
M A N N I N G

IN ACTION

Erlang
AND OTP

Martin Logan
Eric Merritt
Richard Carlsson

FOREWORD BY ULF WIGER

www.allitebooks.com

http://www.allitebooks.org

Erlang and OTP in Action

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Erlang and
 OTP in Action

MARTIN LOGAN
ERIC MERRITT

RICHARD CARLSSON

M A N N I N G
Greenwich

(74° w. long.)
www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
180 Broad St.
Suite 1323
Stamford, CT 06901
Email: orders@manning.com

©2011 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Cynthia Kane
180 Broad St. Copyeditor: Tiffany Taylor
Suite 1323 Proofreader: Katie Tennant
Stamford, CT 06901 Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781933988788
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 16 15 14 13 12 11 10
www.allitebooks.com

http://www.manning.com
mailto:orders@manning.com
http://www.allitebooks.org

 To all the great Erlangers,
many of whom we call friends, that we have met along the way.

May this book put an end to the long hard slog through
internet docs that we had to endure to learn OTP.

brief contents
PART 1 GETTING PAST PURE ERLANG: THE OTP BASICS1

1 ■ The Erlang/OTP platform 3

2 ■ Erlang language essentials 22

3 ■ Writing a TCP-based RPC service 94

4 ■ OTP applications and supervision 119

5 ■ Using the main graphical introspection tools 132

PART 2 BUILDING A PRODUCTION SYSTEM147
6 ■ Implementing a caching system 149

7 ■ Logging and event handling
the Erlang/OTP way 170

8 ■ Introducing distributed Erlang/OTP 190

9 ■ Adding distribution to the cache with Mnesia 213

10 ■ Packaging, services, and deployment 242
vii

BRIEF CONTENTSviii
PART 3 INTEGRATING AND REFINING......................................259
11 ■ Adding an HTTP interface to the cache 261

12 ■ Integrating with foreign code using
ports and NIFs 291

13 ■ Communication between Erlang and Java
via Jinterface 332

14 ■ Optimization and performance 357

15 ■ Installing Erlang 379

16 ■ Lists and referential transparency 381

contents
foreword xvii
preface xx
acknowledgments xxii
about this book xxiii
introduction xxviii

PART I GETTING PAST PURE ERLANG:
THE OTP BASICS1

1 The Erlang/OTP platform 3
1.1 Concurrent programming with processes 5

Understanding concurrency 5 ■ Erlang’s process
model 6 ■ Four process communication paradigms 8
Programming with processes in Erlang 11

1.2 Erlang’s fault tolerance infrastructure 13
How process links work 13 ■ Supervision and
trapping of exit signals 14 ■ Layering processes for
fault tolerance 15

1.3 Distributed Erlang 16
ix

CONTENTSx
1.4 The Erlang runtime system and virtual machine 17
The scheduler 18 ■ I/O and scheduling 19
Process isolation and the garbage collector 19

1.5 Functional programming: Erlang’s face to the world 20
1.6 Summary 21

2 Erlang language essentials 22
2.1 The Erlang shell 23

Starting the shell 24 ■ Entering expressions 24
Shell functions 26 ■ Escaping from the shell 26
Job-control basics 27

2.2 Data types in Erlang 29
Numbers and arithmetic 29 ■ Binaries and bitstrings 30
Atoms 31 ■ Tuples 32 ■ Lists 33 ■ Strings 34
Pids, ports, and references 35 ■ Functions as data: funs 36
Comparing terms 36 ■ Understanding lists 38

2.3 Modules and functions 39
Calling functions in other modules (remote calls) 40
Functions of different arity 40 ■ Built-in functions and
standard library modules 41 ■ Creating modules 42
Compiling and loading modules 43 ■ The stand-alone
compiler, erlc 44 ■ Compiled modules versus evaluation
in the shell 45

2.4 Variables and pattern matching 46
Variable syntax 46 ■ Single assignment 47 ■ Pattern
matching: assignment on steroids 49 ■ More about patterns 50

2.5 Functions and clauses 52
A function with side effects: printing text 52 ■ Multiple
clauses and pattern matching for choice 54 ■ Guards 55
Patterns, clauses, and variable scope 56

2.6 Case and if expressions 56
Boolean if-then-else switches in Erlang 57 ■ If expressions 58

2.7 Funs 58
Funs as aliases for existing functions 58 ■ Anonymous funs 59

2.8 Exceptions, try, and catch 61
Throwing (raising) exceptions 62
Using try...catch 62 ■ try...of...catch 63 ■ after 64 ■ Getting
a stack trace 64 ■ Rethrowing 64 ■ Plain old catch 65

CONTENTS xi
2.9 List comprehensions 65
List comprehension notation 66 ■ Mapping, filtering,
and pattern matching 66

2.10 Bit syntax and bitstring comprehensions 67
Building a bitstring 67 ■ Pattern matching with
bit syntax 68 ■ Bitstring comprehensions 69

2.11 Record syntax 69
Record declarations 70 ■ Creating records 70 ■ Record fields
and pattern matching 70 ■ Updating record fields 71
Where to put the record declarations 71

2.12 Preprocessing and include files 72
Defining and using macros 72 ■ Include files 73
Conditional compilation 74

2.13 Processes 74
Operating on processes 75 ■ Receiving messages,
selective receive 76 ■ Registered processes 77 ■ Delivery of
messages and signals 78 ■ The process dictionary 79

2.14 ETS tables 79
Why ETS tables work like they do 79 ■ Basics of
using ETS tables 80

2.15 Recursion: it’s how you loop 81
From iteration to recursion 81 ■ Understanding tail
recursion 84 ■ Accumulator parameters 85 ■ Some words
on efficiency 85 ■ Tips for writing recursive functions 86

2.16 Erlang programming resources 92
Books 92 ■ Online material 92

2.17 Summary 92

3 Writing a TCP-based RPC service 94
3.1 What you’re creating 95

A reminder of the fundamentals 96 ■ Behaviour basics 97

3.2 Implementing the RPC server 100
Canonical module layout for a behaviour implementation 100
The module header 101 ■ The API section 103 ■ The callback
function section 109

3.3 Running the RPC server 116
3.4 A few words on testing 117
3.5 Summary 118

CONTENTSxii
4 OTP applications and supervision 119
4.1 OTP applications 120

The organization of an OTP application 120 ■ Adding the
application metadata 122 ■ The application behaviour 123
Application structure summary 125

4.2 Adding fault tolerance with supervisors 125
Implementing a supervisor 126 ■ The supervisor restart
strategy 127 ■ Writing the child specification 128

4.3 Starting the application 129
4.4 Generating documentation with EDoc 130
4.5 Summary 131

5 Using the main graphical introspection tools 132
5.1 Appmon 132

The Appmon GUI 133 ■ The WebTool version of Appmon 136

5.2 Pman 137
5.3 Debugger 140
5.4 TV, the Table Viewer 144
5.5 Toolbar 146
5.6 Summary 146

PART II BUILDING A PRODUCTION SYSTEM..................147

6 Implementing a caching system 149
6.1 The background story 149
6.2 The design of your cache 151
6.3 Creating the basic OTP application skeleton 153

Laying out the application directory structure 153
Creating the application metadata 154 ■ Implementing the
application behaviour 154 ■ Implementing the supervisor 155

6.4 From application skeleton to a working cache 157
Coding the sc_element processes 157 ■ Implementing the
sc_store module 162 ■ Rounding off with the application-level
API module 167

6.5 Summary 169

CONTENTS xiii
7 Logging and event handling the Erlang/OTP way 170
7.1 Logging in Erlang/OTP 171

Logging in general 171 ■ Erlang/OTP built-in logging
facilities 172 ■ The standard logging functions 173
SASL and crash reports 175

7.2 A custom event handler with gen_event 179
Introducing the gen_event behaviour 179 ■ Event handler
example 180 ■ Acting on error events 181

7.3 Adding a custom event stream to the Simple Cache 183
The event stream API 184 ■ Integrating the handler
with Simple Cache 185 ■ Subscribing to a custom
event stream 188

7.4 Summary 189

8 Introducing distributed Erlang/OTP 190
8.1 The fundamentals of Erlang distribution 190

Process communication by copying 191
Location transparency 192

8.2 Nodes and clustering 193
Starting a node 194 ■ Connecting nodes 195 ■ How Erlang
nodes find each other and communicate 197 ■ The magic
cookie security system 198 ■ Sending messages between
connected nodes 199 ■ Working with remote shells 201

8.3 The nuts and bolts of resource discovery 204
Terminology and taxonomy 204 ■ The algorithm 205
Implementing the resource discovery application 206

8.4 Summary 212

9 Adding distribution to the cache with Mnesia 213
9.1 Distributing the cache 214

Choosing a communication strategy 214 ■ Synchronous
versus asynchronous cache 216 ■ If you only had a
distributed table... 219

9.2 Distributed data storage with Mnesia 219
Creating a project database 220 ■ Initializing the database 221
Creating the tables 223 ■ Populating the tables 226 ■ Do some
basic queries on your data 228

CONTENTSxiv
9.3 Distributing the cache with Mnesia 230
Switching from ETS to Mnesia 230 ■ Making the cache aware of
other nodes 233 ■ Integrating resource discovery to find other
cache instances 236 ■ Bringing the Mnesia tables into
dynamic replication 238

9.4 Summary 241

10 Packaging, services, and deployment 242
10.1 Applications from a system viewpoint 243

Structure 243 ■ Metadata 243 ■ How the system
manages running applications 244

10.2 Making a release 245
Releases 246 ■ Preparing to release your code 247
The release metadata file 247 ■ The script and
boot files 249 ■ System configuration 250 ■ Starting a
target system 251

10.3 Release packaging 253
Creating a release package 253 ■ Release package
contents 254 ■ Customizing a release package 255

10.4 Installing a release 256
10.5 Summary 258

PART III INTEGRATING AND REFINING..........................259

11 Adding an HTTP interface to the cache 261
11.1 Implementing a TCP server 262

A pattern for efficient TCP servers 262 ■ Sketching the
tcp_interface application 263 ■ Fleshing out the TCP
server 264 ■ The simple text-based protocol 267
Text interface implementation 268

11.2 Building a web service from the ground up 270
A quick-and-dirty introduction to HTTP 271 ■ Implementing a
generic web server behaviour 274 ■ Getting REST 286
Implementing the RESTful protocol with gen_web_server 287

11.3 Summary 290

CONTENTS xv
12 Integrating with foreign code using ports and NIFs 291
12.1 Ports and NIFs 292

Plain ports 294 ■ Linked-in port drivers 295
Natively implemented functions (NIFs) 295

12.2 Integrating with the parser through a port 296
The Erlang side of the port 297 ■ The C side of the
port 300 ■ Compiling and running the code 312

12.3 Making a linked-in driver 313
Understanding linked-in drivers 313 ■ The C side of
the driver 315 ■ Compiling the driver code 320
The Erlang side of the driver 321

12.4 Implementing the parser as a NIF 322
The Erlang side of the NIF 322 ■ The C side of
the NIF 323 ■ Compiling and running the code 330

12.5 Summary 331

13 Communication between Erlang and Java via Jinterface 332
13.1 Integrating Erlang with Java using Jinterface 334

The OtpNode class 334 ■ The OtpMbox class 334
Mapping Erlang data structures onto Java 335
Message-handling example in Java 337 ■ Talking to
the Java node from Erlang 339

13.2 Installing and configuring HBase 340
Downloading and installing 340 ■ Configuring HBase 341

13.3 Building the bridge between Simple Cache
and HBase 342
The Erlang side: sc_hbase.erl 342
The HBaseConnector class 344 ■ Java message
handling 346 ■ The HBaseTask class 349

13.4 Integrating HBase with Simple Cache 351
Lookup 352 ■ Insert 352 ■ Delete 353

13.5 Running the integrated system 353
13.6 Summary 356

CONTENTSxvi
14 Optimization and performance 357
14.1 How to approach performance tuning 358

Determining your performance goals 358 ■ Establishing a
baseline 359 ■ Profiling the system 359 ■ Decide which
problems to attack 360 ■ Measure the results 360

14.2 Profiling Erlang code 360
Counting calls with cprof 361 ■ Profiling execution
time with fprof 363

14.3 Erlang programming language caveats 368
Performance aspects of the primitive data types 369
Performance of built-in functions and operators 373
Functions 374 ■ Processes 376

14.4 Summary 378

appendix A Installing Erlang 379

appendix B Lists and referential transparency 381

index 383

foreword
For a long time, the world of Erlang programming had only one book—The Book,1

released in 1993 and revised in 1996. Fanatics can still find it in print, at a price of
over $100. A decade or so after its publication, The Book was getting long in the
tooth, to say the least. The language had evolved to include several new and powerful
programming constructs. Higher-order functions, list comprehensions, and the bit
syntax are found everywhere in modern Erlang programs but weren’t described in
The Book. But the most notable omission was the Open Telecom Platform (OTP),
Erlang’s application development framework, which was first released in 1996. Erlang
was rather easy to learn; OTP wasn’t, and early adopters like Martin Logan, who
started using Erlang in 1999, pretty much had to learn it the hard way through trial
and error.

 In the past few years, as an indication that Erlang had become interesting enough
to justify it, a number of books was released, and we were told that other books were
being written. Erlang and OTP in Action by Martin Logan, Eric Merritt, and Richard
Carlsson was the one most talked about. And now it is here.

 I started programming Erlang in 1993, when I was designing disaster response sys-
tems in Anchorage, Alaska. I bought a precompiled version of Erlang for HP-UX, deliv-
ered on a magnetic QIC tape. The language was smaller back then, as were the
number of support libraries. I had to start designing my own data-access structures,

1 Robert Virding, Claes Wikstrom, and Mike Williams, Concurrent Programming in Erlang (Prentice Hall,
1993, 1996).
xvii

FOREWORDxviii
database managers, protocol parsers, and error-handling frameworks—but I enjoyed
myself thoroughly. After all, this was a different time: the web was emerging with the
release of the Mosaic browser that same year, and the term open source wouldn’t be
used for another five years; if you wanted a programming framework with support for
distributed computing and fault tolerance, you had to be prepared to pay dearly, both
in time and money. I had scoured the market for such tools and felt well-informed
about the commercial alternatives. Erlang was raw and unassuming, with a weird-
looking syntax and practically no documentation, but its core concepts felt right in a
way that no other tools had.

 Three years later, I found myself in Sweden, working for Ericsson and chief
designer of the largest Erlang-based project to date. We would build what is known as
a telecom-class ATM switch using Erlang, as well as a new framework called the Open
Telecom Platform. The name was intended to make decision makers in the company
feel warm and fuzzy—Telecom was our core business, Open was the buzzword of the day,
and the prevailing wisdom was that if you wanted to build a robust complex product,
you had to have a Platform that provided things like redundancy, support for remote
configuration, live software upgrade, and real-time tracing and debugging.

 Ericsson isn’t in the business of selling development tools, but it has designed pro-
gramming languages by necessity since the early 1970s. To its credit (but also to its
own benefit), Ericsson released Erlang/OTP as open source in 1998. Enthusiasts
across the world picked it up and used it, mainly in the telecom field at first, but later
also in other areas. We made several attempts in the ’90s to pitch Erlang to web devel-
opers, but the challenge facing web developers back then wasn’t how to make redun-
dant, scalable, and highly responsive e-commerce sites; the time for such systems
hadn’t yet come, nor had the time when concurrency would be a conversation topic
for mainstream programmers. Concurrency was hard—everyone knew that. Concur-
rency was something to be avoided. Why, then, choose a programming language
where you could hardly even write “hello world” without introducing concurrency?

 The explosive growth of the web and the emergence of increasingly interactive
web applications eventually brought Erlang in from the cold. Unexpected help also
came from the laws of physics, which finally made it impossible to keep cranking up
the clock frequency on our CPUs to produce faster and faster single-core chips. The
message “The free lunch is over” from the hardware vendors, urging developers to
start learning how to make their programs scale across many weaker cores rather than
one very fast CPU, was wonderful news for Erlang. This meant many clever program-
mers would at least look at Erlang, to figure out what supposedly made it so special.
Many would simply look, and others would borrow concepts and implement them in
their favorite language. This was wonderful too, because it meant the market value of
knowing and loving Erlang and the principles behind it would increase rapidly.

OTP has by now been proven in several problem domains other than telecom and
is highly regarded by those who have learned to master it. Erlang/OTP is an amazingly
powerful platform, but it does take time to learn, not least when you try to apply it to a

FOREWORD xix
new niche. Interestingly, even programmers who have worked for years in OTP-based
projects may be fairly ignorant of how to build an OTP-based system from scratch,
because the application programmer is exposed only to a fairly small part of the total
framework. This is exactly what you want in a large project, but the entrepreneur in a
small startup can’t rely on someone else burning the midnight oil and figuring out the
subtleties of OTP release-handling and other dark corners without helpful examples
and tutorials.

 A good book on OTP has been sorely needed, and it’s with great pleasure that we
welcome Erlang and OTP in Action. Martin Logan, Eric Merritt, and Richard Carlsson
represent an enormous amount of experience combined, and they have contributed
greatly to the Erlang community. I’m convinced that this book will help boost the
already impressive trend of Erlang adoption.

 Enjoy!
ULF WIGER

CTO, ERLANG SOLUTIONS LTD

preface
This book is an attempt to distill what we think are the most important things a profes-
sional Erlang programmer needs to know in order to use this hugely productive pro-
gramming language to its full potential. Erlang/OTP gives you a lot of power, but so
far it’s been a daunting task for budding Erlang programmers to learn the OTP frame-
work on their own by studying the documentation (which goes into a lot of detail but
doesn’t show you the big picture).

 The three of us have worked with Erlang for a long time, but our individual paths
have been very different.

 Martin: “My first ‘real’ job introduced me to Erlang programming. I had been
doing C and C++, and I thought I was having fun. My first boss, Hal Snyder, who even
years ago in the ’90s had a passionate dislike for threading, stumbled across Erlang. I
was an intern at the time, so he gave me a project to complete with Erlang because,
well, I was cheap, and if I failed, the company only lost about $70 on the deal. I didn’t
fail. I wrote my own 1,000-line monstrosity of a supervisor, because I didn’t know what
OTP was, and there certainly were no books about it. In the process, I fell in love with
the ‘right’ way to write back-end systems, and I fell in love with Erlang. Erlang gave me
the opportunity to see into the future: I wrote complex distributed systems, using
advanced algorithms that my imperative language colleagues could only dream about
and never implement in less than two years and a million lines of code. Thousands of
pages of documentation and tens of thousands of lines of code later, I still love it.
Along the way, I’ve met some great people, and I’m thrilled to be writing this book
with two of them. I met Richard while speaking at an ACM conference in 2004, and I
xx

PREFACE xxi
met Eric four years later as we formed Erlware—a project in which we’re opening new
chapters even now. Erlang has been a big part of my professional and personal life for
many years and will continue to be so.”

 Eric: “I started noodling with Erlang as a side issue. I wanted to write a massively
multiplayer game, but I knew that one person, even if they had a talent for it, couldn’t
do the graphics for such a game single-handedly. I decided to concentrate on game
play, thinking that I might be able to do this well, given the right tools and the right
language. I liked the idea of agents in the game learning on their own over time, hav-
ing independent concurrent actions. The only realistic way in my mind, at the time,
was to model each of these agents as some type of independent concurrent thing, but
I didn’t know what that was. The languages I knew wouldn’t work for one person writ-
ing a game like that all by themselves. So, I started exploring languages. I spent five
years or so doing this, on and off, in some pretty extreme depth. I came upon Erlang
fairly early, and although I liked the concurrency, its syntax and functional nature
threw me off. It wasn’t until I had explored programming languages in general a lot
more that I started to appreciate Erlang and write code in it. I never wrote that game,
but after I settled on Erlang as the right choice, I delved deeply into it, explored it
thoroughly, and started realizing how useful a language it was for many things. This
was back in 2000 or 2001. For the following few years, I experimented and taught
myself OTP. Then, in 2005, I introduced Erlang at Amazon.com, released the first ver-
sion of Sinan, and met Martin Logan, and we founded Erlware. In 2008, I moved to
Chicago to get the book project moving and start Erlware in earnest.”

 Richard: “I was introduced to Erlang around 1995 when I was looking for a subject
for my master’s thesis in computer science at Uppsala University. This led to me being
part of the High-Performance Erlang research group as a PhD student, working on
the Erlang compiler and runtime system for many years. I met Martin Logan and Eric
Merritt through conferences in Sweden and the U.S. and was impressed by their
enthusiasm for Erlang despite it being such a little-known language in those days—
particularly in the U.S. During my PhD studies, I also hacked on a few side projects:
the Syntax Tools library and the EDoc application were spin-offs from my compiler-
related work, and EUnit had its basis in the need for me to check that my students’
concurrent programming assignments worked according to spec. After leaving the
world of academia, I spent a few years working with non-Erlang-related things, coding
mostly in Python, Ruby, and C++. But these days, I’m working full time with Erlang
again, in the fast-moving world of high-availability payment systems, at one of Swe-
den’s most successful startup companies.”

 We’ve tried to extract as much as we can from our collective experience in order to
make your journey toward becoming a master Erlang programmer easier; and we
hope that with the help of this book, the OTP framework will finally become some-
thing that every Erlang programmer knows how to use—not only those brave few who
have read the manuals back to front.

acknowledgments
First, we want to thank Bob Calco for getting this project started—without you, the
book wouldn’t have happened, and we hope you like the results.

 We also want to thank all those readers who bought the Early Access edition and
waited so long for us to finish, while we more or less rewrote the book three times.
Your interest made us pull through.

 Thanks to Jerry Cattell for reviewing the Java code, Francesco Cesarini for his
help and promotion, Ulf Wiger for the foreword, Kevin A. Smith for his driver exam-
ple code, Ryan Rawson for help with Java and HBase, Ken Pratt for the technical
proofreading, and Alain O’Dea and all the other Early Access readers who gave us
their feedback.

 Special thanks to the following peer reviewers who read the manuscript at various
stages of development for their invaluable input: Chris Chandler, Jim Larson, Bryce
Darling, Brian McCallister, Kevin Jackson, Deepak Vohra, Pierre-Antoine Grégoire,
David Dossot, Greg Donald, Daniel Bretoi, James Hatheway, John S. Griffin, Franco
Lombardo, and Stuart Caborn.

 And a big thank you to the people at Manning for their support and patience, in
particular Tiffany Taylor, Katie Tennant, and Cynthia Kane. You didn’t lose hope.

 Last but not least: Martin wants to thank his wife Veronica for her patience in this
marathon book-writing endeavor. Likewise, Richard wants to thank his wife Elisabet
for her steadfast support and encouragement despite all the evenings and weekends
lost to writing. Eric would like to thank Rossana for listening to his complaints about
the workload and teasing him incessantly about the interminable nature of the book.
xxii

about this book
This book is focused on getting real, stable, versioned, and maintainable software out
into the world. It’s less theoretical, and more hands-on practical. We (the authors)
have put many systems into production over the years, and in this book we distill that
knowledge for use in real software development. Our focus is not just the Erlang pro-
gramming language by itself—other books out there are more suited as language tuto-
rials. This book is about the practice of writing Erlang code for production.

 Because this book is aimed at allowing individual programmers or teams of pro-
grammers across a company to write effective code, it covers Erlang/OTP right from
the start, not just Erlang the language. Erlang by itself offers the potential for power-
ful applications to be created, but it’s with OTP that it realizes that potential. OTP is
simultaneously a framework, a set of libraries, and a methodology for structuring
applications; it’s really a language extension. To learn Erlang for the real world means
learning Erlang/OTP.

 This book illustrates how to use Erlang/OTP in practice, through carefully chosen
realistic examples. By implementing these examples for yourself, you’ll come to
understand how to build solid, versioned, production-ready code that is ready to uti-
lize every cycle of that 32-core machine you have sitting in your server rack!

Roadmap
The book is divided into three parts. Part 1 is aimed at getting you past programming
in pure Erlang, introducing the basics of OTP:
xxiii

ABOUT THIS BOOKxxiv
Chapter 1 presents the Erlang/OTP platform and the main features that
make it tick, such as processes, message passing, links, distribution, and the
runtime system.
Chapter 2 gives a whirlwind tour of the Erlang programming language, both for
reference and as a summary of the things every professional Erlang program-
mer should know.
Chapter 3 introduces the concept of OTP behaviours, by throwing you headfirst
into writing a server in Erlang that communicates over TCP sockets.
Chapter 4 introduces OTP applications and supervision trees, showing how to
package your server from the previous chapter as an application with a supervi-
sor and with documentation generated by EDoc.
Chapter 5 presents the main GUI tools for finding out what is happening in a
running Erlang system: the application monitor, the process manager, the
debugger, and the table viewer.

Part 2 of the book gets down to business, giving you a real programming task and add-
ing more advanced OTP features to the code as you move along:

Chapter 6 starts you off on the main project in this book: implementing a cache
system for speeding up accesses to a web server. This will demonstrate a more
complicated application with many processes and using a supervisor as a pro-
cess factory.
Chapter 7 explains how Erlang/OTP logging and event-handling work, and adds
a logging facility to the cache application by means of a custom event handler.
Chapter 8 introduces distributed Erlang/OTP, explaining what nodes are, how
Erlang clusters work, how you communicate between nodes, and how you use
job control in the Erlang shell to perform operations on remote nodes. You’ll
then put this into immediate use by implementing a distributed resource-
discovery application that can be used to publish and find information about
available resources in a cluster of Erlang nodes.
Chapter 9 presents the Mnesia built-in distributed database in Erlang and shows
how to use a distributed table to make the cache application span multiple
nodes in a cluster.
Chapter 10 talks about how one or more Erlang/OTP applications are pack-
aged for release, either as a standalone minimal installation or as add-ons to a
previous installation, and how to deploy such packages.

Part 3 of the book is about making your code work as part of a greater whole, integrat-
ing it with other systems and users, and optimizing it as the load increases:

Chapter 11 shows how to add a RESTful HTTP interface over TCP to the cache
application, by taking you through the process of writing your own web server
from the ground up as a custom OTP behaviour.

ABOUT THIS BOOK xxv
Chapter 12 explains the basic mechanisms in Erlang for communicating with
code written in other languages, by demonstrating how to integrate a third-
party C library in three different ways: using plain ports, using a port driver, and
as NIFs.
Chapter 13 shows how to integrate Java code with the help of the Jinterface
library, making the Java program appear as a node in the Erlang cluster. This
is then used to add a Hadoop HBase database as a backing store for the
cache application.
Chapter 14 talks about performance measurement and optimization in an
Erlang/OTP system, explaining how to use the main code profiling tools and
discussing some implementation details worth knowing when you’re trying to
tune your program.

It’s worth noting that we don’t cover the gen_fsm behaviour in this book. This is inten-
tional; gen_fsm is a behaviour seldom used in practice. The book covers the most
important of the OTP behaviours in great detail, and from this you’ll come to under-
stand behaviours well enough that learning about gen_fsm from the official documen-
tation on your own will be easy. Among other things, it can be useful for parsing
binary protocols; but a plain gen_server and the judicious use of pattern matching is
almost always more appropriate and, in particular, more flexible. If you were looking
forward to learning about gen_fsm, we’re sorry, but overall you’re better served by the
main behaviours.

Source code
All source code in listings or in text is in a fixed-width font like this to separate it
from ordinary text. Code annotations accompany many of the listings, highlighting
important concepts. In some cases, numbered bullets link to explanations that follow
the listing.

 The code for this book is available at http://github.com/erlware/Erlang-and-OTP-
in-Action-Source (or go to github.com and search for “Erlang and OTP in Action”). It
is also available from the publisher’s website at www.manning.com/ErlangandOTP-
inAction.

Author Online
The purchase of Erlang and OTP in Action includes free access to a private forum run
by Manning Publications where you can make comments about the book, ask techni-
cal questions, and receive help from the authors and other users. You can access and
subscribe to the forum at http://www.manning.com/ErlangandOTPinAction. This
page provides information on how to get on the forum once you’re registered, what
kind of help is available, and the rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take

http://github.com/erlware/Erlang-and-OTP-in-Action-Source
http://github.com/erlware/Erlang-and-OTP-in-Action-Source
http://www.manning.com/ErlangandOTP-inAction.Author
http://www.manning.com/ErlangandOTP-inAction
http://www.manning.com/ErlangandOTPinAction

ABOUT THIS BOOKxxvi
place. It isn’t a commitment to any specific amount of participation on the part of
the authors, whose contributions to the book’s forum remains voluntary (and
unpaid). We suggest you try asking the authors some challenging questions, lest their
interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the authors
MARTIN J. LOGAN has been heavily involved with the Erlang community since 1999. His
great interest in distributed systems and service-based design has made him a constant
presence in the community. He has given many talks on the topic, in the U.S. and Can-
ada as well as in Europe, and he is one of the people behind the Chicago ErlangCamp
conference. Martin has implemented many complex systems using Erlang in the tele-
com space, including one of the first call-detail record-collection systems for the SIP
protocol; but more recently, he has focused on large-scale e-commerce backing sys-
tems. Currently, Martin brings his expertise to Orbitz Worldwide, one of the largest
online travel companies in the world. Martin has also taken on a leadership role with
Erlware, where he is a core developer and the primary author of the Faxien package-
management system. He currently lives in Chicago with his wife Veronica.

ERIC MERRITT is a software engineer who specializes in concurrent languages and
distributed systems. For the last nine years, he has been coding Erlang and has also
been heavily involved in the Erlang community. Eric has been involved in both pro-
fessional and open source development for the last ten years. He started his career
developing in C and Java on IBM mainframe and midrange hardware. He also pro-
vided training and consulting in object-oriented principles and concepts. However,
his interest in languages, concurrency, and distributed systems soon drove him to
more interesting and challenging work at companies such as Amazon.com. Cur-
rently, Eric is a core developer for the Erlware family of open source products and
he is the primary author of the Sinan build system. His day job involves hacking
Erlang for eCD Market, LLC.

RICHARD CARLSSON has been deeply involved with Erlang since the mid-nineties. He
was one of the original members of the High-Performance Erlang group at Uppsala
University, and has contributed to many parts of the standard libraries, the Erlang
compiler, runtime system, and the language itself. Among other things, he is the
author of Erlang’s EDoc documentation system and the EUnit unit testing frame-
work. He is currently working for Klarna, one of Sweden’s fastest growing companies,
which provides payment solutions, all based on Erlang, in Scandinavia, Germany, and
the Netherlands.

ABOUT THIS BOOK xxvii
About the cover illustration
The illustration on the cover of Erlang and OTP in Action bears the caption “An Artvin-
ian,” a resident of a region called Artvin in northeast Turkey. The image is taken from
a collection of costumes of the Ottoman Empire published on January 1, 1802, by Wil-
liam Miller of Old Bond Street, London. The title page is missing from the collection
and we have been unable to track it down to date. The book’s table of contents identi-
fies the figures in both English and French, and each illustration also bears the names
of two artists who worked on it, both of whom would no doubt be surprised to find
their art gracing the front cover of a computer programming book...two hundred
years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in
the “Garage” on West 26th Street in Manhattan. The seller was an American based in
Ankara, Turkey, and the transaction took place just as he was packing up his stand for
the day. The Manning editor did not have on his person the substantial amount of
cash that was required for the purchase and a credit card and check were both politely
turned down. With the seller flying back to Ankara that evening the situation was get-
ting hopeless. What was the solution? It turned out to be nothing more than an old-
fashioned verbal agreement sealed with a handshake. The seller simply proposed that
the money be transferred to him by wire and the editor walked out with the bank
information on a piece of paper and the portfolio of images under his arm. Needless
to say, we transferred the funds the next day, and we remain grateful and impressed by
this unknown person’s trust in one of us. It recalls something that might have hap-
pened a long time ago.

 The pictures from the Ottoman collection, like the other illustrations that appear
on our covers, bring to life the richness and variety of dress customs of two centuries
ago. They recall the sense of isolation and distance of that period—and of every other
historic period except our own hyperkinetic present. Dress codes have changed since
then and the diversity by region, so rich at the time, has faded away. It is now often
hard to tell the inhabitant of one continent from another. Perhaps, trying to view it
optimistically, we have traded a cultural and visual diversity for a more varied personal
life. Or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the
computer business with book covers based on the rich diversity of regional life of two
centuries ago‚ brought back to life by the pictures from this collection.

introduction
Erlang is a programming language where processes are a fundamental concept. But
what is a process? When you run several programs at once on your computer, such as a
word processor and a web browser, each one of those programs runs inside its own
process. If your word processor should crash, your browser generally stays running as
if nothing happened—or vice versa, a crashing web browser will not cause you to lose
that document you were writing. Processes are a kind of bubble that provides isolation
as well as parallel execution, and Erlang is built entirely around processes.

 Erlang makes it easy for you to create processes as you need them—just as easy
as it is to create objects in a language like Java. Because processes are so cheap, we
can start to look at systems in a different manner. Each independent activity in an
Erlang program can be coded as a separate process. No unintuitive event loops, no
thread pooling, none of those pesky implementation details. If your program needs
10,000 processes running simultaneously to accomplish a job, it can easily be done.
As you’ll see as you read this book, this fundamentally alters the way we look at sys-
tems, presenting a view that is, as we hope to show you, much more intuitive (and
much more productive).

 Erlang is also what is known as a functional programming language. Don’t let this
intimidate you. Erlang could have been more like the mainstream programming lan-
guages you know; the properties described here can be achieved without functional
programming. But functional programming and its main characteristics like referen-
tial transparency, the use of higher-order functions, and the general avoidance of
mutable data structures lend themselves nicely to the fundamental features of Erlang.
xxviii

INTRODUCTION xxix
Functional programming is the vehicle by which these features were codified, and it
allows them to be expressed elegantly and succinctly. The power of Erlang without the
clarity of functional code would yield a more complex and much less enjoyable lan-
guage to program in.

Where Erlang comes from
When you first heard of Erlang, it may have been described to you as a “functional,
concurrent programming language,” and you may have thought that it sounded like
some kind of academic and probably unpractical toy language. But we want to
emphasize that Erlang has its roots in real-world, large-scale software engineering
problems. To make this clear, we’ll here give you the history behind the language in
some detail.

A comparison with C

The background of Erlang can be seen as an interesting parallel to that of the C pro-
gramming language. First, both languages were created by a small group of people
working in the relatively relaxed setting of an R&D department deep in the bowels of
a large telecom company. The language creators were free spirits, but they were also
pragmatic engineers out to solve a concrete problem. In the case of C, the problem
was how to write systems software in more high-level language than assembler, but on
hardware with limited resources (for that time). For Erlang, it was how to enable pro-
grammers to write very large, highly parallel, and extremely fault-tolerant software,
while radically improving productivity and reducing the number of software defects—
a tall order indeed.

 Both languages accumulated followers within the company who used them for
internal projects and real products, and gave valuable early feedback to the creators
about pragmatic details. In both cases, it took some 10 years before the general public
heard about them, and by that time, they had been well and truly battle tested. C was
created around 1972 and was popularized during the 1980s. Similarly, Erlang took
shape around 1988 and was released as open source in 1998. Both languages also
sparked an early outside interest within research organizations and universities. And
both certainly have their quirks, for historical reasons, but we’re generally willing to
forgive them because they get the job done like nothing else.

 Let’s step back in time.

Stockholm, mid-1980s: an Englishman gets a license to
poke around

Erlang was born as the result of a project aiming to find a better way of programming
the kind of control systems that were largely limited to the telecom industry in those
days: high-traffic, extremely parallel systems with draconic demands on uptime. Joe
Armstrong joined this project in 1985, at Ericsson’s Computer Science Laboratory in
Stockholm, Sweden.

INTRODUCTIONxxx
 A major part of this project was to implement the same kind of telephony control
system in as many different programming languages as possible. This included Ada,
CLU, Smalltalk, and others. The results weren’t conclusive. Although it became clear
that the high-level, declarative style of the functional and logic languages was attrac-
tive, no language had a suitable concurrency model.

 But what would a good concurrency model look like? In those days (and still
almost two decades later), research into concurrency was mostly focused on either
pure and abstract process models such as CSP, pi-calculus, and concurrent logic lan-
guages, or low-level mechanisms such as semaphores, monitors, and signals.

 Meanwhile, engineers had to solve the real problems involved with creating mas-
sively parallel and fault-tolerant communication systems. Ericsson already had one
such home-made solution in the shape of a proprietary hybrid programming language
and operating system called PLEX, for its successful line of AXE telephony switches.

Some perplexing demands

PLEX was a relatively normal imperative programming language, but it had some par-
ticular features that defined a kind of baseline for any solution that aimed to replace it:

Processes had to be an intrinsic part of the language.
Processes must not be able to corrupt each other’s memory spaces, leave dan-
gling pointers, and so on.
It must be possible to run tens or hundreds of thousands of processes, so
process creation and task switching must be fast, and processes must use very
little memory.
Failure of individual processes must be isolated.
You must be able to do a code upgrade on the fly in a running system.
You must be able to detect and handle both hardware and software errors.

The only languages that came close to this were concurrent logic languages such as
Parlog and Strand, but those had a very different, much more fine-grained process
concept, with little control over individual processes.

Erlang comes to life

One day, after discovering the logic programming language Prolog and how well its
rule-based programming style matched his hand-written notation for describing the
telephony control problem, Joe started writing a Prolog meta-interpreter. This way, he
could extend Prolog with simulated process switching, to run multiple concurrent
telephone calls.

 Pretty soon, the interpreted expressions had grown into a small language, with pro-
cesses and message passing; and although it was implemented on top of Prolog, it was
simpler, was functional, and didn’t use Prolog’s unification and backtracking features.
Not much later, the name Erlang was suggested, as a deliberate pun. (A. K. Erlang, a
Danish mathematician, was a familiar name to many telecom engineers, due to his

INTRODUCTION xxxi
contributions to the field of communication system statistics, but the name could also
be read as “Ericsson language.”)

 The initial evolution of Erlang was thus driven by the requirements of writing a
small but working telephony control system. In particular, the message-passing primi-
tives were carefully chosen to match the realities of large telecom systems rather than
any particular theory of concurrency. This meant using an asynchronous send opera-
tor, and with automatic buffering of messages and out-of-order selective receive
(strongly influenced by the CCITT SDL notation used for specifying complicated com-
munication protocols).

 After an initial experiment on a group of real users during 1988, writing a proto-
type for a new telephony architecture, it was clear that the new language gave a very
large productivity boost but that its current implementation was much too slow. Start-
ing in 1990, Joe, Mike Williams, and Robert Virding began implementing the first
abstract machine for Erlang. Its name was JAM; it was a stack-based abstract machine
written in C and was 70 times faster than the Prolog implementation.

 The first Erlang book was published in 1993, with a second edition in 1996. Erlang
could finally be considered a real language.

The in-between years

Over the following years, Erlang accumulated many features, such as distribution, the
record syntax, the preprocessor, lambda expressions (funs), list comprehensions,
the Mnesia database, the binary data type, the bit syntax, and more. The system was
ported to other platforms besides UNIX, such as Windows, VxWorks, and QNX.

 Erlang got a crucial boost within Ericsson due to the collapse of a gigantic
C++-based project in 1995. The project was restarted from scratch, this time using
Erlang and “a mere 60” programmers; and a proper language support depart-
ment—the OTP team—was formed to back them up. The result was the highly suc-
cessful AXD301 system, containing more than a million lines of Erlang code.

 Meanwhile, a couple of students doing their master’s thesis on native code compi-
lation of Erlang led to the High Performance Erlang research group being founded at
Uppsala University in 1998; and eventually, the HiPE native code compiler was inte-
grated in the standard Erlang/OTP distribution. Furthermore, although an Ericsson
project to improve efficiency by compiling Erlang to C was unsuccessful due to the
greatly increased code size, a spin-off effect was that a faster, register-based, threaded
code abstract machine design named BEAM replaced the older JAM.

 But in the late 90s, Java was the word of the day. Upper management decided that
Ericsson shouldn’t commit itself to developing and supporting its own programming
language but should instead focus on “globally used languages.” Hence, Erlang was
banned for new projects. Management was eventually persuaded to release Erlang as
open source, to benefit users outside Ericsson. This happened in December 1998.
Soon after that, many of the core developers left to form a small startup, using Erlang
and their substantial telecom experience to successfully get rich quick.

INTRODUCTIONxxxii
Getting dressed for success

Slowly, the external user base started growing. At Ericsson, people started to forget
about the ban as time passed and it became obvious that Erlang was too useful to
ignore and that the existing systems weren’t going to be rewritten in anything else.
The OTP team kept developing and supporting Erlang, and Ericsson kept sponsoring
the HiPE project, with its many spin-off applications such as EDoc and Dialyzer.

 In the world of academia, Erlang began to get recognition as a well-established
and interesting functional programming language. Since 2002, the annual Erlang
Workshop has been an ACM SIGPLAN sponsored event, co-located with ICFP, the
International Conference on Functional Programming. As the highest form of flat-
tery, the Erlang concurrency model has been experimentally copied onto several
other programming languages; but as many people have found out, this is hard to do
as an afterthought.

 In 2006, while the hardware industry was beginning to admit that it had hit the
uniprocessor performance wall, the first release of Erlang with SMP support was
released, as the result of a joint effort between Ericsson’s OTP team and the HiPE
team. Then, in 2007, Joe’s new book Programming Erlang (the first Erlang book in a
decade) was published—and suddenly, Erlang was getting a lot of attention all over
the world. Many companies, both large and small, have picked it up and are putting it
to weird and wonderful uses.

 That is where this book begins.

Part 1

Getting past pure Erlang:
 the OTP basics

Part 1 of this book is a dive into the fundamentals. We cover language basics
in a whirlwind tour and then explore some of the fundamental OTP building
blocks that set things up for the real-world scenarios that play out through the
rest of the book.

The Erlang/OTP platform
If you’re reading this book, you probably know already that Erlang is a program-
ming language—and as such it’s pretty interesting in itself—but as the title of the
book indicates, our focus is on the practical use of Erlang for creating real, live sys-
tems. And for that, we also need the OTP framework. This is always included in any
Erlang distribution and is such an integral part of Erlang these days that it’s hard to
say where the line is drawn between OTP and the plain Erlang standard libraries;
hence, we often say “Erlang/OTP” to refer to either or both. Despite this close rela-
tionship, not many Erlang programmers have a clear idea of what OTP can provide

This chapter covers
■ Understanding concurrency and Erlang’s

process model
■ Erlang’s support for fault tolerance and

distribution
■ Important properties of the Erlang runtime

system
■ What functional programming means, and how

it applies to Erlang
3

4 CHAPTER 1 The Erlang/OTP platform
or how to start using it, even if it has always been just a few keystrokes away. This book
is here to help.

 The Erlang programming language is already fairly well known for making it easy
to write highly parallel, distributed, and fault-tolerant systems, and we give a compre-
hensive overview of the language in chapter 2 before we jump into the workings of
the OTP framework. But why should you learn to use OTP, when you could happily
hack away, rolling your own solutions as you go? These are some of the main advan-
tages of OTP:

■ Productivity—Using OTP makes it possible to produce production-quality sys-
tems in a very short time.

■ Stability—Code written on top of OTP can focus on the logic and avoid error-
prone reimplementations of the typical things that every real-world system
needs: process management, servers, state machines, and so on.

■ Supervision—The application structure provided by the framework makes it sim-
ple to supervise and control the running systems, both automatically and
through graphical user interfaces.

■ Upgradability—The framework provides patterns for handling code upgrades in
a systematic way.

■ Reliable code base—The code for the OTP framework is rock solid and has been
thoroughly battle tested.

Despite these advantages, it’s probably true to say that to most Erlang programmers,
OTP is still something of a secret art, learned partly by osmosis and partly by poring
over the more impenetrable sections of the documentation. We’d like to change this.
This is, to our knowledge, the first book focused on learning to use OTP, and we want
to show you that it can be a much easier experience than you may think. We’re sure
you won’t regret it.

 At the end of this book, you’ll have a thorough knowledge of the concepts, librar-
ies, and programming patterns that make up the OTP framework. You’ll understand
how individual programs and whole Erlang-based systems can be structured using
OTP components and principles in order to be fault tolerant, distributable, concur-
rent, efficient, and easy to control and monitor. You’ll probably also have picked up a
number of details about the Erlang language, its runtime system, and some of the
libraries and tools around it that you weren’t already aware of.

What does OTP stand for?
OTP was originally an acronym for Open Telecom Platform, a bit of a branding
attempt from the time before Erlang went open source. But few people care
about that now; these days, it’s just OTP. Nothing in either Erlang or OTP is spe-
cific to telecom applications: a more fitting name might have been Concurrent
Systems Platform.

5Concurrent programming with processes
 In this chapter, we discuss the core concepts and features of the Erlang/OTP plat-
form that everything else in OTP builds on:

■ Concurrent programming
■ Fault tolerance
■ Distributed programming
■ The Erlang virtual machine and runtime system
■ Erlang’s core functional language

The point is to get you acquainted with the thinking behind all the concrete stuff we
dive into from chapters 2 and 3 onward, rather than starting by handing you a bunch
of facts up front. Erlang is different, and many of the things you’ll see in this book will
take some time to get accustomed to. With this chapter, we hope to give you an idea of
why things work the way they do, before we get into technical details.

1.1 Concurrent programming with processes
Erlang was designed for concurrency—having multiple tasks running simultaneously—
from the ground up. It was a central concern when the language was designed. Its
built-in support for concurrency, which uses the process concept to get a clean separa-
tion between tasks, allows you to create fault-tolerant architectures and fully utilize the
multicore hardware that is available today. But before we go any further, we should
explain more exactly what we mean by the terms concurrency and process.

1.1.1 Understanding concurrency

Is concurrent just another word for in parallel? Almost but not exactly, at least when
we’re talking about computers and programming.

 One popular semiformal definition reads something like, “Those things that don’t
have anything that forces them to happen in a specific order are said to be concur-
rent.” For example, given the task to sort two packs of cards, you could sort one first
and then the other; or if you had extra arms and eyes, you could sort both in parallel.
Nothing requires you to do them in a certain order; hence, they’re concurrent tasks.
They can be done in either order, or you can jump back and forth between the tasks
until they’re both done; or, if you have the extra appendages (or perhaps someone to
help you), you can perform them simultaneously in true parallel fashion.

 This may sound strange: shouldn’t we say that tasks are concurrent only if they’re
happening at the same time? Well, the point with that definition is that they could hap-
pen at the same time, and we’re free to schedule them at our convenience. Tasks that
need to be done simultaneously aren’t separate tasks at all, whereas some tasks are sep-
arate but nonconcurrent and must be done in order, such as breaking the egg before
making the omelet. The rest are concurrent.

 One of the nice things that Erlang does for you is help with the physical execution
of tasks. As illustrated in figure 1.1, if extra CPUs (or cores or hyperthreads) are avail-
able, Erlang uses them to run more of your concurrent tasks in parallel. If not, Erlang

6 CHAPTER 1 The Erlang/OTP platform
uses what CPU power there is to do them all a bit at a time. You won’t need to think
about such details, and your Erlang programs automatically adapt to different hard-
ware—they just run more efficiently if there are more CPUs, as long as you have things
lined up that can be done concurrently.

 But what if your tasks aren’t concurrent, and your program must first do X, then Y,
and finally Z? That is where you need to start thinking about the real dependencies in
the problem you’re out to solve. Perhaps X and Y can be done in any order as long as
they’re before Z. Or perhaps you can start working on a part of Z as soon as parts of X
and Y are done. There is no simple recipe, but surprisingly often a little thinking can
get you a long way, and it gets easier with experience.

 Rethinking the problem in order to eliminate unnecessary dependencies can
make the code run more efficiently on modern hardware. But that should usually be
your second concern. The most important effect of separating parts of the program
that don’t need to be together is that doing so makes your code less confused, more
readable, and allows you to focus on the real problems rather than on the mess that
follows from trying to do several things at once. This means higher productivity and
fewer bugs. But first, we need a more concrete representation of the idea of having
separate tasks.

1.1.2 Erlang’s process model

In Erlang, the unit of concurrency is the process. A process represents an ongoing
activity; it’s an agent that is running a piece of program code, concurrent to other
processes running their own code, at their own pace. Processes are a bit like people:
individuals who don’t share anything between them. Not that people aren’t generous,
but if you eat food, nobody else gets full; and more important, if you eat bad food,
only you get sick from it. You have your own brain and internals that keep you think-
ing and living independently from everyone else. This is how processes behave;

Erlang processes on
uniprocessor hardware

CPU

Erlang virtual machine

Erlang processes on
multiprocessor hardware

CPU CPU

Erlang virtual machine

CPU CPU

Figure 1.1 Erlang processes running on uniprocessor and on multiprocessor hardware,
respectively. The runtime system automatically distributes the workload over the
available CPU resources.

7Concurrent programming with processes
they’re separate from one another and are guaranteed not to disturb one another
through their own internal state changes.

 A process has its own working memory and its own mailbox for incoming mes-
sages. Whereas threads in many other programming languages and operating systems
are concurrent activities that share the same memory space (and have countless
opportunities to step on each other’s toes), Erlang’s processes can safely work under
the assumption that nobody else will be poking around and changing their data from
one microsecond to the next. We say that processes encapsulate state.

Because processes can’t directly change each other’s internal state, it’s possible to
make significant advances in fault tolerance. No matter how bad the code is that a
process is running, it can’t corrupt the internal state of your other processes. Even at a
fine-grained level within your program, you can have the same isolation that you see
between, for example, the web browser and the word processor on your computer
desktop. This turns out to be very powerful, as you’ll see later in this chapter when we
talk about process supervision.

 Because processes can share no internal data, they must communicate by copying.
If one process wants to exchange information with another, it sends a message; that
message is a read-only copy of the data the sender has. These fundamental semantics
of message passing make distribution a natural part of Erlang. In real life, you can’t
share data over the wire—you can only copy it. Erlang’s process communication
always works as if the receiver gets a personal copy of the message, even if the sender
happens to be on the same computer. Although it may sound strange at first, this
means network programming is no different from coding on a single machine!

Processes: an example
Consider a web server: it receives requests for web pages, and for each request
it needs to do some work that involves finding the data for the page and either
transmitting it back to the place the request came from (sometimes split into
many chunks, sent one at a time) or replying with an error message in case of
failure. Clearly, each request has little to do with any other; but if the server
accepts only one at a time and doesn’t start handling the next request until
the previous is finished, there will quickly be thousands of requests on queue
if the web site is popular.

If the server instead can begin handling requests as soon as they arrive, each
in a separate process, there will be no queue, and most requests will take
about the same time from start to finish. The state encapsulated by each pro-
cess is then the specific URL for the request, who to reply to, and how far it
has come in the handling as yet. When the request is finished, the process dis-
appears, cleanly forgetting about the request and recycling the memory. If a
bug causes one request to crash, only that process dies, while all the others
keep working happily.

8 CHAPTER 1 The Erlang/OTP platform
 This transparent distribution allows Erlang programmers to look at the network as a
collection of resources—we don’t much care about whether process X is running on
a different machine than process Y, because the method of communication is exactly
the same no matter where they’re located. In the next section, we provide an over-
view of methods of process communication used by various programming languages
and systems, to give you an understanding of the trade-offs involved.

1.1.3 Four process communication paradigms

The central problem in all concurrent systems, which all implementers have to solve,
is sharing information. If you separate a problem into different tasks, how should
those tasks communicate with one another? It may seem like a simple question, but
some of the brightest minds out there have wrestled with it, and many approaches
have been tried over the years, some of which have appeared as programming lan-
guage features and some as separate libraries.

 We briefly discuss four approaches to process communication that have gained
mindshare over the last few years. We won’t spend too much time on any single one,
but this will give you an overview of the approaches current-day languages and systems
are taking and highlight the differences between those and Erlang. These four are
shared memory with locking, software transactional memory, futures, and message
passing. We start with the oldest but still the most popular method.

SHARED MEMORY WITH LOCKS

Shared memory could reasonably be called the GOTO of our time: it’s the current
mainstream technique for process communication; it has been so for a long, long
time; and just like programming with GOTO, there are numerous ways to shoot
yourself in the foot. This has imbued generations of engineers with a deep fear of
concurrency (and those who don’t fear it haven’t tried it yet). Still, we must admit
that like GOTO, there is a low-level niche for shared memory where it probably can’t
be replaced.

 In this paradigm, one or more regular memory cells can be read or written to by
two or more processes in parallel. To make it possible for a process to perform an
atomic sequence of operations on those cells, so that no other process is able to
access any of the cells before all the operations have completed, there must be a way
for the process to block all others from accessing the cells until it has finished. This
is done with a lock: a construct that makes it possible to restrict access to a single pro-
cess at a time.

 Implementing locks requires support from the memory system, typically hardware
support in the form of special instructions. The use of locks requires complete coop-
eration between processes: all must make sure to ask for the lock before accessing a
shared memory region, and they must return the lock when they’re done so that
someone else gets a chance to use it. The slightest failure can cause havoc; so, gener-
ally, higher-level constructs such as semaphores, monitors, and mutexes, are built on
these basic locks and are provided as operating system calls or programming language

9Concurrent programming with processes
constructs to make it easier to guarantee that locks are properly requested and
returned. Although this avoids the worst problems, locks still have a number of draw-
backs. To mention only a few:

■ Locks require overhead even when the chances of collisions are low.
■ They’re points of contention in the memory system.
■ They may be left in a locked state by failed processes.
■ It’s extraordinarily hard to debug problems with locks.

Furthermore, locking may work well for synchronizing two or three processes, but as
the number grows, the situation quickly becomes unmanageable. A real possibility
exists (in many cases, more of a certainty) of ending up with a complex deadlock that
couldn’t be foreseen by even the most experienced developer.

 We think this form of synchronization is best left to low-level programming, such as
in the operating system kernel. But it can be found in most current popular program-
ming and scripting languages. Its ubiquitousness is likely due to the fact that it’s fairly
easy to implement and doesn’t interfere with the programming model these lan-
guages are based on. Unfortunately, its widespread use has hurt our ability to think
about concurrent issues and make use of concurrency on a large scale even though
multiprocessor systems have been widely available for several years.

SOFTWARE TRANSACTIONAL MEMORY (STM)
The first nontraditional method we are going to look at is software transactional mem-
ory (STM). This mechanism can currently be found in the GHC implementation of the
Haskell programming language, as well as in the JVM-based language Clojure. STM
treats memory more like a traditional database, using transactions to decide what gets
written and when. Typically, the implementation tries to avoid using locks by working
in an optimistic way: a sequence of read and write accesses are treated as a single oper-
ation, and if two processes try to access the shared region at the same time, each in its
own transaction, only one of them succeeds. The other processes are told that they
failed and should try again after checking what the new contents are. It’s a straightfor-
ward model and doesn’t require anyone to wait for someone else to release a lock.

 The main drawback is that you have to retry failed transactions (and they could, of
course, fail repeatedly). There is also some significant overhead involved with the
transaction system itself, as well as a need for additional memory to store the data
you’re trying to write until it’s decided which process will succeed. Ideally, there
should be hardware support for transactional memory just as there typically is support
for virtual memory.

 The STM approach seems more manageable to programmers than the use of locks,
and it may be a good way to take advantage of concurrency as long as transactions
don’t have to be restarted too often due to contention. We still consider this approach
to be at its core a variant of shared memory with locks, and one that may be more help
on an operating system level than on an application programming level; but it’s cur-
rently a lively research topic, and things may turn out differently.

10 CHAPTER 1 The Erlang/OTP platform
FUTURES, PROMISES, AND SIMILAR

Another more modern approach is the use of so-called futures or promises. This is a
concept with several variants; it can be found in languages like E and MultiLisp and as
a library in Java, and it’s similar to I-vars and M-vars in Id and Glasgow Haskell, concur-
rent logic variables in Concurrent Prolog, and dataflow variables in Oz.

 The basic idea is that a future is a result of a computation that has been outsourced
to some other process, possibly on another CPU or a completely different computer. A
future can be passed around like any other object, but if someone wants to read the
value and it isn’t ready yet, they have to wait for it to be done. Although this is concep-
tually simple and makes it easy to pass around data in concurrent systems, it also
makes the program brittle in case of failure of the remote process or the network in
between: the code that tries to access the value of the promise may have no idea what
to do if the value is still missing and the connection is dead.

MESSAGE PASSING

As we said in section 1.1.2, Erlang processes communicate by message passing. This
means the receiving process effectively gets a separate copy of the data, and nothing
it does to that copy is observable by the sender. The only way to communicate infor-
mation back to the sender is to send another message in the reverse direction. One of
the most important consequences is that communication works the same whether the
sender and receiver are on the same computer or separated by a network.

 Message passing in general comes in two flavors: synchronous and asynchronous. In
the synchronous form, the sender can’t do anything else until the message has
arrived at the receiving end; in the asynchronous form, senders can proceed imme-
diately after posting the message. (In the real world, synchronous communication
between separate machines is only possible if the receiver sends an acknowledge-
ment back to the sender, telling it that it’s OK to continue, but this detail can be
kept hidden from the programmer.)

 In Erlang, the message passing primitives are asynchronous, because it’s easy to
implement the synchronous form when necessary by making the receiver always send
an explicit reply that the sender can wait for. Often, though, the sender doesn’t need
to know that the message arrived—that knowledge is overrated, because nothing tells
you what the receiver did next: it may have died just afterward. This asynchronous
“send-and-pray” method of communication also means the sender doesn’t need to be
suspended while the message is being delivered (in particular if the message is sent
over a slow communications link).

 Of course, you don’t get this level of separation between sender and receiver for
free. Copying data can be expensive for large structures and can cause higher mem-
ory usage if the sender also needs to keep their copy of the data. In practice, this
means you must be aware of and manage the size and complexity of messages you’re
sending. But in normal, idiomatic Erlang programs, the majority of messages are
small, and the overhead of copying is usually negligible.

11Concurrent programming with processes
 We hope this discussion has been of use to your understanding of Erlang’s place in
the concurrent programming landscape of today. Message passing may not be the sex-
iest of these techniques, but the track record of Erlang shows that from a systems engi-
neering perspective, it seems to be the most practical and flexible.

1.1.4 Programming with processes in Erlang

When you build an Erlang program, you say to yourself, “What activities here are con-
current—can happen independently of one another?” After you sketch out an answer
to that question, you can start building a system where every single instance of those
activities you identified becomes a separate process.

 In contrast to most other languages, concurrency in Erlang is cheap. Spawning a
process is about as much work as allocating an object in your average object-oriented
language. This can take some getting used to in the beginning, because it’s such a for-
eign concept! But when you do get used to it, magic begins to happen. Picture a com-
plex operation that has several concurrent parts, all modeled as separate processes. The
operation starts, processes are spawned, data is manipulated, and a result is produced,
and at that moment the processes involved disappear magically into oblivion, taking
with them their internal state, their database handles, their sockets, and any other stuff
that needs to be cleaned up that you don’t want to have to deal with manually.

 In the rest of this section, we take a brief look at how easy it is to create processes,
how lightweight they are, and how simple it is to communicate between them.

CREATING A PROCESS: SPAWNING

Erlang processes are not operating system threads. They’re much more lightweight,
implemented by the Erlang runtime system, and Erlang is easily capable of spawning
hundreds of thousands of processes on a single system running on commodity hard-
ware. Each of these processes is separate from all the other processes in the runtime
system; it shares no memory with the others, and in no way can it be corrupted by
another process dying or going berserk.

 A typical thread in a modern operating system reserves some megabytes of address
space for its stack (which means a 32-bit machine can never have more than a few
thousand simultaneous threads), and it still crashes if it uses more stack space than
expected. Erlang processes, on the other hand, start with only a couple of hundred
bytes of stack space each, and they grow or shrink automatically as required.

 Erlang’s syntax for creating processes is straightforward, as illustrated by the fol-
lowing example. Let’s spawn a process whose job is to execute the function call
io:format("erlang!") and then finish:

spawn(io, format, ["erlang!"])

That’s all. (Although the spawn function has some other variants, this is the simplest.)
This code starts a separate process, which prints the text “erlang!” on the console and
then quits.

12 CHAPTER 1 The Erlang/OTP platform
 In chapter 2, we give an overview of the Erlang language and its syntax, but right
now we hope you’ll be able to get the gist of our examples without further explana-
tion. One of the strengths of Erlang is that it’s generally easy to understand the code
even if you’ve never seen the language before. Let’s see if you agree.

HOW PROCESSES TALK

Processes need to do more than spawn and run—they need to exchange information.
Erlang makes this communication simple. The basic operator for sending a message
is !, pronounced “bang,” and it’s used in the form “Destination ! Message”. This is
message passing at its most primitive, like mailing a postcard. The OTP framework
takes process communication to another level, and we dive into that in chapter 3; for
now, let’s marvel at the simplicity of communicating between two independent and
concurrent processes, as illustrated in the following listing.

run() ->
 Pid = spawn(fun ping/0),
 Pid ! self(),
 receive
 pong -> ok
 end.

ping() ->
 receive
 From -> From ! pong
 end.

Take a minute or two and look at this code. You can probably understand it without
any previous knowledge of Erlang. Points worth noting are a variant of the spawn func-
tion that gets a single reference to “the function named ping that takes zero argu-
ments”; and the function self(), which produces the identifier of the current
process, which is passed to the new process so that it knows where to reply B.

 That’s Erlang’s process communication in a nutshell. Every call to spawn yields a
fresh process identifier that uniquely identifies the new child process. This identifier
can then be used to send messages to the child. Each process has a mailbox where
incoming messages are stored as they arrive, even if the receiving process is currently
busy, and the messages are kept there until the process decides to check the mailbox.
It can then search and retrieve messages from the mailbox at its convenience using a
receive expression, as in the example (which grabs the first available message).

PROCESS TERMINATION

When a process is done with its work, it disappears. Its working memory, mailbox, and
other resources are recycled. If the purpose of the process is to produce data for
another process, it must send that data explicitly as a message before it terminates.

 Crashes (exceptions) can make a process terminate unexpectedly and prema-
turely, and if this happens, other processes can be informed of the crash. We’ve
previously talked about how processes are independent and the fact that a crash in

Listing 1.1 Process communication in Erlang

From contains
sender ID

B

13Erlang’s fault tolerance infrastructure
one can’t corrupt another, because they don’t share internal state. This is one of
the pillars of another of Erlang’s main features: fault tolerance, which we cover in
more detail in the next section.

1.2 Erlang’s fault tolerance infrastructure
Fault tolerance is worth its weight in gold in the real world. Programmers aren’t per-
fect, nor are requirements. In order to deal with imperfections in code and data,
just like aircraft engineers deal with imperfections in steel and aluminum, we need
to have systems that are fault tolerant, that are able to deal with mistakes and don’t
go to pieces each time an unexpected problem occurs.

 Like many programming languages, Erlang has exception handling for catching
errors in a particular piece of code, but it also has a unique system of process links
for handling process failures in a effective way, which is what we’re going to talk
about here.

1.2.1 How process links work

When an Erlang process dies unexpectedly, an exit
signal is generated. All processes that are linked to
the dying process receive this signal. By default,
this causes the receiver to exit as well and propa-
gate the signal on to any other processes it’s linked
to, and so on, until all the processes that are
linked directly or indirectly to each other have
exited (see figure 1.2). This cascading behaviour
allows you to have a group of processes behave as
a single application with respect to termination, so
that you never need to worry about finding and
killing off any leftover processes before you can
restart that entire subsystem from scratch.

 Previously, we mentioned cleaning up complex state through processes. This is
basically how it happens: a process encapsulates all its state and can therefore die
safely without corrupting the rest of the system. This is just as true for a group of
linked processes as it is for a single process. If one of them crashes, all its collaborators
also terminate, and all the complex state that was created is snuffed out of existence
cleanly and easily, saving programmer time and reducing errors.

Let it crash
Rather than thrashing around desperately to save a situation that you probably
won’t be able to fix, the Erlang philosophy is “let it crash”—you drop everything
cleanly and start over, logging precisely where things went pear-shaped and how.
This can take some getting used to, but it’s a powerful recipe for fault tolerance
and for creating systems that are possible to debug despite their complexity.

Figure 1.2 An exit signal triggered by
a crashing process is propagated to all
its linked processes, generally making
those terminate as well so that the
whole group is cleaned up.

14 CHAPTER 1 The Erlang/OTP platform
1.2.2 Supervision and trapping of exit signals

One of the main ways fault tolerance is achieved in OTP is by overriding the default
propagation of exit signals. By setting a process flag called trap_exit, you can make a
process trap any incoming exit signal rather than obey it. In this case, when the signal
is received, it’s dropped in the process’s mailbox as a normal message on the form
{'EXIT', Pid, Reason} that describes in which other process the failure originated
and why, allowing the trapping process to check for such messages and take action.

 Such a signal-trapping process is sometimes called a system process and typically runs
code that is different from that run by ordinary worker processes, which don’t usually
trap signals. Because a system process acts as a bulwark that prevents exit signals from
propagating further, it insulates the processes it’s linked to from each other and can
also be entrusted with reporting failures and even restarting the failed subsystems, as
illustrated in figure 1.3. We call such processes supervisors.

 The point of letting an entire subsystem terminate and be restarted is that it brings
you back to a state known to function properly. Think of it like rebooting your com-
puter: a way to clear up a mess and restart from a point that ought to be working. But
the problem with a computer reboot it’s that it isn’t granular enough. Ideally, you’d
like to be able to reboot only a part of the system, and the smaller, the better. Erlang
process links and supervisors provide a mechanism for such fine-grained “reboots.”

 If that was all, though, you’d still be left to implement supervisors from scratch,
which would require careful thought, lots of experience, and a long time shaking out

Figure 1.3
Supervisor, workers, and signals: the
crash in one of the worker processes is
propagated to the other linked
processes until the signal reaches the
supervisor, which restarts the group.
The other group of processes under the
same supervisor isn’t affected.

15Erlang’s fault tolerance infrastructure
the bugs and corner cases. Fortunately, the OTP framework provides just about every-
thing you need: both a methodology for structuring applications using supervision,
and stable, battle-hardened libraries to build them on.

OTP allows processes to be started by a supervisor in a prescribed manner and
order. A supervisor can also be told how to restart its processes with respect to one
another in the event of a failure of any single process, how many attempts it should
make to restart the processes within a certain period of time before it ought to give
up, and more. All you need to do is to provide some parameters and hooks.

 But a system shouldn’t be structured as a single-level hierarchy of supervisors and
workers. In any complex system, you’ll want a supervision tree with multiple layers that
allows subsystems to be restarted at different levels in order to cope with unexpected
problems of varying kinds.

1.2.3 Layering processes for fault tolerance

Layering brings related subsystems together under a common supervisor. More
important, it defines different levels of working base states that you can revert to. In
figure 1.4, you see two distinct groups of worker processes, A and B, supervised sepa-
rately from one another. These two groups and their supervisors together form a
larger group C, under yet another supervisor higher up in the tree.

 Let’s assume that the processes in group A work together to produce a stream
of data that group B consumes. Group B isn’t required for group A to function. To
make things concrete, let’s say group A is processing and encoding multimedia
data, and group B presents it. Let’s also suppose that a small percentage of the data
entering group A is corrupt in some way that wasn’t predicted at the time the appli-
cation was written.

 This malformed data causes a process within group A to malfunction. Following
the let-it-crash philosophy, that process dies immediately without trying to untangle
the mess; and because processes are isolated, none of the other processes are affected
by the bad input. The supervisor, detecting that a process has died, restores the base
state prescribed for group A, and the system picks up from a known point. The beauty
of this is that group B, the presentation system, has no idea what’s going on and
doesn’t care. As long as group A pushes enough good data to group B for the latter to
display something of acceptable quality to the user, you have a successful system.

C

A B

Figure 1.4
A layered system of supervisors and
workers. If for some reason supervisor A dies
or gives up, any still-living processes under
it are killed and supervisor C is informed, so
the whole left-side process tree can be
restarted. Supervisor B isn’t affected unless
C decides to shut everything down.

16 CHAPTER 1 The Erlang/OTP platform
By isolating independent parts of your system and organizing them into a supervision
tree, you can create subsystems that can be individually restarted in fractions of a sec-
ond to keep your system chugging along even in the face of unpredicted errors. If
group A fails to restart properly, its supervisor may eventually give up and escalate the
problem to the supervisor of group C, which may then, in a case like this, decide to shut
down B as well and call it a day. If you imagine that the system is running hundreds of
simultaneous instances of C-like subsystems, this could correspond to dropping a single
multimedia connection due to bad data, while all the rest keep streaming.

 But you’re forced to share some things as long as you’re running on a single
machine: the available memory, the disk drive, the network connection, even the pro-
cessor and all related circuitry, and, perhaps most significant, a single power cord to a
single outlet. If one of these things breaks down or is disconnected, no amount of lay-
ering or process separation will save you from inevitable downtime. This brings us to
our next topic, which is distribution—the feature of Erlang that allows you to achieve
the highest levels of fault tolerance and also make your solutions scale.

1.3 Distributed Erlang
Erlang programs can be distributed naturally over multiple computers, due to the prop-
erties of the language and its copy-based process communication. To see why, take, for
example, two threads in a language such as Java or C++, running happily and sharing
memory between them as a means of communication. Assuming that you manage to get
the locking right, this is nice and efficient, but only until you want to move one of the
threads to a separate machine. Perhaps you want to make use of more computing power
or memory, or prevent both threads from dying if a hardware failure takes down one
machine. When this moment comes, the programmer is often forced to fundamentally
restructure the code to adapt to the different communication mechanism necessary in
this new distributed context. Obviously, it will require a large programming effort and
will most likely introduce subtle bugs that may take years to weed out.

 Erlang programs, on the other hand, aren’t much affected by this kind of problem.
As we explained in section 1.1.2, the way Erlang avoids sharing of data and communi-
cates by copying makes the code immediately suitable for splitting over several
machines. The kind of intricate data-sharing dependencies between different parts of
the code that you can get when programming with threads in an imperative language
occur only rarely in Erlang. If it works on your netbook today, it could be running on
a cluster tomorrow.

 The fact that it’s usually straightforward to distribute an Erlang application over a
network of nodes also means that scalability problems become an order of magnitude
easier to attack. You still have to figure out which processes will do what, how many of
each kind, on which machines, how to distribute the workload, and how to manage
the data, but at least you won’t need to start with questions like, “How on Earth do I
split my existing program into individual parts that can be distributed and repli-
cated?” “How should they communicate?” and “How can I handle failures gracefully?”

17The Erlang runtime system and virtual machine
Now that you know a bit about what Erlang can do for you, we next talk about the
engine at the heart of it all, to give you a better idea of what is going on under
the hood when your Erlang program is running.

1.4 The Erlang runtime system and virtual machine
So what makes all of the above tick? The core of the standard Erlang implementation
is something called the Erlang Run-Time System application (ERTS): this is a big
chunk of code written in the C programming language, and it’s responsible for all the
low-level stuff in Erlang. It lets you talk to the file system and the console, it handles
memory, and it implements Erlang processes. It controls how these processes are dis-
tributed over the existing CPU resources to make good use of your computer hard-
ware, but at the same time makes it possible to run Erlang processes concurrently
even if you only have a single CPU with a single core. ERTS also handles message-
passing between processes and allows processes on two different machines, each in its
own ERTS instance, to talk to each other as if they were on the same machine. Every-
thing in Erlang that needs low-level support is handled by ERTS, and Erlang runs on
any operating system that ERTS can be ported to.

 One particularly important part of ERTS is the Erlang virtual machine emulator:
this is the part that executes Erlang programs after they have been compiled to byte
code. This virtual machine is known as Bogdan’s Erlang Abstract Machine (BEAM)
and is very efficient: even though it’s also possible to compile Erlang programs to
native machine code, it isn’t usually necessary, because the BEAM emulator is fast
enough. Note that there is no clear-cut line between the virtual machine and ERTS as a
whole; often, people (including us) talk about the Erlang VM when they mean the
emulator and runtime system as a whole.

A real-life example
At one employer, we had a number of different Erlang applications running on our
network. We probably had at least 15 distinct types of self-contained OTP applica-
tions that all needed to cooperate to achieve a common goal. Integration testing
this cluster of 15 different applications running on 15 separate virtual machines,
although doable, wouldn’t have been the most convenient undertaking. Without
changing a line of code, we were able to invoke all the applications on a single
Erlang instance and test them. They communicated with one another on that sin-
gle node in exactly the same manner, using exactly the same syntax, as when
they were running on multiple nodes across the network.

The concept demonstrated in this example is known as location transparency. It
basically means that when you send a message to a process using its unique ID as
the delivery address, you don’t need to know or even care about where that pro-
cess is located—as long as the receiver is still alive and running, the Erlang run-
time system will deliver the message to its mailbox for you.

