columns can be used as properties.

www.allitebooks.com

http://www.allitebooks.org

Objects and Types

[42]

Now, let's try to understand the semantics of this query. The FROM clause specifies
that we want to consider objects of type dm_document. Among these objects, we
only want to look at objects that have 'mydoc.txt' in their object_name property.
The query will return the object ID (r_object_id property) and creation date
(r_creation_date property) for all the resulting objects.

No matter how (DFC or DQL) objects are queried, Content Server
always enforces the configured security. Content Server will not return
all documents just because a query requests all documents. It will only
return the documents that the currently authenticated user is allowed
to retrieve.
The same rules apply to the operations other than querying. Repository
security is discussed in more detail in later chapters.

Basics
The comma-separated list after SELECT identifies the values to be returned. These
values typically come from object properties, though they may include constants
and calculations on properties as well. The allowed properties depend on the types
specified in the FROM clause. For example:

SELECT object_name, title
FROM dm_document

Here the selected values are the properties object_name and title for the type
dm_document. It is possible to rename the values being returned using the
following syntax:

SELECT object_name AS Name, title AS Title
FROM dm_document

This capability is more useful and desirable when multiple types are present in the
FROM clause:

SELECT d.r_object_id AS ObjectId, f.r_object_id AS FolderId
FROM dm_document d, dm_folder f
WHERE ...

Note that the selected values are both r_object_id, so renaming enables us to
distinguish between them. Also note that we need to associate the property name with
the type name in this case and it is done by using the prefixes d. and f., where d and f
are aliases (unrelated to the aliases in alias sets to be discussed in later chapters) for the
types in the FROM clause. It is a good practice to use aliases for types and prefix them to
property names when multiple types are present in the FROM clause.

Chapter 3

[43]

It is rare to run a select query without a WHERE clause because it will return all
objects of the specified type(s). The WHERE clause enables us to provide conditions or
search criteria and narrow down the search scope to find the specific objects we are
looking for.

WHERE Clause
The WHERE clause specifies a condition, which may consist of multiple conditions
that an object must satisfy to be a part of the result set. An object participates in the
conditions via its properties. Functions, expressions, logical operations, and literals
are used along with the properties to define the condition. Some examples below
illustrate the usage of WHERE clause.

The following example shows the use of a string literal in the WHERE clause. Note
that a string literal is placed within single quotes:

SELECT object_name
FROM dm_document
WHERE title = 'CS100'

The following example shows that a numeric value does not use quotes. This query
retrieves objects that have been updated at least once:

SELECT object_name
FROM dm_document
WHERE i_vstamp > 0

An object ID literal is placed within single-quotes. The following query retrieves one
specific object from the repository using its object ID:

SELECT object_name
FROM dm_document
WHERE r_object_id = '0900006480001126'

A repeating property in a WHERE clause is typically used with the keyword ANY, as
shown in the next example. This query retrieves all documents that have any of the
keywords set to invoice:

SELECT object_name
FROM dm_document
WHERE ANY keywords = 'invoice'

www.allitebooks.com

http://www.allitebooks.org

Objects and Types

[44]

Another commonly used condition relates to dates and the DATE function is useful
for such situations. The following query retrieves objects that have not been modified
since 12/10/2006:

SELECT object_name
FROM dm_document
WHERE r_modify_date < DATE('12/10/2006')

Next we look at UPDATE queries, which are used for modifying objects.

UPDATE Query
An UPDATE query updates one or more objects and has the following syntax:

UPDATE <type_name> OBJECT
<property_updates>
WHERE <condition>

The WHERE clause works just as in the SELECT query. As before, the WHERE clause is
optional but it is highly recommended that the WHERE clause should not be omitted as
far as possible. <type_name> is the type or an ancestor type (supertype or supertype's
supertype, and so on) of the object(s) to be updated. <property_updates> specify
the property names and the corresponding values to be set. The following example
illustrates these concepts:

UPDATE dm_document OBJECT
SET object_name = 'mydoc.txt',
SET title = 'John''s Document',
SET authors[0] = 'John',
SET authors[1] = 'Jane'
WHERE r_object_id = '0900006480001126'

This query shows several new features. Note that the keyword OBJECT (OBJECTS
is also acceptable) is required, since we are trying to update the objects. If
OBJECT is omitted, the query will attempt to modify the type (rather than objects).
<property_updates> is specified using the format SET <property_name> =
<value>. If multiple properties are being updated they are separated using commas.

Another point to note is that if a repeating property, like authors in this
example, needs to be updated, each individual value needs to be set using this
format—SET <property_name>[<index>] = <value>. <index> specifies the
position in the list of repeating values for the property and the positions start with
0. Also note that for title we used two apostrophes where we needed one in the
value. It is true for all DQL queries that an apostrophe inside a string literal should
be replaced with two to escape the special meaning of the apostrophe.

Chapter 3

[45]

It is not common to distinguish between a supertype and an ancestor
type. Often, the term supertype is intended to mean "supertype,
supertype's supertype, and so on". The term subtype is also loosely used
in a similar fashion to include the descendants in the type hierarchy.

DELETE Query
A DELETE query is similar to an UPDATE query except that there are no properties to
be set. A DELETE query has the following format:

DELETE <type_name> OBJECT
WHERE <condition>

This query does not have many new features. In fact it is probably one of the
simplest DQL queries. Again, the WHERE clause is optional but omitting it will result
in all objects of the specified type and its subtypes being deleted. You need to be very
careful when using DELETE queries. Let's look at an example of the DELETE query:

DELETE dm_document OBJECT
WHERE owner_name = USER
AND FOLDER('/Temp')

This query deletes all objects of type dm_document or any of its subtypes that are
owned by the currently authenticated user and linked to the folder path /Temp.
Note the use of the keyword USER—it gets dynamically replaced with the currently
authenticated user when the query is executed. Similarly, TODAY is a keyword that
gets replaced with the date on which the query is executed. Some other useful
keywords are YESTERDAY, TOMORROW, and NOW. These keywords are used in queries
that utilize date or time values.

Further, note the use of keyword AND—it enables conjunction of two conditions in
the WHERE clause. OR and NOT can also be used in a similar manner.

A path within a repository is represented in a way similar to a path on the
file system. For example, /Temp/mydocs/resume.doc is a path in the
repository to a document named resume.doc. This document is linked to
a folder named mydoc, which in turn is linked to a cabinet named Temp.
The top-level folders are special and are called cabinets. They always
appear as the first element in a path. Each repository has some cabinets
created for use by Documentum software. These cabinets are called
system cabinets. Temp is a system cabinet, which is frequently used for
organizing temporary objects.

www.allitebooks.com

http://www.allitebooks.org

Objects and Types

[46]

The query also illustrates how to search certain folders for objects. The folder
predicate can specify one or more folder paths and whether the subfolders of those
folders should be included in the search recursively. Consider the modified version
of this query:

DELETE dm_document OBJECT
WHERE owner_name = USER
AND FOLDER('/Temp/a','/Temp/b',DESCEND)

This query deletes all objects of type dm_document or any of its subtypes that are
owned by the currently authenticated user and linked to the folder path /Temp/a or
/Temp/b or any subfolders of these paths. Note that multiple folders can be specified
in the folder predicate and, optionally, DESCEND specifies that the subfolders should
be included.

API
API methods can be issued via IAPI or Documentum Administrator in addition to
programmatic access through DFC. IAPI can send individual method calls to the
server. The API can be used to create scripts for administrative or development
purposes. One of the most common uses of the API is to dump an object to view all
of its properties. For example, the following API command prints the names and
values for all the properties of the object identified by the given object ID:

dump,c,'0900006480001126'

The API will not be discussed in detail in this book. For exploring the API in detail,
please see the API Reference Documentation.

Documentum Product Notes
DQL queries can be executed through IDQL, Documentum Administrator, or
Webtop. They can also be executed programmatically using DFC.

API queries can be executed using IAPI, Documentum Administrator, and DFC.

Checkpoint
At this point you should be able to answer the following key questions:

1. What is the difference between objects and types? How are objects related
to types?

2. What information is encoded in the r_object_id attribute?

Chapter 3

[47]

3. What is a type hierarchy? How are objects persisted in the
repository database?

4. What are the various ways of querying the objects in a repository? What are
some common DQL queries?

Test Your Understanding
1. An object can inherit properties and methods from another object

(True/False).
2. There is no dm_folder_s table (True/False).
3. Administrators can use DQL to query the objects that DFC would prevent

them from accessing due to permission restrictions (True/False).
4. Suppose a custom type my_document is a subtype of dm_document. When

an object of type my_document is created, the first two hex digits of
r_object_id for this object will be _____.

5. The prefix i_ for predefined properties normally indicates:
a. Immutable
b. Internal
c. Imported
d. None of the above

6. Suppose a document has only three of its repeating properties set:
 authors='John','Jane';
 keywords='invoice','corporate','finance','software';

 r_version_label='1.2'.

Given that all of these properties are present in dm_sysobject_r, how many
records will this object have in this table?

a. 1
b. 2
c. 4
d. 8

7. The dm_document_r table stores the authors property since authors is a
repeating property (True/False).

www.allitebooks.com

http://www.allitebooks.org

Objects and Types

[48]

8. The first two hex digits in r_object_id represent:
a.	 Repository ID
b.	 Unique ID within the repository
c.	 Object format
d.	None of the above

9. DQL can be used to query databases directly (True/False).
10. The following query will include a dm_document object named mydoc.txt in

the result set as long as its permissions allow it (True/False):
 SELECT r_object_id, title
 FROM dm_sysobject
 WHERE object_name = 'mydoc.txt'

Architecture
In this chapter, we will explore the following concepts:

Documentum architecture layers
Platform components
Communication patterns

Documentum Platform
The term Documentum means different things to different people. Some people think
of the repository, some think of Webtop, and the others think of a custom content
application they are exposed to.

In order to grasp the full capabilities and organization of Documentum, it is best
to think of it as a set of core product components, an additional set of optional product
components (some of which are frequently used), and an unbounded set of
custom applications.

EMC offers over 50 product components for the Documentum platform. In order
to make this complexity manageable, from the standpoint both of comprehension
and of software maintenance, the platform is also organized as a framework. The
framework provides guidelines, standards, and tools for using and extending
the platform.

The Documentum platform is organized in layers, just like the well-known
n-tier architecture for enterprise applications. The similarity is more in terms of the
benefits of using layers and less in terms of the traditional tiers. As we will see, some
Documentum layers span multiple tiers.

•

•

•

www.allitebooks.com

http://www.allitebooks.org

Architecture

[50]

Layered Architecture
Layered architectures are a norm in enterprise applications today. Layers can separate
components by various criteria such as purpose or role, technology, and dependence
on other components. There are various benefits of layered architectures including:

Complexity becomes manageable from multiple perspectives—
comprehension, design, implementation, testing, and deployment.
Encapsulated implementation of a layer makes it possible to replace the layer
with another implementation.
Multiple higher-level layers can utilize the functionality of the lower-level
layers, thus promoting reuse.

In this discussion, we will use the term tiers in the popular sense—presentation
(view), logic, and persistence (data/content storage). We will describe the Documentum
platform architecture in terms of layers.

The Documentum platform is organized in four layers—Repository Layer, Content
Services Layer, Component and Development Layer, and Application Layer. Each
layer serves a specific purpose and consists of product components that contribute
towards that purpose. The following schematic figure illustrates Documentum
architecture organized in layers, which are explored in more detail in the rest of
this chapter:

•

•

•

Chapter 4

[51]

The following figure maps Documentum architecture layers to traditional
architecture tiers. Note how some layers span multiple tiers.

Repository Layer
The Repository Layer provides storage for the platform and consists of the content
repository, which uses file stores and a relational database as its components. The file
store is a logical storage area and can be a file system of the host operating system
(OS) or a Content-Addressed Storage (CAS), such as EMC Centera. CAS uniquely
identifies a content item using a digital fingerprint (also known as ID or logical
address) of the content item rather than a file system path of the content item. Other
alternatives such as streaming servers and even relational databases can be used as
file stores.

Optionally, the repository can also maintain a full-text index of all text-based
content assets stored within the repository. For example, such content may include
documents, text files, HTML files, XML content, and close-captioned video content.

In a Documentum deployment, the Content Server, the file store, and the database
can all be hosted on separate physical machines. All normal access to the repository
should occur through the Content Server. In order to avoid accidental or malicious
direct access, the content storage on the file system is secured by permissions to
the installation owner only. The installation owner is the OS user account used for
installing Content Server.

www.allitebooks.com

http://www.allitebooks.org

Architecture

[52]

Content Services Layer
As discussed in a previous chapter, a repository is brought to life by the Content
Server. The Content Server manages the repository and provides a low-level interface
for interaction with the repository. The Content Services Layer (also referred to
as Services Layer) provides application-level services for organizing, controlling,
sequencing, and delivering content to and from the repository.

The Content Services Layer consists of the following core services:

Library Services: These services consist of checkin/checkout, versioning,
and basic rendering. These concepts are discussed in Working with
Content (Chapter 2).
Security Services: These services consist of authentication, authorization,
and auditing. These concepts are discussed in the chapter related
to security.
Workflow Services: These services automate business activities and policies
for repository content. Workflows are discussed in Chapter 11.
Lifecycle Services: These services automate the lifecycle policies of the
repository content. They assign a lifecycle state to a content item and then
manage its transitions from one state to another according to the lifecycle
policy. Lifecycles are discussed in Chapter 12.
XML Services: These services provide essential features for managing XML
content items in their native format and include:

XML content validation: XML validation ensures that XML
elements are well-formed and conform to the associated
definition (i.e. DTD or Schema).
XML chunking: Chunking segments XML documents into
their elements, which are then managed as discrete
content objects.

Additionally, the content services layer includes the following extended services:

Repository Services: These services include the following:
Retention Policy Services (RPS): RPS uses policies to
automate retention and disposal of content objects.
Trusted Content Services (TCS): TCS enables handling of
application-specific security requirements through file store
encryption, digital shredding, electronic signatures, and
extension of the underlying security model.

•

•

•

•

•

°

°

•

°

°

Chapter 4

[53]

Enterprise Content Integration (ECI) services for federated search: These
services consist of a framework of adapters for various internal and external
repositories and enable searching multiple heterogeneous repositories
together. These repositories include non-Documentum repositories such as
FileNet or LexisNexis repositories.
Content Transformation Services (CTS): These services convert various
kinds of content from one format and resolution into others. For example,
these content types may include documents, images, and videos. CTS consist
of several modules, including these most common ones:

Document Transformation Services (DTS): DTS supports
document transformations such as Microsoft Office
documents to PDF and HTML.
Advanced Document Transformation Services (ADTS):
ADTS extends DTS by adding support for additional
formats—Microsoft Project, Microsoft Visio, AutoCAD, and
multi-page TIFF.
Media Transformation Services (MTS): MTS provides rich
media transformations and analysis for static digital assets,
including photos, scanned images, and Microsoft PowerPoint
slide decks.

Content Intelligence Services (CIS): These services analyze the text within
documents and other content objects and automatically set their metadata.
They can also categorize these documents according to predefined rules.
Site Delivery Services: These services deliver and deploy content to web
servers, portals, and application servers. These services include:

Site Caching Services (SCS): SCS enables delivering content
to disparate delivering environments.
Site Deployment Services (SDS): SDS complements SCS by
automatically delivering content to multiple external web
servers or web server farms.

Collaboration Services: These services enable multiple users to work on
common documents in the repository together. These services use specialized
collaborative objects, which include rooms, discussion threads, contextual
folders, and notes.

•

•

°

°

°

•

•

°

°

•

www.allitebooks.com

http://www.allitebooks.org

Architecture

[54]

Component and Development Layer
The Component and Development Layer, also known as Interface Layer, provides
access to the repository content and the content services. This layer consists of
predefined components and their application programming interfaces for enabling
customization, integration, and application development. This layer consists of
Documentum Foundation Classes (DFC), a set of standards-based APIs, Business
Object Framework, WDK, Portlets, and Desktop components.

Documentum Foundation Classes
Documentum Foundation Classes (DFC) expose the Documentum object model
as an object-oriented library for applications to use in the form of Java and
Component Object Model (COM) libraries. DFC provides higher-level capabilities
such as virtual document management, XML content-management, and business objects.
Virtual documents combine component documents into a larger document. Virtual
document management is described in the chapter Virtual Documents (Chapter 14).

Standards-Based APIs
This layer also provides standards-based APIs, which include the following:

Java Database Connectivity (JDBC), Open Database Connectivity (ODBC),
and ActiveX Data Objects (ADO.NET): These APIs make a repository
appear as a database and make it accessible in the form of a
relational database.
Web-based Distributed Authoring and Versioning (WebDAV): WebDAV is
an extension of the HTTP protocol that enables web-based distributed access
to content. The Documentum platform includes a WebDAV server, which
provides access to a repository via the WebDAV protocol.
File Transfer Protocol (FTP): Documentum includes an FTP server that
enables content exchange with the repository using the FTP protocol.
File Share Services: These services make a Documentum repository look
like a network drive, enabling simpler access to the repository via
desktop applications.

•

•

•

•

Chapter 4

[55]

Web Services Framework: This framework provides application developers
with an environment for developing content-related components and for
making them available using web-based standards such as WSDL, SOAP,
and XML.

Web Services Description Language (WSDL) is a standard
for describing a web service in XML, which is used by client
applications to utilize the web service.
Simple Object Access Protocol (SOAP) is a standard for
exchanging XML-based messages over computer networks,
usually using HTTP.

The web services components enable other systems to interact with
Documentum over the Web. A web service is easily accessible to client
applications running on diverse platforms. For example, a client application
running on .NET can easily interact with a web service without the need for
a .NET to Java Bridge.

Business Object Framework
Business Object Framework (BOF) is a structured environment for developing
content applications. BOF enables developers to create reusable components that can
be shared by multiple applications.

Documentum supports two types of business objects:

1. Type-based Business Object (TBO): TBOs are the most common types of
business objects. They are tightly linked to an existing or custom object type.
New methods (custom business logic) can be added to such a type via a
TBO. For example, business objects representing a customer, partner, or an
agreement are all suitable to be implemented as TBOs.

2. Service-based Business Object (SBO): An SBO implements logic of
procedures that are not specific to an object type. In fact, an SBO typically
interacts with objects of multiple types in order to accomplish its function.
Another way to think about SBOs is that they provide global or common
services to multiple object types in a repository.

For example, the Documentum Inbox service is an SBO and is not tied to
a particular type of object. Any SBO can easily be made available as a web
service as well.

•

°

°

www.allitebooks.com

http://www.allitebooks.org

Architecture

[56]

Other Components
The Component and Development Layer includes WDK, desktop components, and
portlets in addition to the components we have already discussed. Let's have a look:

Web Development Kit (WDK) is a library of components as well as a
framework for developing J2EE web applications on the Documentum
platform. The WDK components provide basic web application functionality
for interacting with content and allow custom applications to be built on
top of it. The custom applications are able to add to and alter the behavior
provided by WDK.
The Documentum web application products such as Webtop, Documentum
Administrator (DA), Web Publisher (WP), Digital Asset Manager (DAM),
Records Manager, Documentum Compliance Manager (DCM), etc. are also
built on the WDK framework.
Desktop components provide a base library and framework for developing
desktop applications for Documentum.
Portlets are pluggable user interface components that are managed and
displayed in a web portal. Portlets enable Documentum applications to be
presented within a portal user interface.

Application Layer
The Component and Development Layer builds the bridge to the content
services layer for applications that are part of the Application Layer. It is the
Application Layer that makes the platform available to human users. The
application layer essentially opens up the platform for any type of use that can
utilize content-management capabilities. The Applications in this Layer can be
categorized into web-based applications, desktop applications, portal applications,
and enterprise applications.

Some such existing applications are described in the next section, while more custom
applications can be created using the capabilities made available by the Component
and Development Layer.

Webtop is the essential web application for interacting with a repository. Webtop
is a WDK application and is built on top of the WDK components. Documentum
Administrator is very similar to Webtop but provides additional administrative
capabilities for managing repositories.

•

•

•

Chapter 4

[57]

Digital Asset Manager (DAM) is another WDK application with specific capabilities
for managing digital media such as presentations, brochures, marketing
communications, etc. Web Publisher (WP) is a WDK application for managing
web content with Documentum. It provides a model and framework for managing
content with appropriate user roles and an interface that can hide technical details
from content creators, reviewers, and approvers. Records Manager is a WDK
application with specific focus on content that needs to be managed as records.

Documentum eRoom is a web-based collaboration application, which can operate
independently of the Documentum platform. However, it can also utilize the
platform for underlying document-management capabilities. Each eRoom in the
application provides a collaborative workspace for a team, where tools such as
document sharing, common calendars, polls, and discussion threads are available.
The default Documentum eRoom interface is available through a web browser and
an optional client plugin enhances its user interface.

Documentum Desktop is the basic desktop interface to the repository and it is built
on top of the desktop components in the Component and Development Layer.

Integration Services
Documentum offers options in all layers for integration with other systems providing
the flexibility and granularity needed to meet business and technical requirements.
Integration Services span the four layers and do not constitute a separate layer. The
layers are as follows:

1. The Application Layer has access to the full range of capabilities offered
by the Component and Development Layer. There are several dedicated
Documentum integrations available for popular enterprise applications such
as SAP and Siebel. Custom integrations can also be developed using WDK or
DFC components.
For example, a loan management financial application can utilize the
document management capabilities of the Documentum platform. A custom
integration can create an interface suitable for the financial application and
utilize DFC to interact with the repository. Once this integration is in place,
the financial application can create, update, retrieve, and delete documents
with appropriate metadata within a Documentum repository.

www.allitebooks.com

http://www.allitebooks.org

Architecture

[58]

2. The Component and Development Layer provides integration options via
FTP, WebDAV, JDBC, ODBC, ADO.NET, and the Web Services Framework.
These options provide different ways to make content services and
repository available to other systems via standards-based APIs.

3. The Content Services Layer provides the following services:
File Share Services: File Share Services make a repository
available as a file share.
Business Process Services (BPS): BPS facilitates integration
with Workflows and offers enhanced features such as
integration with JMS, SMTP, etc.
Directory Integration Services: Directory Integration Services
facilitate integration with user directories for utilizing
common infrastructure for implementing security within
Documentum.

4. The Repository Layer provides integration options through Content Storage
Services. These services open up the options available for implementing
varied storage features for persisting and sharing content and metadata.
Content Storage Services add a storage policy engine to the repository to
automate storage allocation and migration based on policies.

For example, frequently accessed content can be stored in a high-performance
storage environment while rarely accessed content can be migrated to a more
economical storage environment.

Communication Patterns
Operation of the Documentum platform involves basic communication patterns,
which are repeated over and over. In order to understand these patterns, it is
important to first identify the components that participate in such communication.

°

°

°

Chapter 4

[59]

Key Components
The following figure shows the key components involved in communication with
Content Server:

Connection
Broker

Content
Server

Repository

Client

DFC

dmcl.ini

DFC

DMCLDMCL

2400_04_03We are already familiar with the Content Server—it manages the repository. Any
content management communication ultimately needs to reach it.

Documentum Client Library (DMCL) is a low-level API that exposes full Content
Server functionality. DMCL supports Remote Procedure Call (RPC) capability,
enabling clients to connect to the Content Server without dealing with network
details. Even though direct access to DMCL is available, it is not recommended
for clients to directly interact with DMCL. Rather DFC wraps around DMCL and
exposes a higher-level API for the clients to use.

DFC is implemented in Java and it also provides a Java-COM Bridge for access from
Visual Basic or Visual C++. It also provides a Primary Interop Assembly (PIA)
that supports access from the .NET platform. Every Documentum client uses an
instance of DFC running locally within a Java Virtual Machine (JVM). DFC also has
server-side logic, hence runs a copy on the Content Server as well.

A client is any application or component that connects to the Content Server.

www.allitebooks.com

http://www.allitebooks.org

Architecture

[60]

A Connection Broker (formerly known as DocBroker) is Documentum's name server
or registry and it provides information and status of Content Servers to clients.
When a Content Server is started, it announces its status to the connection broker(s)
it is configured to project to. The connection broker records this status of the
Content Server.

Each Content Server client that installs the DFC runtime has a local file named
dmcl.ini. This file contains the name and port of a connection broker. Optionally,
it can contain information about additional (also known as secondary)
connection brokers.

Fundamental Communication Pattern
The fundamental communication pattern with a Content Server is illustrated in the
following figure, where the arrows indicate the flow of data:

Connection
Broker

Content
Server RepositoryDFC

dmcl.ini

DMCL
DMCL

2400_04_04

Client
3

4

510

6

9

1

7

8

2

DFC

The different stages in the flow of data are as follows:

1. The first piece of communication takes place when a Content Server starts
up. It informs the configured connection brokers about its status. This
communication from a Content Server to a connection broker is called
projection. This communication is initiated by the Content Server and does
not involve a client.

2. When a client needs to connect to this Content Server, it reads dmcl.ini for
the name and port of a connection broker. The client can contact multiple
connection brokers.

Chapter 4

[61]

3. The client requests the connection broker to give information about the
Content Server.

4. The connection broker sends information about the Content Server instances.

Note that this interaction is not explicit in the sense that the client doesn't have
to perform each of these steps individually and explicitly. Actually, these steps
are typically performed by DFC functionality while the client just invokes the
appropriate higher-level interface for this purpose.

5. The client now sends this information to the Documentum Foundation Class
(DFC), which has Documentum Client Library (DMCL) linked to it. DMCL
can perform network communication using the RPC capability.

6. This client-side DFC communicates with the DFC on the Content Server side.
A request is sent to the Content Server via DMCL.

7. Once the Content Server receives the request made by the client, it processes
it and interacts with the repository by sending a request. This request may
involve interaction with the database and the file stores that constitute
the repository.

8. The repository responds to the request by providing the required
information to the Content Server.

9. The DFC on the Content Server side passes this information to the client-side
DFC. This communication takes place with the help of DMCL.

10. Once the processing is completed, client-side DFC returns the results to
the client.

The client can continue to interact with the same Content Server, without returning
to the connection broker again.

Once the session ends or a new Content Server needs to be contacted, the pattern
starts from the beginning.

WDK Application Communication Pattern
WDK is a library and framework for developing J2EE web applications for
Documentum. A WDK application runs in a J2EE-compliant application server (more
specifically, a servlet engine). A WDK application is organized into components where
each component consists of the following:

1. Component XML configuration
2. Pages that are part of the component presentation
3. Java classes encoding the behavior of the component
4. Resource bundles for localization

www.allitebooks.com

http://www.allitebooks.org

Architecture

[62]

A WDK application is also organized in layers and each layer has a directory (folder)
of its own on the file system. The foundation layers of WDK applications are wdk and
webcomponent on top of that.

For example, Webtop has the following layers (in order):

1. wdk: The wdk layer provides the base WDK framework layer.
2. webcomponent: The webcomponent layer provides components for the core

web interface.
3. webtop: The webtop layer provides interface and behavior specific to the

Webtop application.
4. custom: The WDK framework is designed to be extended and customized

and the custom layer is provided specifically for this purpose.

A separate layer for customization prevents upgrades from overwriting the
custom code. It also keeps most of the customization code together under one
folder. The customization model supports small and selective customization,
as well as large scale behavior and user interface changes.

A user usually interacts with a WDK application through a browser. In this case,
the browser is not a client of the Content Server, since it is communicating with the
application server. It is the WDK components on the application server that are the
clients for the Content Server. The communication between the WDK components
and the Content Server follows the same fundamental pattern. Indeed, there is
dmcl.ini on the application server while there need not be any on the computer
running the browser.

In summary, the browser client may interact with the WDK application in any
pattern but the WDK components interact with the Content Server in the same
fundamental pattern as described earlier.

Documentum Product Notes
The interaction of Content Server with a repository deserves some attention. One
Content Server serves one repository but multiple Content Server instances can
also serve the same repository. This is usually done for performance reasons (load
balancing) where the expected number of concurrent requests to one instance may
cause it to become overloaded.

Multiple Content Server instances may also be used for high availability (failover)
where failure of one Content Server instance doesn't make the repository unavailable
since the other instance(s) can serve the repository.

Chapter 4

[63]

The Content Server is supported by Method Servers, which can execute methods.
In this context, a method is a piece of code that can be scheduled to run as a job or
can be invoked from a workflow activity or a lifecycle action. Let's see the following
Method Servers:

Dmbasic Method Server: This executes methods written in Docbasic.
Docbasic is a programming language, somewhat similar to Visual Basic,
supported by Documentum. A Docbasic program can access the Content
Server functionality via API calls.
Java Method Server: This executes methods written in Java. However, these
methods are not literally the methods on a Java class. A Documentum Java
Method is a class that implements a specific interface in order to be accepted
as a Documentum Java Method. The Java Method Server is just a J2EE
application server (currently Apache Tomcat) that hosts the web applications
responsible for executing Documentum Java methods.

The Content Server is supported by an optional Index Server that can perform
full-text indexing on the content stored in the repository. Full-text indexing a
document means that the contents of the document are analyzed and the results of
the analysis are stored as indexes. The full-text indexes make it possible to search for
documents based on the contents of the documents. The Index Server also indexes
metadata attributes.

Index Agents coordinate the interaction between Content Server and Index Server.

By default, the Documentum platform embeds the FAST Index Server as the Index
Server. However, the search capability is modular and alternative choices are
possible. For example, an open-source search engine, Lucene, is used in the new
Documentum Content Server OEM edition that can be embedded by other vendors
in their applications.

Checkpoint
At this point you should be able to answer the following key questions:

1. What are the four layers of Documentum architecture? What are their roles?
What are the key components of each layer?

2. What is the fundamental communication pattern for interacting with the
Content Server? How is it different from interaction with a WDK application?

•

•

www.allitebooks.com

http://www.allitebooks.org

Architecture

[64]

Test Your Understanding
1. The layers of Documentum architecture map one-to-one on the tiers of

application architecture (True/False).
2. The following layers are part of the Documentum platform layers:

a. Application layer
b. Connection layer
c. Content Services layer
d. Repository layer

3. The following product provides the ability to search for words inside
document contents:

a. Java Method Server
b. Content Server
c. Index Server
d. Content Intelligence Services

4. BOF is a part of DMCL (True/False).
5. DFC is written in Java but it can be accessed from the .NET platform using:

a. Java-COM Bridge
b. Primary Interop Assembly
c. Connection Broker
d. DMCL

6. Which of the following is true:
a. Content Server projects to connection broker
b. Connection broker projects to repository
c. Repository projects to Content Server
d. Repository projects to connection broker

7. A client finds out about available connection brokers using:
a. server.ini

b. client.ini

c. dmcl.ini

d. dmconnbroker.ini

Chapter 4

[65]

8. The following component performs the network communication when
communicating with the Content Server:

a. DFC
b. BOF
c. DMCL
d. WDK

9. When using a WDK application, the Content Server client is:
a. Browser
b. WDK component
c. JSP
d. Servlet

10. The default name of the customization layer in WDK applications is:
a. wdk
b. customwdk
c. customcomponent
d. custom

www.allitebooks.com

http://www.allitebooks.org

Part 2
Security

Users and Privileges

Groups and Roles

Object Security

www.allitebooks.com

http://www.allitebooks.org

Users and Privileges
In this chapter, we will explore the following concepts:

A high-level view of Documentum security
Users and authentication
User authorization including privileges and client capabilities
User management

Documentum Security
At a high level, the security model in Documentum is similar to that used in
contemporary enterprise applications. There are resources (information, objects)
that need to be secured, there are operations that can be performed on the resources,
and there are users who wish to perform these operations. The security configuration
defines what is allowed for various combinations of users, operations, and resources.
At run time, a user attempts to perform an operation and the components of the
Documentum architecture resolve rules for the specific user, operation, and resource
combination to allow or disallow the attempted operation.

At a detailed level, security implementation is very specific to the Documentum
architecture. This is the first chapter on Documentum security and introduces the
concept of users and security aspects that are tied to users.

Security, in general, involves two parts—authentication and authorization.
While authorization deals with what a user is allowed to do, the first step is to
identify the user reliably. Therefore, first the user identity is authenticated and then
each attempted operation by this user is checked against the authorization rules
configured for this user.