18 CHAPTER 1 The Erlang/OTP platform
 There are many interesting features of the runtime system that you won’t know
about unless you dig through the documentation or spend a lot of time on the Erlang
mailing list. These are at the core of what enables Erlang to handle such a large num-
bers of processes at the same time and are part of what makes Erlang unique. The
basic philosophy of the Erlang language combined with the pragmatic approach the
implementers have taken have given us an extraordinarily efficient, production-
oriented, stable system. In this section, we cover three important aspects of the run-
time system that contribute to Erlang’s power and effectiveness:

■ The scheduler—Handles the running of Erlang’s processes, allowing all the
ready-to-run processes to share the available CPU resources, and waking up
sleeping processes when they get a new message or a timeout happens

■ The I/O model—Prevents the entire system from stopping just because a single
process wants to talk to some external device, making the system run smoothly

■ The garbage collector—Keeps recycling memory that is no longer used

We start with the scheduler.

1.4.1 The scheduler

The process scheduler in ERTS has evolved over the years, and these days it gives you a
flexibility matched by no other platform. Originally, it was there to make it possible to
have lightweight Erlang processes running concurrently on a single CPU, regardless of
what operating system you were using. ERTS generally runs as a single operating sys-
tem process (usually found under the name beam or werl in OS process listings).
Within this, the scheduler manages its own Erlang processes.

 As threads became available in most operating systems, ERTS was changed to run a
few things like the I/O system in a different thread from the one running Erlang pro-
cesses, but there was still only one thread for the main body of work. If you wanted to
use a multicore system, you had to run multiple ERTS instances on the same machine.
But starting in May 2006 with release 11 of Erlang/OTP, support for symmetric multi-
processing (SMP) was added. This was a major effort, allowing the Erlang runtime sys-
tem to use, not one, but multiple process schedulers internally, each using a separate
operating system thread. The effect can be seen in figure 1.1.

 This means there is now an n:m mapping between Erlang processes and OS
threads. Each scheduler handles a pool of processes. At most m Erlang processes can
be running in parallel (one per scheduler thread), but the processes within each pool
share their time as they did when there was only one scheduler for all processes. On
top of this, processes can be moved from one pool to another to maintain an even bal-
ance of work over the available schedulers. In the latest releases of Erlang/OTP, it’s
even possible to tie processes to schedulers depending on the CPU topology of the
machine, to make better use of the cache architecture of the hardware. That means,
most of the time, you as an Erlang programmer don’t have to worry about how many
CPUs or cores you have available: you write your program as normal, trying to keep

19The Erlang runtime system and virtual machine
your program separated into reasonably sized parallel tasks, and let the Erlang run-
time system take care of spreading the workload. A single core or 128 cores—it works
the same, only faster.

 One caveat is that inexperienced Erlang programmers have a tendency to rely on
effects of timing, which may make the program work on their laptop or workstation
but break when the code moves to a server with multiple CPUs where timings may be
much less deterministic. Hence, some testing is always in order. But now that even lap-
tops often have at least two cores, this sort of thing is getting found out much earlier.

 The scheduler in Erlang is also involved in another important feature of the run-
time system: the I/O subsystem. This is our next topic.

1.4.2 I/O and scheduling

One of the things that many concurrent languages get wrong is that they don’t think
much about I/O. With few exceptions, they make the entire system or a large subset of
it block while any process is doing I/O. This is annoying and unnecessary, considering
that Erlang has had this problem solved for the last two decades. In the previous sec-
tion, we talked about the Erlang process scheduler. Among other things, the sched-
uler allows the system to elegantly handle I/O. At the lowest levels of the system,
Erlang does all I/O in an event-based way, which lets a program handle each chunk of
data as it enters or leaves the system in a nonblocking manner. This reduces the need
to set up and tear down connections, and it removes the need for OS-based locking
and context switching.

 This is an efficient method of handling I/O. Unfortunately, it also seems to be a lot
harder for programmers to reason about and understand, which is probably why we
only see these types of systems when there is an explicit need for highly available, low
latency systems. Dan Kegel wrote about this problem in his paper “The C10K Problem”
back in 2001; it’s out of date in some respects now, but it’s still relevant and worth
reading. It should give you a good overview of the problem and the approaches avail-
able to solve it. All of these approaches are complex and painful to implement; that is
why the Erlang runtime system does most of it for you. It integrates the event-based I/O
system with its process scheduler. In effect, you get all the benefits with none of the
hassle. This makes it much easier to build highly available systems using Erlang/OTP.

 The last feature of ERTS that we want to explain is memory management. This has
more to do with processes than you may think.

1.4.3 Process isolation and the garbage collector

As you probably know or assume, Erlang manages memory automatically, like Java and
most other modern languages. There is no explicit de-allocation. Instead, a so-called
garbage collector is used to regularly find and recycle unused memory. Garbage collec-
tion (GC) algorithms constitute a large and complicated field of research, and we
can’t go through any details here; but for those of you who know a bit and are curious,
Erlang currently uses a straightforward generational copying garbage collector.

20 CHAPTER 1 The Erlang/OTP platform
 Even with this relatively simple implementation, programs in Erlang don’t tend to
suffer from pauses for GC, like systems implemented in other languages. This is mostly
due to the isolation between processes in Erlang: each has its own areas of memory,
allocated when the process is created and de-allocated again when the process dies.
That may not sound important, but it is. First, it means that each process can be indi-
vidually paused for garbage collection while all the others keep running. Second, the
memory used by any single process is usually small, so traversing it can be done
quickly. (Although some processes use large amounts of memory, those typically
aren’t the ones that are also expected to respond quickly.) Third, the scheduler always
knows when a process was last running, so if it hasn’t been doing any work since the
last time it was garbage collected, it can be skipped. All this makes life simpler for the
Erlang garbage collector and lets it keep pause times small. Furthermore, in some
cases it’s possible for a process to be spawned, do its job, and die again without trigger-
ing any garbage collection at all. In those cases, the process acted as a short-lived
memory region, automatically allocated and de-allocated with no additional overhead.

 The features of the runtime system that we have described in this section make it
possible for an Erlang program to have a large number of processes running that
make good use of the available CPUs, perform I/O operations, and automatically recy-
cle memory, all while maintaining soft real-time responsiveness. Understanding these
aspects of the platform is important for understanding the behaviour of your systems
after they’re up and running.

 Finally, before this chapter is done, we’ll say a few words about the functional pro-
gramming aspect of Erlang. It won’t be much, because we get into much more detail
about the Erlang language in the next chapter.

1.5 Functional programming: Erlang’s face to the world
For many readers of this book, functional programming may be a new concept. For oth-
ers, it isn’t. It’s by no means the defining feature of Erlang—concurrency has that
honor—but it’s an important aspect of the language. Functional programming and
the mindset that it teaches you are a natural match to the problems encountered in
concurrent and distributed programming, as many others have recently realized.
(Need we say more than “Google MapReduce”?)

 To summarize what functional programming is, the main ideas are that functions
are data, just like integers and strings; that algorithms are expressed in terms of func-
tion calls, not using loop constructs like while and for; and that variables and values
are never updated in place (see appendix B for a discussion of referential transpar-
ency and lists). Those may sound like artificial restrictions, but they make perfectly
good sense from an engineering perspective, and Erlang programs can be very natu-
ral and readable.

 Erlang isn’t a “pure” functional language—it relies on side effects. But it limits
these to a single operation: message passing by copying. Each message is an effect
on the world outside, and the world can have effects on your processes by sending

21Summary
them messages. But each process is, in itself, running an almost purely functional
program. This model makes programs much easier to reason about than in tradi-
tional languages like C++ and Java, while not forcing you to program using monads
as in Haskell.

 In the next chapter, we go through the important parts of the Erlang program-
ming language. For many of you, the syntax will feel strange—it borrows mainly from
the Prolog tradition, rather than from C. But different as it may be, it isn’t compli-
cated. Bear with it for a while, and it will become second nature. After you’re familiar
with it, you’ll be able to open any module in the Erlang kernel and understand most
of what it does, which is the true test of syntax: at the end of the day, can you read it?

1.6 Summary
In this chapter, we’ve gone over the most important concepts and features of the
Erlang/OTP platform that OTP is built on: concurrent programming with processes
and message passing, fault tolerance through links, distributed programming, the
Erlang Run-Time System and virtual machine, and the core functional language of
Erlang. All these things combine to provide a solid, efficient, and flexible platform on
which you can build reliable, low-latency, high-availability systems.

 If you have previous experience with Erlang, much of this may not be news to you,
but we hope our presentation was of interest and pointed out at least a few aspects you
hadn’t thought about before. Still, we haven’t talked much about the OTP framework
yet; we’ll wait until chapter 3, but then things will move quickly, so enjoy this back-
ground reading while you can. First, chapter 2 will give you a thorough overview of the
Erlang programming language.

Erlang language
 essentials
In the previous chapter, we talked about the underlying platform for Erlang and
OTP, but not much about the Erlang programming language. The focus of this
book isn’t on Erlang in itself; but before can you move on to programming with
Erlang/OTP design patterns, we want to go through the language basics to make
sure everyone is on the same page. This chapter will also serve as a reference as you
work your way through the book.

 This is a long chapter. If you already know Erlang, you can skim this chapter, but
we try to make sure there are some useful nuggets for you too. These are the things
we think every Erlang programmer should be aware of, and we know it’s possible
for even the most experienced old-timers to have missed some useful detail.

This chapter covers
■ Working interactively in the Erlang shell
■ Data types, modules, functions, and compiling

your code
■ Single-assignment variables and pattern

matching
■ Erlang language survival guide
■ How to program with recursion
22

23The Erlang shell
 If this is your first contact with Erlang, you may want to read only part of this
chapter before you move on, and come back to it later as needed. We hope the mate-
rial here is enough for you to digest the rest of the book; but before you start using
Erlang for a real project, you should also arm yourself with a more thorough guide
to Erlang programming. The chapter ends with some pointers to further reading
material. We can’t teach you general programming techniques and tricks here, only
explain how the different parts of the language work. But we give a crash course in
using the Erlang shell, show how to compile and run your programs, and help you
get a grip on recursion.

 To get the most out of this chapter, you should have a working Erlang installation
on your computer. If your operating system is Windows, open a web browser and go to
www.erlang.org/download.html, and then download and run the latest version from
the top of the Windows Binary column. For other operating systems and further
details about installing Erlang, see appendix A.

 In this chapter, we go through Erlang’s basic data types and then talk about mod-
ules, functions, and compiling and running code, before we move on to variables and
pattern matching. After that, we talk about function clauses and guards, case switches,
funs (lambda expressions), exceptions, list comprehensions, and binaries and bit-
strings. Finally, we examine records, preprocessor includes and macros, process oper-
ations and message passing, and ETS tables, before we finish with a thorough
discussion of programming with recursion.

 Before we get to all that, though, we begin where you find yourself when you start
Erlang: in the shell.

2.1 The Erlang shell
An Erlang system is a more interactive environment than you may be used to. With
most programming languages, you either compile the program to an OS executable
that you then run, or run an interpreter on a bunch of script files or byte-code com-
piled files. In either case, this runs until the program finishes or crashes, and then you
get back to the operating system again, where you can repeat the process (possibly
after editing the code).

 Erlang, on the other hand, is more like an operating system within your operating
system. Although Erlang starts pretty quickly, it isn’t designed for start-stop execu-
tion—it’s designed for running continuously, and for interactive development, debug-
ging, and upgrading. Optimally, the only reason for restarting Erlang is because of a
hardware failure, operating system upgrade, or similar.

 Interaction with an Erlang system happens mainly through the shell. The shell is
your command central. It’s where you can try out short snippets to see how they work;
it’s where you do incremental development and interactive debugging; and it can also
be used to control a running system in production. To make you comfortable with
working in the shell, the examples are written so that you can try them as you read
them. Let’s start a shell right away!

http://www.erlang.org/download.html

24 CHAPTER 2 Erlang language essentials
2.1.1 Starting the shell

We assume that you’ve downloaded and installed Erlang/OTP. If you’re using Linux,
Mac OS X, or any other UNIX-based system, open a console window and run the erl
command. If you’re using Windows, you should click the Erlang icon that the installer
created for you; this runs the program called werl, which opens a special console for
Erlang that avoids the problems of running erl interactively under the normal Win-
dows console.

 You should see something like the following:

Erlang (BEAM) emulator version 5.6.5 [smp:2] [async-threads:0]

Eshell V5.6.5 (abort with ^G)
1>

1> is the prompt. This will change to 2>, and so on, as you enter commands. You can
use the up and down arrows or the Ctrl-P/Ctrl-N keys to move up and down among
previously entered lines; and a few other Emacs-style key bindings also exist, but most
normal keys behave as expected.

 It’s also possible to start the Erlang system with the –noshell flag, like this (on
your operating system command line):

erl -noshell

In this case, the Erlang system is running, but you can’t talk to it via the console. This
is used for running Erlang as a batch job or daemon.

 Now that you know how to start the shell, let’s talk about what you can do with it.

2.1.2 Entering expressions

First, what you enter at the shell prompt aren’t commands as such, but expressions, the
difference being that an expression always has a result. When the expression has been
evaluated, the shell prints the result. The shell also remembers the result so you can
refer to it later, using the syntax v(1), v(2), and so on. For example, type the number
42, followed by a period (.), and then press Enter, and you should see the following:

Eshell V5.6.5 (abort with ^G)
1> 42.
42
2>

When you pressed Enter, Erlang evaluated the expression 42, printed the result (the
value 42), and finally printed a new prompt, this time with the number 2. But why was
that period necessary after the number 42?

ENDING WITH A PERIOD

The period or full-stop character before you press Enter must always be used to tell
the shell that it has seen the end of the expression. If you press Enter without it, the
shell will keep prompting for more characters (without incrementing the prompt
number), like this:

25The Erlang shell
2> 12
2> + 5
2> .
17
3>

If you forget the period character at first, don’t worry; all you need to do is type it in
and press Enter. As you see, simple arithmetic expressions work as expected. Now, let’s
try referring back to the previous results:

3> v(1).
42
4> v(2).
17
5> v(2) + v(3).
59
6>

Before you get ahead of yourself, we show you something that almost all beginners get
snagged on: entering strings, and how to get out of them again.

ENTERING QUOTED STRINGS

When you enter double- or single-quoted strings (without going into detail about
what that means, for now), a particular gotcha worth bringing up right away is that if
you forget a closing quote character and press Enter, the shell will expect more char-
acters and will print the same prompt again, much like the previous example when
you forgot the period. If this happens, enter the appropriate quote character to bal-
ance the string and follow it with a period; then press Enter again. For example, if you
do this

1> "hello there.
1>

the period doesn’t end the expression—it’s part of the string. To get the shell out of
this state, you need to close the string by adding the following:

1> ".
"hello there.\n"
2>

Note that this result is a string that contains a period and a newline, which is probably
not what you want. You can use the up arrow or Ctrl-P to go back and edit the line,
inserting the missing quote character in the right place this time:

2> "hello there".
"hello there"
3> v(2).
"hello there"
4>

The shell by default keeps the latest 20 results, regardless of whether they’re numbers,
strings, or any other kind of data. Next, let’s get into some more detail about the
v(...) function and its cousins.

26 CHAPTER 2 Erlang language essentials
2.1.3 Shell functions

Some functions like v(N) are available only in the shell and nowhere else in Erlang.
These shell functions usually have short (and somewhat cryptic) names. If you want a
list of the available shell functions, enter help() (which is a shell function in itself).
It’s a confusing list for the beginner, so table 2.1 shows the shell functions you should
know about from the start.

Please try a few of these right now—for example, list or change the current directory,
print the history, and print the system and memory information. Look briefly at the
output from running i(), and note that much like in an operating system, a bunch of
things are going on in the background apart from the shell prompt you see.

 Now that you know how to start the Erlang system and enter things in the
shell, we’ll explain the various ways to get out of the shell and return to your oper-
ating system.

2.1.4 Escaping from the shell

There are some different ways of leaving the shell (and stopping the entire Erlang sys-
tem). You should be familiar with all of them, because they all have their uses in man-
aging and debugging a system. We start with the most system-friendly.

CALLING Q() OR INIT:STOP()
The safest method is to run the shell function q(), shown in the previous section. This
is a shortcut for the function init:stop() (which you can call directly if you like),
which shuts down the Erlang system in a controlled manner, telling running applica-
tions to stop and giving them time to respond. This usually takes a couple of seconds
but can require more time on a running production system with a lot to clean up.

Table 2.1 Important Erlang shell functions

Shell function Summary

help() Prints the available shell functions

h() Prints the history of entered commands

v(N) Fetches the value computed at prompt N

cd(Dir) Changes the current directory (Dir should be a double-quoted string)

ls() and ls(Dir) Prints a directory listing

pwd() Prints the working directory (current directory)

q() Quits (shorthand for init:stop())

i() Prints information about what the system is running

memory() Print memory usage information

27The Erlang shell
THE BREAK MENU

If you’re more impatient and don’t have anything important running that you’re
afraid to interrupt, you can bring up the low-level BREAK menu by pressing Ctrl-C on
UNIX-like systems, or Ctrl-Break on Windows in the werl console. It looks like this:

BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
 (v)ersion (k)ill (D)b-tables (d)istribution

The interesting options here are (a) to abort the system (hard shutdown), (c) to go
back to the shell, and (v) to print the running Erlang version. The others print a lot
of raw information about the system, which you may find useful for debugging after
you’ve become an Erlang master; and (k) even lets you browse through the current
activities within Erlang and kill off any offenders, if you know what you’re doing. Note
that the shell as such doesn’t know about the BREAK menu, so it won’t refresh the
prompt when you go back using (c), until you press Enter.

CTRL-G
The third and most useful escape is the User Switch Command menu, which you
reach by pressing Ctrl-G. It presents you with this cryptic text:

User switch command
 -->

Type h or ? and press Enter, and you’ll see this list:

 c [nn] - connect to job
 i [nn] - interrupt job
 k [nn] - kill job
 j - list all jobs
 s [shell] - start local shell
 r [node [shell]] - start remote shell
 q - quit erlang
 ? | h - this message

Entering c at the --> prompt gets you back to the shell. Entering q causes a hard
shutdown, like (a) in the BREAK menu—don’t confuse q here with the system-
friendly shell function q() described previously! Also note that the BREAK menu is
more low-level and can be called up while you’re in the Ctrl-G menu, but not the
other way around.

 The remaining options are for job control, which we briefly introduce in the next
section.

2.1.5 Job-control basics

Suppose you’re sitting at your Erlang shell prompt, and you happen to write something
stupid that will run forever (or longer than you care to wait, anyhow). We all do this
now and then. You could make the Erlang system shut down by one of the methods
described earlier, and restart it; but the nicer and more Erlang-like way (especially if some
important processes are running on this system that you would prefer not to interrupt)
is to kill the current job and start a new one, without disturbing anything else.

28 CHAPTER 2 Erlang language essentials
 To simulate this situation, enter the following at your Erlang shell prompt, fol-
lowed by a period and newline:

timer:sleep(infinity)

(That didn’t need any explanation, we hope.) Now the shell is locked up. To get out
of this mess, you bring up the User Switch Command menu with Ctrl-G, as described
in the previous section, and enter j to list current jobs. There should be only one job
right now, so you see something like this:

User switch command
 --> j
 1* {shell,start,[init]}
 -->

Enter s to start a new shell job (on the local system) like the one you had before, and
then list your jobs again:

 --> s
 --> j
 1 {shell,start,[init]}
 2* {shell,start,[]}
 -->

To connect to the new job, you could enter c 2, to be explicit. But because the *
marker indicates that job number 2 is already the default choice, it’s enough to say c:

--> c
Eshell V5.7.2 (abort with ^G)
1>

And you’re back at the wheel! But wait, what about the old job? Press Ctrl-G again,
and list the jobs, and you see that it’s still hanging around. Let’s kill it by entering k 1,
and then go back to the shell so you can get on with making more mistakes:

User switch command
 --> j
 1 {shell,start,[init]}
 2* {shell,start,[]}
 --> k 1
 --> j
 2* {shell,start,[]}
 --> c

When you do this sort of thing, be careful about which job you’re killing, in case you
have several things in progress in different jobs. When you kill a job, all the history,
previous results, and other things associated with that shell job will disappear. You’ll
see more of the Ctrl-G menu in chapter 8 when we talk about distributed Erlang and
how to use remote shells. This is as simple as it is powerful and is the single most
important tool for remote-controlling and -debugging production systems.

 Now that you have a feel for how to work in the Erlang console, it’s time to start
playing around with the programming language.

29Data types in Erlang
2.2 Data types in Erlang
Understanding basic data representation conventions is an essential part of learning
any programming language. Erlang’s built-in data types are straightforward and rela-
tively few, but you can achieve a lot with them. The following list is how we present
them here:

■ Numbers (integers and floats)
■ Binaries/Bitstrings
■ Atoms
■ Tuples
■ Lists (and strings)
■ Unique identifiers (pids, ports, references)
■ Funs

Data in Erlang is usually referred to as terms. Try entering some examples of terms
while you read this section. (Don’t forget to add a period before you press Enter.)
Let’s start with the simplest ones.

2.2.1 Numbers and arithmetic

Erlang has two numerical data types: integers and floating-point numbers (floats).
Conversion is done automatically by most of the arithmetic operations, so you
don’t usually need to do any explicit type coercion (see the following sections
for details).

INTEGERS

Integers in Erlang can be of arbitrary size. If they’re small enough, they’re repre-
sented in memory by a single machine word; if they get larger (so-called bignums), the
necessary space is allocated automatically. This is completely transparent to the pro-
grammer and means you never need to worry about truncation or wraparound effects
in arithmetic—those things can’t happen.

 Normally, integers are written as you would expect (and you can try entering some
large numbers just for fun):

101
-101
1234567890 * 9876543210 * 9999999999

You can also write integers in any base between 2 and 36 (corresponding to digits 0–9
plus characters A–Z/a–z), although bases except 2, 16, and possibly 8 are rarely seen
in practice. This notation was borrowed from the Ada programming language:

16#FFffFFff
2#10101
36#ZZ

Also, the following $-prefix notation yields the character code (ASCII/Latin-1/Uni-
code) for any character (try it):

30 CHAPTER 2 Erlang language essentials
$9
$z
$\n

You’ll see a little more of this notation when we discuss strings in section 2.2.6.

FLOATS

Floats are handled using 64-bit IEEE 754-1985 representation (double precision), and
the syntax is the same as used by most programming languages, with the exception
that whereas many languages allow a floating-point number to begin with a period, as
in .01, Erlang requires that it starts with a digit, as in 0.01:

3.14
-0.123
299792458.0
6.022137e23
6.6720e-11

There are no single precision floating-point numbers in Erlang. This is important to
remember if you come from a C/C++/Java background where the word float implies
single precision.

ARITHMETIC AND BITWISE OPERATIONS

Normal infix notation is used for the common arithmetic operators, and +, -, * work as
you’d expect. If either or both of the arguments of a binary arithmetic operation is a float,
the operation is made in floating point, and Erlang automatically converts any integer
arguments to floating point as necessary. For example, 2 * 3.14 yields the float 6.28.

 For division, you have two choices. First, the / operator always yields a floating-
point number: for example, 4/2 yields 2.0, not 2. Integer division (truncating) is per-
formed by the div operator, as in 7 div 2, yielding 3.

 The remainder of an integer division is given by the rem operator, as in 15 rem 4,
yielding 3. (This can differ from what a modulo operator would yield, if negative num-
bers are involved.)

 Other floating-point arithmetic functions are found in the standard library mod-
ule math; these are named directly after the corresponding functions in the C stan-
dard library, such as math:sqrt(2).

 There are some additional integer operators for bitwise operations: N bsl K shifts
the integer N K steps to the left, and bsr performs a corresponding arithmetic right
shift. The bitwise logic operators are named band, bor, bxor, and bnot. For example, X
band (bnot Y) masks away those bits from X that are set in Y.

 From numerical data, let’s move on to something equally primitive: bits and bytes.

2.2.2 Binaries and bitstrings

A binary is a sequence of unsigned 8-bit bytes, used for storing and processing chunks
of data (often data that comes from a file or has been received over a network proto-
col). A bitstring is a generalized binary whose length in bits isn’t necessarily a multiple
of 8; it can, for instance, be 12 bits long, consisting of one and a half bytes.

31Data types in Erlang
 Arbitrary bitstrings are a more recent addition to the language, whereas whole-byte
binaries have been around for many years; but to a programmer there is little differ-
ence on the surface, except that you can do some nifty things these days that used to
be impossible. Because the syntax is the same, and the name binary is so ingrained,
you rarely hear people (including us) talk about bitstrings unless they want to make a
point about the more flexible length.

 The basic syntax for a binary is

<<0, 1, 2, ..., 255>>

that is, a comma-separated list of integers in the range 0 to 255, enclosed in << ... >>.
There must not be any space between the two delimiter characters on either side, as in
< <. A binary can contain any number of bytes; for example, <<>> is an empty binary.

 Strings may also be used to make a binary, as in

<<"hello", 32, "dude">>

This is the same as writing the corresponding sequence of bytes for the 8-bit character
codes (ASCII/Latin-1) of the strings. Hence, this notation is limited to 8-bit characters,
but it’s often useful for things like text-based protocols.

 These short examples only show how to create proper binaries, whose length in
bits is divisible by eight. Erlang has an advanced and somewhat intricate syntax for
constructing new binaries or bitstrings as well as for matching and extracting data
from them. We show some examples of this later, in section 2.10.

 Our next topic is something almost as primitive as numbers and bits to an Erlang
programmer: atoms.

2.2.3 Atoms

In Erlang, an atom is a special kind of string constant that is identified only by the
characters in the string, so that two atoms are always considered to be exactly the same
if they have the same character representation. But internally, these strings are stored
in a table and are referred to by the table index, so that checking atoms for equiva-
lence at runtime amounts to comparing two small integers; and each time you use an
atom, it takes up only one word of memory. (The index number used for any particu-
lar atom is automatically assigned at runtime and can vary from one run of the system
to the next; there is no way, and no need, for the user to know this.)

 Atoms in Erlang play a role similar to enum constants in Java or C: they’re used as
labels. The difference is that you don’t need to declare them in advance; you can
invent them as you go and use them anywhere you like. (Try entering some of the fol-
lowing examples in the shell.) In the Lisp programming language, they’re known as
symbols. Programming with atoms is easier, more readable, and more user friendly
than using numeric constants.

 Normally, atoms are written starting with a lowercase letter, like the following:

ok
error

32 CHAPTER 2 Erlang language essentials
foo
undefined
trap_exit

After the initial letter, you can use uppercase letters, digits, underscores, and @ char-
acters, like this:

route66
atoms_often_contain_underscore
pleaseDoNotUseCamelCaseInAtomsItLooksAwful
vader@deathstar

For anything else, you need to use single quotes (and you can of course single-
quote the previous atoms as well—this is sometimes done for clarification, such as
in documentation):

'$%#*!'
'Blanks and Capitals can be quoted'
'Anything inside single-quotes\n is an atom'

You should think about atoms as special labels, not as any old strings. Their length is
limited to 255 characters, and there is an upper limit on the number of atoms you can
have in a system: currently, just over a million (1,048,576, to be exact). This usually
isn’t a problem, but you should avoid dynamic generation of unique atoms such as
'x_4711', 'x_4712', and so on, in a system that is expected to run for a long time
(days, months, years). Atoms aren’t removed from the table until the system restarts,
even if they’re no longer used by anyone.

 A few atoms are used in practically all Erlang programs:

■ true and false are the values used by all Boolean operators.
■ ok is used as the return value in functions that don’t produce any value of inter-

est but are called for their effects (where you would use void in C or Java).
■ undefined is often used as a placeholder for an unspecified value.

Now that we’ve gone through the primitive data types, it’s time to look at how you can
create more complicated data structures, starting with tuples.

2.2.4 Tuples

A tuple (or n-tuple, as generalized from triple, quadruple, and so on) is a fixed-
length ordered sequence of other Erlang terms. Tuples are written within curly
braces, like this:

{1, 2, 3}
{one, two, three, four}
{from, "Russia", "with love"}
{complex, {nested, "structure", {here}}}
{}

As you see, they can contain zero ({}), one ({here}), or more elements; the elements
may be all of the same type or of wildly different types; and the elements can them-
selves be tuples or any other data type.

33Data types in Erlang
 A standard convention in Erlang is to label tuples to indicate what type of data they
contain, by using an atom as the first element, as in {size, 42}, or {position, 5, 2}.
These are called tagged tuples.

 Tuples are the main way of constructing compound data structures or returning
multiple values in Erlang, like structs in C or objects in Java; but the entries aren’t
named, they’re numbered (from 1 to N). Accessing an element of a tuple is a con-
stant-time operation, just as fast (and safe) as accessing an entry in a Java array. The
record syntax, explained later, allows you to declare names for the entries of tuples, so
you don’t have to work directly with indices. Also, pattern matching makes it easy to
refer to the different parts of a tuple using variables, so it’s rare that you need to access
an entry directly by its index.

 The standard library contains modules that implement some more complicated
abstract data types, such as arrays, sets, dictionaries (that is, associative arrays or hash
maps), and so on; but under the hood, they’re mostly implemented using tuples in
various ways.

 Tuples are meant for constant-length sequences. To handle sequences of varying
length, you also need lists.

2.2.5 Lists

Lists are truly the workhorse of Erlang’s data types—as they are in most functional pro-
gramming languages, for that matter. This has to do with their simplicity, efficiency,
and flexibility, but also with the fact that they follow naturally from the idea of referen-
tial transparency, which basically means that the value to which a name refers isn’t
allowed to change (see appendix B for details). Lists are used to hold an arbitrary
number of items. They’re written within square brackets, and in the simplest form
they look like this:

[]
[1, 2, 3]
[one, two, three]
[[1,2,3],[4,5,6]]
[{tomorrow, "buy cheese"},
 {soon, "fix trap door"},
 {later, "repair moon rocket"}]

That is, a list is a sequence of zero or more other Erlang terms (which may be other
lists). The empty list, [], is also known as nil, a name that comes from the Lisp pro-
gramming language world; it’s more like an atom, in that it’s a special value that takes
only a single word of memory to represent.

ADDING TO A LIST

What you can do with lists that you can’t do as easily and efficiently with tuples is cre-
ate a new, longer list from an existing list in such a way that the old list is a part of the
new one. This is signaled with the | character (a vertical bar). For example:

[1 | []]

34 CHAPTER 2 Erlang language essentials
This combines the empty list on the right of the | with the additional element 1 on
the left, yielding the list [1]. Try typing it in the shell and see for yourself how these
examples work. Continuing in the same manner,

[2 | [1]]

yields the list [2,1] (note the order: you’re adding to the left). You can even add
more than one element at a time, but only on the left side of the |:

[5, 4, 3 | [2,1]]

This gives you [5,4,3,2,1]. This is done by adding first 3, then 4, and finally 5, as
with 1 and 2 previously, but the compiler does the job of splitting it into smaller steps
for you.

 For lists of arbitrary lengths, you can use the ++ operator to append them.
For example,

[1,2,3,4] ++ [5,6,7,8]

yields the list [1,2,3,4,5,6,7,8]. This happens exactly the same way: by starting with
[4|[5,6,7,8]], then [3|[4,5,6,7,8]], and so on, and finally [1|[2,3,4,5,6,7,8]].
The list that was on the right side of ++ is never modified—you don’t do that sort of
destructive update in Erlang—it’s included in the resulting list, technically via a
pointer. This also means that the ++ operator doesn’t care how long the right-side list
is, because it never has to do anything with it.

 The list on the left side is a different thing, though. To create the resulting list in
the way described, you must first find the end of the left-side list (the element 4, in this
case) and then start building the result backward from there. This means the length of
the left-side list decides how much time ++ takes. For this reason, always try to add new
(shorter) stuff to the left of the list, even if it means the final list will be in reverse
order. It’s much cheaper to finish up with a quick call to reverse the list afterward
(please trust us here) than it is to repeatedly go through a list that keeps getting lon-
ger and longer every time so you can add something to its end.

 Erlang also uses lists to represent another common kind of data: strings of text.

2.2.6 Strings

A double-quoted string in Erlang is merely an alternative way of writing a list of char-
acter codes. For example, these

"abcd"
"Hello!"
" \t\r\n"
""

are exactly equivalent to

[97,98,99,100]
[72,101,108,108,111,33]
[32,9,13,10]
[]

35Data types in Erlang
which can also be written as

[$a, $b, $c, $d]
[$H, $e, $l, $l, $o, $!]
[$\ , $\t, $\r, $\n]
[]

(if you recall the $ syntax from the section about integers, a few pages back). This
correspondence is reflected in the names of some of the standard library functions
in Erlang, such as atom_to_list(A), which returns the list of characters of any
atom A.

 That strings are lists means that all the tricks you learn for working with lists are
equally applicable to strings, and you can do a lot of string programming with basic
list-processing techniques. But one of the drawbacks is that it can be hard to tell
whether a list was intended as a string.

STRINGS AND THE SHELL

The Erlang shell tries to maintain the illusion that strings are different from plain lists,
by checking whether they contain only printable characters. If they do, it prints them
as double-quoted strings, and otherwise as lists of integers. This is more user friendly
but occasionally doesn’t do what you want (for example, when an expression returns a
list of numbers that by coincidence look like printable characters, and you see a string
of line noise as a result).

 A useful trick in that case is to append a zero to the start of the list, to force the
shell to print the real representation. For example, even if v(1) is shown as a string,
[0 | v(1)] won’t be. (You can of course use the string formatting functions in the
standard library to pretty-print the value, giving you full control, but how much fun
is that?)

 Now that you know how to build complex data structures, we quickly go over the
remaining primitive data types: identifiers and funs.

2.2.7 Pids, ports, and references

These three identifier data types are closely related, so we present them here together.

PIDS (PROCESS IDENTIFIERS)
As you know by now, Erlang supports programming with processes; for any code to
run, an Erlang process must be running it. Every process has a unique identifier, usu-
ally referred to as a pid. Pids are a special data type in Erlang and should be thought of
as opaque objects. But when the shell prints them, they show up in the form
<0.35.0>—that is, as three integers enclosed in angle brackets. You can’t enter this
into the shell and create a pid using this syntax; it’s only shown for debugging pur-
poses so that you can compare pids easily.

 Although pids are expected to be unique for the lifetime of the system (until you
restart Erlang), in practice the same identifier may be reused when the system has
been running for a long time and some hundred million processes have come and
gone. This is rarely considered a problem.

36 CHAPTER 2 Erlang language essentials
 The function self() always gives you the pid of the process that is currently run-
ning (the one that called self()). You can try it in the shell—that’s right, the shell is
also a process in Erlang.

PORT IDENTIFIERS

A port is much like a process, except that it can also communicate with the world out-
side Erlang (and can’t do much else—in particular, it can’t run any code). Hence, port
identifiers are closely related to pids, and the shell prints them on the form
#Port<0.472>. We get back to ports later in this book.

REFERENCES

The third data type of this family is references (often called refs). They’re created with the
function make_ref() (try it!) and are printed by the shell on the form #Ref<0.0.0.39>.
References are used as unique one-off labels or cookies.

2.2.8 Functions as data: funs

Erlang is said to be a functional programming language, and an expected feature of
such a language is that it should be able to handle functions as data—that is, pass a
function as input to another function, return a function as the result of another func-
tion, put a function in a data structure and pick it up later, and so on. Of course, you
must also be able to call a function that you’ve gotten that way. In Erlang, such a func-
tion-as-data object is called a fun (or sometimes a lambda expression or closure).

 We explain funs in more detail in section 2.7, after we’ve presented functions in
general in section 2.5. We note for now that the shell prints them in the form
#Fun<...>, with some information for debugging purposes between the angle brack-
ets. You can’t create a fun using this syntax.

 That was the last in our list of built-in data types. We now discuss something that
unites them all: the comparison operators.

2.2.9 Comparing terms

The different data types in Erlang have one thing in common: they can all be com-
pared and ordered, using built-in operators like <, >, and ==. The normal orderings
on numbers of course hold, so that 1 < 2 and 3.14 > 3 and so on, and atoms and
strings (as well as any other lists) and tuples are ordered lexicographically, so that
'abacus' < 'abba', "zzz" > "zzy", [1,2,3] > [1,2,2,1], and {fred,baker,42} <
{fred,cook,18}.

 So far, it all seems pretty normal; but on top of that, you also have an ordering
between values of different types, so that, for example, 42 < 'aardvark', [1,2,3] >
{1,2,3}, and 'abc' < "abc". That is, all numbers come before all atoms, all tuples
come before all lists, and all atoms come before all tuples and lists (strings are
lists, remember?).

 You don’t have to memorize which data types come before which in this order. The
important thing to know is that you can compare any two terms for order, and you’ll
get the same result always. In particular, if you sort a list of various terms of different

37Data types in Erlang
types (a list of mixed numbers, strings, atoms, tuples, ...) by using the standard library
function lists:sort(...), you’ll always get a properly sorted list as a result, where all
the numbers come first, then all atoms, and so on. You can try it in the shell: for exam-
ple, lists:sort([b,3,a,"z",1,c,"x",2.5,"y"]).

LESS-THAN/GREATER-THAN OR EQUALS

One of those little differences in syntax between Erlang and most other programming
languages except Prolog is that the less-than-or-equals operator is not written <=, for
the reason that this looks too much like an arrow pointing to the left (and that symbol
is indeed reserved for use as a left arrow). Instead, less-than-or-equals is written =<.
The greater-than-or-equals operator is written >= as in most languages. The only thing
you need to remember is that comparisons never look like arrows.

EQUALITY COMPARISONS

There are two kinds of operators for equality comparisons in Erlang. The first one is
the exact equality, written =:=, which returns true only if both sides are exactly the
same. For example, 42 =:= 42. The negative form (exact inequality) is written =/=, as,
for example, in 1 =/= 2.

 Exact equality is the preferred kind of equals operator when you’re comparing
terms in general (and it’s also the one used in pattern matching, which we talk about
later). But it means that integers and floating-point numbers are considered to be dif-
ferent, even if they’re as similar as could be. For instance, 2 =:= 2.0 returns false.

 If you’re comparing numbers in general (or perhaps tuples containing numbers,
like vectors) in a mathematical way, you should instead use the arithmetic equality oper-
ator, written ==. This compares numbers by coercing integers to floating point as nec-
essary. Hence, 2 == 2.0 returns true. The negative form (arithmetic inequality) is
written /=. For example, 2 /= 2.0 returns false. Remember, though, that comparing
floating-point numbers for equality is always a somewhat suspicious thing to do,
because the tiny rounding errors involved in the floating-point representation may
cause values that ought to be equal to differ ever so slightly, and then == will return
false. It’s usually a better idea to use <, >, =<, or >= to compare numbers when they
may be in floating point. Those operators are also arithmetic, by the way—they always
coerce integers to floats when necessary. That’s why you could compare 3 and 3.14
using > previously.

 If you use == (the coercing, arithmetic equality operator) when it isn’t warranted—
which is more or less always except when you’re doing math—you’ll only be making it
harder for program analysis tools like Dialyzer to help you find out if your program is
doing something it shouldn’t. You may also be masking errors at runtime so they
aren’t detected as early as they could be and instead show up much later, perhaps as
weird data in a file or database (like a year showing up as 1970.0 or a month as 2.0).

 That said, seasoned Erlang programmers usually avoid using the equality compari-
son operators at all and do as much as possible through pattern matching, which we
talk about in section 2.4.3.

38 CHAPTER 2 Erlang language essentials
2.2.10 Understanding lists

Lists are different enough in Erlang compared to most common programming lan-
guages that we need to give them special treatment before we can leave the topic of
data types.

THE STRUCTURE OF A LIST

Basically, lists are created from the empty list (nil) and so-
called list cells which add one element at a time on top of
an existing list, building a singly linked list in memory.
Each such cell uses only two words of memory: one for
the value (or a pointer to the value), known as the head,
and one for a pointer to the rest of the list, called the tail;
see figure 2.1. List cells are sometimes called cons cells
(from list constructor) by people with a background in
Lisp or functional programming, and the action of add-
ing a cons cell is known as consing if you want to be geeky.

 Although there is no technical difference between the head and the tail elements
of a list cell, they’re by convention always used so that the first (the head) contains the
payload of the cell, and the second (the tail) is the rest of the list. This convention is
used in the syntax as well as in all library functions that operate on lists.

 A common gotcha for beginners (and even old-timers get snagged on this in the
form of a typo sometimes) is to mistakenly write a comma instead of the intended ver-
tical bar. Consider this: what is the difference between the following two expressions?

[1, 2, [3,4]]
[1, 2 | [3,4]]

(See if you get the point before you read on. Try entering them in the shell if you
need more clues.)

 The answer is that the first is a list with three elements, the last of which happens to
be another list (with two elements). The second expression is a list with four elements,
made from stacking two elements on top of the list [3,4]. Figure 2.2 illustrates the
structure of these two examples. Make sure you understand it before you read on—it’s

Figure 2.1 A list cell—the
primitive building block of
lists (two adjacent words
in memory)

Figure 2.2
The list cell structures in the
example in the text. The left is a
simple list, made from adding 2 and
1 on top of [3,4]. The right is a list
of three elements [1,2,X], where
the last element X is the list [3,4].

39Modules and functions
central to everything you do with lists. Also see appendix B for a deeper discussion
about lists and referential transparency.

 You should learn to love the list. But remember, lists are mainly good for tempo-
rary data (for example, as a collection that you’re processing), as a list of results that
you’re compiling, or as a string buffer. For long-term data storage, you may want to
use a different representation when size matters, such as binaries for storing larger
amounts of constant string data.

 As you’ll see moving forward, a large part of the data processing you’ll do in
Erlang, including string manipulation, comes down to traversing a list of items, much
like you traverse collections and arrays in most other languages. Lists are your main
intermediate data structure.

IMPROPER LISTS

A final note is on the difference between a proper list and an improper list. Proper lists
are those that you’ve seen so far. They’re built up with an empty list as the innermost
tail. This means that starting from the outside, you can peel off one cell at a time and
know that you must finally end up with the tail being an empty list.

 But an improper list is created by adding a list cell on top on something that isn’t a
list to begin with. For example:

[1 | oops]

This creates a list cell with a nonlist tail (in this case, an atom 'oops'). Erlang doesn’t
forbid it and doesn’t check for such things at runtime, but you should generally
regard such a thing, if you see it, as a programming error and rewrite the code.

 The main problem is that any functions that expect to receive a proper list will
crash (throw an exception) if they try to traverse an improper list and end up find-
ing a nonlist as the tail. Don’t be tempted to use list cells this way even if you think
you have a clever idea—it’s bug-prone and confuses both humans and program-
analysis tools. That said, there are one or two valid uses for creating improper lists,
but they’re considered advanced programming techniques and are beyond the
scope of this book.

 Now that we’re done with the basic data types in Erlang, we can move on to the
subject of creating programs and how to compile and run them. First, we need to talk
about where your code will live: in functions, within modules.

2.3 Modules and functions
So far, you’ve only seen basic Erlang expressions: code snippets that can be evaluated
to produce some value. But real Erlang programs aren’t one-liners that you can enter
in the shell. To give your code some structure in life and a place to call home, Erlang
has modules, which are containers for program code. Each module has a unique name,
which is specified as an atom. Erlang’s standard library contains a large number of
predefined modules, such as the lists module that contains many functions for
working with lists.

40 CHAPTER 2 Erlang language essentials
 In this section, we first explain some details about functions in Erlang: how you
call them, why the arity of a function is important, the standard library, and what a
BIF is. We then show how to create your own modules, compile them, and run the
functions in them. We also explain a little about the difference between compiled
modules and code that you enter in the shell. First, let’s look at how to call a function
in a module.

2.3.1 Calling functions in other modules (remote calls)

When you want to call a function that resides in some other module, you need to
qualify the function name with the name of the module it’s in, using a colon char-
acter as separator. For instance, to reverse a list [1,2,3] using the function reverse
in the standard library module lists, you write as follows (and you can try this in
the shell):

lists:reverse([1,2,3])

This form is called a remote call (calls a function in a different module), as opposed to
a local call (calls a function in the same module). This shouldn’t be confused with a
remote procedure call, which is a concept in distributed programming and is a com-
pletely different thing (asking another process or computer to run a function for you).

 In the previous example, the function took a single argument. When you program
in Erlang, it’s particularly important to take note of such details. The next section will
explain why.

2.3.2 Functions of different arity

The number of arguments a function takes is referred to as its arity. For example, a
function that takes one argument is a unary function, one that takes two arguments is
a binary function, one that takes three arguments it a ternary function, and so on.
You’ve seen a couple of functions already such as self() that are nullary—that is, that
take no arguments.

 The reason we bring this up is that the arity of functions is more important in
Erlang than in most other programming languages. Erlang doesn’t have function
overloading as such; instead, it treats functions of different arities as completely sepa-
rate even if they have the same atom as identifier. The full name of a function must
always include the arity (written with a slash as separator). For example, the earlier
list-reversing function is reverse/1; or, if you want to be particular about which mod-
ule it resides in, you write lists:reverse/1. Note, though, that you can only use this
syntax where the language expects a function name; if you write hello/2 as an expres-
sion, Erlang will interpret this as an attempt to divide the atom 'hello' by 2 (and
won’t like it).

 To show how this works, there is in fact a function lists:reverse/2 that does
almost the same as reverse/1 but also appends the list given as its second argument
to the final result; so, lists:reverse([10,11,12], [9,8,7]) results in the list
[12,11,10,9,8,7]. In some languages, this function might have had to be called

41Modules and functions
reverse_onto or similar to avoid a name collision, but in Erlang you can get away with
using the same atom for both. Don’t abuse this power when you write your own func-
tions—naming should be done in a systematic way so that it’s easy for your users to
remember how to call your functions. If you create functions that differ only in arity
but produce wildly different results, you won’t be thanked for it. When in doubt, opt
for giving the functions clearly different names.

 At any rate, always remember that in order to exactly specify which function you’re
talking about, you need to give the arity, not just the name.

2.3.3 Built-in functions and standard library modules

Like any other programming language, Erlang comes with a standard library of useful
functions. These are spread over a large number of modules, but some standard
library modules are more commonly used than others. In particular, the module
named erlang contains functions that are central to the entire Erlang system, which
everything else builds on. Another useful module that you’ve seen already is the lists
module. The io module handles basic text input and output. The dict module pro-
vides hash-based associative arrays (dictionaries), the array module provides extensi-
ble integer-indexed arrays, and so forth.

 Some functions are involved with things that are so low-level that the functions are
an intrinsic part of the language and the runtime system. These are commonly referred
to as built-in functions (BIFs), and like the Erlang runtime system, they’re implemented
in the C programming language. (Although some may disagree on the details, this is
the most common definition.) In particular, all the functions in the erlang module are
BIFs. Some BIFs, like our friend lists:reverse/1 from the previous section, could in
principle be written directly in Erlang (like most of the other functions in the lists
module) but have been implemented in C for efficiency reasons. In general, though,
you don’t have to care about how the functions are implemented—they look the same
to the eye. But the term BIF is used often in the Erlang world, so it’s useful to know what
it refers to.

 A few functions (all found in the module erlang) are both important and com-
monly used, in Erlang programs as well as in the shell. These are automatically
imported, which means you don’t need to write the module name explicitly. You’ve
already seen the function self(), which returns the process identifier (the pid) of
the process that calls it. This is a remote call to erlang:self(), but because it’s one
of the auto-imported functions, you don’t need to prefix it with erlang:. Other
examples are spawn(...), which starts a new process, and length(...), which com-
putes the length of a list. Finally, even the operators of the language, such as +, are
built-in functions and belong to the erlang module. For example, you can write
erlang:'+'(1,2) for 1+2.

 So far, we’ve talked about modules that already exist somewhere in the stan-
dard library. But what if you want to create a module of your own? It’s finally time
for that.

42 CHAPTER 2 Erlang language essentials
2.3.4 Creating modules

To create your own, real, Erlang programs, and not only experiment with expres-
sions in the Erlang shell, the code you write must be housed by one or more mod-
ules. In order to make a new module that can be used by you or others, you need to
do the following:

1 Write a source file.
2 Compile it.
3 Load it, or at least put it in the load path for automatic loading.

The first step is easy—start your favorite text editor (even if it’s Notepad), open a
new file, and start typing. Give the module a name, and save the file using the same
name as for the module, plus the suffix .erl. For example, the following listing shows
how such a file (named my_module.erl) might look. Create this file using your text
editor now.

%% This is a simple Erlang module

-module(my_module).

-export([pie/0]).

pie() ->
 3.14.

To start with the easiest part, the part that says pie() -> 3.14. is a function definition. It
creates a function pie that takes no arguments and returns the floating-point number
3.14. The arrow -> is there to separate the function head (the name and arguments)
from its body (what the function does). Note that you don’t need to say return or use
any such keyword: a function always returns the value of the expression in the body. Also note
that you must have a period (.) at the end of the function definition, like you had to
write a period after each expression you entered in the shell.

 The second thing to note is the comment on the first line. Comments in Erlang are
introduced with the % character; and we’ll say more about that in a moment.

 The first item in a module, apart from any comments, must always be the module
declaration, in the form -module(...). Declarations are basically anything that’s not a
function or a comment. They always begin with a hyphen (-), and like function defi-
nitions, they must end with a period character. The module declaration is always
required, and the name it specifies must match the name of the file (apart from the
.erl suffix).

 The line we saved for last is the one that says -export([...]).. This is an export dec-
laration, and it tells the compiler which functions (separated by commas) should be
visible from the outside. Functions not listed here will be kept internal to the module
(so you can’t call them from the shell). In this example, you have only one function,
and you want that to be available, so you put it in the export list. As explained in the

Listing 2.1 my_module.erl

43Modules and functions
previous section, you need to state the arity (0, in this case) as well as the name in
order to identify exactly what function you’re referring to; hence, pie/0.

 Before we move on, let’s explain a few things about comments.

COMMENTS

There is only one kind of source code comment in Erlang. These comments are intro-
duced with the % character and go on until the end of the line. Of course, % charac-
ters within a quoted string or atom don’t count. For example:

% This is a comment and it ends here.

"This % does not begin a comment"

'nor does this: %' %<-but this one does

You can write comments in the shell, if you like, but there is little point to it, which is
why we haven’t talked about doing so earlier.

 Style-wise, comments that follow code on the same line are usually written with
only a single % character, whereas comments that are on lines of their own are typi-
cally written starting with two % characters, like this:

%% This is your average standalone comment line.
%% Also, longer comments may require more lines.

frotz() -> blah. % this is a comment on a line of code

(Some people even like to start with three % characters on comment lines that
describe things on a whole-file level, such as comments at the top of the source file.)

 One good reason to stick to these conventions is that syntax-aware editors such as
Emacs and erlIDE can be made to know about them, so that they will indent com-
ments automatically according to how many % characters they begin with.

 Now that you have a source file that defines a module, you need to compile it.

2.3.5 Compiling and loading modules

When you compile a module, you produce a corresponding file with the extension
.beam instead of .erl, which contains instructions in a form that the Erlang system can
load and execute. This is a more compact and efficient representation of the program
than the source code, and it contains everything the system needs to load and run the
module. In contrast, a source code file might require that additional files be available
via include declarations (section 2.12.2). All such files that make up the complete
source code for the module have to be read at the time the module is compiled. The
single .beam file, then, is a more definite form for a module, although it can’t be eas-
ily read by a human and can’t be edited by hand—you have to edit the source file
instead and recompile it.

COMPILING FROM THE SHELL

The simplest way to compile a module when you’re playing around and testing
things, is to use the shell function c(...), which compiles a module and also loads it
(if the compilation worked) so you can try it out immediately. It looks for the source

44 CHAPTER 2 Erlang language essentials
file relative to the current directory of the Erlang shell, and you don’t even need to
say .erl at the end of the name. For example, if you start Erlang in the same directory
as the file you created earlier, you can do the following:

1> c(my_module).
{ok,my_module}
2> my_module:pie().
3.14
3>

The result {ok,my_module} from the call to c(...) is an indicator that the compila-
tion worked, creating a module called my_module, which has now been loaded. You
can call the function pie you exported from it to check that it works.

 If you look in the directory of the source file (you can use the shell function ls()
to do this), you’ll see that there is now a new file called my_module.beam alongside
the source file my_module.erl. This is the compiled version of the module, also called
an object file.

MODULE LOADING AND THE CODE PATH

If you now exit the Erlang shell (using the shell function q(), for example) and then
restart Erlang again in the same directory, you can try calling your module directly
without compiling it first (assuming the previous compilation worked):

1> my_module:pie().
3.14
2>

How did this work? It’s simple: whenever Erlang tries to call a module that hasn’t been
loaded into the system yet, it automatically tries to load it from a correspondingly
named .beam file, if it can find one. The directories it looks in are listed in the code
path; and by default, this includes the current directory (where it found your .beam
file and loaded it).

 To check out the current setting of the code path, call the function code:
get_path(). This returns a list, at the start of which you’ll see a period (.), meaning
the current directory. The default code path also includes all the standard library
directories. In addition, you can use the functions in the code module to modify the
path as you like.

2.3.6 The stand-alone compiler, erlc

In a real software project, you typically want to script your builds using an external
build tool, such as GNU Make. In this case, you can use the standalone erlc program
to run the compiler from your operating system command line. For example:

erlc my_module.erl

(You can of course run this by hand if you like. Try it!) This is a bit different from the
shell function you used earlier. Here, you need to give the full file name, including
the .erl extension. You can also use options much as you would with a C compiler; for

45Modules and functions
instance, to specify the output directory (where to put the .beam file), you can write
something like this:

erlc -o ./ebin my_module.erl

(You may have noticed in the code:get_path() example that all the standard library
directories in the path had names ending in /ebin. This is the normal convention for
Erlang, to keep the .beam files in a subdirectory called ebin. We get back to this in
more detail later when we talk about applications.)

 If you’re on Windows, there is a slight complication: the installation program
doesn’t set up the PATH environment variable to point to the erl and erlc programs;
you have to do this yourself if you want to run them from your cmd.exe command
line. They can be found in the bin subdirectory of the directory where Erlang was
installed—the path probably looks something like C:\Program Files\erl5.7.3\bin. Also
remember that the erl command doesn’t play well with cmd.exe—it’s good for run-
ning Erlang applications from scripts, but as an interactive environment, you want to
run werl (for example, when you click the Erlang icon).

2.3.7 Compiled modules versus evaluation in the shell

There is a difference between what happens with expressions that you enter in the
Erlang shell and code that you put in a module (and compile, load, and run). A .beam
file, as we said, is an efficient, ready-to-deploy representation of a module. All the code
in a .beam file was compiled together at the same time, in the same context. It can do
things relating to the module it’s in, such as specifying which functions are exported
or not, or find out what the name of the module is, or declare other things that
should hold for the module as a whole.

 But code that you enter in the shell consists basically of one-off expressions, to be
forgotten fairly soon. This code is never part of any module. Therefore, it isn’t possi-
ble to use declarations (like -export([...]). or -module(...).) in the shell; there is
no module context for such declarations to apply to.

 The shell parses expressions and evaluates them by interpreting them on the fly.
This is much less efficient (by several orders of magnitude) than running compiled
code, but that doesn’t matter much when all it has to do is to perform a call to a func-
tion in some existing compiled module (which will run at normal speed)—for exam-
ple, when you say lists:reverse([1,2,3]). In this case, all the shell does is to
prepare the list [1,2,3] and then pass it over to the reverse function (and print the
result afterward). Even if it does this at a comparatively slow speed, it’s still much too
fast for a human to notice.

 It’s possible, though, by use of things such as list comprehensions (explained in
section 2.9) or clever use of recursive funs (a neat trick, but may cause the brains of
novices to implode), to write code in the shell that is more or less entirely evaluated by
the shell’s interpreter from start to end, and that does some significant amount of
work. In that case, it will be notably slower than if you had written it in a module and
compiled it. So, remember this: never measure on code that is interpreted by the shell. If you

46 CHAPTER 2 Erlang language essentials
want sane numbers from your benchmarks, you must write them as modules, not as
shell one-liners. Don’t draw conclusions about efficiency from what the shell does.

NOTE It may happen that in some odd corner case, code evaluated in the
shell behaves slightly differently from the same code when compiled as part of
a module. In such a case, the compiled version is the gold standard. The shell
tries its best to do the exact same thing when it interprets the expressions.

One thing has been missing from all our examples so far. Did you notice it? You
haven’t used any variables yet! The reason is that because they’re so intimately con-
nected, we wanted to present variables and pattern matching together. Now that you
know about basic data types, modules, and functions, it’s time to show how to use vari-
ables in your code.

2.4 Variables and pattern matching
Variables in Erlang are a bit different from variables in most other programming lan-
guages, which is why we’ve postponed introducing them until now. It isn’t that they’re
more difficult than in other languages; it’s that they’re so much simpler! So simple, in
fact, that your first reaction may be, “How do I do anything useful with them?”

 In this section, we start by showing how variables, single assignment, and the =
operator work, before we dive into pattern matching and show how to easily extract or
make assertions on parts of data structures.

2.4.1 Variable syntax

The most visible difference is that in Erlang, variables begin with an uppercase letter!
(You’ve already reserved names that begin with lowercase for writing atoms, remem-
ber?) Here are some examples of variables, using CamelCase to separate word parts,
which is the normal style for variables in Erlang:

Z
Name
ShoeSize12
ThisIsARatherLongVariableName

You can also begin a variable with an underscore character. In that case, the second
character is by convention usually an uppercase character:

_SomeThing
_X
_this_may_look_like_an_atom_but_is_really_a_variable

There is a small difference in functionality here: the compiler normally warns you if
you assign a value to a variable and then don’t use that variable for anything. This
catches a lot of silly mistakes, so don’t turn off that warning. Instead, when you want to
use a variable for something to make the program more readable, you can use one
that starts with an underscore. (You’ll see how you might want to write variables like
this when we talk about pattern matching.) The compiler won’t complain if those are

47Variables and pattern matching
unused. Also, any variables that aren’t used will be optimized away, so they carry no
extra cost: you can use them freely to annotate your program for better readability.

2.4.2 Single assignment

The next surprise is that Erlang’s variables are strictly single assignment. This means
that when you assign a value to a variable—or, as we say in Erlang country, bind the
variable to a value—that variable will hold the same value throughout its entire scope
(that part of the program code where the variable exists). The same variable name
can be reused in different places in the program, but then we’re talking about differ-
ent variables with distinct and non-overlapping scopes (just like Paris can be one thing
in Texas and another thing in France).

 In most other programming languages, what’s called a variable is a kind of box
with a name, and you can change the contents of the box from one point in the pro-
gram to the next. This is odd, if you think about it, and it’s certainly not what you
learned in algebra class. Erlang’s variables, on the other hand, are like those you knew
from mathematics: a name for some value, which doesn’t change behind your back
(which is why you can solve equations). The values are stored somewhere in the com-
puter’s memory, but you don’t have to care about micromanagement issues like creat-
ing those little boxes and moving things between them or reusing them to save space.
The Erlang compiler handles all of that for you, and does it well.

 For more details about single assignment and the concept of referential transparency,
see appendix B.

THE = OPERATOR AND USING VARIABLES IN THE SHELL

The simplest form of assignment in Erlang is through the = operator. This is a match
operator, and as you’ll see, it can do more than straightforward assignment; but for
now, here’s an example you can try in the shell:

1> X = 42.
42
2> X.
42
3> X+1.
43
4>

That probably worked as you expected. Variables in the shell are a bit particular,
though. Their scope is “as long as the shell is still running, unless I say otherwise.” To
forget all bound variables, you can call the shell function f(), like this:

4> f().
ok
5> X.
* 1: variable 'X' is unbound
6> X = 17.
17
7> X.
17
8>

48 CHAPTER 2 Erlang language essentials
As you see, once forgotten, X can be reused for something else. What if you try to
reuse it without forgetting the old value?

8> X = 101.
** exception error: no match of right hand side value 101
9>

Oops. The single assignment is enforced, and you get an exception instead. The error
message indicates that a match was taking place. What if you try to reassign the same
value that X already has?

9> X = 17.
17
10>

No complaints this time. That’s what the match part means: if X already has a value, it
checks that the right side is the same (comparing them for exact equivalence; look back
to section 2.2.9 if you’ve forgotten what this means). If you want to forget X and not all
the other variable bindings you may have made in the shell, use f(X), like this:

10> Y = 42.
42
11> f(X).
ok
12> X.
* 1: variable 'X' is unbound
13> Y.
42.
14>

Just remember that this is how variable scope works in the shell. Within a module,
scopes are tied to function definitions and similar things, and there is no way to forget
variable bindings prematurely; we get into more detail in section 2.5.2.

VARIABLES AND UPDATES

After you accept that you can’t update a variable with a new value, you’ll probably
wonder how to change anything. After all, much of what a program does is compute
new data from old—for instance, adding 1 to a number. The short answer is, if you
need to keep track of another value, give it another name. For example, if you have a
variable X that holds some integer, and you want to give a name to the value you get if
you add 1 to X, you can say something like X1 = X + 1:

1> X = 17.
17
2> X1 = X + 1.
18
3>

Maybe you can come up with a more descriptive name, like NewX or IncrementedX;
and depending on the code at hand, this may or may not be better (overlong names
can also be bad for readability). But the normal fallback when you’re out of inspira-
tion is to use names like X1, X2, and X3 for modified variants of X. (If you’re wondering

49Variables and pattern matching
what to do with variables in a loop, it will have to wait until we discuss recursive func-
tions in section 2.15.)

 Usually, you should avoid situations where you need a lot of different variables for
almost-the-same-thing-only-modified-a-bit. Try to split the code into separate functions
instead, where each function can have its own X and works on only one step of the
whole problem. This makes for much more readable and sane code in the long run.

 On their own, variables are fairly boring. Single assignment or not, every practical
language has them. The real power comes through pattern matching.

2.4.3 Pattern matching: assignment on steroids

Pattern matching is one of the utterly indispensible features of Erlang. When you get
used to it, you’ll wonder how you could ever be without it, and the thought of pro-
gramming in a language that doesn’t have pattern matching will become depressing.
(Trust us.)

 Pattern matching serves the following important purposes:

■ Choosing control flow branches
■ Performing variable assignments (bindings)
■ Decomposing data structures (selecting and extracting parts)

We start by exposing the dirty secret of the = operator.

THE = OPERATOR IS A PATTERN MATCH

In the previous section, we called = a match operator. This is because what it does is
pattern matching, rather than assignment. On the left side, you have a pattern; and on
the right side, you have a plain old expression. To evaluate the match, the right-side
expression is evaluated first, to get a value. That value is then matched against the pat-
tern (a bit like when you match a string against a regular expression). If the pattern
doesn’t match, as in 17 = 42, or true = false, the match fails and throws an exception
containing the reason code badmatch. In the shell, this is presented to you as the error
message “no match of right hand side value”

 If the match works, the program continues with any expressions that follow after it,
but now any variables that occurred in the pattern on the left side have the same val-
ues as the corresponding parts of the value from the right side. (If the pattern is only
a single variable, as in X = 42, then the corresponding part is the entire right-side
value.) To illustrate, try the following in the shell:

1> {A, B, C} = {1970, "Richard", male}.
{1970,"Richard",male}
2> A.
1970
3> B.
"Richard"
4> C.
male
5>

50 CHAPTER 2 Erlang language essentials
It shouldn’t be hard to see what is happening here. The pattern {A,B,C} matches the
right-side tuple; as a result, the variables are bound to the corresponding elements, so
you can refer to them afterward. It couldn’t be any simpler.

 This shows another common kind of match:

1> {rectangle, Width, Height} = {rectangle, 200, 100}.
{rectangle,200,100}
2> Width.
200
3> Height.
100
4>

Here, the pattern requires that the first element of the tuple be an atom rectangle
(used as a label). Because the right-side tuple has a matching atom as its first element
and has three elements as required, the match succeeds, and the variables Width and
Height become bound.

 A variable can occur several times in a pattern, and this is sometimes useful when
you want to specify that two fields must have the same value:

1> {point, X, X} = {point, 2, 2}.
{point,2,2}
2> X.
2
3>

If the fields aren’t exactly equal, the match fails:

1> {point, X, X} = {point, 1, 2}.
** exception error: no match of right hand side value {1,2}
2>

Because of the single-assignment variables, it’s impossible to give X both the values 1
and 2, no matter which one you start with.

2.4.4 More about patterns

Patterns look like expressions but are more limited. They can only contain variables,
constants, and constant data structures like lists and tuples—no operators, function
calls, funs, and so on. They can be arbitrarily complicated and nested, though. For
example, let’s first create a list containing some information about users of some sys-
tem (only one, right now):

1> Users = [{person, [{name,"Martin","Logan"}, {shoe_size,12},
{tags,[jujitsu,beer,erlang]}]}].

...
2>

(The shell will print back the value of what you just entered; we skipped that for clar-
ity.) Now, let’s extract some selected data about the first user in the list:

2> [{person, [{name,_,Surname},_,{tags, Tags}]} | _] = Users.
...

51Variables and pattern matching
3> Surname.
"Logan"
4> Tags.
[jujitsu,beer,erlang]
5>

First, note the use of a single underscore (_) to indicate a don’t-care pattern. In other
words, where you wrote _, you don’t care what value the right side has at that point,
and you don’t want to know. You can have several underscores in the same pattern, as
in this example, but they don’t have to have the same values in all places (like vari-
ables do). These don’t-care patterns are sometimes referred to as anonymous variables,
but they aren’t variables at all, just placeholders.

 Second, look at the outermost part of the pattern, in particular the last part before
the =. This has the form [... | _]. To understand this, you need to recall what we
said about lists in section 2.2.10: lists are made up of list cells, forming a chain, and a
single list cell is written [...|...]. You can also visualize the cells as layers upon lay-
ers, like an onion, with an empty list as the center, and each layer carrying some data.

 The previous pattern can then be read out as follows:

Something that consists of an outermost list cell, whose inner layers I don’t care about for
now (the | _] part of the pattern), but whose payload (in the [... | part of the pattern)
has the shape {person, [..., ..., ...]}—that is, is a 2-tuple tagged as person, whose
second element is a list of exactly three elements. The first of these elements is a 3-tuple labeled
name, and I want the third element of that—let’s call it Surname; the third is a 2-tuple
labeled tags, and I want the second element of that one—let’s call it Tags.

Congratulations if you got through all that. But it does show that what a pattern can
express in a single line and less than 50 characters can be a rather long-winded busi-
ness if you spell it out (which you need to do to get the same effect in most other lan-
guages). Patterns are natural, compact, readable, and powerful.

MATCHING STRING PREFIXES USING ++
As you recall, strings in Erlang (written within double quotes) are lists of character
codes. This makes matching on string prefixes particularly easy. First, take this exam-
ple of matching a simple list prefix:

[1,2,3 | Rest] = [1,2,3,4,5,6,7]

Because the left-side pattern has the same three initial elements as the list on the right
side, they match. As a result, the variable Rest is bound to the list cells that follow the
3: that is, Rest = [4,5,6,7].

 But strings are lists of character codes, and you can get the code point for a charac-
ter through the $ syntax (for example, $A yields 65), so the following also works:

[$h, $t, $t, $p, $: | Rest] = "http://www.erlang.org"

This should give the string "//www.erlang.org" in Rest. This is nice but can be nicer.
We said before that operators aren’t allowed in patterns. There is one exception: the

http://www.erlang.org
http://www.erlang.org

52 CHAPTER 2 Erlang language essentials
++ operator, which is used to append strings. It can be used in patterns if and only if its
left argument is a constant string. The example can then be written as

"http://" ++ Rest = "http://www.erlang.org"

(To make things more interesting, we included the two slashes in the pattern as well,
giving "www.erlang.org" in Rest.) There is no magic behind this; if you say "abc" ++
SomeString, the ++ operator creates a list of the form [$a, $b, $c | SomeString], like
the pattern you wrote by hand previously. Obviously, for the compiler to be able to do
this expansion, the left argument of ++ must be a constant string at compile time.

 The ease with which you can do basic string matching is probably the reason why
you don’t see a lot of regular expressions in Erlang programs. They would be overkill
and have more overhead for straightforward matches like this.

 We want to encourage you at this point and tell you that by now, you’ve seen most
of that which may seem strange and difficult about Erlang. Concepts like atoms,
tuples, and strange lists that are also strings. Variables that start with uppercase and
that can only be assigned once. Functions where the arity is part of the name. Well,
from now on, it will be much more straightforward. Erlang isn’t a difficult language,
after you get over the initial culture shock. With those words, let’s move on to writing
functions that do something interesting.

2.5 Functions and clauses
We had to discuss a lot of basics before we could start talking about functions! But we
wanted to make sure you understand variables and pattern matching first, because
after that, you’ll have no trouble understanding how functions work in Erlang. Not
that the concept of functions is much different compared to other languages; but in
Erlang, functions and pattern matching are intimately connected. Although this can
be intuitive, it can also take some getting used to.

 You saw a simple function definition already, in section 2.3.4, when we intro-
duced modules. From now on, we won’t do many examples in the shell, because
you’ll be writing your own modules (although you’ll use the shell for compiling and
running your code). For these initial examples, you’ll continue using the module
you created back then—the one called my_module—and add new functions to it so you
can try them. Remember to add the function name (with the correct arity) to the
-export([...]) list and recompile the module using c(my_module) before you try
to call the function. If you see an error message saying something like “undefined
function my_module:xxx/N,” it’s probably because you forgot to do either of these
things. If you get the error message “undefined shell command xxx/N,” you forgot
to write my_module: before the function name when you tried to call it.

2.5.1 A function with side effects: printing text

Let’s start with something basic: taking some input and printing text to the console.
The standard library function io:format(...) is the normal way of writing text to the
standard output stream in Erlang. It takes two arguments: the first is a format string,

http://www.erlang.org
http://www.erlang.org

53Functions and clauses
and the second is a list of terms to be printed. You’ll use this in your own function,
called print, which has a variable Term as parameter:

print(Term) ->
 io:format("The value of Term is: ~p.~n", [Term]).

 Write this function in your module, add print/1 to the export list, compile the
module again from the shell using c(my_module), and then call my_module:print
("hello"). You should see the following:

1> c(my_module).
{ok,my_module}
2> my_module:print("hello").
The value of Term is: "hello".
ok
3>

The escape code ~p in the format string means to pretty-print an Erlang term. This
means lists of printable characters will be displayed as double-quoted strings, and also
that if the term is too large to fit on one line, it will be split over several lines (with suit-
able indentation). Try calling your new print function with different values from the
data types you got to know in section 2.2. What happens if you try to print the list
[65,66,67]?

 (The escape code ~n means “insert a line break,” so you get a new line after the
message, but you probably figured that out already.)

 If you now change the ~p to ~w (do this!) and recompile, and then call the func-
tion again with my_module:print("hello") as before, you’ll see this:

5> c(my_module).
{ok,my_module}
6> my_module:print("hello").
The value of Term is: [104,101,108,108,111].
ok
7>

What’s that ugly list? Well, a string is a list of character codes, remember? The escape
code ~w means “print an Erlang term in its raw form” without fancy line breaking and
without printing lists as double-quoted strings even if they contain only printable char-
acter codes.

 The function io:format(...) is an example of a function that has side effects. It
does return a result, as you can see (the atom 'ok'), but its main purpose is to have
an effect on the environment around it. (And by extension, the same is true for your
print function.) In Erlang, practically all side effects can be seen as messages (and
they usually are in practice, too). In this case, the io:format function prepares the
text to be printed and then sends it as a message to the console driver before it
returns 'ok'.

 Finally, note that you’ve already started doing interactive development in the Erlang
shell: you changed your program, recompiled and loaded the new version, and tried
it, without ever stopping and restarting the Erlang environment. If your Erlang system

54 CHAPTER 2 Erlang language essentials
had been doing something of interest in the background (like serving up web pages
to customers), it would still be merrily chugging along while you keep fixing things.

2.5.2 Multiple clauses and pattern matching for choice

Next, we look at where pattern matching comes in. In Erlang, a function can consist
of more than one clause. Whereas the example in the previous section had a single
clause, the following example has three clauses:

either_or_both(true, _) ->
 true;
either_or_both(_, true) ->
 true;
either_or_both(false, false) ->
 false.

The function either_or_both/2 here is an example of a Boolean function—one that
operates on the values true and false (which are ordinary atoms in Erlang, remem-
ber?). As its name indicates, you want it to behave like the built-in or operator: if
either of the arguments, or both, are true, the result should also be true; otherwise
the result should be false. And no non-Boolean inputs are accepted.

 Note that the clauses are separated by semicolons (;) and that only the last clause
is terminated by a period (.). All the clauses must begin with the same name and have
the same number of arguments, and they must be defined together—you can’t put
another function definition between two clauses of the same function.

CLAUSE SELECTION

When the function is called, Erlang tries the clauses in top-down order using pattern
matching: first, it matches the incoming arguments against the patterns in the first
clause; if they don’t match, the next clause is tried, and so on. In the example, it
means that if the first argument is true, the first clause will always be chosen (no mat-
ter what the second argument is—note that the example uses a don’t-care pattern in
its place).

 If the first clause doesn’t match, and if the second argument is true, the second
clause of the example will be chosen. But if that clause doesn’t match either, the third
clause is tried, and if that still doesn’t match, you’ll get a runtime exception of the
type function_clause to indicate that the arguments didn’t match any of the clauses
of the function in this call.

 Now, take another look at these clauses, and think about what you know at each
point. If you ever get to the second clause, you know the first argument isn’t true
(because otherwise the first clause would match). Likewise, if you get as far as the
third clause, you know that neither of the arguments can be true. The only valid possi-
bility left at that point is that both arguments are false (if the function was called with
only true or false as argument values).

 It’s good programming practice to make this knowledge explicit in the code—
that’s why you don’t accept anything other than (false, false) in the last clause.

55Functions and clauses
If someone calls this function with an unexpected value like foo or 42, they will get
a runtime exception (function_clause), which is what you want: it means they will
fail early and get a chance to detect the mistake and fix the code as soon as possi-
ble, so bad data doesn’t propagate further throughout the system. If you tried to be
nice and said (_, _) in the last clause, to return false in all remaining cases, then
a call such as either_or_both(foo, bar) would also return false without any hint
of a problem.

2.5.3 Guards

There is still a possibility of some nonsense slipping through, though. If someone called
the previous function as either_or_both(true, 42) or as either_or_both(foo,
true), then it would quietly return true as if all was well in the world. You can add extra
requirements to the clauses to plug this hole, using guards:

either_or_both(true, B) when is_boolean(B) ->
 true;
either_or_both(A, true) when is_boolean(A) ->
 true;
either_or_both(false, false) ->
 false.

A clause guard begins with the keyword when and ends at the -> arrow. It contains one
or more tests, separated by commas if there are more than one, and all of them have
to be true for the clause to be selected. As you can see, you need to use variables in
the patterns to be able to refer to them in the guard, so this example uses the names A
and B instead of don’t-care patterns. The is_boolean(...) test is one of those built-in
functions that you can call without specifying the module name (they live in the
erlang module). There are similar tests for all the primitive data types: is_atom(...),
is_integer(...), and so on. The is_boolean(...) test checks that the value is one
of the atoms true and false.

 Apart from such type tests, the number of things you can do within a guard is
strictly limited. You can use most of the operators (+, -, *, /, ++, and so on), and
some of the built-in functions (like self()), but you can’t call your own functions, or
functions in another module. This is partly for efficiency reasons—you want to be
sure that clause selection is fast—but mostly because of possible side effects. It’s
important that if a guard fails (turns out to be false), you should be able to go on
and try the next clause as if nothing happened. For example, if you could somehow
send a message from inside a guard, but that guard failed, it would be impossible to
undo that message—someone might already have seen it and as a consequence per-
formed some visible change to the world, like changing a file or printing some text.
Erlang doesn’t allow this, and that makes guards (and clauses in general) much eas-
ier to reason about, reorder, and refactor.

 Make sure you add this function to your module and try it, first the initial version
and then the one with guards. Give them some different inputs and check their behav-
iour. We hope you see how this ability to experiment with functions in Erlang, test

56 CHAPTER 2 Erlang language essentials
them interactively, and incrementally improve them without restarting the runtime
environment can be a big boost both for productivity and for creativity.

2.5.4 Patterns, clauses, and variable scope

Let’s take another example of pattern matching, to show how you use it to both select
clauses and extract the interesting data at the same time. The following function
assumes that you’re using tagged tuples to represent information about different geo-
metric shapes:

area({circle, Radius}) ->
 Radius * Radius * math:pi();
area({square, Side}) ->
 Side * Side;
area({rectangle, Height, Width}) ->
 Height * Width.

If you, for instance, call my_module:area({square, 5}), you should get 25. If you
pass it {rectangle, 3, 4}, it returns 12, and so on. Pattern matching decides which
clause will be selected, but it also binds the variables to the elements of the data
structure so that you can refer to these values in the body of each clause. Note
that as opposed to the earlier either_or_both function, the order of the clauses in
this function doesn’t matter, because only one can match at any time; they’re mutu-
ally exclusive.

 The scope, or lifetime, of a variable that is bound in the head of a function clause is
the entire clause, up until the semicolon or period that ends that clause. For example,
in the area function, you use different variable names for Radius (of a circle) and
Side (of a square), but you could also have called both X if you wanted, because they
live in separate clauses. On the other hand, the Height and Width variables (for a rect-
angle) must have distinct names, because they have overlapping scope. You never
need to declare variables in Erlang—you use them as you need them; but this conven-
tion means you can’t reuse the same name within the same clause.

 When a variable goes out of scope, the value that it referred to becomes a can-
didate for garbage collection (the memory it used will be recycled) if no other
part of the program still needs it. That’s another thing you rarely need to think
about in Erlang.

2.6 Case and if expressions
If function clauses were the only way to make control flow branches in Erlang,
you’d have to invent a new function name for each little choice to be made in your
program. Although it might be pedagogical, it could also be annoying. Fortu-
nately, Erlang provides case expressions for this purpose. These expressions also
have one or more clauses, but can only have one pattern per clause (so no paren-
theses are needed).

 For example, the area function from section 2.5.4 can also be written using a
case expression:

57Case and if expressions
area(Shape) ->
 case Shape of
 {circle, Radius} ->
 Radius * Radius * math:pi();
 {square, Side} ->
 Side * Side;
 {rectangle, Height, Width} ->
 Height * Width
 end.

Note that you must give the input to area a name, so you can refer to it as the value
the case should switch on (case Shape of ...). Also note that all the clauses are sepa-
rated by semicolons, as with function clauses, and that the entire case expression
must end with the keyword end. (There is no semicolon after the last clause—they’re
separators, not terminators.) In this particular case, the new version of the function is
arguably less readable, because of the extra variable and the case/of/end keywords,
and most Erlang programmers would prefer the original (even if that repeats the
function name three times).

 When you want to switch on multiple items using a case expression, you have to
group them using tuple notation. For example, the either_or_both function from
section 2.5.3 can be written as follows:

either_or_both(A, B) ->
 case {A, B} of
 {true, B} when is_boolean(B) ->
 true;
 {A, true} when is_boolean(A) ->
 true;
 {false, false} ->
 false
 end.

As you can see, you can use guards (when ...) in case clauses as well. Again, you may
or may not prefer the original version of the function as being more succinct.

2.6.1 Boolean if-then-else switches in Erlang

Surprise: there aren’t any! You use a case expression instead, like the following:

case either_or_both(X, Y) of
 true -> io:format("yes~n");
 false -> io:format("no~n")
end

Although it can be tempting to use an underscore as a catch-all pattern in the last
case, don’t do that. Spell out both the true and the false cases. This ensures that
your program fails early, in case the input to the switch happens to be something
other than true/false, and also helps program analysis tools like Dialyzer to see what
your intention was.

58 CHAPTER 2 Erlang language essentials
2.6.2 If expressions

As a special case, if expressions are a stripped-down variant of case expressions, with-
out a specific value to switch on and without patterns. You can use an if expression
when you want to have one or more clauses that only depend on what is in the guards.
For example:

sign(N) when is_number(N) ->
 if
 N > 0 -> positive;
 N < 0 -> negative;
 true -> zero
 end.

This can also be written using a case with a dummy switch value (and using don’t-care
underscores as patterns in all clauses):

sign(N) when is_number(N) ->
 case dummy of
 _ when N > 0 -> positive;
 _ when N < 0 -> negative;
 _ when true -> zero
 end.

We hope that also makes you see why the last catch-all clause in the if expression is
written true -> If the guard test is always true, the clause will always match.

 The if expressions were added to the language a long time ago, a bit on a whim.
They aren’t used often, because most switches tend to have some kind of pattern
involved anyway. Although they come in handy on occasion, a long-standing complaint
from Erlang programmers has been that they’re mostly a waste of the keyword if. It’s
one of those things that are hard to change in a language in retrospect. As a beginner,
what you need to remember is that the conditions you switch on can’t be any old expres-
sions—they’re guard tests, and as such they’re limited (see section 2.5.3).

2.7 Funs
We introduced funs briefly in section 2.2.8. But it isn’t until now, after we’ve shown
how functions and clauses work, that we’re ready to talk about how funs are created.

2.7.1 Funs as aliases for existing functions

If you have a function in the same module—for example, either_or_both/2—and
you want to refer to it so you can say to some other part of the program, “please call
this function,” then you can create a fun by saying

fun either_or_both/2

Like any value, you can bind it to a variable

F = fun either_or_both/2

59Funs
or pass it directly to another function:

yesno(fun either_or_both/2)

And if you get a fun value from somewhere, you can call it like any old function,
like this:

yesno(F) ->
 case F(true, false) of
 true -> io:format("yes~n");
 false -> io:format("no~n")
 end.

This means it’s simple to parameterize behaviour. The same function (yesno) can be
used in different ways depending on which funs you give it. In this example, the input
parameter F is expected to be some kind of condition that takes two Boolean argu-
ments, but apart from that, it could be doing anything.

Note that these local alias funs are similar in implementation to anonymous funs
(explained shortly) and are tied to the current version of the module. See “Local funs have
a short expiration date” in the next section for more details.

REMOTE ALIAS FUNS

If you want to create a fun that refers to a function which exists in some other mod-
ule, you can use the following syntax (it also works for exported functions in the
same module):

fun other_module:some_function/2

These remote alias funs have a different behaviour with respect to code loading: they
aren’t tied to any particular version of the function they refer to. Instead, they’re always
directed to the latest available version of the function whenever the fun is called. Such
fun values are merely symbolic references to the function and can be stored for any
period of time and/or passed between Erlang systems without problems.

2.7.2 Anonymous funs

Although alias funs are useful, the real power comes with the syntax for anonymous
funs, also known as lambda expressions. Like the funs in the previous section, they start
with the fun keyword; and like a case expression, they end with the end keyword.
Between those keywords, they look like one or more function clauses without any

Higher-order functions
The function yesno/1 in the previous example is what is called a higher-order
function: one that gets a fun as input, or returns a fun as the result, or both. Funs
and higher-order functions are useful indeed; they’re used for all sorts of things
that delegates, adapters, commands, strategies, and so on, are used for in object-
oriented languages.

60 CHAPTER 2 Erlang language essentials
function names. For example, here is the simplest possible anonymous fun. It takes no
arguments and always returns zero:

fun () -> 0 end

Here, on the other hand, is a more complicated one—it does exactly the same thing
as the area function from section 2.5.4, but it has no name:

fun ({circle, Radius}) ->
 Radius * Radius * math:pi();
 ({square, Side}) ->
 Side * Side;
 ({rectangle, Height, Width}) ->
 Height * Width
end

Obviously, to make any use of anonymous funs, you either have to bind them to a vari-
able or pass them directly to some other function, like you did with the yesno/1 func-
tion in section 2.7.1:

yesno(fun (A, B) -> A or B end)

CLOSURES

The word closure is often used interchangeably with fun or lambda expression, but more
specifically it refers to the common and extremely useful case when you’re accessing
variables within fun ... end that are bound outside the fun. The fun value will then also
encapsulate the current values of those variables.

 To make it more concrete, let’s say you have a list of items as pairs of strings, each
pair representing a name and a corresponding description. You also have a function
to_html (not shown here) that will create an HTML fragment containing these strings
marked up as a definition list or similar—the details could change. Furthermore, for
every name string, but not the description strings, to_html will apply a callback fun
that you provide, to wrap the name for emphasis using some additional markup of
your choice. The callback is applied after to_html has HTML-escaped the string, so
you don’t need to handle such details.

Local funs have a short expiration date
When you create an anonymous fun, or a fun as an alias for a local function, the
fun value is tied to that particular version of the code. If you reload the module that
it belongs to more than once, the fun will no longer work: it will throw an exception
if someone attempts to call it. Hence, it isn’t a good idea to keep such fun values
around for a long time (for example, by storing them in a database). Also, if you
send them in a message to a different Erlang system, then that system must have
the exact same version of the code for the fun to work. Remote alias funs are bet-
ter for such purposes.

61Exceptions, try, and catch
 You can then, for example, make the names bold, like this:

to_html(Items, fun (Text) -> "" ++ Text ++ "" end)

Note here that Text is a parameter of the fun and represents the escaped string
passed by to_html each time it applies the callback. For example, if Items has the
value [{"D&D", "Dungeons and Dragons"}], you get something like this as output:

... D&D ... Dungeons and Dragons ...

(The rest of the HTML markup could be anything, depending on the details of what
to_html does: a definition list, a table, a bunch of divs, and so on.)

 Now, suppose you want to make the exact kind of emphasis a parameter: some-
thing that is passed to this part of your program from somewhere else, in a variable.
You can then use that variable in the fun:

render(Items, Em) ->
 to_html(Items,
 fun (Text) ->
 "<" ++ Em ++ ">" ++ Text ++ "</" ++ Em ++ ">"
 end).

Such a fun will include, as a snapshot, the current values of those variables that it uses
(Em in this case) that have been bound outside the fun itself—this is what the word clo-
sure refers to.

 Because Erlang’s single assignment and referential transparency properties guar-
antee that these values can’t be changed by anyone, you know that, whether you call
the fun right away or not until later, it will have exactly the same values for these vari-
ables as when it was created. (Of course, you can create multiple instances of the same
fun, each with possibly different values for the externally bound variables, but each of
those instances lives its own isolated life.)

 The previous fun is the meeting place for three different sources of information:
the caller of render, which says whether to use "b" or "i" or something else for every
name string; the to_html function, which does the main job of transforming the items
to HTML; and the render function, which specifies how the additional markup is
added (that is, what the callback fun does). Note that it’s a requirement from to_html
that the callback fun should take one argument, which must be a string. The interface
of the callback becomes a part of the interface of to_html.

2.8 Exceptions, try, and catch
We’ve mentioned exceptions without further explanation up until now. What, then, is
an exception? You could say that it’s an alternative way of returning from a function,
with the difference that it keeps going back to the caller, and to the caller’s caller, and
so on, until either someone catches it or it reaches the initial call of the process (in
which case the process dies).

62 CHAPTER 2 Erlang language essentials
 There are three classes of exceptions in Erlang:

■ error—This is the runtime error kind of exception, caused by things like divi-
sion by zero, failing match operations, no matching function clause, and so on.
These exceptions also have the property that if they cause a process to die, it’s
reported to the Erlang error logger.

■ exit—This kind of exception is used to signal “this process is giving up.” It’s gen-
erally expected not to be caught, but to cause the process to die and let others
know why it quit. exit can also be used for normal termination, to quit and sig-
nal “job done, all OK.” In either case, process termination due to exit (for what-
ever reason) isn’t considered unexpected, so it isn’t reported to the error logger.

■ throw—This kind of exception is for user-defined purposes. You can use throws
to signal that your function encountered something unexpected (like a missing
file or bad input), or to perform a so-called nonlocal return or long jump out of a
deep recursion. A throw that isn’t caught by the process mutates into an error
exception with the reason nocatch, terminating the process and logging it.

2.8.1 Throwing (raising) exceptions

For each of the exception classes, there is a corresponding built-in function to throw
(or raise) such an exception:

throw(SomeTerm)
exit(Reason)
erlang:error(Reason)

Because throw and exit are common, they’re auto-imported: you don’t need to pre-
fix them with erlang:. In normal code, you typically don’t need to raise error excep-
tions (but it can be a good thing to do if you’re writing a library and want to throw
errors like badarg, like Erlang’s standard library functions).

 As a special case, if a process calls exit(normal), and the exception isn’t caught,
that process terminates as if it had finished the job it was spawned to do. This means
that other (linked) processes won’t regard it as an abnormal termination (as they will
for all other exit reasons).

2.8.2 Using try...catch

In modern Erlang, you use a try expression to handle exceptions that occur in a
piece of code. In most ways, it works like a case expression, and in the simplest form it
looks like this:

try
 some_unsafe_function()
catch
 oops -> got_throw_oops;
 throw:Other -> {got_throw, Other};
 exit:Reason -> {got_exit, Reason};
 error:Reason -> {got_error, Reason}
end

63Exceptions, try, and catch
Between try and catch, you have the body or protected section. Any exception that
occurs within the body and tries to propagate out from it will be caught and matched
against the clauses listed between catch and end. If it doesn’t match any of the clauses,
the exception will continue as if there was no try expression around the body. Simi-
larly, if the body is evaluated without raising an exception, its result will become the
result of the whole expression, as if the try and catch...end had not been there. The
only difference is when there is an exception, and it matches one of the clauses. In
that case, the result becomes whatever the matching clause returns.

 The patterns of these clauses are special—they may contain a colon (:) to separate
the exception class (error, exit, or throw) from the thrown term. If you leave out the
class, it defaults to throw. You shouldn’t normally catch error and exit unless you
know what you’re doing—it goes against the idea of failing early, and you could be
masking a real problem. Sometimes, though, you want to run some code that you
don’t trust too much and catch anything that it throws. You can use the following pat-
tern for catching all exceptions:

 : -> got_some_exception

(Or you can use Class:Term -> ... if you want to inspect the data in the exception.)
 Also, note that after you get to the catch part, the code is no longer protected.

If a new exception happens in a catch clause, it will propagate out of the entire
try expression.

2.8.3 try...of...catch

A longer form of try is useful when you need to do different things in the successful
cases and the exception cases. For instance, if you want to continue doing some work
with the value you got in the successful case, but you want to print an error message
and give up in the exception case, you can add an of... section, like this:

try
 some_unsafe_function(...)
of
 0 -> io:format("nothing to do~n");
 N -> do_something_with(N)
catch
 : -> io:format("some problem~n")
end

Because it’s common that the thing you immediately want to do in the successful case
(apart from giving a name to the result) is to switch on the value you got, you write
one or more clauses between of and catch, like those in a case expression, for what
should happen if the try...of part succeeds. Just note that the of... part, like the
catch clauses, is no longer protected—if an exception occurs there, it won’t be caught
by this try expression.

64 CHAPTER 2 Erlang language essentials
2.8.4 after

Lastly, you can add an after section to any try expression. Its purpose is to guarantee
that a piece of code is executed for the sake of its side effects, no matter what happens
in the rest of the try expression, before you’re about to leave it. This usually involves
de-allocating a resource in some way or other—for example, to guarantee that a file is
closed, as in this example:

{ok, FileHandle} = file:open("foo.txt", [read]),
try
 do_something_with_file(FileHandle)
after
 file:close(FileHandle)
end

Here, if the match {ok,FileHandle}=... works, you know you’ve successfully opened
the file. You then immediately enter a try expression whose after section ensures
that the file will be closed, even if an exception occurs.

 Note that if you have an after part, you don’t need a catch part (but you can of
course have that, and an of part too if you like). In either case, the after part isn’t
executed until the entire try expression is ready, and this includes the situation where
a new exception is thrown from the of part or from one of the catch clauses. If so,
that exception is temporarily put on hold while the after part runs and is then
rethrown. If the after part throws an exception, that takes over, and any suspended
exception is forgotten.

2.8.5 Getting a stack trace

Normally, the execution stack trace isn’t included in the part of the exception
that you can see; it’s stored internally. You can inspect the stack trace of the
latest thrown exception of the current process by calling the built-in function
erlang:get_stacktrace().

 The stack trace is a list, in reverse order (last call first), of the calls nearest the top of
the stack when the exception occurred. Each function is represented as {Module,
Function, Args}, where Module and Function are atoms, and Args is either the arity
of the function or the list of arguments to the call, depending on what information
was available at the time. Typically, only the topmost call might have an argument list.

 Note that if you call erlang:get_stacktrace() and get an empty list, it means that
no exception has been caught by this process yet.

2.8.6 Rethrowing

It may happen that you need to examine an exception more closely before you decide
whether to catch it. Although this is unusual, you can then catch it first and rethrow it
if necessary, using the built-in function erlang:raise(Class, Reason, Stacktrace).
Here, Class must be one of error, exit, or throw, and Stacktrace should be what
you got from erlang:get_stacktrace(). For example:

65List comprehensions
try
 do_something()
catch
 Class:Reason ->
 Trace = erlang:get_stacktrace(),
 case analyze_exc(Class, Reason) of
 true -> handle_exc(Class, Reason, Trace);
 false -> erlang:raise(Class, Reason, Trace)
 end
end

Here, you catch any exception, analyze it, and either handle it or rethrow it. But this is
both messy and inefficient (because it requires creating the symbolic stack trace as a
list of tuples) and should only be done if you see no better solution.

2.8.7 Plain old catch

Before try expressions were added to the language, there was catch. You’ll see a lot
of this in older code, because it was the only way of handling exceptions. It works like
this: catch Expression evaluates Expression (which can be any expression); and if it
produces a result (doesn’t throw an exception), you get that result. Otherwise, if there
is an exception, it’s caught and presented as the result of the catch, using different
conventions depending on the exception class. This shell dialog demonstrates the dif-
ferent cases:

1> catch 2+2.
4
2> catch throw(foo).
foo
3> catch exit(foo).
{'EXIT',foo}
4> catch foo=bar.
{'EXIT',{{badmatch,bar},[{erl_eval,expr,3}]}}

In brief, for throw you get the thrown term as it is; for exit you get the reason in a
tagged tuple ('EXIT' is an atom in all uppercase, to be hard to fake by mistake);
and for error, you get it tagged and packed up along with the stack trace. This
may look handy, but there is a lot of confusion going on that makes it hard or
impossible to tell exactly what has happened and how to proceed. You should avoid
plain catch, but you’ll likely need to understand what it’s doing when you see it in
older code.

2.9 List comprehensions
A comprehension is a compact notation for describing operations on sets or sequences
of items (like lists). You may already know it from ordinary mathematical set notation,
where, for example, {x | x ∈ N, x > 0} is read as “all values x such that x comes from the
natural numbers (denoted by N), and x is greater than zero”—in other words, all pos-
itive natural numbers.

66 CHAPTER 2 Erlang language essentials
 If you’re not already familiar with set notation, take a close look at this example,
and you’ll quickly see how it works. The vertical bar | separates the template part,
which describes how the individual elements are made up, from the generators and
conditions part that specifies what the sources for elements are and what restrictions
you have. In this example, the template is x, you have a generator that says “for all
values x in N,” and a condition that only those x that are greater than zero may be
part of the result. Pretty simple stuff, really, but it’s an efficient way of expressing
these kinds of operations.

2.9.1 List comprehension notation

Erlang is a programming language, and not pure mathematics. You can use the same
ideas in your notation, but you must be more concrete. In particular, the order of ele-
ments becomes more important, as well as what data structures you use. In Erlang, the
first choice for representing a sequence of items is of course a list, so you get a list com-
prehension. The notation must be adapted a bit. For example, if you have an existing
list of integers, both positive and negative, you can easily create a new list containing
only the positive ones (preserving their relative order in the list), like this:

[X || X <- ListOfIntegers, X > 0]

Note that you must use double vertical bars ||, because the single vertical bar is
already used for plain list cells. Apart from that, you write [...] as usual for a list. You
don’t have ∈ on your keyboard, so a left arrow <- is used to denote a generator; any-
thing else to the right of the || that’s not a generator must be a conditional, such as X
> 0. The template part can be any expression and can use any variables that are bound
to the right of the vertical bars (such as X, which is bound by the generator) or that are
bound outside the list comprehension.

 Furthermore, if you have more than one generator in the comprehension, it will
cause it to go through all combinations of elements, as if you had nested loops. This is
rarely useful, but on occasion it can turn out to be what you need.

2.9.2 Mapping, filtering, and pattern matching

A single list comprehension can perform any combination of map and filter opera-
tions, where map means you perform some operation on the elements before you put
them in the resulting list. For example, the following list comprehension selects only
positive even numbers from the source list (rem is the remainder operation) and
squares them:

[math:pow(X,2) || X <- ListOfIntegers, X > 0, X rem 2 == 0]

But the greatest power comes via pattern matching. In a generator, the left side of
the <- arrow doesn’t have to be a variable—it can be any pattern, like in a match
operation (=). This means generators already have a built-in condition: only those ele-
ments that match the pattern are considered; any others are silently skipped. Further-
more, patterns let you extract parts of the elements for use in conditions or in the

67Bit syntax and bitstring comprehensions
template section. For example, assume that you have a list of tuples representing
geometric shapes, as in the area function of section 2.5.4. You can then select, say,
only those rectangles whose area is at least 10 (and no other shapes) and create a
corresponding list of areas, like this:

[{area, H*W} || {rectangle, H, W} <- Shapes, H*W >= 10]

You should learn to use list comprehensions when you can. Apart from being effi-
cient, they’re generally the most compact and readable way of expressing this type
of operation.

2.10 Bit syntax and bitstring comprehensions
We introduced binaries and general bitstrings in section 2.2.2, but we only showed
examples of how to create plain binaries (whose length in bits is divisible by 8—that is,
that can be viewed as a sequence of whole bytes). But in modern Erlang, bitstrings can
be of any length. The so-called bit syntax allows you to form new bitstrings of exactly the
size and layout you want; conversely, it can be used in patterns to match and extract seg-
ments from a bitstring (for example, binary data read from a file or from a socket). In
combination with comprehensions, this notation becomes extremely powerful.

2.10.1 Building a bitstring

A bitstring is written as <<Segment1, ..., SegmentN>>, with zero or more segment
specifiers between the double less-than/greater-than delimiters. The total length of
the bitstring, in bits, is exactly the sum of the lengths of the segments.

 A segment specifier can be on one of the following forms:

Data
Data:Size
Data/TypeSpecifiers
Data:Size/TypeSpecifiers

Data must be an integer, a floating-point number, or another bitstring. You can specify
the size of the segment as an integer number of units, and you can specify the seg-
ment type, which decides what Data is expected to be and how it should be encoded
or decoded. For example, a simple binary like <<1,2,3>> has three segments that all
have plain integers as data and no size or type specifiers. In this case, the type defaults
to be integer, and the default size for integers is 1. The unit for the integer type is 8
bits, so each segment is encoded as an 8-bit unsigned byte. Similarly, <<"abc">> is
shorthand for <<$a,$b,$c>>—that is, a sequence of 8-bit integer character codes (in
Latin-1). If an integer needs more bits than the segment has room for, it’s truncated
to fit, so <<254,255,256,257>> becomes <<254,255,0,1>>.

 The type of a segment depends only on what you’ve specified; it doesn’t depend
on what the Data happens to be from one time to the next. You may think that would
be handy, but it goes against the fail-early philosophy and could land you in some
nasty situations—for example, with bogus binary data written to a file. This means that
you can’t, for instance, concatenate two bitstrings like this:

68 CHAPTER 2 Erlang language essentials
B1 = <<1,2>>,
B2 = <<3,4>>,
<<B1, B2>>

because, by default, it’s assumed that B1 and B2 are integers. But if you say that B1 and
B2 are bitstrings, it works:

<<B1/bits, B2/bits>>

This yields <<1,2,3,4>>, as you want.
 You can control the details of the encoding and decoding of a segment through

the TypeSpecifiers part (after the /). It consists of one or more atoms separated by a
hyphen (-), as in integer-unsigned-big. The order of the atoms isn’t significant.
The current set of specifiers you can use is as follows:

■ integer, float, binary, bytes, bitstring, bits, utf8, utf16, utf32
■ signed, unsigned
■ big, little, native

As a special case, you can include unit:Integer. These specifiers can be combined
in various ways, picking at most one from each group in the previous list. (bits is
an alias for bitstring, and bytes is an alias for binary). For the types integer,
float, and bitstring, the size unit is 1 bit, whereas for binary the unit is 8 bits
(whole bytes).

 There are a lot more details that we don’t have room to go through here, so you’ll
need to check up on the official documentation or read another book about Erlang
programming if you want to start working with binaries. This should be enough to
give you the idea.

2.10.2 Pattern matching with bit syntax

Just as you can both construct and deconstruct tuples with the same syntax, you can
deconstruct the data in a bitstring by using the same bit syntax. This makes parsing
funny file formats and protocol data a much simpler task and is much less error
prone than doing manual bit shifting and masking. To show a classic example, here
is how you can parse the contents of an IP packet header, using a pattern in a func-
tion clause:

UTF encodings in bitstrings
As a recent addition to Erlang, you can specify one of utf8, utf16, and utf32 as
the type of a bitstring segment, as you probably noted in the earlier list. These let
you work with UTF-encoded characters in bitstrings. For example:

<<"Motörhead"/utf8>>

You can’t specify a size for such a segment, because the size is determined by the
input. In this example, the result uses 10 bytes to encode 9 characters.

69Record syntax
ipv4(<<Version:4, IHL:4, ToS:8, TotalLength:16,
 Identification:16, Flags:3, FragOffset:13,
 TimeToLive:8, Protocol:8, Checksum:16,
 SourceAddress:32, DestinationAddress:32,
 OptionsAndPadding:((IHL-5)*32)/bits,
 RemainingData/bytes >>) when Version =:= 4 ->
 ...

Any incoming packet that is large enough to match, and whose Version field is 4, is
decoded into these variables; most are decoded as integers, except for OptionsAnd-
Padding (a bitstring whose length depends on the previously decoded IHL field) and
the RemainingData segment, which contains all the data following the header.
Extracting a binary from another like this doesn’t involve copying the data, so it’s a
cheap operation.

2.10.3 Bitstring comprehensions

The idea of list comprehensions, which exists in many functional programming lan-
guages, has been extended in Erlang to work with the bit syntax. A bitstring comprehen-
sion looks much like a list comprehension but is enclosed in <<...>> rather than in
[...]. For example, if you have a list of small numbers, all between 0 and 7, you can
pack them into a bitstring using only 3 bits per number, like this:

<< <<X:3>> || X <- [1,2,3,4,5,6,7] >>

This returns a bitstring that the shell prints as <<41,203,23:5>>. Note the 23:5 at the
end—it means the total length is 8 + 8 + 5 = 21 bits, which makes sense because you
had 7 elements in the input list.

 How can you decode such a bitstring? With another bitstring comprehension, of
course! The difference is that you need to use a generator written with a <= to pick out
parts of the input (which is now a bitstring), instead of <-, which only picks elements
from lists:

<< <<X:8>> || <<X:3>> <= <<41,203,23:5>> >>

This yields the binary <<1,2,3,4,5,6,7>>, so you’ve successfully recoded a 3-bit-per-
number format into an 8-bit-per-number format. But if you want the result as a list,
not as another bitstring? You can use a list comprehension with a bitstring generator!

[X || <<X:3>> <= <<41,203,23:5>>]

This produces the corresponding list [1,2,3,4,5,6,7]. We invite you to play a little
with the bit syntax in the shell to get the hang of it. You can do many interesting
things with the bit syntax and a little creativity.

2.11 Record syntax
In order to keep down the amount of strange syntax in the previous sections, we’ve
postponed explaining one of the more important parts of Erlang: the record syntax.

 Tuples are the main building blocks in Erlang for most kinds of structured data;
but software-engineering wise, they aren’t as flexible as we’d like. Imagine that you

70 CHAPTER 2 Erlang language essentials
write a whole program (perhaps many modules) around the fact that your representa-
tion of a customer (for example) is a tuple with five elements. If you then find that
you need to add another field, which is pretty likely as these things happen, you’ll be
forced to go through all the code and edit every occurrence of such tuples, both
where they’re created and in any patterns that match on them. Not to mention that
this process is error prone: what if you write a 4-tuple instead of a 5-tuple somewhere,
or forget to add a field to one instance when you update all the others? To remedy this
problem (but without sacrificing the speed and small memory footprint that you get
with tuples), the record syntax was invented.

2.11.1 Record declarations

The record syntax lets you work with records, which are tagged tuples, in a way that
avoids most of the problems with adding or removing fields and remembering in
which order they occur in the tuple. The first thing you need to do is to write a record
declaration, which looks like this:

-record(customer, {name="<anonymous>", address, phone}).

This tells the compiler that you’ll be working with 4-tuples (three fields plus the tag),
where the first element is always the atom customer. The other fields will be in the
same order as in the record declaration, so name is always the second field.

2.11.2 Creating records

To create a new record tuple, you use some variant of the following syntax:

#customer{}

#customer{phone="55512345"}

#customer{name="Sandy Claws", address="Christmas Town", phone="55554321"}

You always need to give the record name after the #, so the compiler can match it
to the record declaration. Within the {...}, you can choose to give values for any
of the fields (or none) and in any order. (The compiler will make sure they’re
ordered as in the declaration.) Those fields that you didn’t give values for will be set
to the default, which is the atom undefined unless you’ve specified a default value
in the declaration.

2.11.3 Record fields and pattern matching

Assume that you bind the variable R to the second of the previous examples. You can
now access the individual fields by using a dot notation:

R#customer.name → "<anonymous>"
R#customer.address → undefined
R#customer.phone → "55512345"

As before, you need to specify the record name in order to tell the compiler, “Treat
the tuple in R as a customer record.” But the most common way of extracting fields

71Record syntax
from a record is to use pattern matching. The following function takes a customer
record as input and checks that the phone number isn’t undefined:

print_contact(#customer{name=Name, address=Addr, phone=Phone})
 when Phone =/= undefined ->
 io:format("Contact: ~s at ~s.~n", [Name, Phone]).

It’s like matching on a tuple, except that you don’t need to care about the exact num-
ber of fields and their order. If you add or reorder fields in the record declaration,
you can recompile the code, and it will work as it did before.

2.11.4 Updating record fields

As we’ve pointed out before, you don’t update parts of existing data structures in
Erlang, at least not in place. What you do is create a new, slightly modified copy of the
old data. For instance, if you want to update a tuple with four elements, you create a
new 4-tuple and copy those elements that should be kept unchanged. That may sound
expensive, but you never copy more than a single word per element—a shallow copy.
And tuple creation is a fast operation: Erlang is optimized for creating (and recycling)
large amounts of small tuples and list cells at high speed—they’re scratchpad data as
much as they’re used to represent more permanent data structures.

 The notation for updating fields is similar to that for creating new records, except
that you need to say where the old record comes from. Suppose you have the second
customer record from the previous section in R. The following creates a copy of R with
the name and address fields updated:

R#customer{name="Jack Skellington", address="Hallowe'en"}

It’s important to keep in mind that R itself isn’t changed in any way by this, and you
can’t reassign R to hold the new value; if you want to put it in a variable, you must use
another name, such as R1. On the other hand, if it turns out that no part of the pro-
gram is using the tuple in R anymore after the creation of R1, then R will be recycled
automatically. (A clever compiler can sometimes see that it’s safe to reuse the existing
tuple in R to create the new R1, if it’s going to become garbage anyway after that.)

2.11.5 Where to put the record declarations

For records that are only used within a single module, you usually write the record
declarations at the top of the module, along with the export declarations and similar
things that belong in the header of the module. But if you need to use the exact same
record declaration in several modules, you have to do something different. Because
you don’t want multiple definitions of the same records spread over several source
files (making it hard to remember to keep them all in sync), you should put those def-
initions that need to be shared in a separate so-called header file, which will then be
read by all the modules that need it. This is handled by the preprocessor, which is the
next topic.

72 CHAPTER 2 Erlang language essentials
2.12 Preprocessing and include files
Erlang has a preprocessor similar to the one used in C and C++, which means it’s a
token-level preprocessor. It works on the sequence of tokens produced by splitting the
source file into separate words and symbols, rather than on the characters of the text.
This makes it easier to reason about but also limits what it can do.

 The preprocessor always runs as part of the compilation process and performs
three important tasks: macro expansion, file inclusion, and conditional compilation. We
look at these in order.

2.12.1 Defining and using macros

You can define a macro with or without parameters using the define directive, as in
the following examples:

-define(PI, 3.14).
-define(pair(X,Y), {X, Y}).

Macro names can be written as Erlang variables or atoms, but it’s traditional to use all-
uppercase for constants and mostly lowercase for other macros. To expand a macro at
some point in the source code (following its definition), you must prefix it with a
question mark:

circumference(Radius) -> Radius * 2 * ?PI.

pair_of_pairs(A, B, C, D) -> ?pair(?pair(A, B), ?pair(C, D)).

This code is expanded to the following, just before proper compilation starts:

circumference(Radius) -> Radius * 2 * 3.14.

pair_of_pairs(A, B, C, D) -> { {A, B}, {C, D} }.

Macros aren’t a substitute for using proper functions but are an escape route when
normal functions won’t do for the kind of abstraction you want to perform: when you
need to be absolutely sure the expansion is performed at compile time, or the syntax
doesn’t allow you to use a function call.

UNDEFINING A MACRO

The undef directive can be used to remove a macro definition (if there is one). For
example, after the following lines

-define(foo, false).
-undef(foo).
-define(foo, true).

the foo macro is defined to true.

USEFUL PREDEFINED MACROS

The preprocessor predefines certain macros for your convenience, and the most
useful of them is probably the MODULE macro. It always expands to the name of the

73Preprocessing and include files
module that is being compiled, in the form of an atom. You can also use the FILE
and LINE macros to get the current position in the source file. For example:

current_pos() -> [{module, ?MODULE}, {file, ?FILE}, {line, ?LINE}].

Macro definitions, like record declarations (as we mentioned in section 2.11), should
be placed in a header file when the same definition needs to be shared between multi-
ple source files. This brings us to the next feature.

2.12.2 Include files

An Erlang source code file can include another file by using an include directive, which
has the following form:

-include("filename.hrl").

The text of the included file is read by the preprocessor and is inserted at the point of
the include directive. Such files generally contain only declarations, not functions;
and because they’re typically included at the top of the source file for the module,
they’re known as header files. By convention, an Erlang header file has the file name
extension .hrl.

 To locate a file specified by a directive such as -include("some_file.hrl")., the
Erlang compiler searches in the current directory for the file called some_file.hrl,
and also in any other directories that are listed in the include path. You can add directo-
ries to the include path by using the –I flag to erlc, or by an option {i,Directory} to
the c(...) shell function, as in

1> c("src/my_module", [{i, "../include/"}]).

THE INCLUDE_LIB DIRECTIVE

If your code depends on a header file that is part of some other Erlang application or
library, you have to know where that application is installed so you can add its header
file directory to the include path. In addition, the install path may contain a version
number, so if you upgraded that application, you might need to update the include
path as well. Erlang has a special include directive for avoiding most of this trouble:
include_lib. For example:

-include_lib("kernel/include/file.hrl").

This looks for the file relative to the locations of the installed applications that the
Erlang system knows about (in particular, all the standard libraries that came with
the Erlang distribution). For example, the path to the kernel application could be
something like C:\Program Files\erl5.6.5\lib\kernel-2.12.5. The include_lib direc-
tive matches this path (stripping the version number) to the leading kernel/ part of
the file name and looks for an include subdirectory containing file.hrl. Even if the
Erlang installation is upgraded, your source code doesn’t need to be modified.

74 CHAPTER 2 Erlang language essentials
2.12.3 Conditional compilation

Conditional compilation means that certain parts of the program may be skipped by
the compiler, depending on some condition. This is often used to create different ver-
sions of the program, such as a special version for debugging. The following prepro-
cessor directives control which parts of the code may be skipped, and when:

-ifdef(MacroName).

-ifndef(MacroName).

-else.

-endif.

As the names indicate, ifdef and ifndef test whether a macro is defined or isn’t
defined. For each ifdef or ifndef, there must be a corresponding endif to end the
conditional section. Optionally, a conditional section may be divided in two halves by
an else. For example, the following code exports the function foo/1 only if the DEBUG
macro is defined (to any value):

-ifdef(DEBUG).
-export([foo/1]).
-endif.

To control this from the command line or from your build system, you can define a
macro by giving an option {d,MacroName,Value} to the shell c function, or you can
pass the option –Dname=value to the erlc command. Because the macro value doesn’t
matter here, true is usually used.

 Because Erlang’s parser works on one period-terminated declaration (called a
form) at a time, you can’t use conditional compilation in the middle of a function definition,
because the period after the ifdef would be read as the end of the function. Instead,
you can conditionally define a macro, and use the macro within the function, like this:

-ifdef(DEBUG).
-define(show(X), io:format("The value of X is: ~w.~n", [X])).
-else.
-define(show(X), ok).
-endif.

foo(A) ->
 ?show(A),
 ...

If this is compiled with DEBUG defined, the foo function prints the value of A on the con-
sole before it continues with whatever the function is supposed to do. If not, the first
thing in the function will be the atom ok, which is a constant; and because it isn’t used
for anything, the compiler will optimize it away as if it hadn’t been there.

2.13 Processes
In chapter 1, we introduced processes, messages, and the concept of process links
and signals; and we presented process identifiers (pids) in section 2.2.7. In this

75Processes
section, we go through the most important things you should know about working
with Erlang processes.

2.13.1 Operating on processes

In section 1.1.4, we showed how to spawn a process, send a message from one process
to another with !, and extract a message from the mailbox using receive. At that
point, we didn’t explain further about modules, function names, and function arities,
but by now that stuff should be pretty clear to you.

SPAWNING AND LINKING

There are two types of spawn functions: the ones that take a (nullary) fun as the start-
ing point for the new process, and the ones that take a module name, a function
name, and a list of arguments:

Pid = spawn(fun() -> do_something() end)
Pid = spawn(Module, Function, ListOfArgs)

The latter require that the named function is exported from its module, and initial
data can only be passed through the argument list. On the other hand, they always
look up the latest version of the module and are generally better for starting a process
on a remote machine that may not have the exact same version of the module as you
do on your local machine. For example:

Pid = spawn(Node, Module, Function, ListOfArgs)

There is also a version named spawn_opt(...) that takes a list of additional options,
as in

Pid = spawn_opt(fun() -> do_something() end, [monitor])

One of the options you can give to spawn_opt(...) is link. There is also a simple
function alias for this:

Pid = spawn_link(...)

Using spawn_link(...) ensures that the link is created along with the new process as
an atomic operation, preventing race conditions that can occur if you spawn the pro-
cess first and try to link to it afterward using link(Pid).

 All these spawn functions return the process identifier of the new process, so that
the parent process can communicate with it. But the new process doesn’t know its par-
ent process unless this information is passed to it somehow.

 When a process wants to find its own pid, it can call the built-in function self().
For example, the following code spawns a child process that knows its parent:

Parent = self(),
Pid = spawn(fun() -> myproc:init(Parent) end)

This assumes that myproc:init/1 is the entry point for the child process that you want
to start, and that it takes a parameter that is the parent process ID. Note in particular
that the call to self() must be made outside of fun...end, because otherwise it will

76 CHAPTER 2 Erlang language essentials
be executed by the new child process (which is definitely not its own parent). This is
why you capture the parent pid first and pass it in to the child process via a variable.
(Recall what we said about closures in section 2.7.2; this spawn function gets a closure
and runs it in a new process.)

MONITORING A PROCESS

There is also an alternative to links, called monitors. These are a kind of unidirectional
link and allow a process to monitor another without affecting it.

Ref = monitor(process, Pid)

If the monitored process identified by Pid dies, a message containing the unique ref-
erence Ref is sent to the process that set up the monitor.

THROWING AN EXCEPTION TO END THE PROCESS

The exit class of exception is meant for terminating the running process. This is
thrown using the BIF exit/1:

exit(Reason)

Unless this is caught by the process, it will terminate and pass on Reason as part of its
exit signal to any processes that are linked to it.

SENDING AN EXPLICIT EXIT SIGNAL TO A PROCESS

In addition to the signals sent automatically when processes die unexpectedly, it’s also
possible to send an exit signal explicitly from one process to another. The processes
don’t have to be linked for this:

exit(Pid, Reason)

Note that this uses exit/2, not exit/1—they’re different functions (unfortunately,
both called exit). This doesn’t terminate the sender, but rather the receiver. If Rea-
son is the atom kill, the signal can’t be trapped by the receiver.

SETTING THE TRAP_EXIT FLAG

By default, a process dies if it gets an exit signal from another linked process. To pre-
vent this and trap exit signals, the process can set its trap_exit flag:

process_flag(trap_exit, true)

Incoming exit signals will then be converted to harmless messages. The only excep-
tion is untrappable signals (kill).

2.13.2 Receiving messages, selective receive

The receiving process can extract messages from the mailbox queue using a receive
expression. Although incoming messages are queued up strictly in order of arrival,
the receiver can decide which message to extract and leave the others in the mailbox
for later. This ability to selectively ignore messages that are currently irrelevant (for
example, may have arrived early) is a key feature of Erlang’s process communication.
The general form for receive is

77Processes
receive
 Pattern1 when Guard1 -> Body1;
 ...
 PatternN when GuardN -> BodyN
after Time ->
 TimeoutBody
end

The after... section is optional; if omitted, the receive never times out. Otherwise,
Time must be an integer number of milliseconds or the atom infinity. If Time is 0,
the receive will never block; in all other cases, if no matching message is found in the
process’s mailbox, the receive will wait for such a message to arrive or the timeout to
occur, whichever happens first. The process will be suspended while it’s waiting and
will only wake up in order to inspect new messages.

 Each time a receive is entered, it starts by looking at the oldest message (at the
head of the queue), tries to match it against the clauses as in a case expression, and, if
no clause matches it, moves on to the next message. If the pattern of a clause matches
the current message, and the guard succeeds (if there is one), the message is removed
from the mailbox, and the corresponding clause body is evaluated. If no message is
found and a timeout occurs, the timeout body is evaluated instead, and the mailbox
remains unchanged.

2.13.3 Registered processes

On each Erlang system, there is a local process registry—a simple name service,
where processes can be registered. The same name can be used by only one process
at a time, which means this can only be used for singleton processes: typically, system-
like services, of which there is, at most, one at a time on each runtime system. If you
start the Erlang shell and call the built-in function registered(), you see something
like the following:

1> registered().
[rex,kernel_sup,global_name_server,standard_error_sup,
 inet_db,file_server_2,init,code_server,error_logger,
 user_drv,application_controller,standard_error,
 kernel_safe_sup,global_group,erl_prim_loader,user]
2>

A bunch, as you can see. An Erlang system is much like an operating system in itself,
with a set of important system services running. (One is even called init...) You can
find the pid currently registered under a name using the built-in whereis function:

2> whereis(user).
<0.24.0>
3>

You can even send messages directly to a process using only the registered name:

1> init ! {stop, stop}.

78 CHAPTER 2 Erlang language essentials
(Did you try it? It’s a dirty trick, relying on knowledge about the format of messages
between system processes. There are no guarantees that it won’t change some day.)

 If you start your own processes, you can register them with the register function:

1> Pid = spawn(timer, sleep, [60000]).
<0.34.0>
2> register(fred, Pid).
true
3> whereis(fred).
<0.34.0>
4> whereis(fred).
undefined
5>

(Note that in this example, the process you start will be finished after 60 seconds, and
the name will then automatically go back to being undefined again.)

 Furthermore, to talk to a registered process that you think should exist on another
Erlang node, you can write

6> {some_node_name, some_registered_name} ! Message.

One major point with registered processes is this: Suppose a registered process dies,
and the service it performed is restarted. The new process will then have a different
process identifier. Instead of individually telling every process in the system that the
service rex (for example) has a new pid, you can update the process registry. (But
there is a period during which the name doesn’t point anywhere, until the service has
been restarted and reregistered).

2.13.4 Delivery of messages and signals

The messages sent between Erlang processes with the ! operator are a special case of a
more general system of signals. The exit signals that are sent from a dying process to its
linked neighbors are the other main kind of signal; but there are a few others that
aren’t directly visible to the programmer, such as the link requests that are sent when
you try to link two processes. (Imagine that they’re on different machines, and you’ll
see why they need to be signals. Because the link is bidirectional, both sides must
know about the link.)

 For all signals, there are a couple of basic delivery guarantees:

■ If a process P1 sends out two signals S1 and S2, in that order, to the same desti-
nation process P2 (regardless of what else it does between S1 and S2, and how
far apart in time the signals are sent), then they will arrive in the same relative
order at P2 (if both arrive). This means, among other things, that an exit signal
can never overtake the last message sent before the process dies, and that a mes-
sage can never overtake a link request. This is fundamental for process commu-
nication in Erlang.

■ A best effort attempt is made to deliver all signals. Within the same Erlang
runtime system, there is never a danger of losing messages in transit between
two processes. But between two Erlang systems connected over a network, it

79ETS tables
may happen that a message is dropped if the network connection is lost
(somewhat depending on the transport protocol). If the connection is then
restored, it’s possible that S2 in the previous example will eventually arrive,
but S1 will be lost.

For the most part, this means you don’t have to think much about message ordering
and delivery—things tend to work much as you expect.

2.13.5 The process dictionary

Each process has, as part of its state, its own private process dictionary, a simple hash
table where you can store Erlang terms using any values as keys. The built-in functions
put(Key, Value) and get(Key) are used to store and retrieve terms. We won’t say
much about the process dictionary except give you some reasons why you should
avoid using it, no matter how tempting it may seem:

■ The simplest point is that it makes programs harder to reason about. You can no
longer look at the code and get the whole story. Instead, it suddenly depends on
which process is running the code and what its current state is.

■ A more important point is that it makes it hard or impossible to do a handover
from one process to the next, where you do half of the work in one process and
the rest in another. The new process won’t have the correct data in its own dic-
tionary unless you make sure to pack it up and ship it from the first process to
the second.

■ If you write some kind of library, and you use the process dictionary to store cer-
tain information between calls from the client (much like a web server uses
cookies), you force the client to use a single process for the duration of the ses-
sion. If the client tries to call your API from a second process, it won’t have the
necessary context.

Using the process dictionary can in some cases be justified, but in general, there is a
better solution to the problem of storing data (that even lets you share the informa-
tion between processes if you like). It goes by the strange name of ETS tables.

2.14 ETS tables
ETS stands for Erlang Term Storage. An ETS table, then, is a table containing Erlang
terms (that is, any Erlang data) that can also be shared between processes. But that
sounds like it goes against the fundamental ideas of referential transparency and
avoiding sharing. Are we suddenly smuggling in destructive updates through the back
door? Two words: process semantics.

2.14.1 Why ETS tables work like they do

The main design philosophy behind the ETS tables in Erlang is that such tables
should look and feel almost exactly as if they were separate processes. They could
have been implemented as processes and still have the same interface. In practice,

80 CHAPTER 2 Erlang language essentials
though, they’re implemented in C as part of the Erlang runtime system, so they’re
lightweight and fast, and the interface functions are BIFs. This extra focus on effi-
ciency is warranted because so many other things in Erlang are built on top of
these ETS tables.

 You should still avoid sharing data (when you can), and you particularly want to
avoid the situation where things unexpectedly change behind someone’s back. On the
other hand, if you can implement a form of storage based on the normal semantics of
processes and message passing, you know that nothing fundamentally fishy is going
on, so why shouldn’t you use it? In particular when it’s something you’ll always need in
one form or another: efficient hash tables for storing data.

 An ETS table basically works like a simplistic database server: it’s isolated from
everything else and holds information that is used by many. The difference compared
to arrays in Java, C, or similar is that the clients are aware that they’re talking to a sep-
arate entity with a life of its own and that what they read right now may not be what
they read from the same table index later. But at the same time, they can be assured
that the data they have read isn’t subject to mysterious changes. If you look up an entry
in the table, you get the currently stored tuple. Even if someone immediately after-
ward updates that position in the table with a new tuple, the data you got won’t be
affected. By comparison, if you look up a stored object in a Java array, it may be possi-
ble for another thread to look up the same object moments later and modify it in
some way that will affect you. In Erlang, we try to keep it obvious when we’re referring
to data that is subject to change over time and when we’re referring to plain immuta-
ble data.

2.14.2 Basics of using ETS tables

ETS tables are created and manipulated via the standard library ets module. To cre-
ate a new table, use the function ets:new(Name, Options). The name must be given
as an atom, and Options must be a list. Unless the named_table option is specified,
the name isn’t used for anything in particular (and you can reuse the same name in
as many tables as you like); but it can be a useful indicator when you’re debugging a
system and find a mysterious table lurking somewhere, so it’s better to, for instance,
use the name of the current module, rather than table or foo, which won’t be of
much help.

 The function ets:new/2 returns a table identifier that you can use to perform
operations on the table. For example, the following creates a table and stores a couple
of tuples:

T = ets:new(mytable,[]),
ets:insert(T, {17, hello}),
ets:insert(T, {42, goodbye})

Another similarity with databases is that an ETS table only stores rows—that is, tuples.
If you want to store any other Erlang data, you need to wrap it in a tuple first. This is
because one of the tuple fields is always used as the index in the table, and by default

81Recursion: it’s how you loop
it’s the first field. (This can be changed with an option when you create the table.)
Thus, you can look up rows in your table by their first elements, like this:

ets:lookup(T, 17)

This returns [{17, hello}]. But hang on, why is it in a list? Well, a table doesn’t need
to be a set of rows (where every key is unique), which is the default; it can also be a bag
(where several rows can have the same key, but there can’t be two completely identical
rows) or even a duplicate bag, where there can be several identical rows as well. In those
cases, a lookup may return more than one row as the result. In any case, you always get
an empty list if no matching row is found.

 There is a lot to learn about what you can do with ETS tables. You can specify many
parameters when you create them, and many powerful interface functions are avail-
able for searching, traversing, and more. You’ll meet them again later, in chapter 6.

2.15 Recursion: it’s how you loop
You may have noted that apart from list comprehensions, there has been a notable
lack of iterative constructs in this presentation of the language. This is because Erlang
relies on recursive function calls for such things. Although it’s not difficult, only dif-
ferent, there are some details and techniques that you should know about, both to
make your path easier if you aren’t used to this way of thinking and to help you pro-
duce solid code that avoids the common pitfalls.

 To get started with recursion, let’s take something simple, like adding up the
numbers from 0 to N. This is easily expressed as follows: to sum the numbers from 0
to N, you take the sum from 0 to N-1, add the number N, and you’re done. Unless N
is already 0, in which case the sum is 0. Or, as an Erlang function (add it to
my_module.erl):

sum(0) -> 0;
sum(N) -> sum(N-1) + N.

Couldn’t be simpler, right? Never had to do recursion before? Don’t worry; it’s a natu-
ral concept for a human. (Reasoning about nested for loops with break and continue
and whatnot—now that often requires superhuman attention to detail.) But to under-
stand how you can write all kinds of iterative algorithms using recursion, we need to
go through some basics. This is important stuff, so please bear with us.

2.15.1 From iteration to recursion

All problems that can be expressed recursively can also be written as loops (if you do
your own bookkeeping). Which approach you choose is a question of how easy your
programming language makes it to write your code depending on the choice, and
how efficient the result is. Some languages, like old Basic dialects, Fortran-77, or
machine language assembler, don’t have any support for recursion as a programming
technique. Many, like Pascal, C/C++, Java, and so on, allow you to write recursive func-
tions; but because of limitations and inefficiencies in the implementation, recursion

82 CHAPTER 2 Erlang language essentials
isn’t as useful as it could be. This situation is probably what most programmers are
used to. But Erlang is different: it only uses recursion to create loops, and the imple-
mentation is efficient.

A PLAIN OLD LOOP

Sometimes, you start out with a loop-style piece of code (maybe in your head), and
you want to implement it in Erlang. Perhaps you have something like the follow-
ing typical code in C or Java for computing the sum from 0 to n, where n is the
input parameter:

int sum(int n) {

 int total = 0;
 while (n != 0) {
 total = total + n;
 n = n – 1;
 }
 return total;

}

This code is a procedural way of expressing the algorithm: mentally, you can go
through the program step by step and see how it keeps changing state until it’s finished.

 But let’s think about how you would describe that algorithm to someone else
using plain text, as concisely as you can. You’d probably come up with something
like this:

1 You have the number N already. Let Total be zero, initially.
2 If N isn’t zero yet:

a Add N to Total.
b Decrement N by one.
c Repeat step 2.

3 You’re done; the result is in Total.

LOOPING IN A FUNCTIONAL WAY

Now, consider this alternative way of stating step 2:

2 If N isn’t zero yet, repeat this same step with
a Total+N as the new value for Total
b N-1 as the new value for N

Seen this way, point 2 is a recursive function with two parameter variables, N and Total.
It doesn’t use any other information. On each recursive call, you pass the values for
the next iteration, and you can forget the previous values. This way of saying “and
then you do the same thing again, but with different values” is a natural way for
humans to reason about iteration. (Kids don’t usually have a problem with it; it’s us
grown-ups, perhaps damaged by years of procedural coding, who can find it mind-
bending.) Let’s see how this step looks if you write it in Erlang, much to the letter:

step_two(N, Total) when N =/= 0 -> step_two(N-1, Total+N).

83Recursion: it’s how you loop
Pretty readable, don’t you think? (Add this function to my_module.erl.) Note that you
never say N = N-1 or similar—that doesn’t work in Erlang: you can’t demand that a
number should be the same as itself minus one. Instead, you say “call step_two with
N-1 for the new N and Total+N for the new Total.” But you’re missing something,
right? What do you do when you’re done? Let’s add another clause to this function
(and give it a better name):

do_sum(N, Total) when N =/= 0 -> do_sum(N-1, Total+N);
do_sum(0, Total) -> Total.

This incorporates step 3 from the verbal description into the code. When the first
clause no longer matches (when the guard test turns false), the second clause is used
instead, and all it has to do is return the result that’s found in Total.

INITIALIZING THE LOOP

Now you have to do something about step 1: giving an initial value of 0 to Total. This
obviously means calling do_sum(N, 0) from somewhere. But where? Well, you have a
step zero, which is the problem description: “to compute the sum of the numbers
from 0 to N.” That would be do_sum(N), right? To compute do_sum(N), you have to
compute do_sum(N, 0), or

do_sum(N) -> do_sum(N, 0).

Note what you’re doing here: you’re creating one function called do_sum/1 (note the
period that ends the definition) that takes a single argument. It calls your other func-
tion do_sum/2, which takes two arguments. Recall that to Erlang, these are completely
different functions. In a case like this, the one with fewer arguments acts as a front end,
whereas the other shouldn’t be directly accessed by users; hence, you should only put
do_sum/1 in the export list of the module. (We named these functions do_sum so they
don’t clash with the sum function from the start of this chapter. You should try typing in
both and check that sum/1 and do_sum/1 give the same results for the same values of N.)

FINAL TOUCHES

Let’s summarize this two-part implementation and improve it a little:

do_sum(N) -> do_sum(N, 0).

do_sum(0, Total) -> Total;
do_sum(N, Total) -> do_sum(N-1, Total+N).

Can you see what happens here? Rather that following the literal translation from the
text that says “N is not zero” in the recursive case, you change the order of the clauses
so that the base case (the clause that doesn’t do any recursion) is tested first each time
around. For this particular algorithm, that makes the code even simpler: in the first
clause, try to match N against 0. If it doesn’t match, then N isn’t zero, so you can use
the second case without any guard test.

 That was a long section, but we still have some postmortem to do, to help you
understand a couple of important points and give names to the techniques you just
used. We start by discussing the two kinds of recursion used in sum and do_sum.

84 CHAPTER 2 Erlang language essentials
2.15.2 Understanding tail recursion

Recursive calls can be divided into two categories: tail recursive and non-tail recursive
(or body recursive as they’re sometimes called). The function sum at the start of the
chapter is an example of a non-tail recursive function (it contained a non-tail recur-
sive call). In many other programming languages, this is the only kind of recursion
you ever think about, because in other cases you typically use some kind of loop con-
struct instead.

 But the function do_sum/2, which you got from reasoning about loops, is a tail
recursive function. All its recursive calls are so-called tail calls. The thing about tail calls
is that they can easily be spotted; in particular, the compiler can always tell by looking
at the code whether a call is a tail call or not, so it can treat them specially.

 What is this difference? It’s that a tail call is one where there is nothing left for the
function to do when that call is done (except return). Compare the bodies of these
two function clauses of sum and do_sum, respectively:

sum(N) -> sum(N-1) + N.

do_sum(N, Total) -> do_sum(N-1, Total+N).

In sum, after the call to sum(N-1) is done, there is still some work left to do before it
can return: namely, adding N. On the other hand, in do_sum, when the call to
do_sum(N-1, Total+N) is done, no more work is needed—the value of that recursive
call is the value that should be returned. Whenever that is the case, the call is a tail call, or
“last call.” It doesn’t matter if the call is recursive (back to the same function again) or
not—that’s a special case, but it’s the most important one. Can you spot the last call in
the body of sum? (That’s right, it’s the call to +.)

YOU CAN RELY ON TAIL CALL OPTIMIZATION

You’re probably aware that behind the scenes, each process uses a stack to keep track
of what it needs to go back and do later while it’s running the program (such as
“remember to go back to this spot and add N afterward”). The stack is a last-in-first-out
data structure, like a heap of notes stacked on top of each other; and of course, if you
keep adding more things to remember, you’ll run out of memory. That’s not a good
thing if you want your server to run forever, so how can Erlang use only recursive calls
for loops? Doesn’t that add more stuff to the stack on each call? The answer is no,
because Erlang guarantees tail call optimization.

 Tail call optimization means that when the compiler sees that a call is a tail call
(the last thing that needs to be done before returning), it can generate code to throw
away the information about the current call from the stack before the tail call is per-
formed. Basically, the current call has no more real work to do, so it says to the func-
tion that it’s about to tail call: “Hey! When you’re finished, hand over your result
directly to my parent. I’m going to retire now.” Hence, tail calls don’t make the stack
grow. (As a special case, if the tail call is a recursive call back to the same function, it
can reuse much of the info on top of the stack rather than throwing away the note to
re-create it.) Essentially, a tail call becomes “clean up if needed, and then jump.”

85Recursion: it’s how you loop
Because of this, tail recursive functions can run forever without using up the stack,
and they can be as efficient as a while loop.

2.15.3 Accumulator parameters

If you compare the behaviour of sum and do_sum earlier, for the same number N, sum
will do half of the work counting down to zero and making notes on the stack about
what numbers to add later, and the other half going back through the notes adding
up the numbers until the stack is empty. do_sum, on the other hand, uses a single note
on the stack, but keeps replacing it with newer information until it sees that N is zero;
then it can throw away that note as well and return the value Total.

 In this example, Total is an example of an accumulator parameter. Its purpose is to
accumulate information in a variable (as opposed to keeping information on the stack
and returning to it later). When you write a tail-recursive version of a function, you
usually need at least one such extra parameter, and sometimes more. They must be
initialized at the start of the loop, so you need one function as a front end and one as
the main loop. At the end, they’re either part of the final return value or are thrown
away if they only hold temporary information during the loop.

2.15.4 Some words on efficiency

A tail recursive solution is often more efficient than the corresponding non-tail recur-
sive solution, but not always; it depends a lot on what the algorithm does. Whereas
the non-tail recursive function can be sloppy and leave it to the system to handle the
stack and remember everything necessary to come back and finish up, the tail recur-
sive version needs to be pedantic and keep everything it needs to complete the job in
its accumulator variables, often in the form of data structures like lists. If non-tail
recursive functions are drunkards who drop papers behind themselves so they can
find their way back home, tail recursive functions are travelers who push everything
they own in front of them on a cart. If everything you need for the final result is a
number, as in the sum/do_sum example, the traveler wins big, because the load is light
and she can move quickly. But if the result requires tracking essentially the same
information that the drunkard gets for free, then the traveler has to do complicated
data management and may turn out to be a bit slower.

 In general, some problems are more straightforward to solve using a non-tail
recursive implementation, whereas some problems are more obvious to solve in a tail-
recursive fashion. It can be a nice intellectual exercise to try both variants, but for pro-
duction code our advice is that if you have a choice between writing a tail recursive or
a non-tail recursive implementation of a function, pick the approach that will be more
readable and maintainable and that you feel sure that you can implement correctly.
When that is working, leave it and go do something else. Don’t spend time on prema-
ture optimization, in particular at the cost of readability.

86 CHAPTER 2 Erlang language essentials
 Of course, in many cases, the choice is obvious: a function that must loop forever
has to be tail recursive. We say that it runs in constant space: that is, it doesn’t use more
memory as time passes, even if it never returns.

2.15.5 Tips for writing recursive functions

When you’re new to programming with recursion, it can often feel as though your
mind goes blank when you try to see how to solve a problem—like you don’t know
where to start. A couple of methods can help you get going.

 To demonstrate, let’s use a concrete problem that you’ll often need to solve in one
form or another: to go through the elements of a data structure. We look at lists here,
but the same thinking applies to all recursive data structures, such as trees of tuples.
Your task is to reverse a list, or rather, to create a new, reversed version of a given list
(which can be of any length). For this, you’ll obviously have to visit all the elements of
the original list, because they need to be in the result.

LOOK AT EXAMPLES

The first thing you can do, if you’re unsure about where to start, is to write down a
couple of simple examples of inputs and the desired results. For reversed lists, you
might have these examples:

[] → []
[x] → [x]
[x,y] → [y,x]
[x,y,z] → [z,y,x]

Trivial, indeed, but having something written down is often better for seeing recurring
patterns than mulling it over in your head, and it makes the problem more concrete.
It may also make you remember some special cases. If you’re into test-driven develop-
ment, you can write the examples as unit tests right away.

BASE CASES

The next thing you can do is write down the base cases and what should happen in
those. (The base cases are those cases that won’t require any recursive calls. Usually
there is only one such case, but sometimes there are more.) For reversing lists, you
can consider the first two of the previous as base cases. Let’s write a couple of clauses
to get started with your new function (in my_module), rev/1:

rev([]) -> [];
rev([X]) -> [X].

This is far from complete, but at least you can try it right away for simple cases like
rev([]), rev([17]), rev(["hello"]), and rev([foo]). That is, it shouldn’t matter
what type of elements you have in the list; it’s only the order that matters.

 After this step, it gets more difficult: you must get the recursive cases right.

87Recursion: it’s how you loop
THE SHAPE OF THE DATA

You now have to look at the remaining cases and how they’re constructed. If you
have a list that isn’t one of the earlier base cases, it must have at least a couple of
elements—that is, it has the shape [A, B, ...]. Recall that a list is made up of list
cells: [...|...] (look back at section 2.2.5 for reference if you need to). If you
write out the individual cells, your list here has the following form:

[A | [B | ...]]

In other words, it has a cell for each element. Suppose you write this down in Erlang
as the first clause of your rev function (do this!):

rev([A | [B | TheRest]]) -> not_yet_implemented;

Recall that the function head is a pattern that will be matched against the actual
arguments in order to decompose them (see section 2.5.4). You may get some
warnings about unused variables A, B, and TheRest, and the body of the clause
doesn’t do anything useful except return an atom saying “this isn’t implemented
yet”; but at least you can check that your rev function now accepts lists with two or
more elements.

 Next, you need to figure out what to do in this case. It’s going to be something with
a recursive call to rev, you know that much.

IMAGINE YOU HAVE A WORKING FUNCTION ALREADY

If you can’t see a solution from the examples and the structure of the data (this gets
much easier after a little practice), or you can almost see it but can’t get the details
right, then a useful trick is to say to yourself, “I have a working version of this function
already, somewhere, and I’m writing a new version that does the same thing (but bet-
ter).” While you’re working on your new function, you’re allowed to use the old one
for experimenting.

 Suppose you try to think like this: you have a function old_rev/1 that you can use.
Great! To replace not_yet_implemented with something useful, what could you do?
You have the variables A, B, and TheRest, and you want to end up with the same list only
backward. If you could reverse TheRest (using old_rev) and then put B and A at the
end (recall that ++ appends two lists), you should get the correct result, right? Like this:

rev([A | [B | TheRest]]) -> old_rev(TheRest) ++ [B, A];

That was easy enough. Now, it looks like your function should be computing the
right result for all lists, regardless of length. But if it’s fully working, that means
it’s as good as old_rev, so let’s use your own rev instead! The entire function
then becomes

rev([A | [B | TheRest]]) -> rev(TheRest) ++ [B, A];
rev([]) -> [];
rev([X]) -> [X].

It works on its own, as you can see if you call my_module:rev([1,2,3,4]). Nice! Next,
let’s think about how you can know that it will work correctly on all lists.

88 CHAPTER 2 Erlang language essentials
PROVING TERMINATION

It may be easy to see at a glance that a function must sooner or later terminate—
that is, that it won’t loop forever, regardless of input. But for a more complicated
function, it can be harder to see that it will always eventually reach a point where it
will return a result.

 The main line of reasoning that you can follow to convince yourself that your func-
tion will terminate is that of monotonically decreasing arguments. This means that, assum-
ing that your base cases are the smallest possible inputs that your function will accept
and the recursive cases handle all inputs that are larger than that, then, if each recur-
sive case always passes on a smaller argument to the recursive call than what it got as
input, you know that the arguments must therefore eventually end up as small as the
base cases, so the function must terminate. The thing that should make you suspicious
and think twice is if a recursive call could pass on arguments that were as large as the
inputs, or larger. (If a function is recursive over several arguments, which happens,
then in each step, at least one of these should be getting smaller and none of them
should be getting larger.) Of course, arguments that aren’t part of the loop condition
can be disregarded, such as accumulator parameters.

 In the rev example, no lists can be smaller than those in the base cases. And if
we look at the recursive case, you see that when you call rev(TheRest) recursively,
TheRest will have fewer elements than the list you got as input, which started with A
and B. Hence, you’re working on successively smaller lists, so you know you can’t
loop forever.

 When you’re recursing over numbers, as in the sum example from the start of this
chapter, it can be easy to miss the fact that there is no smallest possible integer. If you
look back at the definition of sum, you see that the recursive case is always passing on a
smaller number than its input, so it must eventually become zero or less. But if it was
already smaller than zero to begin with—for example, if you called sum(-1)—it will
keep calling itself with -2, -3, -4, and so on, until you run out of memory trying to rep-
resent a huge negative number. To prevent this from happening, you can make sure
no clause matches if the input is negative, by adding a guard when N > 0 to the recur-
sive case.

 You may also need to reinterpret what small and large mean in the context of your
function. For instance, if you recurse over a number N starting at 1 and ending at 100,
you need to think of 100 as the smallest case and of N+1 as smaller than N. The impor-
tant thing is that on each recursive call, you keep moving toward the base cases.

MINIMIZE THE BASE CASES

Although it doesn’t do any harm for the functionality to have unnecessarily many base
cases, it can be confusing for the next person working on the code. If you have more
than one base case, try to see if some of them can be easily eliminated. You started out
with two: [] and [X], because it seemed easiest. But if you look at what [X] means in
terms of list cells, you see that it can be written as

[X | []]

89Recursion: it’s how you loop
And because rev already can handle the empty list, you see that you could handle
rev([X]) by doing rev([]) ++ [X], even if it looks a little redundant. But that
means you don’t need two separate cases for lists of one element and lists of two or
more elements. You can join those two rules into a single recursive case, to give a
cleaner solution:

rev([X | TheRest]) -> rev(TheRest) ++ [X];
rev([]) -> [].

(Note that the order of these clauses doesn’t matter: a list is either empty or it
isn’t, so only one clause can match. But it’s useless to check for empty lists first,
because if you recurse over a list of 100 elements, it will be nonempty 100 times
and empty once.)

RECOGNIZING QUADRATIC BEHAVIOUR

So, you have a working function that reverses a list. All fine? Not quite. If the input is a
long list, this implementation will take much too long. Why? Because you’ve run into
the dreaded quadratic time behaviour. It’s quadratic in the sense that if it takes T units
of time (for whatever unit you like to measure it in) to run the function on some list,
then it will take 4T units of time to run it on a list that’s twice as long, 9T units for a list
that’s three times as long, and so on. You may not notice it for shorter lists, but it can
quickly get out of hand. Say you have a function that gets a list of all the files in a direc-
tory and does something with that list. It’s working fine, but you’ve never tried it on
directories with more than 100 files. Doing so took 1/10th of a second, which didn’t
seem like a problem. But if the algorithm is quadratic in time, and you one day use it
on a directory containing 10,000 files (100 times larger than before), that will take 100
x 100 = 10,000 times as long time (over 15 minutes), rather than the 10 seconds it
would have taken if the algorithm had been proportional, or linear, in time. Your cus-
tomers won’t be happy.