•

•

•

•

www.allitebooks.com

http://www.allitebooks.org

Users and Privileges

[70]

Just like everything else, security configuration is also stored in the repository
as objects and properties on objects. Various components of the Documentum
architecture enforce the configured security rules. In some cases, it may be possible
to use external (non-Documentum) components to assist with security enforcement.
For example, an LDAP server or a product such as eTrust SiteMinder can participate
in the user authentication process. This is an important feature since Documentum is
just one component of enterprise infrastructure and its ability to integrate with other
components facilitates the overall management and deployment of infrastructure.

The following figure illustrates the security components specific to users. We will
see later that permissions are tied to objects and form the core of object security.
Permissions indicate what can be done to an object by different users. On the other
hand, restrictions can be placed on users, irrespective of the specific objects that
they may want to interact with. Privileges are tied to users and are enforced by
the Content Server. Client capabilities are also tied to users but they are optionally
enforced by Documentum client applications. Both privileges and client capabilities
are attached to the user representation and stored within the repository.

There are two important objects in a Documentum repository that store configuration
information influencing various aspects of the Documentum platform:

Repository configuration (type dm_docbase_config): A repository
configuration object contains configuration information about a repository.
Each repository must have a single repository configuration object whose
object name matches the name of the repository. It provides configuration
information related to security, default user for running lifecycle actions, and
other repository-specific aspects.

•

Chapter 5

[71]

Content Server configuration (type dm_server_config): A server
configuration object contains information that a Content Server uses to define
its operation and operating environment, such as the number of allowed
concurrent sessions, maximum cache sizes, the storage area locations, and the
locations of executables that the server calls. There is one server configuration
object per instance of Content Server serving a repository.

These objects and their relevant properties will be discussed at various points in the
rest of the book.

Users
The term user is typically used in one of two ways—a human interacting with a
system or the representation of identity within the system. The representation of
identity within the system may or may not correspond to a real human user. Such
accounts are typically referred to as generic, system, or application accounts. A user is
represented as an object of type dm_user within the repository.

Authentication
Typically, a user logs into an application to authenticate the claimed identity. For
example, WDK applications such as Webtop and Web Publisher challenge a user
with a login screen for authentication. The user selects the repository to be accessed
and presents an identity as a login/password combination. The information
identifying a user for the purpose of authentication is called credentials.

Once the credentials are submitted, the Content Server verifies these credentials
using one or more of the following ways:

1. OS (Operating System) account: This is the default authentication
mechanism. The Content Server uses an internal program to match the
credentials against the OS accounts. It is also possible to use a custom
program to perform authentication against the OS. In this mechanism, the
password is not stored in the repository.
On UNIX systems, Content Server uses the dm_check_password program
for OS authentication. EMC also provides the source code for this program,
which can be customized to meet any specific authentication requirements.

2. LDAP (Lightweight Directory Access Protocol) server entry: The Content
Server contacts an LDAP server to authenticate the credentials against an
entry present in the LDAP server. LDAP is a technology used for security
implementations such as central authentication and authorization.

•

www.allitebooks.com

http://www.allitebooks.org

Users and Privileges

[72]

3. In-line password: The Content Server matches the provided password
against a password stored in the repository. The dm_user object has
a property named user_password for storing in-line passwords. The
appropriate dm_user object is identified by the login (and potentially
domain) and the password is compared against the user_password
property of that object.

4. Authentication plug-in: An authentication plug-in may be used, which takes
over the responsibility of authentication. This mechanism provides freedom
to use external authentication sources such as eTrust SiteMinder and RSA
Access Manager.

The following figure illustrates these various sources against which the Content
Server may authenticate a user:

By default, the Content Server runs in no-domain-required mode,
which is indicated by a blank in the auth_protocol property of
dm_docbase_config (the repository configuration object). In this case,
users don't need to specify a domain and usernames must be unique in
the repository.
On the other hand, if the Content Server is running in domain-required
mode, the auth_protocol property is set to domain-required. In
this case, multiple users can have the same name as long as they have
different domains. Further, users are required to specify a domain name
for authentication.

Chapter 5

[73]

The Content Server determines the method of authentication based on the
user_source property of the dm_user object. The values of this property and
their implications are as follows:

User Source Implication
LDAP Authentication through an LDAP server. This requires at least

one LDAP config (dm_ldap_config) object to be present in the
repository. Documentum supports several LDAP sources such as
iPlanet Directory Server, Oracle Internet Directory, and Microsoft
Active Directory.

unix only Authentication using UNIX.
domain only Authentication against Windows domain.
unix first Authentication against UNIX first; if that fails, authentication against

Windows domain.
domain first Authentication against Windows domain first; if that fails,

authentication against UNIX.
inline
password

Authentication against the password stored in user_password on
the dm_user object.

plug-in identifier Authentication with the plug-in identified by the identifier (such as
dm_netegrity, which represents eTrust SiteMinder authentication
plug-in).

An LDAP configuration object (type dm_ldap config) stores
configuration for the Content Server to use for interacting with an LDAP
server. For example, it contains the host name and port number of the
LDAP server, information about the structure of the directory tree, and
credentials for connecting to the LDAP server.
There can be multiple LDAP configuration objects in a repository but one
Content Server uses only one LDAP configuration object (identified by
dm_server_config.ldap_config_id) at any given time.
An LDAP configuration object can be created through Documentum
Administrator or through DQL. Creation and modification of an LDAP
configuration object requires Superuser privileges. Privileges are
discussed later in this chapter.

www.allitebooks.com

http://www.allitebooks.org

Users and Privileges

[74]

Special Users
There are two special users in a repository. They are as follows:

Installation owner: Installation owner is the OS account that was used for
installing the Content Server.
Repository owner: The repository owner is the database owner (DBO) of the
underlying database for the repository.

Both of these users automatically get Superuser privilege in the repository. Privileges
are discussed later in this chapter.

Authorization
Recall that authorization pertains to controlling access to functionality. User-specific
authorization can be enforced by the client applications as well as the Content
Server. Client applications utilize a user's client capability to enforce access control
for functionality within the client application. They can also utilize roles to manage
access to functionality within the applications. Roles are discussed in Groups and
Roles (Chapter 6).

On the other hand, Content Server utilizes basic and extended privileges to enforce
access control. As we will see in later chapters, Content Server also enforces object
security in addition to these privileges.

Client Capability
The client_capability property of dm_user stores the client capability level. This
information is available for all users, but it is up to the client applications to utilize
this information for enforcing additional access control.

Documentum's client applications such as Webtop and Desktop assign specific
meanings to these capabilities. These capabilities are hierarchical in the sense that
one level can also imply another level. There are four levels of client capability:

1. Consumer: Consumer can search, view, and copy documents and forward
tasks in workflows. This is the default capability.

2. Coordinator: The coordinator capability includes consumer capability.
In addition, a coordinator can create cabinets, workflows, and virtual
documents and can view hidden objects.

•

•

Chapter 5

[75]

3. Contributor: The contributor capability includes coordinator capability. In
addition, a contributor can create documents and folders, modify regular
documents and virtual documents (including checkin and checkout), and
delete documents.

4. System Administrator: The system administrator capability includes the
contributor capability. In addition, a system administrator can manage
Content Server, repository, and users and groups.

Note that client capabilities only allow what a user can attempt to do
within a client application. These attempts are further subject to the
Content Server scrutiny using privileges and object permissions. For
example, suppose that a user has coordinator client capability but no
privilege for creating a cabinet. In this case, the user will not be able to
create a cabinet.

Basic Privileges
While client capabilities may be enforced by a client application, privileges
are enforced by the Content Server. A user's basic privileges are set in the
user_privileges property of dm_user. These privileges are enforced by the
Content Server irrespective of the client application involved.

Basic privileges are represented as integer values as follows:

Privilege Value Description
None 0 None of the basic privileges. This is the default value.
Create Type 1 Can create custom object type.
Create Cabinet 2 Can create, modify, and delete cabinets.
Create Group 4 Can create, modify, and delete groups.
Sysadmin 8 Can perform basic administration tasks.
Superuser 16 Can perform all administration tasks.

Unlike client capability, privileges are not hierarchical and each privilege needs to
be specified explicitly. Multiple basic privilege values can be combined by adding
the corresponding integer values. Thus, if we want to grant Create Type and Create
Cabinet privileges to a user, the user_privileges property needs to be set to
3 (=1+2).

www.allitebooks.com

http://www.allitebooks.org

Users and Privileges

[76]

While the first four privilege values are straightforward, Sysadmin and Superuser
privileges need some elaboration. A user with Sysadmin privilege has
following features:

1. It has lower privileges as well (Create Type, Create Cabinet, Create Group).
2. It can activate/deactivate a user.
3. It can manipulate users and groups.
4. It can grant and revoke the lower privileges to other users.
5. It can create or modify system-level permission sets.
6. It can administer full-text indexing and repository.
7. It can manage lifecycles.
8. It can manipulate workflows.

On the other hand, a user with Superuser privilege has the following features:

1. It has Sysadmin privileges as well.
2. It can grant and revoke Sysadmin and Superuser privileges.
3. It can delete system-level permission sets.
4. It can become owner of all objects in the repository.
5. It can unlock checked out documents.
6. It can manipulate others' custom types.
7. It can manipulate others' permission sets.
8. It can register and unregister others' tables.

Extended Privileges
Each user also gets extended privileges, which pertain to audit trails. Auditing is a
very important feature of the Documentum platform since it enables tracking
of different types of events, which can be used later for diagnostic or research
purposes. Each occurrence of an audited event is recorded as one object of the type
dm_audittrail. Note that only the events configured to be audited generate audit
trail entries.

Chapter 5

[77]

A user normally does not get any privileges related to audit trails. The extended
privileges are set in the user_xprivileges property of dm_user and can be a
combination of one or more of the following:

Ext Privilege Value Description
None 0 No audit privileges. This is the default value.
Config Audit 8 Can configure auditing.
Purge Audit 16 Can remove audit trail entries.
View Audit 32 Can view audit trail entries.

Extended privileges are also combined by adding the corresponding integer values.
For example, granting View Audit and Purge Audit results in the value 48 (=16+32).

User Management
As mentioned earlier, a user is stored in the repository as an object of type
dm_user. No user can be authenticated against a repository without the presence
of the corresponding dm_user object. Some important properties of dm_user are
described below:

Property Label Description
user_state State Active or Inactive; only active users can

connect to the Content Server.
0 means that the user can log in.
1 means that the user cannot log in.
2 means that the user is locked.
3 means that the user is locked and inactive.

user_name Name Display name.
user_login_name User Login

Name
Login ID or user account. This is the name
used for authenticating the user.

user_login_domain User Login
Domain

Windows domain or LDAP config name.

user_source User Source As described earlier.
description Description Any free-form information about the user.
user_address E-mail Address User's email address.
user_os_name User OS Name User's OS name, if any. This property is

useful when the user source is OS.

www.allitebooks.com

http://www.allitebooks.org

Users and Privileges

[78]

Property Label Description
user_os_domain Windows

Domain Name
Windows domain of the user.

home_docbase Home
Repository

Default repository for the user, useful when
a user is a member of multiple repositories.
Prior to Documentum release 5.3, repository
was known as Docbase.

restricted_folder_
ids

Restrict Folder
Access To

This property is used to restrict access to
only a certain set of locations (cabinets or
folders) within the repository. Note that
when a folder is included, its subfolders are
implicitly included in the set.

default_folder Default Folder Default folder for objects created by
this user.

user_db_name DB Name User's name in the underlying database.
user_privileges Privileges As described earlier.
user_xprivileges Extended

Privileges
As described earlier.

client_capability Client
Capability

As described earlier.

workflow_disabled Workflow
Disabled

This property can be used to prevent a user
from participating in workflows.

failed_auth_
attempt

Turn off
authentication
failure checking

Setting this property to -1, disables the
counting of unsuccessful authentication
attempts. If not disabled, this property is
reset to 0 on a successful login.

User management involves creation and modification of dm_user objects. Sysadmin
or Superuser privilege is required for creating a user in the repository. If the client
application enforces client capabilities, then system administrator client capability
is also required for this purpose. User administration also involves managing group
memberships for users, which is discussed in Groups and Roles (Chapter 6).

Note that even though user_source identifies where a user is
authenticated, the existence of the user at that source is not a prerequisite
for the creation of the user in the repository.
For example, a user may be created in the repository with the default
authentication set to OS, even though the user account does not exist on
the OS. The user will be created in the repository although authentication
attempts by such a user will fail until the corresponding user has been
created at the specified source.

Chapter 5

[79]

The users in a Documentum repository can be created in several ways:

1. The easiest way to create individual users is through Documentum
Administrator. The web-based interface provides friendly ways to specify
values for various user properties. For example, repository locations can
be browsed and suitable values for user sources can be selected from a
drop-down interface.

2. If the enterprise infrastructure already has an LDAP user directory, users
can be created in the repository by using the LDAP directory as the user
source. An LDAP Sync job is available that can read user information from
the LDAP directory to create the corresponding user objects in the repository
automatically.

3. When users need to be created frequently or if the user information is
available from sources other than an LDAP directory, user creation can be
scripted using DQL or API.

4. Custom application interfaces can be created using DFC and WDK for user
administration tasks. This approach can also be used for importing user
information from external sources of such information.

User information can be modified as well using the above mechanisms.

Help—Some DQL Queries
Here are some helpful queries related to users. These queries are based on the
information presented in this chapter.

The following query retrieves some basic information about a user with login
name jdoe:

SELECT user_name, user_login_name, user_address, description,
 home_docbase, user_state
FROM dm_user
WHERE user_login_name = 'jdoe'

The following queries set up a new user named Jane Doe. The first query creates the
user object. The second query creates a folder in the repository and the third one sets
this new folder as the home folder for the new user.

CREATE dm_user OBJECT
 SET user_name = 'Jane Doe',
 SET user_login_name = 'jdoe',
 SET user_address = 'jdoe@doquent.com',
 SET user_group_name = 'docu',
 SET user_source = 'inline password',

www.allitebooks.com

http://www.allitebooks.org

Users and Privileges

[80]

 SET user_privileges = 2,
 SET client_capability = 4

CREATE dm_folder OBJECT
 SET object_name = 'jdoe',
 SET owner_name = 'Jane Doe'
 LINK '/Home'

UPDATE dm_user OBJECT
 SET default_folder = '/Home/jdoe'
 WHERE user_login_name = 'jdoe'

The following query lists the inactive users in the repository:

SELECT user_name, user_login_name
FROM dm_user
WHERE user_state = 1
 OR user_state = 3

The following query lists the privileges for the same user. Recall that both the basic
and extended privileges are stored as numbers that are sums of the component
privileges. For example, a privilege value 6 (= 2 + 4) implies Create Cabinet and
Create Group privileges.

SELECT user_name, user_privileges, user_xprivileges
FROM dm_user
WHERE user_login_name = 'jdoe'

The following query lists the LDAP configuration objects present in the repository:

SELECT object_name
FROM dm_ldap_config

Documentum Product Notes
User administration is typically done through Documentum Administrator.
Repetitive or batch user administration activities can be scripted using DQL or API.

Chapter 5

[81]

Checkpoint
At this point you should be able to answer the following key questions:

1. What is user authentication? What are the different ways in which
Documentum supports authentication?

2. What is authorization? What are the different ways in which Documentum
supports authorization specifically for a user?

3. What is the difference between privileges and client capabilities?
4. What are the different ways for creating and managing users?

Test Your Understanding
1. Authentication and authorization are one and the same (True/False).
2. For every user with OS as user source, dm_check_password is used for

authentication (True/False).
3. In the following user sources, the user account must exist in the source before

the corresponding user can be created in the repository:
a. Windows OS
b. UNIX OS
c. LDAP
d. None of the above

4. The database owner for the repository database is called the installation
owner (True/False).

5. The client capabilities are always enforced by client applications
(True/False).

6. One of the basic privileges allows document creation (True/False).
7. Create Cabinet implies Create Type privilege (True/False).
8. Superuser implies Sysadmin privilege (True/False).
9. A user cannot create another user unless the logged-in user has system

administrator client capability (True/False).
10. In order to prevent a user from authenticating against the repository, the user

can be deactivated (True/False).

www.allitebooks.com

http://www.allitebooks.org

Groups and Roles
In this chapter, we will explore the following concepts:

Groups
Roles and Domains
Group management

Authorization
In the last chapter, we introduced the concepts of authentication and authorization.
For correct authentication each user must be identified uniquely. However, it is very
common that multiple users play the same business role in an organization and need
similar levels of access. If access is granted to each user separately, it may become
difficult to manage the access control due to the following reasons:

1. There are a large number of users and/or resources to be secured.
2. All the users with similar access levels need to be assigned new permissions.

For example, a department may have 100 employees, where all the users need
similar access levels to a set of documents. Configuring the same access repeatedly
for 100 users is inefficient. Further, if this access needs to be changed (or taken away)
for all of these users, it requires the same laborious process again.

•

•

•

www.allitebooks.com

http://www.allitebooks.org

Groups and Roles

[84]

Both of these scenarios lead to repeated work of the same kind that deserves to be
automated and simplified. A group provides this capability by representing a set of
users who need to be treated as equals from some perspective of authorization. Roles
and domains are special types of groups that can be used by client applications to
implement access control. In order to distinguish among groups, roles, and domains,
the following notation will be used:

Groups
A group is a set of members where a member can be a user or another group. Thus,
groups contained in other groups can provide implicit memberships. For example,
suppose a group Managers contains a user Sam and another group Executives as
members. Further, Executives contains John as a member. Implicitly, John is a
member of Managers as well. The following figure illustrates this example:

Chapter 6

[85]

Within the repository, a group is represented as an object of type dm_group. There
are three types of groups—group, role, and domain. A regular group is identified
by group_class = 'group'. The other types of groups are discussed later in
this chapter.

Some important properties of dm_group are described below:

Property Label Description
group_name Name Name of the group.
description Description Free-form description of the group.
is_private Is Private Indicates if the group is private or public;

T means private, F means public. Public
and private groups are discussed later in
the section Group Management.

group_address E-mail Address Email address for the group.
group_class Class The type of group—group, role,

or domain.
group_admin Administrator Name of user or group who can modify

this group.
owner_name Owner Name of user or group who owns

this group.
users_names Names of the directly contained users in

this group.
i_all_users_names List of all users in this group, and indirect

members via nested group membership.
groups_names Names of groups that are members of

this group.
i_supergroups_names Name of the group and all groups that

contain this group.
is_dynamic Dynamic Group Indicates if the group is dynamic; T means

dynamic, F means standard.
is_dynamic_default Treat users as

members

Treat users as
non-members

Determines whether the members of the
dynamic group are considered members
by default; T means members, F means
not members.

alias_set_id Alias Set Object ID of an alias set associated with
this group. Alias sets are discussed
in detail in the chapter Aliases
(Chapter 13).

www.allitebooks.com

http://www.allitebooks.org

Groups and Roles

[86]

A group can be a dynamic group if the members of the group can be changed when
the group is being used at run time. However, the membership changes cannot be
arbitrary. The dynamic behavior only allows the membership to be changed within
a set of pre-configured members. There are two additional options for dynamic
groups—consider members to be members by default or consider them to be non-
members by default. During run time, a client can programmatically add and remove
members from a dynamic group.

An example will help clarify these concepts. Suppose Sam, John, and Jane are
members of Managers, which is a dynamic group. Also the members are to be
considered non-members by default. When a client application checks membership
of Managers, it appears to be an empty group. The client application can then add
Sam, John, and Jane to Managers but no other user/group could be added. The
dynamic membership of the group only lasts for the user session. In a new session,
the same behavior repeats again.

Group Management
Group management involves creation, modification, and deletion of groups. The key
considerations around group management are as follows:

1. Who can create groups?
2. How can groups be created?
3. What are the constraints on group creation?
4. What is the default behavior on creation of a group?

The user account used for performing group management requires Create Group
privilege. The applications that enforce client capability (such as Documentum
Administrator) require System Administrator capability for such a user. Now let's
see the answers to our questions.

A group can be created in one of several ways—manually through an application
such as Documentum Administrator or Webtop, programmatically using DFC, or
by importing from an LDAP server. The LDAP Sync job, described in Users and
Privileges (Chapter 5), can import groups as well as users from an LDAP server. The
job connects to the LDAP server and retrieves users and groups according to the
information stored in the LDAP configuration object.

A group's name needs to be unique in the repository, unlike users who can share the
same name if they belong to different domains.

A group can be private or public. This property is available for client applications
to utilize for showing or hiding groups appropriately for different users. When
enforced, a public group is visible to all users and a private group only to the group

Chapter 6

[87]

owner and group administrator. Content Server does not use this property in any
special way. When a sysadmin or superuser creates a group, it is public by default;
otherwise, it is private by default.

Two special users (or groups) are associated with a group—group owner
(owner_name) and group administrator (group_admin). The group owner is a user
or group that owns this group. Group administrator is a user other than owner and
superuser who can modify this group. An owner or administrator for a group can
be assigned by a superuser only. When a group is created, the creator becomes the
group owner, by default. A group administrator is not assigned automatically.

Roles
As mentioned earlier, there are two special kinds of groups—roles and domains. This
difference is identified by the value of the group_class property. A role is a group
with the group_class property set to role.

Roles and domains are intended to enable access control within applications to a
more granular and specific level than what client capability provides. For example,
Webtop gives priority to roles over client capability. Further, custom roles can be
created and used in Webtop via customization. As with client capability, roles and
domains have meanings to client applications only and the Content Server does not
assign any special meaning to them.

Roles can form an inheritance hierarchy similar to an object-oriented inheritance
hierarchy. When a role is added to another role, the member role is called a sub-role
or derived role. The containing role is called the parent role or the base role. The
sub-role is said to inherit from the parent role. This relationship is similar to the
group membership relationship described earlier. The following figure illustrates a
role hierarchy:

www.allitebooks.com

http://www.allitebooks.org

Groups and Roles

[88]

Domain
A group is identified as a domain when the value of the property group_class
is domain. The purpose of a domain is to identify all the roles that apply to an
application and, therefore, the members of a domain are roles. Once again, a domain
only has meaning for client applications and not for the Content Server. Usually, one
domain group is created per application. The client application only uses roles that
are members of its domain.

Help—Some DQL Queries
Some helpful queries related to groups are described in this section. These queries
are based on the information presented in this chapter.

The following query retrieves information about a group named interviewers:

SELECT group_name, group_address, owner_name, group_admin
FROM dm_group
WHERE group_name = 'interviewers'

The following query retrieves the names of the groups that a user named dmadmindev
is a member of, directly or indirectly (through nested group memberships):

SELECT group_name
FROM dm_group
WHERE ANY i_all_users_names = 'dmadmindev'

The following query retrieves the names of the users and groups that are direct
members of a group named admingroup:

SELECT users_names, groups_names
FROM dm_group
WHERE group_name = 'admingroup'

The following query retrieves the names of all the roles present in the repository:

SELECT group_name
FROM dm_group
WHERE group_class = 'role'

Documentum Product Notes
Group administration is typically done through Documentum Administrator.
Repetitive or batch group administration activities can be scripted using DQL or API.
User and group administration also involves managing group memberships where
users and groups can be added to other groups or removed from them.

Chapter 6

[89]

Checkpoint
At this point you should be able to answer the following key questions:

1. What are groups? What purpose is served by groups?
2. What are dynamic groups?
3. What are roles and domains? What purpose do they serve?
4. What are the different ways of creating and managing groups?

Test Your Understanding
1. Which of the following statements are correct:

a. Every role is a group
b. Every group is a role
c.	Every domain is a group
d. Every role is a domain

2. Any user can be added to a dynamic group at run time programmatically
(True/False).

3. The Content Server gives preference to roles over client capability
(True/False).

4. If a user is a member of a role, it implies that this user is also a member of its
sub-roles (True/False).

5. The Content Server prevents private roles from being accessible to everyone
(True/False).

6. A group created by a user with only Create Group privilege can not become
public (True/False).

7. The following group property identifies the kind of group:
a. class

b. class_group

c. group_class

d.	 none of the above
8. The owner and administrator for a group are one and the same (True/False).
9. Two groups can have the same name in a repository as long as they are

different kinds of groups (True/False).
10. Typically, one domain group represents all the roles that will be used by an

application (True/False).

www.allitebooks.com

http://www.allitebooks.org

Object Security
In this chapter, we will explore the following concepts:

Basic and extended object permissions
Creation and assignment of permission sets
Object owner and superusers
Folder security

Security—A Recap
In previous chapters, we studied various features of Documentum security including
users, groups, roles, domains, authentication, client capabilities, and basic and
extended privileges. These aspects focus primarily on the identity of the user. The
other side of security concerns is the resource being accessed, i.e. an object. The
object security defines access restrictions applied at the object-level granularity.

This chapter introduces the concepts associated with object security and how these
concepts relate to other security parameters for specifying the overall access control
configuration for Documentum.

The object security applies to objects of type dm_sysobject or one of its subtypes.
All discussion in this chapter assumes the objects to be of this type unless
stated otherwise.

Object Permissions
Each object in the repository is associated with permission settings that grant specific
permissions to certain users and groups. These permissions are categorized into
basic and extended permissions.

•

•

•

•

www.allitebooks.com

http://www.allitebooks.org

Object Security

[92]

Basic Permissions
Basic permissions relate to accessing and manipulating an object's content and
metadata and include the following levels:

Level Value Description
NONE 1 No access is allowed.
BROWSE 2 View metadata (properties).
READ 3 View the associated content.
RELATE 4 Create relationships, such as between annotations and PDF files,

documents, and lifecycles. Documentum uses various types of
relationships to manage content effectively.

VERSION 5 Create new version.
WRITE 6 Modify without changing version (modify properties without

checkout or modify and check in as same version).
DELETE 7 Delete the object.

The basic permissions are hierarchical in nature implying that a particular
permission level includes all the lower permission levels as well. For example,
granting VERSION permission to a user will implicitly grant RELATE, READ, and
BROWSE permissions as well.

Extended Permissions
Extended permissions allow specific actions against objects and support alias
resolution, business rule enforcement, and ability to purge without being able to read
or modify content. As we will see later, the majority of the extended permissions are
useful for enforcing business rules using lifecycles. The extended permissions are
as described:

Level Description
Change Location Move the object from one folder to another.
Change Owner Change the owner of the object (the object owner is described later

in this chapter).
Change Permission Change the permission settings of the object (assigning the

permission set is described later in this chapter).
Run Procedure Execute a Docbasic procedure. A Docbasic procedure is one way

to execute code, which may be needed for a job, workflow, or an
operation in a lifecycle.

Change State Change an object's lifecycle state.
Extended Delete Only delete (separate from the basic DELETE permission and does

not imply any other permissions).

Chapter 7

[93]

Note that the extended permissions are independent of the basic permissions and
must be granted separately and individually (i.e. they are not hierarchical). These
permissions are also optional. It is possible to have an object with no extended
permission specified for it.

It is important to keep in mind that one type of security access may be restricted
by another. We have already seen that client capabilities and privileges may both
be required to perform certain actions. Similarly, an extended permission may be
insufficient on its own to perform the desired action and may also need additional
basic permissions due to the effect that the action has on the object. The following
table lists the dependencies of the extended permissions on the basic ones:

Extended Permission Additionally Required Basic Permissions
Change Location Moving from primary folder requires WRITE permission.

Moving from non-primary folder or linking only requires
BROWSE permission.
Copying requires READ permission.

Change Owner WRITE

Object owner and superuser are exempt from this requirement.
Change Permission NONE

Run Procedure NONE

Change State NONE

Extended Delete NONE

The primary folder for an object is the first folder it was linked to. If the
object is moved from this folder, the primary folder is the folder to which
the object was linked earliest among the currently linked folders. The
primary folder object ID is present in i_folder_id[0] property.

Special Users
There are two special types of users who implicitly get certain permissions—object
owners and users with Superuser privilege. Ordinary users (other than these two types)
must be granted specific permissions for them to be able to access the object in the
desired manner.

www.allitebooks.com

http://www.allitebooks.org

Object Security

[94]

Object Owner
Each object is associated with a user or group, which is referred to as its object
owner. The object owner is special as far as the particular object is concerned and
gets the following permissions on this object automatically:

1. READ permission
2. All extended permissions except Extended Delete

Usually, the object owner is assigned higher permissions through the applied
permission set. Permission sets are discussed later in this chapter.

Managing Object Ownership
An object can only have one specified owner (dm_sysobject.owner_name) at a time,
which can be a user or a group. By default, the user creating the object becomes the
owner of that object. Object ownership can be reassigned to another user or group.
If a group is made the object owner, each member of that group (direct or nested) is
treated as object owner.

We have already seen that changing ownership relates to the extended permission
Change Owner. Only a user satisfying at least one of the following requirements can
change object ownership:

1. Be the current object owner
2. Have the Superuser privilege
3. Have WRITE permission and Change Owner extended permission

If the new owner is a group, then the user performing the change is required to meet
one of the following conditions in addition to the conditions mentioned earlier:

1. Have the Superuser privilege
2. Be a member of the group that will become the new owner

Superuser Permissions
A user with Superuser privilege automatically gets certain permissions. A superuser
is treated like an owner for all objects in the Documentum repository. Thus, a
superuser gets the same permissions as those of the owner if no other permissions
have been granted explicitly.

Chapter 7

[95]

Permission Sets (ACLs)
So far we have seen the basic and extended permission levels. In order for the
permissions to be assigned to an accessor (user or group), they need to be
placed inside a permission set. A permission set (also known as ACL or Access
Control List) is simply a set of basic and extended permissions associated with
different accessors.

A permission set is stored as an object of type dm_acl. Permission sets are used for
controlling access only to the objects of type dm_sysobject (or any of its subtypes).
The valid operations on renditions are controlled by the permission set on the
primary object. Recall that renditions cannot be edited or checked out.

There are four categories of accessors that can be granted permissions in a
permission set—owner (dm_owner is the alias for owner), specific users, specific
groups, and world (dm_world is the alias for world). These categories are intended to
be able to resolve the permissions of any user who may attempt to access an object.
The object owner is special, as described earlier. The permissions specified for the
owner in the permission set can expand the permissions for the owner, but cannot
restrict them to fewer than what the owner is automatically entitled to. So, specifying
NONE basic permission for the owner will still let the owner BROWSE and READ
the object.

Specific users and groups can be granted basic and extended permissions. Any
user who is neither an owner nor included in the users and groups specified in the
permission set gets the permissions granted to world.

A permission set always contains specific permissions for owner and world and may
contain permissions for other accessors. A sample permission set is shown in the
following figure:

www.allitebooks.com

http://www.allitebooks.org

Object Security

[96]

Resolving Permissions
It is possible for a user to be granted different permissions within a permission set.
For example, a user may be the owner as well as a member of a group present in one
of the permissions. Every user is implicitly a member of world as well. When this
happens, the user gets all the different basic and extended permissions granted in
different ways. The following example illustrates this concept:

In this example, John gets permissions in four ways—as the owner of the object, as a
specific user, as a member of a specific group, and as an implicit member of World.
So what are his effective permissions? In the basic permissions, he gets DELETE,
VERSION, WRITE, and READ, which means that he gets DELETE since that implies the
other basic permissions. As an owner he gets all the extended permissions other than
Extended Delete, so that's what he keeps since Change State and Change Location
are already included.

Managing Permission Sets
A permission set is uniquely identified by a name (dm_acl.object_name) and an
owner name (dm_acl.owner_name). Of course, it can also be identified by its object
ID. The name of the permission set can be NULL, but the combination of name and
owner must be unique within the repository if it is not NULL.

Creating Permission Sets
Any user can create a permission set, though applications (such as Webtop) honoring
client capabilities would require System Administrator capability for this purpose.
Depending upon the nature of the creator, permission sets are categorized as system
permission sets or user permission sets.

Chapter 7

[97]

A system permission set is created and modified by a user with Sysadmin or
Superuser privileges. Such a permission set is owned by the repository owner
(dm_dbo) and is available to all the users of the repository.

A user permission set is created by any user without Sysadmin or Superuser
privileges. Such a permission set is owned by the creator and is available only to
the owner.