 Why is your implementation of rev quadratic in time? Because for each recursive
call (once for every element in the list), you also use the ++ operator, which in itself
takes time in direct proportion to the length of the list on its left side (if you recall
from section 2.2.5). Let’s say ++ takes time T if the left list has length 1. In your rev,
the left side of ++ is the list returned by the recursive call, which has the same length as
the input. This means that if you run rev on a list of length 100, the first call will take
time 100T, the second 99T, the third 98T, and so on, until you’re down to 1. (Each call
will also take a little time to pick out X and TheRest and perform the recursive call, but
that’s so small in comparison to 100T that you can ignore it here.)

 What does 100T + 99T + 98T + ... + 2T + 1T amount to? It’s like the area of a right
triangle whose legs have length 100: the area is 100 x 100 / 2, or half of a square of
side 100. In general, then, the time for rev on a list of length N is proportional to N x
N / 2. Because we’re mostly interested in how it grows when N gets larger, we say that
it’s quadratic, because it grows like N x N. The divided-by-two factor pales in compari-
son to the main behaviour of the function (figure 2.3).

90 CHAPTER 2 Erlang language essentials
 Note that this sort of thing can hap-
pen in any language, using any kind of
loop or iteration over some kind of col-
lection; it isn’t because of recursion, it’s
because you have to do something N
times, and for each of those times you do
something else that takes time propor-
tional to N, so that the times add up in a
triangle-like way. The only consolation is
that it could be worse: if your algorithm
takes cubic time, you’ll be looking at a
28-hour wait in the previous example. If
it takes exponential time, waiting proba-
bly isn’t an option.

AVOIDING QUADRATIC TIME

What can you do with the rev function
to avoid the quadratic-time behaviour? You can’t use ++ with the varying list on the
left side, at any rate. What if you tried a tail-recursive approach? You go through
the list, but at each step, you push all the stuff you need in front of you in the
arguments so that when you reach the end of the list, you’re finished: there is noth-
ing on the stack to go back to, like you did with do_sum in section 2.15.1. How
would that look for recursion over lists? You can use the same basic division into
base case and recursive case as rev, but you’ll call the new function tailrev, and
you’ll need an accumulator parameter that will contain the final result when you
reach the end, like this:

tailrev([X | TheRest], Acc) -> not_yet_implemented;
tailrev([], Acc) -> Acc.

Now for the not_yet_implemented part: you want it to do a tail call, so it should
have the shape tailrev(TheRest, ...), and the second argument should be some-
thing to do with Acc and the element X. You know that a cons operation (adding
an element to the left of a list) is a cheap and simple operation to do, and you
know you want Acc to become the final reversed list. Suppose you do [X | Acc],
adding the element to the left of Acc, basically writing the new list from right to left
as you traverse the old list:

tailrev([X | TheRest], Acc) -> tailrev(TheRest, [X | Acc]);
tailrev([], Acc) -> Acc.

For each element you see, as long as the list isn’t yet empty, you tack the element on to
the left side of Acc. But what should Acc be initialized to? The easiest way to see this is
to look at what should happen with the simplest case that isn’t already a base case.
Suppose you call tailrev([foo], Acc), to reverse a list of one element. This matches
the first clause, binding X to foo and TheRest to [], so the body of the clause becomes

Figure 2.3 Sum of times for N iterations of a
quadratic function = area of triangle

91Recursion: it’s how you loop
tailrev([], [foo | Acc]). In the next step, the base case tailrev([], Acc) matches,
and it should return the final Acc. This means the original Acc must be an empty list,
so that [foo | Acc] = [foo]. The complete implementation is then the following, with
tailrev/1 as the main entry point:

tailrev(List) -> tailrev(List, []).

tailrev([X | TheRest], Acc) -> tailrev(TheRest, [X | Acc]);
tailrev([], Acc) -> Acc.

Why is this implementation linear in time (in proportion to the length of the list)
rather than quadratic? Because for each element of the list, you only perform
operations that have fixed cost (such as adding to the left of the list); therefore, if
the list has L elements, the total time is L times C, for some small constant C,
and the algorithm never blows up in your face like the quadratic version when the
input gets big.

LOOK OUT FOR LENGTH

A common beginners’ mistake made by many who are used to programming in lan-
guages like Java, where it’s a fixed-cost operation to get the length of a list, is to use the
built-in function length in guards, as in the following listing.

loop(List) when length(List) > 0 ->
 do_something;
loop(EmptyList) ->
 done.

A function like this uses quadratic time in proportion to the length of the list, because
it has to traverse the list from start to end to count the number of elements each time.
This adds up like a triangle, like the time for ++ in the previous section. But if all you
want to know is whether the list is nonempty, you can easily do it with pattern match-
ing, as shown in the following listing.

loop([SomeElement | RestOfList]) ->
 do_something;
loop([]) ->
 done.

A match like this takes a small, fixed amount of time. You can even use matching to
check for lists that are at least of a certain length, as in the following listing.

loop([A, B, C | TheRest]) -> three_or_more;
loop([A, B | TheRest]) -> two_or_more;
loop([A | TheRest]) -> one_or_more;
loop([]) -> none.

Listing 2.2 Don’t do this: length(List) traverses the whole list!

Listing 2.3 Do this: pattern match to check for nonempty lists

Listing 2.4 Checking for lists of various lengths using pattern matching

92 CHAPTER 2 Erlang language essentials
Note that you need to check for the longer lists first, because if you check for two or
more before the others, all lists of length three match as well, and so on. We say that
you check for the most specific patterns first.

2.16 Erlang programming resources
To learn more about the Erlang language, get a better grasp of functional and concur-
rent programming techniques, and learn more about the available libraries and tools,
the following are the most important resources.

2.16.1 Books

There are, as of this writing, two modern books about Erlang, the programming lan-
guage. The first, which kicked off a new wave of interest in Erlang all over the world, is
Programming Erlang—Software for a Concurrent World by Joe Armstrong (Pragmatic
Bookshelf, 2007). It’s a good introduction to the language and to concurrent pro-
gramming in general, and it gives a number of interesting examples of the kinds of
programs you can write easily in Erlang.

 The second, more recent addition, is Erlang Programming by Cesarini and Thomp-
son (O’Reilly, 2009). It dives deeper into the language details, conventions, and tech-
niques for functional programming and concurrent programming, and the libraries
and tools that are part of the Erlang ecosystem.

 Finally, and mainly of historical interest, you may be able to find a copy of Concur-
rent Programming in Erlang, 2nd ed., by Armstrong, Virding, Wikström and Williams
(Prentice Hall, 1996), but it’s outdated with regard to language features, libraries,
and tools.

2.16.2 Online material

The main website for Erlang is www.erlang.org, where you can download the latest
release of open source Erlang, read online documentation, find official news from the
OTP development team at Ericsson, subscribe to mailing lists, and so on.

 There is also a community website at www.trapexit.org, with mailing list archives, a
wiki for tutorials, articles, cookbooks, links, and more. To help you keep up to date, the
site www.planeterlang.org summarizes Erlang-related feeds from various sources.

 The main mailing list for Erlang is erlang-questions@erlang.org, where you can
generally find answers to the most complicated questions from experienced and
professional users. The archives go back more than 10 years and are a treasure trove
of information.

 Finally, searching for “erlang” at www.stackoverflow.com is a good complement to
the erlang-questions mailing list for finding answers to various questions.

2.17 Summary
We have covered a huge number of things in this chapter, from the Erlang shell, via
data types, modules and functions, pattern matching, guards, funs and exceptions, to

http://www.erlang.org
http://www.trapexit.org
http://www.planeterlang.org
mailto:questions@erlang.org
http://www.stackoverflow.com

93Summary
list comprehensions, the bit syntax, the preprocessor, processes, ETS tables, recursion,
and more. Although there is much more to learn about the finer points of writing
Erlang programs, what we’ve covered here provides a solid footing for you to move on
with. If you skimmed this part, even if you’re not that familiar with Erlang, don’t
worry; you can come back here for reference when and if you need it.

 In the following chapters, we explain new concepts as they’re brought up, assum-
ing that you have some previous knowledge to stand on. We now dive straight into
OTP, where we remain for the rest of this book and where you as an Erlang program-
mer will (we hope) choose to stay longer.

Writing a TCP-based
 RPC service
What!? No “hello world”?
 That’s right, no “hello world.” In chapter 2, we provided a review of the

Erlang language, and now it’s time to do something concrete. In the spirit of get-
ting down and dirty with real-world Erlang, we say no to “hello world”! Instead,
you’ll create something that is immediately useable. You’re going to build a TCP-
enabled RPC server!

 In case you don’t know what that is, let us explain. RPC stands for remote pro-
cedure call. An RPC server allows you to call procedures (that is, functions)
remotely from another machine. The TCP-enabled RPC server will allow a per-
son to connect to a running Erlang node, run Erlang commands, and inspect the
results with no more than a simple TCP client, like good old Telnet. The TCP RPC
server will be a nice first step toward making your software accessible for post-
production diagnostics.

This chapter covers
■ Introduction to OTP behaviors
■ Module layout conventions and EDoc

annotations
■ Implementing an RPC server using TCP/IP
■ Talking to your server over telnet
94

95What you’re creating
This RPC application, as written, would constitute a security hole if included in a run-
ning production server because it would allow access to run any code on that server, but
it wouldn’t be difficult to limit the modules or functions that this utility could access in
order to close that hole. But you won’t do that in this chapter. We use the creation of
this basic service as a vehicle for explaining the most fundamental, most powerful, and
most frequently used of the OTP behaviours: the generic server, or gen_server. (We stick
to the British spelling of behaviour, because that’s what the Erlang/OTP documentation
uses.) OTP behaviours greatly enhance the overall stability, readability, and functional-
ity of software built on top of them.

 In this chapter, we cover implementing your first behaviour, and you’ll learn about
basic TCP socket usage with the gen_tcp module (which isn’t a behaviour, despite the
name). This book is mainly intended for intermediate-level Erlang programmers, and
so we start in the thick of it. You’ll need to pay strict attention, but we promise the
chapter will be gentle enough to fully understand. When you’re done, you’ll have
taken a great leap forward in terms of being able to create reliable software.

 By the end of this chapter, you’ll have a working Erlang program that will eventually
be a part of a production-quality service. In chapter 4, you’ll hook this program deeper
into the OTP framework, making it an Erlang application that can be composed with
other Erlang applications to form a complete deliverable system (also known as a
release). Much later, in chapter 11, you’ll integrate a similar server into the simple cache
application that you’ll also build. That will be a more robust and scalable version of this
TCP server and will show a few interesting twists on the subject. For now, though, let’s
get more explicit about what you’ll be building in this chapter.

3.1 What you’re creating
The RPC server will allow you to listen on a TCP
socket and accept a single connection from an
outside TCP client. After it’s connected, it will
let a client run functions via a simple ASCII
text protocol over TCP. Figure 3.1 illustrates
the design and function of the RPC server.

 The figure shows two processes. One is
the supervisor, as we described in chapter 1;
it spawns a worker process that is the actual
RPC server. This second process creates a lis-
tening TCP socket and waits for someone to

Source code
The code for this book is available online at GitHub. You can find it by visiting http:
//github.com/ and entering “Erlang and OTP in Action” in the search field. You can
either clone the repository using git or download the sources as a zip archive.

Figure 3.1 RPC server process connected
through a socket to the world outside. It
accepts requests over TCP, performs them,
and returns the results to the client.

http://github.com/
http://github.com/

96 CHAPTER 3 Writing a TCP-based RPC service
connect. When it receives a connection, it reads ASCII text in the shape of normal
Erlang function calls, and it executes those calls and returns the result back over the
TCP stream. This kind of functionality is useful for any number of things, including
remote administration and diagnostics in a pinch. Again, the RPC server under-
stands a basic text protocol over the TCP stream, which looks like standard Erlang
function calls. The generic format for this protocol is

Module:Function(Arg1, ..., ArgN).

For example:

lists:append("Hello", "Dolly").

(Note that the period character is required.) To interpret these requests, the RPC
server parses the ASCII text and extracts the module name, function name, and argu-
ments, transforming them into valid Erlang terms. It then executes the function call
as requested and finally returns the results as Erlang terms formatted as ASCII text
back over the TCP stream.

 Accomplishing this will require an understanding of a number of fundamental
Erlang/OTP concepts, all of which we get into in the next couple of sections.

3.1.1 A reminder of the fundamentals

You should already have a basic grasp of modules, functions, messaging, and pro-
cesses, because we addressed these concepts in chapters 1 and 2. We cover them
again here, before we introduce the new concept of behaviours. First, in Erlang,
functions are housed in modules, and processes are spawned around function calls.
Processes communicate with each other by sending messages. Figure 3.2 illustrates
these relationships.

 Let’s take a second to review these concepts:

■ Modules—Modules are containers for code. They guard access to functions by
either making them private or exporting them for public use. There can be only
one module per object file (.beam file). If a module is named test, it must reside
in a source file called test.erl and be compiled to an object file called test.beam.

■ Functions—Functions do all the work; all Erlang code in a module must be part
of a function. They’re the sequential part of Erlang. Functions are executed by
processes, which represent the concurrent part. A function must belong to
some module.

Figure 3.2 The relationships between modules, functions, processes, and messages

97What you’re creating
■ Processes—Processes are the fundamental units of concurrency in Erlang. They
communicate with each other through messages. Processes are also the basic
containers for program state in Erlang: data that needs to be modified over
time can be kept inside a process. Any process can create (spawn) another pro-
cess, specifying what function call it should perform. The new process executes
that call and terminates itself when it has finished. A process spawned to per-
form a simple call to io:format/2 will be short-lived, whereas one spawned to
execute a call like timer:sleep(infinity) will last forever, or until someone
else kills it.

■ Messages—Messages are how processes interact. A message can be any Erlang
data. Messages are sent asynchronously from one process to another, and the
receiver always gets a separate copy of the message. Messages are stored in
the mailbox of the receiving process on arrival and can be retrieved by exe-
cuting a receive-expression.

After that quick refresher, let’s move on to the concept of behaviours.

3.1.2 Behaviour basics

Behaviours are a way of formalizing common patterns in process-oriented program-
ming. For example, the concept of a server is general and includes a large portion of
all processes you’ll ever need to write. All those processes have a lot in common—in
particular, whether they should be made to follow OTP conventions for supervision
and other things. Rewriting all that code for every new server-like process you need
would be pointless, and it would introduce minor bugs and subtle differences all over
the place.

 Instead, an OTP behaviour takes such a recurring pattern and divides it into two
halves: the generic part and the application-specific implementation part. These com-
municate via a simple, well-defined interface. For example, the module you’ll create
in this chapter will contain the implementation part of the most common and useful
kind of OTP behaviour: a generic server, or gen_server.

COMPONENTS OF A BEHAVIOUR

In daily use, the word behaviour has become rather overloaded and can refer to any of
the following separate parts:

■ The behaviour interface
■ The behaviour implementation
■ The behaviour container

The behaviour interface is a specific set of functions and associated calling conventions.
The gen_server behaviour interface contains six functions; init/1, handle_call/3,
handle_cast/2, handle_info/2, terminate/2, and code_change/3.

 The implementation is the application-specific code that the programmer pro-
vides. A behaviour implementation is a callback module that exports the functions
required by the interface. The implementation module should also contain an attribute

98 CHAPTER 3 Writing a TCP-based RPC service
-behaviour(...). that indicates the name of the behaviour it implements; this allows
the compiler to check that the module exports all the functions of the interface. The
listing that follows shows those parts of the module header and the interface func-
tions that must be implemented for a valid gen_server.

-module(...).

-behaviour(gen_server).

-export([init/1, handle_call/3, handle_cast/2, handle_info/2,
 terminate/2, code_change/3]).

-record(state, {}).

init([]) ->
 {ok, #state{}}.

handle_call(_Request, _From, State) ->
 Reply = ok,
 {reply, Reply, State}.

handle_cast(_Msg, State) ->
 {noreply, State}.

handle_info(_Info, State) ->
 {noreply, State}.

terminate(_Reason, _State) ->
 ok.

code_change(_OldVsn, State, _Extra) ->
 {ok, State}.

If any of these functions are missing, the behaviour implementation isn’t fully con-
forming to the gen_server interface, in which case the compiler issues a warning. We
get into detail about what each of these functions do in the next section, when you
implement them in order to build your RPC server.

 The third and final part of a behaviour is the container. This is a process that runs
code from a library module and that uses implementation callback modules to handle
application-specific things. (Technically, the container could consist of multiple pro-
cesses working closely together, but usually there is only one process.) The name of the
library module is the same as that of the behaviour. It contains the generic code for that
behaviour, including functions to start new containers. For example, for a gen_server
behaviour, the code sits within the gen_server module that can be found in the stdlib
section of the Erlang/OTP libraries. When you call gen_server:start(...,foo,...),
a new gen_server container is created that uses foo as a callback module.

 Behaviour containers handle much of what is challenging about writing canoni-
cal, concurrent, fault-tolerant OTP code. The library code takes care of things like
synchronous messaging, process initialization, and process cleanup and termina-
tion, and also provides hooks into larger OTP patterns and structures like code
change and supervision trees.

Listing 3.1 Minimal gen_server behaviour implementation module

99What you’re creating
INSTANTIATING A BEHAVIOUR

The whole point of a behaviour is to provide a template for processes of a particular
type. Every behaviour library module has one or more API functions (generally called
start and/or start_link) for starting a new container process. We call this instantiat-
ing the behaviour.

In some cases, you’ll write a behaviour implementation module so that there can
only be one instance at a time; in other cases, you may want to have thousands of
simultaneous instances that all run the same code but with different data. The
important thing to keep in mind is that when your callback code is running, it’s exe-
cuted by a container, which is a process with identity and state (including its mail-
box). This is a lot like objects in object-oriented programming, but with the addition
that all these containers are living things that are running code in parallel.

 To summarize, the behaviour interface is the contract that allows the behaviour
implementation (your code) to leverage the power of the behaviour container. The
purpose is to make it simple to implement processes that follow typical concurrent
programming patterns. Working with OTP behaviours has a number of advantages:

■ Developers get more done with less code—sometimes much less.
■ The code is solid and reliable because it has well-tested library code at its core.
■ The code fits into the larger OTP framework, which provides powerful features

such as supervision for free.
■ The code is easier to understand because it follows a well-known pattern.

Containers
The word container as used here is our own choice of terminology, but we find it
fitting. The OTP documentation tends to talk only about the process, but that
doesn’t convey the division of responsibility in a behaviour and can be unclear at
times. (If you have some familiarity with J2EE containers in Java, there are many
similarities here, but also some differences: an OTP container is lightweight, and
the container is the only real object in this context.)

Process type
The informal notion of process type (regardless of whether behaviours are involved)
lets us talk about things like a gen_server process. Processes are of the same
type if they’re running mainly the same code, which means that they understand
mainly the same kind of messages. The only difference between two processes of
the same type is their individual state. Processes of the same type generally have
the same spawn signature or initial call; that is to say, they had the same function
as starting point.

100 CHAPTER 3 Writing a TCP-based RPC service
With this basic understanding of behaviours, we can now move on to the implementa-
tion of the RPC server, which will utilize all of what we’ve described. Everything you do
from here on is related to implementing the TCP RPC server. This exercise will cover a
lot. At one level, it’s about how to use behaviours. You’ll be coding up a behaviour
implementation that conforms to a behaviour interface, and you’ll see how the
gen_server behaviour provides all the functionality you’re looking for. At another
level, what you’ll be doing here is even more fundamental: starting to use Erlang
within the framework of OTP.

3.2 Implementing the RPC server
If you’re an intermediate-level Erlang programmer, you already have some familiarity
with modules, processes, functions, and messaging. But it’s likely that your experi-
ence is from a more informal, plain Erlang context. We revisit these concepts in this
chapter in the context of OTP. If you’re new to Erlang and this is your first book,
you’re probably an experienced programmer from a different background. In that
case, you don’t need any prior knowledge of these things to grasp what we cover in
this chapter.

 It’s our opinion that writing pure Erlang code with processes and message passing
(and getting everything right) without OTP is an advanced topic and is something you
should resort to only when you must. Perhaps not having done this sort of program-
ming in pure Erlang is a blessing, because you’ll pick up the right OTP habits straight
away—maybe even the strict approach we take to module structure and layout, inline
documentation, and commenting.

 Because you’ll need a module to contain your behaviour implementation, we start
with a little about module creation and layout.

3.2.1 Canonical module layout for a behaviour implementation

One of the nice things about behaviours is that they give you a great amount of consis-
tency. When looking at a behaviour implementation module, you’ll recognize aspects
that are common to all such modules, like the behaviour interface functions and the
customary start or start_link function. To make the files even more recognizable,
you can adopt the canonical behaviour implementation module layout that we elabo-
rate on here.

 This standard layout consists of four sections. Table 3.1 details them in the order
that they appear in the file.

Table 3.1 Source code sections of a canonical behaviour implementation module

Section Description Functions exported EDoc annotations

Header Module attributes and boilerplate N/A Yes, file level

API Programmer interface; how the
world interacts with the module

Yes Yes, function level

101Implementing the RPC server
We’ll now look at the details of implementing each of these sections in turn, starting
with the module header.

3.2.2 The module header

Before you can create the header, you need to create a file to hold it. Because you’ll
be building a TCP-based RPC server, let’s create a file named tr_server.erl where
you’ll place this code. Use your favorite text editor.

The first thing you need to enter is the file-level header comment block:

%%%---
%%% @author Martin & Eric <erlware-dev@googlegroups.com>
%%% [http://www.erlware.org]
%%% @copyright 2008-2010 Erlware
%%% @doc RPC over TCP server. This module defines a server process that
%%% listens for incoming TCP connections and allows the user to
%%% execute RPC commands via that TCP stream.
%%% @end
%%%---

Note that each comment line begins with three % characters, although a single % is suf-
ficient. This is a convention used for file-level comments, whose contents apply to the
file as a whole. Furthermore, this may be the first time you’ve seen comments contain-
ing EDoc annotations. EDoc is a tool for generating documentation directly from
source code annotations (similar to Javadoc) and comes with the standard Erlang/
OTP distribution. We don’t have room in this book to get too deep into how to use
EDoc: you can read more about it in the tools section of the OTP documentation.
We’ll spend a little time on it here, because it’s the de facto standard for in-code

Behaviour interface Callback functions required by
the behaviour interface

Yes Optional

Internal functions Helper functions for the API and
behaviour interface functions

No Optional

Module naming conventions and the flat namespace
Erlang has a flat namespace for modules. This means module names can collide.
(There exists an experimental Java-like package system in Erlang, but it hasn’t
caught on and isn’t fully supported.) If modules are given names like server, it’s
easy to end up with two modules from different projects that have the same name.
To avoid such clashes, the standard practice is to give module names a suitable
prefix. Here, we’ve taken the first two letters of the acronyms TCP and RPC:
tr_server.

Table 3.1 Source code sections of a canonical behaviour implementation module (continued)

Section Description Functions exported EDoc annotations

http://www.erlware.org

102 CHAPTER 3 Writing a TCP-based RPC service
Erlang documentation. We suggest that you familiarize yourself with EDoc and make a
habit of using it in your own code.

 All EDoc tags begin with an @ character. Table 3.2 describes the tags in this header.
We return to this subject at the end of chapter 4, after we’ve explained how OTP appli-
cations work; there, we show briefly how to run EDoc to generate the documentation.

The first thing in your file that isn’t a comment is the –module(...) attribute. The
name supplied must correspond to the file name; in this case, it looks like

-module(tr_server).

(Remember that all attributes and function definitions must end with a period.) After
the module attribute, the next thing to add is the behaviour attribute. This indicates
to the compiler that this module is intended to be an implementation of a particular
behaviour and allows it to warn you if you forget to implement and export some
behaviour interface functions. You’ll implement a generic server, so you want the fol-
lowing behaviour attribute:

-behaviour(gen_server).

Next come the export declarations. You’ll typically have two. (The compiler combines
them, but grouping related functions helps readability.) The first is for your API sec-
tion, and the second is for the behaviour interface functions that must also be
exported. Because you haven’t yet designed the API, a placeholder will suffice for
now. But you know which the behaviour interface functions are, so you can list them
right away:

%% API
-export([]).

%% gen_server callbacks
-export([init/1, handle_call/3, handle_cast/2, handle_info/2,
 terminate/2, code_change/3]).

Note the comment above the second declaration. The behaviour interface functions
are often referred to as callbacks. This is because at startup, the name of the behaviour

Table 3.2 Basic EDoc tags

EDoc tag Description

@author Author information and email address.

@copyright Date and attribution.

@doc General documentation text. First sentence is used as a summary descrip-
tion. Can contain valid XHTML and some wiki markup.

@end Ends any tag above it. Used here so that the line %%%----... isn’t
included in the text for the previous @doc.

103Implementing the RPC server
implementation module is passed to the new container, which then calls back into the
implementation module through these interface functions. We go into more detail
about the use of each of the interface functions later in the chapter.

 Following the exports, there may be a number of optional application-specific dec-
larations and/or preprocessor definitions. They’re highlighted in the following list-
ing, which shows the complete header for the tr_server module.

%%%---
%%% @author Martin & Eric <erlware-dev@googlegroups.com>
%%% [http://www.erlware.org]
%%% @copyright 2008 Erlware
%%% @doc RPC over TCP server. This module defines a server process that
%%% listens for incoming TCP connections and allows the user to
%%% execute RPC commands via that TCP stream.
%%% @end
%%%---
-module(tr_server).

-behaviour(gen_server).

%% API
-export([
 start_link/1,
 start_link/0,
 get_count/0,
 stop/0
]).

%% gen_server callbacks
-export([init/1, handle_call/3, handle_cast/2, handle_info/2,
 terminate/2, code_change/3]).

-define(SERVER, ?MODULE).
-define(DEFAULT_PORT, 1055).

-record(state, {port, lsock, request_count = 0}).

Macros are commonly used for various constants, to ensure that you only need to
modify a single place in the code to change the value (see section 2.12). Here, you use
them to define which default port to use C and to set up SERVER as an alias for the
name of your module B (you may want to change that at some point, so you
shouldn’t assume that the server name will always remain the same as the module
name). After the macros, you define the name and the format of the record (see sec-
tion 2.11) that will hold the live state of your server process while it’s running D.

 Now that the header is complete, the next section of your behaviour implementa-
tion module is the API.

3.2.3 The API section

All the functionality that you want to make available to the users of your module (who
don’t care much about the details of how you implemented it) is provided through

Listing 3.2 Full tr_server.erl header

Sets SERVER
to module
name

B

Defines default portC
Holds state of processD

http://www.erlware.org

104 CHAPTER 3 Writing a TCP-based RPC service
the application programming interface (API) functions. The main things that a user
of a generic server wants to do are

■ Start server processes
■ Send messages to these processes (and receive the answers)

To help you implement this basic functionality, there are three primary gen_server
library functions. These are listed in table 3.3.

Basically, your API functions are simple wrappers around these library calls, hiding
such implementation details from your users. The best way to illustrate how these
functions work is to use them to implement the API for the tr_server module, as
shown in the following listing.

%%%===
%%% API
%%%===

%%--
%% @doc Starts the server.
%%
%% @spec start_link(Port::integer()) -> {ok, Pid}
%% where
%% Pid = pid()
%% @end
%%--
start_link(Port) ->
 gen_server:start_link({local, ?SERVER}, ?MODULE, [Port], []).

%% @spec start_link() -> {ok, Pid}
%% @doc Calls `start_link(Port)' using the default port.
start_link() ->
 start_link(?DEFAULT_PORT).

Table 3.3 gen_server library functions for implementing the API

Library function Associated callback function Description

gen_server:start_link/4 Module:init/1 Starts a gen_server con-
tainer process and simultane-
ously links to it

gen_server:call/2 Module:handle_call/3 Sends a synchronous mes-
sage to a gen_server pro-
cess and waits for a reply

gen_server:cast/2 Module:handle_cast/2 Sends an asynchronous
message to a gen_server
process

Listing 3.3 API section of tr_server.erl

Banner at start
of section

Spawns server
process

105Implementing the RPC server
%%--
%% @doc Fetches the number of requests made to this server.
%% @spec get_count() -> {ok, Count}
%% where
%% Count = integer()
%% @end
%%--
get_count() ->
 gen_server:call(?SERVER, get_count).

%%--
%% @doc Stops the server.
%% @spec stop() -> ok
%% @end
%%--
stop() ->
 gen_server:cast(?SERVER, stop).

A query like b uses gen_server:call/2, which makes the caller wait for a reply. A
simple command like stop C typically uses the asynchronous gen_server:cast/2.

Briefly, the API in listing 3.3 tells you that a tr_server can do three things:

■ It can be started using start_link() or start_link(Port).
■ It can be queried for the number of requests it has processed, using get_count().
■ It can be terminated by calling stop().

Before we get into the details of how these functions work, and the communication
between the caller and the server process (the container), let’s refresh your memory
with regard to messaging in Erlang.

QUICK REMINDER ABOUT PROCESSES AND COMMUNICATION

Processes are the building blocks of any concurrent program. Processes communicate
via messages that are posted asynchronously; on arrival, they’re queued up in the mail-
box of the receiving process. Figure 3.3 illustrates how messages enter the process
mailbox, where they’re kept until the receiver decides to look at them.

 This ability of processes to automatically buffer incoming messages and selectively
handle only those messages that are currently relevant is a crucial feature of Erlang
(see section 2.13.2 for more about selective receive).

Only one process type per module
The same module may be used to spawn many simultaneous processes but should
contain code for only one type of process (apart from the API code, which by defi-
nition is executed by the clients, who could be of any type). If various parts of the
code in a single module are meant to be executed by different types of processes,
it becomes hard to reason about the contents of the module, as well as about the
system as a whole, because the role of the module isn’t clear.

Makes caller wait for replyB

Doesn’t wait for replyC

106 CHAPTER 3 Writing a TCP-based RPC service
With this in mind, we now look at how the OTP libraries take away a lot of the fiddly
details of message passing between clients and servers, instead handing you a set of
higher-level tools for process communication. These tools may not be as supremely
flexible as hacking your own communication patterns, but they’re solid, straightfor-
ward, and fit most everyday situations. They also guarantee several important proper-
ties like timeouts, supervision, and error handling, which you would otherwise have
to code manually (which can be boring, verbose, and hard to get completely right).

HIDING THE PROTOCOL

The set of messages that a process will accept is referred to as its protocol. But you don’t
want to expose the details of these messages to your users, so one of the main tasks of
the API is to hide this protocol from the rest of the world.

 Your tr_server process will accept the following simple messages:

■ get_count

■ stop

These are plain atoms, but there’s no need for users of the tr_server module to
know this implementation detail; you’ll keep all that hidden behind the API functions.
Imagine a future extension of your server that requires users to log in before they’re
allowed to send requests. Your API might then need a function to create a user on the
server, which could look something like this:

add_user(Name, Password, Permissions) ->
 gen_server:call(?SERVER, {add_user, [{name, Name},
 {passwd, Password},
 {perms, Permissions}]}).

Such a complex message format is something you don’t want to leak out of your mod-
ule; you might want to change it in the future, which would be hard if clients were
depending on it. By wrapping the communication with the server in an API function,
the users of your module remain oblivious to the format of these messages.

 Finally, on a primitive level, all messages in Erlang are sent asynchronously
(using the ! operator), but in practice you often have to block when you can’t do

Figure 3.3
Messages are delivered to the mailbox of a process and stay there until
the process extracts them. There is no size limit on the mailbox.

107Implementing the RPC server
anything useful before some expected answer arrives. The gen_server:call/2
function implements this synchronous request-reply functionality in a reliable way,
with a default timeout of 5 seconds before it gives up on getting the answer (in
addition, the version gen_server:call/3 lets you specify a timeout in milliseconds,
or infinity).

 Now that we’ve explained the purpose behind the API functions and the gen_server
library functions used to implement them, we can get back to the code.

API FUNCTIONS IN DETAIL

Listing 3.3 showed the implementation of the API, and it’s time that we explain exactly
what it does. First, table 3.4 summarizes the four API functions.

Double blind
Another level of hiding is going on here: the OTP libraries are hiding from you the
details of the real messages going back and forth between processes. The mes-
sage data that you pass as arguments to call/2 and cast/2 is only the payload.
It’s automatically wrapped up along with a bit of metadata that allows the
gen_server container to see what kind of message it is (so it knows which call-
back should handle the payload) and to reply to the right process afterwards.

Singleton process
To keep things simple, we’ve designed this particular server to be a singleton: you
can have only one instance running at a time. When it starts, the new gen_server
container process is registered under the name specified by the SERVER macro
defined in listing 3.2 (that’s what the argument {local, ?SERVER} means in list-
ing 3.3). This makes it possible for the functions get_count() and stop() to
communicate with it by name. If you want to run several server instances simulta-
neously, you must modify the program a bit, because processes can’t have the
same registered name (see section 2.13.3 for details about the process registry).
On the other hand, it’s common to have servers that provide a system-level ser-
vice, of which there can be only one per Erlang node (or even one per Erlang clus-
ter); so, a singleton server like this isn’t an unrealistic example.

Table 3.4 The tr_server API

API function Description

start_link/1 Starts the tr_server listening on a specific port

start_link/0 Alias for start_link/1, using the default port

get_count/0 Returns the number of requests processed so far

stop/0 Shuts down the server

108 CHAPTER 3 Writing a TCP-based RPC service
This is how the API functions work:

■ start_link(Port) and start_link()—Start your server process and at the
same time link to it. This is done by calling gen_server:start_link/4 and is
where you indicate (in the second argument) to the behaviour container which
callback module contains the implementation to be used. The normal thing to
do is to pass the value of the built-in macro MODULE, which always expands to the
name of the current module (see section 2.12.1):

gen_server:start_link({local, ?SERVER}, ?MODULE, [Port], [])

When this call is executed, it spawns a new gen_server container process, reg-
isters it on the local node using the name that the SERVER macro expands to,
and waits until it has been initialized by running the init/1 callback function
of the implementation module (more on this in section 3.2.4) before returning
to the caller. At that point, the server is up and running, fully initialized and
ready to accept messages.

The third argument, in this case [Port], provides data to the server on
startup. This is passed as is to the init/1 callback function, where you can use it
to set up the initial process state. The fourth argument is a list of extra options,
which you’ll leave empty for now. Note that from the API user’s point of view, all
these details are hidden; there is only a single argument: the port that the
server should listen on.

■ get_count()—Uses gen_server:call/2 to send the atom get_count as a syn-
chronous request to the server. This means the call waits for the reply from the
server, temporarily suspending the calling process:

gen_server:call(?SERVER, get_count)

The first argument in the call is either the registered name or the process ID of
the server process; here, you use the same name (the SERVER macro) that was
used to register the process in the start_link/1 function. The second argu-
ment in the call is the message to be sent. When the server has received and
handled this message, it sends a reply back to the calling process. The
gen_server:call/2 function takes care of receiving this reply and returning it
as the result from the function call, so the caller doesn’t need to know anything
about how to send or receive messages.

Also note that the atom get_count used in the message (as part of the server
protocol) has the same name as the API function; this is helpful when you’re
reading the code or debugging—don’t make the internal server protocol cryp-
tic just because you can.

■ stop()—Uses gen_server:cast/2 to send the atom stop as an asynchro-
nous message (meaning that the function returns immediately without wait-
ing for a reply):

gen_server:cast(?SERVER, stop)

109Implementing the RPC server
After you’ve sent this message, you assume that the container will shut itself
down as soon as it receives the message. You don’t need a reply; hence cast,
rather than call.

That’s all the functions you need for this simple server. After all, most of its real func-
tionality will be provided via the TCP connection, so these API functions are only
needed for starting, stopping, and checking the status.

THE @SPEC TAG

Before we move on to define the behaviour interface callback functions, we want to
explain briefly the new EDoc tag you used in the documentation before each function
(listing 3.3). It’s highly recommended that you have at least a @doc annotation for
each and every API function, as well as for the module as a whole (listing 3.2). The
additional @spec tag can be used to describe the type of data that the function
accepts as input and what type of values it can return. For example, the @spec for
start_link/1

%% @spec start_link(Port::integer()) -> {ok, Pid}
%% where
%% Pid = pid()

indicates that the function takes a single argument that is an integer and returns a
tuple {ok, Pid}, where Pid is a process identifier. Type names always look like function
calls, as in integer(), so that they aren’t confused with atoms. Types can be attached
directly to variables with the :: notation as with Port, or they can be listed at the end
of the specification as with where Pid =

 You’re finished with the user API section, so it’s finally time to begin implementing
the behaviour interface functions—the callbacks, where most of the real work is done.

3.2.4 The callback function section

Each of the gen_server library functions you use in your API corresponds to a specific
callback function specified by the gen_server behaviour interface. These callbacks
now need to be implemented. To refresh your memory, table 3.5 repeats table 3.3,
with the addition of handle_info/2, which doesn’t correspond to any of the library
functions used for the API.

 First, look back at the tr_server:start_link/1 function in listing 3.3. That func-
tion hides that fact that you’re calling gen_server:start_link/4; and as you can see
from table 3.5, the new container then calls back to tr_server:init/1 (which must
be exported by the tr_server module, as required by the gen_server behaviour
interface) in order to perform the initialization. Similarly, tr_server:get_count/0
shields the user from having to worry about your protocol and the fact that the com-
munication is performed by gen_server:call/2. When such a message is received by
the container, it calls back to tr_server:handle_call/2 in order to handle the mes-
sage; in this case, the only possible message of this kind is the atom get_count. Analo-
gously, tr_server:stop/0 uses gen_server:cast/2 to dispatch a message to the

110 CHAPTER 3 Writing a TCP-based RPC service
container asynchronously; and on receiving such a message, the container calls back
to tr_server:handle_cast/2.

 But notice that the handle_info/2 callback doesn’t correspond to any gen_server
library function. This callback is an important special case. It’s called to handle any
messages that arrive in the mailbox of a gen_server that weren’t sent using one of
the call or cast library functions (typically, naked messages sent with the plain old
! operator). There can be various reasons for such messages to find their way to
the mailbox of a gen_server container—for example, that the callback code
requested some data from a third party. In the case of your RPC server, you’ll
receive data over TCP, which will be pulled off the socket and sent to your server pro-
cess as plain messages.

 After all this talk, the next listing shows what your callback functions do.

%%%===
%%% gen_server callbacks
%%%===

init([Port]) ->
 {ok, LSock} = gen_tcp:listen(Port, [{active, true}]),
 {ok, #state{port = Port, lsock = LSock}, 0}.

handle_call(get_count, _From, State) ->
 {reply, {ok, State#state.request_count}, State}.

handle_cast(stop, State) ->
 {stop, normal, State}.

Upon initialization of the server, the init function creates a TCP listening socket, sets
up the initial state record, and also signals an immediate timeout. Next, the code

Table 3.5 gen_server library functions and callbacks

Library function Associated callback function Description

gen_server:start_link/4 Module:init/1 Starts a gen_server container
and simultaneously links to it.

gen_server:call/2 Module:handle_call/3 Sends a synchronous message to
a gen_server container and
waits for a reply.

gen_server:cast/2 Module:handle_cast/2 Sends an asynchronous mes-
sage to a gen_server
container.

N/A Module:handle_info/2 Handles messages sent to a
gen_server container that
were not sent using one of the
call or cast functions. This is
for out-of-band messages.

Listing 3.4 gen_server callback section for tr_server

Initializes
server

B

Returns request
count

C

Shuts down
gen_server

D

111Implementing the RPC server
returns the current request count to the calling client process. A special return value
stop tells the gen_server process to shut down.

 As you can see in listing 3.4, the first three callback functions are almost trivial.
(We leave handle_info/2 and the other two for later, in listing 3.5.) The most compli-
cated thing about these three functions is the format of the values they return to com-
municate back to the gen_server container. Let’s go through them in detail:

■ init/1, initialization callback—This function is called whenever you start a new
gen_server container, for example, via gen_server:start_link/4. These are
the first examples of how OTP helps you write industrial-strength code with a
minimum of effort. The start_link library function sets you up to be hooked
into the powerful process-supervision structures of OTP. It also provides criti-
cal initialization functionality, blocking the caller until the process is up and
running and registered (if requested), and the init/1 callback has com-
pleted. This ensures that your process is fully operational before it starts to
process requests.

Breaking this function down line by line, the first thing you see is
init([Port]) ->, meaning that init takes one argument, which must be a list
containing a single element that you call Port. Note that this matches exactly
what you passed from the start_link/1 function in listing 3.3. (Always passing
a list, even with a single element, is a common convention for init/1.)

Next, you create your TCP listening socket on the specified port b, using the
standard library gen_tcp module:

{ok, LSock} = gen_tcp:listen(Port, [{active, true}]),

A listening socket is a socket that you create and wait on to accept incoming
TCP connections. After you accept a connection, you have an active socket
from which you can receive TCP datagrams. You pass the option {active,
true}, which tells gen_tcp to send any incoming TCP data directly to your
process as messages.

Last, you return from init/1 with a 3-tuple containing the atom ok, your
process state (in the form of a #state{} record), and a curious 0 at the end:

{ok, #state{port = Port, lsock = LSock}, 0}.

The 0 is a timeout value. A timeout of zero says to the gen_server container
that immediately after init/1 has finished, a timeout should be triggered that
forces you to handle a timeout message (in handle_info/2) as the first thing
you do after initialization. The reason for this will be explained shortly.

■ handle_call/3, callback for synchronous requests—This function is invoked every
time a message is received that was sent using gen_server:call/2. It takes
three arguments: the message (as it was passed to call), From (let’s not worry
about that yet), and the current state of the server (which is whatever you want
it to be, as set up in init/1).

112 CHAPTER 3 Writing a TCP-based RPC service
You have a single synchronous message to handle: get_count. And all you
need to do is extract the current request count from the state record and return
it. As earlier, the return value is a 3-tuple C, but with slightly different content
than in init/1:

{reply, {ok, State#state.request_count}, State}.

This indicates to the gen_server container that you want to send a reply to the
caller (you should, because it’s expected); that the value returned to the caller
should be a tuple {ok, N}, where N is the current number of requests; and
finally that the new state of the server should be the same as the old (nothing
was changed).

■ handle_cast/2, callback for asynchronous messages—Your API function stop()uses
gen_server:cast/2 to dispatch an asynchronous message stop to the server,
without waiting for any response. Your task is to make your server terminate
when it receives this message. Any message sent using cast is handled by the
tr_server:handle_cast/2 callback; this is similar to handle_call/3, except
that there is no From argument. When your handle_cast function sees the mes-
sage stop, it only has to return the following 3-tuple:

{stop, normal, State}.

This tells the gen_server container that it should stop D (that is, terminate),
and that the reason for termination is normal, which indicates a graceful shut-
down. The current state is also passed on unchanged (even though it won’t be
used further). Note here that the atom stop returned in this tuple instructs the
container to shut down, whereas the stop message used in the protocol
between the API and the server could have been any atom (such as quit), but
was chosen to match the name of the API function stop().

By now, we’ve covered most of the important points regarding the gen_server behav-
iour: the interface, the callback functions, the container, and how they interact. There
is certainly more to learn about gen_server, but we return to that throughout the
book. There is one thing left to discuss regarding the server you implement here: han-
dling out-of-band messages. In many typical servers, there are no such messages to
handle; but in this particular application, it’s where you do all the heavy lifting.

HANDLING OUT-OF-BAND MESSAGES

As we explained, any messages to a gen_server process that weren’t sent using call
or cast are handled by the handle_info/2 callback function. These are considered
out-of-band messages and can happen when your server needs to communicate with
some other component that relies on direct messages rather than on OTP library
calls—for example, a socket or a port driver. But you should avoid sending out-of-
band messages to a gen_server if you can help it.

 In the init/1 function, you set up a TCP listening socket for the server, and then
you mysteriously return a timeout value of 0 from that function, which you know will
trigger an immediate timeout (see listing 3.4).

113Implementing the RPC server
Here, you’re abusing this timeout mechanism slightly (it’s a well-known trick) to allow
the init/1 function to finish quickly so that the caller of start_link(...) isn’t left
hanging; but at the same time, you’re making sure the server immediately jumps to a
specific piece of code (the timeout clause of handle_info/2) where it can get on with
the more time-consuming part of the startup procedure—in this case, waiting for a
connection on the socket you created (see end of listing 3.5). Because you’re not
using server timeouts for anything else in this application, you know it won’t return to
that point again afterward.

 But back to TCP sockets: an active socket like this forwards all incoming data as
messages to the process that created it. (With a passive socket, you’d have to keep ask-
ing it if there is more data available.) All you need to do is to handle those messages
as they’re arriving. Because they’re out-of-band data as far as the gen_server con-
tainer is concerned, they’re delegated to the handle_info/2 callback function, shown
in listing 3.5.

handle_info({tcp, Socket, RawData}, State) ->
 do_rpc(Socket, RawData),
 RequestCount = State#state.request_count,
 {noreply, State#state{request_count = RequestCount + 1}};
handle_info(timeout, #state{lsock = LSock} = State) ->
 {ok, _Sock} = gen_tcp:accept(LSock),
 {noreply, State}.

terminate(_Reason, _State) ->
 ok.

code_change(_OldVsn, State, _Extra) ->
 {ok, State}.

Let’s go through this function like we did with the three previous callbacks.
handle_info/2 is the callback for out-of-band messages. This function has two clauses;
one for incoming TCP data and one for the timeout. The timeout clause is the sim-
plest, and as we explained earlier, it’s also the first thing the server does after it has fin-
ished running the init/1 function (because init/1 set the server timeout to zero): a
kind of deferred initialization. All this clause does is use gen_tcp:accept/1 to wait for
a TCP connection on your listening socket (and the server will be stuck here until that
happens). After a connection is made, the timeout clause returns and signals to the
gen_server container that you want to continue as normal with an unchanged state.

gen_server timeout events
When a gen_server has set a timeout, and that timeout triggers, an out-of-band mes-
sage with the single atom timeout is generated, and the handle_info/2 callback
is invoked to handle it. This mechanism is usually used to make servers wake up
and take some action if they have received no requests within the timeout period.

Listing 3.5 handle_info/2, terminate/2, and code_change/3 callback functions

Increments
request
count after
RPC
requests

Obligatory but
uninteresting
for now

114 CHAPTER 3 Writing a TCP-based RPC service
(You don’t need to remember the socket handle returned by accept, because it’s also
included in each data package.)

 That finally brings you to the clause that matches messages on the form {tcp,
Socket, RawData}. This is the kind of message that an active socket sends to its owner
when it has pulled data off the TCP buffer. The RawData field is what you’re interested
in; it’s the ASCII text that the client has sent to you. (You’re finally getting back to the
purpose of the program: to handle RPC requests over TCP!) The bulk of the code is in
a helper function do_rpc/2 that’s shown in listing 3.6; all you need to do here after
the RPC has been executed is to update the request count in the server state (see sec-
tion 2.11.3 for details about updating record fields) and return control to the
gen_server container.

THE INTERNAL FUNCTIONS

If you’ve come this far in the chapter, you’re excused if you aren’t too interested in
how you implement the do_rpc/2 function. In that case, you can skip directly to sec-
tion 3.3 (perhaps stopping to type in the code from listing 3.6 first) and look at how
you run this server and talk to it over TCP. But if you want to see a few techniques for
handling input, parsing, and performing meta-calls, keep reading.

%%%===
%%% Internal functions
%%%===

do_rpc(Socket, RawData) ->
 try
 {M, F, A} = split_out_mfa(RawData),
 Result = apply(M, F, A),
 gen_tcp:send(Socket, io_lib:fwrite("~p~n", [Result]))
 catch
 _Class:Err ->
 gen_tcp:send(Socket, io_lib:fwrite("~p~n", [Err]))
 end.

split_out_mfa(RawData) ->
 MFA = re:replace(RawData, "\r\n$", "", [{return, list}]),
 {match, [M, F, A]} =
 re:run(MFA,
 "(.*):(.*)\s*\\((.*)\s*\\)\s*.\s*$",
 [{capture, [1,2,3], list}, ungreedy]),
 {list_to_atom(M), list_to_atom(F), args_to_terms(A)}.

args_to_terms(RawArgs) ->
 {ok, Toks, _Line} = erl_scan:string("[" ++ RawArgs ++ "]. ", 1),
 {ok, Args} = erl_parse:parse_term(Toks),
 Args.

To give a quick overview, the code in listing 3.6 has four main parts: splitting the
input, parsing the function arguments, executing the requested call, and sending
back the result. First, notice that the inner workings of the do_rpc/2 function are

Listing 3.6 Internal functions

Performs
requested call

B

C Outputs
result

Strips
CRLF

D

Parses request
stringE

115Implementing the RPC server
wrapped in a try expression (section 2.8.2). Because you’re working on data from the
outside world, several things could go wrong, and this is an easy way to ensure that if
the code crashes (throws an exception), you print the error message and continue
rather than crashing the entire server process. On the other hand, this doesn’t protect
against correct but malignant requests, as you’ll see in section 3.3.

 First you use the standard library re module (Perl-compatible regular expressions)
to strip the trailing carriage return and line feed D. This should leave only text on the
form Module:Function(Arg1,...,ArgN). according to the protocol defined at the
start of section 3.1. (Otherwise, you’ll crash at some point, and the try expression will
handle it.)

 Next, you use the re module again E to extract the Module, Function, and
Arg1,...,ArgN parts. The details of using regular expressions are beyond the scope of
this book, so check the standard library documentation for more information. The
module and function names should have the form of Erlang atoms, so all you need to
do is convert them from strings to atoms.

 But the arguments could be much more complicated. They’re a comma-separated
list of terms, and there could be zero, one, or more. You handle them in args_to_
terms/1, where you use a couple of standard library functions to first tokenize the
string (placed within angle brackets to make a list, and ended with a period character)
and then parse the tokens to form a real Erlang list of terms.

Check the borders
Checking data as it passes from the untrusted world into the trusted inner sanctum
of your code is a fundamental design principle of Erlang programs. After you verify
that the data conforms to your expectations, there is no need to check it repeat-
edly: you can code for the correct case and let supervision take care of the rest.
The reduction in code size from using this technique can be significant, and so can
the reduction in number of programming errors, due to the improved readability.
Any remaining errors, because you aren’t masking them, show up as process
restarts in your logs, which allows you to correct the problems as they occur. Let
it crash!

I/O lists: easy scatter/gather
It’s worth noting that the result from io_lib:fwrite/2 might not be a normal
string (that is, a flat list of characters). It can still be passed directly to a socket,
though; it’s what is known as an I/O list: a possibly nested, deep, list that may
contain both character codes and chunks of binary data. This way, no intermediate
concatenated lists need to be created in order to output a number of smaller I/O
lists in sequence: make a list of the segments, and pass the entire thing to the
output stream. This is similar to the scatter/gather techniques found in modern
operating systems.

116 CHAPTER 3 Writing a TCP-based RPC service
The module name, function name, and list of argument terms are then passed to the
built-in function apply/3 B. This looks much like spawn/3 (see section 2.13) but
doesn’t start a new process—it executes the corresponding function call. (It’s what we
call a meta-call operator.) The value returned from this function call is finally format-
ted as text by io_lib:fwrite/2 C and sent back over the socket as the response to
the user—a remote procedure call has been performed!

 Your RPC server is now done and ready to try out. In the next section, you’ll give it
a trial run and see if it works.

3.3 Running the RPC server
The first step in getting this running is compiling the code. (As we said at the start of
the chapter, the complete source files are available online, at GitHub.com.) Run the
command erlc tr_server.erl. If it completes without any errors, you have a file
named tr_server.beam in your current directory. Start an Erlang shell in the same
directory, and start the server, as follows:

Eshell V5.6.2 (abort with ^G)
1> tr_server:start_link(1055).
{ok,<0.33.0>}

We picked port 1055 arbitrarily here because it’s easy to remember (10 = 5 + 5). The
call to start_link returns a tuple containing ok and the process identifier of the new
server process (although you don’t need that now).

 Next, start a telnet session on port 1055. On most systems (not all Windows ver-
sions, however—download a free telnet client such as PuTTY if needed), you can do
this by entering telnet localhost 1055 at a system shell prompt (not in your Erlang
shell). For example:

$ telnet localhost 1055
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
init:stop().
ok
Connection closed by foreign host.

The first session was a success! Why? Let’s inspect the dialog and see exactly
what happened.

 First, you use telnet to connect via TCP on port 1055 to the running tr_server.
After you connect, you enter the text init:stop()., which is read and parsed by the
server. You expect this to result in the server calling apply(init, stop, []). You also
know that init:stop/0 returns the atom ok, which is exactly what you see printed as
the result of your request. But the next thing you see is “Connection closed by for-
eign host.” This was printed by the telnet utility because the socket it was connected
to suddenly closed at the remote end. The reason is that the call to init:stop() shut
down the entire Erlang node where the RPC server was running. This demonstrates
both that your RPC server works and just how dangerous it can be to give someone

117A few words on testing
unrestricted access to run code on your node! In an improved version, you might
want to limit which functions a user can call and even make that configurable.

 To conclude, in not that many lines of code, you’ve built an application that can
(with a bit of tweaking) be useful in the real world. And more important, it’s a stable
application that fits into the OTP framework.

3.4 A few words on testing
Before you’re done, there is one more thing that you as a conscientious developer
should do: add some testing. Many would argue that you should have started with test-
ing, writing your tests first to guide your development. But adding test code to the
examples would clutter the code and distract from the main points we’re trying to
make; this is, after all, a book about the OTP framework, not about testing. Also, the
art of writing tests for concurrent, distributed systems like the ones you’re creating
here could easily be the subject of a book or two.

 Two levels of testing are of immediate interest to a developer: unit testing and inte-
gration testing. Unit testing is focused on creating tests that are ready to run at the
press of a button and that test specific properties of a program (preferably, at most
one property per test). Integration testing is more about testing that a number of sep-
arately developed components work together and may require some manual work to
set up everything before the tests can run.

 The Erlang/OTP standard distribution includes two testing frameworks: EUnit and
Common Test. EUnit is mainly for unit testing and focuses on making it as simple as
possible to write and run tests during development. Common Test is based on the so-
called OTP Test Server and is a more heavy-duty framework that can run tests on one
or several machines while the results are being logged to the machine that is running
the framework; it’s something you might use for large-scale testing like nightly integra-
tion tests. You can find more details about both these frameworks in the Tools section
of the Erlang/OTP documentation.

 We show briefly here what you need to do to write a test case using EUnit,
because it’s so simple. First, put this line of code in your source code, just after the
–module(...) declaration:

-include_lib("eunit/include/eunit.hrl").

A server should not call itself
With your RPC server, you can try calling any function exported from any module
available on the server side, except one: your own tr_server:get_count/0. In
general, a server can’t call its own API functions. Suppose you make a synchronous
call to the same server from within one of the callback functions: for example, if
handle_info/2 tries to use the get_count/0 API function. It will then perform a
gen_server:call(...) to itself. But that request will be queued up until after the
current call to handle_info/2 has finished, resulting in a circular wait—the server
is deadlocked.

118 CHAPTER 3 Writing a TCP-based RPC service
That was the hard part. Next, think of something to test; for example, you can test that
you can successfully start the server. You must put the test in a function, which takes
no arguments and whose name must end with _test. EUnit detects all such functions
and assumes they’re tests. A test succeeds if it returns some value and fails if it throws
an exception. Hence, your test can be written

start_test() ->
 {ok, _} = tr_server:start_link(1055).

Recall that = is the match operator, which throws a badmatch error if the value of the
right side doesn’t match the pattern on the left. This means the only way this func-
tion can return normally is if the start operation succeeds; in every other case,
start_test() results in an exception. Simple as that!

 To run this test, you have to recompile the module. Then, from the Erlang shell,
you can say either

eunit:test(tr_server).

or

tr_server:test().

This has the same effect: it runs all the tests in the tr_server module. Note that you
never wrote a function called test(): EUnit creates this automatically, and it also
ensures that all your test functions are exported.

 Many more features in EUnit help you write tests as compactly as possible, includ-
ing a set of useful macros that you get automatically when you include the eunit.hrl
header file as you did earlier. We suggest that you read the EUnit Users Guide in the
Erlang/OTP documentation for more information.

3.5 Summary
We’ve covered a lot of material in this chapter, going through all the basics of OTP
behaviours and the three parts that make them what they are: the interface, the con-
tainer, and the callback module. We’ve specifically covered the gen_server behaviour
at some depth, through a real-world example.

 In the next chapter, you’ll hook this little stand-alone generic RPC server into a
larger structure that will make it an enterprise-grade OTP application. When that’s
complete, your server will be part of an application that is versioned, fault tolerant,
ready for use by others in their projects, and ready to go to production. This will add
another layer to your basic understanding of Erlang/OTP as a framework by teaching
you the fundamental structure for fault tolerance (the supervisor) and by teaching you
how to roll up your functionality into nice OTP packages.

OTP applications and
supervision
The entire purpose of the Erlang/OTP ecosystem is building stable, fault-tolerant
systems. We introduced the core concepts of this ecosystem in chapter 3, building a
simple RPC server; we now take it further and teach you how to pack this up prop-
erly and make it a fault-tolerant, production-quality service. We do this by introduc-
ing two new fundamental concepts:

■ Applications are the way you package related modules in Erlang. The focus
here isn’t on packaging for distribution but on being able to treat a bunch of
modules as a single entity. Although OTP applications can be merely some
library code for others to call, more often they’re like creatures with a life of
their own: they start up, do what they’re designed to do, and shut down.
Some can have multiple running instances, and some are limited to one
instance at a time.

■ Supervisors are one of the most important features of OTP. They monitor
other processes and take action if anything goes wrong, restarting the failed

This chapter covers
■ An introduction to OTP applications
■ Fault tolerance with OTP supervisors
■ Generating documentation with EDoc
119

120 CHAPTER 4 OTP applications and supervision
process or possibly escalating the problem to a higher level. Layering supervi-
sors into supervision trees allows you to create highly fault-tolerant systems.

In this chapter, we don’t go too deeply into the theory and practice of applications
and supervisors. We mostly concentrate on how to armor the module you created in
chapter 3, wrapping it up as an OTP application and setting up a supervisor for it. We
go over the most basic aspects of these tasks and explain what you’re doing at each
step. Later, in part 2 of this book, we go into more detail and talk about all the inter-
esting options that are available for advanced supervision, for handling code within
applications, and even for packaging multiple applications into a larger structure
called a release.

4.1 OTP applications
We start by talking about how to organize your code and get it to fit nicely into a nor-
mal Erlang/OTP system. For many reasons, this topic tends to cause a lot of confusion
for people who are new to the system. When we first started working with Erlang, OTP
was dark magic, poorly documented and with few examples. We all traveled similar
paths to gain knowledge of this powerful system, involving a lot of trial and error and
a few helpful hints from various old-timers on the Erlang mailing list. Fortunately,
when you get your mind around the basic concepts, it’s pretty simple.

Superficially, OTP applications are just groups of related code. They can be what we
refer to as library applications: nothing but a collection of modules to be used by other
applications. (The Erlang/OTP stdlib is an example of a library application.) More
often, OTP applications are living things that are started, run for some time, and even-
tually shut down. We refer to these as active applications. An active application has a root
supervisor whose job is to manage the processes of the application. We explain supervi-
sors in more detail in section 4.2.

4.1.1 The organization of an OTP application

Creating an OTP application consists mostly of setting up a standard directory struc-
ture and writing some application metadata. This metadata tells the system what it

Terminology: applications
In the context of OTP, the word application has a specific meaning: an application
is a software component consisting of a number of modules bundled together with
a few additional metadata files, and organized on disk according to certain conven-
tions. This allows the system to know which applications are currently installed,
and, for example, lets you start or stop an application by its name.

From now on, you can assume that we’re talking about applications in the OTP
sense, except when otherwise clear from the context.

121OTP applications
needs to know to start and stop the application. It also specifies the dependencies of
the application, such as what other applications need to be present or started before-
hand. For active applications, there is also a little coding involved, but we get to that in
section 4.1.3.

 Erlang/OTP applications use a simple
directory layout, shown in figure 4.1. Most
people who are familiar with Erlang but
know nothing else about OTP still use this
structure for their applications, but with-
out any metadata.

 You should of course replace
<application-name> with the name of
your application; in this case it will be
tcp_rpc. The [-<version>] part is optional: it
isn’t used in development, but when you
ship an application you usually give the
directory a name like tcp_rpc-1.0.2 to
make code upgrades easier. The names of the subdirectories in figure 4.1 are somewhat
self-explanatory, but table 4.1 describes them in more detail.

Active versus library applications
Both active applications and library applications use the same directory layout
and metadata files, and both fit into the overall OTP application framework. The
main difference is that active applications have a life cycle and must be started
in order to be useful. By contrast, library applications are a passive collection of
modules to be used by other applications, and they don’t need to be started or
stopped. Because the focus of this book is on writing active applications, when
we say application you can assume that is what we mean unless otherwise
clear from the context.

Table 4.1 Subdirectories of the application directory

Directory Description

doc Documentation. If you generate documentation from EDoc, you put your over-
view.edoc file here, and the remaining files are autogenerated.

ebin Compiled code (the .beam files). It’s also the location of the .app file, which
contains the application metadata.

include Public header files. Any .hrl file that is part of your public API should be kept
in this directory. Private .hrl files that are only used within your code and
aren’t intended for public consumption should be kept under src with the rest
of your source code.

Figure 4.1 Directory layout of an OTP
application. The directory name may include a
version number. The standard subdirectories are
doc, ebin, include, priv, and src. Only ebin is
strictly required.

122 CHAPTER 4 OTP applications and supervision
Go ahead and create this directory structure now, moving your source code from
chapter 3 into the src directory.

4.1.2 Adding the application metadata

Now that you have the expected directory layout for your application, you can work
on adding the metadata that OTP requires. This is expressed as plain Erlang terms, in
a text file called <application-name>.app stored in the ebin directory. The following
listing shows the metadata for your tcp_rpc application, in the file ebin/tcp_rpc.app.

%% -*- mode: Erlang; fill-column: 75; comment-column: 50; -*-

{application, tcp_rpc,
 [{description, "RPC server for Erlang and OTP in action"},
 {vsn, "0.1.0"},
 {modules, [tr_app,
 tr_sup,
 tr_server]},
 {registered, [tr_sup]},
 {applications, [kernel, stdlib]},
 {mod, {tr_app, []}}
]}.

This .app file is used by OTP to understand how the application should be started
and how it fits in with other applications in the system. To repeat what we said ear-
lier, the focus here isn’t first and foremost on making distribution packages, but
on creating larger units of functionality that can be started, stopped, supervised,
and upgraded.

 The format of this .app (pronounced “dot app”) file is straightforward. Apart
from normal Erlang comments, it contains a single Erlang term terminated by a
period: a 3-tuple {application, ..., ...}.. The second element is the name of
the application, as an atom; in this case tcp_rpc. The third element is a list of
parameters expressed as pairs {Key, Value}, some of which are required and oth-
ers of which aren’t. Those included here are the most important ones you need in

priv Odd bits that need to be distributed along with your application. These range
from template files to shared objects and DLLs. The location of an applica-
tion’s priv directory is easy to find: call the function code:priv_dir
(<application-name>), which returns the full path of the priv directory
as a string.

src Source code related to your application. That means your Erlang .erl files and
internal .hrl files, but also any ASN.1, YECC, MIB, and other source files. (If
you don’t distribute your source code along with your application, this direc-
tory is omitted or left empty in your deliverables.)

Listing 4.1 Application metadata file: ebin/tcp_rpc.app

Table 4.1 Subdirectories of the application directory (continued)

Directory Description

123OTP applications
most applications. We get back to these parameters in more detail in part 2 of this
book. Table 4.2 describes the parameters used here, in the order they appear in list-
ing 4.1.

 So far, you’ve created the directory structure and put the metadata in place. (If you
didn’t create the ebin/tcp_rpc.app file yet, do that before you go on.) But you haven’t
done everything you need to make a complete application. As mentioned in the
description of the mod parameter in table 4.2, you also need a launching point for
your application, in the form of a module that implements the application behav-
iour. This will be your task in the next section.

4.1.3 The application behaviour

Every active application needs one module that implements the application behav-
iour. This module provides the startup logic for the system. At a minimum, it provides
the point from which the root supervisor is started; that supervisor is the grandparent

Table 4.2 Main parameters of a .app file

Part Description

description A short description of your application. Usually a sentence or two, but it can
be as long as you like.

vsn The version of your application. The version string can be anything you like,
but we suggest that you try to stick with the normal numbering schema
<major>.<minor>.<patch>: even if Erlang/OTP has no problems with
any version string you use, some programs try to parse this string for their
own purposes and may get hiccups otherwise.

modules A list of all the modules in your application. It’s tedious to maintain, but
there are some tools available to help you. The order of the list doesn’t mat-
ter, but it can be easier to maintain if it’s kept alphabetically ordered.

registered Recall that Erlang processes can be registered (section 2.13.3), allowing
them to be addressed by name. This is typically done for system services
and similar. Including a list of registered names in this entry in the .app file
doesn’t perform the actual registration, but it allows the OTP system to
know which applications register what names, which helps with things such
as system upgrades and makes it possible to give early warnings for dupli-
cate registered names.

applications All the applications that need to be started before this application can
start. Applications usually have dependencies. Because they’re living sys-
tems, active applications expect these dependencies to be available and
running when they themselves start. The order of the list doesn’t matter—
OTP is smart enough to look at the entire system and understand what
needs to be started when.

mod Tells the OTP system how to start your application. The value is a tuple con-
taining the module name along with some optional startup arguments.
(Don’t use these arguments for general configuration—use a proper config
file instead.) The module named here must implement the application
behaviour, as explained in section 4.3.1.

124 CHAPTER 4 OTP applications and supervision
of all the processes that will be part of the application. The application behaviour
module may also do other things depending on the needs of your system. We explain
more about supervisors in section 4.2. Right now, we concentrate on the application
behaviour implementation in the file src/tr_app.erl, as shown (stripped of com-
ments) in the following listing.

-module(tr_app).

-behaviour(application).

-export([
 start/2,
 stop/1
]).

start(_Type, _StartArgs) ->
 case tr_sup:start_link() of
 {ok, Pid} ->
 {ok, Pid};
 Other ->
 {error, Other}
 end.

stop(_State) ->
 ok.

This small module should be easy to understand, but look back to chapter 2 if you
need a refresher on behaviour implementation modules. In this case, you’re imple-
menting the application behaviour, which requires you to export the callbacks
start/2 and stop/1. (This module has no user API apart from those callbacks, so
there are no other exports.)

 The stop/1 callback is simple in this case: you don’t need to do anything special
on shutdown, so you ignore the input parameter and return the atom ok. The only
real work you need to do is in the start/2 function. This is called when the OTP sys-
tem wants to start your application, and it must perform the actual startup and return
the process ID of the root supervisor as {ok, Pid}. You can do any other startup tasks
here as well, such as read a configuration file, initialize an ETS table, and so on. For
this simple tcp_rpc application, all you need to do is start the root supervisor; you do
that here by calling the function tr_sup:start_link(), which we haven’t shown yet.
(You’ll implement the supervisor module tr_sup shortly, in section 4.2.) Afterward,
you check the form of the value returned by start_link() and signal an error if it
doesn’t look right. The input parameters to start/2 can be ignored for now; but in

Naming the application behaviour module
Using the name <application-name>_app is a common convention for the module
that implements the application behaviour.

Listing 4.2 Application behaviour: src/tr_app.erl

Behaviour
declaration

Callbacks of application
behaviour

Starts root
supervisor

125Adding fault tolerance with supervisors
case you’re curious, Type is usually normal but can also be {failover,...} or {take-
over,...}, and StartArgs is whatever arguments you specify in the mod parameter in
the .app file.

4.1.4 Application structure summary

To conclude, you need to do three things to create an OTP application:

1 Conform to the standard directory structure.
2 Add the application metadata in the form of the .app file.
3 Create a module that implements the application behaviour, which is respon-

sible for starting your application.

The one detail that we’ve left out is how to start a root supervisor, as required for the
start/2 function of the application behaviour. The purpose of an active application is
to run one or more processes to do some work. In order to have control over those
processes, they should be spawned and managed by supervisors: processes that imple-
ment the supervisor behaviour.

4.2 Adding fault tolerance with supervisors
Supervisors are one of the core things that make
Erlang/OTP what it is. An active OTP applica-
tion consists of one or more processes that do the
work. Those processes are started indirectly by
supervisors, which are responsible for supervising
them and restarting them if necessary. A run-
ning application is essentially a tree of processes,
both supervisors and workers, where the root of
the tree is the root supervisor. Figure 4.2 illus-
trates a possible process structure for a hypotheti-
cal application.

 You create supervisors by writing modules that
implement the supervisor behaviour. If your
worker processes are already based on OTP behav-
iours (like tr_server), then setting up a supervi-
sor is pretty easy. What the standard OTP worker
behaviours gen_server, gen_event, and gen_fsm
do in order to be easily hooked in to a supervi-
sion tree isn’t deep magic—it mostly involves
conforming to some interfaces and return-value
conventions and setting up process links properly.
Fortunately, it’s something you don’t need to know about; if you occasionally need to
include code that isn’t based on a standard behaviour in the supervision tree, you can
do so via the supervisor_bridge adapter in the standard library.

Figure 4.2 Process tree for a
hypothetical application. This
example has a root supervisor with
one immediate worker process and
one subsystem supervisor, the latter
with two workers.

126 CHAPTER 4 OTP applications and supervision
4.2.1 Implementing a supervisor

The implementation of the root supervisor for the tcp_rpc application, in the file src/
tr_sup.erl, is shown in listing 4.3. It’s slightly more complicated than the tr_app mod-
ule. In particular, this module has an API function, not just callbacks for the behaviour
interface. This is so you can start the supervisor from the tr_app module. (In princi-
ple, the tr_sup:start_link() function could be part of tr_app:start/2, but we pre-
fer to separate the responsibilities like this, rather than including details about the
supervisor in the _app module.)

-module(tr_sup).

-behaviour(supervisor).

%% API
-export([start_link/0]).

%% Supervisor callbacks
-export([init/1]).

-define(SERVER, ?MODULE).

start_link() ->
 supervisor:start_link({local, ?SERVER}, ?MODULE, []).

init([]) ->
 Server = {tr_server, {tr_server, start_link, []},
 permanent, 2000, worker, [tr_server]},
 Children = [Server],
 RestartStrategy = {one_for_one, 0, 1},
 {ok, {RestartStrategy, Children}}.

All that the start_link() API function has to do launch the supervisor is to call the
library function supervisor:start_link/3, passing it the name of this module b.
(Note that this is similar to how you start your tr_server in listing 3.3, by calling
gen_server:start_link/4.) The tuple {local, ?SERVER} in the first argument to the
call tells the library to automatically register the supervisor process on the local node
under the name tr_sup (because you define SERVER to be the same as MODULE). The
third argument is passed to the init/1 callback function on startup. Because your
init/1 doesn’t need any input, you leave this as an empty list.

 Most of the interesting stuff in this case is in the function init/1. The value
you return from this function tells the OTP supervisor library exactly how the child

Naming the root supervisor behaviour module
Using the name <application-name>_sup is a common convention for the module
that implements the root supervisor behaviour for an application.

Listing 4.3 Root supervisor implementation

Starts supervisorB

Says how to start and
manage children

C

Says how supervisor
should behave

D

Returns supervisor specification

127Adding fault tolerance with supervisors
processes should be started and managed C and how the supervisor process itself
should behave D.

 You can do a lot with supervisors, and we go into more detail about that in part 2 of
this book; but for the moment, you only need you to understand what you’re doing in
this particular instance. Let’s start with the easy part: the restart strategy.

4.2.2 The supervisor restart strategy

The value that should be returned from the init/1 callback function (unless there is
a problem) has the form {ok, {RestartStrategy, Children}}, where Children is a
list of child specifications; these can get complicated, and we explain them in the next
section. The RestartStrategy is easier: it’s a 3-tuple {How, Max, Within}. In this case,
you write

RestartStrategy = {one_for_one, 0, 1}

You choose a one_for_one strategy here for the How. That means if a child process
dies, that process—and only that one—is restarted. If other children are still running,
they aren’t involved in the restart, as illustrated in figure 4.3. (Other strategies are
available, which we return to later in this book. For example, they allow the child pro-
cesses to be restarted as a group if any one of them should die.)