Some key properties of a permission set are described as follows:

Property Label Description
r_is_internal Is Internal T indicates that this is a custom permission

set (explained later in this chapter),
F indicates otherwise.

acl_class Class Regular (0) means private for the owner,
Public (3) means available to everyone.
The values 1 and 2 are used with permission
set templates, which are discussed in Aliases
(Chapter 13).

object_name Name Name of the permission set.
owner_name Owner Owner of the permission set.
r_accessor_name Repeating accessor names.
r_accessor_permit Repeating basic permissions.
r_accessor_xpermit Repeating extended permissions.

The r_accessor_* properties describe the individual permissions. These are
repeating properties and their values at the same index correspond to each other. For
example, r_accessor_name[3] = 'Joe', r_accessor_permit[3] = 4 means that
Joe is being assigned RELATE permission. Refer to the table under Basic Permissions,
discussed earlier in the chapter, for the numeric values of basic permissions.

Extended permissions have an additional aspect that multiple extended permissions
can be assigned to one accessor. The Content Server translates the multiple extended
permissions into a single internal integer code and this one integer value is stored
per accessor.

Assigning Permission Sets
Permission sets are reusable and one permission set can be assigned to multiple
objects. Each object sharing the same permission set grants the same permissions to
the same users, with the exception that the owner may be different for each of
these objects.

www.allitebooks.com

http://www.allitebooks.org

Object Security

[98]

When an object of type dm_sysobject (or one of its subtypes) is created, the
Content Server automatically assigns it a permission set according to certain rules.
A permission set is assigned to an object by setting dm_sysobject.acl_name =
dm_acl.object_name and dm_sysobject.acl_domain = dm_acl.owner_name
properties. Each Content Server instance has a default ACL configuration
(dm_server_config.default_acl), which specifies the rules for assigning a
permission set to a new object.

A server configuration object (dm_server_config) contains information that a
Content Server uses to define its operation and operating environment, such as the
number of allowed concurrent sessions, maximum cache sizes, or the default ACL
mode. The server configuration object is discussed in Users and Privileges (Chapter 5).

The rules for assigning a permission set to a new object are described below:

Default ACL Value Description
Folder 1 The primary folder's permission set (dm_folder.acl_name) is

assigned to the object.
Type 2 The permission set configured for the object's type

(dmi_type_info.acl_name) is assigned to the object.
User 3 The default permission set for the creator of the object

(dm_user.acl_name) is assigned to the object. This is the
default setting.

An object can have only one permission set assigned to it at any time, but it can be
reassigned a different permission set subject to any of the following conditions:

1. The user performing the reassignment is the object owner.
2. The user performing the reassignment has Superuser privilege.
3. The user performing the reassignment has Change Permission

extended permission.

Chapter 7

[99]

While the user and system permission sets are reusable, there are
ad hoc permission sets as well, which are called custom permission sets. A
custom permission set is created by the Content Server when permissions
assigned to an object are modified.
Essentially a custom permission set is intended for one-time use and
is not reusable. When the permissions for an object are modified,
the Content Server creates a new permission set with the resulting
permissions and assigns it to the object. The Content Server names the
custom permission sets starting with dm_45.
The Custom permission sets are also created when permission set
templates are used; this process is discussed in Aliases (Chapter 13).

Folders and Permission Sets
Just like other sysobjects, each folder (and cabinet) is also assigned a permission set.
This permission set is used for two purposes:

1. Controlling access to the folder object
2. Assigning to the objects that have this folder as their primary folder when the

server's default ACL mode is set to folder

A folder's permission set does not restrict access to the objects linked to it unless the
folder security is enabled for the repository.

The folder security can be used for securing folders by adding restrictions based
on links to the folders. When folder security is in use, object security is necessary,
but not sufficient for adding documents to or removing documents from a folder.
When folder security is enabled, a WRITE permission is required on the folder to
link (create, import, copy to) or unlink (move, delete) content within it. Appropriate
object permissions are still required for the operation to succeed. Other operations
can be performed on the content with the BROWSE permission on the folder.

Folder security is configured by setting dm_docbase_config.folder_security = 1.
By default, folder security is enabled and it can be changed by users with Superuser
or System Administrator privileges. Folder security can be configured using
Documentum Administrator, DQL/API scripts, or via DFC.

www.allitebooks.com

http://www.allitebooks.org

Object Security

[100]

Help—Some DQL Queries
Some helpful queries related to object security are described in this section. These
queries are based on the information presented in this chapter.

The following query retrieves basic permissions granted on a given object:

SELECT r_accessor_name, r_accessor_permit
FROM dm_acl
WHERE object_name =
 (SELECT acl_name
 FROM dm_document
 WHERE r_object_id = '0900006480000509')
AND owner_name =
 (SELECT acl_domain
 FROM dm_document
 WHERE r_object_id = '0900006480000509')

Note a few things in this query. DQL doesn't allow joins when retrieving repeating
properties (accessor name and permit)—this query achieves the same effect using
subqueries. Also note that both acl_name and acl_domain should be checked when
looking up the ACL for an object.

It is not straightforward to check extended permissions through queries since
they return an integer value that needs to be decoded. It is best to view extended
permissions through an application such as Webtop or Documentum Administrator.

The following query retrieves the ACL information for the type dm_document:

SELECT acl_name, acl_domain
FROM dmi_type_info
WHERE r_type_name = 'dm_document'

Note that this may be empty since it is optional for a type to have an associated ACL.

The following query retrieves the ACL information for a folder named Temp:

SELECT acl_name, acl_domain
FROM dm_folder
WHERE object_name = 'Temp'

The following query retrieves the ACL information for a user named dmadmindev:

SELECT acl_name, acl_domain
FROM dm_user
WHERE user_name = 'dmadmindev'

Chapter 7

[101]

Documentum Product Notes
The Administration node in Webtop or Documentum Administrator can be used
for creating and managing permission sets. The permissions tab on object properties
can be used for reassigning a permission set or for modifying permissions. System
Administrator client capability is needed for these operations.

Trusted Content Services (TCS) is an optional component of Documentum
architecture and requires a separate license to use with the Content Server. It
provides enhanced security features such as encrypted communication (SSL) and
storage, electronic signatures, and additional restrictions in addition to the usual
object security.

Checkpoint
At this point you should be able to answer the following key questions:

1. What is a permission set and how is it different from a permission?
2. What are basic permissions? What are extended permissions?
3. How is a permission set selected to be assigned to a new object?
4. What is a custom permission set? Who can create it and why is it needed?
5. How does folder security provide additional object security beyond the

permission sets?
6. What kind of security is provided by Trusted Content Services?

Test Your Understanding
1. A user with Extended Delete permission automatically gets WRITE

permission as well (True/False).
2. A permission set can contain multiple ACLs (True/False).
3. The VERSION permission implies the following permissions:

a. WRITE

b. READ

c. BROWSE

d. DELETE

4. The object owner automatically gets all the extended permissions
(True/False).

www.allitebooks.com

http://www.allitebooks.org

Object Security

[102]

5. A permission set created by a user without Sysadmin or Superuser privilege
is called a custom permission set (True/False).

6. The default ACL mode for the server is set to folder. A user creates an object
in folder A and then moves it to folder B. The final permission set on the
object is the same as:

a. The permission set of the user
b.	 The permission set of the type of the object
c.	 The permission set of the folder A
d.	 The permission set of the folder B

7. The same object from question 6 is now linked to folder C as well. The
permission set of the object:

a. Changes to the permission set of folder C
b.	Remains unchanged
c.	 Changes to the permission set of the owner
d.	Changes to the permission set of the type

8. Folder security can be used to control the following:
a.	 Who can link an object to a folder
b.	 Who can delete an object linked to a folder
c.	 Who can version an object linked to a folder
d.	 The default permission set for the objects created in the folder

9. Jane is the owner of an object. The permission set allows Extended Delete
for world. As a result, Jane has the following extended permissions:

a.	 Change location
b.	Change owner
c.	 Change state
d.	Extended delete

10. The ACL domain for a sysobject is the same as:

a.	 The name of the assigned ACL
b.	 The owner of the assigned ACL
c.	 The set of basic permissions in the assigned ACL
d.	 The set of extended permissions in the assigned ACL

Part 3
User Interface

Searching

www.allitebooks.com

http://www.allitebooks.org

Searching
In this chapter, we will explore the following concepts:

Simple and advanced searching with Webtop
Saving searches
Full-text indexing
Subscription

Locating Objects
The previous chapters showed how to create and modify objects in the repository.
We saw that various mechanisms could be used for this purpose including
programming and interactive scripts using IAPI or IDQL. However, the most
common mechanism of interacting with the repository remains applications,
particularly Webtop.

The same can be said about locating documents or, more generally, objects within
the repository. Webtop provides one of the easiest available interfaces for accessing
content within the repository. Typically, consumers of information are quite business
savvy and the alternatives to Webtop for searching documents are less desirable
to them.

There are two key ways of locating objects within the repository:

1. Navigating through the browser tree to a known path
2. Searching using the words that may be found within the metadata

or content

•

•

•

•

www.allitebooks.com

http://www.allitebooks.org

Searching

[106]

The navigation mechanism is used when the user knows (or can guess) where an
object is located within the folder hierarchy. This chapter is about locating objects
by searching for them without knowing where they may be linked within the folder
tree. Since Webtop is the most common way to perform these searches, this chapter
will focus on Webtop functionality related to searching. Further, only the classic
view of Webtop will be discussed and used for illustration.

Search Process
Webtop enables searching for objects in two ways and there are some nuances to
each approach that we will explore in this chapter. However, there is a common
underlying pattern to the search process either way.

Webtop allows the following sequence of steps for searching, though some of these
steps are optional (refer to the figure for a better understanding):

1. Specify the search criteria: The search criteria define the conditions that
an object has to satisfy to be a part of the results. Search criteria typically
include words being searched for in metadata or in content and additional
conditions (such as last modification date being later than a specified date)
on the metadata. The criteria may be explicitly specified by the user, may be
implicit, or could be retrieved from a previously saved search.

2. Submit the search request: The search request is submitted once all the
desired criteria have been specified.

Webtop passes on the search request to the Content Server where the search
is performed. Searching includes matching within content if full-text indexing
(described later in this chapter) is enabled in the deployment.

3. Receive results and interact with them: The Content Server always honors
the configured security and will not return objects for which the current user
has only NONE permission. Webtop receives the results and presents them to
the user in a paginated manner.

Chapter 8

[107]

The user can interact with the results by navigating through pages and can
perform operations on individual objects by selecting them.

4. Revise search: If the user feels that the search criteria need to be altered to get
better results, the search can be revised. Revising a search takes the user to
the advanced search screen with the current criteria populated on the form.
The user can alter the search criteria and can submit the request again.

5. Save search: Finally, if the user wishes to reuse the search criteria later, there
is an option to save the search. At a later time, the user can initiate step 1
from an existing saved search. The saved search can also be revised
or removed.

This interaction pattern remains the same, though there are some variations with
the two types of searches and the optional aspects. The rest of this chapter addresses
these variations and details.

Simple Search
Simple search is simple in terms of what the user has to do to perform the search.
There is just one field to specify the search words (criteria) and a button to submit the
search request. The biggest benefit of simple search is that the user just specifies the
search words and gets to the results quickly. This is how it looks on the screen:

Since version 5.3 of Documentum, objects in multiple repositories can be queried for
one search operation. For a simple search, all repositories designated as default are
searched. Multiple repositories can be set as default using preferences, as described
later in this chapter.

A search operation can query full-text indexes as well as object properties. Full-text
indexes capture information about the text contents of documents and enable
searching the content as well as the object properties. The full-text indexes are created
by the Index Server when it is present as a part of the Documentum installation.

The simple search request is processed in different ways depending on whether full-
text indexing has been enabled.

www.allitebooks.com

http://www.allitebooks.org

Searching

[108]

Search—without Full-Text Indexing
When full-text indexing is not enabled, simple search is truly simple. The searches
are case sensitive, meaning that the search words are matched exactly as specified.
Words separated by spaces are ANDed, meaning that if two words are specified both
must be present in the match. The search words are matched against the values of
the following properties: object_name, title, and subject.

Search—with Full-Text Indexing
Full-text indexing makes the simple search more powerful and a little bit more
complex. With full-text indexing, simple search behavior changes as follows:

1. The search is now case insensitive, meaning lower-case letters are considered
a match with upper-case letters as well.

2. The space-separated search words are ORed, meaning that if any word is
matched the target object is considered a match.

3. All searchable properties are compared for a match. A property is searchable
if is_searchable is set to 1 for this property in the data dictionary. The data
dictionary is discussed in Custom Types (Chapter 9).

4. The indexed content is also searched for matches for the search words.
5. The search words can include * as wildcard. A wildcard is a pattern that can

match anything. An * matches any text of any length. For example, te* will
match ten, test, and temporary as well.

Note that with or without full-text indexing, a phrase can be searched for
by enclosing it in double quotes, as in "out of the box".

Advanced Search
Advanced search provides full flexibility to the user for specifying the search criteria.
The user can reach the advanced search screen (shown in the following screenshot)
when initiating a new search or when revising the last executed search. The biggest
benefit of advanced search is that the user can be very specific about the search
criteria and is more likely to get relevant results, particularly when there is a large
number of potential matches for the search words.

Chapter 8

[109]

Advanced search enables the user to be very specific about the search criteria in the
following manner:

1. Additional areas can be specified to be included in the search besides default
repositories. Including additional areas may require re-authentication against
the new areas, if the authentication credentials have not been saved. Login
preferences can be used to cache login credentials to avoid re-authentication at
such times.

2. Specific locations—folder paths and cabinets can be used for the search rather
than searching the entire repository.

3. If EMC Documentum Enterprise Content Integration Services (ECIS) is
installed, external sources other than Documentum repositories can also be
included in the search (ECIS is described later in this chapter).

4. Date-based conditions can be included in search criteria. For example, search
all documents that were last modified after 2nd May, 2007.

www.allitebooks.com

http://www.allitebooks.org

Searching

[110]

5. The target object type can be specified for the search. For example, perform
the search only against objects of type my_report, where my_report is a
custom type.

6. The file size can be used in the criteria. For example, find all documents with
the content size larger than 2MB.

7. Hidden objects can be included in searches.
8. All versions can be searched rather than only the current ones.
9. Multiple property conditions can be specified as a part of the criteria.

Each property condition is of the form name–operator–value. For example,
subject–begins with–Medicine.

The properties available to be used in these conditions are dependent on
the selected object type. The different property conditions can be combined
together using AND and OR operators.

Interacting with Results
The results from a search request, simple or advanced, are shown in the content
pane. The content pane is the area in Webtop other than the header, footer, and left
navigation. For practical purposes, the content pane can be considered the main area
of the screen.

The result objects are shown as a list in the content pane and pagination is available
if the result list size is more than the number of items displayed on one page. When
page navigation (shown in the next screenshot) is enabled, users can go from one
page to an adjacent page, jump to a specific page, or jump to the first or the last page.

If the size of the result list is very large, Webtop may start showing results before
the processing is complete. In this case a message—"Processing…", appears in the
header indicating that more results may be arriving.

This message is a hyperlink to a Search Status page. The search status page shows
the status of the search request in terms of each source—a repository or an external
source. The status information includes source, status, number of results, and a message.
This screen also allows the search to be stopped.

The search results screen allows the search to be revised through a Revise Search
link, which takes the user back the Advanced Search screen that displays the
parameters for the current search.

Chapter 8

[111]

It is also possible to save a search from the results page and this capability is
discussed next.

Saving Searches
Once the user has performed a search, the user may want to save the search for
running again in future. This may be a desirable choice when a particular search is
performed frequently or when the search criteria contain several conditions. Either
way, a saved search can be run again by clicking a hyperlink.

When a search is saved, it is the search criteria that are saved and not
the search results. Therefore, the same saved search can return different
results when run at different times. For example, if a saved search lists
all patient reports in the system the result list can be different after more
reports have been imported into the repository. The search is saved as
a hidden dm_smart_list object in the home_cabinet/Saved Searches
folder. dm_smart_list extends dm_sysobject and has no properties
of its own.

Webtop stores the search criteria as XML in smart lists. Documentum
Desktop uses DQL to store the search criteria in the smart lists. Therefore,
the saved searches are not compatible across different applications.

Here is the screenshot displaying the Saving Your Search option:

www.allitebooks.com

http://www.allitebooks.org

Searching

[112]

For saving a search it is possible to specify a destination repository, if multiple
repositories are available. If the user saving the search has Superuser privilege, the
search is saved as a global saved search, which is available to all users. Otherwise,
this search is saved as a personal saved search, available only to the user saving it.

Saved searches can be accessed through two categories:

1. My Saved Searches: This includes only the personal saved searches.
2. All Saved Searches: This includes both personal and global saved searches.

These tabs appear on the Advanced Search screen and have similar layout—each
shows a list of saved searches. For each saved search three actions are available:

1. Remove: removes the saved search
2. Edit: loads the search criteria in the Advanced Search screen
3. Submit: submits the search criteria saved in the search and shows the results

Here is the screenshot displaying the My Saved Searches option:

Chapter 8

[113]

Let's now see how the All Saved Searches option looks like:

Search Preferences
Preferences in Webtop allow users to store their preferred ways of interacting
with the application, so that they can avoid specifying these choices repeatedly.
Essentially, preferences help users to work efficiently. Search preferences are the
preferences that affect search behavior for a user.

www.allitebooks.com

http://www.allitebooks.org

Searching

[114]

The search preferences allow users to specify the desired search behavior in the
following ways:

1. Columns specify the set of properties that are displayed in the search result,
as shown in the following screenshot:

2. Favorite repositories indicate the repositories a user accesses frequently. New
repositories can be added to this list by providing information about new
connection brokers. The newly added repositories stay in the Favorites list
only for the duration of the current user session.
In order to keep these additional repositories permanently available even
after the session expires, the connection brokers need to be added to the
dmcl.ini file on the application server that hosts Webtop.

Chapter 8

[115]

3. Default search locations are included in searches without the need for
specifying them explicitly for each search, as shown:

Full-Text Indexing
We have already seen that full-text indexing affects the search in significant ways. It
is worth understanding the fundamental concepts of full-text indexing even though
it is an optional component of the Documentum platform.

Full-text indexing is implemented by the Index Server, which is an optional
component. One Index Server can provide indexing for multiple repositories and,
thus, multiple Content Servers. An Index Agent is associated with a Content Server
and supports the indexing needs of the associated repository.

www.allitebooks.com

http://www.allitebooks.org

Searching

[116]

The Index Server participates both in creation of and searching of the full-text
indexes. Full-text index creation is coordinated by the Index Agent through the FAST
Index Plugin (see the note about FAST in Documentum Product Notes later in this
chapter). Querying the indexes is coordinated by the Content Server using the FAST
Query Plugin. This is shown in the following figure:

The Index Server receives requests for indexing when a sysobject undergoes one of
the following operations:

save

saveasnew

checkin

destroy

branch

Only those sysobjects are indexed that have their a_full_text property set to TRUE.
There is a configurable delay between saving the changes and indexing of metadata
and content.

Due to the delay between saving changes and indexing modified or new content,
there is a period during which searches may not retrieve results based on the latest
changes. Once the modified objects are re-indexed, the latest changes start showing
up in the search results.

Once the Index Server indexes an object (metadata and content), it stores the index
information in dm_fulltext_index objects in the corresponding repository. The
indexes are associated with the repository that contains the object being indexed.

•

•

•

•

•

Chapter 8

[117]

Frequently Accessed Objects
Searching and navigation provide convenient ways to locate objects based on criteria
or location, respectively. However, if there are certain documents that a user accesses
frequently, these approaches are still somewhat inefficient. Webtop provides two
mechanisms for accessing such objects quickly—subscriptions and shortcuts.

Subscriptions
Subscriptions represent bookmarks, favorite locations, or favorite documents. Users
can subscribe to the objects or paths that they access frequently. All the subscribed
objects show up under the Subscriptions node in Webtop.

Objects can be subscribed to or unsubscribed via the Tools | Subscribe and Tools |
Unsubscribe menu items in Webtop.

A user can also subscribe to notifications for events on objects. By default the
checkin event for an object generates notifications. Other events can also be
configured for notification. Notifications can be subscribed and unsubscribed by
using Tools | Turn on notification and Tools | Turn off notification respectively.

Subscriptions and Inbox are shown in the following figure:

Notifications show up in the user's Inbox in Webtop.

Shortcuts
Shortcuts provide quick access to objects. Subscriptions can be seen as shortcuts
within Webtop, where the users can jump to the documents directly without having to
go through the folder structure or a search.

True shortcuts provide direct access to objects from outside the Webtop. Once the
user tries to follow the shortcut, he/she may have to log into Webtop. A shortcut can
be created in one of the following ways:

1. Using the menu item File | Email as Weblink. This creates an email message
with the shortcut to the item embedded as a hyperlink.

2. Using drag and drop on the shortcut icon from the properties tab. This
approach can be used to create a shortcut on the Windows desktop.

3. A shortcut can also be stored as a bookmark in the browser.

www.allitebooks.com

http://www.allitebooks.org

Searching

[118]

Once a shortcut has been created, it can be followed by selection or double-clicking
to access the object. The object will be accessed via Webtop and the user may be
required to authenticate again.

When accessing an object through the shortcut, the user gets the option to view or edit
the object. If the shortcut was to a non-current version of the object, the user gets the
option to access the current version instead. As always, appropriate permissions are
still needed to access the object.

Help—Some DQL Queries
While this chapter focused on searching using Webtop, the DQL SELECT query is also
used to perform searches. We have already seen SELECT queries in several chapters,
so we will only look at the full-text support in DQL queries here. The following
queries assume that an Index Server is present in the Documentum deployment.

While various aspects of full-text searches are supported in DQL, we will look at the
following key aspects:

1. The SEARCH clause enables searching the full-text index.
2. The keywords SCORE and SUMMARY can be used in the selected values list:

a. The SCORE keyword returns the document's relevance ranking as
determined by the Index Server. A higher relevance ranking implies a
better match. By default, the results are returned in descending order
of SCORE.

b. The SUMMARY keyword returns a summary of each document as
determined by the Index Server.

The following query retrieves documents containing the word hiring in their
content or metadata:

SELECT object_name, SCORE
FROM dm_document
WHERE SEARCH DOCUMENT CONTAINS 'hiring'

The following query retrieves documents containing the word hiring, or firing, or
both in their content or metadata:

SELECT object_name, SCORE
FROM dm_document
WHERE SEARCH DOCUMENT CONTAINS 'hiring firing'

Chapter 8

[119]

The following query retrieves documents containing the phrase "hiring process
guidelines" in their content or metadata:

SELECT object_name, SCORE
FROM dm_document
WHERE SEARCH DOCUMENT CONTAINS '"hiring process guidelines"'

Note that * can also be used as a wildcard in the search string.

Documentum Product Notes
The search behavior can be altered by the presence of Enterprise Content
Integration Services (ECIS). ECIS is an optional component of the Documentum
platform and it allows external sources of information (such as databases,
websites, or other enterprise applications) to be searched along with the
Documentum repositories.

EMC provides adaptors for various external data and content sources so that they
can also be searched through ECIS. For example, one search request can pull results
from two repositories, a database, and Google and show all the results together. If
ECIS is not installed, the external source options are not available for searching.

Full-text indexing is implemented by the Index Server, which is also an optional
component of the Documentum platform. However, the Index Server license is
included with the Content Server license. EMC embeds FAST InStream in the Index
Server, by default. Typically, the Index Server uses significant CPU and memory
resources and is deployed on a separate physical server.

Full-text search behavior can be configured via the dfcfull.properties file, which
is present in the $DOCUMENTUM/config (or %DOCUMENTUM%\config on Windows)
directory. For example, the maximum number of results returned by any query can
be restricted with the following entries:

dfc.search.maxresults=1000
dfc.search.maxresults_per_source=350

See Architecture (Chapter 4) for additional notes on the Index Server.

www.allitebooks.com

http://www.allitebooks.org

Searching

[120]

Checkpoint
At this point you should be able to answer the following key questions:

1. What is the difference between simple and advanced searches in Webtop?
2. What is full-text indexing? How is it enabled? What is the impact of the

full-text indexing on search behavior?
3. How can sources other than Documentum repositories be searched from

within Webtop?

Test Your Understanding
1. A document AprReport.pdf is linked to only one folder—JohnsDocuments.

Jane has only NONE permission on JohnsDocuments but BROWSE permission
on AprReport.pdf. Which of the following statements are true within
Webtop?

a. Jane can use the browser-tree to navigate to AprReport.pdf
b. Jane can use simple search to locate AprReport.pdf
c. Jane can use advanced search to locate AprReport.pdf
d. None of the above

2. A document AprReport.pdf has the following metadata: subject='money',
title='April Report', and keywords[0] = 'finance'. The report
document itself contains the word 'Boston'. The Index Server is not
installed. Which of the following statements are true?

a.	 A simple search for 'finance' can find AprReport.pdf
b.	 A simple search for 'Apr' can find AprReport.pdf
c.	 A simple search for 'Money' can find AprReport.pdf
d.	 A simple search for 'Boston' can find AprReport.pdf

3. A document AprReport.pdf has the following metadata: subject='money',
title='April Report', and keywords[0] = 'finance'. The report
document itself contains the word 'Boston'. Full-text indexing is enabled.
Which of the following statements are true?

a.	 A simple search for 'finance' can find AprReport.pdf

b.	 A simple search for 'Apr' can find AprReport.pdf

c.	 A simple search for 'Money' can find AprReport.pdf

d.	 A simple search for 'Boston' can find AprReport.pdf

Chapter 8

[121]

4. An attempt to revise a search takes the user to:
a.	 Simple Search screen
b.	 Advanced Search screen
c.	 My Saved Searches screen
d.	 All Saved Searches screen

5. A user with the following privilege can create a global saved search:
a.	 Create Global Search
b.	 Sysadmin
c.	 Superuser
d.	 Config Audit

6. A saved search returns the same results every time it is run (True/False).
7. A search saved in Desktop can be run from Webtop (True/False).
8. Subscribing to a document sends an email to the user every time the

document is checked in (True/False).
9. A shortcut to a Documentum object when placed on Windows desktop also

stores the object locally (True/False).
10. If a user receives a shortcut as a Weblink in email, he or she is guaranteed to

be able to access the linked object (True/False).

www.allitebooks.com

http://www.allitebooks.org

Part 4
Application
Development

Custom Types

DocApps

Workflows

Lifecycles

www.allitebooks.com

http://www.allitebooks.org

Custom Types
In this chapter, we will explore the following concepts:

Managing custom types
Data dictionary

Custom Types
Documentum provides a large number of built-in object types that support the
functionality of the platform. Some object types are general purpose and can be used
for business purposes as well. However, all possible business needs can neither be
anticipated nor supported by default. Therefore, Documentum allows creation of
new object types, which are called custom types. This chapter addresses creation and
management of custom types.

Before reading this chapter, it would be helpful to revisit Objects and Types
(Chapter 3) since the majority of the concepts pertaining to object types
apply here as well. The concepts repeated here are explained in more
detail in Chapter 3.

Managing Custom Types
A user-defined object type is called a custom type and the user-defined properties
are called custom properties. Properties are also known as attributes. Custom types
can be created, modified, and removed as long as certain rules are followed. This
section describes the detail around managing custom types.

•

•

www.allitebooks.com

http://www.allitebooks.org

Custom Types

[126]

Creating a Custom Type
A custom type can be created using Documentum Application Builder (DAB), using
Documentum Administrator (DA), or using DQL/API scripts. DAB is the most
commonly used application for creating custom types since it fully supports the
data dictionary (see Data Dictionary later in this chapter) and it has a Graphical User
Interface (GUI) specifically designed for creating and managing custom types.

Further, DAB can also be used for packaging the types into a DocApp (DocApps are
described in detail in Chapter 10). The following screenshot shows the DAB screen
for creating and updating a custom type:

Chapter 9

[127]

DA provides basic support for managing custom types. For example, DA does not
provide an interface for defining value assistance for a property. The following
screenshot shows the screen for creating and updating custom types in DA:

Creating a custom type is a privileged operation and only the users with following
privileges can do so:

Create Type
Sysadmin
Superuser

The user creating the type becomes the owner of the type.

A custom type can extend an existing type through inheritance (see Type Hierarchy in
Chapter 3). A new custom type can have an existing custom type or one of the sets of
Documentum object types as its supertype. The most common supertype for a new
custom type for representing documents is dm_document.

•

•

•

www.allitebooks.com

http://www.allitebooks.org

Custom Types

[128]

It is also possible to create a custom type without a supertype. Such a type is called a
NULL type. Only a user with Superuser privilege can create a NULL type. A NULL
type is useful for storing data that does not need the usual object management
features such as versioning. There are several built-in types that are NULL types
such as dm_user, dm_session, and dm_alias_set. If a custom type is intended to
only store non-versionable data, a NULL type may be appropriate for this purpose.

Recall that any given type uses up to two tables (one for single-valued properties and
one for repeating) of its own for storing non-inherited properties of its objects. There
are additional views for retrieving all the properties together.

The following key information is needed or captured in DAB when creating a new
custom type:

Info Description
Name Name of the type. A type name must be unique (case-

insensitive) in the repository and can be up to 27 characters
long. The additional constraints on the type name are that it
cannot contain a space or punctuation nor can it be same as
any DQL reserved word, such as SELECT or WHERE.
Further, it cannot start with dm_, dmi, dmr_, a number,
space, or a single quote. It is recommended that a custom
prefix be used for custom type names to distinguish them
from the other types.

Creator The user creating the type.
Supertype The supertype of the new type. This can be NULL.
Label User-friendly version of the name, for display purposes in

Documentum client applications.
Default Lifecycle A lifecycle that can be attached to a document of this type,

without identifying the lifecycle explicitly.
Default Storage Area A storage area identifies where the content files are stored

for objects. The default storage area identifies where the
content files for objects of this type will be stored by default.

Default Permission
Set

The default permission set is used when the default ACL
mode (see Chapter 7) for the Content Server is set to Type.
In this case, a new object of this type gets this permission set.

Template Document One or more template documents can be created for the
type, which are available to users when they are creating a
new object of this type. The template documents are stored
in the Templates cabinet in Documentum repository.

Chapter 9

[129]

Events for Types
An event is an operation on an object or something that happens in an application.
A system event is an event that is recognized and is auditable by the Content Server.
For example, checkin on a particular document in a system event. Promoting or
demoting an object in a lifecycle is also a system event.

On the other hand, an application event is recognized and is auditable only by
the application. The application events can be defined using DAB. For example,
an application event can be used to hold off workflow activities based on external
dependencies such as conditions in other systems.

Suppose that a workflow activity requires a performer to review a document.
However, the performer needs access to data in another system in order to complete
this task. An application event can be sent to the performer's inbox to trigger the
activity once the required data is available in the other system.

The following screenshot displays the DAB screen for managing application events:

www.allitebooks.com

http://www.allitebooks.org

Custom Types

[130]

Note that events are also inherited from supertypes just like properties. The events
shown in the previous screenshot, are inherited from dm_document—these are
system events and cannot be modified or removed.

Properties
An object type inherits all the properties of its supertype. Custom properties can be
created for custom types, with each property being defined in the following manner
using DAB:

Info Description
Name The name of a property must be unique within the type, including

inherited properties. The property should be named in all lower case
letters and 'select', 'from', and 'where' are not valid names. Further, a
property name cannot start with dm_, a_, i_, r_, a number, a space,
or a single quote.

Label User-friendly version of the name, for display purposes in
Documentum client applications.

Data Type The data type of the property constrains the types of values this
property can take. The allowed data types are integer, boolean, string,
double, time, and ID.

Length Length of the property if the data type is string.
Repeating Whether this is a repeating property or single-valued.
Default Value Default value for this property.
Input Mask The input mask is used for validation and provides a pattern for valid

values for this property. The mask is specified using the following
characters with special meaning in addition to the regular characters:
#: A numeric digit 0-9
A: An alphanumeric character including a-z A-Z 0-9
&: Any ASCII character
?: Any alphabetical character a-z A-Z
U: Similar to ? but automatically converted to upper case before
saving
L: Similar to ? but automatically converted to lower case before saving
For example, suppose that an account number consists of 8 characters
where the first three characters must be alphabetic and the remainder
can be alphanumeric. An input mask for this property can be
specified as ???AAAAA.

Chapter 9

[131]

The following screenshot shows the DAB screen for managing a custom attribute:

Search Support for Properties
Some information about properties can be provided to support the user interface for
searching on this custom type.

Info Description
Searchable Whether this property is searchable
Default Search Value Default value for the search field for this property
Allowed Search Operators The types of matching that can be done on this property

for searching, such as =, <>, 'begins with', etc.
Default Search Operator Which search operator among the allowed ones should

be selected by default

www.allitebooks.com

http://www.allitebooks.org

Custom Types

[132]

Displaying Properties
Client applications can utilize display configurations to display properties for
different object types in different ways. Display configurations are created using
DAB. Documentum Desktop (also known as Documentum Desktop Client) and
WDK applications utilize display configurations extensively. WDK applications such
as Webtop use display configurations to include custom properties in the standard
interface without writing any additional user interface code.

For example, Webtop can display custom properties in an editable form on a
separate tab on the properties page using a display configuration. The following
screenshot shows creation of a Display Configuration named Resume. When the
properties of an object of type dq_resume are viewed in Webtop, a separate tab
named Resume will use this display configuration to display the attributes
included in it.

Chapter 9

[133]

A display configuration specifies when certain properties should be displayed and
how their display should be organized. Each display configuration specifies
three aspects:

1. Scope determines when to use this display configuration. It can be a
combination of an application and a role, implying that this configuration
should be used when the specified role is accessing an object of this type
in the specified Documentum application. Thus, even within the same
application it is possible to create different views of the same object for
different roles.

2. For each scope, multiple configurations can be defined. For example, Webtop
displays the configurations as tabs on the properties view of objects.

3. For each configuration, an ordered list of properties is specified, which
constitutes the configuration. These properties are displayed together in the
Documentum application.

Note that, implicitly, the properties not included in display
configurations are not displayed on the application interface. Thus,
display configurations can be considered as a way of exposing or hiding
custom properties.

Validation
Constraints are conditions that must be met by objects and properties to be valid.
For example, a custom type may represent an account with a property account ID.
Then a potential constraint on this type is that the account ID property is required
to be unique within the repository. Constraints for custom types can occur in the
following forms:

Constraint Type Description
Primary Key The primary key uniquely identifies an object within the repository.

There is only one primary key for a type.
Unique Key A unique key is unique among all the objects of this type in the

repository. There can be multiple unique keys for a type.
Foreign Key A foreign key establishes a constraint between properties of two

types. A Sysadmin privilege is required to create a foreign key
constraint.

Check A check constraint is a condition expressed as a Docbasic
expression or a routine that evaluates to true or false.

www.allitebooks.com

http://www.allitebooks.org

Custom Types

[134]

An error message can be specified for each constraint and it can be displayed to
the user when the corresponding constraint is violated. Optionally, each constraint
can be flagged to be enforced in which case the client application should enforce
the constraint.

The constraints can also be specified at the property level where the constraint is
specified as a Docbasic expression. An error message and enforcement flag can also
be specified at the property level.

Value Assistance
When users need to specify values for object properties through client applications it
may be desirable, due to business reasons, to limit the values that can be specified for
a property. For example, if a property represents a country name its underlying data
type is string but only the country names are meaningful values for this property.
When the user needs to specify a country name, the application can limit the value
to one of the actual country names. This ability is supported by a feature known as
value assistance.

Value assistance specifies a list of valid values for a property that can be used by
client applications to facilitate valid user input. The list of valid values can be an
explicitly fixed list or a DQL query that returns a list of appropriate values from a
data source—objects or database tables. The following screenshot shows the DAB
screen for managing value assistance for an attribute named experience on custom
type dq_resume:

Chapter 9

[135]

It is also possible to use one of many lists for value assistance on a property. The
list to use is decided dynamically based on certain conditions. One of these lists
is identified as the default list and the others are identified as conditional. Each
conditional list is associated with a condition and is used when that condition is true.
The default list is used when none of the conditions is true.

There are two other options that affect the behavior of these lists. One specifies
whether the queries can be cached. Caching queries improves performance by
storing the lists retrieved for value assistance. However, if the data being queried is
modified, the changes are not available in the application until the cache has
been refreshed.

The other option specifies whether the list of values is complete—this essentially
specifies whether the user can enter a value other than those in the list, for example
using a combo list or box. This option is useful when a set of initial or most
frequently used values is known, but there may be cases when other values are
acceptable but not known beforehand.

Note that value assistance cannot be specified for Boolean properties. A
Boolean property can only be true or false.

Value Mapping
Another useful feature for client applications is value mapping. A value mapping
defines a correspondence between stored values and labels to display for those values.
Suppose that a property represents a color and stores the value in RGB format. In
this case, a value mapping can be useful to help the user view/select an appropriate
value. For example, a stored value FF0000 may be mapped to Red, which makes
more sense to most users.

Note that $value is a useful keyword that can utilize user-specified
single values in a validation error message or in a value assistance query
at run time. For example, SELECT title from book WHERE author
= $value(user_author) and category = $value(user_
category). This query retrieves book titles where the author and
category of the books are provided by the user.

Modifying a Custom Type
Once a custom type has been created, a need may arise to alter it. This may happen
when an unforeseen need arises or the requirements change.

www.allitebooks.com

http://www.allitebooks.org

Custom Types

[136]

Modifying a custom type is a privileged operation and only the type owner or a user
with Superuser privilege can modify a custom type. The default Documentum types
cannot be modified.

A custom type can be modified only in the following ways:

1. The type can be dropped (removed). Dropping a type is allowed only when
there are no objects of this type and this type has no subtypes.

2. A new property can be added to the type.
3. A non-inherited property can be dropped (removed) from the type.
4. The length of a non-inherited string property can be increased.

When a custom type is modified, it automatically affects its objects, its subtypes, and
objects of its subtypes.

Just like objects, a type needs to be checked in after it has been modified. However,
remember that a type cannot be versioned and no history of type changes is retained
(other than potentially through audit trails). The type exists only in its most
recent form.

It is possible to change the type of an object, though that does not change
the type itself. The type of an object can only be changed to the immediate
supertype or an immediate subtype of the existing type. For example:
change my_doc objects to dm_document WHERE object_name
= 'xyzreport.pdf'

Using Custom Types
Custom types can be used just like the built-in Documentum types except for the
restrictions described earlier. Much of the additional information specified about
custom types is stored in the data dictionary.

Data Dictionary
The data dictionary consists of a set of types whose objects store information about
types, such as constraints for properties, default lifecycle, default property values,
value assistance, mapping info, and localized text. Since the data dictionary is stored
in the repository, it is available to all client applications.

Chapter 9

[137]

Note that the data dictionary is available for the client applications to use
and the Content Server does use the data dictionary for its operation.

The data dictionary information is often cached by applications. In order to refresh
this cached information with new changes, the data dictionary can be published. The
API method publish_dd can be used to publish the data dictionary.

Help—Some DQL Queries
Some helpful queries related to object types are provided in this section.

The following query retrieves the type of a given sysobject:

SELECT r_object_type
FROM dm_sysobject
WHERE object_name = 'mydoc.txt'

The following query retrieves all the NULL types:

SELECT name
FROM dm_type
WHERE super_name = ' '

The following query retrieves the supertype of a given type:

SELECT super_name
FROM dm_type
WHERE name = 'dm_document'

The following query retrieves the names and labels for attributes of a given type:

SELECT attr_name, label_text
FROM dmi_dd_attr_info
WHERE type_name = 'dm_sysobject'

Documentum Product Notes
DAB provides complete access to the data dictionary through type and property
editors. Further, when DAB checks in changes to types, the data dictionary is
automatically published.

www.allitebooks.com

http://www.allitebooks.org

Custom Types

[138]

Checkpoint
At this point you should be able to answer the following key questions:

1. What are custom types? How are they different from built-in Documentum
object types?

2. What privileges are required for managing custom types? What changes are
allowed to an existing custom type?

3. What is the data dictionary? What benefits does it provide?

Test Your Understanding
1. Which of the following are correct statements?

a.	 A custom type can have two supertypes
b.	 A custom type can be a supertype of two other types
c.	 A custom type can be a supertype of dm_document
d.	 A custom type can be a subtype of dm_document

2. It is desired to store invoice documents in the repository. The only specific
metadata to be stored with the invoice is an invoice number. Which of the
following are feasible approaches for this purpose?

a.	 Store the invoices as dm_document objects and use the subject
property to store the invoice number

b.	 Store the invoices as dm_document objects and add a property called
inv_number to store the invoice number

c.	 Store the invoices as objects of a custom type invoice and add a
property called inv_number to store the invoice number

d.	 None of the above
3. A custom property can have the following data type:

a.	 Alphabetical
b.	 Alphanumeric
c.	 ASCII
d.	 String

Chapter 9

[139]

4. The following privilege is required to create a NULL type:
a.	 Create Type
b.	 Sysadmin
c.	 Superuser
d.	 None of the above

5. It is desired to create a custom type my_invoice for storing invoice
documents. It will have the following custom properties—invoice_id
(single valued) and account_id (single valued). The following tables will be
created for this type:

a.	 my_invoice

b.	 my_invoice_s

c.	 my_invoice_r

d.	 invoice_id_account_id

6. A custom type does not need to be checked in since it cannot be versioned
(True/False).

7. Since the data dictionary is stored in the repository, the Content Server
enforces type constraints for all applications (True/False).

8. The length of a custom property can represent precision for floating point
values (True/False).

9. Multiple lists can be specified for value assistance on one property
(True/False).

10. Suppose my_report and my_invoice have dm_document as their supertype.
Further, my_partner_invoice has my_invoice as its supertype. There is an
object of type my_invoice. Its type can be changed to:

a.	 dm_document

b.	 my_report

c.	 my_partner_invoice

d.	 None of the above

www.allitebooks.com

http://www.allitebooks.org

DocApps
In this chapter, we will explore the following concepts:

Customizing Documentum
Creating and managing DocApps
Archiving and installing DocApps

Documentum Customization
Any serious business use of the Documentum platform requires customization.
Documentum provides the model and framework for creating a business application.
Documentum is designed to be customized and customization can involve aspects
such as custom types, business objects, presentation, and security.

Documentum has a rich set of features and this richness brings complexity. As
a result, customization of a Documentum deployment touches multiple layers of
the architecture. Management of these customizations and their ongoing
maintenance can become a daunting challenge. The several layers are shown in
the following figure:

•
•
•

www.allitebooks.com

http://www.allitebooks.org

DocApps

[142]

It becomes even more challenging when Documentum infrastructure is shared
among different departments and each department has its own customizations. In
this case, it is possible that different customizations are performed by different
teams of developers but deployed within the same repository (as shown in the
following figure).

Another dimension of managing customizations is the number of environments
that a customization may need to be deployed on. Customizations necessarily
require at least two environments—development and production (also known as live).
Ideally, a third environment called QA (or staging) should also be present. The
development environment is used for developing the customizations and may allow
uncontrolled changes.

Normally, this environment is primarily used by the developers. Once the
customizations are ready to be tested, they are deployed in QA. Testing can occur
in QA while development and bug fixes are taking place in development. Once the
customizations reach a level of quality that is passed in QA, the customizations are
deployed to production (as shown in the next figure). The challenges of managing
customizations across multiple Documentum environments, in addition to the
previously described concerns, would make it a huge hurdle to cross were it not for a
feature called DocApp.

Chapter 10

[143]

DocApps
A DocApp is a package of repository objects and is itself a repository object. A
DocApp is stored as an object of type dm_application and is also referred to as an
application. It packages other repository objects by storing pointers (object IDs) to
those objects.

Typically, a DocApp packages types, permission set templates, repository objects,
lifecycles, alias sets, and executables. Some key properties of dm_application are
as listed:

Property Description
application_object_id Repeating property, object IDs of all objects contained

in the DocApp. These are the pointers to the packaged
objects. Many other properties relate to the individual
objects and correspond to this property by
respective indexes.

app_version Version label for the DocApp.
object_name Name of the DocApp.
def_alias_set_id The object ID of the default alias set for the DocApp. This

alias set contains all the aliases specified for the DocApp.

dm_application is a subtype of dm_sysobject and its objects have
tag 08 in their object IDs. Recall from Objects and Types (Chapter 3) that
objects of dm_document have tag 09 in their object IDs. Further,
dm_folder has 0b and dm_cabinet has 0c as its type tag.

DocApps facilitate management of a set of objects together and these objects are
typically related to a customization. A DocApp should be used to package only
related objects. Unrelated customizations should be packaged in separate DocApps.
Typically, objects related to one application are packaged in one DocApp. For
example, the Web Publisher DocApp packages all the objects required to be used
with Web Publisher.

DocApps address the challenges related to customizations mentioned earlier.
Since one customization may involve multiple objects, all of these objects can be
managed (created, modified, reinstalled) together. A DocApp can be created in one
repository and then installed in another repository, thus facilitating portability across
repositories and environments. One repository can contain multiple DocApps (recall
that each DocApp is an object itself). Therefore, it is a good idea to only keep objects
related to one business-level customization in one DocApp.

www.allitebooks.com

http://www.allitebooks.org

DocApps

[144]

Managing DocApps
In a typical development cycle, a DocApp is created in a development repository.
When the customizations are ready to be tested, the DocApp is archived (also said
to be serialized) onto the file-system. Then the DocApp archive is used to install the
DocApp in a test environment.

This process is repeated until the customization is considered ready for prime time.
At this point, this DocApp archive can be installed in a production repository. If
the customization is a part of a product, the DocApp archive is included in the
product distribution.

Creating and Modifying DocApps
DocApps are created and managed via Documentum Application Builder (DAB).
A Superuser privilege is required for creating a DocApp. The following screenshot
shows the main screen of DAB with an open DocApp. The left pane organizes the
contents of the DocApp. The status bar at the bottom shows information about the
state of the connection to the repository.

Chapter 10

[145]

The primary purpose of a DocApp is to package objects related to a customization.
DocApps are also the primary method of storing and deploying business objects. A
customization may involve the following objects:

Object Description
Custom Types Custom types are used to store information beyond what is supported

by built-in types.
Lifecycles Lifecycles describe a sequence of states for documents based on

business rules. See the chapter on lifecycles (Chapter 12) for
more details.

Aliases Aliases are important for installing the same DocApp in multiple
repositories. Since different repositories can have different sets
of users, groups, and locations it may not be useful to specify
explicit values for this purpose in the DocApp. Aliases can provide
placeholders, which are replaced with actual values at the time of
DocApp installation. Aliases defined for a DocApp become a part of
the default alias set for the DocApp. Aliases are useful in other ways
as well and are discussed in detail in Aliases (Chapter 13).

Procedures A procedure is a Docbasic
Methods A method is code written to a specification that can be executed

as needed or through a job. Methods can be written in Java or
Docbasic. Along with the code, a method is also represented as a
Documentum object.

Jobs A job executes a method on a schedule. Jobs are useful for performing
work periodically or on demand.

Documents A document is an object of type dm_document or one of its subtypes.
Workflow
Templates

A workflow template represents a business process and is used to
create instances of that process.

Forms Forms are used to capture user inputs in a business process.
Permission Set
Templates

Permission set templates enable dynamic assignment of rights using
aliases. See Aliases (Chapter 13) for more details on permission
set templates.

Formats A format typically describes a content structure. Formats are
discussed in Working with Content (Chapter 2).

Since DAB is used for managing objects in a DocApp, it also lets users check in the
changes to these objects. Many objects can be versioned on checkin but the following
cannot be versioned: types, alias sets, permission set templates, methods, groups,
data objects, XML applications, and formats and relation types.

www.allitebooks.com

http://www.allitebooks.org

DocApps

[146]

Archiving DocApps
A DocApp resides in the repository as an object. In order to take it from one
repository and install into another, Documentum supports converting it to an
intermediate form. This intermediate form is a DocApp archive, which is the
representation of a DocApp on the file system.

The sole purpose of creating a DocApp archive is to later install it into a repository
and the archive can include some options that influence the installation process. The
following properties of dm_application store these options. Note that the properties
shown in the following table are all repeating properties—the value at each index
corresponds to the object ID in the application_object_id property at the
same index.

Property Description
content_transfer_
option

Defines how to handle cabinets or folders when copying them
to a target repository. It applies only to objects of type cabinet
or folder.
The valid values are:
0: Copy all directly or indirectly contained objects
1: Copy only the hierarchy (the directly or indirectly contained
folders, but not the documents in the folders)
2: Copy just the cabinet or folder itself, but none of its
contained objects
3: Copy only the cabinet or folder and its directly contained
documents

target_loc_alias An alias that resolves to the location (a cabinet or folder path
within the repository) where an object in the application needs
to be copied.

target_perm_alias An alias that resolves to the name of a template ACL to be
applied to the created object. See the chapter on alias sets
(Chapter 13) for more on template ACL.

target_owner_alias An alias that resolves to the name of the owner of the created
object. The default value is the user performing the installation.

upgrade_option Defines how to handle the object when the DocApp is
upgraded (the DocApp archive is installed over an existing
DocApp). In this scenario the object being installed is likely to
already exist (duplicate object) in the repository.
The valid values are:
0: Overwrite the object
1: Ignore (skip) the object
2: Version the object

Chapter 10

[147]

We will see later in this chapter that Docbasic procedures, specified as pre-install and
post-install procedures, can be run by Documentum Application Installer during
the installation process. These procedures are identified by a combination of the
chronicle ID and version label for each of the procedures.

Recall that chronicle ID and version together can identify an object. If the pre-install
and post-install procedures are specified in the DocApp, these actual procedures
must also be included in the DocApp.

Property Description
pre_install_proc_id Chronicle ID of the pre-installation procedure
pre_install_proc_label Version label of the pre-installation procedure
post_install_proc_id Chronicle ID of the post-installation procedure
post_install_proc_id Version label of the post-installation procedure

The following screenshot shows how installation options are specified for an object
in DAB:

www.allitebooks.com

http://www.allitebooks.org

DocApps

[148]

Note that if an object of a custom type is present in a DocApp, the custom
type must also be included.

The DocApp is a versionable object in the repository, but its version is not stored in
an archive created from the DocApp. When an archive is installed over an existing
DocApp, it increments the version of the existing DocApp and merges the contents
of the existing DocApp and the one being installed from the archive.

When an object is added to a DocApp, all renditions of the object are
automatically included. However, when a virtual document is added
its components are not added automatically. Virtual documents are
discussed in detail in Chapter 14.

Installing DocApps
Installing a DocApp is a privileged operation and it can only be performed by users
with Superuser privilege. A DocApp is installed using Documentum Application
Installer (DAI). The main screen of DAI, just before it is ready to install the DocApp
from the selected archive, is as shown:

Chapter 10

[149]

Prerequisites
A DocApp installation requires certain prerequisites to be met in order to complete
successfully. The target repository for DocApp installation must contain the cabinets,
folders, permission sets, and locales needed by the DocApp. Not all of these objects
have to be exactly the same as present in the source repository. Some objects can be
replaced via the use of aliases.

The same requirement applies for users and groups—either the same users and
groups should be present or there should be corresponding users and groups with
the same permissions and privileges.

The target repository can be prepared to meet the prerequisites prior to DocApp
installation in several ways:

1. A pre-installation procedure can ensure that the prerequisites have been met.
The procedure can create the required objects in the target repository.

2. The required objects can be included in the DocApp itself so that they are
installed along with the DocApp.

3. According to installation options, the user installing the DocApp can be
prompted to select alternative objects from the target repository to fulfil the
needs of the DocApp.

4. The required objects can also be created manually through DA or DQL,
though this is a cumbersome and error-prone option.

Installation Process
DAI follows the sequence of steps illustrated in the following figure for installing
a DocApp:

Let's have a look at the steps:

1. The process begins with execution of any configured pre-install procedures.
2. The custom types are installed.
3. The aliases are resolved by prompting the user performing installation

according to the configuration.

www.allitebooks.com

http://www.allitebooks.org

DocApps

[150]

4. The objects are installed using resolved location, permission set, and owner
aliases. If so configured, locations (cabinets or folder paths) for objects can be
automatically created if they are missing in the target repository.
At this point, conflicts for naming and object types are also resolved. If an ob-
ject with the same name and type already exists in the repository, the object is
installed as the next version of the same object.

5 Finally, the post-installation procedures are run.

Help—Some DQL Queries
Some helpful queries related to DocApps are provided in this section.

The following query retrieves the names of the DocApps installed in a repository:

SELECT object_name
FROM dm_application
...

The following query retrieves the names of sysobjects included in a DocApp named
cmf_pkumar:

SELECT o.object_name
FROM dm_sysobject o, dm_application a
WHERE ANY a.application_object_id = o.r_object_id
AND a.object_name = 'cmf_pkumar'

Documentum Product Notes
Documentum Application Builder and Documentum Application Installer are
desktop applications and can be installed together with the same installer. These are
not WDK-based applications; they communicate directly with the Content Server.

Checkpoint
At this point you should be able to answer the following key questions:

1. What is a DocApp? What purpose does it serve?
2. How is a DocApp created and modified?
3. What is a DocApp archive? How is it created?
4. How is a DocApp archive installed into a repository? What options can

modify the installation behavior? What are the prerequisites and steps in the
installation process?

Chapter 10

[151]

Test Your Understanding
1. A DocApp is stored as an object of type:

a.	 dm_docapp

b.	 dmi_docapp

c.	 dm_application

d.	 dmi_application

2. The version of a DocApp is preserved when a DocApp is archived and
installed into another repository (True/False).

3. A DocApp can be created with:
a.	 Documentum Administrator
b.	 Workflow Manager
c.	 Documentum Application Builder
d.	 Documentum Application Manager

4. A DocApp can exist:
a.	 On the file system
b.	 In a repository
c.	 In a database
d.	 None of the above

5. A DocApp archive can exist:
a.	 On the file system
b.	 In a repository
c.	 In a database
d.	 None of the above

6. The following privilege allows creation of a DocApp:
a.	 Sysadmin
b.	 Superuser
c.	 Create DocApp
d.	 Create Type

7. When an object is added to the DocApp:
a.	 Its renditions need to be added manually
b.	 All renditions are added automatically
c.	 One rendition is added automatically
d.	Renditions cannot be added to a DocApp

www.allitebooks.com

http://www.allitebooks.org

DocApps

[152]

8. When a virtual document is added to the DocApp:
a.	 All of its immediate component objects are automatically added
b.	 All components are added recursively
c.	 No components are added automatically
d.	Virtual documents cannot be added to a DocApp

9. When a folder object is included in a DocApp and its archive is installed in a
repository:

a.	 Only the folder object is added
b.	 The folder object and other objects directly linked to the folder

are added
c.	 The folder object and all objects linked directly or recursively to it

are added
d.	Any of the above based on configuration

10. The target repository must have exactly the same users and groups as were
present in the repository where the DocApp was created (True/False).

Workflows
In this chapter, we will explore the following concepts:

Designing workflows
Using workflows

Business Processes
A business process is a set of linked activities that create value by transforming an
input into a more valuable output. Both input and output can be artefacts and/or
information and the activities can be performed by humans, machines, or both. The
processes can serve the purpose of the core business operations (manufacturing,
sales, etc.), management (strategy, planning, tracking, etc.), or support (hiring,
accounting, etc.) of the core business operations.

The following figure illustrates how a candidate selection process for hiring can
be automated using Documentum. The hiring process is usually a much bigger
process, including activities prior to gathering resumes and following the interviews.
However, this example only automates a short portion including screening and
interview activities. This example will be referred to repeatedly to illustrate the
concepts being discussed.

•

•

www.allitebooks.com

http://www.allitebooks.org

Workflows

[154]

Technology offers a great potential to serve businesses by making business processes
more efficient or by providing capabilities that were infeasible without the use
of technology.

For example, automated business processes can make key information available
faster and facilitate important decision making. Efficient execution of processes can
reduce costs and improve cash flow. Since almost all business processes rely on some
sort of documents, enterprise content management has a key role to play in business
process management. In the hiring process example, candidate resume is a key
document that affects decision making, flow, and outcome of the process.

Documentum supports process automation via workflows. There is a subtle
difference between the meanings of process and workflow as far as Documentum is
concerned and a good understanding of this difference can prevent any unnecessary
confusion about the terminology.

In simple words, a process is the description (or design or definition) of how a set
of linked activities are supposed to be executed and the kind of information they
process. In Documentum terminology it is known as a workflow template. When
a specific piece of information is acted upon by specific performers (humans or
programs) according to the process defined by a workflow template, this execution
of the process is known as workflow. In other words, a workflow is an instance of a
workflow template.

Workflow Concepts
The difference between the design and execution of a process can be generalized in
terms of the following considerations:

Design-time: Design-time considerations apply when the process is being
designed and modeled.
Run-time: Run-time considerations apply when the process definition is in
place and the process is being executed.

These differences are important for distinguishing between certain terms even
though these terms are often used interchangeably.

There are a few fundamental concepts related to workflows. A workflow template is
a process definition and prescribes how the process should be executed. A workflow
instance (or just workflow) is a process in execution. Multiple workflows, created
from the same workflow template, can execute simultaneously with each workflow
processing different content items.

•

•

Chapter 11

[155]

A workflow template consists of activities linked together via flows. A flow
describes the movement of information from one activity to another. Performers
are assigned to activities to carry them out. A workflow template is created by
developers at design time and then installed into a repository for use.

When a workflow is created by end users from a workflow template, specific objects
are packaged and passed to the tasks corresponding to the initial activities. As
performers carry out tasks, they may alter existing objects or create new objects.
These objects are passed on as packages to the following tasks. Workflows, tasks, and
packages are run-time instances.

For example, in the hiring process described earlier, there may be resumes for two
candidates—John Doe and Jane Doe. Each resume gets packaged separately and gets
passed into a separate workflow instance. Each instance creates a task for Screen
Resume. John's resume may be screened by a different performer from the performer
screening Jane's resume. Let's have a look at the process:

2400_11_02

Package

Reject Flow
Activity

Forward Flow

Discard Resume

Initiate Screen Resume Schedule Interview Interview Candidate Decide Result End

The following sections provide details of process design and execution on
Documentum. It may be helpful to revisit the earlier paragraphs to regain
perspective if any of the details later appear to be confusing.

Workflows and Customization
Workflows form a key component of Documentum customization. Workflow
templates are usually bundled with other customization components in DocApps
(See Chapter 10 for details).

www.allitebooks.com

http://www.allitebooks.org

Workflows

[156]

A business process can be automated using Documentum in the following manner:

1. Analyze: The information is gathered about the business process to
be automated.

2. Model: Each process to be automated is modeled in terms of activities,
performers, flows, and packages.

3.	 Define: The model is formalized as a workflow template using Workflow
Manager. The template is validated and installed in the desired repository.

Workflow Manager is the desktop tool for visually designing workflows
and is installed by the DAB installer. Business Process Manager (BPM)
is a separate product that offers enhanced features for designing
workflow templates.

4. Use: Business users with appropriate access start creating workflow instances
from the workflow template. Various performers participate in these
workflows.

5. Modify: If the process definition needs to be modified, the workflow template
is uninstalled, modified, validated, and installed again.

The following sections describe the mentioned steps in more detail.

Analysis
Analysis of a business process involves gathering information regarding the
activities involved, sequence of activities, whether there are any special situations
and how they are handled, performers of activities and if the performers can be
referred to as business roles, information and documents that are passed through
activities, and if they can be modified by activities. The information gathered via
analysis is used for modeling the process in a form suitable for Documentum.

In the hiring process example described earlier, analysis may require talking to the
Human Resources managers and the interviewers to understand the details such as
how resumes are screened, who the interviewers are, if there are timing constraints
between receiving a resume and scheduling an interview, who needs to be notified if
there are any issues, etc.

Modeling and Definition
Modeling and definition of processes share several aspects and are discussed
together in this section to avoid repetition. Modeling maps the requirements for the
business process to Documentum terminology to facilitate definition. The model

Chapter 11

[157]

is defined in a Documentum repository as a workflow template using the
Workflow Manager.

A workflow template is saved as an object of type dm_process in the repository.
Creating a workflow template is a privileged operation and requires coordinator
capability and Sysadmin/Superuser privileges. Saving, installation, and
uninstallation of a template require write permission on the template or
Sysadmin/Superuser privileges.

While most of the process definition involves details about activities, performers, and
flows, some aspects are specified at the workflow template level:

1. Owner: Initially, the creator of the workflow template is the owner but the
owner can be reassigned later.

2. Default alias set: The set of aliases that can be used for resolution during
workflow execution. See Aliases (Chapter 13) for more detail.

3. Auditing: Turning on auditing for the template enables completed workflows
to be shown in workflow reports.

Let's have a look at the workflow template properties:

www.allitebooks.com

http://www.allitebooks.org

Workflows

[158]

Each workflow template also has an associated state, which identifies where
the template is in the development process. A template can be in one of the
following states:

1. Draft: The workflow template is under development.
2. Validated: No process definition errors present in the template.
3. Installed: The template is available for instantiation (creating workflows from

the template).

A newly created template is in the draft state. When the developer validates it
successfully, its state changes to validated. A validated template can be installed
and its state changes to installed. For making changes to the template it needs to be
uninstalled, when it goes back to the validated state. While changes are being made
to the template, it is again in the draft state. Thus, a template can move back and
forth between these states but workflows can be created and be operational only
while the corresponding template is in the installed state.

Activities
An activity is a step in the business process and a process consists of a set of
interconnected activities. Two activities in a process can have two types of
connection (direct or indirect):

1. Serial (in sequence): If one activity must be completed before the second can
begin, they are considered to be connected serially.

2. Parallel: If the two activities can be carried out simultaneously, they are
considered to be connected in parallel.

In the hiring process example, Schedule Interview and Interview Candidate are serial
activities. If there was an additional activity called Contact References and it could be
performed between Schedule Interview and Decide Result but either before, after, or at
the same time as Interview Candidate, then it could be placed in parallel to Interview
Candidate, as shown:

2400_11_04

Initiate

resume

Screen Resume Schedule Interview

Contact References

Interview Candidate

resume

resume resume

resume
resume

Decide Result End

resume

Chapter 11

[159]

Note that in the complete figure shown earlier, Discard Resume seems to be in
parallel to Schedule Interview and Interview Candidate. However, the business
logic requires that only one of these paths be taken—either discard the resume or
interview the candidate. So these paths are not truly parallel paths. However, if the
resume is not discarded both interviewing and reference-checking need to happen,
so they are truly parallel activities.

Each activity is stored as an instance of dm_activity. An activity can
be reused across multiple workflow templates and even within the same
workflow template.
However, two occurrences of the same activity cannot occur in parallel in
one workflow template. Further, activities must be uniquely named in a
workflow, even if there are two occurrences of the same activity within
a template.

An activity can be manual or automatic. A manual activity is performed by a human
user while an automatic activity is performed by a program on behalf of a user. For
example, reviewing a press release document would be a manual activity while
sending out a welcome email to a new employee can be an automatic activity.

In the hiring example earlier, Discard Resume can be an automatic activity, which
moves the resume to another folder in the repository. The following screenshot shows
the interface for viewing and updating activity properties in the Workflow Manager:

www.allitebooks.com

http://www.allitebooks.org

Workflows

[160]

If the activity is automatic, it can be performed on behalf of one of the
following users:

Workflow supervisor—owner of the workflow, usually the user who
initiated the workflow
Repository owner
Previous activity's performer
Specified user

An automatic activity is performed by a method, which is a program
conforming to certain requirements. A method can save results of its
execution to a file or a server log. A method can be selected for an
automatic activity only if it is a valid workflow method (tagged with
Use as Workflow Method in DAB).
A workflow method is identified by dm_method.a_special_
app='Workflow'. It can also be specified if the workflow should be
halted if the method fails.

An activity can specify conditions for starting and completing the corresponding
tasks. These conditions can be used for validation of business rules. In the hiring
process example, it may be a start condition for the Schedule Interview activity that
contact information is available for the candidate.

An activity can also be configured to notify the workflow supervisor about the
progress of the corresponding task. Notifications can be sent to the supervisor's
Inbox for delays in both beginning and completion of tasks.