 The values Max and Within (here set to 0 and 1, respectively) are related: together,
they specify the allowed restart frequency. The first number indicates the maximum
number of restarts, and the second number indicates the timeframe. For instance, if
Max=10 and Within=30, you allow at most 10 restarts within any period of 30 seconds.
If this limit is exceeded, the supervisor terminates itself and all its child processes and
propagates the failure up the supervision tree. These numbers are highly dependent
on your application, and it’s hard to recommend good all-round defaults, but 4
restarts per hour (3600 seconds) is often used in production systems. Picking 0 and 1
as you do here means you allow no automatic restarts for now, because doing so would
make it harder to see any problems in your code. In chapter 7, we talk about error
logs and observing restarts.

 Next, you get to the Children part of the value returned from init/1. This is a list
of tuples, one per supervised child process. In this case, you have a single child: your
server. But you can list as many here as you like; it’s not uncommon to have half a
dozen or so child processes under a single supervisor. It’s also possible to add and
remove children dynamically after startup, but in the majority of cases you only need a
static list like this.

?! Figure 4.3 One-for-one restart
strategy: The supervisor treats its
children as independent when any
of them needs to be restarted.
Healthy children aren’t affected by
a crashing sibling.

128 CHAPTER 4 OTP applications and supervision
4.2.3 Writing the child specification

A child specification is a tuple that describes a process you want the supervisor to man-
age. In most supervisors, the child processes are started when the supervisor starts and
exist only for the life of the supervisor. The init/1 function gives the following
description for the single process you want to supervise:

Server = {tr_server, {tr_server, start_link, []},
 permanent, 2000, worker, [tr_server]}

A child specification has six elements: {ID, Start, Restart, Shutdown, Type, Modules}:

■ The first element, ID, is a term that the supervisor uses to identify the specifica-
tion internally. Here you use the atom tr_server, the name of your module, to
keep things simple.

■ The second entry, Start, is a triple {Module, Function, Arguments} that is
used to start the process. That is, the first element is the name of the module,
the second is the name of the function, and the third element is the list of argu-
ments to the function, just like when you call the built-in function spawn/3. In
this case, you want the supervisor to call tr_server:start_link() in order to
start the child process (that is, your tr_server).

■ The third element, Restart, says whether this is a child that should be restarted
upon failure. You specify permanent, because you want this to be a long-lived
service that should always be restarted if it terminates for any reason. (The
other options are temporary for processes that should never be restarted, and
transient for processes that should be restarted only if they terminate abnor-
mally but not upon normal termination.)

■ The fourth element, Shutdown, says how the process may be killed. Here you
use an integer (2000), indicating that this is a soft shutdown and the pro-
cess has that many milliseconds to shut itself down before it’s uncondition-
ally killed. The alternatives are brutal_kill, meaning that the process will
always be terminated immediately upon shutdown; and infinity, which is
used mainly when the child itself is a supervisor and should be given all the
time it needs.

■ The fifth value, Type, indicates whether the process is a supervisor or a
worker. A worker process is any process in a supervision tree that doesn’t imple-
ment the supervisor behaviour. You can chain supervisors together into a hier-
archy as you see fit (see figure 4.2), providing more fine-grained process
control as your applications get more complex. The Type field allows a supervi-
sor to know if one of its children is also a supervisor. In this case, the server pro-
cess is clearly a worker.

■ The sixth option lists the modules that this process depends on. This informa-
tion is used only during hot code upgrades and indicates to the system in what
order modules should be upgraded. Generally, you only need to list the main
module for the child processes, in this case tr_server.

129Starting the application
That was a lot; but thankfully, after you’ve done it once, you’ll have a template to look
at when you create your next supervisor. You can come back here if you forget how to
write a child specification. The advantage is that you get a lot of functionality out of
those two lines of code.

 With that, you’re done! There was a lot of explanation for those two tiny modules,
but now you’re over the greatest threshold. We hope you have a clearer picture of how
all these things fit together and what they can do for you.

4.3 Starting the application
Your application is complete: you have the directory structure laid out, your metadata
in place, you’ve written an application launching point, and you’ve implemented a
root supervisor. It’s time to try running your first proper OTP application.

 First, you need to compile all the code in the src directory, generating .beam files
that should go in the ebin directory. If your system is set up properly with erlc in the
search path, the following command line does the trick, assuming that the application
root directory tcp_rpc is your current directory:

$ erlc –o ebin src/*.erl

(See section 2.3.6 for more details about using erlc.) You can also compile the mod-
ules from within the Erlang shell with src as the current directory and move the .beam
files manually to the ebin directory afterward; but it’s time that you learn to use erlc
(preferably in combination with a build tool like Make, Cons, SCons, or Rake, but that
is beyond the scope of this book).

 When the .beam files are in place, start Erlang and ensure that the ebin directory
is in its code path, like this:

$ erl –pa ebin

(-pa stands for path add, adding a directory to the beginning of the code path.) On
Windows, use werl instead of erl; see section 2.1.1.

 With the Erlang shell up and running, you have to do only one thing to launch
the application: call the standard library function application:start/1, passing it the
application name tcp_rpc, like this:

Eshell V5.5.5 (abort with ^G)
1> application:start(tcp_rpc).
ok

Looks like it started without a hitch. It’s not surprising—you did everything by the
book. To convince yourself that it’s up and running and doing what it should, try it by
talking to it over telnet as you did in section 3.3.

 The thing you may be wondering right now is how it found the modules, when all
you told it was to start the tcp_rpc application, and you have no module with that
name. Remember the .app file (listing 4.1)? Just as Erlang searches the code path for
.beam files in order to load modules, the application:start/1 function searches the
code path for .app files; and because you added the ebin directory to the path, it

130 CHAPTER 4 OTP applications and supervision
found your metadata file ebin/tcp_rpc.app, which told it all it needed to know—in
particular, which module to use (tr_app) to kick start the entire application.

 You’ve created your first OTP application! Not all that difficult, was it? Before we
leave this subject, you can do one more thing: generate the documentation.

4.4 Generating documentation with EDoc
In section 3.2.2, we explained how you can annotate your code with EDoc comments
to create documentation from the source code. Now that you’ve defined your applica-
tion, generating the documentation files is easy. If you’ve started erl, run the follow-
ing in the Erlang shell:

2> edoc:application(tcp_rpc, ".", []).
ok

Now, you should be able to open the file doc/index.html in a web browser and check
out the results. You’ll find a bunch of other generated files if you look under doc, but
they can all be accessed via the index.html file.

 Note that this works even if you haven’t written any EDoc annotations in the
source code. The documentation will be basic, showing what modules you have and
what functions are exported from those modules; but even that is usually much bet-
ter than nothing.

 The empty list [] is for additional options to EDoc (none right now), and the
period (.) means the application is supposed to be found in the current directory.
You have to specify this because the relative path ebin that you used with the –pa
flag doesn’t provide enough clues to the system. But if you exit the Erlang shell,
change directory to the level above the application directory, and then start Erlang
again like this

$ erl –pa tcp_rpc/ebin

you should be able to use a simpler form of the function you used earlier:

Eshell V5.5.5 (abort with ^G)
1> edoc:application(tcp_rpc).
ok

The system is now able to figure out on its own which path is associated with the
tcp_rpc application name. (See the standard library function code:lib_dir/1 for
details.) Note that this works even if the directory name contains a version number
(see figure 4.1). Typically, your code path will contain mainly absolute paths to the
ebin directories of all installed applications; the three-argument version of the func-
tion is mostly used in build scripts.

 Now you have a complete, working application, which also has some basic docu-
mentation that you can build on by adding more EDoc comments. Time to wrap up
this chapter!

131Summary
4.5 Summary
In this chapter, we’ve gone over the basics of OTP applications, how they’re struc-
tured, and what you need to do to turn your code into a full-fledged application. We
hope you’ve tried the examples as you’ve worked your way through the material; you
should at least download the source code as described at the start of chapter 3, and
compile and run it.

 Conforming to these structures and basing your code on the industrial-grade
libraries of OTP will increase the basic level of fault tolerance for your system by an
order of magnitude and help you produce consistent, reliable, and understandable
software. But creating applications isn’t all there is to packaging in OTP. In chapter 10,
we cover another type of software package called a release. Releases aggregate a num-
ber of applications to form a complete software service in Erlang. When we’re done
with that, you’ll know how to boot a full Erlang system the proper way; and you’ll
understand why the way you started your application earlier by calling application:
start/1 is only for manual testing, and not for production systems.

 That said, having read the last two chapters, you’ve taken the most important step
towards creating production-quality Erlang/OTP software. Before we continue on the
topic of how to build industrial-grade Erlang services in part 2 of the book, we’ll take a
short break in the next chapter in order to show you a few useful standard tools that
you can use to visualize what’s going on in your Erlang system.

Using the main graphical
introspection tools
You’ve learned a lot about Erlang and OTP at this point. In the last chapter, we
introduced OTP applications and supervisors. We’ve talked about how these are liv-
ing things in an Erlang system. In this chapter, we show you. Erlang provides a
number of graphical tools for inspecting a running system that are a great help for
understanding what’s going on. They’re really good at helping you visualize things
like processes, applications, and supervisor hierarchies. The first tool we introduce
is called Appmon; it’s specifically made for looking at things from an application
and supervision perspective.

5.1 Appmon
As the name indicates, Appmon is a tool for monitoring OTP applications. It lets
you visualize the applications that are running in the system, as well as their

This chapter covers
■ Monitoring applications with Appmon and

WebAppmon
■ Managing processes with Pman
■ Using the source-level debugger
■ Inspecting tables with the Table Viewer
■ Using the Erlang Toolbar
132

133Appmon
supervisor hierarchies; see the current status of the processes; and perform some
basic operations on them.

5.1.1 The Appmon GUI

Before we do too much explaining, let’s get Appmon running. Start an Erlang shell,
and enter appmon:start():

Eshell V5.7.4 (abort with ^G)
1> appmon:start().

After a second or two, a window similar to figure 5.1 should pop up. This is Appmon’s
main window, which shows all the running applications in the system. Right now, that
is just the kernel application. The window also shows the overall system load in the bar
on the left.

 Across the top is a row of menu items. You can use the File menu options to exit
Appmon or close the window. You’ll also find a Show List Box menu item, which
opens another window that lists all the applications in a more compact way. This can
make it easier to select a particular application when you have a lot of things running
in your system and the main window gets cluttered.

 The Actions menu options let you restart the system (stops all applications and
cleans up before starting the applications again), reboot the entire system (restarts
the Erlang VM—you have to configure a heart command for this to work), or stop the
system. There’s also an item labeled Ping, which reestablishes a lost connection in a
distributed setting. (We discuss distributed Erlang in chapter 8.)

 The Options menu lets you select whether the system load should be measured in
terms of CPU time or in terms of the number of processes queued up to get access to
the CPU. In a distributed Erlang system, it also lets you decide whether you want a sin-
gle window showing one node at a time or multiple windows showing one node each.
The Nodes menu lists the available known nodes: currently, only nonode@nohost,
which is your local system running in nondistributed mode. These things will all be

Figure 5.1 The Appmon main window. On the left is a system load bar (currently at zero).
On a default Erlang system, only the kernel application is started.

134 CHAPTER 5 Using the main graphical introspection tools
clear to you after chapter 8, but what it boils down to is that you can easily observe and
control applications that are running on a different machine in your network.

 To have something familiar to study, let’s start the tcp_rpc application that you
created in the previous chapter. Do that now, just as you did in section 4.3. Your main
Appmon window should change to show tcp_rpc beside the kernel application, as
shown in figure 5.2.

 The application names are buttons that you can click to open a separate window
with information about that particular application. Click the tcp_rpc button. The
new window should be similar to that in figure 5.3, showing the supervision structure
of the tcp_rpc application. You may need to resize the window manually to see the
whole structure.

 Those two topmost, mysterious, unnamed processes are the application master pro-
cesses. They’re part of the application behaviour container and were spawned by the
system when the application started. You don’t need to know anything more about
them except that they call the start function of your application behaviour: in this
case, tr_app:start/2 (see section 4.1.3). When the application is shutting down, they
similarly call tr_app:stop/1 as the last thing they do after all the other application
processes have been stopped.

 The third process from the top is more interesting: this is your root supervisor,
which was started by tr_sup:start_link() (listing 4.3). You can see that it in turn
has a child tr_server, which is the name you gave it in the child specification in
tr_sup:init/1.

 A row of buttons appears across the top of the application window. You use them
to specify what should happen if you click one of the processes shown in the window.
You first click a button to choose a specific mode of action (by default, the mode is
Info), and then you click the process on which you want to perform the action. Click
Info for the tr_server process: doing so brings up a new window like the one in fig-
ure 5.4, showing a number of details about the process and what it’s currently doing.

Figure 5.2 The Appmon main window after starting the tcp_rpc application. You can
click an application’s name to view the application in more detail.

135Appmon
Figure 5.3
The Appmon application window,
showing the supervision structure of
the running tcp_rpc application.
Buttons let you select an action to
perform: Info, Send, Trace, or Kill.

Figure 5.4 Appmon process information window. It shows details about a specific process, such
as the length of its message queue, its memory usage, and the function it’s currently running.

136 CHAPTER 5 Using the main graphical introspection tools
Particular points of interest for debugging are the message queue length, the mem-
ory usage, and which function the process is currently executing.

 When you click the Send button and
then click a process, a small window pops up
that lets you send arbitrary Erlang terms to
the selected process (see figure 5.5). You
may enter any term you like here, and it will
be sent to the process.

 The next button is the Trace action. This
allows you to put a trace on the process that
you click next. Visually, nothing happens
here, but in the background it enables tracing
for the selected process. You can read more
about the tracing facility in the official Erlang/
OTP documentation, both the low-level API
provided by erlang:trace/3 and the more
user-friendly interface provided by the dbg
module, which is part of the runtime_tools application in the Tools section of the doc-
umentation. We get back to tracing in section 5.2 when we discuss the Pman tool.

 Finally, you have the Kill action. It sends an untrappable kill signal to the process
that you click. You can test this by clicking first Kill and then the tr_sup process, to see
what happens. All the processes of the tcp_rpc application should disappear, leaving
an empty window. (Recall what we said about process links, OTP supervisors, and auto-
matic cleanup in section 1.2—by killing the root supervisor, you can kill the entire
application, because of the way the processes are linked.)

5.1.2 The WebTool version of Appmon

If you prefer (or maybe you don’t have a graphical environment on your machine),
you can use Appmon another way, via the WebTool application. If you call webtool:
start() from the Erlang shell, you see something like this:

2> webtool:start().
WebTool is available at http://localhost:8888/
Or http://127.0.0.1:8888/
{ok,<0.62.0>}

After that, you can point a web browser to http://localhost:8888/ (or whatever name
or IP address the machine is using, if you run the browser on a separate computer).
This brings up a web page that welcomes you to the WebTool, where you can select
one or more tools to start. One of these is WebAppmon, which provides an inter-
face similar to the GUI you’ve seen in the previous section, but presented via the
web browser.

 You can use the WebTool version of Appmon even if the Appmon application
isn’t installed on the system you want to monitor, such as an embedded system with a

Figure 5.5 Using the Send action in
an Appmon application window to send an
arbitrary message to a process. You can use
Send for debugging, to see that the process
reacts correctly; or, in a pinch, you can use it
to unblock a process that is stuck waiting for
a message.

http://localhost:8888
http://127.0.0.1:8888
http://localhost:8888

137Pman
minimal Erlang environment on it. Currently, the WebTool version doesn’t allow you
to stop applications or kill processes.

 The various graphical tools in Erlang have different world views, so to speak.
Appmon has a view based around applications. The next tool we look at is called
Pman, and its world view is focused only on processes; it doesn’t know anything
about applications.

5.2 Pman
Pman, which is short for process manager, takes a process-oriented view of the Erlang
world. This tool allows you to view all the processes that are running in your system
and perform various actions on those processes.

 Let’s start over with a fresh Erlang system and launch the tcp_rpc application as
you did in the previous section. After that, launch the Pman application by entering
pman:start():

Eshell V5.7.4 (abort with ^G)
1> application:start(tcp_rpc).
ok
2> pman:start().
<0.42.0>
3>

When Pman starts, you should see a window similar to figure 5.6. It lists the processes
that are currently running, along with some information about whether they’re regis-
tered under a name, how many messages are in their mailboxes, and their estimated

Figure 5.6 The Pman main window showing all processes in the Erlang system, along with some basic
information about registered names, message queue lengths, and memory usage (in words)

138 CHAPTER 5 Using the main graphical introspection tools
total sizes in memory (measured in machine words, not bytes). The Reds column
shows the number of reductions performed by each process, which is an approximate
measure of how much CPU time they have used.

 Note that a lot of processes appear in the list. That’s because you’re seeing every
process, including all the system processes that are part of the normal Erlang environ-
ment. Normally, you only care about the processes that are part of the applications
you’re currently running. To shorten the list, select the Hide System Processes check
box in the lower-left corner of the window. Figure 5.7 shows how this leaves you with
primarily the processes you care about. In particular, you see the tr_sup and
tr_server processes. Compare this to the view in figure 5.3—here, nothing indicates
how these two are related.

 Look at the second row (the process registered as tr_sup). At what program point
was that process last seen? The Current Function column says gen_server:loop/6.
That doesn’t look like the code you wrote for the tr_sup supervisor, so what’s going on?
Well, that program point belongs to the code for the behaviour container that we talked
about in section 3.1.2. Your tr_sup module in section 4.2 was an implementation of the
supervisor behaviour, and supervisors are based on the gen_server behaviour. Any
process that is based on gen_server usually hangs around in the main loop of the
gen_server module waiting for another message when it has nothing else to do. This
is important to keep in mind when you’re debugging: the current function for a process
is often part of some generic framework code, and in many cases, the registered name
of the process is more important for identifying the process you’re looking for.

Figure 5.7 The Pman main window after hiding system processes. This is a more manageable list. You
can shorten the list even further by using the Hide Selected Process option in the View menu.

139Pman
You can use the File menu to exit Pman or set options for tracing. As in Appmon,
there’s a Nodes menu for working with distributed Erlang. The Trace menu lets you
enable tracing for processes and is also where you’ll find the menu item for killing
a process.

 The View menu is the one of most interest right now. It lets you select in more
detail which processes you want to see or refresh the information in the window. You
can either start by hiding all processes and then selecting the specific ones that you
want to show, or by showing all processes and then hiding a few selected ones. You can
also choose to hide processes based on the module they’re currently executing, or
bring up a window with information about the module that a process is in.

 If you double-click a process in the list or choose Trace > Trace Selected Process, a
Trace window for the process pops up. It first prints some basic information and then
starts to trace the process according to the current options. Figure 5.8 shows the win-
dow for setting default trace options, which you can open via File > Options. These
options can also be controlled individually for each open trace window.

 The most important options are those in the Trace Output section. Here, you can
decide whether you want to see messages sent or received, function calls, and other
events such as processes being spawned, linked, or terminated. You can specify how to
treat new processes spawned by the currently traced process (or linked to it), and you
can dump the trace output to a file instead of to the GUI window.

 A word of warning: tracing can be heavy on the system, if the traced process
is doing a lot of work. In particular, you don’t want to trace a system process that is
involved with displaying the results of the trace itself. Like a logger trying to log its

Figure 5.8
Setting default tracing options in
Pman. You can choose which actions
you want to trace and whether to
trace any new processes spawned or
linked by the current process. It’s
also possible to dump the trace
output to a file.

140 CHAPTER 5 Using the main graphical introspection tools
own actions, it will quickly flood itself with an enormous amount of information,
which can cause the system to run out of memory and crash. Randomly double-
clicking a system process in the list is a very bad idea in a production system. (Feel
free to play around with it here.)

 For this example, try to do some simple tracing on your tr_server and tr_sup
processes while interacting with the server over telnet as you did in section 3.3. Then
use the Kill action in the main window’s Trace menu to kill the tr_server process
while tracing the tr_sup process, to see how the supervisor reacts when the child
dies. There is quite a lot to learn about tracing, but this should give you an idea of
how it works.

 So far, you’ve seen the application world view through Appmon and the process-
specific world view through Pman. Next, you’ll see the module-oriented view with
the Debugger.

5.3 Debugger
A graphical source–level debugger is one of the quintessential developer tools,
although you’ll probably find yourself using Erlang’s debugger much less than you
may be used to from programming in other languages. Partly, this is because you have
other sources of information, such as logs and crash reports; and given a crash report,
the source code is often so clear (and free from side effects) that you can find the
error right away. Another reason is that when crash reports aren’t enough, it’s usually
because the problem lies in a complicated interaction of multiple communicating
processes, timing effects, network issues, and general system load. For those situations,
good logs are what you need; reproducing the situation in a graphical debugger can
be impossible or may give you no clues because of changes in timing.

 But there will be some cases in which you need to step through the code—for
example, when you’re developing a tricky algorithm or protocol. To start the debug-
ger, you can call debugger:start() from the Erlang shell:

Eshell V5.7.4 (abort with ^G)
1> debugger:start().
{ok,<0.46.0>}
2>

This opens the main debugger window, shown in figure 5.9. It’s probably not quite
what you were expecting.

 This doesn’t look like DDD, Eclipse, or any of a hundred other debuggers that you
may have seen. There are two reasons. First, Erlang uses a very different architecture
than you’re probably used to, which is process-oriented—even in the debugger: the
large empty area is for listing the processes that are currently attached to the debug-
ger. Second, modules aren’t available for debugging until you specifically select them:
the small area on the left lists the currently selected modules.

 To make a module available, you must tell the debugger to interpret it. There are
two parts to this: the debugger needs the .erl source file (so it can show you the actual

141Debugger
code), and it needs a corresponding .beam file that contains debugging information.
The compiler must be told explicitly to add this, using the debug_info flag. Let’s
recompile the tcp_rpc code as you did in section 4.3, but with this flag added.
(Because this flag should be passed directly to the compiler, it must be prefixed with +
instead of - when you give it to erlc.)

$ erlc +debug_info –o ebin src/*.erl

Selecting Module > Interpret opens a file-selection dialog box that lets you pick a
source file. The debugger automatically finds the corresponding .beam file by looking
in the same directory as the source file or in a nearby ebin directory. For this example,
locate your tr_server.erl file and select it. You should see tr_server in the module list
in the main debugger window. Double-clicking a name in the list opens a new window
for viewing the module’s source code, as shown in figure 5.10.

 First, let’s set a breakpoint. Locate the do_rpc/2 function in your code, and dou-
ble-click the line that calls split_out_mfa(RawData). A red circle appears in the space
between the line number and the code. Now, call application:start(tcp_rpc) as
before, and try to perform a remote call over telnet as in section 3.3. Unsurprisingly,
there is no answer. If you look back to the main debugger window, you should see that
it now shows that the process named tr_server has halted at the breakpoint, as in fig-
ure 5.11.

 If you now double-click the tr_server process in the main window, a new window
will open, similar to the one shown in figure 5.12. This allows you to interact with the
attached process. As you can see, there are buttons for single-stepping, continuing,
and so on, as you expect in a normal source-level debugger. Current variables are

Figure 5.9 The main monitor window of the source-level debugger when started. The large area to the
right shows processes running under the debugger, and the small area to the left lists interpreted modules.

142 CHAPTER 5 Using the main graphical introspection tools
Figure 5.10 The debugger window showing the source code for a module. This window lets you
search in the code or jump to a particular line. Double-clicking a line sets or removes a breakpoint.

Figure 5.11 Main debugger window, showing that tr_server has hit a breakpoint. Double-clicking a
process in the list brings up a new window in which you can interact with the process.

143Debugger
shown at lower right in the window; click a variable in the list to display its full value at
lower left. You can double-click a source code line to add or remove a breakpoint. Feel
free to step through the code to see what is happening.

 Using the menus, you can set conditional breakpoints, inspect the message queue,
and do other things. We don’t have room to go through these options in detail here,
but we suggest you play around with the debugger to get an idea of what you can do.
We hope this quick tour of the debugger has been enough for you to get over the ini-
tial hurdle and start using it for real.

Figure 5.12 Debugger window showing the current code position of an attached process.
This window lets you single-step through the code, add or remove breakpoints, view
variables, and so on.

144 CHAPTER 5 Using the main graphical introspection tools
 Now, over to something slightly different: a tool for inspecting data, rather
than code.

5.4 TV, the Table Viewer
The TV application is a bit different from the other tools we’ve discussed; whereas
Appmon, Pman, and the debugger are all about looking at the code running in your
system, TV is for looking at the data. TV stands for Table Viewer. You can use it to view
the two main types of tables in Erlang: ETS tables and Mnesia tables. We explained
about ETS tables in section 2.14, and you’ll use them in the next chapter. The Mnesia
database will be introduced in chapter 9.

 We take a quick look at viewing ETS tables for now. ETS is the default view when
you start TV. Entering tv:start() in the Erlang shell brings up the TV main window,
as shown in figure 5.13.

 In an Erlang system with no user applications running, you initially see few or no
tables listed. To make things more interesting, choose Options > System Tables to see
a much longer list of tables. At the top of the list, you should find an entry named
ac_tab, owned by the application_controller process. Double-click this entry (or
click it once and then select File > Open Table) to open a new window like the one
shown in figure 5.14, displaying the contents of the table.

 As you see, TV lets you view a table much like a spreadsheet. The key symbol
(above column 1) shows which column is the primary key. You can adjust the width of
the columns in order to see the contents better. This example shows a system table

Figure 5.13 The main window of TV, the Table Viewer. By default, system tables aren’t shown.

145TV, the Table Viewer
that belongs to the top-level application controller of the Erlang system. It contains
some information about the two core applications in Erlang: kernel and stdlib (and
possibly more, depending on your system).

 The TV application is mostly self-explanatory, so we leave it to you to play around
with it and figure it out. The menus and icons provide options for sorting and poll-
ing, and you can also get more detailed information about a table, search for
entries, and edit or delete entries on the fly. Keep TV in mind when you start using
ETS tables and Mnesia in the coming chapters, if you want an easy way to see what’s
going on with your data.

 That concludes our tour of these four GUI tools. Although they’re quite different
in their features, they all have one thing in common: they can be started from the
Erlang Toolbar.

Figure 5.14 TV table window. This example shows the contents of the ac_tab system table.

146 CHAPTER 5 Using the main graphical introspection tools
5.5 Toolbar
The Toolbar application is a small window with a
button for each of the available applications. If
you use these tools often, for example, during a
debugging session, it may be easier to start Tool-
bar right away and keep it somewhere on your
desktop, rather than starting the applications
individually as you did earlier. Call toolbar:
start() from the Erlang shell, and you’ll get a
window similar to the one shown in figure 5.15.

 The first button starts TV, the next starts
Pman, the third Debugger, and the fourth App-
mon. Although it’s not likely that you’ll do so,
you can add buttons to the toolbar to launch other custom tools: select Tools > Create
Tool File, and you’re asked to fill in the details of your new tool, including the icon
file to use and the module and function used to start the tool when the icon is clicked.
For example, specifying mymod and myfun causes mymod:myfun() to be called. (The
tool-start function can’t take any arguments.)

5.6 Summary
The applications we’ve introduced here are the primary visual tools for introspection
and interaction with a running Erlang system. We hope that we’ve shown you enough
about them to make them part of your everyday toolkit; you can now continue explor-
ing on your own. You can find out more in the Tools section of the official Erlang/
OTP documentation.

Figure 5.15 The Erlang Toolbar. This
is handy if you often start TV, Pman,
Debugger, or Appmon. It’s even
possible to add your own custom tool
icons to the toolbar.

Part 2

Building a production
 system

Welcome to the real world, which is what OTP is all about. In this section
of the book, we follow the Erlware team as they solve some of the problems
they’re facing with the help of Erlang and, most especially, OTP. We cover behav-
iours, monitoring, packaging, and a host of other critical techniques and tech-
nologies necessary to build industrial-grade Erlang software.

Implementing a
caching system
Now that you’re familiar with the basics of Erlang/OTP, it’s time to move on to
more advanced and realistic examples. Starting in this chapter, you’ll spend part 2
of this book building up a useful, distributed application in Erlang. To help you
understand the motivations for what you’re doing, we couch this development
within the narrative of an open source project called Erlware that is facing some fic-
tional, but realistic, challenges that you’ll solve.

6.1 The background story
The Erlware project is focused on making Erlang applications easily accessible, so
that others may run them either as end-user applications or as components in their
own projects. Erlang is gaining popularity quickly, so the demand for easy access to
open source applications and build tools has grown quickly as well. This has caused
quite a bit of growth in the Erlware project, and the project administrators are

This chapter covers
■ Designing a simple cache system
■ Creating the basic application and

supervision structure
■ Implementing the main functionality of

the cache
149

150 CHAPTER 6 Implementing a caching system
starting to hear users complain about the responsiveness of the website. Most of the
complaints are related to how quickly pages can be served. The Erlware team is natu-
rally concerned about their users, not to mention that search engines like Google are
rumored to punish sites that are slow to serve up pages.

 The page that has garnered the most complaints is the package search page. This
page allows users to search for a particular piece of Erlang/OTP software among the
many in the Erlware repository. To produce this page, the web server must go out to a
disjoint set of package servers and request a list of packages from each such server.
The package servers are independent, and there is no central database for all pack-
ages across all servers. This was fine when Erlware was small and had only one package
server; it was even fine with up to three servers, but it didn’t scale beyond that. The
structure of the system is illustrated in figure 6.1.

 The team at Erlware sits down and decides that one way to speed things up would
be to extend the web servers with local caching. This way, when a package listing is
requested, the list will be cached using the URL as key; then, the next time the same
URL is asked for, the list of packages can be pulled quickly from the cache and used to
render the page. This architecture is illustrated in figure 6.2.

 You’ll implement this cache as a separate OTP application. This chapter is centered
on the basic functionality your cache will offer, which boils down to a few functions:

■ Start and stop the cache.
■ Add a key/value pair to the cache.
■ Retrieve a value for a given key.
■ Update the value for a given key.
■ Delete a key/value pair.

With these in place, you’ll have a working cache in its simplest form. The initial ver-
sion of the cache that you construct in this chapter won’t have any advanced features;
it’ll be a standalone cache for the purpose of speeding up a single web server on a sin-
gle machine, easily accessible via plain Erlang function calls. More advanced features,
such as distribution, will be added in subsequent chapters. Before we get into the
nitty-gritty parts of implementing a basic cache, it’s a good idea to go over the pro-
posed design.

Figure 6.1 The current Erlware architecture: each request to the web server
results in a full listing being fetched from every package server.

151The design of your cache
6.2 The design of your cache
Your simple cache will store key/value pairs, where the keys are unique and each key
maps to a single value. The core idea behind the design of this cache is that you’ll use
a separate process to store each value you insert and map each key to its correspond-
ing process. You may consider it strange, even unbelievable, that you would use a pro-
cess for each value like this; but for something like a cache, it makes sense, because
every value may have its own life cycle. Erlang’s support for large numbers of light-
weight processes makes this approach possible.

 To build this cache, you’ll need to create some basic subsystems. Each of these will
be housed in a separate module. Figure 6.3 illustrates the different pieces of the sim-
ple cache.

 As figure 6.3 shows, you’ll be creating five separate modules, listed in table 6.1.

Figure 6.2 The new architecture being planned. The web server caches package
listings locally, so it doesn’t have to fetch them for each request.

Figure 6.3 The different parts of the Simple Cache implementation. There will be an API front end,
a main application module, a number of value-storage processes with a single supervisor module,
and a mapping from keys to corresponding storage processes.

152 CHAPTER 6 Implementing a caching system
Users of the cache will interact solely through
the simple_cache API module. This will com-
municate directly with the sc_store module
that maps keys to processes, and with the
sc_element module for creating storage ele-
ments, updating them, and deleting them.
All the elements are supervised by the sc_sup
supervisor, and there is an application behav-
iour, sc_app, for starting and stopping the
whole cache system. Figure 6.4 illustrates
this architecture from a process and data-
flow perspective.

 The supervisor will be able to spawn
sc_element processes on demand at runtime,
upon the insertion of a key/value pair. When a
process has been spawned to hold the value for
a particular key, a mapping from the key to the
process ID will be kept in the sc_store. This
creates an indirect mapping from the key to the
value. To retrieve the value for a key, you first
look up the process ID of the storage element and then query it for the current value.
Figure 6.5 illustrates this indirect mapping.

Table 6.1 Modules of the Simple Cache application

Module Purpose

simple_cache The user API; the application’s face to the outside

sc_app The application behaviour implementation

sc_sup The root supervisor implementation

sc_store A module to encapsulate your key-to-pid mapping

sc_element Code for the individual processes that store the cached data

Module naming conventions
Remember what we said in section 3.2 about naming conventions for modules?
This application uses the prefix sc_ (for Simple Cache) for all modules, except
the main user API module, which is named simple_cache. This is a common pat-
tern, to have a single module acting as a front end that uses the same name as
the application.

Figure 6.4 The data flow between
modules and their corresponding
processes. The user API module
simple_cache only communicates
directly with the sc_store and
sc_element modules.

153Creating the basic OTP application skeleton
All this may seem strange right now, but this architecture will leverage many powerful
mechanisms in OTP. By the end of this chapter, you’ll realize how much functionality
you get for free and how few lines of code it takes to implement the whole thing. Let’s
get started by creating the application infrastructure for the cache.

6.3 Creating the basic OTP application skeleton
The starting point for any good Erlang project is creating a proper OTP application.
Often, a project can be broken down into multiple applications, but for now your
simple cache will be a single application (although it’s intended to work as part of a
larger group).

 This section will follow closely what you did in chapter 4 to make an application
out of the tr_server. The difference here is that you begin from the other end: hav-
ing no real functionality, only a design, you’ll first set up an application skeleton that
you add code to.

 To recapitulate, setting up the application structure consists of the following steps:

1 Create a standard application directory layout.
2 Write the .app file.
3 Write the application behaviour implementation module, sc_app.
4 Implement the top-level supervisor, sc_sup.

Because you’re making an active application, something that’s alive and running, you’ll
need an application behaviour implementation and a root supervisor implementation.
Following the same conventions as in chapter 4, these modules will have the suffixes
_app and _sup, respectively. But first, you need to create some directories.

6.3.1 Laying out the application directory structure

Start by creating a top-level application directory called simple_cache. Under it, create
the subdirectories doc, ebin, include, priv, and src, just like you did in section 4.1.1.
The directory tree should look like this:

Figure 6.5 How keys will map indirectly to the
corresponding values. Each value will be stored in
a separate process.

154 CHAPTER 6 Implementing a caching system
simple_cache
 |
 | - doc
 | - ebin
 | - include
 | - priv
 | - src

(You won’t use the doc, include, and priv directories in this example, but there’s no
harm in having them from the beginning in case you need them later.) After you’ve
created the layout, the next step is to put the .app file in place.

6.3.2 Creating the application metadata

As explained in section 4.1.2, OTP needs a little metadata about your application in
order to be able to do things like start the application or perform safe hot-code
upgrades at runtime. The name of the .app file should match the application name
(which isn’t necessarily the name of any particular module); in this case, the file is
ebin/simple_cache.app. The following shows what to put in the .app file for now:

{application, simple_cache,
 [{description, "A simple caching system"},
 {vsn, "0.1.0"},
 {modules, [
 sc_app,
 sc_sup
]},
 {registered, [sc_sup]},
 {applications, [kernel, stdlib]},
 {mod, {sc_app, []}}
]}.

Compare this with listing 4.1, and you’ll see that they’re similar. You know you’ll write
the sc_app and sc_sup modules, so you can list them right away; you’ll add other
modules to the list as you go. You also know that you’ll register the name of the root
supervisor under the name sc_sup.

 Next, you’ll flesh out the application behaviour implementation.

6.3.3 Implementing the application behaviour

The file src/sc_app.erl implements the application behaviour, as shown in listing 6,1;
compare this to tr_app.erl in section 4.1.3. Recall in particular that the mod tuple in
the .app file points out the name of the application behaviour module, so the system
knows how to start and stop the application.

-module(sc_app).

-behaviour(application).

-export([start/2, stop/1]).

Listing 6.1 src/sc_app.erl

Behaviour
declaration

Exported behaviour
callbacks

155Creating the basic OTP application skeleton
start(_StartType, _StartArgs) ->
 case sc_sup:start_link() of
 {ok, Pid} ->
 {ok, Pid};
 Other ->
 {error, Other}
 end.

stop(_State) ->
 ok.

The only real job to be done by the sc_app module is to start the root supervisor when
the application is started (you’ll modify this slightly in section 6.4.2). You don’t need it
to do anything special when it stops.

6.3.4 Implementing the supervisor

The file src/sc_sup.erl (see listing 6.2) implements the root supervisor. The supervi-
sor you’ll use here is different from the one you created in chapter 4; it doesn’t have
any statically specified permanent child processes, but it can have any number of
dynamically added temporary children that will all be of the same type.

SIMPLE-ONE-FOR-ONE SUPERVISION

This supervisor is set up for simple_one_for_one supervision. With the other restart
strategies, such as one_for_one, which you used in section 4.2.1, a supervisor typically
manages a number of children that all start when the supervisor starts and usually run
for as long as the supervisor is running. A simple_one_for_one supervisor can start
only one type of child, but can start any number of them; all its children are dynami-
cally added at runtime, and no child process is started when the supervisor starts up.

-module(sc_sup).

-behaviour(supervisor).

-export([start_link/0,
 start_child/2
]).

-export([init/1]).

-define(SERVER, ?MODULE).

start_link() ->
 supervisor:start_link({local, ?SERVER}, ?MODULE, []).

start_child(Value, LeaseTime) ->
 supervisor:start_child(?SERVER, [Value, LeaseTime]).

init([]) ->
 Element = {sc_element, {sc_element, start_link, []},
 temporary, brutal_kill, worker, [sc_element]},
 Children = [Element],
 RestartStrategy = {simple_one_for_one, 0, 1},
 {ok, {RestartStrategy, Children}}.

Listing 6.2 src/sc_sup.erl

Starts root
supervisor

Starts children
dynamically

Arguments for
sc_element:start_link/2

156 CHAPTER 6 Implementing a caching system
The init/1 function of the supervisor in listing 6.2 still looks much like the one back
in listing 4.3. There, you also had a single child specification, but in this case it’s a
requirement: init/1 for a simple_one_for_one supervisor must specify exactly one
child process, but it isn’t started along with the supervisor. Instead, the supervisor can
be asked to start new child processes at any time, using a simplified form of the func-
tion supervisor:start_child/2. For other kinds of supervisors, if you want to add
children dynamically, you must give a full child specification to start_child/2. With
a simple_one_for_one supervisor, all children have the same specification, and the
supervisor already knows it, so you only have to say “please start another one.” This is
what you want to have here.

THE SUPERVISOR MODULE

You have two API functions in the sc_sup module, compared to just one in tr_sup in
listing 4.3. The new start_child/2 function does exactly what we described earlier: it
asks the running supervisor (identified by ?SERVER) to start a new child, passing it the
extra arguments Value and LeaseTime (because these will be different for each child
process). You make this an API function to keep the implementation details encapsu-
lated within this module.

 The init/1 function has some subtle differences from the one in listing 4.3, so
take a close look and refer to section 4.2.3 for details. The central difference is of
course the restart strategy, which is defined as simple_one_for_one with zero restarts
allowed within any 1 second. In this supervisor, the children are marked as temporary
rather than permanent, meaning that if they die, they should not be restarted. This
supervisor is in many ways just a factory for sc_element processes. You also set the
shutdown type to brutal_kill, indicating that the children should be terminated
immediately when the supervisor shuts down. (For a simple_one_for_one supervisor,
the supervisor won’t do anything to actively shut down the children; instead, they’re
expected to terminate when they receive the exit signal triggered by the death of the
supervisor. If the children are normal OTP behaviours, this is guaranteed. Specifying
brutal_kill here is mostly to show intent.)

 When someone calls the start_child/2 API function, it results in a message being
sent to the supervisor process, asking it to start a new child process using the
start_link function in sc_element with the extra arguments Value and LeaseTime.
The following tuple in the child spec

{sc_element, start_link, []}

which indicates the module name, function name, and arguments of the start func-
tion for the child process, gets the list [Value, LeaseTime] appended to the argument
list [] before the call is made, resulting in a call to sc_element:start_link(Value,
LeaseTime).

 Each time sc_sup:start_child/2 is called, a new sc_element process is started,
each with its own value and lease time. This results in a dynamically generated supervi-
sion tree, as shown in figure 6.6.

157From application skeleton to a working cache
At this point, you have a working application skeleton; you can start it from within the
Erlang shell and see it run. Of course, you can’t do anything with it, apart from start-
ing and stopping it, because your application has no real functionality and no user
interface. As of now, when the supervisor starts, it doesn’t start any child processes
because it’s a simple_one_for_one supervisor; but because you haven’t implemented
sc_element yet, you’ll get a runtime error if you try to call sc_sup:start_child/2.
The rest of this chapter will be about adding this functionality to get a fully function-
ing simple_cache application.

6.4 From application skeleton to a working cache
Before you go on, look back at figure 6.3 to recall the design of the application, with
the modules you’ll implement listed in table 6.1. Of these, you’ve written sc_app and
sc_sup, which were part of the basic application structure. The following remain:

■ simple_cache—The user API
■ sc_element—The processes that store cached values
■ sc_store—The code for mapping keys to processes

First, you’ll implement the sc_element module so that your top-level supervisor
will have something to start. After that, you’ll implement sc_store to map keys to
processes, and finally you’ll create the API module to wrap everything up in a nice
user interface.

6.4.1 Coding the sc_element processes

Recall that sc_element is the module that holds the code for the child processes of
sc_sup and that a new such process will be spawned each time new data is entered
into the cache, to hold the data associated with a particular key. The plan is to let the
processes be based on the gen_server behaviour (like tr_server from chapter 3)
and keep the data in the gen_server state. Refer back to chapter 3 if you need a
refresher on how gen_server works; we don’t repeat the details here.

THE HEADER

The module header, shown in listing 6.3, should look familiar by now; it’s similar to
the one in listing 3.2. The main difference is the API, which is natural—although the
servers are based on the same framework internally, they have different uses. You have

Figure 6.6
A simple-one-for-one supervisor hierarchy.
All the child processes are of the same
type and are added or removed dynamically.
There can be any number of them.

158 CHAPTER 6 Implementing a caching system
four major functions: creating a new element, fetching the value of an element,
replacing the value of an element, and deleting an element.

-module(sc_element).

-behaviour(gen_server).

-export([
 start_link/2,
 create/2,
 create/1,
 fetch/1,
 replace/2,
 delete/1
]).

-export([init/1, handle_call/3, handle_cast/2, handle_info/2,
 terminate/2, code_change/3]).

-define(SERVER, ?MODULE).
-define(DEFAULT_LEASE_TIME, (60 * 60 * 24)).

-record(state, {value, lease_time, start_time}).

You define the macro DEFAULT_LEASE_TIME as the default number of seconds that a key/
value pair can live in the cache without being evicted. The purpose of the lease time is
to keep the content of the cache fresh; after all, it’s a cache, not a database. You’ll make
it possible to override this value via the API when creating a new sc_element process.

 The last thing in the header is the definition of a record to represent the
gen_server state. It contains three fields: the value the process is holding on to,
the lease time, and a timestamp from when the process was started.

THE API SECTION AND PROCESS STARTUP

The next section of the module is the API implementation, shown in the follow-
ing listing.

start_link(Value, LeaseTime) ->
 gen_server:start_link(?MODULE, [Value, LeaseTime], []).

create(Value, LeaseTime) ->
 sc_sup:start_child(Value, LeaseTime).

create(Value) ->
 create(Value, ?DEFAULT_LEASE_TIME).

fetch(Pid) ->
 gen_server:call(Pid, fetch).

replace(Pid, Value) ->
 gen_server:cast(Pid, {replace, Value}).

delete(Pid) ->
 gen_server:cast(Pid, delete).

Listing 6.3 Header of src/sc_element.erl

Listing 6.4 API section of src/sc_element.erl

Exported API
functions

One day in
seconds

State
record

Delegates start
to sc_sup

159From application skeleton to a working cache
As we explained in section 6.3.4, starting a child process should be done by asking
the supervisor; you created the supervisor API function sc_sup:start_child/2 to
hide the details of how this is done. But users of sc_element shouldn’t have to know
about an implementation detail such as the existence of a supervisor. Therefore, you
add an API function called create/2, which hides the delegation to sc_sup. You also
include the short form create/1, for when you just want the default lease time.
Later, if you want to change the underlying implementation drastically, your inter-
face need not change.

 Also recall from section 6.3.4 that you set up the child specification for the
simple_one_for_one supervisor so that when you ask for a new child process via
sc_sup:start_child/2, it calls back to sc_element:start_link(Value, LeaseTime).
This API function, it its turn, is implemented in a more standard way, much like
tr_server:start_link/1 in listing 3.3. The differences are that in this case, end users
shouldn’t call start_link/2 directly (because then the process won’t be supervised),
and that you don’t ask the gen_server library to register the process for you (because
there will be many such processes, not a singleton).

 To make sure you understand this
convoluted call flow, let’s go over it again.
When a new element is to be inserted,
you call sc_element:create(...),
which delegates to the supervisor API
function sc_sup:start_child/2, which
in turn calls the library function super-
visor:start_child/2. Using the child
specification and the extra arguments
Value and LeaseTime, the supervisor
code calls back to sc_element:start_
link/2. Nothing has been said about
how an sc_element process is imple-
mented; but because you’re basing it on
gen_server, this is where you hand over
to the library function gen_server:
start_link/3 to kick off a new child process for real. The call flow is illustrated in
figure 6.7.

 The remaining API functions—fetch/1, replace/2, and delete/1—are simple,
much like the ones in tr_server in listing 3.3. All they do is send a request to the pro-
cess, using either call or cast. Only fetch/1 needs to wait for an answer, so the other
two can do an asynchronous cast and return to the caller immediately. A small but
important difference from the tr_server is that there is no registered name for any
of these sc_element processes. (There can, after all, be any number of them.) This
means the API functions must include the process identifier, so that the gen_server
functions know where to send the messages. Of course, that means it’s the client’s

Figure 6.7 Call flow when a new storage element
is added. The sc_element API keeps simple_
cache from knowing about sc_sup. At the same
time, sc_sup knows no details about what an
sc_element does.

160 CHAPTER 6 Implementing a caching system
problem to keep track of these identifiers. We get back to that when you implement
the sc_store module in section 6.4.2.

THE GEN_SERVER CALLBACK SECTION

The first thing that happens when your sc_element process starts is that the
gen_server callback function init/1 is called to initialize the process; see section 3.2.4
if you need a reminder about how the gen_server callbacks work. This function should
return a fully initialized state record. The call to gen_server:start_link/3 blocks
until init/1 returns. The callback section of src/sc_element.erl is shown in the follow-
ing listing.

init([Value, LeaseTime]) ->
 Now = calendar:local_time(),
 StartTime = calendar:datetime_to_gregorian_seconds(Now),
 {ok,
 #state{value = Value,
 lease_time = LeaseTime,
 start_time = StartTime},
 time_left(StartTime, LeaseTime)}.

time_left(_StartTime, infinity) ->
 infinity;
time_left(StartTime, LeaseTime) ->
 Now = calendar:local_time(),
 CurrentTime = calendar:datetime_to_gregorian_seconds(Now),
 TimeElapsed = CurrentTime - StartTime,
 case LeaseTime - TimeElapsed of
 Time when Time =< 0 -> 0;
 Time -> Time * 1000
 end.

handle_call(fetch, _From, State) ->
 #state{value = Value,
 lease_time = LeaseTime,
 start_time = StartTime} = State,
 TimeLeft = time_left(StartTime, LeaseTime),
 {reply, {ok, Value}, State, TimeLeft}.

handle_cast({replace, Value}, State) ->
 #state{lease_time = LeaseTime,
 start_time = StartTime} = State,
 TimeLeft = time_left(StartTime, LeaseTime),
 {noreply, State#state{value = Value}, TimeLeft};
handle_cast(delete, State) ->
 {stop, normal, State}.

handle_info(timeout, State) ->
 {stop, normal, State}.

terminate(_Reason, _State) ->
 sc_store:delete(self()),
 ok.

code_change(_OldVsn, State, _Extra) ->
 {ok, State}.

Listing 6.5 gen_server callback section of src/sc_element.erl

Initializes
server state

Sets timeout on
initialization

Returns value
from state

B

Signals
shutdown

C

Removes key
for process

D

161From application skeleton to a working cache
We now go through each of these callback functions in detail:

■ init/1—The init/1 function isn’t complicated. You use a couple of standard
library functions to get the time when the process started and convert it to Gre-
gorian seconds: a useful uniform representation of time as the number of sec-
onds since year 0 (year 1 BC) according to the normal Western/International
Gregorian calendar. See the documentation for the standard library calendar
module for more details. The rest is just filling in the fields of the server state
with the value you want to store, the lease time, and the start time.

Note that you use the third position in the returned tuple to specify the
server timeout after initialization. If you recall, you did the same in tr_server
in chapter 3, but that was for a different purpose. Here, you use it to manage
lease times. As you’ll see, the decision to use a separate process for every stored
value in the cache makes lease management trivial and spares you an imple-
mentation headache. If the server process isn’t accessed within the lease period,
a timeout message is sent to the server and passed to the handle_info/2 func-
tion, which shuts down the process.

The utility function time_left/2 computes the number of milliseconds left
of the lease, which is what the system wants—not seconds. It also allows the use
of the atom infinity instead of an integer and ensures that you never return a
negative number.

■ handle_call/3: fetch—Because you want to get a value from the fetch/1 API
function, you use a synchronous call to talk to the server process. This is
passed to the handle_call/3 callback function.

All you need to do is match the value from the state and return it to the
caller B (the {ok, Value} part of the return tuple is returned by fetch/1). The
only thing that makes the code a little messy is that you need to also get the start
time and lease time and compute the new timeout. You return the state
unchanged to gen_server, because nothing should be modified here.

■ handle_cast/2: replace—The API function replace/2 is used to update an
existing sc_element process with a new value. This needs no particular reply to
the client, so you use an asynchronous cast, which is passed to handle_cast/2.
As usual, the message is tagged with the same name as the function that sends
the message. Sticking to this simple idiom will save you lots of confusion later
when you create servers with more complicated interfaces.

Setting server timeouts
Remember that if you forget to return a new timeout value in one of the call-
back functions, the timeout will revert to infinity. When you’re using server
timeouts, it’s important to remember to set them in every clause of every call-
back function.

162 CHAPTER 6 Implementing a caching system
The first clause of handle_cast in listing 6.5 takes care of {replace,Value}
messages. The code is similar to the fetch case, but you don’t need to extract
the old value, there is no reply to be sent, and you return a modified state
to gen_server in which you’ve substituted the new value for the old (see sec-
tion 2.11.3 for more about record updates).

■ handle_cast/2: delete—The delete/1 API function similarly doesn’t need a
return value and so uses cast, ending up in the second clause of handle_cast/2.
The only thing delete needs to do is to terminate this sc_element process,
removing it from the cache.

Note the difference between the tuple returned from delete and the one
returned from replace. The latter returns noreply, meaning that the server
doesn’t reply but stays alive, whereas the former returns stop, which causes the
gen_server to shut itself down C. The reason for stopping is given as normal.
This is a special value that signals to the OTP system that the server shut down
normally: it shouldn’t be restarted unless it was marked as permanent, and it
shouldn’t be logged as an abnormal shutdown.

■ terminate/2—When a gen_server shuts down, it calls the terminate/2 call-
back to give you a chance to clean things up. In this case, you need to remove
all traces of the key associated with the process D. When the process dies, the
server state vanishes, which takes care of the stored value but doesn’t handle
the mapping from the key to the process ID. As we mentioned, this mapping is
handled by the sc_store module, which you’ll implement in the next section.
All you need to do here is call sc_store:delete(Pid), passing it the pid of this
particular sc_element process.

You’ve finished implementing sc_element and its API functions:

■ start_link/2

■ create/2 (and create/1)
■ fetch/1
■ replace/2
■ delete/1

Together, these functions allow you to store data in an sc_element process and
retrieve it, update the value, and delete it. As part of the delete operation, you saw
your first interaction with the key-to-pid mapping in the sc_store module, which is
what you’ll implement next.

6.4.2 Implementing the sc_store module

By now, you’ve implemented the basic application structure and the backing storage
for your cache, including lease handling. You now need to build a complete storage
system on top of this. The main thing you’re missing is the mapping from keys to pro-
cess identifiers (shown in figure 6.5) so that you can access the value stored for a given

163From application skeleton to a working cache
key. To implement this mapping, you’ll use an ETS table (Erlang Term Storage; see
section 2.14); as we go along, we explain some details about ETS tables.

 The fact that your storage is implemented with ETS should be hidden from the rest
of the system. The sc_store module will serve as an abstraction layer for whatever
storage mechanism you’re using to store the key-to-pid mapping. Instead of using ETS,
this could be done with a gen_server process that keeps the mapping data in its state,
it could be a file on disk that you write to on each insert and delete, or it could be a
relational database. Whatever the implementation, you want to decouple the applica-
tion from the choice of storage system, allowing you to change your mind later and
use a different solution. You could even move to a replicated database solution with
no change to the rest of the application code.

 To quickly recapture what we said in chapter 2, ETS tables are fast, in-memory hash
tables for Erlang data. They’re implemented in C as a part of the Erlang Run-Time
System (ERTS) and are accessed using a set of built-in Erlang functions. Every entry
must be a tuple, where one of the tuple columns (normally the first or second) is the
key. ETS tables are particularly useful for data that

■ Doesn’t need to be shared between virtual machines
■ Needs to be persistent, but only as long as the VM is alive
■ May need to be shared by a number of different processes on the VM
■ Needs fast access times
■ Is mainly flat and preferably without foreign key relationships to other tables

The example’s storage requirements match these criteria well: the mapping needs to
persist for as long as the cache is running, but doesn’t need to persist if the VM dies,
and doesn’t need to be shared between multiple VMs; you may need to share the table
between processes; the data needs to be fetched quickly because the lookup operation
is in the critical path of your cache; and the data is flat and has no relationships to
other tables. It’s a single table of pairs of keys and process identifiers.

 Listing 6.6 shows the code for src/sc_store.erl. For once, this module won’t imple-
ment an OTP behaviour, and no specific process will be associated with the module—
it just contains a set of library functions for other processes to call. (But this could
change in the future.)

-module(sc_store).

-export([
 init/0,
 insert/2,
 delete/1,
 lookup/1
]).

-define(TABLE_ID, ?MODULE).

Listing 6.6 src/sc_store.erl

164 CHAPTER 6 Implementing a caching system
init() ->
 ets:new(?TABLE_ID, [public, named_table]),
 ok.

insert(Key, Pid) ->
 ets:insert(?TABLE_ID, {Key, Pid}).

lookup(Key) ->
 case ets:lookup(?TABLE_ID, Key) of
 [{Key, Pid}] -> {ok, Pid};
 [] -> {error, not_found}
 end.

delete(Pid) ->
 ets:match_delete(?TABLE_ID, {'_', Pid}).

The API consists of an init/1 function for initializing the storage system and three
functions that handle the basic CRUD operations (create, read, update, and delete),
where the insert/2 function is used both to create new entries and to update existing
ones. All the functions are small. We look at the initialization first.

INITIALIZING THE STORE

In init/1, you need to create the ETS table that’ll represent the mapping. This is sim-
ple: call ets:new/2. Because you want the table to be accessible to many different pro-
cesses, you need to mark it as public; and to make it easy for these processes to find
the table, you make it a named_table. The name is given by the TABLE_ID macro,
which is defined here to be the same as the module (sc_store).

An ETS table can be accessed in two ways. The first and most common is to use the
table handle returned by the ets:new/2 function; this uniquely identifies a table
much like a pid identifies a process. The second way is to use the table name. The ETS
interface requires that each table is given a name; but unless named_table is specified,
the name can’t be used to access the table, and multiple such tables can have the same
name. You use a named table here because you don’t want to force users of your
library to keep track of the table handle—that would require you to pass the handle to
all processes that want to use sc_store, and the table handle would have to be
included in every sc_store API call.

 Here is a question for you: from where should you call the sc_store:init/0
function? Think about it for a moment. You have essentially two options: from your
application behaviour module sc_app, or from your root supervisor sc_sup. As we’ve
said before, it’s a good design principle to limit the amount of application code in
supervisors in order to keep them small and reliable. Inserting code into the init/1

First things first
As a point of style, an initialization or startup function like this should be placed
first in the API section. (You did the same with the start_link and init functions
in the other modules.) This kind of predictability makes modules easier to read.

165From application skeleton to a working cache
function of a top-level supervisor is somewhat forgivable, because if it breaks, the
application can’t start. We still don’t like doing that on principle; and while we may
do it on occasion, we prefer placing this sort of initialization code in the applica-
tion behaviour file. You should modify the start/2 function in src/sc_app.erl (list-
ing 6.1) to look as follows:

start(_StartType, _StartArgs) ->
 sc_store:init(),
 case sc_sup:start_link() of
 {ok, Pid} ->
 {ok, Pid};
 Other ->
 {error, Other}
 end.

With this in place, sc_store is initialized first thing when the application starts. If you
were to initialize it later (for example, after starting the top-level supervisor), you’d
run the risk that you somewhere would try to access an ETS table that doesn’t yet exist.

 Next, to be able to resolve a mapping from a key to a pid, you need to be able to
store such a mapping.

CREATING AND UPDATING ENTRIES

The sc_store:insert/2 function in listing 6.6 handles both inserting new mappings
and updating existing ones, through a simple call to ets:insert/2, identifying the
table by its name. The second argument to ets:insert/2 must always be a tuple, as we
explained in section 2.14.2. By default, the first element of the stored tuples is used as
the key, and the other elements (any number of them) are the payload. When you
look up a particular key, the entire tuple is returned. The default behaviour for an ETS
table is to be a set: there can only be one entry at a time for any specific key, so if you
insert a new tuple using an existing key, it overwrites the previous entry—just what you
want for this function.

 Note that this function doesn’t check any data types; it doesn’t seek to ensure that
what is being inserted is a pid. This is internal code that trusts its callers. The code that
eventually performs the insert will be code that you write. You’ll check for sanity at the
borders of your system, but not afterward. If you have a problem somewhere, you’ll
discover it through testing. This philosophy keeps your code clean and makes it easier
to maintain.

 Now that you can insert data, you want to be able to look it up again.

READING DATA

A lookup on the key element of an ETS table is a fast, constant-time operation if the
table is a set (the default type), because this uses a hash table representation inter-
nally. As we explained in section 2.14.2, ets:lookup/2 returns a list of all the tuples
that have this key. Because the table is a set, the result is either one tuple or none, as
you can see in the lookup/1 function in listing 6.6.

 If you find an entry for a given key, you transform the return value from ETS into a
more palatable {ok, Pid}. If the key isn’t in the table, you return {error, not_found}

Initializes
storage

166 CHAPTER 6 Implementing a caching system
instead. This is another example of encapsulation: there is no reason to leak the exact
return value from ETS to the world outside, when the fact that your implementation
uses ETS tables is incidental and unimportant to the callers of this function.

 All you need to be able to do now is delete entries. How this is done (using a single
short line of code) will need a bit of explanation.

DELETING AN ENTRY USING MATCH PATTERNS

The problem is that you want to delete entries based on the value (the process identi-
fier), rather than on the key. This is to make the function sc_element:terminate/2
from section 6.4.1 (listing 6.5) as simple as possible: when the process dies, it says,
“please remove my entry from the table.” Note that the way the code is structured
ensures that there is exactly one distinct process per key. There are a couple of
approaches to solving this problem: you can maintain a separate inverted index table,
so that you first look up the key for a particular pid and then use the key to delete the
entry, but that requires twice as much code and two write operations instead of one
for each insert or delete operation. You can also traverse the table key by key until you
find the entry with that specific pid, which is pretty slow (but feasible, if deletion is a
rare operation). But ETS tables have a powerful mechanism for using patterns to
search through tables without extracting every entry. This still scans the whole table
but is fast because it’s all done from C code with minimal copying of data.

 The delete/1 function in listing 6.6 generally won’t be performed as often as the
insert/2 operation and not nearly as often as lookup/1, so this implementation
should serve well enough (and you can add an inverted index later to speed it up if
necessary). The scan is performed using the function ets:match_delete/2 with the
simple pattern {'_',Pid}. We only have space to cover a little about matching here. A
full explanation of the matching functions in ETS is beyond the scope of this book and
we recommend that you read the Erlang/OTP documentation for more information,
because these functions are quite powerful.

 The delete operation uses the simple pattern {'_',Pid}. This will match against
any 2-tuple that contains the given process ID as the second element. Because this pat-
tern is used with ets:match_delete/2, any matching entry will be deleted from the
table. (You know there will be at most one such entry.) That’s all you need to do.

Match patterns
These are patterns expressed as Erlang terms, and they can consist of three things:

■ Normal Erlang terms and already-bound variables.
■ An underscore as a single-quoted atom ('_'). This has the same meaning

as an underscore in a regular Erlang pattern—that is, a don’t-care pattern
or wildcard.

■ Pattern variables of the form '$<integer>' (for example, '$1', '$2', '$3', ...).

167From application skeleton to a working cache
This completes the sc_store module. You have all the operations you need for the
key-to-pid mapping, including initialization. You’ve done this in a way that abstracts
away the underlying implementation (using ETS tables) from the rest of your appli-
cation. You have only one thing left to do: create the user API as a front end to
the application.

6.4.3 Rounding off with the application-level API module

The convention for application-level API modules is to give them the same name as the
application. (Note that the server application in chapter 4 didn’t need any API.) In this
case, you’re creating the simple_cache module as the API to the simple_cache appli-
cation. This module will contain the interface functions for end users of your cache:

■ insert/2—Stores a key and corresponding value in the cache
■ lookup/1—Uses a key to retrieve a value
■ delete/1—Uses a key to delete the key/value pair from the cache

This API doesn’t include any functions for starting or stopping the application; that
will be handled via system functions such as application:start/1, as in section 4.3.
The previous functions, shown in the following listing, put all the functionality you’ve
created previously in this chapter to use.

-module(simple_cache).

-export([insert/2, lookup/1, delete/1]).

insert(Key, Value) ->
 case sc_store:lookup(Key) of
 {ok, Pid} ->
 sc_element:replace(Pid, Value);
 {error, _} ->
 {ok, Pid} = sc_element:create(Value),
 sc_store:insert(Key, Pid)
 end.

(continued)
For example, given a stored tuple of the form {erlang,number,1}, a pattern like
{erlang,'_',1} will match it. The '_' wildcard indicates that you don’t care what
is in this position. This pattern will match any 3-tuple with the atom erlang as the
first element and the integer 1 as the last. You can also use pattern variables to
retrieve values selectively from matched tuples; for instance, a match pattern like
{'$2','$1','_'} (on the same stored tuple) will yield the list [number, erlang]
because of how the fields line up and because the values of the pattern variables
are always returned in the order they’re numbered. See the documentation for
ets:match/2 for details.

Listing 6.7 src/simple_cache.erl

Checks if key is
already present

B

168 CHAPTER 6 Implementing a caching system
lookup(Key) ->
 try
 {ok, Pid} = sc_store:lookup(Key),
 {ok, Value} = sc_element:fetch(Pid),
 {ok, Value}
 catch
 _Class:_Exception ->
 {error, not_found}
 end.

delete(Key) ->
 case sc_store:lookup(Key) of
 {ok, Pid} ->
 sc_element:delete(Pid);
 {error, _Reason} ->
 ok
 end.

We now explain the implementation of these API functions in more detail:

■ simple_cache:insert/2—This function takes a key and a value and stores the
pair in the cache. To do this, you first call sc_store:lookup/1 to determine if
you already have an entry for the key B. If that is the case, you use the
sc_element:replace/2 function to replace the value in the existing storage
element with the new value. If there’s no entry for the key, you must create a
new sc_element process to store the value and then insert a mapping from the
key to the process ID in the sc_store. Note that for now, you aren’t exposing
the lease-time functionality in the API and are relying on the default lease time
of 1 day. If you ever want to change that in the user API, it would be a simple
matter of adding an extra parameter (and providing a default for backward
compatibility).

■ simple_cache:lookup/1—Lookup is straightforward: you use sc_store:

lookup/1 to fetch the pid for the given key; and if that works, you query the
identified sc_element process for the value it holds C. In any other case (if
the key isn’t present, or the process dies before you get an answer) you return
{error, not_found}. Using a try expression like this can be useful whenever
you have a sequence of things that must be done in order and the result should
be the same if any of the steps fails. (See section 2.8 for details of exceptions
and try/catch.)

■ simple_cache:delete/1—To delete the entry for a given key, you first use
sc_store:lookup/1 as in the insert/2 function to find out whether the key is
present. If not, you return ok. Otherwise, you delegate the operation to
sc_element:delete/1 D, which takes care of calling sc_store:delete/1 for
you (see the implementation of sc_element:terminate/2 in listing 6.5). You
make sc_element responsible for its own cleanup to ensure that it’s always done
no matter how the element is removed—particularly in the case that the expiry
time passes, but also if a bug triggers an exception in sc_element and causes it
to terminate unexpectedly.

Fetches pid
for key

C

Cleans upD

169Summary
That’s it! Your simple cache is ready and functioning. To give it a try (and we recom-
mend that you do), compile all the modules in the src directory, placing all the result-
ing .beam files in the ebin directory as you did in section 4.3. Then run Erlang like
this (from the root directory of the application), and start the application:

$ erl –pa ebin

Eshell V5.5.5 (abort with ^G)
1> application:start(simple_cache).
ok
2>

Try the three simple_cache API functions you just created. You should be able to store
any kind of value using any kind of key. If you want to experiment, you can change the
default lease time for src/sc_element.erl (listing 6.3) to something reasonably short,
like 60 seconds, to convince yourself that entries do disappear by themselves when the
lease time is up. (If you do, don’t forget to recompile the module to replace the previ-
ous .beam file under ebin.)

6.5 Summary
You have a cache; and although the way you implemented it took a lot of explanation,
it was pretty easy when you look back at how few lines of code you had to write. The
cache has the expected CRUD functions, is completely memory resident, and even has
automatic lease-based eviction of old entries. We put together quite a few concepts in
this chapter, using all that you learned in the first part of this book.

 You started with a basic design and with setting up the application framework and
the application behaviour module. The next step was the top-level supervisor sc_sup,
which was a different take on supervision compared to what you saw in part 1 of the
book: it acts more like a factory for worker processes. With your application skeleton
in place, you set about creating the sc_element module to store values and handle
lease times, the sc_store module to handle the key-to-pid mapping, and the applica-
tion API module simple_cache that tied everything together.

 You should by now be familiar with how to create an OTP application, and you
should also be getting a good idea of how to encapsulate protocols, manage state,
structure your program in terms of OTP components, and write clean and readable
modules. From here, we delve deeper into more Erlang/OTP technology in order to
improve your cache application—because as nice as it is, the Erlware developers have
raised the issue that it isn’t suitable for the job of speeding up the website. Fundamen-
tally, it’s not up to production standards: if a problem occurs in production, you won’t
know a thing about it—you don’t have even the most basic form of logging. Further-
more, monitoring and event handling haven’t been considered, so you’ll have no idea
whether your cache lives or dies unless you probe it manually. These issues will be
addressed in the next chapter.

Logging and event
 handling the

 Erlang/OTP way
So, you have the great little cache application you wrote in the previous chapter. It
can store key/value pairs for quick retrieval, and it even evicts old entries automati-
cally. It does this in a nice, clean way using various processes, supervisors, and
tables. Although the implementation is tidy, a lot is going on within it: the applica-
tion and the supervisor start up, worker processes come and go, data is stored and
fetched, leases time out, and tables are manipulated. But to a user of the applica-
tion, all this is taking place under the hood, and there is no simple way to find out
more. If you were to ask, say, how many inserts took place over the last hour, you’d
have no way of knowing. What’s more, if something went wrong, you’d have very lit-
tle information about what happened.

 In this chapter, we introduce you to the concept of event handling. Events are
continuously being generated in the system, and Erlang/OTP provides a framework
for creating event streams and for hooking up handlers to act on the generated

This chapter covers
■ Erlang/OTP logging facilities and the SASL

application
■ Event handling and the gen_event behaviour
■ Creating a custom event stream
170

171Logging in Erlang/OTP
events. This framework is the foundation of the standard OTP logging system. We
show you how to use that system and how to modify it using custom event handlers.
We also show you how to generate your own application-level event stream so you can
provide your users with a way to hook into your system. This chapter covers the follow-
ing topics:

■ The logging system
■ Event handling and hooking into to the logging system with a custom handler
■ Creating and handling custom events

Let’s now entertain the question, “What if something goes wrong inside the Simple
Cache?” and use that as a starting point for talking about the OTP logging system.

7.1 Logging in Erlang/OTP
What if something does go wrong within the Simple Cache while it’s running? Right now,
you probably wouldn’t even notice unless the entire service crashed. (For example, you
made the storage element processes clean up after themselves if they die, and the super-
visor was told not to worry about it, because the workers were marked as temporary.)

 You need to put an end to the silent treatment the cache is currently giving you,
and Erlang/OTP has pretty good facilities for doing so. These facilities are the logging
application, the SASL application, and the event handling infrastructure that the
gen_event behaviour provides. Together, they give you a powerful tool for communi-
cating various types of information to the world at large. The gen_event system even
gives you a way to allow other applications to hook into your system.

We get back to SASL and gen_event later in this chapter; right now, we want to give
you an overview of logging.

7.1.1 Logging in general

You may have used logging systems such as log4j (log4c, log4r, and so on) or similar.
Every programming language tends to have a flavor of logging that is the de facto
standard for that language, because logging is such an essential part of the software
development toolbox. Typically, any logging system has several severity levels. These
indicate the importance of the information being logged. One common scheme is to

OTP SASL isn’t SASL
As you may know, SASL is also the name of a common framework for authenti-
cation in network protocols. But the SASL application in Erlang/OTP has abso-
lutely nothing to do with that (it was named long before RFC 2222 was written).
Here, it stands for System Architecture Support Libraries, and it’s one of the
five basic applications that the rest of Erlang/OTP builds on (erts, kernel,
stdlib, sasl, and compiler). It consists of a small collection of important ser-
vices for system management.

172 CHAPTER 7 Logging and event handling the Erlang/OTP way
have up to five levels: critical (or severe), error, warning, info, and debug. The exact
names used may vary between systems. Although they’re mostly self-explanatory, it
may not always be obvious when to use what level, so here are brief descriptions:

■ Critical or severe—Indicates that manual action should be taken immediately
because the system has failed catastrophically or is unusable by its customers.
You should use this level rarely; it should be reserved for the kind of emergency
that people need to be dragged out of bed at 3 A.M. to fix.

■ Error—Notifies the operator of the system that something bad but not critical
has happened. For example, a subsystem crashed and was restarted, or a session
with a customer was terminated due to bad data. The problem needs to be
fixed, but it can probably wait until tomorrow. You shouldn’t use this level too
often, or people may start to ignore the messages.

■ Warn—Tells the operator that something potentially bad, but not terrible, has
happened. You use this when something occurs that can be ignored or worked
around for now but probably should be fixed so it doesn’t cause more problems
later or put an unnecessary load on the system.

■ Info—Represents an informational message. You use this when you want to let
the operator know that something happened. This event may be good, as in
“backup job finished”; or it may be slightly bad, as in “couldn’t send mail; will
retry in five minutes.” You can use this level as much as you like, but don’t go
crazy with it to avoid swamping your operations people with useless details.

■ Debug—Provides details about what is happening. This level is mostly for you,
the developer. It will help you debug problems in a running system; the more
you log, the better (up to a point). Debug messages aren’t expected to be seen
by anyone who hasn’t explicitly asked for them.

Most logging systems allow operators to set the minimum severity level of messages
they’re interested in. If they want to see everything, they set the level to debug, which
will show them all message types. If they want to see mostly everything except debug
messages, they set the level to info. If they only want to be told if there are problems,
they set the level to warn, and so on.

 Logging systems also do other things, like provide adjustable output formats, add
timestamps to log messages, and so on. We skip those details for now and go directly
into how logging works in Erlang/OTP.

7.1.2 Erlang/OTP built-in logging facilities

Logging is a common enough system requirement that a facility for it is included in
the basic Erlang/OTP distribution. The primary functionality is provided by the
error_logger module found in the kernel application in the standard library, and
extended logging for OTP behaviours is provided by the SASL application. Not only
does it give you a way of emitting log messages, but it also gives you a framework for
doing your own logging and event handling in general.

173Logging in Erlang/OTP
 That said, the default logging format is a bit unusual and not something you can
feed directly to common log-parsing tools. You have to decide whether to use the
native logging system, and that decision largely depends on whether you’re fitting it
into an existing, mainly non-Erlang infrastructure, or if you’re creating a new OTP-
based system from scratch. You also need to know what you may be trading away if
you decide to use an external logging system. Let’s start by looking at the main log-
ging API.