A priority can be set for an activity and is useful for automated tasks. The priority
can be set to low, medium, high, or dynamic. Automatic activities are executed by
what is known as the workflow agent. When the workflow agent executes automatic
activities, it executes them in the order of decreasing priorities—among the
activities ready to be executed an activity with a higher priority is executed before
an activity with a lower priority. Dynamic priority allows applications to set the
priority at run time.

Performers
A performer for an activity is a user who performs the corresponding task (recall
that a task is a run-time manifestation of an activity). If the task is automatic, it is
performed on the performer's behalf (which means that the security constraints used
by the program are those of this user and any changes made by the automatic task
are recorded in the performer's name).

•

•

•

•

Chapter 11

[161]

An activity can be assigned one of the following performers:

1. Workflow initiator, who is usually the workflow supervisor as well
2. Repository owner
3. Previous activity's performer
4. Specific user—explicitly selected at design time or specified as an alias, which

is resolved at run time
5. All users in a group—explicitly selected at design time or specified as an

alias, which is resolved at run time. All users in the group must complete the
task for the workflow to move forward.

6. Single user from a group—all users in the group are notified but the first
one to acquire the task from his/her Inbox keeps it. The user can be explicitly
selected at design time or specified as an alias, which is resolved at run
time. It can also be specified that the performer of the preceding activity is
responsible for selecting this performer.

7. Some users from a group—a specified number of users from a group will
perform this activity. All are notified, but the first users (the specified
number) to acquire the task from their inboxes keep it.

The best practice for designing workflow templates is not to specify the
performers explicitly. If the performers are explicitly identified at design
time the template might not be portable across multiple repositories. It
is best left for the performers to be identified at run time—the workflow
initiator can pick the performers, the performer of an activity can pick
the performers for the following activity, or the server can determine the
performers by resolving aliases.

In the hiring process example, an alias could be used to identify the
performer group for Interview Candidate. This would enable the same
template to be used by different departments, which have different
groups of people interviewing candidates.

An activity can require electronic sign-off from the performer for completing the
activity. Electronic sign-off is performed by providing the password used for
user authentication.

www.allitebooks.com

http://www.allitebooks.org

Workflows

[162]

Activity Transitions
Workflows process objects (typically documents) through performers completing
activities. These objects are carried through the workflow using packages. A
package is identified by a name, object type, and a version of the object. In the hiring
process example, the package called resume is of type dm_document, and uses
CURRENT version.

A flow connects two activities in a workflow. A flow carries one or more packages
from one activity to another when the first activity completes. Therefore, the first
activity cannot complete unless the packages for each of its outgoing flows have been
prepared. Task manager performs this validation at run time.

In the hiring process example, each flow carries the resume from one activity to
another. If the resume is modified and versioned in one activity the next activity will
get the new version in the package, assuming that the new version was set to be the
CURRENT version. The following screenshot displays the flow properties:

Chapter 11

[163]

Every flow, except the ending flow, must carry one or more packages. The
object type for a given package name must remain the same on all flows
in a workflow template.

When an activity completes, it attempts to transition the workflow into the next
activity or activities. These transitions happen along the outgoing flows from this
activity. The flows can include forward paths and a reject path. Usually, the forward
paths indicate normal progress and the reject path signifies an exceptional situation.

In the hiring example, most of the paths are forward and there is only one reject
path—from Schedule Interview to Screen Resume. If during Schedule Interview, it is
found that the candidate is unreachable or no longer available, the reject path can be
taken and then the resume can be sent to Discard Resume.

There can be multiple flows going out of an activity and, therefore, it is possible to
trigger multiple following activities. The flow to select after the completion of the
activity can also be determined automatically through logic utilizing properties of
the workflow, the task, or the package.

In order for the next activity to trigger, the following conditions can be specified
as required:

1. A combination of prior tasks has completed (corresponding flows are
selected) either:

a. All of the incoming flows that are selected
b. A specified number of the incoming flows that are selected

2. An event (system or user-defined), if specified, is sent to performer inbox
programmatically.

Once the template has been defined and saved, it can be validated. If there are no
errors, the state changes to validated. A validated template can be installed into the
repository for use.

Use
At run time, a workflow is created from a workflow template. Activities in the
workflow templates are instantiated as tasks and delivered as notifications to
performers' inboxes. In Webtop, workflow reports provide information about the
current states of the existing workflows.

www.allitebooks.com

http://www.allitebooks.org

Workflows

[164]

For starting a workflow via Webtop, the user needs to have coordinator client
capability. There are two basic ways of starting a workflow in Webtop:

Start Workflow: Start Workflow enables selection of a workflow template first
and packages can be added later.
Start Attachments: Start Attachments lets you select the objects first and then a
workflow template can be selected.

With either approach, the following actions need to be taken:

1. Provide a description for the workflow
2. Add comments
3. Select activity performers if needed

Another way to start a workflow is to use quick flow. A quick flow is an ad hoc
workflow, which is also known as a send to distribution list workflow. A quick flow
has one activity per performer and can be structured in one of the two ways—
sequential or parallel.

If the activities are arranged sequentially, there is also a reject flow from each activity.
The reject flow can go to the previous activity performer or to the initiator, but it
is the same for all the activities in the quick flow (each can go to previous or each
goes to the initiator). If the activities are in parallel, all the performers get their tasks
simultaneously. Let's now see the interface for starting a quick flow:

•

•

Chapter 11

[165]

When starting a quick flow, the following information can be specified:

1. Performers
2. Structure of the quick flow—sequential or parallel
3. Instructions for completing the task
4. Whether the initiator needs to be notified for task completion
5. Whether sign-off is required
6. Priority (Low, Medium, or High)

Once a workflow starts, performers start receiving notifications in their inboxes. For
example, the following figure shows a Screen Resume task in the performer's Inbox:

When a performer opens up a task from the inbox in Webtop, it opens the task in
Task Manager. The performer can perform the desired actions and then finish the
task, reject it, or forward it to someone else. The following screenshot shows the
Screen Resume task opened in Task Manager:

www.allitebooks.com

http://www.allitebooks.org

Workflows

[166]

A performer can delegate/forward his/her task—the task is reassigned to another
user or group without the intended performer completing the task. If delegation
fails for any reason, the task can be sent to the workflow supervisor or to the
original performer who delegated the task. This feature is useful when another
user may be more suitable than the intended performer for completing the task in a
special situation.

If a user is not going to be available for a period of time, this user can
mark himself/herself as unavailable by identifying a proxy—someone
who can act on this user's behalf. All tasks intended for the user are
forwarded to the user's proxy automatically. When this user is available
again to participate in workflows, the availability can be reset.

A performer can also request the task to be repeated. Repeating a task is similar
to delegation, but the intended performer completes the task before reassigning
to others.

The Workflow reporting can be used to monitor current and overdue tasks in various
workflows. From the workflow report, a user can select a workflow and can change
supervisor, or halt, resume, or terminate the workflow. The report can also be saved
as a Microsoft Excel file. Recall that completed workflows can be listed for the
templates with auditing enabled.

Any workflow can be selected from a workflow report for viewing its summary,
which shows past and future tasks and also allows changing performers for future
tasks. The audit trail entries for the workflow and progress for each task can also
be viewed.

Modification
If there is a need to modify the workflow template, it needs to be uninstalled.
Uninstalling a template halts the existing workflow instances for that template.
The workflow template needs to be validated and installed again for the halted
workflows to resume and for new workflows to be created from that template.

Documentum Product Notes
The Workflow Manager is the basic application for designing workflow templates
for the Documentum platform. Once these workflow templates are validated and
installed into a repository, workflow instances can be created from these templates.
Tasks in the workflows are displayed to the users through clients such as Webtop
and email notifications.

Chapter 11

[167]

The Workflow Manager allows reuse of existing templates and activities in a new
template. Within the Workflow Manager, existing activities or templates can be
searched by cabinet or folder path, owner, name, and state. They can also be located
using DQL queries. The existing templates and activities can be added to the palette
and then they can be utilized for creating new templates.

Business Process Manager (BPM) is a part of the Business Process suite of products
offered by EMC Documentum. BPM builds upon the core workflow capability to
extend the workflows beyond the enterprise. A business process modeled through
BPM can interact with email, web services, HTTP (web), FTP (file transfer), and
XForms (XML forms) in tasks.

Further, activities in BPM are more configurable than in the Workflow Manager. It
can also manage high volume tasks through work queues. BPM needs a DocApp to
be installed in a repository before it can be used with that repository.

While BPM can be used to design business processes, Business Process Services (BPS)
enable integration for incoming information over various channels. For example, BPS
can receive information and content over email (SMTP), web (HTTP), or message
queues (JMS) and process it in various ways, including automatic interaction
with an existing workflow. Usually, BPM and BPS are used together when the
process management requirements include automated integration with incoming
information over the channels listed above.

Checkpoint
At this point you should be able to answer the following key questions:

1. What is a workflow? What purpose does it serve?
2. What are workflow templates, activities, performers, flows, and packages?
3. How can one execute and monitor workflow instances?

Test Your Understanding
1. A workflow template and a workflow are one and the same (True/False).
2. A workflow template is stored as an object of type:

a. workflow_template

b. dm_wf_template

c. dm_process

d. dm_workflow

www.allitebooks.com

http://www.allitebooks.org

Workflows

[168]

3. A flow represents:
a. Activity
b. Package
c. Activity transition
d. None of the above

4. A reject flow and a forward flow going out of an activity cannot be selected
simultaneously (True/False).

5. It is a good practice to use aliases in workflow templates (True/False).
6. A workflow template can be in one of the following states:

a. Draft
b. Validated
c. Installed
d. Uninstalled

7. In Webtop, a workflow can be started by:
a. Selecting a workflow template first and then selecting documents

to package
b. Selecting documents first and then attaching to a workflow template
c. Selecting documents without selecting a workflow template
d. None of the above

8. Performers selected for a Quick Flow can be required to:
a. Perform the task serially
b. Perform the task in parallel
c. Only one performer can be selected
d. None of the above

9. When delegating a task, the performer must complete the task
himself/herself first (True/False).

10. While a user is marked unavailable, all the tasks with this user as performer
are automatically delegated to another user (True/False).

Lifecycles
In this chapter, we will explore the following concepts:

Designing lifecycles
Using lifecycles

Business Process and Content
Management
Workflows enable content-centric business process automation on Documentum.
Workflows carry one or more objects through various activities performed by
different performers. Lifecycles add a powerful dimension to this mix by enabling
documents to move through states according to business rules.

Thus, Documentum not only automates business processes but also automates
movement of content through various phases of its life—enforcing and automating
business rules through both mechanisms. Lifecycles can also be used independently
but the combination of the two opens up the possibilities for satisfying
complex requirements.

The simplified, but core, difference between workflows and lifecycles is that a
workflow is what people do and a lifecycle is what happens to a document. Let's
extend the hiring process example from Workflows (Chapter 11). Recall that the
key document moving through the interview process is a candidate resume. For
designing a lifecycle, we need to focus on what happens to the document during
this process.

Initially there is a new resume, then it goes under review, and finally a decision
is made and the resume becomes inactive. Thus, we can define three normal
states—New, UnderReview, and Inactive for this lifecycle. If for any reason, the

•
•

www.allitebooks.com

http://www.allitebooks.org

Lifecycles

[170]

review process is suspended, an exception state OnHold can be used. This lifecycle is
illustrated in the following figure:

Note that these states don't have to be tied to the decision on the resume; in fact the
decision can be captured in a property on the resume. The states should be designed
with an eye on the progress of all the documents through this lifecycle. The states
may or may not correspond directly with activities in a workflow; indeed, lifecycles
can be used without involving any workflows at all.

The differences between workflows and lifecycles are easy to highlight. A
workflow is instantiated from a workflow template and actively advances
one or more objects through a network of activities. A lifecycle, on the
other hand, changes the states on a document in a linear fashion. There
are no templates or separate instances for a lifecycle.

Lifecycle Concepts
A lifecycle is a set of linearly connected states that define the stages in an object's
life. A state can be a normal state or an exception state. Normal states are used
for normal progress through the stages and exception states help to deal with less
frequent situations.

A lifecycle is associated with a set of object types and only objects of these types
can apply this lifecycle. An object can be associated with at most one lifecycle at a
time and it is in exactly one of the states present in the lifecycle. The object can move
back and forth between the lifecycle states following the specified conditions and
triggering changes in the process.

A state can have entry criteria that must be satisfied for an object to enter that state.
When an object is about to enter a state, entry actions specified for that state are
executed. Once an object has entered a state, any specified post-entry (post-change)
actions are executed. Actions can be predefined actions or custom ones.

Chapter 12

[171]

These concepts are discussed in detail in the rest of the chapter.

Lifecycles and Customization
Just like workflows, lifecycles are also a key component of Documentum
customization. Lifecycles are usually bundled with other customization components
in DocApps (see the chapter on DocApps for details).

A document lifecycle can be developed in the following manner:

1. Analyze: The information is gathered about the relevant document types (or
object types, in general) and the stages a document will need to go through.
Also consider the conditions for state changes and what actions may be
associated with them.

2. Model: The lifecycle is modeled in terms of states, entry criteria, entry actions,
and post-entry actions.

3.	 Define: The model is formalized as a lifecycle using DAB. The lifecycle is
validated and installed into the desired repository.

4. Use: Business users with appropriate access start applying the lifecycle to
objects. The objects can progress through the states via workflows, manual
actions, or scheduled actions.

5. Modify: If the lifecycle needs to be modified, it is uninstalled, modified,
validated, and installed again.

The following sections describe the above-mentioned steps in more detail.

Analysis
Analysis of business rules for defining document lifecycles involves gathering
information regarding the important stages in the life of a document type and the
details around the transitions between these stages. Some additional information
may also be captured about how the documents need to be managed within
Documentum, as they progress through these stages. For example, it may be
desirable to move the document to a new location and restrict access after a certain
point in the document's lifecycle.

In the hiring process example, analysis may require talking to the Human Resources
managers and the interviewers to understand if they want to sort resumes in
different folders as they move through the hiring process and are later archived.

www.allitebooks.com

http://www.allitebooks.org

Lifecycles

[172]

Modeling and Definition
Modeling and definition of lifecycles share several aspects and are discussed
together in this section to avoid repetition. Modeling maps the requirements for the
lifecycles to Documentum terminology to facilitate definition. The model is defined
in a Documentum repository as a lifecycle using the Lifecycle Editor in Documentum
Application Builder (DAB).

A lifecycle is a set of linearly connected states that define the stages in an object's life.
A lifecycle is usually designed using DAB and is stored in the repository as dm_policy
object. During development, the lifecycle has draft status. It can be validated for any
errors and its status changes to validated if there are no errors. It is also possible to
provide custom Docbasic procedures or SBOs (Service-based Business Objects) for
performing custom validation. SBOs were discussed in Architecture (Chapter 4).

A validated lifecycle can be installed into a repository to make it available to all
users, whereby its status changes to installed. However, a lifecycle is associated with
a type and possible subtypes and this lifecycle can only be applied to the objects of
these types. Let's now see the DAB screen for creating and editing a lifecycle:

Chapter 12

[173]

Validation of a lifecycle checks the minimum requirements on the following:

Security: The security requirement mandates that the user has write
permission on the lifecycle.
Consistency: The consistency requirements mandate that the acceptable types
are subtypes of the primary type and the properties, procedures, etc. referred
to in the lifecycle actually exist.
Validity: The remaining validity requirements are that the current status of
the lifecycle is draft, the lifecycle has at least one attachable state, and the
primary type is dm_sysobject or one of its subtypes other than dm_policy.

dm_sysobject and all its subtypes except dm_policy can be selected to
be associated with a lifecycle.

Just like workflows, aliases can be used to make lifecycles portable across multiple
repositories and business situations. A default alias set can be specified for a
lifecycle and the aliases are resolved at run time. The alias resolution for objects with
lifecycles is discussed in Chapter 13.

States
A state in a lifecycle represents a stage in the life of an object. There are two types
of states:

Normal: Each lifecycle has normal states, which include a start or base state,
some intermediate step states, and a final end state. Each state can define
behavior such as change of location, permissions, and ownership for the
object. This capability facilitates automated management of content as it
moves through the lifecycle.
The following figure shows a portion of the resume lifecycle described
earlier, where the UnderReview state is a normal state:

•

•

•

•

www.allitebooks.com

http://www.allitebooks.org

Lifecycles

[174]

Exceptional: Optionally, a lifecycle can also have exception states to
represent unusual situations. One lifecycle can have multiple exception states
but there can be no more than one exception state per normal state.
However, several normal states can use the same exception state. A lifecycle
can be suspended by moving from a normal state to an exception state
and this suspension can be temporary or permanent. At that point, it can
only be resumed to the same normal state or back to the base state. In the
figure on the previous page, OnHold is an exception state associated with
UnderReview. For example, the OnHold state could be used to handle the
situation where the candidate may be sick and unavailable for interview.

The following screenshot shows the DAB screen for editing a state:

It is also possible to schedule an automatic state transition at a predefined date
and time. This feature can be used to prevent objects from getting stuck in a state
indefinitely. This feature is implemented via a job that moves objects out of the
specific state at a given date and time.

•

Chapter 12

[175]

A state can define how object attributes (properties) behave while an object is in
this state. An attribute may get a new value in this state. The label and help may
be changed for the attribute. The state can also specify whether the attribute will
become read-only, nullable, or hidden while the object is in this state. An attribute
can be made modifiable while the overall object is immutable when it is in this state.

Note that, unlike for workflows, there is no concept of a template and instances for
lifecycles. Information related to the lifecycle state of an object is captured in the
object itself. The following object properties, inherited from dm_sysobject, capture
this information:

1. dm_sysobject.r_policy_id identifies the lifecycle applied to the object.
This is shown in the following figure:

2. dm_sysobject.r_current_state identifies the current state of the object in
the associated lifecycle.

3. dm_sysobject.r_resume_state identifies the normal state to resume to, if
the current state is an exception state.

www.allitebooks.com

http://www.allitebooks.org

Lifecycles

[176]

An object can be attached to a lifecycle and be processed by a workflow at
the same time. In fact, this combination provides great flexibility in terms
of implementing and enforcing business rules.

Recall that an object is processed by a workflow in the form of a package
component. A package can have multiple components and
dmi_package.r_component_id stores the object IDs of its components.

State Transitions
The sole purpose of a lifecycle is to move objects through the states in the lifecycle
and everything of interest happens during or right after a state transition.

When an object changes state from a normal state to another normal state it is called
promotion or demotion. Promotion moves an object from one normal state to the
next normal state within its lifecycle. Demotion can move the object from one normal
state to the previous normal state or to the base state.

Conditions may be configured on a state that specify when demoting from this state
leads to the base state rather than to the previous state. It should be obvious that
promotion is not possible from the final state and demotion is not possible from the
base state.

When an object changes state between a normal state and an exception state it is
called suspension or resumption. An object can be suspended from a normal state to
the associated exception state. From an exception state, the object can be resumed to
the state from where it was suspended.

When a transition from state A to state B is triggered the following sequence of steps
is executed:

1. Evaluate entry criteria for state B. If true, perform step 2.
2. Perform entry actions for state B. If they complete successfully perform step 3.
3. Change state to B.
4. Perform post-entry actions for state B.

Chapter 12

[177]

The following flowchart shows the steps in a better way:

Now, let's see the steps in more detail.

Entry criteria for a state are the conditions that must be met before promote,
suspend, or resume operations can move an object to this state. Entry criteria are also
checked when a lifecycle is attached to an object, since the object enters the initial
state at this point. The criteria can be specified as Boolean expressions on object
properties or as Java or Docbasic procedures. For one lifecycle either all entry criteria
procedures are Java or all are Docbasic; they cannot be mixed.

A demote operation does not check for entry criteria. Also entry criteria
are bypassed for the lifecycle owner and superuser and are not enforced
by the Content Server in these cases.

Entry actions are performed if the entry criteria evaluate to true. If the entry actions
complete successfully, the object enters the new state. Entry actions can be standard
system-defined or custom user-defined ones. At run time, system-defined actions are
performed prior to user-defined actions.

www.allitebooks.com

http://www.allitebooks.org

Lifecycles

[178]

The standard system-defined actions include the following:

1. Set Attribute: Set a value for a specified property
2. Add to Repeating Attribute: Add a value to a repeating property
3. Remove from Repeating Attribute: Remove a value from a

repeating property
4. Add Version Label: Add a version label
5. Remove Version Label: Remove a version label
6. Set Owner: Set owner name (change owner)
7. Set Permission Set: Assign a permission set (change permission)
8. Link to New Location: Link the object to another folder/cabinet using a

folder path or a location alias. The $value() keyword can be used to utilize
property values in specifying location. $value() was discussed in Custom
Types (Chapter 9).

9. Remove Link from Existing Location: Remove a link to the object from a
folder/cabinet

10. Move All Links to Location: Move all the links to the object to another
folder/cabinet

11. Request Rendition: Request a rendition of the object

The user-defined actions can be Docbasic procedures or Java methods.

Post-entry actions are performed right after entering the new state. For example,
if the object represents web content and the state is Active a post-entry action may
publish the content automatically. Another example of a post-entry action is to
start a workflow on the object. Post-entry actions can also be implemented in Java
or Docbasic.

The security configuration for lifecycle action (entry action and post-entry action)
execution can be set up globally for a repository in dm_docbase_config.a_
bpaction_run_as. This property can be set to one of the following values:

1. session_user: Current user (default value)
2. superuser: Superuser
3. lifecycle_owner: Lifecycle owner
4. Specific username

The user for running the lifecycle actions must have the appropriate permissions for
performing those actions. For example, if an action changes the location of the object
the user must have Change Location extended permission.

Chapter 12

[179]

Use
Once a lifecycle has been installed into the repository, it can be used with the objects
of types supported by the lifecycle. A lifecycle can be applied to an object of one
of the associated types and then the object progresses through the lifecycle states
according to the configured rules.

When a lifecycle is applied to an object, the object enters the initial state. An object
can only be associated with one lifecycle at a time. Since different versions of an
object are two separate objects, they can be attached to different lifecycles.

A default lifecycle can be specified for a custom type. When an object
is created for this custom type, the default lifecycle can be applied to it
without explicitly selecting the specific lifecycle. This capability removes
the need for the end users to identify a specific lifecycle.

In order to apply a lifecycle to an object, the user must have relate permission on the
lifecycle or be the object owner.

An object can change state manually or automatically. For example, a workflow
activity can result in a change of state. Changing the state of an object requires Write
permission and Change State extended permission on the object.

In Webtop, the lifecycle ID and state for an object can be viewed on the
property sheet.

Modification
It is possible to modify a lifecycle after it has been installed and applied to objects. If
the lifecycle needs to be edited, it is uninstalled and objects using this lifecycle cannot
change their states. Once the modifications are completed, the lifecycle should be
checked in, validated, and installed again.

It is recommended not to create multiple versions of one lifecycle. The
lifecycle should be checked in as the same version.

www.allitebooks.com

http://www.allitebooks.org

Lifecycles

[180]

Help—Some DQL Queries
While DAB and Webtop can be used to interact with objects and lifecycles, the
following queries can be used to obtain specific information directly.

The following DQL query identifies the lifecycle ID, current state, and the resume
state (meaningful only if the current state is an exception state) for a document. Note,
however, that all of this information is system data (internal) and not user-friendly.
This information neither names the policy nor the states; they are all numbers.

SELECT r_policy_id, r_current_state, r_resume_state
FROM dm_document
WHERE object_name like 'MyDocument%'

The user-friendly information can be obtained from the lifecycle separately or by
joining with the above query. The following query lists information about the states
in a lifecycle named Resume:

SELECT object_name, state_name, state_description, state_class
FROM dm_policy
WHERE object_name = 'Resume'

Note that the state properties queried above are repeating properties and list all the
states. Information about a particular state cannot be extracted using an index, such
as state_name[0], in a DQL query. All the repeating values are retrieved when a
repeating attribute is selected. However, DFC can retrieve values at specific indices.

Another helpful query can display the status of each lifecycle. For lifecycle status,
r_definition_state value equal to 0 means draft, 1 means validated, and
2 means installed.

SELECT object_name, r_definition_state
FROM dm_policy

Documentum Product Notes
Lifecycles are designed using the lifecycle editor in Documentum Application
Builder. Typically, lifecycles are bundled in DocApps along with workflows and
other customizations. Lifecycles provide powerful automation capabilities that can
be used independently of workflows.

Chapter 12

[181]

Checkpoint
At this point you should be able to answer the following key questions:

1. What is a lifecycle? What purpose does it serve? How is it different from a
workflow?

2. What are states, state transitions, entry criteria, entry actions, post-entry
actions?

3. How can one apply lifecycles and check object states?

Test Your Understanding
1. A lifecycle cannot be used without a workflow (True/False).
2. In order to use a lifecycle:

a. It must be instantiated
b. It must be installed
c. It must be applied to an object
d. None of the above

3. The entry criteria are evaluated on every state change (True/False).
4. If a valid lifecycle has a Java-based entry action, the following can be added

to the lifecycle while still keeping it valid:
a. Another Java-based entry action
b. A Java-based post-entry action
c. A Docbasic-based entry action
d. A Docbasic-based post-entry action

5. For applying a lifecycle, the user must know its name (True/False).
6. It is not sufficient for entry criteria to pass for a state change to succeed

(True/False).
7. A lifecycle is stored as an object of type:

a. dm_lifecycle

b. dmi_lifecycle

c. dm_policy

d. dmi_policy

www.allitebooks.com

http://www.allitebooks.org

Lifecycles

[182]

8. The lifecycle state of an object is stored in:
a. Properties of the object
b. Properties of the lifecycle
c. Properties of the lifecycle instance
d. None of the above

9. One normal state can be associated with:
a. One exception state
b. One exception state but that exception state cannot be associated with

another normal state
c. More than one exception state
d. None of the above

10. A lifecycle action can be run as:
a. Superuser
b. Lifecycle owner
c. Current user
d. A specific user

Part 5
Advanced
Concepts

Aliases

Virtual Documents

www.allitebooks.com

http://www.allitebooks.org

Aliases
In this chapter, we will explore the following concepts:

Creating aliases and alias sets
Referencing aliases
Alias resolution

Customization—Reusability and
Portability
Documentum customization involves multiple aspects at various architecture layers
and these customizations can easily become fairly complex. This complexity can
be compounded by the fact that developing and deploying customizations often
involves multiple environments—development, QA, and production are typical.
Further, multiple departments in an enterprise may have separate repositories of
their own.

For example if there are two departments and three environments for each
department, it leads to a total of six repositories if a clean separation is maintained.
Ideally, customization developed in one repository should be easily ported to all
these repositories. This portability is achieved by parameterizing everything that can
be different across these repositories such that the parameters specific to a repository
can be specified/evaluated when the customization is deployed to a repository.

The customization artefacts are bundled together in DocApps and making
customizations portable effectively means making DocApps and their contents
portable. Documentum supports the use of aliases, which act as placeholders for
values that can be inserted at an appropriate time before they are needed. Thus,
aliases can be used to handle the differences among repositories and they get
replaced with values specific to the repository when they are deployed and used
within a specific repository.

•
•
•

www.allitebooks.com

http://www.allitebooks.org

Aliases

[186]

For example, the following figure shows a DocApp that references the aliases named
interviewer and dept_vp. These aliases could be used for providing appropriate
permissions to these users. However, each repository is responsible for providing the
values for these aliases such that they can be dynamically determined. The real users
are different in different repositories but they get similar rights if they replace the
same alias reference.

An alias can represent a user, a group, a location (folder path within a repository),
or a permission set—these are the typical aspects that vary across repositories. An
alias set bundles several aliases and, optionally, their values together to form a
key mechanism for making customizations reusable and portable. In addition to
the portability benefits across repositories, aliases provide similar benefits within a
repository in situations where parameterizing is helpful.

A simplistic, but fundamentally sound, view of alias sets is that of
a lookup table containing key-value pairs. Each row in the table
corresponds to an alias.

Aliases
An alias is a placeholder name, which needs to be replaced with a value before
it can be used. For example, suppose an interviewer needs to be granted certain
permissions on a candidate resume, but interviewers can be different for different
candidates. In this case, an alias can be created for the interviewer that can be
replaced with a real user when the permissions are to be granted to the interviewer.

Chapter 13

[187]

In a way, an alias acts like a variable in a program that can be specified by a name
but whose value is used when the program is run. This allows the developer to
create only one permission set and many alias sets rather than many permission sets.
Managing a permission set is more complex than managing an alias set. Further,
many similar permission sets may become a nightmare to manage when changes
may be required for all of them.

In general, an alias can represent a user, a group, a folder location (path in a
repository), or a permission set. However, when an alias is stored its type identifies
the specific intent for each alias in terms of an alias type:

Unknown (0)
User (1)
Group (2)
User or Group (3)
Cabinet path (4)
Folder path (5)
ACL name (6)

In most cases, the Content Server is responsible for recognizing that a property
actually contains a reference to an alias and for resolving it (replacing the
placeholder with a desired value) at an appropriate time. There are only certain
properties of certain types that the Content Server examines for the presence of an
alias. These properties are as listed:

Property Type Description
owner_name dm_sysobject Owner of an object
acl_domain dm_sysobject Owner of the permission set associated with an

object
acl_name dm_sysobject Name of the permission associated with an object
r_accessor_
name

dm_acl User or group getting permission in this
permission set template

performer_name dm_activity Performer of a workflow activity

There is one other place where aliases are recognized—in the folderSpec argument
of the link and unlink DFC methods. This argument specifies the folder path (or
folder object ID) where an object is linked or unlinked. The signatures for these
methods for sysobjects are as shown:

public void link (String folderSpec) throws DfException
public void unlink(String folderSpec) throws DfException

•

•

•

•

•

•

•

www.allitebooks.com

http://www.allitebooks.org

Aliases

[188]

Note that custom attributes are not examined by the Content Server for
the presence of aliases. However, applications (custom code) can examine
custom attributes and provide a resolution mechanism.

Alias Sets
Aliases are stored as sets called alias sets. An alias set is stored as an object of type
dm_alias_set. The information about each alias is stored in three repeating
properties of an alias set, which correspond to each other via identical indices.

Property Description
alias_name Name of an alias
alias_value Value for the alias, may or may not be present
alias_category Type of alias, various types described earlier

Managing Alias Sets
Alias sets can be created in Documentum Application Builder (DAB), Documentum
Administrator (DA), DQL/API queries, or custom DFC applications. The following
figure shows an alias set in DA:

Chapter 13

[189]

Let's now see the same alias set in DAB:

While alias sets can be created and stored unrelated to other objects, they are
typically useful only after being associated with one of the following:

Object Type Property Description
dm_workflow r_alias_set_id Object ID of the alias set used to resolve

performer aliases when the workflow is
created. It is a run-time copy of the alias set
identified in perf_alias_set_id of the
dm_process (workflow template) object.

Session config (non-
persistent)

alias_set Session-level default alias set.

dm_user alias_set_id User-level default alias set.
dm_group alias_set_id Group-level default alias set.
dm_server_config alias_set_id System-level (Content Server level) default

alias set.
dm_policy alias_set_ids Alias sets for a lifecycle.

www.allitebooks.com

http://www.allitebooks.org

Aliases

[190]

One alias name can appear in multiple alias sets and in certain scenarios it may be
desirable as well. There is a mechanism called alias resolution, which is used by
the Content Server for selecting alias sets for looking up the value of an alias. Alias
resolution is described in detail later in this chapter.

Referencing Aliases
When an alias needs to be used as a placeholder its reference is stored using a %
prefix. This is a way to distinguish an alias from other values. An alias is referenced
as %alias_set_name.alias_name or %alias_name. When the alias set name is
omitted from a reference, the alias name is searched for in one or more alias sets
according to the alias resolution rules, which are described later. The following
figure shows how an alias named interviewer is referenced in another object:

A permission set template (also known as ACL template) is a special type of object
that uses aliases. A permission set that contains one or more alias references to users
or groups in the r_accessor_name property is known as permission set template.
The type of a permission set is identified by the dm_acl.acl_class property, which
can have one of the following values:

Permission Set Type Description
0 Private permission set
1 Permission set template
2 Instance of permission set template
3 Public permission set

Permission sets are discussed in detail in Object Security (Chapter 7).

Chapter 13

[191]

Permission set templates can be created in DAB only; Webtop or DA user
interfaces do not support creation of permission set templates currently,
as of Documentum 5.3 SP4 release.

Resolving Aliases
Aliases provide placeholders for users, groups, locations, and permission sets. When
a real value is substituted for a placeholder (alias reference), the alias is said to be
resolved. Thus, alias resolution completes the missing information such that the
objects and properties dependent on the aliases become available for use.

Alias resolution looks up the appropriate value for an alias name from an alias
set. If the alias set name is present in the reference, the process of lookup is
straightforward—pick up the value corresponding to the alias name from the
specified alias set.

On the other hand, if the alias set name is omitted the Content Server tries to locate
an appropriate alias set to look up the alias value. This lookup process utilizes a
concept referred to as the scope of alias sets.

An alias scope is the visibility of an alias set for resolving aliases in various
situations, including the object using the alias, the context, and the values of other
properties. If the alias set name is present in a reference, the alias scope is the alias set
name. When the reference does not include an alias set name, a sequence of alias sets
is searched. This sequence of alias sets (scopes) is different for different objects and
contexts. The following figure shows how an alias is resolved after checking three
alias sets for the presence of an alias named interviewer:

www.allitebooks.com

http://www.allitebooks.org

Aliases

[192]

The Content Server follows different approaches for alias resolution in the
following situations:

1. A workflow activity needs to be started and its performer refers to an alias
2. A sysobject is saved
3. The DFC link or unlink method is invoked
4. A permission set template is assigned to an object

The alias resolution approaches for these situations are described in detail now.

Workflow Alias Resolution
A workflow activity (dm_activity) may contain an alias reference without an alias
set name in the performer_name property. This alias is resolved when the activity
is started in a workflow instance. The sequence of alias scopes searched for this
purpose is dependent on the value of resolve_type property of the activity. The
value of resolve_type can be normal resolution path (0), alias set associated with
incoming package (1), or alias set associated with user or group (2). Let's now look at
the resolution sequence for each of these situations.

Default Sequence
When dm_activity.resolve_type = 0 is true for an activity, the following sequence
of alias scopes is searched to resolve any alias reference in performer_name:

1. The alias set specified on the workflow instance—
dm_workflow.r_alias_set_id. The workflow instance gets a copy of the
alias set specified in the corresponding workflow template (dm_process.
perf_alias_set_id).

2. The alias set present in the session, i.e. non-persistent session config
object—alias_set.

3. The alias set of the performer of the previous activity
– dm_user.alias_set_id.

4. The alias set of the default group of the performer of the previous
activity—dm_group.alias_set_id.

5. The alias set of the server configuration—dm_server_config.alias_set_id.

Chapter 13

[193]

Package Sequence
When dm_activity.resolve_type = 1 is true for an activity, the following sequence
of alias scopes is searched to resolve any alias reference in performer_name. The
alias set of a package component is used—dm_sysobject.r_alias_set_id. The
components are examined in the order they are stored within the package. Packages
are discussed in Workflows (Chapter 11).

There can be multiple package components, so there is an additional step of first
identifying the appropriate package. If dm_activity.resolve_pkg_name is present,
the components of this package are searched. Otherwise, packages are examined in
the order of their storage as described earlier.

User Sequence
When dm_activity.resolve_type = 2 is true for an activity, the following sequence
of alias scopes is searched to resolve any alias reference in performer_name:

1. The alias set of the performer of the previous
activity—dm_user.alias_set_id.

2. The alias set of the default group of the performer of the previous
activity—dm_group.alias_set_id.

Resolution Process
The resolution process for aliases in workflows consists of two key steps—the
referenced alias is located using scopes as described earlier and then the resolved
alias is validated to be of a suitable type.

The validation is carried out by matching dm_activity.performer_type against
the alias_category on the selected alias set. The performer type can be any of
the following:

Workflow supervisor (0)
Repository owner (1)
Last performer (2)
User (3)
All members in a group (4)
Any user in a group (5)
The member who has the least number of tasks (6)
Some members of a group, or some users in the repository (8)
Some members of a group, or some users in the repository sequentially (9)
A user from a work queue (10)

•
•
•
•
•
•
•
•
•
•

www.allitebooks.com

http://www.allitebooks.org

Aliases

[194]

Valid alias types (alias_category) are user (1), group (2), and user or group (3).

Note that there is no valid performer type with value 7 in version 5.3.

It is possible for the resolution process to be unsuccessful; no suitable substitution is
found for the placeholder alias reference. This can happen in three cases:

1. The referenced alias name is not found in any of the scopes.
2. The alias name is found but there is no corresponding value.
3. The alias name is found but the alias type is not compatible with the

performer type on the activity.

When the alias resolution fails for any reason, a warning is generated and the
workflow supervisor is notified. The task corresponding to the activity is also
assigned to the supervisor.

Sysobject Alias Resolution
When a sysobject is saved, the following sequence of scopes is examined:

1. Alias set of the sysobject—dm_sysobject.r_alias_set_id.
2. Alias set present in the session (alias_set).
3. Alias set of the current user—dm_user.alias_set_id.
4. Alias set of the default group of the current user—dm_group.alias_set_id.
5. Alias set of the server configuration—dm_server_config.alias_set_id.

The same sequences are also examined for the alias resolution for the
folderSpec argument of DFC link and unlink methods.

Permission Set Template Alias Resolution
When a permission set template (ACL template) is assigned to an object, a copy of
the permission set template is created, the alias references in the accessor names are
resolved, and references are replaced with actual values. Finally, this copy of the
permission set is assigned as a custom permission set to the object. The sequence of
alias sets examined in the resolution process depends on whether a lifecycle has been
applied to the object. Let's now have a look at the two cases.

Chapter 13

[195]

Object with Lifecycle
When an object is associated with a lifecycle, its alias set has possibly been
assigned by the lifecycle. Therefore, the alias resolution does not look at any alias
set other than that currently assigned to the object. The alias set of the sysobject is
dm_sysobject.r_alias_set_id.

Object without Lifecycle
When a permission set template is assigned to an object without a lifecycle, the
following sequence of alias sets is examined:

1. Alias set present in the session—alias_set.
2. Alias set of the current user—dm_user.alias_set_id.
3. Alias set of the default group of the current user—dm_group.alias_set_id.
4. Alias set of the server configuration—dm_server_config.alias_set_id.

The search for alias value stops with an error if the alias name is found,
but no value is present in that alias set.

Lifecycle Alias Set Resolution
When a lifecycle with multiple alias sets is applied to an object, it needs to be
determined which alias set should be applied to the object. Note that this process
is not resolving an alias, rather it is identifying an alias set to apply, which can
later be used for alias resolution. As a result of the following process,
dm_sysobject.r_alias_set will be set if an appropriate alias set is found:

1. Check if alias_set in session config is present in dm_policy.alias_set_ids
 for the lifecycle. If found use this, otherwise continue.

2. Check if dm_user.alias_set_id for the current user is present in
dm_policy.alias_set_ids for the lifecycle. If found use this,
otherwise continue.

3. Check if dm_group.alias_set_id of the default group for the current user
is present in dm_policy.alias_set_ids for the lifecycle. If found use this,
otherwise continue.

4. Check if dm_server_config.alias_set_id for the server configuration is
present in dm_policy.alias_set_ids for the lifecycle. If found use this,
otherwise continue.

5. Use the alias set specified by dm_policy.alias_set_ids[0], also known as
the default alias set of the lifecycle.

www.allitebooks.com

http://www.allitebooks.org

Aliases

[196]

Help—Some DQL Queries
Some helpful queries related to alias sets are described here. These queries are based
on the information provided in this chapter.

The following query retrieves aliases (names, values, and types) present in an
alias set:

SELECT alias_name, alias_value, alias_category
FROM dm_alias_set
WHERE object_name = 'my_alias_set'

The following query retrieves the performer names for an activity:

SELECT performer_name
FROM dm_activity
WHERE object_name = 'Screen Resume'

The following query retrieves the accessor names for permission set templates:

SELECT r_object_id, object_name, r_accessor_name
FROM dm_acl
WHERE acl_class=1

Documentum Product Notes
Alias sets can be created in DAB, DA, DQL/API, or a custom DFC application.
The Content Server resolves alias references in certain properties of certain types
of objects and in the folderSpec argument of link and unlink DFC methods.
The custom properties can contain alias references but the Content Server does not
resolve them.

ACL templates can only be created in DAB.

Checkpoint
At this point you should be able to answer the following key questions:

1. What are aliases and alias sets? What purpose do they serve?
2. How are alias references used and resolved in various scenarios?

Chapter 13

[197]

Test Your Understanding
1. An alias set and a permission set are one and the same thing (True/False).
2. A regular permission set does not contain any alias references (True/False).
3. An alias can contain a value of the following type:

a. User
b. Folder path in repository
c. Folder path on the client
d. Permission set name

4. The Content Server resolves aliases for the following properties:
a. dm_acl.performer_name

b. dm_activity.r_accessor_name

c. dm_sysobject.acl_domain

d. dm_sysobject.acl_name
5. It is possible to link an object to a folder, without explicitly identifying the

folder by its path or object ID (True/False).
6. The following are valid alias references:

a. %purchasing.manager%

b. %purchasing%.manager

c. %purchasing.manager

d. %manager

7. If a permission set template is applied to four different objects, how many
new custom permission sets are created?

a. 0
b. 3
c. 4
d. 5

8. When aliases are resolved for an object with a lifecycle, how many alias sets
may be examined?

a. 0
b. 1
c. 3
d. 4

www.allitebooks.com

http://www.allitebooks.org

Aliases

[198]

9. Alias resolution for a workflow activity can fail in the following ways:
a. Alias name is not found
b. Alias value is not found
c. Alias value is not compatible with performer type
d. None of the above

10. The algorithm for alias resolution uses the concept of:

a. Locality
b. Persistence
c. Scope
d. None of the above

Virtual Documents
In this chapter, we will explore the following concepts:

Managing virtual documents
Using virtual documents

Managing Content Hierarchically
The hierarchical content is fairly common in everyday life. A book is an excellent
example of hierarchical content. Books are usually organized into chapters, chapters
into sections, sections into sub-sections, and there can be more layers in such a
hierarchy. A hierarchical organization is frequently used with large content to
facilitate its management. While this benefit applies even to content that is not in
electronic form, significant benefits are possible for electronic content. This is what
the hierarchy for a book looks like:

•

•

www.allitebooks.com

http://www.allitebooks.org

Virtual Documents

[200]

While the hierarchical organization makes large content manageable, it also opens
up new possibilities for online collaboration. For example, suppose a team working
on creation of a book consists of two authors, two subject matter reviewers, and one
editor. It is highly desirable that all these participants be able to work on various
portions (sometimes even the same portions) of the book in order to complete their
tasks efficiently and effectively.

Documentum enables hierarchical content management through virtual documents.
Virtual documents allow parts of a document to be treated as independent
documents. From another perspective, a set of independent documents can be
combined and treated as one document.

Virtual documents offer various benefits. One document can be reused in multiple
virtual documents. While this may not be readily applicable to books (content is
rarely repeated in an identical form across multiple books), it is fairly common
in internal enterprise documents or product documentation. For example, the
administration guide and the user guide for a product may share some common
sections, which can be managed independently and reused in these two guides.

Collaboration is another great capability where multiple people can own various
components of a virtual document. This capability enables each contributor to create
and update the individually owned content while allowing a reviewer to look at
the combined document as a whole. Virtual documents also help to overcome some
technical challenges in electronic form. Usually one document has one format—doc
for MS Word, pdf for Adobe Acrobat, ppt for Microsoft PowerPoint, etc. A
virtual document allows documents in various formats to be combined into
one virtual document.

A virtual document with various component documents evolving somewhat
independently can become unwieldy. This is particularly true if the overall
document needs to continue to evolve while it is also published for the general
public periodically. For example, a corporate policy document may keep changing
over time while approved versions get published for general use.

Documentum supports taking snapshots of virtual documents to deal with such
challenges. A snapshot is a record of a virtual document at a specific point in time
and exists separately from the virtual document itself. Snapshots enable retrieval of
the exact form of the virtual document at various points in time. For the example of a
book, the different editions of the book can be maintained as snapshots.

Chapter 14

[201]

Virtual Documents
A virtual document is a container for component documents, which are either
simple documents of type dm_sysobject (or a subtype excluding dm_folder and
its subtypes) or virtual documents. Even though its primary purpose is to act as a
container, a virtual document object can have content of its own.

Note that it is a recursive definition—the definition of virtual document,
in turn, uses the term virtual document. In computer science, recursive
definitions facilitate description of tree-like structures. We will see in a
moment that virtual documents also have a tree structure.

Note that there is no limit on the depth of the hierarchy—a virtual document can
contain another virtual document, which can contain another virtual document, and
so on. The containment relationship between a virtual document and its component
is known as nesting.

The components in the virtual document hierarchy are ordered, which means that
there is a sequence among the direct components of one virtual document that, in
turn, leads to a sequence among all the components in the complete hierarchy.

www.allitebooks.com

http://www.allitebooks.org

Virtual Documents

[202]

Consider the book example again. The top level is just the book and the level below
is chapters, which are ordered as 1, 2, 3, etc. The level below chapters consists of
sections, which may be ordered as 2.1, 2.2, 2.3, etc. for Chapter 2 and similarly for
others. There can also be subsections such as 2.2.1, 2.2.2, etc.

A virtual document and its components have a parent-child relationship. One virtual
document can have many children. At the same time, one document can be a
component of multiple virtual documents—this is how a document is reused in
multiple virtual documents. For each document that is a component of a virtual
document, the membership information (link) is stored in an object of type
dmr_containment.

Managing Virtual Documents
Virtual documents can be managed using Webtop. Webtop supports virtual
document operations through menu items, the browser-tree component, and the
Virtual Document Manager component. Some of the menu options related to virtual
documents are shown in the next screenshot:

Chapter 14

[203]

Creating Virtual Documents
A virtual document is created by converting a simple document to a virtual
document. A virtual document is identified by the dm_sysobject.r_is_virtual_doc
property being set to 1.

Exploring a Virtual Document Structure
A virtual document is also shown at the folder level in the browser tree within
Webtop. This enables browsing of the virtual document components in a way similar
to exploring folder contents. Opening a virtual document in Webtop opens it in the
Virtual Document Manager component. Let's now see a virtual document open in
the Virtual Document Manager interface:

www.allitebooks.com

http://www.allitebooks.org

Virtual Documents

[204]

Modifying Virtual Documents
A virtual document can be modified in the following key ways:

1. Add a new component
2. Remove an existing component
3. Reorder existing components

In Webtop, when a virtual document is modified via these operations
on the components, the parent virtual document is automatically
checked out.

A document can be added to a virtual document in three ways.

1. An existing document can be added to the clipboard and then added as a
component to a virtual document. The clipboard holds files for moving,
copying or linking to another location in the repository. It can hold multiple
files at once.

2. A virtual document can be chosen and components added to it using the
file selector interface. The file-selector interface enables users to browse the
repository and select multiple objects from different locations.

3. A new document can be created and added as a component of a virtual
document in one interaction.

Let's see how the file selector enables users to add multiple components to a
virtual document:

Chapter 14

[205]

A component of a virtual document can be selected and removed.

The components of a virtual document can be reordered in Webtop in two ways—
using drag and drop or using a reorder interface. With drag and drop the reposition
option moves a component to its new position. The add option creates a copy of the
dragged component in the new position. Using the reorder menu option provides an
interface to move components up or down in the order.

This screenshot shows reordering of virtual document components in Webtop:

Virtual Documents—Versions
Each component of a virtual document can be independently managed and
versioned. While this feature provides flexibility, it also leads to some challenges
with regard to dealing with versions of the virtual document as a whole. Fortunately,
Documentum provides additional capabilities to deal with such requirements.

Version labels can be managed for a virtual document in one of two ways—only for
the (root) virtual document object or for the entire virtual document including its
components and all indirect descendants. Thus, a version label can be added to or
removed from the entire virtual document tree in the usual manner.

Since each component of a virtual document can be versioned independently, there
are multiple ways for a virtual document to pick the versions of its components. It is
possible to specify a binding rule for a component that specifies a particular version
of the document to be bound to a containing virtual document.

www.allitebooks.com

http://www.allitebooks.org

Virtual Documents

[206]

In the Virtual Document Manager, the menu option Fix to Version can be used to
specify a binding rule as shown:

Using the Fix to Version option, the following alternatives are available for the
binding rule:

1. Use the CURRENT version of the component document.
2. Use a specific version number of the component document.
3. Use a specific version label of the component document.
4. Do not fix a specific version and allow the component version to be

determined at snapshot time. This option is typically useful for applications
that can take user input or preferences into account to make this decision.

At the virtual document level, a standard binding rule (default version
level) can be specified for its components. The setting uses CURRENT by
default, and applies to all components that don't have a more specific
binding rule specified (are not fixed to a specific version).
The standard binding rule is visible with the label Default Child Version
in the Virtual Document Manager figure shown earlier in this chapter.

A virtual document is an evolving document. For example, consider a book being
managed as a virtual document for which no specific binding rules have been set.
This means that the virtual document always considers the current versions of
descendants to be participating the hierarchy. If a chapter document is versioned, the
new current version of the chapter becomes a part of the book. The complete state of
a virtual document at a point in time can be recorded or archived using a snapshot.

Chapter 14

[207]

A snapshot of a virtual document describes how to archive an edition of a virtual
document at a particular point in time. It records the exact structure of the virtual
document at that point in time and enables its retrieval later when the virtual
document may have changed. In one sense, it is a version of the complete virtual
document hierarchy.

A snapshot of a virtual document is stored using objects of type dm_assembly, where
each assembly object represents a component in the virtual document hierarchy. The
next figure illustrates how dm_assembly objects represent a snapshot of a virtual
document. The hierarchy in the middle shows a virtual document named book.
(Versions of each component are shown as stacked boxes.)

Suppose a snapshot of a book named book_snap was created. Later on Chapter1 and
Section1.1 were versioned. The snapshot is represented by a dm_document object
named book_snap and each of the components is represented by a dm_assembly
object in the snapshot. All of the dm_assembly objects in this snapshot point to
book_snap via their book_id property. The dm_assembly object corresponding to
Chapter2 illustrates some key attributes.

The represented component is pointed to via component_id. The chronicle ID
of the component is stored in component_chron_id. The parent of the represented
component is stored in parent_id. The level in the virtual document is represented
by depth_no, where the depth of the root document is 0. The path up to the
component, starting from the root document, is stored in path_name. There is
also an order_no attribute, which represents the order among all the components in
this hierarchy.

www.allitebooks.com

http://www.allitebooks.org

Virtual Documents

[208]

Note that even after a snapshot is taken it is possible for the snapshot to be modified.
For example, consider the state illustrated by the previous figure. Now Chapter2
is modified and checked in as the same version. In this case, the virtual document
contents retrieved using the snapshot will be different from the contents at the time
the snapshot was taken.

It is also possible for Chapter2 to be deleted. In order to prevent such changes to
the component versions included in snapshot, the snapshot can be frozen. Freezing
a snapshot sets r_immutable_flag to 1 on component versions included in the
snapshot and prevents deletion or alteration of the content of these versions. A
frozen snapshot can later be unfrozen as well to allow modifications.

A snapshot can also be viewed just like a virtual document using the Virtual
Document Manager component.

Help—Some DQL Queries
DQL provides the keyword IN for checking direct membership of a component in a
virtual document. Suppose that the virtual document in the book example has the
object ID 0900006480002533. The following query retrieves information about all
the chapters and the virtual document itself:

SELECT r_object_id, object_name
FROM dm_sysobject
IN DOCUMENT ID('0900006480002533')
WITH ANY r_version_label = 'CURRENT'

If all the descendants in the hierarchy are desired, the keyword DESCEND can be used
after ID().

Further, suppose that books are being represented as a custom type book_doc and
stored somewhere in the folder tree under a cabinet named books. The following
query retrieves the names of all such books:

SELECT object_name
FROM book_doc
WHERE r_is_virtual_doc = 1
AND FOLDER('/books', DESCEND)

Chapter 14

[209]

Documentum Product Notes
Webtop supports virtual document preferences for users, as shown:

These preferences specify the default behavior on opening, copying, or checking
out a virtual document. Opening a document can mean opening the structure of the
document or opening the content of the root virtual document object, if it does have
any content. A user may choose one of these alternatives or to be prompted when
opening a virtual document.

Similarly, copying a virtual document may mean any of the following:

Only the root document is to be copied.
The root document is to be copied along with the links to the
existing components.
All the descendants are also to be copied.

•

•

•

www.allitebooks.com

http://www.allitebooks.org

Virtual Documents

[210]

The user may choose one of these alternatives or to be prompted when copying a
virtual document.

If the user attempts to check out an item as a part of the virtual document and it is
locked by another user, the only options for the user are to cancel the operation or to
obtain a read-only copy. The user may specify a preference to get a read-only copy or
to be prompted each time.

The user may also specify a preference to show broken bindings, which shows the
descendants linked from the virtual document hierarchy that are no longer present
in the repository.

XML content is hierarchical by nature and Documentum provides rich XML
management capabilities via XML applications, which make extensive use of virtual
documents. The capabilities of XML applications include:

Chunking out content and granting different permissions to different groups
for accessing content chunks
Reusing content chunks in multiple documents and publishing them to
multiple locations
Using XML chunks as wrappers for non-XML documents
Constructing Web pages dynamically with XML content chunks

XML applications can automatically recognize various types of XML documents
and rules can be set up for aspects such as storage locations, need to create chunks,
extraction and assignment of metadata, security configuration, etc. On import
or checkin, the XML content is automatically processed according to these rules,
facilitating efficiency and robustness in XML content management.

Checkpoint
At this point you should be able to answer the following key questions:

1. What are virtual documents? What purpose do they serve?
2. How are virtual documents created and managed?
3. How do component versions affect virtual documents? What options are

available for managing versions with virtual documents?

•

•

•

•

Chapter 14

[211]

Test Your Understanding
1. A virtual document enables multiple users to collaborate for creating one

document (True/False).
2. A virtual document is stored as an object of the following type:

a. dm_virtual_doc or its subtype
b. dm_vdocument or its subtype
c. dm_sysobject or its subtype
d.	 None of the above

3. A virtual document can have objects of the following types as components:
a. dm_document

b. dm_folder

c.	 Virtual document
d.	 None of the above

4. At any time, a document can be a component of:
a.	 At most one virtual document
b.	 Any number of virtual documents
c.	 Any number of virtual documents, as long as they don't share any

components
d.	 None of the above

5. Components in a virtual document follow these constraints:
a.	 All components have the CURRENT version
b.	 All components have the same version, but it doesn't have to be cur-

rent
c.	 Each component can have any version independently of the other

components.
d.	 None of the above

6. Once a snapshot of a virtual document has been created, it is always possible
to recreate the exact same state of the virtual document (True/False).

7. An object of dm_assembly type represents:
a.	 One snapshot of a virtual document
b.	 One object's membership in virtual documents
c.	 One component of one snapshot
d.	 None of the above

www.allitebooks.com

http://www.allitebooks.org

Virtual Documents

[212]

8. An object of dmr_containment type represents:
a.	 One component of a snapshot
b.	 One parent-child relationship in one virtual document
c.	 One virtual document
d.	None of the above

9. An object cannot be deleted while it is a component of a virtual document
(True/False).

10. The Content Server honors the virtual document preferences for a user
(True/False).

Practice Test 1
Practice tests are immensely valuable for test preparation since they provide a reality
check on the candidate's readiness and point to the areas that need additional work.
They are also useful in gauging if any tuning is necessary with regard to meeting the
time limit for the test.

Always read the instructions carefully before starting the test. You will
find the real test to be somewhat different and, therefore, it is even more
important to pay attention to the instructions. Initially, do not spend more
than a few seconds on a question that you are not sure about. Mark it and
move on so that you are able to answer all the questions that you know
the answers to. Afterwards, revisit the marked questions and answer
them. There is no negative scoring so make sure you answer all the
questions, even if you have to guess the answers.

Instructions
Select all correct answers—each question can have multiple correct choices. You have
90 minutes to answer the following 60 questions.

Test
1. Which of the following is (are) not a valid data type(s) for an attribute?

a. Boolean
b. Number
c. Double
d. Date

www.allitebooks.com

http://www.allitebooks.org

Practice Test 1

[214]

2. Which of the following is (are) valid lifecycle operation(s) available in
Webtop?

a. Validate
b. Install
c. Apply
d. Promote

3. The Content Server is responsible for:
a. Creating a repository
b. Managing content and metadata in a repository
c. Creating full-text indexes for content in a repository
d. Enforcing security for content in the repository

4. Which of the following statements is (are) true about virtual documents?
a. Any sysobject can be a component of a virtual document.
b. Checking out the root document automatically locks all the compo-

nents of a virtual document.
c. Components of a virtual document can be in different formats.
d. A new version of a component document always replaces the existing

one in the containing virtual document.

5. Using a web browser as a client for a WDK application, which of the
following is (are) required for accessing content from a Documentum
repository?

a. Application Server
b. Content Server
c. Index Server
d. Webtop

6. A workflow:
a. Models a business process
b. Is a sequence of states that a document passes through
c. Is a network of activities
d. Must have all the performers uniquely identified before it can start

Practice Test 1

[215]

7. A lifecycle:
a. Is a linear sequence of activities
b. Models business rules
c. Identifies all types it can be applied to
d. Can have multiple exception states

8. Which of the following statements is (are) true about ACL and
ACL templates?

a. Both ACL and ACL templates are stored in dm_acl objects.
b. An ACL template can be private.
c. Both ACL and ACL templates can contain alias references.
d. Each ACL is an instance of some ACL template.

9. An alias can be a placeholder for:
a. User
b. Group
c. Sysobject
d. Alias set

10. Extended privileges pertain to:
a. Creating a type
b. Changing location
c. Changing state
d. None of the above

11. An object was checked out at version 3.3 and is being checked in with a
minor increment. The new version can be:

a. 3.3
b. 3.4
c. 3.5
d. 3.3.1.0

www.allitebooks.com

http://www.allitebooks.org

Practice Test 1

[216]

12. Suppose that an object has ID 0900006480001126. What can be the object
type of this object?

 dm_folder
 dm_document
 dm_user
A subtype of dm_document

13. Which of the following conditions will find books with both John and Jane
as authors?

a. WHERE authors = 'Jane' and 'John'
b. WHERE any authors = 'Jane' and any authors = 'John'
c. WHERE any authors = 'Jane' and 'John'
d. WHERE authors = 'Jane' and authors = 'John'

14. A DQL query needs to be written to count all the documents that were
created in the last month and updated this month. Which of the following
attributes would need to be tested?

a. r_modify_date

b. r_last_modify_date

c. r_creation_date

d. r_creation_time

15. There is a need to manage numerous documents that will be created and
managed by different sets of people. These documents will be combined into
a book. Which one of the following ways is the most suited for satisfying this
requirement?

Put each document in a folder of its own.
Create a virtual document to represent the book.
Use Digital Asset Manager to manage this work.
Create a DocApp for each document.

16. Which of the following statements is (are) true about a cabinet?
A folder can be linked into a cabinet.
A lifecycle can be linked into a cabinet.
A cabinet can be linked into a cabinet.
A document can be linked into a cabinet.

a.
b.
c.
d.

a.
b.
c.
d.

a.
b.
c.
d.

Practice Test 1

[217]

17. Which DQL condition finds objects that have good in the subject attribute?
a. WHERE subject has 'good'
b. WHERE subject contains 'good'
c. WHERE subject like 'good'
d. WHERE subject like '%good%'

18. A connection broker becomes aware of the status of a Content Server in the
following manner:

The Connection broker polls the registered Content Server instances
periodically.
The Connection broker polls the registered Content Server instances
when a client request is received.
The Content Server informs the connection broker when it starts up.
No status is kept, all registered Content Server instances are reported
by the connection broker.

19. A document named 2007Taxes.pdf has the following metadata: subject
= 'federal', title = '2007 Taxes', and keywords[0] = 'finance'.
The report document itself contains the word 'US'. The Index Server is not
installed. Which of the following statements is (are) true?

A simple search for 'finance' can find 2007Taxes.pdf.
A simple search for '2007' can find 2007Taxes.pdf.
A simple search for 'Federal' can find 2007Taxes.pdf.
A simple search for 'US' can find 2007Taxes.pdf.

20. A Documentum deployment has full-text indexing enabled. A document was
modified and new text was added to it, which included the word '2008'.
This word was not present in the CURRENT version, in either content or
metadata. A search for '2008' will find this document when:

The modified document has been saved.
The saved document has been checked in.
The checked-in document has been re-indexed.
A specified amount of time has passed after checkin.

a.

b.

c.
d.

a.
b.
c.
d.

a.
b.
c.
d.

www.allitebooks.com

http://www.allitebooks.org

Practice Test 1

[218]

21. There is a dynamic group named on_duty, which has 10 predefined
members but they are considered as non-members at run time, by default. At
run time some of these members can be added to on_duty by:

Content Server
Webtop
Application Builder
Custom client code

22. Which of the following DQL conditions can return more than one result
when querying a repository?

a. WHERE object_name = 'mydoc.txt'
b. WHERE i_chronicle_id = '0900006480001126'
c. WHERE r_object_id = '0900006480001126'
d. WHERE ANY keywords = 'good'

23. A new user has been created in the repository and the user source has not
been set explicitly. When this user tries to log in, the Content Server will try
to authenticate the user against:

Operating System
The internally stored password
An LDAP server configured in an LDAP config
An installed authentication plug-in

24. An organization has some reference data that its workers have stored in
tables. They want these tables to be accessible through DQL. They can use the
following type of query for this purpose:

a. AVAIL TABLE
b. EXPOSE TABLE
c. CREATE TABLE
d. REGISTER TABLE

25. A user failed to promote an object in its lifecycle. Which of the following
permissions should be granted to this user to resolve this problem?

Write
Version
Change State
Run Procedure

a.
b.
c.
d.

a.
b.
c.
d.

a.
b.
c.
d.

Practice Test 1

[219]

26. A user is trying to copy a file /Records/Taxes/2007Taxes.pdf to a folder
/Home/John but is unable to do so. Which of the following can be a reason
for this problem?

The user does not have Read permission on the object
2007Taxes.pdf.
The user does not have Change Location permission on the object
2007Taxes.pdf.
The user does not have Read permission on /Records/Taxes.
The user does not have Write permission on /Home/John.

27. John is working on 8 documents that are located in various folders. He also
frequently accesses documents in a particular folder. He works at three
different computers. How can he save time in accessing these documents and
this folder in Webtop in the best way?

Create shortcuts and save as bookmarks in the browser.
Subscribe to these documents and folder.
Export the documents and work locally.
Check out the document and folder.

28. Jane considers using SQL rather than DQL for better performance. What is
(are) the reason(s) she should not take this approach?

DQL is aware of the object model and makes querying simpler.
Using SQL additionally requires either registering tables or directly
accessing the database.
SQL can never provide better performance than DQL.
There are no problems with this approach.

29. An organization uses Documentum for managing documents. It would
like to utilize the Documentum infrastructure for managing content for its
website as well. Which of the following products should be added to the
infrastructure for serving this objective?

Website Manager
Web Content Manager
Web Publisher
Website Creator

a.

b.

c.
d.

a.
b.
c.
d.

a.
b.

c.
d.

a.
b.
c.
d.

www.allitebooks.com

http://www.allitebooks.org

Practice Test 1

[220]

30. Business users are not able to instantiate a workflow template that they have
been using regularly. What is the likely cause of this problem?

All the workflows created from this template have been halted.
The workflow template owner has been deactivated.
The workflow template has been uninstalled for making changes.
The maximum limit for simultaneous workflows has been reached.

31. Jane is considering some changes to a custom type janes_doc that has
dm_document as the supertype. Which of the following changes will succeed?

Increase the length of the string attribute course
Reduce the length of the string attribute course
Add a double attribute cost
Drop the attribute subject

32. John created a custom type test_doc. Now he is trying to drop this type but
is failing to do so. This could be because:

An object of type test_doc exists in the repository.
A supertype of test_doc exists in the repository.
A subtype of test_doc exists in the repository.
A lifecycle is associated with test_doc.