7.1.3 The standard logging functions

The standard API for posting log messages is straightforward, but it provides only
three log levels: error, warning, and info. As we show you, this isn’t a huge limita-
tion, because it’s easy to add your own report types and event handlers; but for start-
ers, you’ll make do with what you get. You can find the API functions in the
error_logger module (which is part of the kernel application). The following are
the most basic functions:

error_logger:error_msg(Format) -> ok.
error_logger:error_msg(Format, Data) -> ok.

error_logger:warning_msg(Format) -> ok
error_logger:warning_msg(Format, Data) -> ok.

error_logger:info_msg(Format) -> ok.
error_logger:info_msg(Format, Data) -> ok.

These functions have the same interface as the standard library functions io:format/1
and io:format/2 (see section 2.5.1): the first argument is a format string that can con-
tain escape codes starting with a tilde (~) character, such as ~w, and the second argu-
ment is a list of values to be used with the escape codes.

 Let’s play with these and write some log messages. For example, the following calls
info_msg/1 with a simple message string:

2> error_logger:info_msg("This is a message~n").

=INFO REPORT==== 4-Apr-2009::14:35:47 ===
This is a message
ok

Here you send an info message to the logger, which formats it and adds a heading
with the severity level and a timestamp. By default, log messages are printed to the
console, but the system can be reconfigured to log to a file or turn off logging. (The
ok in the example is the value returned to the shell by the function call; it isn’t a part
of the message.)

 To format some data as part of the message, try info_msg/2:

3> error_logger:info_msg("This is an ~s message~n", ["info"]).

=INFO REPORT==== 4-Apr-2009::14:39:23 ===
This is an info message
ok

174 CHAPTER 7 Logging and event handling the Erlang/OTP way
The ~s escape code inserts another string in the format string. Check the documen-
tation for io:format/2 for details on format strings; just remember that the second
argument must always be a list of terms. There should generally be as many ele-
ments in the list as format specifiers in the format string (except for ~n, which gen-
erates a newline).

 These functions are a little more tolerant of errors than io:format(...). If you
write a bad format specification, you still get a message, rather than a crash. For
example, if you pass the wrong number of elements in the second argument, you get
this report:

4> error_logger:info_msg("This is an ~s message~n", ["info",

➥this_is_an_unused_atom]).

=INFO REPORT==== 4-Apr-2009::14:42:37 ===
ERROR: "This is an ~s message~n" - ["info", this_is_an_unused_atom]
ok

This is so you always get what may be critical information even if you’ve screwed up
the coding of the log message. It may not seem like a big deal, but it’s an awesome fea-
ture of the system.

 Let’s write a more realistic log message:

5> error_logger:info_msg("Invalid reply ~p from ~s ~n", [<<"quux">>,

➥"stockholm"]).

=INFO REPORT==== 4-Apr-2009::14:53:06 ===
Invalid reply <<"quux">> from stockholm
ok

Of course, in a real system, the data would be passed in via variables, not hardcoded
like this. Note the ~p: this is a useful format specifier. As we explained in section 2.5.1,
it pretty-prints the given value, making things easier for humans to read—in particu-
lar, lists or binaries that contain character data.

 Also try these examples calling error_msg and warning_msg instead of info_msg,
and note the differences. You should see that the warning messages and the error
messages look the same; this is because, by default, warnings are mapped to errors.
(Historically, there were only info and error messages. You can change this mapping
by starting erl with the option +W w.)

 A set of slightly more complicated (but more modern) API functions lets you spec-
ify the report in a more flexible way and also lets you add a type to the report. You’ll see
these again in section 7.2.3, in the form of the log events they generate; for now, check
the Erlang/OTP documentation for details about how they’re used:

error_logger:error_report(Report) -> ok.
error_logger:error_report(Type, Report) -> ok.

error_logger:warning_report(Report) -> ok
error_logger:warning_report(Type, Report) -> ok.

error_logger:info_report(Report) -> ok.
error_logger:info_report(Type, Report) -> ok.

175Logging in Erlang/OTP
Now that you know about the basic error_logger facility in Erlang, we talk about the
SASL application and what it adds to the logging system.

7.1.4 SASL and crash reports

To have something to play with, let’s create a little gen_server, shown in the following
listing, whose only job is to start up, run for a while, and shut down.

-module(die_please).

-behaviour(gen_server).

-export([start_link/0]).

-export([init/1, handle_call/3, handle_cast/2, handle_info/2,
 terminate/2, code_change/3]).

-define(SERVER, ?MODULE).
-define(SLEEP_TIME, (2*1000)).

-record(state, {}).

start_link() ->
 gen_server:start_link({local, ?SERVER}, ?MODULE, [], []).

init([]) ->
 {ok, #state{}, ?SLEEP_TIME}.

handle_call(_Request, _From, State) ->
 Reply = ok,
 {reply, Reply, State}.

handle_cast(_Msg, State) ->
 {noreply, State}.

handle_info(timeout, State) ->
 i_want_to_die = right_now,
 {noreply, State}.

terminate(_Reason, _State) ->
 ok.

code_change(_OldVsn, State, _Extra) ->
 {ok, State}.

This is a straightforward gen_server like the ones you’ve seen in previous chapters.
Again, you use the server timeout functionality B, letting the init/1 function specify
a timeout limit in milliseconds. If the server receives no requests within that time (and
it shouldn’t), handle_info/2 is called with the atom timeout as argument. (Recall
that the purpose of the handle_info/2 callback function is to handle out-of-band
messages.) There, you do something that you wouldn’t do in a normal application:
you write some code C that you know will cause an exception and result in the pro-
cess dying (the two atoms can never match). Because your purpose here is to play with
the SASL logging functionality, that’s fine.

Listing 7.1 Error report example: die_please.erl

Set server
timeoutB

Causes an
exception

C

176 CHAPTER 7 Logging and event handling the Erlang/OTP way
BASIC ERROR REPORTS

When you compile the module, the compiler tries to warn you about this glaring
error, but you’ll ignore its cries. After all, the code compiled successfully, as you see
from the {ok,...} result:

$ erl
Eshell V5.7 (abort with ^G)
1> c("die_please.erl").
./die_please.erl:29: Warning: no clause will ever match
{ok,die_please}

(Make sure you start a fresh Erlang shell for this example and that you have the source
file in the current directory.) After the module has been compiled, start it up using
the start_link/0 function, like this:

2> die_please:start_link().
{ok,<0.40.0>}
3>
=ERROR REPORT==== 4-Apr-2009::15:18:25 ===
** Generic server die_please terminating
** Last message in was timeout
** When Server state == {state}
** Reason for termination ==
** {{badmatch,right_now},
 [{die_please,handle_info,2},
 {gen_server,handle_msg,5},
 {proc_lib,init_p_do_apply,3}]}
** exception error: no match of right hand side value right_now
 in function die_please:handle_info/2
 in call from gen_server:handle_msg/5
 in call from proc_lib:init_p_do_apply/3

The server process comes up just fine, and 2 seconds later it terminates with some rea-
sonably useful error information. Next, you’ll start SASL and see how things change.

STARTING SASL
Fire up the SASL application manually, like this:

4> application:start(sasl).
ok
...

In addition to the ok shown here, you’ll also see a lot of weird text flowing across your
screen. That’s all right; they’re only SASL info messages. The SASL application pro-
vides more than just logging, and what you see scrolling past are info messages from
various services that are starting. As each process starts up, information about what is
happening is printed to the log (and the log in this context is the console). We omit
this output from the examples, because it’s pretty verbose.

 The standard log messages—the ones you can write using the basic functions we
showed you in section 7.1.3—are always available in any Erlang system. But applica-
tions can also define their own report types, which the system ignores unless an event

177Logging in Erlang/OTP
handler has been added to act on them. SASL adds such a handler, which listens for
reports sent by the standard OTP behaviours when supervisors start or restart a child
process, if a child process dies unexpectedly, or if a behaviour-based process like a
gen_server crashes. When you started SASL, you saw the main SASL supervisor start-
ing some worker processes.

 Let’s see what happens if you run the same example while SASL is running:

5> die_please:start_link().
{ok,<0.53.0>}
6>
=ERROR REPORT==== 4-Apr-2009::15:21:37 ===
** Generic server die_please terminating
** Last message in was timeout
** When Server state == {state}
** Reason for termination ==
** {{badmatch,right_now},
 [{die_please,handle_info,2},
 {gen_server,handle_msg,5},
 {proc_lib,init_p_do_apply,3}]}
6>
=CRASH REPORT==== 4-Apr-2009::15:21:37 ===
 crasher:
 initial call: die_please:init/1
 pid: <0.53.0>
 registered_name: die_please
 exception exit: {{badmatch,right_now},
 [{die_please,handle_info,2},
 {gen_server,handle_msg,5},
 {proc_lib,init_p_do_apply,3}]}
 in function gen_server:terminate/6
 ancestors: [<0.42.0>]
 messages: []
 links: [<0.42.0>]
 dictionary: []
 trap_exit: false
 status: running
 heap_size: 377
 stack_size: 24
 reductions: 132
 neighbours:
 neighbour: [{pid,<0.42.0>},
 {registered_name,[]},
 {initial_call,{erlang,apply,2}},
 {current_function,{shell,eval_loop,3}},
 {ancestors,[]},
 {messages,[]},
 {links,[<0.27.0>,<0.53.0>]},
 {dictionary,[]},
 {trap_exit,false},
 {status,waiting},
 {heap_size,1597},
 {stack_size,6},
 {reductions,3347}]

178 CHAPTER 7 Logging and event handling the Erlang/OTP way
** exception error: no match of right hand side value right_now
 in function die_please:handle_info/2
 in call from gen_server:handle_msg/5
 in call from proc_lib:init_p_do_apply/3

You get the same error report as before, but you also get a crash report from SASL with
a lot of additional information about the process that failed. This kind of information
is useful when you’re debugging a crash in a live system.

WHEN SASL DOESN’T HELP

Another example is in order. Let’s create a simple module that doesn’t use gen_server
and see what happens. The code, shown in the following listing, basically does the same
thing as in the previous example, but in a much more direct and non-OTP way.

-module(die_please2).

-export([go/0]).

-define(SLEEP_TIME, 2000).

go() ->
 %% just sleep for a while, then crash
 timer:sleep(?SLEEP_TIME),
 i_really_want_to_die = right_now.

Compile and run this module, and see what happens:

6> c("die_please2.erl").
./die_please2.erl:10: Warning: no clause will ever match
{ok,die_please2}
6> spawn(fun die_please2:go/0).
<0.79.0>
7>
...

The process should start and then die with a badmatch error B after 2 seconds. The
error information (not shown here) is much less copious than in the previous exam-
ple, even though you started SASL. The reason is straightforward: to use SASL, a little
work is needed. When you build your application on behaviours like gen_server and
supervisor, this work is already done for you. When you roll your own processes, you
don’t get that—at least not without some extra effort.

 If you do things a bit differently, you can get some of the behaviour you
expect. Let’s try it again, but this time kick off the process using the function
proc_lib:spawn/1 instead of plain spawn/1:

7> proc_lib:spawn(fun die_please2:go/0).
<0.83.0>
8>
=CRASH REPORT==== 4-Apr-2009::15:34:45 ===
 crasher:
 initial call: die_please2:go/0
 pid: <0.83.0>

Listing 7.2 Non-OTP crash example: die_please2.erl

Causes
process to die

B

179A custom event handler with gen_event
 registered_name: []
 exception error: no match of right hand side value right_now
 in function die_please2:go/0
 ancestors: [<0.77.0>]
 messages: []
 links: []
 dictionary: []
 trap_exit: false
 status: running
 heap_size: 233
 stack_size: 24
 reductions: 72
 neighbours:

This time, you get a crash report from SASL. The proc_lib module is part of the
Erlang stdlib application, and it supports starting processes the OTP way so they’re
properly set up to follow all the necessary conventions. In the (for now) unlikely event
that you want to write processes that aren’t built on existing behaviours, you should
typically start them via proc_lib. You’ll be doing yourself a favor in the long run.

 Now that you understand basic Erlang/OTP logging, both without and with SASL,
the next section will explain how the event-handling system works and how you can
hook in your own custom event handlers to get more control over logging.

7.2 A custom event handler with gen_event
Let’s say you don’t like the format of the logs being output by default by the error log-
ger. After all, it’s different from what the rest of the world uses. It may also be that you
work at a company that already has a wealth of tools written around its own log for-
mat, and the Erlang format doesn’t fit in. What can you do? Well, the error logger
allows you to plug into the logging system and output your own error information.

7.2.1 Introducing the gen_event behaviour

The logging facility is based on Erlang’s event handling framework, which uses the
gen_event behaviour. This behaviour wraps up pretty much everything you need from
an event handler in a nice, easy-to-use interface. To plug into the logging infrastruc-
ture, you need to write a new gen_event behaviour implementation module. Fortu-
nately, that’s simple. The gen_event behaviour interface is similar to that of the
gen_server behaviour: it has the familiar init, code_change, and terminate callback
functions, and it also requires the handle_call and handle_info callbacks. (There
are some subtle differences when it comes to arguments and return values, so don’t
assume too much without checking the documentation.) But the gen_event interface
replaces handle_cast/2 with handle_event/2; and as you may be able to guess, that’s
where you receive your error-logger events.

 An important difference between gen_event and gen_server is that when you
start a new gen_server container, you tell it which callback module to use (and
that’s it); but when you start a gen_event container (sometimes referred to as the
event manager), it initially has no callback module. Instead, one or several handlers

180 CHAPTER 7 Logging and event handling the Erlang/OTP way
may be added (and removed again) dynamically after the container has been ini-
tialized. When an event is posted to an event manager, all the currently registered
handler modules are called individually to handle the event. Figure 7.1 illustrates
this difference.

 Because of this one-to-many relationship, you typically won’t find a start_link
function in callback modules that implement the gen_event behaviour; if you do,
you’ll probably see that the function first checks whether the container is already
started (which of course only works if it’s supposed to be a singleton, registered under
some name). Furthermore, keep in mind that the code in your particular callback
module generally isn’t the only code that the event manager calls; you should avoid
doing strange things to the process state (and hope that any other added handlers will
be just as nice).

 Like a gen_server, a gen_event process can be registered under a name when it
starts (like the tr_server back in chapter 3), to make it easy to talk to. You’ll be add-
ing a handler to the standard system process that is registered under the name
error_logger and that always exists in any Erlang/OTP system. (This is exactly what
SASL does when it starts.) When you use one of the logging functions in the
error_logger module, this is the process to which those log events are sent. There is
even an API function in the error_logger module for adding a report handler, so you
don’t have to know the details of how the event handler process is found; it delegates
the call to the function gen_event:add_handler/3 along with the registered name
of the process that should be told to add the handler.

7.2.2 Event handler example

The skeleton for your simple log event handler is shown in listing 7.3. This is a bare-
bones implementation of a gen_event behaviour for the error logger. It doesn’t do
anything yet except receive events and say “OK, go on.”

Figure 7.1 Use of callback modules in gen_server and gen_event. A
gen_server container is always tied to a particular implementation (callback)
module, whereas a gen_event container can have any number of callback
modules that are added and removed dynamically.

181A custom event handler with gen_event
-module(custom_error_report).

-behaviour(gen_event).

%% API
-export([register_with_logger/0]).

-export([init/1, handle_event/2, handle_call/2,
 handle_info/2, terminate/2, code_change/3]).

-record(state, {}).

register_with_logger() ->
 error_logger:add_report_handler(?MODULE).

init([]) ->
 {ok, #state{}}.

handle_event(_Event, State) ->
 {ok, State}.

handle_call(_Request, State) ->
 Reply = ok,
 {ok, Reply, State}.

handle_info(_Info, State) ->
 {ok, State}.

terminate(_Reason, _State) ->
 ok.

code_change(_OldVsn, State, _Extra) ->
 {ok, State}.

All you need to do now is compile the module as normal and then call its API function
custom_error_report:register_with_logger() to make it hook itself into the error-
logger event stream.

7.2.3 Acting on error events

You want to do something interesting with the events you receive. In this case, you
want to write them out to the screen; and to present them nicely, you need to know
what they mean. The error_logger functions generate a specific set of events. These
are described in the Erlang/OTP documentation and listed in table 7.1.

Listing 7.3 Custom logging plug-in module: custom_error_report.erl

There’s no stopping
You saw earlier that the callback functions of a gen_server can return a stop
value, telling the server process to shut down. A gen_event callback can’t do that
(because other registered handlers may not be happy if you kill the entire service).
Instead, the callback can return a remove_handler value, which causes the
gen_event process to remove that handler, calling its terminate callback function
as a last favor.

Adds this module
as callback

182 CHAPTER 7 Logging and event handling the Erlang/OTP way
For the events tagged error_report, warning_report, or info_report, the type field
is std_error, std_warning, or std_info, respectively, if one of the report functions
was called without a specified type. Apart from these, any other type identifiers can be
used for user-defined report types. You can ignore the Gleader (group leader) field
for now; it can be used to specify where to send standard output.

 As a slightly contrived example, listing 7.4 shows how you can change the
handle_event/2 callback function from listing 7.3 to use this knowledge.

handle_event({error, _Gleader, {Pid,Format,Data}}, State) ->
 io:fwrite("ERROR <~p> ~s", [Pid, io_lib:format(Format, Data)]),
 {ok, State};
handle_event({error_report, _Gleader, {Pid, std_error, Report}}, State) ->
 io:fwrite("ERROR <~p> ~p", [Pid, Report]),
 {ok, State};
handle_event({error_report, _Gleader, {Pid, Type, Report}}, State) ->
 io:fwrite("ERROR <~p> ~p ~p", [Pid, Type, Report]),
 {ok, State};
handle_event({warning_msg, _Gleader, {Pid, Format, Data}}, State) ->
 io:fwrite("WARNING <~p> ~s", [Pid, io_lib:format(Format, Data)]),
 {ok, State};
handle_event({warning_report,_Gleader,{Pid,std_warning,Report}}, State) ->
 io:fwrite("WARNING <~p> ~p", [Pid, Report]),
 {ok, State};
handle_event({warning_report,_Gleader,{Pid, Type, Report}}, State) ->
 io:fwrite("WARNING <~p> ~p ~p", [Pid, Type, Report]),
 {ok, State};
handle_event({info_msg, _Gleader, {Pid, Format, Data}}, State) ->
 io:fwrite("INFO <~p> ~s", [Pid, io_lib:format(Format, Data)]),
 {ok, State};
handle_event({info_report, _Gleader, {Pid, std_info, Report}}, State) ->
 io:fwrite("INFO <~p> ~p", [Pid, Report]),
 {ok, State};
handle_event({info_report, _Gleader, {Pid, Type, Report}}, State) ->
 io:fwrite("INFO <~p> ~p ~p", [Pid, Type, Report]),
 {ok, State};

Table 7.1 Error logger events

Event tuple Generated by

{error, Gleader, {Pid,Format,Data}} error_msg()

{error_report, Gleader, {Pid,Type,Report}} error_report()

{warning_msg, Gleader, {Pid,Format,Data}} warning_msg()

{warning_report, Gleader, {Pid,Type,Report}} warning_report()

{info_msg, Gleader, {Pid,Format,Data}} info_msg()

{info_report, Gleader, {Pid,Type,Report}} info_report()

Listing 7.4 Handling error_logger events

183Adding a custom event stream to the Simple Cache
handle_event(_Event, State) ->
 {ok, State}.

All this code does is print the data directly to the standard output in a slightly differ-
ent format, but it should give you an idea of what you need to do to write your own
custom plug-ins. Note that you may receive events that don’t match the earlier list of
formats; these are typically system messages that you can safely ignore, but you still
need a last catch-all clause to handle them and say “OK.”

 We suggest that you compile the code in listing 7.4, hook it into the system,
and call a few of the logging examples from section 7.1.3 to see what happens.
You can also try the custom report functions in the error_logger module, such as
info_report(Type, Report) (see the Erlang/OTP documentation for details).

 At this point, we’ve covered the most important aspects of the logging infrastruc-
ture in Erlang. You should have a good idea of how the following works:

■ The error_logger API
■ SASL progress reports and crash reports
■ The gen_event behaviour
■ Customizing the error logger with your own gen_event implementation

That means you’re ready to take all that and apply it to the Simple Cache application
from the previous chapters. This is the topic of the next section, where you’ll also
learn how to create a custom application-level event stream.

7.3 Adding a custom event stream to the Simple Cache
As we said at the start of this chapter, a lot is going on inside the Simple Cache system.
In the previous sections, we’ve shown how you can add standard error-logger messages
to your code and how the SASL application can give you more information about what
your OTP servers and supervisors are doing. We also showed how the event handling
system works and how to write a custom event handler. But what if you want to create
your own application-specific event stream, separate from the error logger?

 For the cache system, you can publish a number of specific events to notify about
insertion, deletion, lease timeouts, lookups, and other things. Creating your own
event stream will let users of the system easily plug in event handlers to answer ques-
tions like “How many lookups did the cache have in the last hour?” and “How often
are entries being deleted because they weren’t accessed within the lease time?”

 In this section, you’ll use the gen_event behaviour to create a custom event
stream. You’ll integrate it with the Simple Cache application, hooking it into the
supervision structure and instrumenting the code to post events at key points. Finally,
we demonstrate how to create an event handler to intercept those events. First, you’ll
design an API for this event stream.

184 CHAPTER 7 Logging and event handling the Erlang/OTP way
7.3.1 The event stream API

The sc_event module will constitute the API for the application-specific event system.
As usual, you should encapsulate as many implementation details as possible and only
provide a set of easy-to-use functions for any clients who want to subscribe to the event
stream. It’s a straightforward module, shown in the following listing.

-module(sc_event).

-export([start_link/0,
 add_handler/2,
 delete_handler/2,
 lookup/1,
 create/2,
 replace/2,
 delete/1]).

-define(SERVER, ?MODULE).

start_link() ->
 gen_event:start_link({local, ?SERVER}).

add_handler(Handler, Args) ->
 gen_event:add_handler(?SERVER, Handler, Args).

delete_handler(Handler, Args) ->
 gen_event:delete_handler(?SERVER, Handler, Args).

lookup(Key) ->
 gen_event:notify(?SERVER, {lookup, Key}).

create(Key, Value) ->
 gen_event:notify(?SERVER, {create, {Key, Value}}).

replace(Key, Value) ->
 gen_event:notify(?SERVER, {replace, {Key, Value}}).

delete(Key) ->
 gen_event:notify(?SERVER, {delete, Key}).

As you can see, this API module doesn’t implement any specific OTP behaviour. But it
does provide a start_link() function similar to what you’re used to. In this case, it
hides a call to the function gen_event:start_link/1 B, starting a new gen_event
container and registering it locally using the same name as the module.

 As we mentioned in section 7.2.1, many gen_event behaviour implementation
modules don’t provide a start_link API function. Normally, the gen_event container
(also called the event manager) is instead started directly from a supervisor, as illus-
trated by the following child specification example:

{my_logger,
 {gen_event, start_link, [{local, my_logger}]},
 permanent, 1000, worker, [gen_event]}

Listing 7.5 Simple Cache event stream API: src/sc_event.erl

Hides gen_event
start function

B

Hides gen_event
handler registration

C

API functionsD

185Adding a custom event stream to the Simple Cache
(Compare this with the specification for the init/1 function in listing 4.3.) After it’s
started, the process can be referenced by the name my_logger in order to add handlers.

 But such an implementation detail shouldn’t leak into the rest of the code. And
you want to let users add event handlers without having to know what name the man-
ager process is using. Toward that end, you provide not only a start_link function
but also wrapper functions C for the standard gen_event registration functions
add_handler/3 and delete_handler/3, similar to the wrapper you made for the
error_logger registration function add_report_handler/1 in listing 7.3. This makes
the user interface completely independent of the registered name.

 The four functions that follow are the actual event handling API. The gen_event
module provides the function notify/2 for posting events asynchronously, similar to
the cast/2 function in gen_server. The API functions D are wrappers around the
protocol, the way the API of the tr_server in chapter 3 (listing 3.3) hides the proto-
col between the server and the clients. But for event handlers, the encapsulation isn’t
as complete as for servers: the protocol you define in this API module must be under-
stood by every callback module you want to add, and so it should be documented
(possibly as internal documentation, depending on the scope of the event system).
The terms used in the protocol shouldn’t be allowed to leak into any other part of the
code, on either side. Table 7.2 summarizes the protocol for the custom event stream.

With this API in place, when you want to do something like post a lookup event, all
you need to do is call sc_event:lookup(Key). If you need to change the event proto-
col or any other detail of the implementation, you won’t have to go back and modify
every line that posts such an event throughout your code base.

 Next, you’ll hook up this module so the event system starts and stops along with
the Simple Cache application as a whole.

7.3.2 Integrating the handler with Simple Cache

The first thing to realize is that the gen_event container that the sc_event module
starts is a service that should be managed by a supervisor. Furthermore, an OTP appli-
cation always has a single root supervisor that starts everything else. Your problem is
that the root supervisor you created in chapter 6 used the simple_one_for_one
restart strategy (see section 6.3.4). This fitted the problem well, but such a supervisor

Table 7.2 Simple Cache application-specific events

Event tuple Posted by

{lookup, Key} sc_event:lookup/1

{create, {Key, Value}} sc_event:create/2

{replace, {Key, Value}} sc_event:replace/2

{delete, Key} sc_event:delete/1

186 CHAPTER 7 Logging and event handling the Erlang/OTP way
can have only one type of child process; thus you can’t add your gen_event process to
the supervisor.

 Fortunately, you don’t need to rewrite the existing supervisor. (A large part of
the cache architecture depended on it.) You only need to rename it: it will no
longer be the root supervisor, and you’ll create a new sc_sup module to take over
that task. You’ll start by renaming the file src/sc_sup.erl to src/sc_element_sup.erl
and editing its module declaration to match the new name. Also be sure to
update sc_element.erl, changing the create(Value, LeaseTime) function to call
sc_element_sup:start_child(…) instead of sc_sup:start_child(…).

 Your old supervisor, now under the name sc_element_sup, will be a child process
of the new top-level supervisor, and so will your gen_event process. Doing all this
becomes a simple matter of writing a basic supervisor and a couple of child specifica-
tions. The new supervisor is shown in the following listing.

-module(sc_sup).

-behaviour(supervisor).

%% API
-export([start_link/0]).

%% Supervisor callbacks
-export([init/1]).

-define(SERVER, ?MODULE).

start_link() ->
 supervisor:start_link({local, ?SERVER}, ?MODULE, []).

init([]) ->
 ElementSup = {sc_element_sup, {sc_element_sup, start_link, []},
 permanent, 2000, supervisor, [sc_element]},

 EventManager = {sc_event, {sc_event, start_link, []},
 permanent, 2000, worker, [sc_event]},

 Children = [ElementSup, EventManager],
 RestartStrategy = {one_for_one, 4, 3600},
 {ok, {RestartStrategy, Children}}.

As you see, this is similar to the tr_sup supervisor you wrote in chapter 4 (listing 4.3).
They’re both simple one_for_one supervisors C that treat their child processes as
separate beings of different types that are restarted individually as necessary. This
one has two static children, each with its own child specification: the old renamed

Supervisor naming
It’s common practice to use the name <mod>_sup for a module that imple-
ments a supervisor of a service implemented in the module <mod>. For exam-
ple: sc_element_sup.

Listing 7.6 New root supervisor: src/sc_sup.erl

New sc_event
processB

one_for_one supervisorC

187Adding a custom event stream to the Simple Cache
supervisor for sc_element processes and the new sc_event process B. That one of
these children is in itself a supervisor isn’t a big deal to the root supervisor; but to
help it make better decisions in some situations, you tag the sc_element_sup child
as supervisor and the sc_event child as worker. (See section 4.2.3 if you need a
reminder of what the fields of a child specification mean.) Following this pattern,
you can nest supervisors to any depth you want to give your application a suitably
fine-grained supervision structure.

 Now that you’ve set up the event service to run as part of the application, all you
have to do is instrument your code so there are events to look at. This means going
back and modifying the source code in suitable places, to post events when something
of interest happens.

 We don’t want to repeat all the code here; we look at one function and how to
instrument it. The following is the code for simple_cache:insert/1 as it looked back
in listing 6.7:

insert(Key, Value) ->
 case sc_store:lookup(Key) of
 {ok, Pid} ->
 sc_element:replace(Pid, Value);
 {error, _} ->
 {ok, Pid} = sc_element:create(Value),
 sc_store:insert(Key, Pid)
 end.

You want to post a create event when a new storage element is created. To do this,
change the code as follows:

insert(Key, Value) ->
 case sc_store:lookup(Key) of
 {ok, Pid} ->
 sc_element:replace(Pid, Value);
 {error, _} ->
 {ok, Pid} = sc_element:create(Value),
 sc_store:insert(Key, Pid),
 sc_event:create(Key, Value)
 end.

All it takes is inserting a call to sc_element:create(Key, Value) at the right point. In
general, you may have several choices of where to post an event; here, for example,
you could do it somewhere in sc_element:create/1. We chose to put it at a point
where the entire creation operation is known to have completed. Adding the remain-
ing three event notifications from table 7.2 is similar and is left as an exercise. Beware
of changing the expected return value from a function like lookup/1.

 Now you have an instrumented application that continuously chats about what it’s
doing to anyone who wants to listen. To do that, they plug into your event stream,
exactly as you did to subscribe to error-logger events in section 7.2. The next section
will demonstrate handling such custom events.

Posts create event

188 CHAPTER 7 Logging and event handling the Erlang/OTP way
7.3.3 Subscribing to a custom event stream

As an example of how to tap into a custom event stream defined by an application
(like the one you’ve implemented), you’ll create an event handler and attach it to the
Simple Cache event stream. This is similar to the event handler example for the error
logger in section 7.2.2: both are gen_event behaviour implementations, and the only
real difference is the set of events they handle and what they do with them.

 To make the example do something useful, you’ll funnel the custom events to the
error logger so you can inspect them. In a real-life situation, you could just as easily
pass the events on to a statistics system or a remote monitoring system.

 Listing 7.7 shows the logging handler for the custom cache events. It’s similar to
the module in listing 7.3; for the sake of brevity, we’ve left out all callback functions
except handle_event/2.

-module(sc_event_logger).

-behaviour(gen_event).

-export([add_handler/0, delete_handler/0]).

-export([init/1, handle_event/2, handle_call/2,
 handle_info/2, code_change/3, terminate/2]).

add_handler() ->
 sc_event:add_handler(?MODULE, []).

delete_handler() ->
 sc_event:delete_handler(?MODULE, []).

handle_event({create, {Key, Value}}, State) ->
 error_logger:info_msg("create(~w, ~w)~n", [Key, Value]),
 {ok, State};
handle_event({lookup, Key}, State) ->
 error_logger:info_msg("lookup(~w)~n", [Key]),
 {ok, State};
handle_event({delete, Key}, State) ->
 error_logger:info_msg("delete(~w)~n", [Key]),
 {ok, State};
handle_event({replace, {Key, Value}}, State) ->
 error_logger:info_msg("replace(~w, ~w)~n", [Key, Value]),
 {ok, State}.

add_handler/0 and delete_handler/0 B are convenience functions that make it easy to
start and stop the logging. As soon as the handler is added, every event posted via
sc_event results in a corresponding call to handle_event/2, until you delete the handler.

 The format of the events you need to handle was shown in table 7.2. All you do
here is write a corresponding standard error_logger message C, nicely formatted, to
show what is happening.

 We encourage you to try this: instrument the Simple Cache application, write the
event handler, compile the new and modified modules, and start the application as

Listing 7.7 Custom event handler example: src/sc_event_logger.erl

add_handler/0 and
delete_handler/0
functions

B

error_logger
messageC

189Summary
you’ve done before. Make a couple of calls to the cache’s insert and lookup functions.
Then, call sc_event_logger:add_handler() and do some more cache operations to
see the log messages. Also check that they go away when you delete the handler. For
bonus points, add a new event that is posted when a lease times out in the cache, and
make all the necessary changes to observe it working. Finally, make sc_app:start/2
add the event logger handler automatically, after sc_sup has been successfully started.

7.4 Summary
You’ve learned a lot about event handling in Erlang/OTP. You probably know more
after reading this than many people who have been programming Erlang for years!
You’ve seen how to use the Erlang/OTP standard logging system, how it’s built on the
gen_event behaviour (and how that works), and how to write event handlers to tap
into the logger stream, allowing you to customize the output. Finally, you took all that
knowledge and used it to create your own application-level event stream, along with a
custom handler that passed those events to the error logger.

 If you’re anything like us, you found this chapter exciting and perhaps a little over-
whelming, and you probably need to take a few moments and get your breath back
before you read on. You’ll need it, because the next chapter will knock your socks off
(we hope). We introduce Erlang’s distribution mechanisms and show you how to
make good use of them. This is one of the most powerful aspects of Erlang/OTP, and
we know you’ve been looking forward to learning about it.

Introducing distributed
 Erlang/OTP
In this chapter, we take a break from adding functionality to the cache applica-
tion. Instead, we explore the distributed programming capabilities of Erlang, in
order to prepare you for the next chapter. Although Erlang/OTP makes distribu-
tion a lot simpler than it is in most other languages, it’s still a complex topic. This
chapter will teach you the basics of working with distributed Erlang, but it can
take a lot of experience to get the hang of it and realize how few of the lessons
from traditional sequential programming remain valid. But don’t worry—above
all, it’s a lot of fun!

8.1 The fundamentals of Erlang distribution
Let’s say you have an instance of the Simple Cache application running on
machine A and another instance running on machine B. If would be great if, when
you insert a key/value pair into the cache on machine A, it would automatically

This chapter covers
■ The basics of distributed Erlang
■ Working with Erlang nodes and clusters
■ Implementing a simple resource discovery

system
190

191The fundamentals of Erlang distribution
become available on machine B as well. Obviously, machine A would somehow have to
communicate that information to machine B. There are many ways you can go about
propagating this information, some easier and more straightforward than others. All
of them, however, imply distribution, because you need to communicate between sep-
arate computers.

 Erlang makes certain types of distributed programming extremely easy; in no
time at all, and with very little code, you can have a number of machines across a net-
work happily chatting with one another. Two fundamental features of Erlang make
this possible:

■ Process communication by copying
■ Location transparency

We presented this briefly in chapter 1. Here, we take a much deeper look at both
of these properties and talk about how they make distribution possible. We also
explain what Erlang nodes are and how they can be connected to form a cluster
and tell you a little about the basic security model, how to communicate between
nodes, and how to work with remote shells. Finally, you’ll take all of that and
implement a nontrivial distributed application that you can use in later chapters.
But first, let’s talk about why Erlang’s communication model is such a good fit for
distributed programming.

8.1.1 Process communication by copying

To recapitulate what we said in chapter 1, the
most widespread models for communicating
between two concurrently executing pieces of
code involve sharing certain areas of the mem-
ory on the machine where they’re both run-
ning. This model is illustrated in figure 8.1.
But it has many problems, one of which is that
if you want to modify the program to run each
piece of code on a separate computer, you usu-
ally need to change communication strategy
completely. This forces you to rewrite a large
part of the code.

 This sort of problem was one of the things
the creators of Erlang wanted to solve from the start. In order to make communica-
tion transparent and at the same time build fault-tolerant systems where one computer
doesn’t come to a halt just because its neighbor crashes or the network between
them dies, sharing must be taken out of the picture.

 Instead, Erlang processes communicate strictly by asynchronous message passing (so
that sending a message doesn’t require waiting for acknowledgement over the net-
work), and the data is transferred in such a way that the receiver effectively gets a sep-
arate copy; nothing that the sender does to the data afterward can be observed by the

Figure 8.1 Traditional process
communication through shared memory.
This requires that both processes run on the
same machine, or alternatively that some
form of distributed shared memory is used.

192 CHAPTER 8 Introducing distributed Erlang/OTP
receiver, and vice versa. Any further communica-
tion must happen through further messages. This
is a pragmatic model that works well between pro-
cesses on the same machine (see figure 8.2) and
that keeps working even when processes are on
separate machines connected by a network (see
figure 8.3).

 As you can see, the differences between fig-
ures 8.2 and 8.3 are trivial. You can change your
program from one model to the other, but the
way your processes communicate doesn’t need to
be modified.

 In Erlang, you’re always using message
passing, never sharing, so the distributed case
is practically identical to the local case. Much
of the code can be written with complete dis-
regard to where the processes will eventually
be running.

 That said, you need to be aware of many
things when communicating over a network.
With local communication, you know that a
sent message will be delivered to the receiving
process as long as it’s still alive, and you know
that nothing can delay the transfer. When you
have a network between the machines, it’s possi-
ble that routing will delay the message or that
the network will go down. To the sender, this
will usually be no different from the case when the receiver dies or has a bug that
causes it to not reply; a robust sender should be prepared for that even if the commu-
nication is expected to be local. But there are still many more sources for nondeter-
ministic behavior in a distributed system.

 But just because the communication mechanism is the same for machines in a net-
work as it is on a single machine, you can’t just move code from one machine to
another, can you? You must still specify where the messages should be sent and, in par-
ticular, to which machine, right?

8.1.2 Location transparency

We said that the method of communication between processes is the same regardless
of whether the recipient is on the local machine or a remote machine. This applies
also on the syntactical level. The following is the syntax for sending a message (a
string, in this case) to a process on the same machine as the sender:

Pid ! "my message"

Figure 8.2 Erlang processes
communicating by message passing on
a single machine. This is always done so
that the receiver effectively gets a
private copy of the data. In practice,
read-only shared memory may be used
for efficiency, but to the processes the
result is the same.

Figure 8.3 Erlang processes
communicating by message passing
between different machines. In this case,
it’s obvious that data must be copied from
one computer to another. Apart from the
transfer time added by the network layer,
nothing is different from figure 8.2.

193Nodes and clustering
Now, here is how you send the same message to a process on a different machine:

Pid ! "my message"

Sorry, couldn’t resist that one. Yes, they’re exactly the same: the ! (send) operation is
location transparent—the recipient can be on any machine, and all the information
needed to guide the message to the right location is encoded in the process identi-
fier. Erlang guarantees that process identifiers are unique on the network, even
across machines. This property means you can write programs in Erlang that don’t
need to be changed at all when you decide to go from one machine to a dozen;
what’s more, you can take a program made to run on a dozen machines and test it on
your laptop.

 Location transparency may seem like a small thing until you realize how much it
liberates your programming style. When you no longer think about communication
between computers as a huge threshold that you may one day find the strength to
cross, and instead consider it the normal state of things—your processes may well
be on separate machines unless there is a particular reason for them not to be—
you can start designing systems that would previously have been too complicated
for thought.

 These two properties—communication by copying and location transparency—
combine to make distributed programming in Erlang a real pleasure to work with. In
the next chapter, you’ll apply this to the cache application. But right now, your cache
is without networking capabilities. If you start another cache on another machine,
neither of them will have a clue that the other exists. That’s the first thing you need
to change to add distribution to the cache: you must make the machines aware of
one another.

8.2 Nodes and clustering
We’ve been deliberately vague about one thing above: what is a machine in this con-
text? In many cases, you have one Erlang VM (see section 1.4) running on each
piece of hardware; but sometimes—particularly when testing and developing—you
run several VM instances on a single computer. Given the way you’ve started erl (or
werl) up until now, those instances wouldn’t know or care about each other, because
they haven’t been set up for networking. That can be useful if you want to have mul-
tiple standalone Erlang-based programs (for example, the Yaws web server and the
CouchDB database) running on the same computer. When an Erlang VM is running
with networking enabled, things definitely get more interesting. Such a VM instance
is called a node.

 When two or more Erlang nodes become aware of each other, we say that they
form a cluster. (The official Erlang/OTP documentation usually refers to it as a net-
work of nodes, but we want to avoid any confusion with computer networks.) An
Erlang cluster is by default fully connected, as shown in figure 8.4. In other words, every
node in the cluster knows about every other node, and they communicate directly
with each other.

194 CHAPTER 8 Introducing distributed Erlang/OTP
8.2.1 Starting a node

To start an Erlang node in distributed mode, you run erl (or werl) with one of the
flags -name or -sname. The first is used in a normal network environment, with a work-
ing DNS, where you can use fully qualified domain names. For example:

erl –name simple_cache

The second form is used where fully qualified names don’t work; this may often be
the case in certain production environments. It can also happen, for example, on a
wireless LAN, where you may be able to connect two computers to the network but
they still can’t find each other via DNS. In those cases, you must use short node
names instead:

erl –sname simple_cache

Short names work as long as the nodes are on the same subnet.

Nodes
A node is a running Erlang VM that has been configured to work in distributed
mode. A node always has a name, which allows other nodes to find it and talk to
it. The built-in function node() returns the current local node name, which is an
atom of the form nodename@hostname. (This is always nonode@nohost for a VM
that isn’t running in distributed mode.) There can be multiple nodes running on a
single host machine.

Long and short names can’t be mixed
Nodes with short names and long names work in different communication modes
and can’t be part of the same Erlang cluster. All connected nodes must use the
same mode.

Node1@network

Node4@network

Node3@networkNode2@network

Figure 8.4
Erlang nodes on the network
forming a cluster. Each node in
the cluster is connected
directly to every other node: the
network is fully connected.

195Nodes and clustering
When an Erlang VM is running as a node, the node name is shown in the shell prompt:

Eshell V5.6.2 (abort with ^G)
(simple_cache@mybox.home.net)1>

This node is named simple_cache@mybox.home.net. From that, you can see that it’s
using long (fully qualified) names—it was started with –name simple_cache. If you
start a shell with –sname simple_cache instead, it looks like this, without periods in
the host part of the node name:

Eshell V5.6.2 (abort with ^G)
(simple_cache@mybox)1>

Try both variants on your computer. If you’re running Windows, one way to do this is
to right-click the Erlang icon, select Properties, and edit the target command
(C:\...\werl.exe) to include the name or sname flag. You can also make a couple of
copies of the icon on your desktop and edit each of them to start Erlang nodes with
different names at the click of a button.

 Now that you can start one or more nodes, the next step is of course to make
them communicate.

8.2.2 Connecting nodes

A cluster of Erlang nodes can consist of two or more nodes. As a practical limit,
you may have a couple of dozen, but probably not hundreds of nodes. This is
because the cluster is a fully connected network, and the communication overhead
for keeping machines in touch with each other increases quadratically with the
number of nodes.

Nodes don’t actively try to find each other. You have to give them a reason to go look
for another node; but after they find each other, they keep track of each other and
also exchange information about any other nodes they’re connected to so they can
form a complete network. For example, if nodes A and B form one cluster, and C and D
make up another cluster, then if A and D find each other, they will exchange informa-
tion about B and C, and all four will be connected to form a larger cluster, as shown
earlier in figure 8.4.

 Let’s try it in practice. You’ll start three nodes (each in its own window) with the
names a, b, and c, and connect them as follows: first a to b, and then b to c. Start them
on the same computer for this example; they could equally well be running on separate

Hidden nodes
It’s possible to connect clusters via special nodes to form a larger, not fully con-
nected cluster. Such nodes are configured not to propagate information about
other nodes, or even to be invisible to the other nodes, which can be useful for non-
intrusive inspection of a cluster.

mailto:cache@mybox.home.net
mailto:cache@mybox.home.net

196 CHAPTER 8 Introducing distributed Erlang/OTP
machines, but we need to talk a little about the security model before you try that. With
multiple computers, you may also run into firewalls blocking your nodes from commu-
nicating; for now, let’s make it simple and run on just one machine:

> erl –name a
Erlang (BEAM) emulator version 5.6.2 [source] [smp:2] [async-threads:0]
[kernel-poll:false]

Eshell V5.6.2 (abort with ^G)
(a@mybox.home.net)1>

Do the same for nodes b and c. You can now run the built-in function nodes() in
each of these, to see the list of connected nodes. Right now, they should all show an
empty list:

(b@mybox.home.net)1> nodes().
[]

The next step is to start connecting them. The simplest way, if connecting is all you
want to do, is to use the standard library function net_adm:ping/1, as follows:

(a@mybox.home.net)2> net_adm:ping('b@mybox.home.net').
pong

This will either return the atom pong if the communication was successful or the atom
pang otherwise. (If you find this strange, it’s because pang is Swedish for bang, as in
“crash, bang, it failed.”) If it worked, the nodes should now be connected. You can
check this by running nodes() again on all three nodes. On a, you should see that it
now knows b, and vice versa. On c, you should still see an empty list, because it hasn’t
been in touch with the other two yet:

(b@mybox.home.net)2> nodes().
['a@mybox.home.net']

If this step fails for you even if your nodes are on the same machine, it could be that
you’re trying to use fully qualified names but the DNS hasn’t been properly set up. For
example, on a PC connected to a home LAN, you may end up with a node name like
'a@mypc.home.net', even though the address mypc.home.net can’t be resolved by the
DNS. (You can use a tool like the normal command-line ping to see if the name is
usable or not.) If your nodes can’t connect, then restart them using –sname instead of
-name and try again.

 Next, connect b to c, and call nodes() again:

(b@mybox.home.net)3> net_adm:ping('c@mybox.home.net').
pong
(b@mybox.home.net)4> nodes().
['a@mybox.home.net','c@mybox.home.net']

No surprises: b knew a already, and now it also knows c. Running nodes() at a and c as
well, you see that the cluster has become fully connected:

(a@mybox.home.net)4> nodes().
['b@mybox.home.net','c@mybox.home.net']

mailto:a@mybox.home.net
mailto:b@mybox.home.net
mailto:a@mybox.home.net
mailto:b@mybox.home.net
mailto:b@mybox.home.net
mailto:a@mybox.home.net
mailto:a@mypc.home.net
mailto:b@mybox.home.net
mailto:c@mybox.home.net
mailto:b@mybox.home.net
mailto:a@mybox.home.net
mailto:c@mybox.home.net
mailto:a@mybox.home.net
mailto:b@mybox.home.net
mailto:c@mybox.home.net

197Nodes and clustering
(c@mybox.home.net)3> nodes().
['b@mybox.home.net','a@mybox.home.net']

As a last experiment, kill the b node (for example, by entering q().; see section 2.1.4),
and look at what happens on the remaining a and c nodes:

(a@mybox.home.net)5> nodes().
['c@mybox.home.net']

(c@mybox.home.net)4> nodes().
['a@mybox.home.net']

They’re still in contact, even though the node that originally introduced them is
gone. If you restart b and connect it to either a or c, the cluster will again contain all
three nodes.

 But how does all this work—in particular if the nodes are supposed to be able to be
running on separate machines?

8.2.3 How Erlang nodes find each other and communicate

Look at the processes running on your system, and try to find the one called EPMD.
For example, on a UNIX-like operating system, you can run ps:

$ ps ax | grep -i epmd
 758 ?? S 0:00.00 /usr/local/lib/erlang/erts-5.6.2/bin/epmd –daemon

EPMD is the Erlang Port Mapper Daemon. Whenever you start a node, the node
checks that EPMD is running on your local machine and starts it otherwise. EPMD
keeps track of which nodes are running on the local machine and what ports they
have been assigned. When an Erlang node on one machine wants to talk to a remote
node, the local EPMD talks to the EPMD on the remote machine (by default using
TCP/IP on port 4369) and asks if it has a node by that name up and running. If so, the
remote EPMD replies with the port used for communicating directly with the remote
node. But EPMDs never try to locate each other automatically—communication must
always be triggered by one node looking for another.

Note that Erlang’s default distribution model is based on the assumption that all the
machines in the cluster are running on a trusted network. If that isn’t the case, or if
some of the machines need to talk to the outside world, then communication over
the unsafe network should be done using direct TCP (or UDP or SCTP) with a suitable

Advanced node discovery
Systems exist that allow you to find and connect Erlang nodes through network
multicast, broadcast, and other clever means. If you’re running Erlang in a cloud
environment like EC2 where you add and remove computers on demand, you may
want to look into these. One project that has been receiving some attention
recently is nodefinder, at http://code.google.com/p/nodefinder/.

http://code.google.com/p/nodefinder

198 CHAPTER 8 Introducing distributed Erlang/OTP
protocol for your application, as you did with the RPC server in chapter 3. Alterna-
tively, you can tunnel the traffic via SSL, SSH, or IPsec, or even configure the Erlang
distribution layer to use SSL or another carrier protocol (see the Erlang/OTP SSL
library and ERTS user guides for details).

 In a typical production environment, you have a number of machines on a
trusted network and one or more Erlang nodes that communicate with the outside
world via an Erlang web server like Yaws, MochiWeb, or the standard library inets
httpd. You may also be running other protocols on certain ports. Apart from that,
nothing can access your network from the outside. Still, it would be foolish to have
no security at all, if only to avoid human error. Erlang’s distribution uses a system of
magic cookies for authorization; and apart from firewalls, the most common reason
for failing to connect nodes is an incorrectly set cookie. The next section will explain
how this works.

8.2.4 The magic cookie security system

Assuming you’ve managed to start a node at least once, look in your home directory.
(On Windows, this is probably C:/Documents and Settings/<username>, C:/Users/
<username>, or whatever %HOMEDRIVE%%HOMEPATH% happens to expand to.) You
should find a file named .erlang.cookie. If you open this file with a text editor, you’ll
see a long string. This is your automatically generated cookie. You can check this by
running the following command from the shell on an Erlang node:

 (b@mybox.home.net)1> auth:get_cookie().
'CUYHQMJEJEZLUETUOWFH'

The string returned should be the same one you see in the .erlang.cookie file. An
Erlang node doesn’t allow traffic from other nodes unless they know the magic
cookie. When a node starts, it reads the .erlang.cookie file if it exists and uses the
string found there as its magic cookie. (If you edit the file and change the string to
something else, and then restart the node and rerun the previous command, you
should see that the modified cookie is used.) If the node doesn’t find a cookie file, it
instead creates a new file containing a randomly generated string—that’s how the file
got there in the first place. Try deleting the file and restarting the node: you should
see the file appear again with a fresh random string.

 By default, a node assumes that all other nodes it wants to talk to are using the
same cookie as itself. When you start several nodes on a single computer, as you did
earlier (using the same user account and home directory), all of them use the same
cookie file, and so they’re allowed to communicate with each other. If you want nodes
on two different machines to communicate, the easiest way is to copy the generated
cookie file from one machine to the other, ensuring that they’re equal but still suffi-
ciently hard to guess. Preferably, nobody except the owner should have read access to
the cookie file.

 This security model guards against basic attacks—for example, if you’ve started an
Erlang node on a computer with no firewall, an attacker won’t be able to easily guess

mailto:b@mybox.home.net

199Nodes and clustering
your cookie—but more importantly, it also guards against human error. Suppose you
have two separate clusters of Erlang nodes running on your network, and you don’t
want them to accidentally join to form a single fully connected cluster (for example, if
there’s a bandwidth bottleneck between them). By using different cookies, you can
guarantee that members of the two separate clusters won’t accidentally be connected
by a net_adm:ping(...) or similar.

 For more complex setups, you can programmatically set the cookie with the built-
in function set_cookie(Node, Cookie). This allows you to configure a node so that it
uses specific cookies for talking to specific other nodes. In principle, each node in the
cluster can have a different cookie, but in practice the system of having the same
cookie file contents is the most common.

 Next, let’s make your nodes chat to demonstrate what you can do with message
passing in distributed Erlang.

8.2.5 Sending messages between connected nodes

We went over the basics of message passing using ! and receive in chapters 1 and 2.
In the chapters after that, you’ve also been sending messages through API functions
such as gen_server:cast(...). We now look at ways of passing messages between
nodes. Make sure nodes a, b, and c are started and connected as before. (For added
thrills, run them on separate computers.) Working through the following examples
should help you get your mind around how easy distribution can be in Erlang.

 The first thing we demonstrate is how to talk to a process that is registered under
some known name on the remote node. Enter the following on node b (recall that an
expression isn’t complete until the terminating period character, even if you press
Enter after each line):

(b@mybox.home.net)2> register(shell, self()).
true
(b@mybox.home.net)3> receive
(b@mybox.home.net)3> {From, Msg} ->
(b@mybox.home.net)3> From ! {self(), "thanks"},
(b@mybox.home.net)3> io:format("Msg: ~p~n", [Msg])
(b@mybox.home.net)3> end.

At the first prompt, you register the shell process locally under the name shell.
(See section 2.13.3 if you need a reminder about process registration.) The registra-
tion returns true, indicating that it worked. After that, you enter a receive expres-
sion; after you enter the last line and the period, the shell doesn’t print another

Connecting multiple computers
If you have two computers with Erlang installed (the more, the merrier), and they’re
connected over the network, you can now try to repeat what you did in section
8.2.2. First, ensure that the cookie file is the same on both; then, start at least
one node on each machine, and try to connect them using net_adm:ping/1.

mailto:b@mybox.home.net
mailto:b@mybox.home.net
mailto:b@mybox.home.net
mailto:b@mybox.home.net
mailto:b@mybox.home.net
mailto:b@mybox.home.net

200 CHAPTER 8 Introducing distributed Erlang/OTP
prompt—it’s executing the receive and will wait until a message matching {From,
Msg} arrives. You expect From to be a process identifier that lets you reply to the
sender, and Msg to be any data. When you get such a message, you send a quick
reply that includes your own process identifier, and then you print the received Msg.
Only when all that has finished can you enter further expressions in this shell, so
you leave it alone for now.

 Next, do the same thing on node c. This will leave you with both b and c waiting
for messages. Now, switch to node a, and enter the following:

(a@mybox.home.net)2> lists:foreach(fun(Node) ->
(a@mybox.home.net)2> {shell, Node} ! {self(), "hello!"}
(a@mybox.home.net)2> end,
(a@mybox.home.net)2> nodes()).

You use the higher-order function lists:foreach/2 to iterate over the list of con-
nected nodes as given by nodes(), which should contain b and c in this case. For
each node, you send a message of the form {self(), "hello!"} to a destination
specified by the tuple {shell, Node}. This is a form of destination we didn’t men-
tion in section 2.13.3; it means the message should be sent to the process regis-
tered under the name shell on the specified node. If you said shell ! {...}, it
would refer to a process registered on the local node a, and that isn’t what you
want here.

 If you now look back at your other two nodes, they should each have received a
message, sent you a reply, and printed the message as you instructed them to do. The
result should look like this on both nodes:

Msg: "hello!"
ok
(b@mybox.home.net)4>

Note that in the receive, you bound the variable From to the sender’s pid. You can
inspect it by entering it in the shell:

(b@mybox.home.net)4> From.
<5135.37.0>

This shows a text representation of the process identifier. From the first number, you
can tell that it comes from another node—for local pids, this is always zero. Note
that you used this pid to send a reply back to the sender with a straightforward From
! {...}. The destination node is encoded in the pid. (Don’t think too much about
the actual numbers—they’re temporarily assigned and have no deeper meaning.) If
you do the same thing on node c, you should see the same representation of From as
on b.

 What happened with the replies? Simple—they’re waiting for you in the mailbox
of the shell process on node a. First, inspect its process ID:

(a@mybox.home.net)3> self().
<0.37.0>

mailto:a@mybox.home.net
mailto:a@mybox.home.net
mailto:a@mybox.home.net
mailto:a@mybox.home.net
mailto:b@mybox.home.net
mailto:b@mybox.home.net
mailto:a@mybox.home.net

201Nodes and clustering
You should see that its middle number is the same as those in the From pids on the
other nodes. However, the first number is zero, which indicates that the process it
refers to resides on the local node. Now, look in the mailbox on a:

(a@mybox.home.net)4> receive R1 -> R1 end.
{<5316.37.0>,"thanks"}
(a@mybox.home.net)5> receive R2 -> R2 end.
{<5229.37.0>,"thanks"}

(Make sure you use different variables for the two receives—otherwise, the second
one will never match.) Note that the pids of the senders are both remote, as indicated
by their first numbers being nonzero. Interestingly, they both have the same middle
number as the shell process on a. This is because the initial shell process tends to be
started at the same point in the boot sequence on all nodes. If the shell process on
one node has crashed and been restarted, it will have a different number. For exam-
ple, try entering 1=2. on a, and then call self() again, and you’ll see it change: even
in the Erlang shell, processes are used to make the system fault tolerant. (A crashed
shell process loses its mailbox contents, but variable bindings are preserved.)

 As you can see, distributed communication is straightforward, and it doesn’t get
any more complicated from here on. This is the heart and soul of it, and the rest is
sugar on top. There is one more important thing to learn before you start to play with
distributed programming for real, and that is how to control other nodes remotely
from your local console.

8.2.6 Working with remote shells

Erlang’s location transparency is nicely demonstrated by its rather remarkable ability
to run shells remotely. After all, when you start a normal Erlang shell, you get an
Erlang process that talks to the input and output streams of your console window.
This communication is also built on message passing, and the shell process doesn’t
care much whether it’s running on the same node as the console it’s connected to. As
a consequence, it’s easy to start a shell process that runs on the remote node and does
all its work there, but that is connected to the console of your local node.

 This remote shell feature is supported directly in the job control interface of the
Erlang shell. Recall from section 2.1.4 that if you press Ctrl-G in the shell, you get a
prompt that looks like this:

User switch command
 -->

Try this on node a now. If you enter h or ? at the prompt, you see this help text:

 c [nn] - connect to job
 i [nn] - interrupt job
 k [nn] - kill job
 j - list all jobs
 s [shell] - start local shell
 r [node [shell]] - start remote shell
 q - quit erlang
 ? | h - this message

mailto:a@mybox.home.net
mailto:a@mybox.home.net

202 CHAPTER 8 Introducing distributed Erlang/OTP
We explained how job control works in section 2.1.5, but we didn’t show how to use
the r command. By now, you can probably guess. You’ll use node a to start a job on
node b. The nodes don’t even need to be previously connected, so you can try restart-
ing b for this exercise if you like. On a, enter the following:

--> r 'b@mybox.home.net'
-->

The r command takes a node name as an argument and starts a remote shell job on
that node, like the s command starts a new local job. Make sure to use single quotes
around the node name if it has dots in it (as it does here). Just as when you use the s
command, you don’t see any immediate effects. Let’s use the j command to inspect
the list of currently running jobs:

--> j
 1 {shell,start,[init]}
 2* {'b@mybox.home.net',shell,start,[]}
-->

Job 1 is your old local shell, but look at job 2: it says it’s running on node b. The next
step is to connect to that job, which you can do by entering c 2—or, because the *
marker shows that it’s now the default job, it’s enough to enter c:

--> c
Eshell V5.6.5 (abort with ^G)
(b@mybox.home.net)1>

Now look at that prompt. You’re running on node b! This means you can execute
any command on b as if you were sitting in front of b’s console, even if machine b is
in another room or on the other side of the planet. This includes any kind of main-
tenance work such as killing and restarting processes manually, compiling and
upgrading code, or monitoring and debugging. This is pretty powerful stuff, but
with great power comes great responsibility. It’s equally possible to bring down a
node this way.

 It’s often the case that you have a long-lived node running on some machine, and
you want to perform operations on it. To do so, you start a new temporary node on

Quit with care when leaving a remote shell
When you’re finished with your remote shell session and ready to quit, your fingers
may find themselves typing the shell shortcut q(). Stop! Don’t press Enter! That
command is short for init:stop(), which shuts down the node where the com-
mand is executed: that is, the remote node. Probably every Erlang programmer has
been burned by this at one time or another. The Ctrl-G and Ctrl-C (Ctrl-Break)
escapes are safe to use, because they always work within the context of your local
node. Use Ctrl-G followed by Q, or Ctrl-C (Ctrl-Break on Windows) followed by A, to
shut down the local node and leave the remote node running.

mailto:b@mybox.home.net
mailto:b@mybox.home.net
mailto:b@mybox.home.net

203Nodes and clustering
your local machine; from that, you connect remotely to the other node. This way,
when you’re done with the maintenance, there’s usually no reason to keep the tempo-
rary node running: you can press Ctrl-C twice (on UNIX-like systems, or Ctrl-Break fol-
lowed by A on Windows). Doing so kills the temporary node abruptly, taking the
remote job with it. If instead you want to continue running locally, press Ctrl-G, and
from there connect back to your initial shell session, kill the remote job, or switch
back and forth between them. The actual interactions taking place when you run a
remote shell are shown in figure 8.5.

 You now have a solid basis for working with distributed Erlang. We have covered
the distribution model and how to start nodes and connect them, the security model
and setting up cookies, sending messages between nodes, and working with remote
shells. What you’ve learned here will serve you well as you move forward into using
these features in your system. But before we go back to the Simple Cache application
in the next chapter, let’s build something interesting as an exercise in order to drive
these points home.

 Suppose you have a bunch of different services running in your Erlang cluster, dis-
tributed over the network. How does one service locate the other services that it would
like to use? Wouldn’t it be neat if you had a resource discovery system that could han-
dle such things for you automatically, so you could move things around in the cluster
more easily?

 You may be thinking: “Resource discovery is a hard problem that will take at least
10,000 lines of code sprinkled with weird things like AF_INET and SOCK_DGRAM.”
Don’t worry—you’re learning Erlang, and that means you can put something reason-
ably powerful together without too much effort.

Figure 8.5 How remote shells work. Even though the remote shell
process is running on computer B, it’s connected to the console on
computer A in exactly the same way as the local shell process on A.
Thanks to the location transparency in Erlang, there is little difference
between the two cases.

204 CHAPTER 8 Introducing distributed Erlang/OTP
8.3 The nuts and bolts of resource discovery
The simplistic approach to networked applications is that you hardcode the locations
of all the resources on the network. When things are added, relocated, or removed
(for any number of reasons including scaling up, reorganizing, replacing failed
instances, or code upgrades), this hardcoded configuration must be altered manually.
If you’ve been a good software engineer, you probably have all these settings in a con-
figuration file or database. If you’ve been lazy and entered it in the source code, you
have to edit and recompile your modules. In either case, this manual process is both
slow and error prone, and it often leads to confusing setups over time as things are
moved around and reconfigured.

 Instead of all this hardcoding, you can use resource discovery to let providers and
consumers of services find one another without needing prior knowledge of the sys-
tem layout. In this section, you’ll build a resource discovery application that functions
a bit like the yellow pages. Each node in the cluster runs a local instance of this appli-
cation. Each such instance discovers and caches information about the available
resources in the cluster. This distributed, dynamic approach makes the system flexible
and powerful for a number of reasons:

■ No single point of failure—It’s a peer-to-peer system.
■ No hardcoded network topology—You can add resources where you want them.
■ Easier scaling—You can add more resources as needed.
■ Ability to run many services in a single node—Discovery is location transparent and

works just as well with only one node (particularly good for testing).
■ Easier upgrades—You can bring down old services and start new ones dynami-

cally. Removed services become unregistered, and new ones are discovered as
they come online.

With dynamically discoverable resources, life gets easier all the way from development
to production (especially in production). Before we move on to implementation, let’s
first make it clear what we’re talking about.

8.3.1 Terminology and taxonomy

We need to introduce a few concepts so we can discuss them in a consistent way.
These concepts are fairly universal, although they may be named differently in other
literature and implementations. Resource discovery is all about enabling the rela-
tionship between producers and consumers of resources. For this purpose, it needs
to track available resources offered by producers, as well as the requirements of con-
sumers: in other words, a list of “I have” and “I want” for each participant. The “I
have” items must be concrete resources that can be used or addressed directly,
whereas the “I want” items only need to indicate the type of resource being sought
so that a matching resource instance can be found. Table 8.1 shows the terminology
we use.

 Let’s examine these concepts in a little more detail.

205The nuts and bolts of resource discovery
RESOURCE

A resource is either a specific, concrete resource that you can use directly, such as a fun
or a chunk of binary data, or a reference to a concrete resource, such as a pid, a file
handle, an ETS table handle, or similar. In general, you’ll be storing mostly resource
references in your system, rather than the concrete resources themselves.

RESOURCE TYPE

A resource type identifies a certain kind of resource. For example, an instance of
the Simple Cache application can publish itself as being a resource of type simple_
cache. There can be many resource instances of the same type in an Erlang cluster,
and it’s assumed that they all have the same API no matter how they’re imple-
mented. A consumer that announces that it’s looking for resources of the type
simple_cache will be told about all resources of this type that have been published
somewhere in the cluster.

RESOURCE TUPLE

A resource tuple is a pair of a resource type and a resource. If you have a resource
tuple, you have everything you need to know in order to use the resource. The type
indicates what sort of thing the resource is and how you may access it or talk to it. You
may publish any resources you have through the discovery system in the form of
resource tuples, so that anyone who understands the type tag can locate those
resources and use them.

 With this terminology straightened out, let’s get to the implementation of this sys-
tem. It isn’t trivial—distributed applications rarely are—but you should be able to fol-
low what’s going on. We start by explaining the algorithm.

8.3.2 The algorithm

Let’s say you start with two connected nodes, a and b (which are already synchro-
nized), and now a third node c joins the cluster. The problem you have to solve is how
to synchronize c with the other nodes. Suppose that both a and b have local resource
instances of types x and y (we refer to the specific instances as x@a, and so on). Fur-
thermore, both a and b would like to know about resources of type z. (For example, z
could be a logging service needed by applications running on a and b.) Node c has a
local resource of type z, and it’s looking for one or more resources of type x. c doesn’t
care about resources of type y.

Table 8.1 Resource discovery terms and definitions

Term Definition

Resource A concrete resource (e.g., a fun) or a reference to a concrete resource
(e.g., a pid).

Resource type A tag used to classify resources.

Resource tuple A pair of a type tag and a resource.

206 CHAPTER 8 Introducing distributed Erlang/OTP
 To get in sync with the other nodes, the resource discovery server on c sends mes-
sages to a and b informing them what resources it has locally. The resource discovery
servers on nodes a and b receive these messages and cache the information about the
resource z@c, which matches their local “I want” lists. They then both respond by
sending information about their local resources back to c, which caches the informa-
tion about the resources of type x and discards all information about the resources of
type y. (You can think of it as a game of “I’ll show you mine, if you show me yours!”)
Figure 8.6 illustrates these interactions.

 Please make sure you read this explanation carefully before you move on the next
section. It will be much easier to follow the implementation if you understand the
algorithm.

 Next, let’s begin implementing the bare-bones resource discovery system, which
you can take to the moon after you’ve read the rest of this book.

8.3.3 Implementing the resource discovery application

You’ll implement all of this on the Erlang message-passing level. There are certainly
other ways to do it, using techniques like network multicast and broadcast, but they
are beyond the scope of this book. To keep this exercise simple and focus on the prob-
lem, you’ll use a single module without any supervision or logging. (At erlware.org,
you can find a much more fully featured version of resource discovery written as a
multimodule OTP application, as you’ve been doing in the previous chapters.)

b

I have an x and a y
and I am looking
for a z

cache z@c

I have an x and a y
and I am looking
for a z

cache z@c

Reply to c about the
resources on b

I have a z and
I am looking
for an x

cache x@a
and x@b

a c

c tells a and b that it has
resource z@c, of type z

Reply to c about
the resources on a

Figure 8.6 The resource discovery algorithm. Node c is joining the cluster; it has a
resource of type z, which both a and b need, and it’s looking for a resource of type x.

207The nuts and bolts of resource discovery
THE MODULE HEADER

It should come as no surprise by now that this module implements the gen_server
behaviour. Apart from application-specific API functions such as trade_resources/0,
the following header section should look familiar:

-module(resource_discovery).

-behaviour(gen_server).

-export([
 start_link/0,
 add_target_resource_type/1,
 add_local_resource/2,
 fetch_resources/1,
 trade_resources/0
]).

-export([init/1, handle_call/3, handle_cast/2, handle_info/2,
 terminate/2, code_change/3]).

-define(SERVER, ?MODULE).

At the end of the header section, you define your state record:

-record(state, {target_resource_types,
 local_resource_tuples,
 found_resource_tuples}).

It has three fields: target_resource_types is the “I want” part. This is a list of
resource types that you’re looking for. local_resource_tuples is the “I have” part.
This is where you list, in the form of resource tuples, all resources that exist on the
local node. Finally, found_resource_tuples is the place where you cache information
about discovered resource instances matching your wanted list (even if they reside on
the local node).

STARTING THE SERVER AND STORING INFORMATION

Next, you get working on your API functions. The first in the list is start_link/0, and
its implementation is standard boilerplate from the previous chapters:

start_link() ->
 gen_server:start_link({local, ?SERVER}, ?MODULE, [], []).

As usual, you register the server process locally so it can be easily found by name, even
from a remote node. After start_link(), the next natural function to implement is
the init/1 callback that is called on startup:

init([]) ->
 {ok, #state{target_resource_types = [],
 local_resource_tuples = dict:new(),
 found_resource_tuples = dict:new()}}.

This defines your initial server state: the target_resource_types field is initially an
empty list, whereas found_resource_tuples and local_resource_tuples are empty
dictionaries (associative arrays), using the standard library dict module.

208 CHAPTER 8 Introducing distributed Erlang/OTP
 This means you’ve implemented the necessary pieces to start your server. Let’s now
add a couple of the API functions. These operate in a similar way, so you implement
them together here. Both are asynchronous casts that cause new data to be stored in
the server state:

add_target_resource_type(Type) ->
 gen_server:cast(?SERVER, {add_target_resource_type, Type}).

add_local_resource(Type, Instance) ->
 gen_server:cast(?SERVER, {add_local_resource, {Type, Instance}}).

These functions are for adding to the “I want” and the “I have” lists, respectively. The
first adds a resource type to the “I want” list. The second adds a resource instance that
is present on the local node and marks it as being of the given type. As a point of style,
note that the tuple you send has the form {Tag, Data} in both cases, even when Data
has multiple fields as in {Type, Instance}. An alternative would be to pass a triple
{Tag, Field1, Field2}, but for the sake of consistency it’s better to make all the pro-
tocol messages be tagged 2-tuples rather than use a mix of tuple sizes.

 Because these both use gen_server:cast/2, you add a couple of clauses to the
handle_cast/2 callback in order to implement the server-side functionality. Let’s look
at the add_target_resource_type case first:

handle_cast({add_target_resource_type, Type}, State) ->
 TargetTypes = State#state.target_resource_types,
 NewTargetTypes = [Type | lists:delete(Type, TargetTypes)],
 {noreply, State#state{target_resource_types = NewTargetTypes}};

First, you pick out the current target resource types from the server state. Then, you
take the resource type you’ve been handed and prepend it to the current list, first per-
forming a delete so that you avoid duplicate entries. (The lists:delete/2 function
leaves the list unchanged if it finds no such element.)

 The add_local_resource case is similar:

handle_cast({add_local_resource, {Type, Instance}}, State) ->
 ResourceTuples = State#state.local_resource_tuples,
 NewResourceTuples = add_resource(Type, Instance, ResourceTuples),
 {noreply, State#state{local_resource_tuples = NewResourceTuples}};

After picking out the current local resources, you store the new resource instance
under the specified type, and you put the bulk of this operation in an internal utility
function add_resource/3 that looks like this:

add_resource(Type, Resource, ResourceTuples) ->
 case dict:find(Type, ResourceTuples) of
 {ok, ResourceList} ->
 NewList = [Resource | lists:delete(Resource, ResourceList)],
 dict:store(Type, NewList, ResourceTuples);
 error ->
 dict:store(Type, [Resource], ResourceTuples)
 end.

209The nuts and bolts of resource discovery
As usual, internal functions like this should
be placed last in the module. You’re using
the standard library dict module here to
map a resource type to a corresponding list
of resources (so you can have multiple
resources per type), as shown in figure 8.7.

 If an entry for the key already exists,
you read its current value so that you can
add to the list and write it back; you do a
delete as well to ensure that each resource
occurs in the list at most once. If there was
no previous entry for the key, you create a
new one with a single resource in the list.

FETCHING AND TRADING INFORMATION

The next API function on the list is fetch_resources/1:

fetch_resources(Type) ->
 gen_server:call(?SERVER, {fetch_resources, Type}).

This function is a synchronous call, asking for a list of all the resource instances you’re
looking for and know about for a given resource type. To implement this, you add a
corresponding clause to the handle_call/3 callback:

handle_call({fetch_resources, Type}, _From, State) ->
 {reply, dict:find(Type, State#state.found_resource_tuples), State};

You call dict:find/2 to look up Type in the current resources. This yields either {ok,
Value} or error, which happens to be what you want the fetch_resources/1 func-
tion to return, so there’s no need to massage the result—you can pass it straight back.

 The real heavy lifting of resource discovery is done by the last of the API functions:

trade_resources() ->
 gen_server:cast(?SERVER, trade_resources).

This API function is a simple cast to trigger the resource trading: it sends a single atom
trade_resources, which is handled by the handle_cast/2 clause shown next. The
code in this clause and the one following drives all the communication illustrated in
figure 8.6:

handle_cast(trade_resources, State) ->
 ResourceTuples = State#state.local_resource_tuples,
 AllNodes = [node() | nodes()],
 lists:foreach(
 fun(Node) ->
 gen_server:cast({?SERVER, Node},
 {trade_resources, {node(), ResourceTuples}})
 end,
 AllNodes),
 {noreply, State};

Figure 8.7 Dictionary (associative array)
mapping resource types to lists of known
resources

210 CHAPTER 8 Introducing distributed Erlang/OTP
The trade_resources message tells the local resource discovery server to broadcast
messages asynchronously to each of the resource discovery servers on all the con-
nected nodes in the Erlang cluster (including the local node itself, for a nice symme-
try that lets you update your local list of matching resources without any additional
code). This is made simple by the fact that the processes are all registered under the
same name on their respective nodes.

These broadcast messages have the form {trade_resources, {ReplyTo, Resources}},
where ReplyTo is the node name of the sender (given by node()), and Resources is
the entire data structure (a dict) that holds the current resource tuples that the
sender is publishing. Note that you don’t need to worry about the receiving process
mucking up your local data structure, because message passing is strictly by copy, and
because Erlang allows you to send any data in messages—there’s no need to rewrite or
marshal the data—you can include the dictionary as it is in the message.

 When a node receives one of these broadcast messages, it’s handled by the follow-
ing handle_cast/2 clause:

handle_cast({trade_resources, {ReplyTo, Remotes}},
 #state{local_resource_tuples = Locals,
 target_resource_types = TargetTypes,
 found_resource_tuples = OldFound} = State) ->
 FilteredRemotes = resources_for_types(TargetTypes, Remotes),
 NewFound = add_resources(FilteredRemotes, OldFound),
 case ReplyTo of
 noreply ->
 ok;
 _ ->
 gen_server:cast({?SERVER, ReplyTo},
 {trade_resources, {noreply, Locals}})
 end,
 {noreply, State#state{found_resource_tuples = NewFound}};

First, you need a bunch of different fields from the current state, so you use a slightly
complicated pattern to extract these immediately in the clause head. Note that the
pattern has the shape #state{...}=State, which means it’s an alias pattern: it both
matches and assigns a name at the same time. It’s common style to write the name on
the right side of the equals sign, because doing so puts the visual focus on the shape of
the data, but the pattern can also be written State=#state{...}.

Using cast between servers
In this code, you see an example of using gen_server:cast/2 to communicate
between two different gen_server processes. Being asynchronous, it continues
immediately after posting the message. Using the synchronous gen_server:call/3
for such purposes is generally a bad idea: doing so would make this server block
until the remote server replied—and if the remote server was busy trying to call
this server, you’d have a deadlock on your hands.

Checks for
wanted
resources

Adds to known
resources

Replies to
sender

211The nuts and bolts of resource discovery
 Next, you check to see if any of the sender’s resources are on your “I want” list.
Those whose types match are then added to your local set of known resources. After
that, you only have to reply to the sender (the resource discovery process on the node
identified by the ReplyTo field). The reply has the same shape as the broadcast mes-
sage, but instead of the sender’s node name it uses the atom noreply to indicate that
no further reply is needed—otherwise, messages would bounce back and forth for-
ever. After the process that broadcast the original trade messages has received and
handled all replies, it has the same information as the others.

 The following internal utility functions were used earlier. The first is a simple
iteration to call the add_resource/2 utility function you defined previously, but for a
list of resource tuples. The second is more complicated and goes over a list of types
(using lists:foldl/3), building a total list of all resources you know about for the
given types:

add_resources([{Type, Resource}|T], ResourceTuples) ->
 add_resources(T, add_resource(Type, Resource, ResourceTuples));
add_resources([], ResourceTuples) ->
 ResourceTuples.

resources_for_types(Types, ResourceTuples) ->
 Fun =
 fun(Type, Acc) ->
 case dict:find(Type, ResourceTuples) of
 {ok, List} ->
 [{Type, Instance} || Instance <- List] ++ Acc;
 error ->
 Acc
 end
 end,
 lists:foldl(Fun, [], Types).

For each type in the list, this code looks up the list of resources for that type and trans-
forms it (using a list comprehension; see section 2.9) into a list of pairs where each
individual resource instance is marked up with the corresponding type. This list of
pairs is then added to the accumulated list. (Note that you build on the left to avoid
quadratic behaviour, even if the list is expected to be fairly short; see section 2.2.5.)
This creates a final list that can easily be passed to add_resources/2 afterward, as you
did earlier.

FINAL WORDS

This algorithm is fairly straightforward when you get your mind around it. Although
it’s a bit on the simple side, it covers most of what is needed for resource discovery.
The main thing that is obviously missing is the ability to automatically trigger resource
trading at strategic places in your system (for example, within the supervision hierar-
chy) so you don’t have to call trade_resources/0 manually. We get back to this in the
next chapter.

 Because the node-to-node protocol depends only on asynchronous messages and
doesn’t strictly depend on getting answers from all the other nodes, the system should

Creates list
of pairs

212 CHAPTER 8 Introducing distributed Erlang/OTP
be fairly resilient to failures. The worst that can happen is that nodes suddenly disap-
pear due to crashes, reboots, or network problems, and in that case the stored infor-
mation can get out of sync (you didn’t add any automatic cleanup of resources that
lived on nodes that have vanished).

 One simple thing you can do to improve the stability of the cluster, which we leave
as an exercise for you (you should be able to do it by now), is to implement a process
that periodically tries to ping every node it has ever seen, as well as trigger resource
trading, in order to overcome intermittent contact problems or crashes that may
cause nodes to disconnect. When that’s done, you have a reasonable guarantee of a
healthy cluster. When you design a system on top of resource discovery, it’s important
to understand what sort of guarantees you have; in this case, it depends on how long
you expect it to take to repair a disconnected network and on the frequency of your
automated node reconnection.

 Using the techniques for distributed programming in Erlang that you were shown
in the earlier parts of this chapter, you’ve built a system that can be used to let your
programs automatically discover additional services. This removes the need for hard-
coded knowledge about network topology and the locations of services within the
cluster. In less than 100 lines of code, you’ve opened the door to building systems that
are extremely dynamic and easily scalable. In the next chapter, you’ll put this code to
real use.

8.4 Summary
In this chapter, we’ve covered a number of different topics, all of them important
aspects of distributed programming in Erlang:

■ Location transparency and communication by copying
■ Erlang nodes and clustering
■ Access control using cookies
■ Communicating between nodes
■ Working with remote shells
■ Putting distribution to work: implementing a basic resource discovery system

What you’ve learned here opens up all kinds of possibilities for your programming.
We hope this chapter has sparked some real creativity by showing what can be accom-
plished in short order with distributed programming in Erlang.

 In the next chapter, you’ll take this knowledge—as well as the code you’ve writ-
ten—and apply it to the task of making your Simple Cache application a suitable ses-
sion store, essentially taking it from a standalone entity on a single machine to a
cluster of caches that can work together to help the Erlware folks provide an even bet-
ter experience for their users.

Adding distribution to
 the cache with Mnesia
Your cache application is operationally sound as of chapter 7, and chapter 8 should
have brought you up to speed on distribution in Erlang. You’ll need it right away.
Members of the team at Erlware have been working on adding login functionality
and sessions to the site: this will allow authors to update packages, tweak documen-
tation, and change availability of their packages. You’ve been asked to add some
features to your cache to make it suitable for storing sessions in order to support
this new functionality.

 The site is fronted by a stateless load balancer, so any of the available web serv-
ers could be called on to load a page. This means the session information needs to
be available to all servers that participate in serving the web application. The prob-
lem is that currently your cache is local to the node it runs on and knows nothing
about other caches that may be running on the other web servers. A simplified view
of the current architecture is shown in figure 9.1.

This chapter covers
■ Choosing a strategy for distributing the cache
■ An introduction to Mnesia, the built-in

database in Erlang
■ Using Mnesia to distribute the cache over

multiple nodes
213

214 CHAPTER 9 Adding distribution to the cache with Mnesia
Right now, if you stored session information in the caches, a user might log in on one
web server, but because of the load balancer, the next page the user loaded might be
served from a different web server. This server wouldn’t be able to recognize the user
because it couldn’t find their session in the local cache. Allowing the caches to share
information across instances would solve this issue.

9.1 Distributing the cache
You’re being asked to make the cache application store the session data in such a way
that you can ask any of the cache instances to return the current session state for any
session key regardless of which server it was last saved on. It’s no longer sufficient to
store only data that is specific to the local web server; you need to make a distributed
cache, where each instance is aware of the others. This means you first must think
about how they should exchange this information between them.

9.1.1 Choosing a communication strategy

When you’re designing a distributed program, there are two main flavors of commu-
nication to consider: asynchronous and synchronous. We talked briefly about this in
section 1.1.3. With asynchronous communication, the sender immediately proceeds with-
out waiting for any kind of confirmation or answer. With synchronous communication,
the sender becomes suspended until a reply is received (even if that reply is just
“thanks, I got it”). Erlang’s basic form of message passing is asynchronous, because it’s
the most straightforward and flexible form: it’s a better match for distributed pro-
gramming in general, and you can always implement synchronous communication as
a pair of asynchronous request/reply messages (as gen_server:call/3 does).

 But just because the primary form of communication is asynchronous, it doesn’t
mean you can’t structure your program around other paradigms. In this section, we
discuss how the choice of communication strategy affects what kind of systems you can
build and what properties you can expect from those systems.

ASYNCHRONOUS COMMUNICATION

Asynchronous communication is sometimes described as “fire and forget” or “send
and pray.” When the message is on its way, the sender is free to do something else.
If the process at the other end is expected to answer, the sender will check for the
reply later, as illustrated in figure 9.2. Usually, getting a reply within a specific time

Figure 9.1
The current, simple architecture of the cache
application. Each cache is local to the server
it runs on. Because the load balancer
distributes work between the servers, the
caches need to become distributed as well if
they’re to store the session data.

215Distributing the cache
isn’t necessary for the sender to be able to continue with its own work, or at least
some of it.

 This is a good basic form of communication for computer systems because it
implies very little in terms of overhead. There is nothing to check, scan, verify, time, or
otherwise care about. This means that it’s fast, and it generally lends itself to the cre-
ation of simple and intuitive systems. We recommend that you strive to use this type of
communication, except when you obviously can’t.

 To give a concrete example of the kind of situation where this strategy works well,
consider the postal service. You may want to send a letter to your grandmother. You
write it, put it in an envelope, put a few stamps on it, and drop it in the mailbox;
you’re done and can go about your own business the second the letter leaves your
hand. You’re fairly confident the message will get to her, but it may not; either way, it
won’t impede your activities for the day. This is nice, because if your grandmother
doesn’t get the message, or if she reads it much later and responds next month, you
aren’t stuck waiting that whole time. In other words, this system gets work done even
in the face of unexpected events, if the involved parties know to behave accordingly.

SYNCHRONOUS COMMUNICATION

With synchronous communication, every message requires a reply (or at least an
acknowledgment that the message was received). The sender becomes suspended
until the reply arrives and can’t do anything else meanwhile. Another term for this is
blocking communication, because the sender is said to be blocked while waiting for the
reply. A typical synchronous exchange of information is shown in figure 9.3.

A sends a message to B
and continues working.

Process A Process B

Later B may send
a reply to A.

B receives the
message and
continues working.

Figure 9.2
Asynchronous fire-and-forget
communication: the sender isn’t
blocked and can go on working
immediately after the message has
been posted. Any reply will be sent
back separately.

A sends a message to B
and waits for a response.

Process A Process B

A receives the reply and
resumes executing.

B receives the message,
processes it, and returns
a reply to A.

Figure 9.3
Synchronous, blocking
communication: the sender is
suspended until the reply
arrives. Even if the reply isn’t
strictly needed, the pause will
be at least as long as the time
required for the round trip.

216 CHAPTER 9 Adding distribution to the cache with Mnesia
The obvious drawback is that the sender isn’t able to perform any further work until it
gets a response (which in a distributed environment takes at least twice the time it takes
to traverse the network between the computers). On the other hand, a clear benefit is
that systems can be easily synchronized around an activity.

 Let’s say a harried businessman walks into a government office because he has a
ticket on his car. If he doesn’t get it cleared, his car may be towed and impounded the
second he parks it somewhere outside of the government parking lot where it’s cur-
rently safe. He walks up to the desk and asks the clerk to please clear the violation, and
he hands her a check. In contrast to the earlier mailbox example, this fellow isn’t fin-
ished—he can’t just leave and drive back to work. Instead, he must wait in the office for
the desk clerk to process the payment and tell him the violation is clear. As soon as he
receives the receipt, he can leave the office and impatiently get back to work, ensured
that the system is in a known state.

 For synchronous communication to be
practical, it needs to support timeouts. The fel-
low in the government traffic authority office
needs a maximum waiting time so that he
doesn’t sit in the office until he dies of thirst—
at some point, he must give up waiting and
either consider the operation a failure or take
his chances and assume that it worked. If he
decides it was a waste of time (that is, he never
got a receipt, and the clerk seems to be gone
for the day), he could return another day or
perhaps try some other workaround to solve the problem. Figure 9.4 illustrates a call
within the bounds of a timeout.

 The reason for this little digression is that you need to know what kind of system
your cache should be: Do you need to guarantee certain synchronized states at certain
moments? Do you need to know that when a piece of data is inserted into or deleted
from the system, all instances of the cache will reflect the new state as soon as the call
to delete or insert has returned? Maybe you don’t strictly need your system to be syn-
chronized that way. Perhaps it can be more asynchronous, so that, for example, start-
ing a delete operation and returning before all nodes have reported back is fine. The
decision has a significant impact on how you code the solution. Before you start add-
ing distribution to the cache, you need to look at your options and how they will affect
the result.

9.1.2 Synchronous versus asynchronous cache

As we explained, both approaches have benefits and drawbacks. That is of course true
of every decision you make when writing software; but in this case, the choice between
an asynchronous and a synchronous approach will profoundly affect the way you
implement distribution in your cache.

Figure 9.4 Synchronous communication
with timeout. The maximum waiting time
was 10 seconds, and the total time for
the exchange was 8 seconds: 2 to get
there, 4 to handle the request, and 2 to
get back again.

217Distributing the cache
ASYNCHRONOUS CACHE

Suppose a person were to log in to the site, make a request for another page a sec-
ond later, but find there was no record of their being logged in. If this wasn’t a show-
stopper, then you could potentially use nonblocking communication on inserts into
the cache. Don’t get us wrong—just because you didn’t guarantee the state of the
system when the insert operation returned wouldn’t necessarily mean that inserts
would fail frequently or be slow—it would just mean you wouldn’t provide an iron-
clad guarantee. Basically, the system as a whole could temporarily be in an inconsis-
tent state, and there would be a small probability that someone might observe this
once in a while.

 In Erlang, an asynchronous message-based design is simple to implement. Recall
from the previous chapter that you can make Erlang nodes form a cluster. The sim-
plest asynchronous design builds on the fact that all cache nodes belong to the same
cluster. That makes it easy to broadcast a message to each and every cache in the
cluster, as you did with the resource discovery example in chapter 8. An operation
on any of the caches can send an insert or delete message to all the cache instances
in the cluster.

 Consider the login sequence:

1 The user logs in to the site.
2 A session is created on the web server.
3 The web server calls simple_cache:insert().
4 The insert function sends an insert message asynchronously to all known nodes

and returns immediately.
5 The web server informs the user that they’re logged in.
6 The cache instances on the other servers receive and process the insert messages.

The communication pattern is depicted in figure 9.5. This gives you a weak consistency
among the caches: they aren’t all guaranteed to have received and processed the mes-
sage yet, even though the client has already been told that they’re logged in.

 This couldn’t be any simpler. Assuming that communication between the caches is
faster than the user can request another page, everything works seamlessly. The big
advantage of this solution is that it operates in a straightforward way (which is always a
good thing) and requires very little code to implement.

Figure 9.5
Asynchronous cache interaction: as soon as
the messages to all the cache instances have
been sent, the operation returns to the caller
and reports that the operation is done, even
though the remote caches won’t be up to date
until they have processed the message.

218 CHAPTER 9 Adding distribution to the cache with Mnesia
Unfortunately, the people in charge at Erlware feel that it would be unacceptable for
even a single user of the site to get a “not logged in” message right after having suc-
cessfully logged in—even if it would typically happen only when there is an unusu-
ally high load on the system. This means you need to consider a different strategy.

SYNCHRONOUS CACHE

Suppose instead that you want verification that your messages have been received and
data has been inserted by all instances of the cache before you tell the user that
they’re logged in. The new sequence of events looks like this:

1 The user logs in to the site.
2 A session is created on the web server.
3 The web server calls simple_cache:insert().
4 The insert function blocks until all cache instances have finished inserting

the data.
5 The web server informs the user that they’re logged in.

This communication pattern is shown in figure 9.6.
 The guarantees here are different from the asynchronous case. In this case, you

can be sure the user won’t be told they’re logged in until all caches have been handed
a copy of the session data. This implies that the insert function must receive verifica-
tion from all of the caches before it can proceed.

 You can implement this in several different ways. The first is to do it as naively
as we described it, using gen_server:call/2 to send the insert messages synchro-
nously to each of the nodes, one at a time, and return only when the last node has
been updated. But if you had N remote nodes, the entire operation would then
take at least N times the minimum time needed for a single such round trip over
the network. That kind of latency is something you want to avoid. (Note, though,
that the minimum latency when gathering the replies is the time it takes for the
slowest cache to respond—every synchronous solution is limited by this, no matter
how it’s implemented.)

 Another way would be to get serious about efficiently implementing distributed
transactions and start reading up on things like two-phase commit protocols. That
would probably be overkill: you’d quickly be on a slippery slope toward writing a full

Figure 9.6
Synchronous cache interaction: the cache
front end blocks on the insert operation until
all the individual caches have reported that
they have been successfully updated. Only
then does the web server inform the user
that they’re logged in.

219Distributed data storage with Mnesia
distributed database. If that’s the direction you’re heading, perhaps you should begin
looking for an existing solution in the Erlang/OTP libraries instead.

9.1.3 If you only had a distributed table...

Recall from chapter 6 (figure 6.5) that your cache is structured in such a way that
you’re using processes as storage elements to hold the actual stored data, and you
have a table that maps each key to the process identifier of the corresponding storage
element. It’s only this table of mappings that you need to distribute between the
caches. Because of Erlang’s location transparency, you don’t need to copy the data
between the nodes: assuming an efficient network between the web servers, fetching
some data from a storage process on another of the servers will still be much faster
than calling up the original package servers. Hence, the storage-element processes
can stay on the node where they were created, as long as all nodes have access to the
key-to-pid mapping. Figure 9.7 illustrates the relation of the table to the cache
instances and the storage elements.

 All you need to do is solve the problem of distributing the table. As it hap-
pens, Erlang/OTP already provides a neat solution to this problem: a distributed
database called Mnesia. This seems to fit the bill perfectly. Armed with this infor-
mation, you run the rudimentary design by the Erlware guys, who love it and tell
you to go ahead. (Of course, you wouldn’t implement something without stake-
holder approval.)

 To make this scheme even more interesting, you’ll also use the resource discov-
ery system that you constructed in the previous chapter to keep track of the cache
nodes, which will let you add and remove nodes on the fly. If that sounds like a lot,
you’re right. You need to get moving, and the first step is a discussion of Mnesia and
how it works.

9.2 Distributed data storage with Mnesia
Mnesia is a lightweight, soft real time, distributed, replicated, transactional data store.
It’s great at storing discrete chunks of Erlang data, particularly in RAM. Mnesia is
native to Erlang and stores Erlang data as is—you never need to rewrite your data in
any particular format just so you can put it in the database. This makes it the obvious

Figure 9.7
Two cache instances sharing a replicated
table that maps keys to process
identifiers. Erlang’s location
transparency makes it easy to access the
processes regardless of which node they
live on; only the table needs to be
distributed over both nodes.

220 CHAPTER 9 Adding distribution to the cache with Mnesia
first choice when it comes to picking a database for your application, as long as you
know its limits.

 Mnesia was never designed to replace SQL-style databases or manage hundreds of
gigabytes of persistent data distributed over several dozens of computers; and
although there are stories of this being done, we recommend against aiming for that
kind of usage. But Mnesia is fantastic at smaller numbers of replicas and smaller
units of data. It’s a good choice for reasonable amounts of persistent (disk-backed)
data and great for runtime data that needs to be shared between processes, in partic-
ular if you need to distribute the data among multiple nodes for reasons of fault tol-
erance or efficiency. The key-to-pid mappings you want to implement are a good
example of this.

The idea of bringing up a fault-tolerant, replicated data store within minutes may be
overwhelming at first. But the best way to learn is by doing, and in this section you’ll
create a real-world, working Mnesia database. This should make you familiar enough
with the basics that you then can go on and apply it to your cache application in sec-
tion 9.3.

9.2.1 Creating a project database

To get started with Mnesia, you’ll create a database that can be used to store the infor-
mation about the projects on an Erlware repository server. This basic version will hold
information about users and which projects they own. The information will be split up
over a few tables. Figure 9.8 illustrates the relationships between the data you wish to
model. As you can see, the User and Project tables, which have two columns each, are
linked together by the Contributor table.

How Mnesia got its name
When the Mnesia database was first created, the developer in charge of the project
had a wry sense of humor and decided he would like to call it Amnesia. Manage-
ment quickly informed him that there would be no database named Amnesia in Eric-
sson’s product line. The developer then chopped off that pesky A, giving us Mnesia
instead. This is a good name: mnesia is the Greek word for memory.

Figure 9.8
Data model for the project database. The
Contributor table links the User and Project
tables by connecting user IDs to titles of
projects the users are involved in. Both user
IDs and project titles are unique identifiers
in the database.

221Distributed data storage with Mnesia
In Mnesia, plain Erlang records are used to define the table entries. The following list-
ing shows the records you’ll use for this example.

-record(user, {
 id,
 name
 }).

-record(project, {
 title,
 description
 }).

-record(contributor, {
 user_id,
 title
 }).

These record definitions will be used to create your tables a bit later in this section.
Before you get to that point, you have to do some preliminary work. During the
course of creating this database, you’ll do the following:

■ Initialize Mnesia
■ Start your node
■ Create a schema
■ Start Mnesia
■ Create database tables
■ Populate the tables you’ve created
■ Perform some basic queries on the data

Let’s get started with initializing Mnesia.

9.2.2 Initializing the database

Before you can do anything else, you must initialize Mnesia. This involves writing
some basic information to disk. First, you need to bring up an Erlang node that is con-
figured to write Mnesia information to a particular location in the filesystem.

STARTING THE NODE

The first thing you need to do when using Mnesia is to start the Erlang node like this:

erl -mnesia dir '"/tmp/mnesia_store"' –name mynode

This tells Mnesia to store its data in the specified directory. (Note the single quotes
needed on the command line in order to preserve the double quotes around the
string.) You also tell Erlang to start in distributed mode, using the –name option, so
you can begin working with replication in Mnesia right away. (Use –sname instead of
–name if that works better for you.) After the node has started, you need to create an
initial empty schema on all the nodes that you want to involve in the replication.

Listing 9.1 Project database record definitions

222 CHAPTER 9 Adding distribution to the cache with Mnesia
CREATING THE SCHEMA

A database schema is a description of the tables that currently exist, plus any neces-
sary details about those tables. For the most part, you don’t need to think about
this—it’s what Mnesia uses to keep track of its data. Naturally, if the database is to be
distributed, all the involved nodes must have their own copies of the schema, so that
they all know the general structure of the data. To make it possible to shut down
Mnesia or the entire Erlang node and restart it later without losing the database
information, the schema needs to be stored on disk, in the directory you specified
with the –mnesia dir "..." option. (It’s also possible to have one or more nodes—
even all of them—store their data in RAM only, including the schema; but right now
you want a persistent, disk-based database.)

 In this simple example, you’ll only create the schema on your local node:

(mynode@erlware.org)1> mnesia:create_schema([node()]).

If the command was successful, you now have an empty schema on your node. The
command can fail if one of the nodes in the list can’t be contacted, if Mnesia is
already running on one of the nodes, or if there is a previously existing schema on
one of them. (In the last case, you can use the function mnesia:delete_schema
(Nodes) to purge the old schema—but think twice before you do this: it makes any
existing tables unreadable.)

 With the schema in place, all you need to do is start the Mnesia application.

STARTING MNESIA

To start Mnesia manually, you can call mnesia:start(). When Mnesia is running, you
can call mnesia:info() to get general information about the database, such as how
many tables it contains and how many nodes it’s connected to:

(mynode@erlware.org)2> mnesia:start().
ok
(mynode@erlware.org)3> mnesia:info().
---> Processes holding locks <---
---> Processes waiting for locks <---
---> Participant transactions <---
---> Coordinator transactions <---
---> Uncertain transactions <---
---> Active tables <---
schema : with 1 records occupying 422 words of mem
===> System info in version "4.4.8", debug level = none <===
opt_disc. Directory "/tmp/mnesia" is used.
use fallback at restart = false
running db nodes = [mynode@erlware.org]
stopped db nodes = []
master node tables = []
remote = []
ram_copies = []
disc_copies = [schema]
disc_only_copies = []
[{mynode@erlware.org,disc_copies}] = [schema]
2 transactions committed, 0 aborted, 0 restarted, 0 logged to disc

mailto:mynode@erlware.org
mailto:mynode@erlware.org
mailto:mynode@erlware.org
mailto:mynode@erlware.org
mailto:mynode@erlware.org

223Distributed data storage with Mnesia
0 held locks, 0 in queue; 0 local transactions, 0 remote
0 transactions waits for other nodes: []
ok

This comes in handy when you’re working with a live system, to check that you have
full connectedness and that everything is correctly configured.

 Now that you’ve initialized the database system, you can move on to the applica-
tion-specific code, starting with creating the tables you’ll use.

9.2.3 Creating the tables

Although it’s possible to create tables directly from the Erlang shell, doing so would
be a bit ugly because the support for using records in the shell is limited. Instead,
you’ll write a small module, shown in listing 9.2, that does this job for you. This also
ensures that you can easily do it again if you need to start over. As usual, we’ve left out
the source code comments in order to save space—you wouldn’t release real code
looking like this. For simplicity, we repeat the record definitions from listing 9.1; they
should typically be kept in a separate header file included by the module.

-module(create_tables).

-export([init_tables/0]).

-record(user, {
 id,
 name
 }).

-record(project, {
 title,
 description
 }).

-record(contributor, {
 user_id,
 project_title
 }).

init_tables() ->
 mnesia:create_table(user,
 [{attributes, record_info(fields, user)}]),
 mnesia:create_table(project,
 [{attributes, record_info(fields, project)}]),
 mnesia:create_table(contributor,
 [{type, bag}, {attributes, record_info(fields, contributor)}]).

As you can see, tables are created with the function mnesia:create_table(Name,
Options), where Options is a list of {Name, Value} pairs. The main option that you
almost always need to supply is attributes, which assigns names to the fields of the
records that will be stored in the table. Without it, Mnesia assumes you’ll only have
two fields in your records, named key and val, respectively. This is of course rarely the

Listing 9.2 Mnesia table-creation module

224 CHAPTER 9 Adding distribution to the cache with Mnesia
case, so you should supply your own field names. But it illustrates one point: no matter
what you name them, the first field of the record is always the primary key.

 Only specifying the attributes option means that the table will get the default set-
tings for all other options. These are as follows:

■ The table is both readable and writeable.
■ The table is stored in RAM only (the storage type is ram_copies).
■ The records stored in the table must have the same name as the table.
■ The table type is set, which means there can be no more than one entry

per key.
■ The load priority is 0 (the lowest).
■ The local_content flag is set to false.

Of these, the most important to understand are the table type and the storage
type. We explain the table type first and get back to the storage type after you cre-
ate the tables.

THE DIFFERENT TYPES OF MNESIA TABLES

We mentioned in section 2.14.2 that ETS tables can be of different types. Mnesia tables
are similar, but the options are slightly different: a table can be a set, an ordered_set,
or a bag. As with ETS tables, a set treats keys as unique—if you insert a record with the
same primary key as an existing entry, the new record overwrites the old. In contrast, a
bag can contain multiple records with the same key, as long as they differ in at least
one field—inserting the exact same record twice has no effect.

 An ordered_set table behaves the same as a set; but whereas sets and bags are
implemented using hash tables, an ordered_set keeps all the records stored in the
order of their primary keys. This is useful if you need to be able to easily traverse all
the entries in order (a hash-based table has no useful ordering).

 Note that you’ve made your Contributor table into a bag:

mnesia:create_table(contributor, [{type, bag}, ...])

Mnesia tables and Erlang records
To Mnesia, a table is just a bunch of tagged tuples. This is exactly what Erlang’s
records are (see section 2.11), but Mnesia can’t know that a table has anything
to do with your –record(...) declaration of the same name. You need to set up
this connection yourself. (Sometimes, it can be useful not to be forced to have a
connection between a table and a record, even if they have the same name.)

You could hardcode the names, as in {attributes, [title, description]}; but
it’s better to use record_info(fields, RecordName) to list the field names, in
case you change the record declaration later. Note that record_info/2 isn’t a real
function—it will be resolved at compile time (just like the # syntax for records) and
can’t be called at runtime or from the Erlang shell.

225Distributed data storage with Mnesia
This allows the table to hold many different records for the same user ID key, for users
that happen to be contributors on multiple projects.

STORAGE TYPES FOR TABLES

The following example shows the result of compiling the module and running the
init_tables() function, and then calling mnesia:info() again to check that the tables
have been created as expected:

(mynode@erlware.org)4> c(create_tables).
{ok,create_tables}
(mynode@erlware.org)5> create_tables:init_tables().
{atomic,ok}
(mynode@erlware.org)6> mnesia:info().
---> Processes holding locks <---
---> Processes waiting for locks <---
---> Participant transactions <---
---> Coordinator transactions <---
---> Uncertain transactions <---
---> Active tables <---
contributor : with 0 records occupying 312 words of mem
project : with 0 records occupying 312 words of mem
user : with 0 records occupying 312 words of mem
schema : with 4 records occupying 752 words of mem
===> System info in version "4.4.8", debug level = none <===
opt_disc. Directory "/tmp/mnesia" is used.
use fallback at restart = false
running db nodes = [mynode@erlware.org]
stopped db nodes = []
master node tables = []
remote = []
ram_copies = [contributor,project,user]
disc_copies = [schema]
disc_only_copies = []
[{mynode@erlware.org,disc_copies}] = [schema]
[{mynode@erlware.org,ram_copies}] = [user,project,contributor]
5 transactions committed, 3 aborted, 0 restarted, 3 logged to disc
0 held locks, 0 in queue; 0 local transactions, 0 remote
0 transactions waits for other nodes: []
ok

As you can see, init_tables() ran without error B. mnesia:info() shows that you
now have four active tables C as opposed to one previously (the schema is always one
of the tables). You can also see that your application’s tables are of the default
ram_copies type D. This means they’re only stored in memory, which offers the high-
est performance, but the data isn’t persistent and will be lost in case of a crash or restart.

 The schema is of the type disc_copies E, which means it’s written to disk for per-
sistence and will survive restarts; these tables are also fully mirrored in memory for fast
read access. Finally, as you can see on the line after that, you have no tables of type
disk_only_copies—as the name indicates, these are only stored on disk, and accesses
are a lot slower than for the other types. Furthermore, the ordered_set table type cur-
rently isn’t supported for tables that are kept on disk only.

Creating
tables worked

B

Active tables C

Tables of type
ram_copies

D

Schema is of type
disc_copiesE

mailto:mynode@erlware.org
mailto:mynode@erlware.org
mailto:mynode@erlware.org
mailto:mynode@erlware.org
mailto:mynode@erlware.org
mailto:mynode@erlware.org

226 CHAPTER 9 Adding distribution to the cache with Mnesia
 A table can have different storage types on different nodes: for example, it could
be kept on disk on one node but only in RAM on all other nodes. This configura-
tion can even be altered at runtime, so you can switch a table from RAM-based stor-
age to disk-based or vice versa on one or more nodes, without stopping the system.
But typically, you only need to decide on a storage type when the tables are ini-
tially created.

 Now that you’ve created your tables with the proper settings, the next logical step
is to make it possible to insert some data. To do this, you’ll add a little code to the
create_tables module.

9.2.4 Populating the tables

To make it straightforward for others to insert data without knowing too much about
the actual tables, you’ll hide these details behind a couple of API functions. This also
makes it possible to do some consistency checks on the data before it gets inserted in
the database. For example, you’ll only add users if they’re contributors to some proj-
ect, and you won’t allow adding a user for a project that doesn’t exist. The code for
inserting users and projects is shown in the following listing.

insert_user(Id, Name, ProjectTitles) when ProjectTitles =/= [] ->
 User = #user{id = Id, name = Name},
 Fun = fun() ->
 mnesia:write(User),
 lists:foreach(
 fun(Title) ->
 [#project{title = Title}] = mnesia:read(project, Title),
 mnesia:write(#contributor{user_id = Id,
 project_title = Title})
 end,
 ProjectTitles)
 end,
 mnesia:transaction(Fun).

insert_project(Title, Description) ->
 mnesia:dirty_write(#project{title = Title,
 description = Description}).

Add this code to create_tables.erl. Don’t forget to export the functions insert_user/3
and insert_project/2 from the module.

TRANSACTIONS

The first of these functions takes three arguments: the unique user ID of the new user
you’re creating, the name of the user, and a list of all the projects this user contrib-
utes to. It’s important that the operations you do here to insert a user are isolated
from any simultaneous accesses to the database by other processes, so you need to
perform them within the context of a transaction. Mnesia transactions provide the
usual ACID properties:

Listing 9.3 Data-insertion functions

Writes user
record to table

B

Inserts contributor record C

Sets up
transactionD

227Distributed data storage with Mnesia
■ Atomicity—The transaction is executed as a unit and either succeeds or fails
entirely. If it fails at any point, it’s unrolled without any effects on the database.

■ Consistency—The effects of multiple transactions on the database are as if they
were executed in some particular order, going from one consistent state to the
next, even if some transactions in fact overlap in real time.

■ Isolation—All transactions appear to happen as if they have the database to them-
selves and can’t disturb each other, even if they’re running concurrently. Nobody
else can see the effects of a transaction until it’s completely finished.

■ Durability—If the transaction succeeds, all its changes have taken effect.
For disk-backed tables, this means the information should survive a restart
or a crash.

Transactions are critical for ensuring the integrity of the database across complex
operations. Setting up a transaction in Mnesia is easy—you write a fun expression
(taking no arguments) to do the work and pass it to mnesia:transaction/1 D. In
this case, you first write the user record to the User table B. Then, you use
lists:foreach/2 to go over the given list of projects. For each of those, you first
assert (by matching the result of a call to mnesia:read/2 against what you expect to
find) that such a project exists in the Project table, before you insert a contributor
record C. If any of these operations fails, the whole transaction is unrolled, leaving
Mnesia in the same state as previously.

DIRTY OPERATIONS

Obviously, you also need a way to insert projects before you can add users. You do so
with the second function in listing 9.3. In this case, you take a shortcut and use the
function mnesia:dirty_write/1. Any Mnesia function with the prefix dirty_ is a
dirty operation that doesn’t respect transactions or database locks. This means it must
be used with great care.

 Generally, using a dirty operation is significantly faster than setting up a transaction
and performing normal database operations, and judicious use of dirty operations can
speed up your application a lot. Be warned, though—if you haven’t thought through
the consequences properly, you may end up with inconsistent data. Dirty reads are usu-
ally less problematic than dirty writes; but whenever you’re in doubt, use transactions!
(For this application, you expect that nothing else will be seriously affected by the sud-
den insertion of a project record, even if it overwrites a previous one.)

INSERTING DATA

It’s time to enter some data in your tables. Recompile the module, and run the follow-
ing commands in the Erlang shell:

(mynode@erlware.org)7> create_tables:insert_project(simple_cache, "a simple
 ➥cache application").
ok

(mynode@erlware.org)8> create_tables:insert_user(1,martin,[simple_cache]).
{atomic, ok}

mailto:mynode@erlware.org
mailto:mynode@erlware.org

228 CHAPTER 9 Adding distribution to the cache with Mnesia
This should give you a single project record, user record, and contributor record in
each of the corresponding tables. The database now has the content shown in fig-
ure 9.9.

 Next, let’s look at some ways you can extract and view the data in order to prove
that it’s in fact there.

9.2.5 Do some basic queries on your data

We already sneaked in a read access in the insert_user/3 function in listing 9.3.
Because that’s within a transaction, you can use the normal mnesia:read/2 operation.
Outside of a transaction, you can use dirty operations to read from the database, as in
the following example from the Erlang shell:

(mynode@erlware.org)9> mnesia:dirty_read(contributor, 1).
[{contributor, 1, simple_cache}]

The read and dirty_read functions return a list of matching records—in this case,
all records with the key 1 in the Contributor table. If no such records are found,
the result is an empty list. Furthermore, recall that you had made the Contributor
table a bag. That means if you insert more than one contributor record for user 1,
the read operation returns all of them in the list. In contrast, for a normal table of
type set, you know that a read must return either an empty list or a list with a sin-
gle element.

USING SELECT WITH MATCH SPECIFICATIONS

In addition to looking up records based on the primary key, other operations for
searching offer a bit more flexibility. The following example shows how to use
mnesia:select/2 to pull potentially many records from the user table:

mnesia:transaction(
 fun() ->
 mnesia:select(user, [{#user{id = '$1', name = martin}, [], ['$1']}])
 end)

title description

simple_cache "a simple cache application"

id name

1 martin

1 simple_cache

user_id project_title

Contributor

User

Project

Figure 9.9
Mnesia table contents after entering
some data. In the User and Contributor
tables, you use a numeric user ID as
key, whereas in the Project table, the
key is the project title as an atom. Each
entry in the Contributor table refers to
corresponding entries in the User and
Project tables.

mailto:mynode@erlware.org

229Distributed data storage with Mnesia
The first argument to select/2 is the table to search, and the second argument is a
list of so-called match specifications. These can be complicated beasts, but for simple
cases they’re fairly straightforward. Each match specification is a 3-tuple {Head,
Conditions, Results}. Head is an Erlang term representing a pattern, where atoms
(single-quoted) of the form '$1', '$2', ..., are used to represent variables. In the pre-
vious example, you’re searching for #user records whose name field is the atom
martin and whose id field can be anything ('$1'). The Conditions part lets you spec-
ify additional constraints for a match, but often it’s just left as an empty list, as in this
case. The Results part, finally, lets you express what kind of terms you want generated
for each match; here, you can use the corresponding '$1' and so on, and they will be
replaced by the actual values from the match.

 In addition to these numbered variables, the following atoms also have spe-
cial meaning:

■ '_' (in Head part only)—Doesn’t matter; any value
■ '$_' (in Result and Conditions only)—The entire matching record
■ '$$' (in Result and Conditions only)—Same as '$1', '$2', '$3', ... (for all of

those variables that are bound in the Head part)

When a transaction succeeds, the result has the form {atomic, Data}, where Data is the
actual result of the code inside the transaction fun; in this case, the result of the call to
select—a list containing a value for each matching record. Because the Results part
of the previous match specification is ['$1'], you get exactly one element for each
found match: the value of the id field. And because only one record in the table
matches the name martin, the result of the call to mnesia:transaction/1 is

{atomic, [1]}

For tables with many fields, you often want to extract several fields from each match-
ing record, using a Results specification such as [{'$1', '$2', '$3'}] or ['$$'].
You can find many more details about match specifications in the ERTS User’s Guide
in the Erlang/OTP documentation.

USING QUERY LIST COMPREHENSIONS (QLC)
Finally, there is a more expressive way to query Mnesia: by using Query List Compre-
hensions (QLC). These are a more recent addition to Erlang/OTP and work in a
slightly mysterious way. Superficially, they look like normal list comprehensions (see
section 2.9 if you need a reminder), but they’re wrapped in what looks like a call to
qlc:q(...). This is just a marker that tells the compiler to handle these expressions
specially. For this to work, the source code for the module must also contain the fol-
lowing line, which triggers the special QLC compilation:

-include_lib("stdlib/include/qlc.hrl").

(As a special case, the Erlang shell lets you use qlc:q(...) straight away; there’s no
concept of include files in the shell.) The value produced by qlc:q(...) is a query

230 CHAPTER 9 Adding distribution to the cache with Mnesia
handle, whose results can be fetched through qlc:eval(Handle). QLC is explained in
detail in the stdlib section of the Erlang/OTP documentation (the qlc module).

QLC is a generic query interface to anything that is table-like, such as ETS tables,
Mnesia tables, and even your own special table implementations if you make a QLC
adapter for them. The function mnesia:table(TableName) creates a handle that
represents the Mnesia table in a form that QLC can use as input. From that point
on, normal list-comprehension syntax for filtering and aggregation is used. For
example, to accomplish the same thing you did with the select function earlier,
you can write

mnesia:transaction(
 fun() ->
 Table = mnesia:table(user),
 QueryHandle = qlc:q([U#user.id || U <- Table, U#user.name =:= martin]),
 qlc:eval(QueryHandle)
 end)

QLC is a considerably more elegant way to perform queries than using select and
match specifications. This code is much more readable: basically, it says that you want
a list containing the #user.id fields for each record U from the Mnesia table user
such that U#user.name is equal to martin. You can also use QLC within transactions
where reading may not be the only thing going on—QLC can be mixed with any other
type of Mnesia function that belongs in a transaction.

 What we’ve covered in this section is by no means an exhaustive explanation of
what you can do with Mnesia—that would require a separate book. But it should give
you enough of a foundation that you can move forward with distributing your cache
based on Mnesia, and that is exactly what you’ll do next.

9.3 Distributing the cache with Mnesia
With a decent high-level design for how to distribute the cache, and some understand-
ing of the basics of Mnesia, you have what you need to dive into the implementation.
For this cache to work properly, you need to do the following:

1 Switch from ETS to Mnesia.
2 Make the cache aware of the other nodes it must communicate with.
3 Implement resource discovery for the cache.
4 Bring the Mnesia tables into dynamic replication.

You’ll deal with point 1 right away so that by the end of the next section, you won’t be
using ETS for your table anymore, but Mnesia.

9.3.1 Switching from ETS to Mnesia

Remember the sc_store module you implemented in chapter 6? This was the mod-
ule you used to encapsulate your key-to-pid table, hiding the storage implementa-
tion from the rest of the code. Now this encapsulation will come in handy; even
though you’ll completely re-implement the way the data is stored, the rest of your

231Distributing the cache with Mnesia
code base won’t need to be changed. The sc_store module (listing 6.6) contained
four key functions:

■ init/0

■ insert/2
■ lookup/1
■ delete/1

First, init/0 will set up your Mnesia table, just as it currently does for ETS. Later,
you’ll modify it further to encapsulate the logic required to enable replication; but for
now, creating the table will suffice.

REWRITING INIT/0
The old version of init/0 looked like this:

init() ->
 ets:new(?TABLE_ID, [public, named_table]),
 ok.

Here is the new version, after a Mnesia makeover:

init() ->
 mnesia:start(),
 mnesia:create_table(key_to_pid,
 [{index, [pid]},
 {attributes, record_info(fields, key_to_pid)}]).

The table is a normal set with unique keys, kept in RAM only. As always, you use
record_info(fields, ...) to list the names of the attributes (the columns) of the
table entries. Of course, this means you need a record called key_to_pid. Because
this module is supposed to encapsulate all storage concerns for your cache, you
define this record at the beginning of the source file, like this:

-record(key_to_pid, {key, pid}).

Note the option {index, [pid]} in the table definition. Indexes are extra tables that
allow speedy operations on fields other than the primary key. Keep in mind when
you’re creating an index that it consumes additional space. Furthermore, the index is
populated and kept up to date for each insertion into the primary table, which means
that startup and writing become slower. It’s important to be aware of these tradeoffs.
In this case, the overhead of keeping an index is justified, letting you quickly find the
key given a pid (and not just the other way around).

 With the setup done, let’s rewrite the insert function.

REWRITING INSERT/2
The insert/2 function in chapter 6 worked like this:

insert(Key, Pid) ->
 ets:insert(?TABLE_ID, {Key, Pid}).

The Mnesia version is just as straightforward:

insert(Key, Pid) ->
 mnesia:dirty_write(#key_to_pid{key = Key, pid = Pid}).

232 CHAPTER 9 Adding distribution to the cache with Mnesia
Note that you’re using a dirty write to update the table. The way you’re using Mnesia
here, as a basic key-value store, is so simple that transactions aren’t needed. The main
feature of Mnesia that you’re after is replication, but we get to that later.

 The lookup function is just as simple.

REWRITING LOOKUP/1
Here’s the ETS version:

lookup(Key) ->
 case ets:lookup(?TABLE_ID, Key) of
 [{Key, Pid}] -> {ok, Pid};
 [] -> {error, not_found}
 end.

And here’s the Mnesia version:

lookup(Key) ->
 case mnesia:dirty_read(key_to_pid, Key) of
 [{key_to_pid, Key, Pid}] -> {ok, Pid};
 [] -> {error, not_found}
 end.

Because the table is a set, you can only get zero or one records as result, and a dirty
read is sufficient for your purposes. It couldn’t be simpler.

 But there is a complication: in a distributed setting, the pid you get from the lookup
could be referring to a dead process. Consider the following scenario: You have nodes
a and b and you insert some data in the cache on node a. You check that you can look
up that data on node b and get the correct value. You then kill node a and run the same
query again on node b. What happens? The operation fails, because the pid in the Mne-
sia database still refers to the storage process which was located on node a, but is now
dead. You need a way to invalidate entries that refer to dead processes.

 The simplest solution is to introduce a check every time you pull a pid out of the
database. The following function checks whether a pid refers to a process that still lives:

is_pid_alive(Pid) when node(Pid) =:= node() ->
 is_process_alive(Pid);
is_pid_alive(Pid) ->
 lists:member(node(Pid), nodes()) andalso
 (rpc:call(node(Pid), erlang, is_process_alive, [Pid]) =:= true).

With the help of this, you have only to add an extra check to the lookup function:

lookup(Key) ->
 case mnesia:dirty_read(key_to_pid, Key) of
 [{key_to_pid, Key, Pid}] ->
 case is_pid_alive(Pid) of
 true -> {ok, Pid};
 false -> {error, not_found}
 end;
 [] ->
 {error, not_found}
 end.

233Distributing the cache with Mnesia
This solution means that stale pids are left in the Mnesia table until deleted or over-
written by a new value, but they are ignored by the lookup function, so they do no
harm. Take some time to think about how you could clean out stale pids in an effi-
cient way. In what modules would you need to make changes?

 This leaves the delete function to convert. It’s the only challenging part of the
conversion to Mnesia.

REWRITING DELETE/1
Here’s the delete function before:

delete(Pid) ->
 ets:match_delete(?TABLE_ID, {'_', Pid}).

And here it is after:

delete(Pid) ->
 case mnesia:dirty_index_read(key_to_pid, Pid, #key_to_pid.pid) of
 [#key_to_pid{} = Record] ->
 mnesia:dirty_delete_object(Record);
 _ ->
 ok
 end.

There are two reasonable scenarios: either the key isn’t there (presumably it has
already been deleted), or the key is there and you succeed in deleting it. In both cases,
you want to return ok to the caller. Deleting a key should be an idempotent opera-
tion—that is, you should be able to do it over and over with the same result. If you find
a key_to_pid record for the key, you delete it, and otherwise you return ok anyway C.

 Take a close look at how you find an entry given only the pid B. This is how a Mne-
sia index is used: special index-aware functions (this one being a dirty variety) are
employed to make use of existing indexes. For index_read/3, the first argument is the
table name, the second is the key on which you want to index (the pid), and the third
indicates which index you want to search (because a table can have several). You spec-
ify this using the index column number, which is given by the syntax #record-
name.fieldname. Alternatively, you could use the name you specified when you
created the table (the atom pid), but that would make the operation slightly slower.
Apart from this, the function behaves like a normal read operation.

 That wasn’t too bad, was it? You now have a fully Mnesia-enabled cache, and
you didn’t have to change a single line outside of the sc_store module. Let’s see
if you can stay on the track of keeping things clean and simple as you tackle the
next step to distribution.

9.3.2 Making the cache aware of other nodes

Next up, you’ll make the cache aware of the other cache instances within its Erlang
cluster. This will pave the way for syncing up with those instances so you can share data
between them. The first thing a new cache node needs to do is join the cluster. In this
section, we show a simple way to manage that. There are more advanced ways of doing
it, but this tends to work well.

Finds entry
given only pid

 B

Returns ok in
case of errors

C

234 CHAPTER 9 Adding distribution to the cache with Mnesia
 This simple method for automatically adding a new node to a predefined cluster is
to always have two known blank Erlang nodes running. These are nodes without any
user-defined code running on them (so there should be little reason for them to go
down, ever). You start them as normal, giving them suitable names and setting the
cookie to be used for authentication within this cluster:

erl –name contact1 -setcookie xxxxxxxx

erl –name contact2 -setcookie xxxxxxxx

Each cache node you bring up is configured
to ping both of these nodes using their known
names, as illustrated in figure 9.10. If either of
these calls to net_adm:ping/1 succeeds, then
the node startup is allowed to proceed; if not,
the node can’t join the cluster, and startup
fails with a crash dump.

 It shouldn’t be hard to decide where to
add the code for this—just think about what
happens when the application starts. The
first thing that is called is sc_app:start/2,
which is where you added the code to call sc_store:init() back in section 6.4.2.
Because you want to ensure connectivity before you initialize the store, this is the
place to add the code for joining a cluster.

 Listing 9.4 shows the code you’ll add to the sc_app module. Note how you use a
match ok = ... on the result of the call to ensure_contact() that you added to
start/2. This asserts that the result must be ok; otherwise, you get a badmatch excep-
tion. It’s a “succeed or die” contract: either you get a connection as you intended, or
the start function throws an exception and the whole application startup fails.

start(_StartType, _StartArgs) ->
 ok = ensure_contact(),
 sc_store:init(),
 case sc_sup:start_link() of
 {ok, Pid} ->
 {ok, Pid};
 Error ->
 Error
 end.

ensure_contact() ->
 DefaultNodes = ['contact1@localhost', 'contact2@localhost'],
 case get_env(simple_cache, contact_nodes, DefaultNodes) of
 [] ->
 {error, no_contact_nodes};
 ContactNodes ->
 ensure_contact(ContactNodes)
 end.

Listing 9.4 Making contact on application startup (sc_app.erl)

Figure 9.10 Using known, always-
available contact nodes to join a cluster
automatically: a simple trick that tends to
work pretty well. Preferably, the nodes
should run on separate physical computers.

Add this line
to start()

Checks config
for nodes B

235Distributing the cache with Mnesia
ensure_contact(ContactNodes) ->
 Answering = [N || N <- ContactNodes, net_adm:ping(N) =:= pong],
 case Answering of
 [] ->
 {error, no_contact_nodes_reachable};
 _ ->
 DefaultTime = 6000,
 WaitTime = get_env(simple_cache, wait_time, DefaultTime),
 wait_for_nodes(length(Answering), WaitTime)
 end.

wait_for_nodes(MinNodes, WaitTime) ->
 Slices = 10,
 SliceTime = round(WaitTime/Slices),
 wait_for_nodes(MinNodes, SliceTime, Slices).

wait_for_nodes(_MinNodes, _SliceTime, 0) ->
 ok;
wait_for_nodes(MinNodes, SliceTime, Iterations) ->
 case length(nodes()) > MinNodes of
 true ->
 ok;
 false ->
 timer:sleep(SliceTime),
 wait_for_nodes(MinNodes, SliceTime, Iterations - 1)
 end.

get_env(AppName, Key, Default) ->
 case application:get_env(AppName, Key) of
 undefined -> Default;
 {ok, Value} -> Value
 end.

This code is straightforward, even if it looks like a lot at first glance. The basic flow is
as follows:

■ Check the configuration for nodes to contact (or use hardcoded defaults).
■ Ping all the contact nodes, and proceed only if you get answers.
■ Check the configuration for the time to wait for other nodes to connect (or use

a default).
■ Wait until you see more nodes than the ones that originally answered (or you

grow bored and assume you’re the first proper work node to connect).

We discuss application configuration in more detail in the next chapter. For now, it’s
enough to show the function for looking up configuration data G. You wrap the
library function application:get_env(AppName, Key) in a utility function get_env
(AppName, Key, Default) that makes it easy to substitute a default value in case no
configuration setting is found. You call this utility function first thing in ensure_
contact(), to get the list of contact nodes B. You also hardcode a couple of default
node names for now, because you haven’t set up any configuration yet.

 Assuming you get a non-empty list of nodes to contact, you proceed to ensure_
contact(Nodes), where you attempt to contact all of them using net_adm:ping/1 C.

Pings listed
nodes C

Checks config for
time to wait D

Enters wait loopE

Checks if enough
nodes are connected

F

Looks up
configuration dataG

236 CHAPTER 9 Adding distribution to the cache with Mnesia
Note how you use a list comprehension to both ping all nodes and simultaneously col-
lect the names of those that answer. If none of the listed nodes can be contacted, you
give up. Otherwise, you do a second configuration check to find the time to wait for
full connectivity D (again, you hardcode a default value in case there is no configura-
tion) and wait for further nodes to show up.

 The function wait_for_nodes/2 first takes the total waiting time and divides it
into a number of time slices; then, it enters a wait loop E. At the start of each time
slice, you check whether your list of known nodes has become larger than the initial
set of answering contact nodes F. If that is the case, you assume you now are con-
nected to all the nodes in the cluster. Otherwise, you go to sleep for the duration of
one time slice and repeat. If no other nodes turn up after the maximum wait time is
up, you go on anyway (presumably, it means you’re the first node in the cluster apart
from the contact nodes).

Having added this code, you know that you’ll be fully connected to the cluster at the
point when you start the application supervision tree (and with it, the rest of the appli-
cation). The next step is to use resource discovery to find any other instances of
simple_cache that may exist in your cluster.

9.3.3 Integrating resource discovery to find other cache instances

In this section, you’ll take the resource discovery system that you built in the last chap-
ter and integrate it into your simple cache. Because resource discovery is a generic ser-
vice that can be used by any application that needs to find resource instances within
an Erlang cluster, you don’t want to just squeeze it in as a part of your cache applica-
tion. Instead, you should pack it up as an application in its own right, and include it
alongside the simple cache in your directory structure.

 We don’t go through the details of creating an application again—you should have
seen enough of that by now to be able to do it as an exercise. As usual, you need to create
the application directory structure and write a .app file, an _app module, and a _sup
module (which starts the resource discovery server that you wrote in section 8.3.3).
After you’ve done that, you should have two applications side by side, like this:

Use configuration with care
Reading configuration settings creates functions that aren’t referentially transpar-
ent: what you pass as parameters to the function isn’t the only thing that decides
what it will return. It’s good functional programming practice not to bury such
things deep in your code. Keep them at the top of the program (in the initialization
part), and make them easily visible. (In this case, you only read configuration dur-
ing the start/2 function.) Following this practice will make your code more man-
ageable and more easily refactored. The more referentially transparent functions
you have, the easier it is to reason about what your code does and how it will be
affected if you rearrange things.

237Distributing the cache with Mnesia
lib
 |- simple_cache
 | |- src
 | |- ebin
 | |- ...
 |
 |- resource_discovery
 |- src
 |- ebin
 |- ...

You also need to specify that simple_cache now depends on resource_discovery
and mnesia. Listing 9.5 shows an updated version of simple_cache.app that contains
these dependencies as well as the event logger modules you added in chapter 7.
(Compare this with the original .app file in section 6.3.2.)

{application, simple_cache,
 [{description, "A simple caching system"},
 {vsn, "0.3.0"},
 {modules, [simple_cache,
 sc_app,
 sc_sup,
 sc_element_sup,
 sc_store,
 sc_element,
 sc_event,
 sc_event_logger]},
 {registered,[sc_sup]},
 {applications, [kernel, sasl, stdlib, mnesia, resource_discovery]},
 {mod, {sc_app,[]}}
]}.

With that boilerplate out of the way, let’s think about what you want to accomplish.
You want to publish your local cache as available to others, and you also want to locate
other cache instances in the cluster. If you recall from chapter 8 how resource discov-
ery works, this should be easy. First, to publish the cache, you’ll insert a local resource
(an “I have”) with the resource type simple_cache and the name of your node as a
reference to the concrete resource. (There can be only one simple cache instance per
node, so you don’t need to make it any more complicated than that.) In other words:

resource_discovery:add_local_resource(simple_cache, node())

To find other caches, you insert an “I want” with the resource type simple_cache:

resource_discovery:add_target_resource_type(simple_cache)

The final step is to add a call to trade resources with the rest of the cluster, and wait a
reasonable time for those resources to be shared (recall that your resource discovery
system is very asynchronous in nature):

resource_discovery:trade_resources(),
timer:sleep(?WAIT_FOR_RESOURCES),

Listing 9.5 Modified simple_cache.app file

New dependencies added

238 CHAPTER 9 Adding distribution to the cache with Mnesia
Predictably, this code also needs to go in the sc_app:start/2 function, right after the
call to join the cluster. This is shown in the following listing.

-define(WAIT_FOR_RESOURCES, 2500).

start(_StartType, _StartArgs) ->
 ok = ensure_contact(),
 resource_discovery:add_local_resource(simple_cache, node()),
 resource_discovery:add_target_resource_type(simple_cache),
 resource_discovery:trade_resources(),
 timer:sleep(?WAIT_FOR_RESOURCES),
 sc_store:init(),
 case sc_sup:start_link() of
 {ok, Pid} ->
 {ok, Pid};
 Error ->
 Error
 end.

Wasn’t that simple? You’ll now know about all the other cache instances in your clus-
ter, and they’ll know about you. The final thing you need to do is to modify your Mne-
sia setup so that you connect to and replicate with the other nodes in the cluster.

9.3.4 Bringing the Mnesia tables into dynamic replication

At last, you’re going to complete the magic. Take a moment to revel in what you’re
about to do. Think about it: with almost no static configuration of your system—just
some bootstrap code and a couple of contact nodes to get you into the cluster—you’ll
automatically discover all simple_cache instances and then replicate data across them
to give you a nicely dynamic system with a high degree of fault tolerance.

 Getting the nodes into replication isn’t too tricky; it just requires a bit of knowl-
edge about the way Mnesia works in a distributed context. You’ll put the code that
does this in sc_store:init/0, which can now rely on the fact that you’ll at that point
be connected to the cluster and will have populated the resource discovery cache (see
listing 9.6). The code isn’t entirely trivial, so we break it into a few parts and discuss
each separately.

 The previous version of sc_store:init/0 looked as follows (see section 9.3.1),
after you modified it to use Mnesia instead of plain ETS tables:

init() ->
 mnesia:start(),
 mnesia:create_table(key_to_pid,
 [{index, [pid]},
 {attributes, record_info(fields, key_to_pid)}]).

The new version relies on the resource discovery information and starts like this:

init() ->
 mnesia:stop(),
 mnesia:delete_schema([node()]),

Listing 9.6 Modifications for resource discovery (sc_app.erl)

239Distributing the cache with Mnesia
 mnesia:start(),
 {ok, CacheNodes} = resource_discovery:fetch_resources(simple_cache),
 dynamic_db_init(lists:delete(node(), CacheNodes)).

The first thing it does is to ensure that Mnesia is started and delete any existing data-
base schema on the local node. This incarnation of the cache takes a cavalier attitude
toward data and doesn’t hesitate to overwrite previously used schemas or tables. This
is a cache, after all: you’ll keep all your data as ram_copies—including the schema. In
order to delete a schema, Mnesia must not be running. (Calling mnesia:stop() is
harmless if Mnesia hasn’t been started.)

 After that’s done, init() fetches the list of all simple_cache instances the
resource discovery system has found. (Recall from the previous section that you use
node names to identify the instances.) This list of cache nodes should contain your
local cache instance as well, so you remove that before you pass the list to the next
stage: the function dynamic_db_init/1, shown in the following listing.

dynamic_db_init([]) ->
 mnesia:create_table(key_to_pid,
 [{index, [pid]},
 {attributes, record_info(fields, key_to_pid)}
]);
dynamic_db_init(CacheNodes) ->
 add_extra_nodes(CacheNodes).

This function initializes the database differently depending on whether it finds some
other cache instances in the cluster. The first clause handles the case when you seem
to be alone; you create the table just as you did in section 9.3.1. Because you don’t call
mnesia:create_schema/1 after ensuring that any previous schema is deleted, the new
database schema is implicitly created and is kept in RAM only. At this point, you have a
working simple_cache instance that is ready to replicate its data to any other instances
that join the cluster.

 If other simple_cache instances are discovered, you fall through to the second
clause. In this case, you want to bring data over from the other nodes in the cluster
instead. The code for doing this takes the form of a loop over the list of remote nodes,
in the add_extra_nodes/1 function shown in listing 9.8.

Listing 9.7 Initializing Mnesia depending on nodes discovered

One node must be started first
There’s an important caveat here, and that is that the initial node must be started
alone. If two simple_cache nodes are started simultaneously from scratch, there’ll
be a race condition where both may think that the other node was the first. As a
consequence, no initial schema will ever be created. This can be avoided with
some additional synchronization in the code, but for simplicity’s sake, let’s live
with it for now.

240 CHAPTER 9 Adding distribution to the cache with Mnesia
-define(WAIT_FOR_TABLES, 5000).

add_extra_nodes([Node|T]) ->
 case mnesia:change_config(extra_db_nodes, [Node]) of
 {ok, [Node]} ->
 mnesia:add_table_copy(schema, node(), ram_copies),

 mnesia:add_table_copy(key_to_pid, node(), ram_copies),

 Tables = mnesia:system_info(tables),
 mnesia:wait_for_tables(Tables, ?WAIT_FOR_TABLES);
 _ ->
 add_extra_nodes(T)
 end.

This function does quite a bit but is straightforward in the end. First, you call
mnesia:change_config/2 to tell Mnesia to add an extra node to the database. You
need to connect to only one of the remote instances. Mnesia works in much the
same way as Erlang nodes: when you connect to another Mnesia instance, you’re
informed about the others, and the others are informed about you. Note that in
your case the new, empty node initiates the connection to a node with data on it,
but that doesn’t matter; Mnesia updates its list of nodes (on both sides), and noth-
ing else happens yet. (Adding a node in this particular way should only be done
with newly started nodes that are fully RAM-based and have an empty schema.)

 If the connection doesn’t work for some reason, you try it with one of the other nodes
in the list C. (If you run out of nodes to try to connect to, the code crashes, causing the
startup to fail, because you don’t handle the case when the list of nodes is empty. This
is another example of “let it crash”; there is little point in adding code for that case.)

 If connecting succeeds, you first fetch the remote schema by adding a copy for
the local node B. This replaces your temporary, empty, local schema. Then, you do the
same thing for the key_to_pid table. This is the real goal you were after—allowing you
to share this table across cache instances. Finally, you call mnesia:system_info(tables)
to get a list of all the existing tables, and you call mnesia:wait_for_tables/2 to await
a full synchronization of the contents of the newly added table before you proceed.
(The extra parameter is a timeout value, after which you’ll go on anyway.)

 That’s all, folks! There you have it: a dynamically replicating distributed cache. Go
ahead and take it for a spin in the shell: start up two nodes, get them talking, insert data
on one, and query it on the other. You’ve built a system that stores the mapping from
keys to process identifiers in a replicated table. This makes it possible for any cache
instance in the cluster to store such a mapping, and any instance can look up the pro-
cess identifier stored for a key and talk directly to the process (no matter which node
it lives on) in order to read or update the value associated with the key.

 To run the code, first start a contact node or two as before, in a separate console
window. For example (using the –sname flag for a cluster with short node names):

$ erl –sname contact1

Listing 9.8 Connecting to existing Mnesia nodes and replicating their data

Replaces local
schema with

remote

B

Tries some
other node
instead

C

241Summary
Ensure that all your .erl files have been compiled to .beam files in the corresponding
ebin directories, both for the simple_cache and the resource_discovery applica-
tions—for example, like this:

erlc -o ./simple_cache/ebin ./simple_cache/src/*.erl
erlc -o ./resource_discovery/ebin ./resource_discovery/src/*.erl

Then, start Erlang as follows:

$ erl –sname mynode –pa ./simple_cache/ebin –pa ./resource_discovery/ebin

Because the simple_cache application now depends on several other applications
(listed in the .app file; see listing 9.5), you need to start those before you can start
simple_cache itself:

1> application:start(sasl).
ok
2> mnesia:start().
ok
3> application:start(resource_discovery).
ok
4> application:start(simple_cache).
ok

Remember that the resource discovery will cause simple_cache to wait several sec-
onds on startup. If simple_cache can’t find the contact node, check that all nodes
were started with the –sname flag, and change the default node names in sc_app:
ensure_contact() to match your real host name if the alias localhost doesn’t seem
to work. (Remember to recompile the code if you modify it.)

 You should be able to start several nodes in the same way (mynode1, mynode2, …),
each in a separate console window, with the same applications running on them.
Then try inserting a value into the cache on one node, and look it up on another. It
just works.

9.4 Summary
In this chapter, you’ve learned the basics of using that extremely flexible distributed
data store called Mnesia. You’ve altered your cache to use Mnesia for storage with
minimal impact on the rest of the code base. You’ve written some simple code to make
your cache automatically join an Erlang cluster. Most impressively, you’ve incorpo-
rated the resource discovery system that you built in chapter 8 and used it to dynami-
cally replicate Mnesia tables across the other cache instances found in the cluster. The
Erlware people will be thrilled, because they will now be able to handle session storage
and not have to worry about providing a bad user experience, even when requests
from the same user can be directed to different web servers at different times.

 In the next chapter, you’ll close the loop. You’ll take this code and turn it into a
real release, ready to be pushed out into production. After that, you’ll truly be on the
way to becoming an Erlang professional.

Packaging, services,
 and deployment
By now, you’ve learned how to employ OTP behaviours, create proper OTP applica-
tions, handle logging and events, write distributed applications, and use the Mnesia
database. That’s no small accomplishment. Your next task is to take all your code
and wrap it up in a way that makes it ready to deploy.

OTP applications provide convenient units of functionality, but only on the
Erlang programming level. To build a complete standalone software service—
something that runs on one or more machines on your network and communicates
with your other systems and with your users—you must typically combine a number
of such applications that will run on a single Erlang runtime system. In OTP, such a
higher-level package is called a release, and the result of installing a release on some
host machine is called a target system.

 A target system generally only includes those applications that are needed for it
to work as a service, as opposed to a standard Erlang/OTP distribution that contains

This chapter covers
■ Target systems, applications, and releases
■ How to define a release, and how to start it
■ Packaging and installation of releases
242

243Applications from a system viewpoint
a large number of applications, including graphical runtime tools such as those you saw
in chapter 5. Minimally, a target system must contain the stdlib and kernel applica-
tions (apart from your own applications), and often the SASL application is also needed
to support logging.

 Before we go into details about creating releases, let’s first review some aspects of
applications that are of importance in this context.

10.1 Applications from a system viewpoint
OTP applications are usually active things with running processes, a distinct run-
time behavior, and a discrete lifecycle. They’re more like standalone software appli-
cations such as web browsers and web servers than they’re like typical programming-
language libraries. When you start an OTP application, you generally kick off a
number of long-lived processes, some of which may potentially run for the system’s
entire lifetime.

 An Erlang target system consists of a number of running applications. All these
have similar structure and metadata and are managed in the same way.

10.1.1 Structure

All applications have the same basic structure, as illus-
trated in figure 10.1. The application behaviour
encapsulates starting and stopping the application.
When started, a running application has a root super-
visor, which directly or indirectly manages all the
other processes of the application (including any sub-
system supervisors).

 Applications provide consistency—a single way to
package and manage chunks of behavior. They have a
standardized directory structure, a well-defined entry
point, canonical supervision patterns, and so on.
This consistency makes it possible to automate most
of the steps needed to create a release from a set of
separate applications.

10.1.2 Metadata

Most applications are active, not mere libraries. This means OTP needs a certain
amount of information to know how an application is to be started, what other
applications it depends on, and so on. This information is contained in the .app
file. Your project consists of two applications at this point: resource_discovery and
simple_cache. These depend, in turn, on the standard OTP applications kernel,
stdlib, sasl, and mnesia.

Figure 10.1 The general
structure of a running
application. All OTP applications
are started, stopped, and
managed in a uniform way. This
makes it straightforward to
combine them in a release.

244 CHAPTER 10 Packaging, services, and deployment
The .app file for simple_cache should currently look like the following listing.

{application, simple_cache,
 [{description, "A simple caching system"},
 {vsn, "0.3.0"},
 {modules, [simple_cache,
 sc_app,
 sc_sup,
 sc_element_sup,
 sc_store,
 sc_element,
 sc_event,
 sc_event_logger]},
 {registered, [sc_sup]},
 {applications, [kernel, sasl, stdlib, mnesia, resource_discovery]},
 {mod, {sc_app, []}}
]}.

All of this metadata is needed for proper management of the application. One piece
of information is particularly important in the context of releases: the vsn tuple,
which specifies the current version of the application.

10.1.3 How the system manages running applications

Remember that the starting point for an OTP application is an implementation of the
application behaviour, such as your sc_app module (which the .app file points to).
This provides an interface for starting and stopping the application; but there is also
an associated behaviour container, known as the application controller, which handles all
the applications running in the system. When the application start/2 callback func-
tion has completed the startup, it should return the pid of the newly started top-level

Dependencies and transitivity
Applications usually have dependencies. For example, the simple_cache appli-
cation is directly dependent on the kernel and stdlib applications (practi-
cally all applications depend directly on these two) as well as on the mnesia,
resource_discovery, and sasl applications. In general, there may also be
indirect dependencies. Suppose application A depends on application B, which
in turn depends on application C. In that case, application A depends indi-
rectly on application C, as illustrated in the figure, because the depends-on
relation is transitive.

Listing 10.1 Application metadata: simple_cache.app

Transitivity of dependencies. Because
application A depends directly on application
B, which depends directly on application C, A
depends indirectly on C.

245Making a release
supervisor so that the container can track it. In this way, the application behaviour is
similar to the gen_event behaviour described in chapter 7: a single container man-
ages multiple behaviour implementations (compare figure 7.1).

THE APPLICATION CONTROLLER

There is only one application controller per runtime system, registered under the
name application_controller. As you can see from its low process identifier in
the following example, the application controller is started early in the boot sequence
of the Erlang runtime system:

Eshell V5.7.4 (abort with ^G)
1> registered().
[kernel_sup,global_name_server,inet_db,init,file_server_2,
 code_server,erl_prim_loader,user_drv,standard_error,
 application_controller,error_logger,kernel_safe_sup,user,
 global_group,standard_error_sup,rex]
2> whereis(application_controller).
<0.6.0>

The controller is also responsible for loading the .app file for the application and
checking that all the applications it depends on have been started first. For each run-
ning application, a pair of application master processes are spawned by the applica-
tion controller in order to isolate itself from the application code (see figure 5.3).
These extra processes aren’t important to you here, but it’s worth knowing—in partic-
ular when debugging—that they play a part in the overall container functionality.
Although the internal structure of the application behaviour container is a bit more
complex than that of most other behaviours, the API provided by the application
module is straightforward.

APPLICATION START TYPES

When an application is started using application:start(AppName), it gets the default
type temporary. This means even if it terminates unexpectedly, the rest of the runtime
system isn’t affected; only a crash report is generated. But an application that is started
through a call to application:start(AppName, permanent) is considered required
for the target system to function: if it terminates, for whatever reason, the entire run-
time system shuts down so that everything can be restarted from scratch. (The type
transient can also be specified, but it behaves just like permanent for normal OTP
applications.) Such a system restart can be handled automatically by an external oper-
ating system heart process; see the Erlang/OTP documentation of the heart module
(part of the kernel application) for more details.

 Now that we’ve highlighted the areas of applications that are of importance from a
system perspective, let’s talk about how you can tie these applications together as
releases to build standalone Erlang systems.

10.2 Making a release
Packaging of functionality in Erlang/OTP can be viewed as a hierarchy. At the lowest
level are modules, which encapsulate code. Modules are grouped into applications,

246 CHAPTER 10 Packaging, services, and deployment
which encapsulate dynamic behavior and higher-level functionality. Finally, applica-
tions are grouped into releases.