33. Jane has created a new DocApp named janes_docapp. She wants to look at
how the DocApp is stored. She can find the DocApp and its contents:

On the filesystem of the computer where she used Documentum
Application Builder to create the DocApp
In the repository where she created the DocApp
On the application server
On the Content Server

34. John and Jane are collaborating on a virtual document. They would like to
use a workflow to involve some reviewers to improve the quality of this
document. Which of the following statements is (are) true?

They must convert the virtual document to simple document in order
to use it with a workflow.
They can use a workflow directly with their virtual document.
They must place the virtual document and its components into one
folder and use the workflow on this folder.
They must use Business Process Manager to use a workflow with a
virtual document.

a.
b.
c.
d.

a.
b.
c.
d.

a.
b.
c.
d.

a.

b.
c.
d.

a.

b.
c.

d.

Practice Test 1

[221]

35. Jane found that that a document she has been using from the repository has
changed but its version is still the same. Which of the following can be a
cause for this change?

A new document was imported.
The document was modified and checked in.
A cancel checkout has been performed.
A new branch was created.

36. John checked out version 2.5 of an object. When he checks it back in, the new
version can be:

2.6
2.7
5.0
2.5.2.0

37. The i_chronicle_id property of a rendition identifies:
a. r_object_id of the root object of the version tree
b. r_object_id of the primary format object
c. i_chronicle_id of the primary format object
d. None of the above

38. A custom type resume has dm_document as its supertype. There is an object
named resume.doc of type resume and another named document.doc of
type dm_document. Which of the following statements is (are) true?

a. resume.doc inherits all the property values of document.doc.
b. document.doc inherits all the property values of resume.doc.
c. resume.doc inherits all the methods of document.doc.
d. None of the above.

39. Jane is trying to perform some operations on an object through a program
that uses DFC. She is logged in as herself and getting permission errors. She
can resolve the problem by:

Logging in as a different user in her program
Using IDQL with her ID
Using IDQL with a different user ID
Changing permissions on the object

a.
b.
c.
d.

a.
b.
c.
d.

a.
b.
c.
d.

www.allitebooks.com

http://www.allitebooks.org

Practice Test 1

[222]

40. John was sent a portion of a log file for debugging. He found information
about one object interesting. The log contained the object ID but no
information about its object type. He can obtain some information about the
object type using:

The first two digits of the object ID
The 9th and 10th digits of the object ID
The 3rd to 8th digits of the object ID
None of the above

41. Consider the following query:
 SELECT r_object_id, title
 FROM dm_sysobject

 WHERE object_name = 'john'

Which of the following objects can be selected by this query?
An object of dm_document named 'john'
An object of dm_user named 'john'
An object of dm_folder named 'john'
An object of dm_sysobject named 'john'

42. The file dmcl.ini specifies:
Content Server information
Application Server information
Connection Broker information
Database information

43. Which of the following platform components is (are) required to enforce
client capabilities?

Client application
Application Server
Content Server
None of the above

a.
b.
c.
d.

a.
b.
c.
d.

a.
b.
c.
d.

a.
b.
c.
d.

Practice Test 1

[223]

44. John created a group named johns_group. Which of the following
statements is (are) true?

Jane can create a role named johns_group in the same repository.
Jane can create a domain named johns_group in the same repository.
Jane can create a private group named johns_group in the
same repository.
None of the above.

45. Jane has Extended Delete permission on an object. Knowing only this
information what can be inferred about her other permissions on this object?

She has Write permission.
She has Version permission.
She has Change Location permission.
None of the above

46. John has Superuser privileges in a repository. What can be said about his
permissions in the repository?

He has at least Read permission on all objects.
He has at least Write permission on all objects.
He can obtain Delete permission on all objects.
No inference can be made about his permissions on all objects.

47. The default ACL mode for the server is set to folder. A user creates an object
in folder A and then links it to folder B. The final permission set on the object
is the same as:

The permission set of the user
The permission set of the type of the object
The permission set of folder A
The permission set of folder B

48. A custom type named my_document needs to be created. Which of the
following is (are) correct statements?

a. my_document can have two supertypes.
b. my_document can be a supertype of two other types.
c. my_document can be a supertype of dm_document.
d. my_document can be a subtype of dm_document.

a.
b.
c.

d.

a.
b.
c.
d.

a.
b.
c.
d.

a.
b.
c.
d.

www.allitebooks.com

http://www.allitebooks.org

Practice Test 1

[224]

49. Jane created a custom type my_invoice with an attribute invoice_type. She
also defined value assistance for invoice_type. What can she expect from
the Content Server in this regard?

The Content Server will start providing value assistance right away.
The Content Server will start providing value assistance after data
dictionary has been published.
The Content Server will not provide value assistance because it is not
a part of the data dictionary.
None of the above.

50. John created a NULL type named johns_doc and Jane created a NULL
type named janes_doc. Jane created an object named 'jaDoc.txt' of
type janes_doc. Now she wishes to change the type of 'jaDoc.txt' to
johns_doc. Which of the following statements is (are) accurate?

She can change the type of the object to johns_doc in one step.
She can change the type of the object to johns_doc in two steps by
first changing its type to dm_sysobject.
She can change the type of the object to johns_doc in three steps by
first changing its type to dm_document, then to dm_sysobject, and
finally to johns_doc.
This change of type is not allowed.

51. John created a DocApp using Documentum Application Builder (DAB) and
inserted a document from the repository into the DocApp. Much later, he
realized that it was a mistake and he deleted the document in DAB. As
a result:

The document was also deleted from the repository.
The document was unlinked from its primary folder in the repository.
The document was excluded from a DocApp archive created
afterwards.
The document was not deleted from the repository.

a.
b.

c.

d.

a.
b.

c.

d.

a.
b.
c.

d.

Practice Test 1

[225]

52. Jane created a virtual document with several component documents, which
she wants to take to another repository as a part of a DocApp that she has
already created. She also wants the document renditions to be included in the
DocApp. What does she need to do to achieve this objective?

Add the root document and all the components to the DocApp
individually.
Add only the root document to the DocApp.
Add the root document, all the components, and all the renditions to
the DocApp individually.
Depending on the installation options, any of the above three
can suffice.

53. John wants to include a cabinet and all of its contents—complete folder
structure and linked objects—in his DocApp archive. He wants all the
contents to be included each time the DocApp is archived. What is the best
approach he can take?

Add the cabinet to the DocApp.
Add the cabinet and all the folders and objects within the cabinet to
the DocApp.
Add the cabinet to the DocApp and set the install option to include
both the folder structure and content for this cabinet.
Add the cabinet and all the folders underneath and set the install
option to include the linked content.

54. Jane wants to query the workflow templates stored in the repository. The
type she needs to use in her query is:

a. dm_workflow_template

b. dm_wf_template

c. dm_process_template
d. dm_process

55. John has a developed a lifecycle and he wants the users to be able to use it
even if they don't know its exact name. He can:

Make it the default lifecycle for a cabinet.
Make it the default lifecycle for an object type.
Make it the default lifecycle for a workflow template.
This is not possible.

a.

b.
c.

d.

a.
b.

c.

d.

a.
b.
c.
d.

www.allitebooks.com

http://www.allitebooks.org

Practice Test 1

[226]

56. Which of the following is (are) true for the Documentum platform?
An alias can represent a permission set.
A permission set template can use alias references as placeholders.
An alias can only represent a user or a group.
The Content Server does not treat alias references differently,
compared to regular values.

57. Jane created an alias set named janes_alias_set. It included an alias
named supervisor. This alias can be referenced as:

a. %supervisor

b. $supervisor

c. %janes_alias_set%.supervisor

d. $janes_alias_set.supervisor

58. John wishes to create several virtual documents and is wondering about the
relationship between a virtual document and its components. Which of the
following is (are) true in this regard?

A virtual document can contain multiple components.
A simple document can be a component of two virtual documents.
A virtual document can be a component of two virtual documents.
A snapshot can be a component of a virtual document.

59. Jane created a virtual document with several components. These components
were independently versioned until a point when Jane felt that she needed to
preserve the current state of the complete virtual document so that she could
retrieve that state later. She should:

Create a snapshot of the virtual document.
Create a snapshot of the virtual document and freeze the snapshot.
Freeze the virtual document and take a snapshot.
Freeze the virtual document, take a snapshot, unfreeze the
virtual document.

a.
b.
c.
d.

a.
b.
c.
d.

a.
b.
c.
d.

Practice Test 1

[227]

60. John started a workflow, which has two automatic activities and three
manual activities. The automatic activity A1 has high priority and the
automatic activity A2 has low priority. Which of the following statements is
(are) true about these activities?

A1 will be executed before A2
A2 will be executed before A1
Priority has no role to play in this case
The correct answer depends on information not present above

a.
b.
c.
d.

www.allitebooks.com

http://www.allitebooks.org

Practice Test 2
Practice tests are immensely valuable for test preparation since they provide a reality
check on the candidate’s readiness and point to the areas that need additional work.
They are also useful in gauging if any tuning is necessary with regard to meeting the
time limit for the test.

Always read the instructions carefully before starting the test. You will
find the real test to be somewhat different and, therefore, it is even more
important to pay attention to the instructions. Initially, do not spend more
than a few seconds on a question that you are not sure about. Mark it and
move on so that you are able to answer all the questions that you know
the answers to. Afterwards, revisit the marked questions and answer
them. There is no negative scoring so make sure you answer all the
questions, even if you have to guess the answers.

Instructions
Select all correct answers—each question can have multiple correct choices. You have
90 minutes to answer the following 60 questions.

Test
1. An organization has deployed two repositories and they want to synchronize

content and metadata between the two repositories. This requirement can be
best satisfied by using:

Two content servers
Object replication
Federated repositories
Distributed content storage

a.
b.
c.
d.

www.allitebooks.com

http://www.allitebooks.org

Practice Test 2

[230]

2. John does not have Sysadmin privileges. He saved a search as JohnsSearch
and it shows up in his My Searches in Webtop. In order for Jane to see this
search in her My Searches:

The owner needs to be changed for the stored search object
The stored search object needs to be moved to a different location,
and permissions need to be changed
The location of the stored search object needs to be changed
Nothing can be done

3. A customer needs to achieve high availability of the Documentum
infrastructure. The best choice for achieving this objective is to create
multiple instances of (choose one):

Database and Connection Broker
Content Server and Connection Broker
Application Server and Database
Database

4. Jane is debugging workflows and looking at their states. She can find the
workflows in the following states:

Draft
Validated
Halted
Installed

5. Jane is inspecting existing workflows in the repository. Which of the
following will serve her purpose the best?

Workflow Manager
Workflow Inspector
Workflow Reporting
Task Manager

6. John is designing a solution to this problem. He wants every user to have
a backup user who has write permissions to the documents owned by the
users. This problem can be best resolved using

Extended permissions
ACL template
Alias sets
Binding rules

a.
b.

c.
d.

a.
b.
c.
d.

a.
b.
c.
d.

a.
b.
c.
d.

a.
b.
c.
d.

Practice Test 2

[231]

7. Jane has Superuser privileges in a repository. She is a member of Managers
group. The Managers group has Version permission on an object resume.
doc. Without any other information about permissions on this object, Jane
has the following effective permissions on this object:

Read
Version
Write
Change Location

8. John has Relate permission on resume.doc. Based on this information, which
of the following operations can he perform?

Navigate to resume.doc using Webtop
View the contents of resume.doc
Check out resume.doc
Check in resume.doc as the same version

9. The current version of resume.doc has 5.2.1.4 as implicit version label. This
label indicates that:

This version is a major version
This version is a minor version
This version is on a branch originating from version 5.2
This version is on a branch originating from version 5.2.1

10. Jane and John are collaborating on a book, which is being maintained as a
virtual document in a Documentum repository. When they released the first
edition of the book, Jane created a snapshot of the book called book_1ed so
that they could retrieve the state of this edition later, if needed. Next day,
Jane noticed that one of John’s chapters has been modified. What possibilities
can explain this situation?

The modified chapter is a newer version than what is in the snapshot
The snapshot was not frozen so a component can be modified
Snapshot has nothing to do with component versions
Binding rules on the virtual document allowed this change

a.
b.
c.
d.

a.
b.
c.
d.

a.
b.
c.
d.

a.
b.
c.
d.

www.allitebooks.com

http://www.allitebooks.org

Practice Test 2

[232]

11. John wants to learn about virtual documents. He created a virtual document
called test and is trying to add components to it. Which of the following can
be added to test as components?

The user object for Jane
A dm_document object called resume.doc
A folder called invoices
A cabinet called Home

12. Jane created some custom types as follows. The type my_doc has supertype
dm_document and adds a custom attribute my_doc_id. The type my_invoice
has supertype my_doc and adds a custom attribute my_ref_id. Which of the
following is (are) true about these types?

a. my_invoice has an attribute called authors
b. my_doc has an attribute called my_ref_id
c. my_invoice has an attribute called my_doc_id
d. my_invoice has an attribute called keywords

13. John is doing development that involves some customizations. His design
includes the following elements. Which of these will give him an error?

A custom attribute named RefID
A custom type named my document
A group with a 34-character name
A custom attribute named a_bad_item

14. Jane was facing problems performing certain tasks with Documentum. She
obtained Sysadmin privilege to overcome those challenges. Which of the
following tasks will she still be unable to do?

Unlock documents checked out by John
Manipulate workflows and workflow templates
Delete system-level ACL’s
Grant Sysadmin privilege to John

15. John is using Webtop and wishes to copy and move some files between
repository locations. He can use the following feature to do this:

Containment
Clipboard
Relocator
Migration Assistant

a.
b.
c.
d.

a.
b.
c.
d.

a.
b.
c.
d.

a.
b.
c.
d.

Practice Test 2

[233]

16. Jane created a document invoice.doc under /Invoices/May07. She owns
this document and has Delete permission on invoice.doc. She realized
that this document needs to be placed under /Invoices/Apr07. When she
attempted to move the document she was unable to do so. What action may
be able to help her overcome this problem?

Obtain Change Location permission on invoice.doc
Obtain Extended Delete permission on invoice.doc
Obtain Write permission on folder May07
Obtain Write permission on folder Apr07

17. John’s department needs a new process to be automated using Documentum.
This automation will be adopted in three months but it must be robust and
must put tight controls in place. Which of the following are suitable design
choices for this requirement?

Quick flow
Send to Distribution List
Custom workflow template
Custom lifecycle

18. Jane is checking in resume.doc using Webtop. On the checkin screen she will
be able to:

Keep the lock so that she could continue working on it after creating a
new version
Choose a new file to set as the content for the new version
Delete the previous version
Select a different chronicle ID

19. John is wondering about metadata storage within a repository. Where can he
find the stored metadata?

Depends upon the file store in use
File system
Content Addressed Storage
Relational database

a.
b.
c.
d.

a.
b.
c.
d.

a.

b.
c.
d.

a.
b.
c.
d.

www.allitebooks.com

http://www.allitebooks.org

Practice Test 2

[234]

20. Jane is architecting a Documentum deployment. She has a need to serve a
large number of repository connections. Which of the following approaches
can she use?

Create two Content Server instances and associate them with one
repository
Create one Content Server instance and associate it with two
repositories
Create two databases for use with one repository and one Content
Server instance
The only way to do this is by adding more memory and CPU power
to the hardware

21. The Documentum Collaborative Edition adds the following feature(s):
Email server
Virtual documents
Notes
Chat

22. A type my_document has supertype dm_document. A document resume.doc
is of type my_document. The authors property of resume.doc is stored in the
following repository table:

a. my_document_r

b. dm_document_r

c. dm_sysobject_r

d. persistent_r

23. John is unable to log into a repository. The administrator checks the
repository and finds that the user object for John exists. The following
reason(s) can explain the situation:

John is using an incorrect password
The user doesn’t exist in the user source
The user object is inactive
The user object is locked

a.

b.

c.

d.

a.
b.
c.
d.

a.
b.
c.
d.

Practice Test 2

[235]

24. The repository owner is a special user who is:
OS account used for installing Documentum software
Database owner for the repository database
A repository user specifically marked as repository owner
Each user with Superuser privilege is a repository owner

25. Which of the following is (are) true about privileges?
Privileges are hierarchical
Some privileges imply other privileges
No privilege imply another privilege
None of the above

26. Jane is worried if her client capability will affect what she can do in the
repository. Which of the following enforce client capabilities?

IAPI
Webtop
DA
IDQL

27. John created a dynamic group called safe_users. He also added John,
Jane, and Mary as members through DA. At run-time when this group’s
membership needs to be evaluated:

Any user can be added to this group
Only John, Jane, or Mary can be added to this group
Custom code is needed for altering the membership
Membership cannot be changed

28. One of the responsibilities of the Content Server is to secure the content in
terms of what each user is able to do. For this purpose, the Content Server
gives preference to roles over:

Basic privileges
Extended privileges
Client capability
None of the above

a.
b.
c.
d.

a.
b.
c.
d.

a.
b.
c.
d.

a.
b.
c.
d.

a.
b.
c.
d.

www.allitebooks.com

http://www.allitebooks.org

Practice Test 2

[236]

29. Jane is inspecting the attributes of a document named resume.pdf. She finds
that the acl_domain for this document is set to dmadmin. This means that:

a. resume.pdf is owned by dmadmin
b. ACL of resume.pdf is owned by dmadmin
c. dmadmin is the repository owner for the repository containing

resume.pdf

d. ACL of resume.pdf is public

30. John performed an advanced search with various parameters and saved it
as final_search once he was happy with the results. One week later if he
would run the saved search again:

The results could be different from the original results because more
matching objects could have been added since the search was saved
The results would be the same since the results were saved in the
saved search
The results would be the same since date range was always saved in
the search
The results could be different since some objects may have
been deleted

31. Jane uses certain documents frequently and finds it cumbersome to navigate
to these documents each time in Webtop. She is considering options to access
these documents directly without traversing the full folder path. Which of
the following options can help her achieve this objective?

She can subscribe to these documents
She can bookmark these documents using shortcuts
She can link these documents to her default folder
She can write queries that use object IDs of these documents

32. John wants to create a new custom type to store three attributes—dept_id,
dept_name, and dept_manager. Which of the following should John choose
as the supertype for this custom type?

a. dm_sysobject

b. dm_document

c. dm_config

d. None of the above

a.

b.

c.

d.

a.
b.
c.
d.

Practice Test 2

[237]

33. Jane wants to use a DocApp and is wondering about certain aspects of using
DocApps. Which of the following is (are) true about DocApps?

One DocApp can be deployed to multiple repositories
Multiple DocApps can be deployed to one repository
DocApps are managed using Documentum Administrator
DocApps can be versioned

34. John is designing a workflow template and is considering using a reject flow.
Which of the following is (are) true regarding a reject flow?

A reject flow and a forward flow out of the same activity can be
selected simultaneously
A reject flow is required from each activity
Multiple reject flows can be defined out of one activity
None of the above

35. Jane wants to use a virtual document to organize hierarchical content.
However, she is not sure about certain aspects of the root object in a virtual
document. Which of the following statements is (are) correct about the root
object in a virtual document?

The root object can have content associated with it
The root object must be a content-less object
The root object must be of type dm_sysobject or its subtype
None of the above

36. The permission set templates can be created using:
Webtop
Documentum Administrator
Documentum Application Builder
Web Publisher

37. Jane is trying to promote an object in its lifecycle to the next state. The entry
criteria for the next state currently evaluate to false. Which of the following is
(are) true about this situation?

Jane will succeed in promoting if she has Superuser privilege
Jane will succeed in promoting if she is the lifecycle owner
Jane will succeed in promoting if she is the object owner
Jane cannot succeed until the entry criteria evaluate to true

a.
b.
c.
d.

a.

b.
c.
d.

a.
b.
c.
d.

a.
b.
c.
d.

a.
b.
c.
d.

www.allitebooks.com

http://www.allitebooks.org

Practice Test 2

[238]

38. Jane needs to demote an object in its lifecycle and has the minimum
permissions needed to do so. The entry criteria for all the states currently
evaluate to false. Which of the following is (are) true about this situation?

Jane will succeed in demoting the object
Jane will not succeed in demoting unless she has Superuser privilege
Jane will not succeed in demoting unless she is the lifecycle owner
Jane will not succeed in demoting until the entry criteria of the
relevant state evaluate to true

39. John has created an activity template named Interview Candidate. He is
now designing a workflow template in which he wants to use this activity
template. He wants to create two activities from this template and wishes
to place them in parallel. Which of the following is (are) true about this
situation?

It will give an error because one candidate cannot be interviewed
twice in parallel
It will not give an error but it is not recommended
It is not allowed to put two activities from one activity template to be
placed in parallel in one workflow template
John will be able to do so without any problems

40. Jane is planning some customizations and the process for deploying them to
various environments during development. One thing she is curious to know
is how DocApps will be versioned, if that is possible. Which of the following
statements is (are) true in this regard?

DocApps cannot be versioned
DocApp version is stored in the archive and preserved when it is
installed into another repository
DocApps are versioned but the version is not stored in the archive
When a DocApp archive is installed into a repository, its version is
decided by the Content Server in use

41. John has checked out a document currently at version 5.6. While checking
in, he chose to check in as major version. Which of the following can be the
version after check in?

5.6.1.0
6.6
6.0
7.0

a.
b.
c.
d.

a.

b.
c.

d.

a.
b.

c.
d.

a.
b.
c.
d.

Practice Test 2

[239]

42. Jane is designing a workflow template and she does not want to explicitly
specify activity performers. She has the following choices in this regard:

The user starting the workflow can specify the performers
Performer of one activity can specify the performer of the next
activity
The lifecycle owner can specify the performer
Aliases can dynamically resolve performer of an activity

43. John is learning about attribute names with r_ as a prefix. When he started
looking at r_version_label in dm_sysobject he got confused. Which of the
following is (are) true about r_version_label?

Users cannot assign a value to r_version_label
Users can assign a value to r_version_label
Content Server assigns values to r_version_label
None of the above

44. Jane is working with a document named resume.doc. She added a pdf
rendition for it. If the current rendition is at version 2.3, what can be the next
minor version?

2.4
2.3.1.0
3.0
None of the above

45. John created a custom type my_report with the supertype dm_document. He
now wishes to drop my_report from the repository. What must he ensure
before he can succeed in dropping my_report?

There are no objects of dm_document in the repository
There are no objects of my_report in the repository
There are no subtypes of my_report in the repository
There are no subtypes of dm_document in the repository

a.
b.

c.
d.

a.
b.
c.
d.

a.
b.
c.
d.

a.
b.
c.
d.

www.allitebooks.com

http://www.allitebooks.org

Practice Test 2

[240]

46. Jane created a custom type my_report with the supertype dm_document. She
also created a custom type my_document with the supertype dm_document.
She also created an object of type my_document named test.doc. She wants
to change the object type of test.doc. Which of the following statements is
(are) true in this regard?

It is not possible to change the type of test.doc
The type of test.doc can be changed to dm_document in one step
The type of test.doc can be changed to my_report in one step
The type of test.doc can be changed to my_report in two steps

47. John created a custom type with a string attribute report_type and a
boolean attribute is_published. He wants to define value assistance
for these attributes. Which of the following statements is (are) true in this
regard?

Value assistance can be defined for report_type
Value assistance cannot be defined for is_published
Value assistance can be defined for is_published only if it has
exactly two values
None of the above

48. A subtype inherits the following from its supertype:
Attributes
Methods
Events
None of the above

49. Jane is wondering about the type of a virtual document. A virtual document
is stored as an object of the type:

a. dm_virtual_document or its subtype
b. dm_vdocument or its subtype
c. dm_sysobject or its subtype
d. dm_document only

50. When the performer of an activity is specified using an alias reference, for
successful resolution the matched alias can be of the type:

User
Group
Permission set
Location

a.
b.
c.
d.

a.
b.
c.

d.

a.
b.
c.
d.

a.
b.
c.
d.

Practice Test 2

[241]

51. Jane has created an alias set named executives. One of the aliases in the set
is named ceo. Which of the following can be used as alias references with a
potential match in this alias set?

a. %executives.ceo

b. %ceo.executives

c. %ceo

d. %executives.ceo%

52. John has created a custom type called my_report with an attribute named
approver. He wants to use an alias reference in this attribute to dynamically
assign the real approver at an appropriate time. Which of the following
statements is (are) true in this regard?

Content Server will recognize an alias reference by the presence of %
in the attribute value and resolve it
Custom code must be written to resolve such an alias reference
Webtop can resolve such alias references with appropriate
configuration
None of the above

53. Jane is designing a lifecycle for the custom type my_report. She wants to
add exception states to the lifecycle to handle special situations. Which of the
following statements can she rely on?

One normal state can be associated only with one exception state
She will be able to demote an object from a normal state to an
exception state
One exception state can be associated with only one normal state
An object must always resume from an exception state to the same
normal state

54. John is going on vacation and is worried about all the workflows that would
need him to participate. The best way to deal with this situation is to:

Let the tasks wait in the Inbox and work on them after he is back from
vacation
Get someone to work on his tasks and make himself unavailable
Get himself removed from the performer groups so that no tasks are
sent to him
Get the workflows changed so that all activities depending on him
are automatically marked complete

a.

b.
c.

d.

a.
b.

c.
d.

a.

b.
c.

d.

www.allitebooks.com

http://www.allitebooks.org

Practice Test 2

[242]

55. Jane has received a task in her Inbox. After opening the task she can
Acquire the task
Forward the task
Delegate the task
Ask the task to be Repeated

56. John is using Webtop to perform some operations. He is facing certain
security issues which are preventing him from completing his work. In order
to troubleshoot the problem, he should consider:

His client capability
His privileges
His extended privileges
His permissions

57. Jane is trying to install a new DocApp archive into a repository but is unable
to. The reason could be that

She does not have Superuser privilege
She does not have Sysadmin privilege
She does not have Create DocApp extended permission
She does not have Create DocApp extended privilege

58. Consider the following query and specify which documents it will select:
 SELECT r_object_id, object_name
 FROM dm_document
 WHERE object_name LIKE ‘%pdf’

Documents with an alias reference in object_name
Documents with names starting with pdf
Documents with names ending with pdf
Documents with containing pdf anywhere within the name

59. Which of the following statements is (are) true about roles?
A role can be added to a user
A user can be added to a role
A role can be added to another role
A role can be added to a domain

a.
b.
c.
d.

a.
b.
c.
d.

a.
b.
c.
d.

a.
b.
c.
d.

a.
b.
c.
d.

Practice Test 2

[243]

60. An implicit version label:

Is not visible to end users
Is assigned by Content Server
Is assigned by the end users
Is not used on branches in a version tree

a.
b.
c.
d.

www.allitebooks.com

http://www.allitebooks.org

Answers
Chapter 1

1. [False] Any file can be considered to be content. Even though a CSV file
contains structured data, it can be stored as content in a repository just like
any other file.

2. [c] Metadata is stored in a database.
3. [False] The repository represents the storage unit while Content Server serves

content and metadata stored in the repository.
4. [b, c] One Content Server instance is dedicated to one repository but more

than one Content Server instance can be dedicated to the same repository.
5. [True] DQL can be used to query any database tables registered to be queried

via DQL.
6. [a, d] Calendars and chat are not offered by the collaborative edition of the

Content Server.
7. [a, c] Workflows can be defined for documents, folders, and virtual

documents.
8. [b, c] Accountability features is provided via auditing and tracing.
9. [b, d] IDQL and IAPI are the interactive query utilities for Documentum.
10. [a, b] ACL and permission set is one and the same thing.

www.allitebooks.com

http://www.allitebooks.org

Answers

[246]

Chapter 2
1. [b, d] 1.0, CURRENT
2. [b, c] Export, Checkout
3. [True]
4. [False] A checkout can also be canceled by a superuser.
5. [False] The user can choose to keep the current version on checkin.
6. [a, b, c, d] Any version can be the CURRENT version.
7. [d] A folder cannot be versioned.
8. [a, b, c, d] Checking in with minor version increment can result in 3.5 and

major version increment can result in 4.0. However, if 4.0 already exist in
the version tree the major increment results in 5.0. If a new branch is being
created and one already exists the new version will be 3.4.2.0.

9. [b]
10. [d] i_chronicle_id is not a property of a rendition.

Chapter 3
1. [False] inheritance applies to types and not to objects.
2. [True] dm_folder does not define any single-valued property of its own.
3. [False] Security is enforced by the Content Server and this behavior is not

dependent upon the mechanism of access (DFC or DQL).
4. [09] The object type tag for dm_document and its subtypes is 09.
5. [b] These properties are normally managed by Content Server for its internal

purposes and not seen by the users or applications.
6. [c] 4. Since records are shared by different properties, the total number

of records is the maximum number of values present for any repeating
property.

7. [False] authors is a property inherited from dm_sysobject. dm_document
does not have any properties of its own and thus no persistence tables of its
own.

8. [d] The first two hex digits in r_object_id represent a tag for the object type.
9. [True] DQL can be used to query database tables directly, though the tables

being queried need to be registered first.
10. [True] A DQL query on a type queries its subtypes as well and dm_document

is a subtype of dm_sysobject.

Answers

[247]

Chapter 4
1. [False] Some Documentum layers span multiple tiers.
2. [a, c, d] The layers are Application Layer, Component and Development

Layer (Interface Layer), Content Services Layer, and Repository Layer.
3. [c] The Index Server creates full-text indexes based on the contents of

documents and these indexes are used for searching.
4. [False] The BOF is supported by DFC and it is at a higher level than DMCL.
5. [b] DFC is made available to the .NET platform using a Primary

Interop Assembly.
6. [a] A Content Server projects to connection brokers by announcing its status

when it starts up.
7. [c] The Connection broker information is stored in dmcl.ini on the client

machine.
8. [c] DMCL uses RPC capabilities to perform network communication.
9. [b] The WDK components are the Content Server clients in WDK applications.
10. [d] The WDK customization layer is called custom, by default.

Chapter 5
1. [False] Authentication establishes the identity of a user while authorization

gives the user access to certain functionality or resources.
2. [False] dm_check_password is only used on UNIX.
3. [d] A user can be created in the repository without the existence of the

corresponding external account. The external account is needed for
authentication to succeed in these cases.

4. [False] The database owner for the repository database is called the
repository owner.

5. [False] Client applications may choose to enforce client capabilities. Webtop
and Desktop clients do enforce them.

6. [False] Document creation is not controlled by privileges.
7. [False] Create Cabinet and Create Type are separate privileges and each of

these needs to be explicitly granted.
8. [True] The Superuser privilege includes all Sysadmin privileges.
9. [False] System Administrator client capability would be needed only if the

client application is being used to create the user-enforced client capabilities.
10. [True]

www.allitebooks.com

http://www.allitebooks.org

Answers

[248]

Chapter 6
1. [a, c] Roles and domains are also groups, just used in special ways.
2. [False] Only the configured members of the dynamic group can be added as

members for the session.
3. [False] The Content Server neither enforces client capability nor any special

treatment for roles.
4. [False] The membership of a sub-role implies membership of the super-role.
5. [False] The Content Server does not enforce the private/public nature of

roles, clients do.
6. [False] The automatic public and private assignments based on privileges are

defaults. The public/private nature can be changed afterwards.
7. [c]
8. [False] group_admin and owner_name are two separate properties and can

have different values.
9. [False] Each group must be named uniquely within a repository.
10. [True]

Chapter 7
1. [False] Extended permissions are unrelated to basic permissions.
2. [False] A permission set and ACL are one and the same.
3. [b, c] The basic permissions are hierarchical and a given permission implies

all lower permissions.
4. [False] All except Extended Delete.
5. [False] Custom permission sets are automatically created by the Content

Server when permissions for an object are modified.
6. [c] The ACL is inherited only at the time of new object creation. At least one

Documentum document indicates that the ACL should be inherited from the
new primary folder, if the primary folder is changed. However, it doesn't in
version 5.3.

7. [b] There is no change in the primary folder. Further, see the explanation in
the answer to question 6.

8. [a, b]
9. [a, b, c, d] As an owner, Jane gets all extended permissions other than

Extended Delete, and as a member of world she gets Extended Delete.
10. [b]

Answers

[249]

Chapter 8
1. [b, c] Jane won't see JohnsDocuments folder but can get to the document

through search since BROWSE permission lets her see the properties and
the object.

2. [b] Without full-text indexing, the keywords property is not used in a simple
search, the search is case sensitive, and content is not searched. The name of
the document is present in the object_name property which is searched.

3. [a, b, c, d] Since full-text indexing is enabled, all searchable properties and
content are searched and the matches are case-insensitive.

4. [b]
5. [c]
6. [False] The search stores the criteria only and not the results. The results will

depend on the actual objects and their metadata and content.
7. [False] The saved searches are not compatible across applications.
8. [False] Subscription only makes a document available under the

Subscriptions node.
9. [False] The shortcut takes the user back into Webtop.
10. [False] Assuming the user is able to get into Webtop, the user still needs

appropriate permissions to access the linked object.

Chapter 9
1. [b, d] Each custom type can have 0 or 1 supertype. Custom types cannot be

supertypes of the built-in types.
2. [a, c] dm_document is a built-in object type and cannot be modified.
3. [d]
4. [c]
5. [b] Since the my_invoice only has single-valued properties of its own, it will

only use one table my_invoice_s.
6. [False] Even though types cannot be versioned, the changes still need to be

committed via checkin.
7. [False] The Content Server does not enforce constraints. In fact, it doesn't use

data dictionary for its own functionality.
8. [False] The length of a property is used only if the property is of type String.

www.allitebooks.com

http://www.allitebooks.org

Answers

[250]

9. [True] Multiple conditional lists and one default list can be specified for one
property.

10. [a, c] The object type can only be changed to the immediate supertype or a
subtype of the current type.

Chapter 10
1. [c]
2. [False] DocApp version is not stored in the archive. The new version

depends on the existing version in the new repository.
3. [a, c]
4. [b] DocApp can be archived to the file system but the DocApp only resides in

the repository.
5. [a]
6. [b]
7. [b]
8. [c]
9. [d]
10. [False] It can have different users and groups with same permissions and

privileges.

Chapter 11
1. [False] A workflow template defines a process while a workflow is an

instance of the process in execution.
2. [c]
3. [c]
4. [False] They can be selected simultaneously. It is the responsibility of the

developer to configure the activity appropriately to prevent this from
happening.

5. [True] Aliases help templates to be more portable across repositories and in
various business contexts.

6. [a, b, c]
7. [a, b, c] Start Workflow, Start Attachments, Quick Flow
8. [a, b]
9. [False]
10. [True] A user is marked unavailable by specifying a proxy.

Answers

[251]

Chapter 12
1. [False] While workflows and lifecycles provide rich capabilities together,

they can be used independently of each other.
2. [b, c] A lifecycle must be installed in a repository for use and it is used by

applying to objects.
3. [False] Demoting to a state does not check for entry criteria.
4. [a, b] Either all actions in a lifecycle are implemented in Java or all are

implemented in Docbasic.
5. [False] A user can apply the default lifecycle for an object type without

knowing the name of that lifecycle.
6. [True] In addition to entry criteria being met, the entry actions must also

complete successfully.
7. [c]
8. [a]
9. [a]
10. [a, b, c, d]

Chapter 13
1. [False] An alias set contains name-value pairs while a permission set grants

permissions to different accessors.
2. [True] Alias references are only present in permission set templates, not in

the other types of permission sets.
3. [a, b, d]
4. [c, d] The type name and property name are mismatched in a and b.
5. [True] This is what aliases are for and the folderSpec argument can contain

an alias reference.
6. [c, d]
7. [c] One custom permission set is created per object, as the permission set

template is assigned to objects.
8. [a, b] Only the alias set attached to the object is examined. If no alias set is

attached then no alias sets are examined.
9. [a, b, c]
10. [c]

www.allitebooks.com

http://www.allitebooks.org

Answers

[252]

Chapter 14
1. [True]
2. [c]
3. [a, c]
4. [b]
5. [c]
6. [False] If the snapshot is not frozen the component documents can be deleted

or checked in as existing versions. Both of these actions can alter the overall
contents of the virtual document.

7. [c]
8. [b]
9. [False] A missing object from the virtual document hierarchy results in a

broken binding.
10. [False] Virtual document preferences are used by applications such as

Webtop.

Practice Test 1
1. [b, d] Dates are stored as data type time.
2. [c, d]
3. [b, d]
4. [c] A folder cannot be a component of a virtual document. Versions of

components are dependent on their binding rules.
5. [a, b] The Index server is used for full-text indexing and is not even required

to be present in a deployment. Webtop is one WDK application and other
WDK applications can be used independently.

6. [a, c] A sequence of states is present in a lifecycle, not a workflow. Performers
can be dynamically determined using aliases.

7. [b, c, d] A lifecycle contains states, not activities.
8. [a] Whether an ACL is an ACL template is identified by the acl_class

attribute (1 = template). If an ACL is private (regular) then it cannot be a
template, since this is also determined via acl_class (0 = regular). Only
ACL templates contain alias references. ACL's can exist without any relation
to ACL templates.

9. [a, b] An alias can be a placeholder for user, group, location, or permission
set (ACL).

Answers

[253]

10. [d] Extended privileges pertain to auditing.
11. [b, d] 3.4 normally or 3.3.1.0 if a branch is created.
12. [b, d] The type tag 09 represents dm_document and its subtypes.
13. [b] A value in a repeating attribute is tested using the ANY keyword.
14. [a, c]
15. [b] Virtual documents are ideally suited to manage hierarchical content such

as that of a book.
16. [a, b, d] A cabinet is a top-level folder and cannot be linked into anything.
17. [d]
18. [c]
19. [b] Without full-text indexing, the keywords property is not used in a simple

search, the search is case-sensitive, and content is not searched. The name of
the document is present in the object_name property that is searched.

20. [c] The new text needs to be re-indexed before it can be found. A fixed-time
delay cannot guarantee re-indexing.

21. [d] A dynamic group membership at run time is altered using custom
client code.

22. [a, b, d] r_object_id is unique within a repository. All versions of an object
have same i_chronicle_id.

23. [a] By default, a user is authenticated against the Operating System.
24. [d] REGISTER TABLE registers a table to become accessible through DQL

queries.
25. [a, c] Write and Change State are the minimum permissions needed to

promote.
26. [a, d] Read permission is required for copying. Change Location is needed for

moving from the primary folder. If folder security is enabled, Browse is needed
on the source folder and Write on the destination folder for copying a file.

27. [b] Subscribing to documents and locations makes them accessible under
the Subscriptions node. This information is saved in the repository and is
available from all clients (browsers on multiple computers).

28. [a, b]
29. [c]
30. [c] A workflow template cannot be instantiated unless it is in the installed

state. Stopped workflows and the active state of the workflow template
owner don't affect the availability of the template for creating new
workflows. There is no set limit on the number of simultaneous workflows.

www.allitebooks.com

http://www.allitebooks.org

Answers

[254]

31. [a, c] Attribute length cannot be reduced. Only non-inherited attributes can
be dropped.

32. [a, c] A custom type can be dropped only if no objects and no subtypes of
that type exist in the repository.

33. [b] A DocApp is stored as an object of type dm_application in the
repository. A DocApp can be archived to the file system as a
DocApp archive.

34. [b] A workflow can use a simple documents, virtual documents, and folders.
35. [b] A document can be checked in as the same version. A new document gets

version 1.0. Canceling a checkout does not alter the content of the existing
version. A new branch changes the version.

36. [a, c, d] The actual version depends on the existing version tree and whether
a minor or major increment is chosen on checkin. A minor increment can
result in 2.6. A second branch can lead to 2.5.2.0. A major increment can lead
to 5.0. The following figures illustrate the scenario:

... 2.5 2.6

2.3 2.4 2.5

3.0 4.02.4.1.0

5.0...

2.4 2.5 2.6

2.5.1.0

2.5.2.0

...

Answers

[255]

37. [d] i_chronicle_id is not a property of a rendition.
38. [d] The inheritance relationship exists between types, not objects.
39. [a, c, d] The Content Server always honors the configured security. If she

does not have appropriate permissions on an object she either needs to
use a user ID that does have permissions or alter permissions to grant her
appropriate access rights.

40. [a] The first two digits of object ID represent the object type or its supertype,
which is one of the built-in types.

41. [a, c, d] This query will consider dm_sysobject and its subtypes. dm_user
is not a subtype of dm_sysobject. It doesn't even have an attribute named
object_name.

42. [c]
43. [d] The Client capabilities are optionally enforced by client applications.

There is no requirement for client capabilities to be enforced.
44. [d] Roles and domains are also groups. A group must be named uniquely

within a repository.
45. [d] Extended Delete is an extended permission and does not imply any other

permission, basic or extended.
46. [a, c] A Superuser is a special user and has at least the same effective

permissions as the object owner on each object. Each object owner effectively
has at least Read permission and all extended permissions other than
Extended Delete. The word "effectively" here means that the Content Server
will use these effective permissions if the explicitly granted permissions are
more restrictive than these. The Change Permission extended permission
allows John to grant himself Delete permission explicitly.

47. [c] The object inherits the permission set of folder A since the default ACL
mode is folder. Linking the object to folder B does not change its primary
folder. Further, the permission set is only inherited when the new object
is created.

48. [b, d] Each custom type can have 0 or 1 supertype. Custom types cannot be
supertypes of the built-in types.

49. [d] Value assistance is a part of the data dictionary but Content Server does
not use the data dictionary for its functionality.

50. [d] The type of an object can only be changed to the supertype or a subtype
of the current type. Since both of these types have NULL supertype, it is not
possible to change the object type from janes_doc to johns_doc, even with
multiple type changes.

www.allitebooks.com

http://www.allitebooks.org

Answers

[256]

51. [c, d] Removing a document from the DocApp does not remove it from the
repository. Also a document no longer in the DocApp is not included in an
archive, unless another folder/cabinet includes it and the installation options
require the objects to be included as well.

52. [a] The root document and all the components need to be added explicitly.
However, renditions are automatically added when a document is added to
the DocApp.

53. [c] The best way is to add the cabinet and include the folder structure and
objects via the install option. This way, there is minimum onus on the
developer and the full folder structure and linked objects are included when
an archive is created.

54. [d]
55. [b] The default lifecycle for an object type can be applied to its objects

without knowing the name of the lifecycle.
56. [a, b] An alias can also represent a location or a permission set. The Content

Server recognizes and resolves alias references in certain attributes and a
method argument.

57. [a] Valid references are %supervisor and %janes_alias_set.supervisor.
58. [a, b, c] A snapshot is stored as an object of type dm_assembly, which is

not a sysobject. Only sysobjects other than cabinets and folders (and their
subtypes) can be components in virtual documents.

59. [b] Only taking a snapshot is insufficient since the component objects and
the root object can be altered even in the current version. Snapshots can be
frozen, not virtual documents.

60. [d] The answer depends on other factors. If A1 and A2 are sequential within
the workflow then the order of execution is determined by the sequence.
Priority is used by the workflow agent when multiple tasks corresponding
to automatic activities (potentially from different workflows) are ready to be
executed at the same time.

Answers

[257]

Practice Test 2
1. [b]
2. [b] The saved search is stored in Saved Searches in the user's default folder.

Appropriate permissions are always needed to access objects.
3. [b] Two content servers can serve the same repository. Each Content Server

can project to two Connection Brokers. Both of these components are
essential for a client to connect to and use a repository. Application Server
and Database can also use their high-availability features such as clustering,
but they are not specific to Documentum infrastructure and not sufficient to
make a Documentum repository highly available.

4. [c] Draft, Validated, and Installed are states of the workflow template not of
the workflow.

5. [c] Workflow Manager is used for designing workflow templates. There is no
product/feature in Documentum called Workflow Inspector. Task Manager
is used for viewing one particular task.

6. [b, c] Write permission doesn't involve extended permissions. Binding
rules relate to virtual documents. An ACL template is one that uses alias
references. Aliases are resolved using alias sets. An ACL template can refer to
an alias named backup. This reference can be resolved for each case using the
owner's alias set.

7. [a, b, d] A Superuser automatically gets the owner permissions on all objects
in the repository. The object owner always has Read and all extended
permissions other than Extended Delete on the object. This gives Jane Read
and Change Location. She gets Version permission via membership of
Managers. With the given information, a Write permission cannot
be inferred.

8. [a, b] Relate implies Browse and Read permissions. These permissions do not
allow checking out or modifying the contents.

9. [b, c] The major version is always of the form x.0. Implicit version labels
always have an even number of components separated by dots. 5.2.1 is not a
valid implicit version label.

10. [a, b] Binding rules indicate which component versions are part of the virtual
document, they do not prevent changes to components. Freezing a snapshot
does affect what can be done to a component that is a part of the snapshot.

11. [b] Only sysobjects and their subtypes excluding folders and their subtypes
can be virtual document components. Further, dm_cabinet is a subtype
of dm_folder.

www.allitebooks.com

http://www.allitebooks.org

Answers

[258]

12. [a, c, d] The attributes are inherited by subtypes from supertypes, so my_doc
cannot inherit my_ref_id from my_invoice.

13. [a, b, c, d] Attribute names must use lower-case letters and cannot start with
a_. A type name cannot contain a space. A group name can have up to 32
characters.

14. [a, c, d] These tasks require Superuser privilege.
15. [b]
16. [c, d] As an owner she already has Change Location permission. Extended

Delete does not give her anything more than the Delete permission that
she already has. So the problem is likely due to folder security. Since she
is attempting to move, both unlinking and linking are involved. Thus, she
needs Write permission on both the source and the destination folders.

17. [c] Quick Flow and Send to Distribution List are the same and provide
a simple ad hoc workflow mechanism. Since there is sufficient time to
design and test the workflow and the needs are custom, a custom workflow
template is ideally suited. A lifecycle doesn't model a process—it rather
models various stages for a document and transitions among them.

18. [a, b] Checkin affects the current or next version. A chronicle ID cannot be
changed—that would mean moving from one version tree to another.

19. [d] The other options relate to content storage.
20. [a] The question is about one repository. Repository connections are handled

by Content Server. Better hardware is not the only solution for this problem.
21. [c] From this list, notes are the only feature added by the collaborative

edition. Other supported collaborative features are rooms, discussions, and
contextual folders. Virtual documents are supported by the Content Server.

22. [c] dm_document has no attributes of its own and authors is a repeating
property of dm_sysobject.

23. [a, b, c, d]
24. [b]
25. [b] Superuser privilege implies Sysadmin privilege. Sysadmin privilege

implies all privileges other than Superuser privilege.
26. [b, c]
27. [b, c] A dynamic group can be used as Members-by-default or Non-

members-by-default. The membership can be changed only among the pre-
defined members using custom code at run time.

28. [d] Content Server does not attach any meaning to roles. Roles and client
capabilities are used by applications.

Answers

[259]

29. [b] The ACL domain of an object is the owner of the ACL of that object. Even
though dmadmin is the commonly used name for the repository owner, the
name dmadmin doesn't imply that it is repository owner. An ACL owned by
the repository owner (dm_dbo) is available to all users.

30. [a, d] Saving a search saves the search criteria. Running the saved search
performs the search again and the result depends on the matching objects
present at the time of performing the search.

31. [a, b, c, d] All of these are valid options. Subscribing to a document shows it
under the Subscriptions node. A shortcut accesses a particular object, with a
possible need for authentication. Objects linked to the default folder show
up under Home Cabinet. An object ID uniquely identifies an object within
a repository.

32. [d] These attributes are going to represent departments. Further, there is no
information to indicate the need of any other attributes. So it should not use
any type as a supertype and should be created as a NULL type.

33. [a, b, d] DocApps are managed using Documentum Application Builder.
34. [a]
35. [a]
36. [c] As of version 5.3, permission set templates cannot be created using

Documentum Administrator.
37. [a, b] Lifecycle criteria are not enforced for the lifecycle owner and for users

with Superuser privilege.
38. [a] Entry criteria are not evaluated when demoting an object in its lifecycle.
39. [c]
40. [c, d]
41. [c,d] The major versions are of the form x.0. The new version can be 7.0, if 6.0

is already present in the version tree.
42. [a, b, d]
43. [b, c] r_version_label is an exception to the rule that attributes with names

prefixed with r_ are read-only for users. The Content Server assigns an
implicit version label and the CURRENT version label. Users can assign their
own symbolic version labels.

44. [d] Renditions cannot be edited or versioned.
45. [b, c]

www.allitebooks.com

http://www.allitebooks.org

Answers

[260]

46. [b, d] The type of an object can be changed to its supertype or subtype in
one step. So the type of test.doc can be changed from my_document to
dm_document in one step, and then from dm_document to my_report in
another step.

47. [a, b] Value assistance cannot be defined for boolean attributes.
48. [a, b, c]
49. [c] A virtual document can be of the type dm_sysobject or its subtype other

than dm_folder and its subtypes.
50. [a, b]
51. [a, c]
52. [b] The Content Server recognizes alias references only in specific predefined

attributes and in the argument of the link and unlink DFC methods. See the
chapter Aliases (Chapter 13) for more details.

53. [a] The transition to an exception state is called suspension. Multiple normal
states can use one exception state. The lifecycle resumes to the normal state
from which it was suspended.

54. [b] John should mark himself unavailable and identify a proxy to work on his
tasks. Once he is back, he can mark himself available again.

55. [a, b, c, d] All of these options are possible though some may depend on the
configuration in the workflow template.

56. [a, b, c, d] Webtop honors client capability and Content Server enforces
privileges, extended privileges, and permissions.

57. [a] Creating a DocApp requires Superuser privilege. There is no such thing as
Create DocApp extended permission or extended privilege.

58. [c] The Content Server doesn't look for alias references in object_name. The
keyword LIKE uses the % symbol for pattern matching.

59. [b, c, d]
60. [b] The version numbers are implicit labels and are assigned by the

Content Server.

Index
A
access control list. See permissions set
ACL. See permissions set
activity

about 158
automatic activity 159
conditions 160
manual activity 159
method, automatic activity 160
parallel 158
priority 160
serial 158
workflow supervisor 160

activity transitions 162
aliases

about 186
ACL template 190
alias sets 188
alias type 187
permission set template 190, 194
properties 187
references 190
resolving 191

alias sets
about 188
managing 188-190

API methods 46
application event 129
application layer

about 56
Documentum eRoom 57

authentication
about 69
credentials 71
credentials, verifying 71, 72

method determining, with content server
73

authorization
about 69, 83
audit trails 76
basic privileges 75, 76
client capability 74
domains 84
extended privileges 76, 77
group 84
levels, client capability 74
roles 84

B
branching 28
business process

about 153
activity 158
activity transitions 162
analysis 156
automating, Documentum used 153, 154
Business Process Manager 156
content management 169
customizing, workflows used 155
definition 156
modelling 156
process 154
run-time, process 154
workflow instance 154
workflow template 154

C
communication patterns

connection broker 60
DocBroker 60

www.allitebooks.com

http://www.allitebooks.org

[262]

Documentum client library 59
flow of data 60
fundamental patterns 60
key components 59
primary interop assembly 59
WDK application communication pattern

61, 62
component and development layer

about 54
business object framework 55
Documentum foundation classes 54
other components 56
standards-based APIs 54, 55

constraints 133
content

about 15
branching 28
checking in 26
checking out 25, 26
Documentum product notes 31
exporting 25
format 29
importing 24
interacting with 23, 24
library services 27
locking 25
lock owner 25
renditions 30
versioning 27
version tree 26
working with 23

content access storage 51
content management services

about 18
collaborative services 19
data dictionary 19
document query language 18
retention policy services 19
virtual documents 19

content server
about 17
authentication method, determining 73
content management services 18
credentials, verifying 71
distributed services 20
process management services 19, 20
security services 20

services 18
content service layer

about 52
collaboration services 53
content intelligence services 53
content transformation services 53
enterprise content integration 53
library services 52
lifecycle services 52
repository services 52
security services 52
site delivery services 53
workflow services 52
XML services 52

credentials, verifying
authentication plug-in 72
in-line password 72
LDAP server entry 71
OS account 71

custom types
about 125
attributes 125
constraints 133
creating 126
custom properties 125
data dictionary 136
events 129
managing 125
modifying 135, 136
NULL type 128
privileged users 127
properties 130
properties, displaying 132, 133
search support, properties 131
using 136
validations 133
value assistance 134, 135
value mapping 135

D
DAB. See Documentum Application

Builder
DAI 148
data dictionary 136
distributed services

about 20

[263]

API 20
IAPI 21
IDQL 21
web development kit 21

DocApps
about 143
archiving 146-148
creating 144
DAB 144
DocApp archive 144-146
Document Application Installer 148
installing 148
installing process 149
managing 144
modifying 144
objects 145
prerequisites 149
properties 143

Document Application Installer 148
document query language. See DQL
Documentum

aliases 185
application layer 56
architecture 49
authorization 83
business process 153
communication patterns 58
component and development layer 54
content 15
content, hierarchically managing 199, 200
content, working with 23
content server 17
content service layer 52
customizing 141, 142, 185
custom types 125
DocApp 143
Documentum Application Builder 126
domain 88
integration services 57
layered architecture 50
lifecycles 169
metadata 15
objects 33
object security 91
object types 35, 125
platform 49
privileges 69

product notes 31
repository 16, 17
repository layer 51
roles 87
searching 105
security 69
terminology 15
user privileges 69
user roles 87
vitual documents 199
workflows 153
workflow template 154

Documentum Application Builder
about 126
custom types, creating 126
DocApps 144
information needed, for creating custom

type 128
uses 126

domain 88
DQL

about 41
basics, SELECT query 42, 43
DELETE query 45, 46
registered table 41
SELECT query 41-44
UPDATE query 44
WHERE clause, SELECT query 43, 44

E
ECIS 109
EMC Documentum. See Documentum
enterprise content management

basics 15
Documentum terminology 15

events
about 129
application event 129
system event 129

F
frequently accessed objects

about 117
shortcuts 117
subscriptions 117

www.allitebooks.com

http://www.allitebooks.org

[264]

full-text indexing
about 115
index agent 115
index server 115
simple search 108

G
group

about 84
DQL queries 88
dynamic group 86
group administrator 87
group owner 87
managing 86
repository 85

I
integration services

about 57
application layer 57
component and development layer 58
content service layer 58

L
layered architecture

about 50
advantages 50
application layer 56
component and development layer 54
content service layer 52
integration services 57
repository layer 51
schematic representation 50

lifecycle
about 170
analysis 171
customizing 171
definition 172
entry actions, state 170
entry criteria, state 170
exception state 170
modelling 172
modifying 179
normal state 170
state 170

uses 179
lifecycle alias set resolution 195

M
metadata 15
methods

about 33
API methods 46
checkout method 35

O
object owner

about 94
managing 94

objects
about 33
contentless objects 33
methods 33
object types 35
permissions 91
persistence 39
property 34
querying 41
security 91
special users 93

object security
about 91
permissions 91

object types
about 35
custom types 125
hierarchy 38
inheritance 38
property names 37
repository structure 35
set 36
subtype 38
supertypes 38
type hierarchy 38
type names 37

P
perfomers

about 160
task, delegating 166

[265]

task, forwarding 166
permissions, objects

about 91
basic 92
extended 92, 93
special users 93

permission set template
about 194
object with lifecycle 195
object without lifecycle 195

permissions set
about 95
assigning 97
creating 96
DQL queries 100
folders 99
folder security 99
managing 96
permissions, resolving 96
system permission sets 96
user permission sets 96

persistence
about 39
non-persistent objects 40
object-relational technology 39
object types 39
replication 39

process management services
about 19
lifecycle 19
workflows 19

property
about 34
names 37
repeating 34
single-valued 34

Q
QuickFlow 164

R
renditions

about 30
automating 30

repository
about 16, 17

docbase 17
repository layer

about 51
CAS 51
file stores 51
full-text index 51
installation owner 51

resolved aliases
about 191
approaches 192
permission set template alias resolution 194
scope 191
sysobject 194
workflow alias resolution 192

roles
about 87
base role 87
derived-role 87
inherit 87
inheritance hierarchy 87
parent role 87
sub-role 87

S
searching

advanced search 108-110
frequently accessed objects 117
full-text indexing 115
objects, locating 105
process 106
results, interacting with 110
search criteria 106
searches, saving 111, 112
search preferences 113, 114
simple search 107
simple search, with full-text indexing 108
simple search, without full-text indexing

108
security, Documentum

about 69
authentication 69
authorization 69
client capabilities 70
content server configuration 71
object security 70
permissions 70

www.allitebooks.com

http://www.allitebooks.org

[266]

privileges 70
repository configuration 70
security components 70
security configuration, about 69, 70

security services
about 20
access control list 20
auditing 20
electronic signature 20
permission sets 20
tracing 20

special users
about 93
object owner 94
superuser pemissions 94

states
about 173
exceptional state 174
normal state 173
transitions 176

state transitions
about 176
demotion 176
entry actions 177
entry criteria 177
post-entry actions 178
promotion 176
resumption 176
suspension 176

superuser
about 94
custom types, creating 127

sysobject alias resolution 194
system event 129

U
users

about 71
authentication 71
custom types, creating 127
DQL queries 79, 80
installation owner, special users 74
repository owner, special users 74
special users 74, 93
user management 77-79

V
validations 133
value assistance

about 134
conditional 135
default list 135

value mapping 135
versioning

about 27
current versions 27
implicit version label 27
major versions 27
minor versions 27
symbolic version label 27

version tree 26
virtual documents

about 201
component documents 201
components, ordering 201
components, reordering 205
creating 203
managing 202
modifying 204, 205
nesting 201
snapshots 206
standard binding rule 206
structure, exploring 203
versions 205-208

W
workflow alias resolution

about 192
default sequence 192
lifecycle alias set resolution 195
package sequence 193
resolution process 193
user sequence 193

workflows
activities 155
activity 158
activity transitions 162
Business Process Manager 156
concept 154
for customizing 155, 156

[267]

modelling 156
performers 155, 160
QuickFlow 164
run-time 154

workflow instance 154
Workflow Manager 156
workflow template 154

www.allitebooks.com

http://www.allitebooks.org

Thank you for buying
Documentum Content
Management Foundations

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to authors@packtpub.com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Web Content Management
with Documentum
ISBN: 1-904811-09-4 Paperback: 484 pages

Setup, Design, Develop, and Deploy Documentum
Applications

1. Design and implement Documentum
applications

2. Practical examples to help you get the most
from Documentum

3. Tips and tricks to ease everyday working with
the system

Alfresco Enterprise Content
Management Implementation
ISBN: 1-904811-11-6 Paperback: 350 pages

How to Install, use, and customize this powerful, free,
Open Source Java-based Enterprise CMS

1. Manage your business documents: version
control, library services, content organization,
and searchs

2. Workflows and business rules: move and
manipulate content automatically when
events occur

3. Maintain, extend, and customize Alfresco:
backups and other admin tasks, customizing
and extending the content model, creating your
own look and feel

Please check www.PacktPub.com for information on our titles

www.allitebooks.com

http://www.allitebooks.org

	Cover
	Preface
	Table of Contents
	Introduction
	Enterprise Content Management (ECM)
	EMC Documentum
	EMC Certification
	Why?
	How?
	Approach
	Logistics

	Useful Resources

	What This Book Covers
	Conventions
	Reader Feedback
	Customer Support
	Errata
	Questions

	Part 1
	Chapter 1: ECM Basics
	Content and Metadata
	Repository
	Content Server
	Content Management Services
	Process Management Services
	Security Services
	Distributed Services

	Checkpoint
	Test Your Understanding

	Chapter 2: Working with Content
	Interacting with Content
	Importing Content
	Exporting Content
	Checking Out
	Checking In
	Versioning
	Branching
	Formats
	Renditions
	Documentum Product Notes
	Checkpoint
	Test Your Understanding

	Chapter 3: Objects and Types
	Objects
	Object Types
	Type Names and Property Names
	Type Hierarchy

	Object Persistence
	Querying Objects
	SELECT Query
	Basics
	WHERE Clause

	UPDATE Query
	DELETE Query

	API
	Documentum Product Notes
	Checkpoint
	Test Your Understanding

	Chapter 4: Architecture
	Documentum Platform
	Layered Architecture
	Repository Layer
	Content Services Layer
	Component and Development Layer
	Documentum Foundation Classes
	Standards-Based APIs
	Business Object Framework
	Other Components

	Application Layer
	Integration Services
	Communication Patterns
	Key Components
	Fundamental Communication Pattern
	WDK Application Communication Pattern

	Documentum Product Notes
	Checkpoint
	Test Your Understanding

	Part 2
	Chapter 5: Users and Privileges
	Documentum Security
	Users
	Authentication
	Special Users

	Authorization
	Client Capability
	Basic Privileges
	Extended Privileges

	User Management
	Help—Some DQL Queries
	Documentum Product Notes
	Checkpoint
	Test Your Understanding

	Chapter 6: Groups and Roles
	Authorization
	Groups
	Group Management

	Roles
	Domain
	Help—Some DQL Queries
	Documentum Product Notes
	Checkpoint
	Test Your Understanding

	Chapter 7: Object Security
	Security—A Recap
	Object Permissions
	Basic Permissions
	Extended Permissions

	Special Users
	Object Owner
	Managing Object Ownership

	Superuser Permissions

	Permission Sets (ACLs)
	Resolving Permissions
	Managing Permission Sets
	Creating Permission Sets
	Assigning Permission Sets

	Folders and Permission Sets
	Help—Some DQL Queries
	Documentum Product Notes
	Checkpoint
	Test Your Understanding

	Part 3
	Chapter 8: Searching
	Locating Objects
	Search Process
	Simple Search
	Search—without Full-Text Indexing
	Search—with Full-Text Indexing

	Advanced Search
	Interacting with Results
	Saving Searches

	Search Preferences
	Full-Text Indexing
	Frequently Accessed Objects
	Subscriptions
	Shortcuts

	Help—Some DQL Queries
	Documentum Product Notes
	Checkpoint
	Test Your Understanding

	Part 4
	Chapter 9: Custom Types
	Custom Types
	Managing Custom Types
	Creating a Custom Type
	Events for Types
	Properties
	Search Support for Properties
	Displaying Properties
	Validation
	Value Assistance
	Value Mapping

	Modifying a Custom Type

	Using Custom Types
	Data Dictionary

	Help—Some DQL Queries
	Documentum Product Notes
	Checkpoint
	Test Your Understanding

	Chapter 10: DocApps
	Documentum Customization
	DocApps
	Managing DocApps
	Creating and Modifying DocApps
	Archiving DocApps
	Installing DocApps
	Prerequisites
	Installation Process

	Help—Some DQL Queries
	Documentum Product Notes
	Checkpoint
	Test Your Understanding

	Chapter 11: Workflows
	Business Processes
	Workflow Concepts
	Workflows and Customization
	Analysis
	Modeling and Definition
	Activities
	Performers
	Activity Transitions

	Use
	Modification
	Documentum Product Notes
	Checkpoint
	Test Your Understanding

	Chapter 12: Lifecycles
	Business Process and Content Management
	Lifecycle Concepts
	Lifecycles and Customization
	Analysis
	Modeling and Definition
	States
	State Transitions

	Use
	Modification
	Help—Some DQL Queries
	Documentum Product Notes
	Checkpoint
	Test Your Understanding

	Part 5
	Chapter 13: Aliases
	Customization—Reusability and Portability
	Aliases
	Alias Sets
	Managing Alias Sets
	Referencing Aliases
	Resolving Aliases
	Workflow Alias Resolution
	Default Sequence
	Package Sequence
	User Sequence
	Resolution Process

	Sysobject Alias Resolution
	Permission Set Template Alias Resolution
	Object with Lifecycle
	Object without Lifecycle

	Lifecycle Alias Set Resolution

	Help—Some DQL Queries
	Documentum Product Notes
	Checkpoint
	Test Your Understanding

	Chapter 14: Virtual Documents
	Managing Content Hierarchically
	Virtual Documents
	Managing Virtual Documents
	Creating Virtual Documents
	Exploring a Virtual Document Structure
	Modifying Virtual Documents
	Virtual Documents—Versions

	Help—Some DQL Queries
	Documentum Product Notes
	Checkpoint
	Test Your Understanding

	Practice Test 1
	Practice Test 2
	Answers
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Practice Test 1
	Practice Test 2

	Index