10.2.1 Releases

A release consists of a set of applications together with some metadata specifying
how to start and manage those applications as a system. The applications in a release
execute together in the same Erlang runtime system: a target system, stripped down to
run only these applications. In this respect, a release can be seen as a service defini-
tion: the running Erlang VM becomes a system-level service, just as your simple cache
is merely a service for the web server, acting like a black box from the web server’s
point of view.

 The applications included with a release are those required for the primary
functionality as well as all their direct and indirect dependencies. For example,
the applications that you definitely need in your release are simple_cache and
resource_discovery. Both of these depend on other applications, which may also
depend on others; all of these need to be included in the release.

 A release specifies which versions of those applications are required. It also has a
version number of its own. For example, the release simple_cache-0.1.4 may
require applications simple_cache-0.3.0, resource_discovery-0.1.0, kernel-4.5.6,
and stdlib-6.0.5, as illustrated in figure 10.2. Versioning is an important aspect
of releases.

 To summarize:

■ A release describes a running Erlang runtime system.
■ A release has a version.
■ A release aggregates a number of versioned applications along with metadata

on how to manage the system.
■ Installing a release on a host machine produces a target system.

In the overall ecosystem of Erlang/OTP, releases are important but are surprisingly
misunderstood. To show you that it isn’t that complicated, you’ll now create a release
for the Simple Cache service.

Figure 10.2 Releases and versioning. Every release has a version
string, and the release contains a number of applications, each of which
is also at a particular version.

247Making a release
10.2.2 Preparing to release your code

In general, you should follow these steps to create a release:

1 Decide which applications should be included.
2 Create a release metadata (.rel) file describing the release’s contents.
3 Create the boot script.
4 Create a system configuration file (optional, but you typically have one).
5 Pack everything in a single package file.

We go through these steps one at a time. They’re pretty easy when you know how
they’re done. First, you need to choose the applications to include.

 You have two applications that you’ve developed yourself: simple_cache and
resource_discovery. For a target system to run simple_cache as a service, it needs to
contain both these applications (because simple_cache now uses resource_discovery)
as well as all the other applications these two depend on, directly or indirectly: stdlib,
kernel, sasl, and mnesia. Next, you need to create the .rel file.

10.2.3 The release metadata file

Just as you need a .app file for each application you create, containing metadata
about the application as a whole, you need a release file with the extension .rel con-
taining the metadata for each release. For a release, the metadata consists mainly of a
list of the applications it’s made up of. You also need to specify some other things,
such as the version of the Erlang Run-Time System (ERTS) that you want these appli-
cations to run under, to ensure that the version on which you run the applications is
the version for which they were compiled.

 There is no obvious choice for where to put this release file during development;
after all, it’s only needed when you’re about to make a release. You may want to keep
it somewhere completely separate from your code. It’s possible that you’ll want to
have several release files (with different names) for creating different release packages
from the same code base. It could even be that you’re creating a release from code
that you’ve received from someone else.

 Recall from section 9.3.3 that you should by now have a directory containing (at
least) your two applications as subdirectories, like this:

lib
 |- simple_cache
 | |-ebin
 | ...
 |
 |- resource_discovery
 | |-ebin
 ...

The parent directory doesn’t have to be called lib; but naming aside, that’s where
you’ll put the .rel file and other release-related files in this chapter. It should be your
current directory when you’re running the examples. In full-scale development, you’ll

248 CHAPTER 10 Packaging, services, and deployment
probably want to do things differently to suit your workflow, after you know how
releases work.

 Listing 10.2 shows the simple_cache.rel file you’ll use as the basis for creating this
release. Make sure the version numbers for resource_discovery and simple_cache
match those in your .app files for these applications. Depending on the version of
Erlang you’ve installed, you may need to change the version numbers of erts, kernel,
stdlib, sasl, and mnesia (but leave them as they are for the present).

{release,
 {"simple_cache", "0.1.0"},
 {erts, "5.7.2"},
 [{kernel, "2.13.2"},
 {stdlib, "1.16.2"},
 {sasl, "2.1.5.3"},
 {mnesia, "4.4.10"},
 {resource_discovery, "0.1.0"},
 {simple_cache, "0.3.0"}
]}.

Like a .app file, the .rel file contains a single Erlang tuple, terminated by a period. It
has four elements. The first is the atom release. This is followed by a pair containing
the name of the release (as a string, not an atom) and the version. As for applications,
the version string can be anything you like; but it’s advisable to stick with conventional
version strings, for the sake of your users as well as for third-party tools.

 The third element is the ERTS version specification. This is a pair of the atom erts
and the version of the required Erlang runtime system, as a string. Note that the ERTS
version isn’t the same as the version of the Erlang/OTP distribution (for example,
R13B03). You can see which ERTS version you’re using if you start an Erlang shell:

$ erl

Erlang R13B03 (erts-5.7.4) [smp:2:2] [rq:2] [async-threads:0]

Eshell V5.7.4 (abort with ^G)
1>

Following the text Erlang R13B03 on the first line of output is the ERTS version—in
this case, 5.7.4. Another method of finding this version number is to bring up the
BREAK menu (see section 2.1.4) and select the v option:

1>
BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
 (v)ersion (k)ill (D)b-tables (d)istribution
Erlang (BEAM) emulator version 5.7.4
Compiled on Tue Nov 24 11:12:28 2009

Update the erts entry of your .rel file now to match the version of your installed system.
 The fourth and last element of the .rel tuple is the list of included applications

and their respective versions. In this case, you list simple_cache, which is the main

Listing 10.2 simple_cache.rel

249Making a release
application, along with its direct and indirect dependencies: resource_discovery,
mnesia, sasl, and even the stdlib and kernel applications. This must be a complete
list of all the applications your target system requires. It includes not just the applica-
tions you’ve written but also all their direct and indirect dependencies. To find the
correct version numbers for these other applications, it’s easiest to wait until you run
the make_script function in the next section and see what it reports.

 The .rel file is just a high-level specification. The runtime system can’t read it as it
is at boot time—and even if it could, it doesn’t contain enough information to start a
running system correctly. It doesn’t point to an ERTS executable, and it doesn’t pro-
vide any information about where the listed applications can be found. This informa-
tion needs to be pulled together before a real Erlang/OTP target system can be
started. Next, we show you how to bundle this information with other necessary arti-
facts such as configuration in order to create a complete release specification that lets
you start a working target system the right way.

10.2.4 The script and boot files

The .rel file is where it all starts, but it isn’t the end of creating a running Erlang/OTP
target system. The next step is to create two more files that represent a more complete
specification of how to start the system. These are the .script and .boot files. The
.script file contains a full specification of what will be included in applications, includ-
ing paths to applications, which modules will be loaded, and other necessary informa-
tion. The .boot file is a binary representation of the .script file that will be read by the
Erlang runtime system when it boots.

 To create these files, the first thing you need to do is start an Erlang VM that has cor-
rect paths set up to all the applications specified in the .rel file. You use the –pa com-
mand line flag (see section 4.3) to add code paths for all the applications that belong
to your intended release and that aren’t already on the default path (that is, everything
except the applications included with Erlang/OTP). Following is the command line
you use to start the shell with the paths to the simple_cache and resource_discovery
application ebin directories. Run this from the directory where the .rel file resides:

erl -pa ./simple_cache/ebin -pa ./resource_discovery/ebin

The next step is to generate the actual boot and script files with the help of the
systools module (part of the SASL application), like this:

1> systools:make_script("simple_cache", [local]).
ok

Running this results in the generation of two files in your current directory:
simple_cache.script and simple_cache.boot. (If you instead get error messages com-
plaining about the version numbers in the .rel file, update the file to match your local
system, and run the command again.)

 If you’re curious, you can look at the contents of the .script file—you’ll see that it
looks something like this:

250 CHAPTER 10 Packaging, services, and deployment
%% script generated at {date} {time}
{script,
 {"simple_cache", "0.1.0"},
 [{preLoaded, [...]},
 ...

It consists of a few hundred lines of Erlang terms, describing the system’s entire boot
process. You’re not expected to understand it, but if you make changes to a .script file,
you can regenerate the .boot file using systools:script2boot(Release).

You use the local option to make_script/2 in order to let you easily test that you
can start the system (we get to that soon), without needing to go through any instal-
lation procedure first. Without the local option, the generated script and boot files
expect that all applications are located in a directory called lib somewhere on the
filesystem, pointed out by a system variable $ROOT. This is suitable for a release that
you want to be able to install on different host machines that don’t necessarily have
the same paths; but for your purpose right now, the local option is convenient—
your applications are under development, and you haven’t staged them anywhere
special in the filesystem.

10.2.5 System configuration

You’re almost finished creating the simple_cache release. The final element you need
to worry about for this particular release is configuration. You may recall that in chap-
ter 9 you added code to read configuration settings, but you temporarily fell back on
the default values placed in the code (see listing 9.4). Now it’s time to create a config-
uration file to be used with your release.

 The standard name for a configuration file is sys.config. The name can be any-
thing as long as it ends with the extension .config. Just like the .app file and the .rel
file, the .config file contains a single Erlang term followed by a period. The following
listing shows the sys.config file for simple_cache.

[
 %% write log files to sasl_dir
 {sasl,
 [

The local flag is mainly for testing
The local option passed to the make_script/2 function stipulates that absolute
paths to all applications are written in the script and boot files—meaning that if
you try to start a system using this boot file, all application code must reside in
exactly the place it did when the boot file was created. The local option is good
for testing, as you’re doing here, but it isn’t very portable and may not be suit-
able for production.

Listing 10.3 The sys.config configuration file

251Making a release
 {sasl_error_logger, {file, "/tmp/simple_cache.sasl_log"}}
]},
 {simple_cache,
 [
 %% Contact nodes for use in joining a cloud
 {contact_nodes, ['contact1@localhost', 'contact2@localhost']}
]}
].

In a .config file, the outer term is a list of tuples. These tuples are pairs of an applica-
tion name and a corresponding list of further key/value pairs, specifying options for
that application. In this sys.config file, you specify for the sasl application where it
should store its error log b and for the simple_cache application what the names of
the contact nodes are C (compare with the code in section 9.3.2).

 By now, you have all the necessary parts of the release, as illustrated in figure 10.3.
That means you should be ready to try to start it.

10.2.6 Starting a target system

At this point, you have all the parts required to start the system. To do this, you need
to specify two things: which .boot file to use and which .config file to use. In this case,
these files are located in the root directory of the target system. This translates to the
following command line, using the –sname flag for simplicity here:

erl –sname cache –boot ./simple_cache –config ./sys

Remember that you need to have at least one contact node running (see section 9.3.2)
in order to start the system; their names must match either the hardcoded default in
listing 9.4 or the names in your sys.config file. These nodes also need to be started using
the –sname flag (not –name) or they won’t be able to form a cluster with the cache node.

 Running the previous command should produce an Erlang shell, meaning that the
system has been successfully started. The SASL output is written to the file specified in
your sys.config file, so startup is less verbose than before—you can inspect the con-
tents of the log file to check that things are working. When you start a target system in
production, you typically won’t want the shell to start, and you’ll generally want the

Path to the
SASL logB

Names of
contact
nodesC

Figure 10.3
The components that make up a release. The .rel
file points out the included applications and is used
to generate the .script and .boot files. The sys.config
file is optional but should usually be included.

252 CHAPTER 10 Packaging, services, and deployment
system to run in the background as a daemon. (Use a remote shell from another node
if you need to log in to such a system; see section 8.2.6.) All you need to do is add the
flag –detached to the command line:

erl –sname cache –boot ./simple_cache –config ./sys –detached

For now, though, a shell session running in the foreground is exactly what you want,
so that you can quickly prove to yourself that your release runs the things you expect.
For this, you’ll use Appmon (see section 5.1). Start it from the shell of the running tar-
get system, like this:

1> appmon:start().
{ok,<0.72.0>}

You should see the main Appmon window, as shown in figure 10.4.
 As you can see, all the applications listed as dependencies in the simple_cache.rel

file are up and running (except stdlib, which is a library application). There you
have it: a running Erlang target system. Bravo!

 As a variant on starting a target system, you can include the flag -mode embedded on
the command line. At this point you’ve probably become used to how Erlang loads
modules on the fly, as needed. This is the default interactive mode. But in embedded
target systems, it may not be suitable or even possible to load any further code at run-
time. When an Erlang system boots in embedded mode, it loads all the code accord-
ing to the boot script at startup; after that, all attempts to load further modules or call
modules that haven’t been loaded will fail. You can read more about this in the official
Erlang/OTP documentation.

 You can also experiment with using the –detached flag. If you start the system this
way, it runs in the background and there’s no shell; but if you use the shell on one of
the contact nodes, you should be able to see the detached node listed in nodes(),
start a remote shell on it (see section 8.2.6), and (for example) call init:stop() to
shut it down.

Figure 10.4 Appmon main window, showing the applications of the running release

253Release packaging
In the next section, you’ll take the release you’ve created and package it for easier
installation and deployment.

10.3 Release packaging
Now that you’ve defined your release, you probably want to pack it up for easy instal-
lation, distribution, and deployment. OTP provides some helpful functionality for
packaging releases, but you generally need to do some manual tweaking—it’s not as
simple as pressing a button (at least, not yet). For this reason, people have devel-
oped additional tools for packaging and distribution. In this chapter, though, you’ll
focus on creating and installing a release package using only the functionality pro-
vided by OTP.

10.3.1 Creating a release package

You create a release package using another function in the systools module, called
make_tar(). If you’re familiar with tar, you may guess that make_tar produces a tar-
ball containing all the files included in the package.

As when you run systools:make_script/2, you need to start an Erlang shell with
the correct paths to your applications. You should also rerun the make_script/2
command without the local option to create a more realistic, location-independent
boot script. Then, call make_tar/2 with the name of the release file (without the
.rel extension):

$ erl -pa ./simple_cache/ebin -pa ./resource_discovery/ebin

Eshell V5.7.4 (abort with ^G)
1> systools:make_script("simple_cache", []).
ok
2> systools:make_tar("simple_cache", [{erts, code:root_dir()}]).
ok

The erts option means that you want to include the runtime system as well, so that
you can install the release on any compatible host machine and start it. In this exam-
ple, ERTS is copied from the root directory of your current Erlang installation, which

What’s a tarball?
The tar program is the general-purpose file archiving utility in UNIX. It’s similar to
zip but doesn’t in itself compress files; it just bundles them together in a single
file called a tarball, which can more easily be copied and untarred somewhere else.
A tarball file has the extension .tar.

Generally, this file is compressed as a separate pass, using the gzip utility. This
produces a file with the extension .tar.gz or .tgz. On Windows, you can use pro-
grams such as 7-Zip to create or unpack/view tar files. Erlang supports tar files
through the erl_tar module in the stdlib application.

254 CHAPTER 10 Packaging, services, and deployment
is given by code:root_dir(). If you don’t include ERTS in the package, you must
install it (or a full Erlang/OTP distribution) separately on the target machine, and its
version must match the requirement in the release package.

 If you list what’s in your current directory now, you’ll see a new file called
simple_cache.tar.gz. This is the compressed tarball that contains all the release files.

10.3.2 Release package contents

Let’s look at what’s inside the tarball. It should tell you what OTP cares most about.
You can use the following commands on UNIX-like systems to unpack the file under a
new directory called tmp:

$ mkdir tmp
$ cd tmp
$ tar –xzf ../simple_cache.tar.gz

If you don’t have a separate tar utility, you can unpack the files from the Erlang shell:

2> erl_tar:extract("simple_cache.tar.gz", [{cwd, "tmp"}, compressed]).

In either case, the result should have the following structure (the version numbers will
likely be different, depending on your installation of Erlang/OTP):

tmp
|-- erts-5.7.4
| `-- bin
| |-- erl.src
| ...
|-- lib
| |-- kernel-2.13.2
| | ...
| |-- mnesia-4.4.10
| | ...
| |-- resource_discovery-0.1.0
| | |-- ebin
| | | ...
| | `-- priv
| |-- sasl-2.1.5.3
| | ...
| |-- simple_cache-0.3.0
| | |-- ebin
| | | ...
| | `-- priv

Including ERTS makes the package OS-dependent
If you include ERTS in the package, it means you’re shipping executable files that
will only work on compatible operating systems. For example, executables made
for 32-bit Linux won’t work on a 64-bit Linux system. If you install such a package
on an incompatible machine, you’ll probably get a strange error message such as
“erlexec: no such file or directory” when you try to start the system.

255Release packaging
| `-- stdlib-1.16.2
| ...
`-- releases
 |-- 0.1.0
 | |-- start.boot
 | `-- sys.config
 `-- simple_cache.rel

The release package always contains the two directories lib and releases. Further-
more, because you supplied the erts option to make_tar(), you also get a top-level
directory named erts-<version>, with a bin subdirectory containing all the runtime
system executables. In particular, you’ll find an erl.src file, which is an uninstanti-
ated version of the erl startup script (on UNIX-like systems). This file contains the
string %FINAL_ROOTDIR%, and the intention is that when you install the release, you
copy erl.src to erl and replace this string with the actual path of your target system.

 The lib directory contains all the applications required by our release. (By default,
only the ebin and priv subdirectories are included for each application.) Note that the
version numbers are now included in the names of the application directories. This is
so you can install multiple versions of applications (and entire releases) on top of
each other and upgrade the system dynamically—or roll back a failed upgrade.

 The releases directory contains the release information. It holds your .rel file as
well as a subdirectory named for the release version. In that subdirectory is the boot
file you created before, renamed start.boot, as well as your sys.config file. This struc-
ture allows you to keep these files around for multiple installed releases in the same
root directory.

 This directory layout is exactly what the Erlang/OTP installer uses: if you examine
the directory where your Erlang/OTP system is installed on your computer, you’ll find
this same structure (although with some additional files and directories).

10.3.3 Customizing a release package

This is almost the end of the release-creation process, but not quite. You’ll often want
to add a little something to a release package that systools:make_tar() didn’t set up
for you. For example, it’s common to want to include a top-level bin directory that
contains some form of installation and startup scripts for the system. Let’s create this
bin directory under tmp and add a couple of small utility scripts (this assumes you’re
running a UNIX-like operating system). The first one is to be run on installation, to set
up the root path of the installed release; let’s call it bin/install:

#!/bin/sh
ROOT=`pwd`
DIR=./erts-5.7.4/bin
sed s:%FINAL_ROOTDIR%:$ROOT: $DIR/erl.src > $DIR/erl

Adjust the ERTS version number in the script to fit your release. Next, add a startup
script named bin/simple_cache. Its contents will be similar to the command line you
used to start the system in section 10.2.6:

256 CHAPTER 10 Packaging, services, and deployment
#!/bin/sh
./erts-5.7.4/bin/erl \
 -sname cache \
 –boot ./releases/0.1.0/start \
 –config ./releases/0.1.0/sys \
 –detached

Again, adjust the version numbers as needed, and don’t forget to set the executable
flag on the scripts using chmod a+x ./bin/*.

 A final thing you may want to do, depending on the kind of installation you have in
mind, is to rename the release version subdirectory. The OTP tools generally assume
that you’ll only ever install a single kind of release in a specific target directory, and that
directory is typically named for the release (for example, /usr/local/simple_cache);
there’s no need to repeat this in the name of each version subdirectory—hence 0.1.0
under releases in the previous example. But if you intend to create more fine-grained
release packages that are to be combined on the same target system, you need to devi-
ate from this scheme by renaming the version directory to have the form ReleaseName-
Version rather than just Version (for example, releases/simple_cache-0.1.0 instead
of releases/0.1.0). This will make it possible to install and upgrade some sets of
applications independently from others without worrying about clashing directory
names. As an example, you could install the Simple Cache release on top of a standard
Erlang installation.

 The paths in the startup script need to be changed correspondingly. Also move or
copy the .rel file to the version subdirectory, so you always have the original file
around even if you unpack a later release on top of this one. If you’re making this
kind of package, you probably don’t want it to include ERTS; instead, you can make a
package containing only ERTS for separate installation.

 When you’re happy with the contents of the release, all you need to do is re-create
the tarball using the erl_tar module, as shown in the following example (assuming
you’re still in the tmp directory):

$ cd tmp
$ erl

Eshell V5.7.4 (abort with ^G)
1> erl_tar:create("simple_cache-0.3.0.tar.gz", ["erts-5.7.4", "lib",

➥"releases", "bin"], [compressed]).

After running this command, you have a new package file in the tmp directory, also
named simple_cache-0.3.0.tar.gz, which contains your modified release. (You can of
course also pack the files using a separate tar utility if you prefer.) Having created a
fully functional release package, you now need to install it somewhere on a suitable
host machine and launch it.

10.4 Installing a release
OTP provides functionality for unpacking, installing, and upgrading releases through
the release_handler module in SASL. This is a fairly complex topic, and we don’t

257Installing a release
get into details here; in practice, it isn’t commonly used. It can’t handle installing
multiple releases in the same target directory; the changes we described in the previ-
ous section for making such installations possible aren’t compatible with using
release_handler. For now, we instead explain the simple way to unpack and install
a release, which is also a bit more robust.

 Because you included ERTS in the package, you can unpack it in any directory on a
compatible host machine—either in an empty directory or over a previously installed
target system (in the case of a release upgrade)—without having Erlang/OTP installed
separately on the machine. On UNIX-like systems, you can unpack the file using the
tar utility, if you want. Alternatively, and regardless of operating system, you can use
the erl_tar module as before:

$ mkdir target
$ erl

Eshell V5.7.4 (abort with ^G)
1> erl_tar:extract("simple_cache-0.3.0.tar.gz", [{cwd, "target"},

➥compressed]).

After that, you can cd into the target directory and run the bin/install script you cre-
ated earlier to adjust the root path. When this is done, you should be able to use the
bin/simple_cache script to start the system (make sure at least one contact node is
running first):

$ cd target
$./bin/install
$./bin/simple_cache

Note that the system starts detached, and it contains only a minimum of applica-
tions. Hence, it can’t run Appmon; you can start the WebTool version of Appmon
(see section 5.1.2) from one of the contact nodes in order to inspect the system
from a web browser.

Automated tools for packaging and installation
The process we’ve described in this chapter requires several manual steps. There
are some alternative ways of doing packaging and installation, using some of the
automated tools that exist in the Erlang community. The authors of this book are
responsible for two of them, both of which are available at http://erlware.org.
These are by no means standard, and they’re certainly not the only tools available
to manage these tasks. At the risk of plugging our own tools, we think it worth-
while to mention them because using automated tools, whether ours or others,
doesn’t just make life easier—it also reduces the risks of mistakes associated with
manual processes.

http://erlware.org

258 CHAPTER 10 Packaging, services, and deployment
10.5 Summary
We’ve shown you the basics of release packaging in OTP. This should give you enough
information to get started using the existing tools or building custom tools based on
these conventions. This is a milestone—for the longest time, releases have been seen
as deep magic that only the Erlang illuminati used.

 You may think, then, that your job is finished: you understand modules, you under-
stand applications, and you understand releases. What else is there? Well, a running
target system generally needs to interact with the world around it in order to be useful.
This may mean speaking protocols over TCP/IP like the tcp_rpc server in chapter 3;
but it may also involve communicating directly with other software on the same
machine, perhaps written in C or Java, for reasons ranging from controlling hardware
to interacting with a Java GUI such as Eclipse. Such interaction is the main topic of the
third part of the book.

Part 3

Integrating and refining

Part 3 of this book covers how Erlang/OTP applications integrate with the
rest of the world. To be able to pick the best tool for the job, you need some
knowledge of how to code for a heterogeneous production environment. In this
part, we also discuss performance and how to get the most out of your Erlang/
OTP programs.

Adding an HTTP
interface to the cache
In the previous chapters, you’ve implemented a nice cache application. The Erlware
team plans to keep enhancing it over the coming months. One of the things they
recognize about the Simple Cache application is that it has the potential to be useful
for projects beyond Erlware. But currently an obstacle to wider adoption is that it
only has an Erlang interface, which means it can only be directly used by other appli-
cations written in Erlang.

 Production environments today often contain services written in a variety of dif-
ferent languages. Before publishing Simple Cache as open source, you should
make it useful to systems implemented in other languages. The most natural way
to achieve this is to implement one or more interfaces over well-known network

This chapter covers
■ Writing efficient TCP servers in Erlang
■ Adding a simple text-based TCP interface to

the cache
■ Creating your own OTP behaviours
■ Writing a basic web server
■ Adding a RESTful HTTP interface to the cache
261

262 CHAPTER 11 Adding an HTTP interface to the cache
protocols. In this chapter, you’ll first implement a simple text-based protocol over
TCP as a warm-up exercise, and then you’ll create a RESTful HTTP interface for the
same functionality.

 A slight twist is in store: you’ll implement the RESTful interface by writing your
own scaled-down web server! This will demonstrate a number of useful programming
techniques, from advanced supervision strategies to the creation of custom behav-
iours and the use of the efficient built-in HTTP packet-parsing routines.

 In the first part of this chapter, you’ll learn how to write an efficient concurrent
TCP server application and implement a simple text-based interface to your cache. In
the second part, you’ll get a quick-and-dirty introduction to the HTTP protocol and
the REST concept, and learn how to create a custom behaviour, implement a basic web
server, and build a RESTful interface to the cache on top of all this.

 Let’s kick off this chapter with a short discussion of text-based communication and
how to work efficiently with TCP sockets in Erlang.

11.1 Implementing a TCP server
Plain text is universal. As a basis for a protocol, it’s simple to implement, easy to use,
and easy to debug. In order to create a nice TCP/IP interface to the cache, let’s start
by implementing a basic text-based protocol, as simple and straightforward as possi-
ble. This will be similar to the RPC server you wrote way back in chapter 3, but with
an important difference: the RPC server could handle only a single incoming TCP
connection. In this chapter, you’ll create the kind of industrial-strength server that
every good Erlang programmer needs to know how to build. It will rely heavily on
Erlang’s built-in concurrency support, allowing it to handle a huge number of con-
current TCP connections.

11.1.1 A pattern for efficient TCP servers

A useful pattern for implementing a server that should handle multiple concurrent
requests is to have a gen_server managed by a simple-one-for-one supervisor. Recall
from section 6.3.4 that the children of a simple-one-for-one supervisor are always
spawned dynamically and are all of the same type. In this case, a single gen_server
child process—a handler—is initially spawned to wait on accept, listening for new
connections. When a connection is established, this gen_server tells the supervisor to
spawn a new handler process—a clone of the gen_server—and immediately proceeds
with servicing the current connection while the clone takes over the job of waiting for
the next connection.

 This pattern allows for efficiently accepting connections with little or no delay
between the accept and the further handling of the connection, and also with mini-
mal delay between accepting one connection and being able to accept the next. This
is very different from the way you typically work with sockets in other programming
languages, but it’s the most Erlang-like way. Figure 11.1 illustrates the communication
and control flow in this design.

263Implementing a TCP server
This may seem a bit complicated, but implementing the basic framework doesn’t take
a lot of code, as you’ll see in the following sections. (This is something of a recurring
theme when you’re working with Erlang.) As you may expect, the first step toward
building your new TCP server is to create an OTP application to hold it.

11.1.2 Sketching the tcp_interface application

Because this text-over-TCP interface may be one of many external interfaces for the
simple cache, it will be implemented as a separate OTP application. If you want to add,
for example, text-over-UDP or an HTTP interface later on, you could follow the same
pattern, and without disturbing the existing code. A release (see chapter 10) could
include one, several, or none of these additional interface applications, depending on
the purpose of the release.

 By now, you should be familiar with the steps involved in creating an OTP applica-
tion (but look back at chapter 4 if you need to check on some details). Like every
application, the tcp_interface application needs a .app file, an application behav-
iour implementation module ti_app, and a top-level supervisor module ti_sup.

Oversimplified supervision
To keep the code as short as possible here, the top-level supervisor will be the sim-
ple-one-for-one supervisor described in the previous section. But in a more realistic
application, you’d typically want to have another level of supervision above that,
as you did with sc_sup and sc_element_sup in chapter 9. The HTTP server in sec-
tion 11.2 will have a more solid supervision structure.

Figure 11.1 Pattern for a highly concurrent TCP server using a simple-one-
for-one supervisor. A new child process is spawned for handling each new
TCP accept and subsequent communication with the client.

264 CHAPTER 11 Adding an HTTP interface to the cache
You also need a module ti_server for the gen_server-based handler processes
shown in figure 11.1. When you’ve created the skeletons for these files, you
should have a directory layout like this (in parallel with your simple_cache and
resource_discovery applications):

tcp_interface
 |-- ebin
 | `-- tcp_interface.app
 `-- src
 |-- ti_app.erl
 |-- ti_sup.erl
 `-- ti_server.erl

In the next sections, you’ll implement the functionality of these modules, including
all the details that make this design simple, elegant, and efficient. A few tricks and
subtleties are involved, but by the end of the chapter you should be able to under-
stand them.

11.1.3 Fleshing out the TCP server

As explained in section 11.2.1, in order to accept a TCP connection, you must first cre-
ate a listening socket. This socket must be owned by a process that is expected to stay
alive during the lifetime of the TCP server; if it dies, the socket will be closed automat-
ically, preventing the server from accepting new connections until a new listening
socket is created (for example, after restarting the application).

THE TI_APP MODULE

As a design principle, you should avoid adding code to supervisors, so a suitable place
to open the listening socket in this case is in the application startup code in the
ti_app module. From there, the socket can be handed over to the simple-one-for-one
supervisor, so the supervisor can pass it on to each new handler process.

 Also in the ti_app module, after the supervisor is done with its initialization, it
must spawn the first connection-handler process as shown in figure 11.1. The imple-
mentation of ti_app:start/2 is shown in the following listing.

-module(ti_app).

-behaviour(application).

-export([start/2, stop/1]).

-define(DEFAULT_PORT, 1155).

start(_StartType, _StartArgs) ->
 Port = case application:get_env(tcp_interface, port) of
 {ok, P} -> P;
 undefined -> ?DEFAULT_PORT
 end,
 {ok, LSock} = gen_tcp:listen(Port, [{active, true}]),
 case ti_sup:start_link(LSock) of

Listing 11.1 The ti_app module

Gets port
number

B

Creates listening
socket

C

265Implementing a TCP server
 {ok, Pid} ->
 ti_sup:start_child(),
 {ok, Pid};
 Other ->
 {error, Other}
 end.

stop(_State) ->
 ok.

First, the module checks the application configuration (see section 10.2.5) for the
port on which the server should listen b. If no port is specified, a default value of
1155 is used. Then, the listening socket is created C. After that, the supervisor is
started with the socket as input. Finally, when the supervisor is running, D a call to
ti_sup:start_child() is made in order to have an initial ti_server process that can
accept the first connection (figure 11.1).

THE TI_SUP MODULE

The ti_sup module is similar to the first sc_sup module you implemented in chapter 6
(listing 6.2); both are simple-one-for-one supervisors. The main difference is that in
sc_sup (later renamed sc_element_sup), the start_link function had no parame-
ters, but the start_child function had two. In this case, start_link will take the lis-
tening socket as input, whereas no arguments are needed for the start_child
function; the supervisor will already contain all it needs to start each new child. The
complete source code for ti_sup.erl is shown in the following listing.

-module(ti_sup).

-behaviour(supervisor).

%% API
-export([start_link/1, start_child/0]).

%% Supervisor callbacks
-export([init/1]).

-define(SERVER, ?MODULE).

start_link(LSock) ->
 supervisor:start_link({local, ?SERVER}, ?MODULE, [LSock]).

start_child() ->
 supervisor:start_child(?SERVER, []).

init([LSock]) ->
 Server = {ti_server, {ti_server, start_link, [LSock]},
 temporary, brutal_kill, worker, [ti_server]},
 Children = [Server],
 RestartStrategy = {simple_one_for_one, 0, 1},
 {ok, {RestartStrategy, Children}}.

The start_link/1 function takes a listening socket and passes it on to supervisor:
start_link/3 so that it ends up as input b to the init/1 callback. The start_child/0

Listing 11.2 The ti_sup module

Spawns initial
handlerD

Supervisor init
gets socket

B

Socket used in
child specC

266 CHAPTER 11 Adding an HTTP interface to the cache
function is trivial in this case, telling the supervisor to spawn a new child of the type
specified in init/1. The init/1 callback function gets the listening socket and
includes it in the child spec C, so it becomes an argument to each new child. This
short module provides a nice, OTP-compliant factory for the ti_server processes that
handle the incoming connections.

THE TI_SERVER MODULE

The ti_server module is the connection handler where you accept connections on
the listening socket and bind them to a dedicated socket so that you can start talking
directly to the calling client over TCP. The strategy here, as illustrated by figure 11.1, is
to let the simple-one-for-one supervisor keep track of the listening socket and hand it
out to each new handler that it spawns. The latest spawned handler is the only one that
is actively listening on the socket. As soon as it gets a connection, it tells the supervisor
to start another handler to do the listening, so it can continue processing the accepted
connection. After it’s done that, it’ll never go back to a listening state again; it’ll die
when its session ends. The initial version of ti_server is shown in the following listing.

-module(ti_server).

-behaviour(gen_server).

-export([start_link/1]).

-export([init/1, handle_call/3, handle_cast/2, handle_info/2,
 terminate/2, code_change/3]).

-record(state, {lsock}).

start_link(LSock) ->
 gen_server:start_link(?MODULE, [LSock], []).

init([LSock]) ->
 {ok, #state{lsock = LSock}, 0}.

handle_call(Msg, _From, State) ->
 {reply, {ok, Msg}, State}.

handle_cast(stop, State) ->
 {stop, normal, State}.

handle_info({tcp, Socket, RawData}, State) ->
 NewState = handle_data(Socket, RawData, State),
 {noreply, NewState};
handle_info({tcp_closed, _Socket}, State) ->
 {stop, normal, State};
handle_info(timeout, #state{lsock = LSock} = State) ->
 {ok, _Sock} = gen_tcp:accept(LSock),
 ti_sup:start_child(),
 {noreply, State}.

terminate(_Reason, _State) ->
 ok.

Listing 11.3 Basic ti_server module

Sets zero
timeoutB

Processes
incoming dataC

Timeout jumps
hereD

267Implementing a TCP server
code_change(_OldVsn, State, _Extra) ->
 {ok, State}.

%% Internal functions
handle_data(Socket, RawData, State) ->
 gen_tcp:send(Socket, RawData),
 State.

The start_link/1 function is how the supervisor starts each handler process, passing
on the listening socket. This is propagated via gen_server:start_link/3 to the
gen_server callback init/1 b, which stores the socket in the server state and then
returns, signaling a timeout of 0, using the same trick as in chapter 3 (see listings 3.4
and 3.5) to finish the startup without keeping the caller of init/1 waiting. The zero
timeout makes the new gen_server process drop immediately into the timeout clause
of handle_info/2 D.

 At this point, the handler process has detached from the process that called
ti_server:start_link/1 and is running concurrently with any previously started han-
dlers that haven’t already finished. The handler immediately calls gen_tcp:accept/1
on the listening socket, which blocks until the next incoming TCP connection. (It’s
because of this blocking call that you need to ensure that nobody else is currently wait-
ing for this process, or you’d be holding them up as well.)

 When accept() returns (this could happen almost immediately on a heavily
loaded server, or after many months if the interface is rarely used), the first thing to
do is to ask the supervisor to start another handler by calling ti_sup:start_child().
The new handler—a clone of this one—immediately starts waiting for the next con-
nection on the listening socket, while the current handler process can get on with
handling the connection that it has accepted.

 Because the listening socket was opened in active mode (listing 11.1), and because
the dedicated socket returned by accept() inherits this setting, all incoming data on
the dedicated socket is sent directly and automatically to the handler process as a mes-
sage of the form {tcp, Socket, RawData} C, just as in chapter 3. For now, all this
code does is echo the incoming data back onto the TCP connection E. Finally, you
need to handle the tcp_closed message from the socket to ensure that the ti_server
process goes away automatically when the socket is closed.

 This is a fair amount of detail, but you now have a general framework for a TCP
server that can be reused and tailored to many different situations. For example, to
provide an interface to Simple Cache, all you need to do is extend the protocol-
handling aspects of the server. That’s in the next section.

11.1.4 The simple text-based protocol

Our goal in this chapter is to make it possible to interact with the Simple Cache appli-
cation over TCP so that anyone can use it regardless of what programming language
they’re using (or even what machine in the network they’re running on). So far, you
have a framework for a TCP server that doesn’t do anything useful. Now, you’ll imple-
ment a simple text-based protocol on top of it.

Echoes data back on
socket (for now)

E

268 CHAPTER 11 Adding an HTTP interface to the cache
 Recall from chapter 6 that the simple_cache API module has three exported func-
tions: insert/2, lookup/1, and delete/1 (listing 6.7). These are the functions you
want to make available through your TCP interface.

 Expressed as a grammar where | separates alternatives and Term stands for a con-
stant Erlang term, the protocol for incoming calls looks like this:

Call -> Function ArgList

Function -> "insert" | "lookup" | "delete"

ArgList -> "[" "]" | "[" Terms "]"

Terms -> Term | Term "," Terms

For example:

insert[eric,{"Eric","Merritt"}]

lookup[eric]

In the other direction, the result from each request has the form

Result -> "OK:" Term ".\n" | "ERROR:" Term ".\n"

That is, either “OK:” or “ERROR:”, followed by a naked term and ending with a period
and a newline. For instance:

OK:{"Eric","Merritt"}.

is a reply to the request "lookup[eric]", and

ERROR:bad_request

is the response to a message such as "@*#$^!%".
 An insert operation should have two arguments: the key and the associated value.

The lookup and delete operations expect a key as the only argument. Note that both
keys and values can be any Erlang terms.

 This protocol is straightforward to use and should also be simple to parse. You can
easily adapt it to use with other similar servers. It’s a simple request/reply protocol,
where a well-behaved client sends one request at a time and waits for a reply after each
request. This effectively controls the rate of requests to each connection handler and
should keep traffic at a manageable level.

 Now that you’ve defined the format of the messages between the client and
the server, you can begin implementing the actual parsing and processing of
these requests.

11.1.5 Text interface implementation

To implement this simple text interface, you need to modify the handle_data/3 func-
tion of the ti_server module (see listing 11.3). Because the TCP sockets are created
in active mode for this implementation, all incoming text on the established socket
for the connection will be automatically delivered as messages to the process that
owns that socket—the handler process that accepted the connection. These messages

269Implementing a TCP server
will be passed to the gen_server:handle_info/2 callback function, which is where all
the heavy lifting of implementing the protocol is done. To make the code cleaner, the
bulk of the message handling happens in the internal function handle_data/3, which
previously did nothing useful except echo the data back on the TCP socket.

 The new code needs to perform the following steps:

1 Parse the received line of text.
2 Interpret it as one of the three functions of the protocol.
3 Perform the requested operation.
4 Output the result back to the client.

This is shown in the following listing. It’s similar to the corresponding code from
chapter 3.

handle_data(Socket, RawData, State) ->
 try
 {Function, RawArgList} =
 lists:splitwith(fun (C) -> C =/= $[end, RawData),
 {ok, Toks, _Line} = erl_scan:string(RawArgList ++ ".", 1),
 {ok, Args} = erl_parse:parse_term(Toks),
 Result = apply(simple_cache, list_to_atom(Function), Args),
 gen_tcp:send(Socket, io_lib:fwrite("OK:~p.~n", [Result]))
 catch
 _Class:Err ->
 gen_tcp:send(Socket, io_lib:fwrite("ERROR:~p.~n", [Err]))
 end,
 State.

In practice, this function could be broken down into a few helper functions, but keep-
ing it as a single piece of code makes it easier to explain here. (Also note that this sim-
ple implementation doesn’t do anything with the server state, so the function returns
the State variable unchanged at the end.)

 First, the incoming string is split at the first [character. If the input does contain a
[, it’s the first character in the RawArgList part; otherwise, RawArgList is empty (and
parsing will fail later). The Function variable should contain the function name—that
is, everything to the left of the [character.

 The RawArgList half of the string should look like a normal Erlang list (according
to the protocol you defined in the previous section). This means it can be passed
through the Erlang tokenizer erl_scan (after you append a period character), pro-
ducing a list of tokens. The token list can then be passed to the Erlang parser
erl_parse, which results in the real argument list as a single Erlang term. This makes
it easy to use the apply/3 built-in function (BIF) to make a dynamic function call to
the named function in the simple_cache module. Finally, the result is written back on
the TCP socket for the client to read.

 Many things can go wrong here; in all cases, errors are handled by the try/catch
expression, which prints the error on the TCP socket. For instance, if the tokenization

Listing 11.4 Simple text-based protocol implementation in ti_server

270 CHAPTER 11 Adding an HTTP interface to the cache
or parsing steps fail, an exception is generated because the result doesn’t match {ok,
...}; and if calling the cache function doesn’t work (perhaps the function name was
wrong or just an empty string), another kind of exception is thrown.

 That’s the entire implementation—you now have a TCP interface to Simple Cache!
If you’re feeling a little underwhelmed and thinking “Was that all? It’s such a small
program,” remember that the framework you’ve implemented here should easily be
able to handle tens of thousands of simultaneous connections, and you can extend it
in any direction you want in order to build your own industrial-strength TCP servers.
You can experiment with it on your own now by starting a simple_cache system as in
the previous chapter, but also including the path to tcp_interface/ebin, and then call-
ing application:start(tcp_interface) from the system shell. (If you haven’t done
so already, remember that you need to write the ebin/tcp_interface.app file before
you can start the application.) Call appmon:start() to check that all applications have
been started. After both the cache and the TCP interface are running, you can con-
nect to the system with the help of a telnet client, as you did back in chapter 3, and
enter commands on the form defined in section 11.1.4.

 You can try something here that the server in chapter 3 couldn’t handle: have mul-
tiple simultaneous connections from two or more telnet sessions (perhaps inserting
data in one session and reading it in another). You already added logging to the
cache, so you should see some status messages in the Erlang console as you insert and
look up data via TCP; but if you want to be able to see what’s happening inside the TCP
server processes themselves, you can add logging to ti_server as well. Finally, if you
want the tcp_interface application to always be started as part of the system, you can
include it in the release specification (see chapter 10). We leave this to you.

 After this little warm-up, it’s time to move on to the second part of this chapter,
where you’ll implement something a bit more ambitious: a RESTful HTTP interface,
capable of carrying any type of payload to and from the simple cache, and allowing
the cache to be integrated with any RESTful service infrastructure.

11.2 Building a web service from the ground up
As we mentioned at the start of the chapter, you’ll implement the HTTP interface to
the cache not only by designing a protocol over HTTP, but also by creating the actual
HTTP server that will provide the interface. You could consider this an extreme case of
Not Invented Here syndrome, but there is a method to the madness. The goal here is
twofold: first, to give you a complete and robust example of a realistic TCP server,
teaching you about HTTP servers and REST as a bonus (building a web server in
Erlang is remarkably straightforward, as you’ll see); and second, to show how you can
define your own OTP behaviours—in this case, a gen_web_server behaviour to be
used in the implementation of the HTTP interface. But before that, we need to talk a
little about HTTP itself.

271Building a web service from the ground up
11.2.1 A quick-and-dirty introduction to HTTP

This isn’t a book about HTTP, so we won’t spend a lot of time explaining the protocol
in detail, nor will we show how to implement a complete HTTP server. In this section,
we go through some of the most important aspects of the protocol so that you’ll be
able to implement just enough of it in Erlang to create an efficient RESTful HTTP
interface for the Simple Cache application.

 To make things a little more concrete, let’s use a couple of UNIX utilities to
explore the HTTP protocol in a hands-on way. The first is the nc (netcat) utility,
which is useful for inspecting traffic over TCP. It allows you to easily open a listening
socket and inspect whatever gets sent to it. The second is the curl utility, which is a
command-line HTTP client that you can use to send arbitrary requests to an HTTP
server. Combining these two, you can easily see what a real HTTP request looks like.

HOW A GET REQUEST WORKS

First, start nc and instruct it to listen on (for example) port 1156:

$ nc -l –p 1156

With this running in one terminal window, open another window and send an HTTP
GET request to port 1156 on your local machine using curl:

$ curl http://localhost:1156/foo

Note the /foo following localhost:1156. In the first terminal window, nc prints
something like this:

GET /foo HTTP/1.1
User-Agent: curl/7.16.3 (powerpc-apple-darwin9.0) libcurl/7.16.3

➥OpenSSL/0.9.7l zlib/1.2.3
Host: localhost:1156
Accept: */*

What you see is the HTTP request that curl sent. HTTP is a plain-text protocol, making
it easy to read and debug. The first line specifies the request type (GET) as well as the
resource (/foo) and the protocol to be used for the conversation (HTTP version 1.1).
Following this initial request line come the HTTP headers; these are additional pieces
of information about the request, some of which may instruct the server to do certain
things in a particular way. Headers always start with a name followed by a : character.
To mark the end of the header section, there is always an empty line, and then comes
the message body (if any). In this case, the message body is empty.

 A GET request is what your web browser normally sends to the server when you
want to look at a web page—for example, when you click a link, open a bookmark, or
manually type a URL in the browser’s address field. The server replies by sending back
the page contents.

 When an HTTP server replies to a request, the first line of the reply begins with the
protocol version, followed by a numeric status code and a reason phrase that should be
a human-readable explanation of the status code (but which doesn’t have to be a stan-
dard phrase and which can be expressed in a language other than English). The first

http://localhost:1156/foo

272 CHAPTER 11 Adding an HTTP interface to the cache
digit of the status code indicates the general class of status. For example, if the
requested resource can’t be found, the normal reply from the server begins with

HTTP/1.1 404 Not Found

where the initial 4 means there seems to be an error on the client’s side (such as ask-
ing for a resource that doesn’t exist). After the first line, a reply has the same format as
a request: it consists of a number of header lines, followed by an empty line and the
message body. A successful request for a web page might result in a reply like the fol-
lowing, from a typical web server:

HTTP/1.1 200 OK
Date: Sat, 08 May 2010 19:09:55 GMT
Server: Apache
Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<html>
 <head>
 <title>Front Page</title>
 </head>
 <body>
 <h1>Welcome</h1>
 </body>
</html>

In this case, the body consists of an HTML document (which is what the Content-
Type header says it should be); but an HTTP request can return any kind of data
depending on the nature of the resource, such as a JPEG image or a PDF document.
The purpose of the Content-Type header is to help the client figure out what kind of
data it received.

GET is clearly the most common kind of request. But you can make some other
requests in HTTP—eight verbs in total—and your RESTful interface will use the PUT
and DELETE verbs as well. Let’s look at those before we move on.

PUT AND DELETE
To demonstrate PUT, you first need to create a small text file named put.txt containing
the word Erlang as its only contents:

$ echo Erlang > put.txt

Next, abort the running nc and curl sessions, and restart nc as before. The –T option
instructs curl to PUT a file to the given URL:

$ curl -T put.txt http://localhost:1156/foo

The output from nc looks something like this:

PUT /foo HTTP/1.1
User-Agent: curl/7.16.3 (powerpc-apple-darwin9.0) libcurl/7.16.3

➥OpenSSL/0.9.7l zlib/1.2.3
Host: localhost:1156
Accept: */*

http://localhost:1156/foo

273Building a web service from the ground up
Content-Length: 7
Expect: 100-continue

Erlang

You can see that it’s similar to the previous GET request. The differences are that the
initial request line now says PUT instead of GET, and that at the end of the request you
see a couple of additional headers followed by an empty line and the message body
(the contents of the put.txt file). The Content-Length header is 7, which refers to the
six letters of the word Erlang plus a single newline character (on UNIX-like systems)
that was added by the echo command when the file was created.

 If you were watching the output from nc carefully as you sent the PUT request, you
probably noticed that the body of the request didn’t show up right away. This is due to
the Expect: 100-continue header in the request. The Expect header was invented in
part to make the web more efficient. When you include it in a request, the server is
expected to send back a reply “100 Continue”, instructing the client to proceed with
sending the message body. If the server doesn’t want to receive the body, it can close
the connection immediately and save the client from transmitting a large amount of
data to a server that’s just going to throw it away. When you implement your own web
server in section 11.2.3, you’ll see how to handle this header.

 Finally, let’s look at a DELETE request. Restart nc as before, and use curl to send a
DELETE request, as follows:

$ curl -X DELETE http://localhost:1156/foo

Don’t worry—nothing will be deleted; nc will only show what the request looks like,
which is something like this:

DELETE /foo HTTP/1.1
User-Agent: curl/7.16.3 (powerpc-apple-darwin9.0) libcurl/7.16.3

➥OpenSSL/0.9.7l zlib/1.2.3
Host: localhost:1156
Accept: */*

As you can see, the DELETE request looks almost exactly like the GET request, apart
from the verb DELETE instead of GET on the first line. But the meaning is quite differ-
ent: instead of asking for a copy of the resource /foo, this asks the server to remove
that resource. Note that we aren’t going into details about what a resource is—it’s inten-
tionally a rather abstract concept. In a plain web server, the resources are often files in
the filesystem: GET means “send me a copy of the file contents,” PUT means “upload a
new file,” and DELETE means “remove this file.” But this all depends on the web server.
As an interface to the simple cache, these verbs can be interpreted as operations on
the cache rather than on files.

 You could even use HTTP for a pizza delivery service, where GET could mean order
pizza (if you encode your street address in the URL along with what kind of pizza, how
many, and so on), PUT could mean upload a new recipe to the menu, and DELETE could be
used to remove a recipe. All the HTTP specification talks about is “resources” and “rep-
resentations of resources” (where a physical pizza delivered to your door would be a

http://localhost:1156/foo

274 CHAPTER 11 Adding an HTTP interface to the cache
“representation” of the resource you requested). Now that you understand the basics of
the HTTP protocol, let’s start digging into the details of implementing the web server.

11.2.2 Implementing a generic web server behaviour

You’ll implement this basic web server as a separate, reusable component: a new OTP
behaviour. First, as with the tcp_interface in section 11.1.2, you need to create a
skeleton for a new application alongside the applications you already have. The direc-
tory structure for this new gen_web_server application should look like this:

gen_web_server
 |-- ebin
 | `-- gen_web_server.app
 `-- src
 |-- gen_web_server.erl
 |-- gws_connection_sup.erl
 `-- gws_server.erl

The gen_web_server will be a library application like the Erlang/OTP stdlib: it won’t
need to be started, although you can build other, active applications on top of it. This
means the .app file doesn’t need to include a mod entry to point out how to start the
application, nor do you need to make an application behaviour implementation mod-
ule or a top-level supervisor module here.

Back in section 3.1.2, we said that behaviours have three parts: the container, the
interface, and the implementation. Previously, you’ve been using existing behaviours,
and you only had to provide the implementation. Now, you’ll create a new behaviour
with potentially many implementations, so your task is to provide the interface and
the container. The container is the main chunk of reusable code, which the imple-
mentation modules will hook into via the callback functions defined by the interface.
In this case, the container will be a generic web server.

 The structure of the gen_web_server container is shown in figure 11.2. The
gen_web_server.erl module is the front end that provides the API, hiding the inter-
nal details from the users of the behaviour. This module also specifies the behav-
iour interface.

 Each instance of the gen_web_server container will consist of a single supervisor
process that manages a number of dynamically created server processes, as in figure 11.1.

This is just a quick-and-dirty web server!
Don’t use it in production code or think that it’s a complete web server—it’s not!
It’s a neat way to create RESTful interfaces, but at the end of the day it’s just an
example of how to create a custom behavior and follow sound Erlang/OTP coding
practices. It doesn’t handle chunking, persistent connections, and many other
things you want from a real web server. Several production-quality Erlang web serv-
ers are available to choose from—if you need one, look at Yaws or MochiWeb, or
use the inets httpd server that comes with the Erlang/OTP standard library.

275Building a web service from the ground up
Because HTTP is just a text protocol over TCP, a gen_web_server instance works just
like the tcp_interface application you wrote in section 11.1.3. This means each
instance of the gen_web_server behaviour consists of a varying and unbounded num-
ber of processes. (For comparison, a gen_server instance only consists of a single pro-
cess.) Each instance is distinct in that it manages a specific IP address/TCP port
combination. But each instance can handle a large number of incoming connections
on its particular port, starting a separate gws_server process per connection.

 As in the tcp_interface application, the supervisor implemented by the
gws_connection_sup module will be a simple-one-for-one supervisor, used as a fac-
tory for handler processes. The handlers are implemented by the gws_server mod-
ule, which will be a gen_server similar to the ti_server in section 11.1.3, but
requiring a lot more code in order to speak the HTTP protocol instead of the simple
text protocol.

 Let’s start with the gen_web_server front-end module so you can see how simple it
can be to define your own behaviour interface.

THE GEN_WEB_SERVER MODULE: DEFINING A CUSTOM BEHAVIOUR

When the compiler sees a –behaviour(x) declaration, it tries to call the module
named x in order to find out what the interface should look like. For instance, when
you say -behaviour(gen_server) in one of your modules, as in ti_server, the com-
piler calls gen_server:behaviour_info(callbacks) to get the list of callback func-
tions that a gen_server implementation module should export. This means the name
of a behaviour must be the same as the name of the module that defines the behav-
iour interface.

 That module needs to export a single function called behaviour_info/1, whose
only argument is an atom that says what kind of information is being asked for. Cur-
rently, the only such atom is callbacks. For any other input, the function should
return undefined. But for callbacks, it should return a list of function name/arity
pairs, naming the callback functions that the interface requires. To illustrate this, if
you call gen_server:behaviour_info(callbacks) from the Erlang shell, you should
get the following familiar list:

Figure 11.2 gen_web_server process and module layout

276 CHAPTER 11 Adding an HTTP interface to the cache
1> gen_server:behaviour_info(callbacks).
[{init,1},
 {handle_call,3},
 {handle_cast,2},
 {handle_info,2},
 {terminate,2},
 {code_change,3}]
2>

This information makes it possible for the compiler to warn you if you say that
your module is implementing a particular behaviour but you’ve forgotten to imple-
ment (or export) some of the expected callbacks. When you define a new behav-
iour, you should provide this function. Listing 11.5 shows the source code for the
gen_web_server module. As you can see, it contains a behaviour_info/1 function

b that returns a list of nine callbacks, all of which except init/1 correspond to
HTTP methods like GET and POST.

-module(gen_web_server).

%% API
-export([start_link/3, start_link/4,
 http_reply/1, http_reply/2, http_reply/3]).

-export([behaviour_info/1]).

behaviour_info(callbacks) ->
 [{init,1},
 {head, 3},
 {get, 3},
 {delete, 3},
 {options, 4},
 {post, 4},
 {put, 4},
 {trace, 4},
 {other_methods, 4}];
behaviour_info(_Other) ->
 undefined.

%%%===
%%% API

start_link(Callback, Port, UserArgs) ->
 start_link(Callback, undefined, Port, UserArgs).

start_link(Callback, IP, Port, UserArgs) ->
 gws_connection_sup:start_link(Callback, IP, Port, UserArgs).

http_reply(Code, Headers, Body) ->
 ContentBytes = iolist_to_binary(Body),
 Length = byte_size(ContentBytes),
 [io_lib:format("HTTP/1.1 ~s\r\n~sContent-Length: ~w\r\n\r\n",
 [response(Code), headers(Headers), Length]),
 ContentBytes].

Listing 11.5 gen_web_server.erl

Defines behaviour
interface

B

Starts
new
instance

C

Forms
HTTP
reply

D

277Building a web service from the ground up
http_reply(Code) ->
 http_reply(Code, <<>>).

http_reply(Code, Body) ->
 http_reply(Code, [{"Content-Type", "text/html"}], Body).

%%%===
%%% Internal functions

headers([{Header, Text} | Hs]) ->
 [io_lib:format("~s: ~s\r\n", [Header, Text]) | headers(Hs)];
headers([]) ->
 [].

%% Fill in the missing status codes below if you want:
response(100) -> "100 Continue";
response(200) -> "200 OK";
response(404) -> "404 Not Found";
response(501) -> "501 Not Implemented";
response(Code) -> integer_to_list(Code).

The intention is that a module that implements the gen_web_server behaviour will
export all these callback functions; as each request comes in to the server, it’ll be dele-
gated to the corresponding implementation callback. For example, a PUT request
would be handled by the put/4 function in the implementation module. The init/1
callback initializes each new gws_server connection handler shown in figure 11.2,
rather than just once for the entire behaviour instance (this makes it similar to the
gen_event behaviour; see section 7.2.1). Finally, the other_methods/4 callback han-
dles HTTP methods other than the most common ones; it could also be used to imple-
ment HTTP extensions like WebDAV.

 The API provided by the gen_web_server module is simple. There are
start_link functions C for starting new instances of the behaviour (either using the
default IP address for the machine or a specified IP address—useful if your machine
has multiple network interfaces). start_link also requires a callback module (as
usual for a behaviour), the TCP port to listen on, and any additional arguments
that will be passed on to the init/1 callback function for each new connection
handler. The API also includes a utility function to make it easy for implementa-
tion modules of gen_web_server to create proper HTTP replies; this http_reply
function D is also called from the gws_server module to create an automatic “100
Continue” reply.

 With the front end in place, the next module to implement from figure 11.2 is the
supervisor, gws_connection_sup.

THE GWS_CONNECTION_SUP MODULE

As in the tcp_interface application, the connection supervisor is a simple-one-for-one
supervisor—effectively, a factory that spawns new connection handlers on demand. A
single gws_connection_sup process will be created every time a gen_web_server
instance is started to listen on a particular port, and it will stay alive until that
instance terminates.

278 CHAPTER 11 Adding an HTTP interface to the cache
 If you compare the code for gws_connection_sup shown in listing 11.6 with the
code for the ti_sup module in section 11.1.3 (listing 11.2), you’ll note that here,
the start_link and start_child functions take more arguments, and the socket is
being opened by the supervisor itself as part of the init/1 function.

-module(gws_connection_sup).

-behaviour(supervisor).

%% API
-export([start_link/4, start_child/1]).

%% Supervisor callbacks
-export([init/1]).

%%%===
%%% API functions

start_link(Callback, IP, Port, UserArgs) ->
 {ok, Pid} = supervisor:start_link(?MODULE, [Callback, IP,
 Port, UserArgs]),
 start_child(Pid),
 {ok, Pid}.

start_child(Server) ->
 supervisor:start_child(Server, []).

%%%===
%%% Supervisor callbacks

init([Callback, IP, Port, UserArgs]) ->
 BasicSockOpts = [binary,
 {active, false},
 {packet, http_bin},
 {reuseaddr, true}],
 SockOpts = case IP of
 undefined -> BasicSockOpts;
 _ -> [{ip,IP} | BasicSockOpts]
 end,
 {ok, LSock} = gen_tcp:listen(Port, SockOpts),
 Server = {gws_server, {gws_server, start_link,
 [Callback, LSock, UserArgs]},
 temporary, brutal_kill, worker, [gws_server]},
 RestartStrategy = {simple_one_for_one, 1000, 3600},
 {ok, {RestartStrategy, [Server]}}.

In this case, the start_link/4 function also kicks off the first gws_server child pro-
cess as soon as the supervisor is up and running b. You could also place the responsi-
bility for doing this in gen_web_server:start_link/4, but this way it’s guaranteed
that a new gws_connection_sup process will always have a process that is listening on
the socket, ready to handle any incoming connection.

 The socket is opened using some new options C. First, binary means that incom-
ing data is delivered as binaries, not as strings. Second, {active, false} means the

Listing 11.6 gws_connection_sup.erl

Starts first
gws_server
childB

New options for
opening port

C

279Building a web service from the ground up
socket is opened in passive mode. Third, {packet, http_bin} tells the socket that
the incoming data is expected to be formatted as HTTP. The socket parses the text for
you and sends you messages that are much easier to handle, saving you a lot of boring
work and speeding up the HTTP handling. You’ll see how this works when you imple-
ment the gws_server module a bit later. Finally, {reuseaddr, true} allows local port
numbers to be reused sooner than they would otherwise be; without this option, the
server can’t be restarted (on the same port) until the OS kernel has timed out on
the listening socket.

Note that we make an exception here to the rule that you don’t put functionality in
a supervisor. Because gen_web_server is a library application, there is no _app mod-
ule in which to place this code (as in the tcp_interface application), and you’d
have to add at least an extra process and probably another level of supervision in
order to move this code outside of the gws_connection_sup module in a good way.
That would be overkill for this book, but restructuring the program like that could
make a nice exercise. Keep in mind that the listening socket must be owned by a
process that stays alive during the lifetime of the server instance, so it can’t be
opened in the start_link/4 function in gen_web_server, nor by any of the individ-
ual gws_server processes.

 There is another reason why it’s excusable to keep this functionality within
gws_connection_sup: in practice, it’ll never be a top-level supervisor for an applica-
tion. Whenever a gen_web_server container is started, it should always be as a part of
an application and running under some other top-level supervisor, as illustrated in fig-
ure 11.3.

 This means that if the gws_connection_sup process fails because of the additional
code you added to init/1, the error will be caught by the supervisor above it. That
should limit the amount of havoc it can cause in the rest of the application—although
it may force the application to shut down as cleanly as possible if it doesn’t succeed in
restarting gws_connection_sup. This risk shouldn’t be taken lightly.

 Now that you understand the small but significant implementation differences
between gws_connection_sup and the previous ti_sup module from section 11.1.3,

TCP flow control and active/passive sockets
Although active mode is cleaner and has more of an Erlang/OTP feel to it, it
doesn’t provide any flow control. In active mode, the Erlang runtime system reads
data from the socket as quickly as it can and passes it on as Erlang messages to
the socket’s owner process. If a client is able to send data faster than the
receiver can read it, it causes the message queue to grow until all available mem-
ory is used up. In passive mode, the owner process must explicitly read data off
the socket, adding complexity to the code but providing more control over when
data enters the system and at what rate; the built-in flow control in TCP blocks
the sender automatically.

280 CHAPTER 11 Adding an HTTP interface to the cache
it’s time to move on to the meat of the matter: the gws_server module, which handles
the actual HTTP connections.

THE GWS_SERVER MODULE AND THE USE OF {ACTIVE, ONCE}
Like the ti_server module, gws_server is a gen_server implementation. It’ll han-
dle sockets in much the same way as ti_server, using the same trick of returning a
zero timeout from the init/1 callback in order to defer initialization to handle_info
(timeout, State), which blocks on gen_tcp:accept() and then asks the supervisor to
spawn another handler process. But there is an important difference: the way incoming
data on the socket is handled.

 In the tcp_interface application, you used the socket option {active, true}
(see listing 11.1), which means incoming data is automatically read from the socket as
soon as it’s ready and is then sent as an Erlang message to the process that owns the
socket. This allows you to code in a nice event-based style, but the disadvantage is that
an active socket has no flow control. A client that transmits a lot of data very fast could
make the server use up all of its memory just for the message queue. The {active,
false} setting means the receiving process must read the data off the socket explicitly
with gen_tcp:read() whenever it’s ready. This makes the built-in flow control in TCP

Fault isolation and stability of supervisors
In figure 11.3, the top-level supervisor starts two workers: one is a single process,
and the other is a gen_web_server instance. Supervisors bring groups of pro-
cesses together but also isolate them from each other. Any crashes that occur in
the gws_connection_sup group will have no effect on the separate worker process
(other than what the supervisor decides). Because of this principle, you should gen-
erally keep supervisors free from application-specific code.

A supervisor is normally highly trusted. If it fails in unexpected ways, the fault tol-
erance of the supervisor hierarchy is seriously weakened. This is particularly disas-
trous in a top-level supervisor, because if it fails, it causes a restart of the whole
application—or, in the case of a permanent (required) application, a restart of the
entire node.

Figure 11.3
Supervision structure with a gen_web_server as part
of a larger application. The gws_connection_sup
supervisor is never the top-level supervisor; and if its
code contains bugs, it doesn’t necessarily compromise
the entire application.

281Building a web service from the ground up
block the sender while the receiver isn’t reading, fixing the out-of-memory vulnerabil-
ity. The problem is that it doesn’t make for a very Erlang-like programming style.

 The third possibility, which you’ll use here, is the {active, once} option. This puts
the socket in active mode until some data is received, causing an Erlang message to be
sent to the owning process, and then automatically sets it back to passive mode, which
enables the flow control so that no further data is read and no messages are sent until
the controlling process indicates that it’s ready. Usually, it does this by setting the
socket back to {active, once} and going back to waiting for the next message. The
following code demonstrates a simple loop using {active, once}:

start() ->
 {ok, LSock} = gen_tcp:listen(1055, [binary, {active, false}]),
 {ok, Socket} = gen_tcp:accept(LSock),
 loop(Socket).

loop(Socket) ->
 inet:setopts(Socket, [{active,once}]),
 receive
 {tcp, Socket, Data} ->
 io:format("got ~p~n", [Data]),
 loop(Socket);
 {tcp_closed, _Socket} ->
 ok
 end.

First, you create a listening socket and use it to accept a connection, giving you a ded-
icated socket. After that, you enter the loop where you call inet:setopts/2 on the
dedicated socket to enable {active once}, and then you sit down and wait for an
incoming message from the socket. If you get some data, you handle it, knowing that
the socket has been reset to passive mode, and then you loop back to reenable
{active, once} before you wait for another message.

 Apart from this, the real differences between the ti_server and the gws_server mod-
ules lie in the protocol handling. The former implements a simple protocol, whereas the
latter will handle a subset of HTTP. The code for this module is shown in the following
listing. Although it may seem like a lot at first glance, it’s not that complicated.

-module(gws_server).

-behaviour(gen_server).

%% API
-export([start_link/3]).

%% gen_server callbacks
-export([init/1, handle_call/3, handle_cast/2, handle_info/2,
 terminate/2, code_change/3]).

-record(state, {lsock, socket, request_line, headers = [],
 body = <<>>, content_remaining = 0,
 callback, user_data, parent}).

Listing 11.7 gws_server.erl

Server-state
record

B

282 CHAPTER 11 Adding an HTTP interface to the cache
%%%===
%%% API

start_link(Callback, LSock, UserArgs) ->
 gen_server:start_link(?MODULE,
 [Callback, LSock, UserArgs, self()], []).

%%%===
%%% gen_server callbacks

init([Callback, LSock, UserArgs, Parent]) ->
 {ok, UserData} = Callback:init(UserArgs),
 State = #state{lsock = LSock, callback = Callback,
 user_data = UserData, parent = Parent},
 {ok, State, 0}.

handle_call(_Request, _From, State) ->
 {reply, ok, State}.

handle_cast(_Request, State) ->
 {noreply, State}.

handle_info({http, _Sock, {http_request, _, _, _}=Request}, State) ->
 inet:setopts(State#state.socket, [{active,once}]),
 {noreply, State#state{request_line = Request}};
handle_info({http, _Sock, {http_header, _, Name, _, Value}}, State) ->
 inet:setopts(State#state.socket, [{active,once}]),
 {noreply, header(Name, Value, State)};
handle_info({http, _Sock, http_eoh},
 #state{content_remaining = 0} = State) ->
 {stop, normal, handle_http_request(State)};
handle_info({http, _Sock, http_eoh}, State) ->
 inet:setopts(State#state.socket, [{active,once}, {packet, raw}]),
 {noreply, State};
handle_info({tcp, _Sock, Data}, State) when is_binary(Data) ->
 ContentRem = State#state.content_remaining - byte_size(Data),
 Body = list_to_binary([State#state.body, Data]),
 NewState = State#state{body = Body,
 content_remaining = ContentRem},
 if ContentRem > 0 ->
 inet:setopts(State#state.socket, [{active,once}]),
 {noreply, NewState};
 true ->
 {stop, normal, handle_http_request(NewState)}
 end;
handle_info({tcp_closed, _Sock}, State) ->
 {stop, normal, State};
handle_info(timeout, #state{lsock = LSock, parent = Parent} = State) ->
 {ok, Socket} = gen_tcp:accept(LSock),
 gws_connection_sup:start_child(Parent),
 inet:setopts(Socket,[{active,once}]),
 {noreply, State#state{socket = Socket}}.

terminate(_Reason, _State) ->
 ok.

code_change(_OldVsn, State, _Extra) ->
 {ok, State}.

Handles
request line

 C

Handles
headersD

End of header;
body is empty

E

End of
header;

prepare for
body

F

Waits for
connection and

starts new handler G

283Building a web service from the ground up
%%%===
%%% Internal functions

header('Content-Length' = Name, Value, State) ->
 ContentLength = list_to_integer(binary_to_list(Value)),
 State#state{content_remaining = ContentLength,
 headers = [{Name, Value} | State#state.headers]};
header(<<"Expect">> = Name, <<"100-continue">> = Value, State) ->
 gen_tcp:send(State#state.socket, gen_web_server:http_reply(100)),
 State#state{headers = [{Name, Value} | State#state.headers]};
header(Name, Value, State) ->
 State#state{headers = [{Name, Value} | State#state.headers]}.

handle_http_request(#state{callback = Callback,
 request_line = Request,
 headers = Headers,
 body = Body,
 user_data = UserData} = State) ->
 {http_request, Method, _, _} = Request,
 Reply = dispatch(Method, Request, Headers, Body,
 Callback, UserData),
 gen_tcp:send(State#state.socket, Reply),
 State.

dispatch('GET', Request, Headers, _Body, Callback, UserData) ->
 Callback:get(Request, Headers, UserData);
dispatch('DELETE', Request, Headers, _Body, Callback, UserData) ->
 Callback:delete(Request, Headers, UserData);
dispatch('HEAD', Request, Headers, _Body, Callback, UserData) ->
 Callback:head(Request, Headers, UserData);
dispatch('POST', Request, Headers, Body, Callback, UserData) ->
 Callback:post(Request, Headers, Body, UserData);
dispatch('PUT', Request, Headers, Body, Callback, UserData) ->
 Callback:put(Request, Headers, Body, UserData);
dispatch('TRACE', Request, Headers, Body, Callback, UserData) ->
 Callback:trace(Request, Headers, Body, UserData);
dispatch('OPTIONS', Request, Headers, Body, Callback, UserData) ->
 Callback:options(Request, Headers, Body, UserData);
dispatch(_Other, Request, Headers, Body, Callback, UserData) ->
 Callback:other_methods(Request, Headers, Body, UserData).

In this gen_server, the server-state record tracks a lot of things b. The lsock and
socket fields hold the listening socket and the dedicated socket, respectively. The
request_line, headers, body, and content_remaining fields are for handling the
HTTP protocol. The callback field holds the name of the behaviour implementation
module, and user_data holds application-specific data to be passed to the callback
module. Finally, parent holds the process ID of the gws_connection_sup supervisor.

 In the tcp_interface application, there could be only one ti_sup supervisor,
running under a registered name. Here, you can start many parallel instances of
gen_web_server, so the gws_server processes need to be told who their particular
supervisor is. This is set up in the start_link/3 function, where the pid of the caller
(assumed to always be the gws_connection_sup process) is automatically passed as an
argument to init/1.

Remembers
content length
for later

H

Tells client
 to proceed

I

Performs
callback and
gets results J

284 CHAPTER 11 Adding an HTTP interface to the cache
 The start_link/3 function also takes a behaviour callback module, a listening
socket, and some extra arguments from the user of the gen_web_server behaviour, all
of which is passed on to init/1. There, you see the first interaction with the behav-
iour callback module provided by the user: the UserArgs argument is passed to the
init/1 function of the callback module (just like a gen_server calls your init/1
function when it starts a new instance). This returns a UserData value, which is stored
in the state record along with the other startup arguments.

 As soon as init/1 finishes, the new server process times out and jumps to
handle_info(timeout,...), where it blocks on accept() and then asks for a new han-
dler, as before G. Note that the dedicated socket is then set to {active, once}, just as
in the short example before listing 11.7, and that it’s stored in the server-state record.

 From this point on, what remains is to handle the HTTP protocol. Recall the HTTP
requests you looked at earlier in section 11.2.1. For example, a PUT request with a
body of “Hello!” might look like this:

PUT /foo HTTP/1.1
User-Agent: curl/7.16.3 (powerpc-apple-darwin9.0) libcurl/7.16.3

➥OpenSSL/0.9.7l zlib/1.2.3
Host: localhost:1156
Accept: */*
Content-Length: 7
Expect: 100-continue

Hello!

In general, an HTTP request has the following structure:

■ The request line
■ Header lines (any number)
■ An empty line
■ The message body

Remember the {packet, http_bin} option that you used when creating the listen-
ing socket in listing 11.6? This means the socket does the job of parsing this for you
and sends you messages that are much simpler to handle. First, when a new request
comes in, the request line is sent as a message in the following form (using the ear-
lier PUT as example):

{http, Socket, {http_request, 'PUT', <<"/foo">>, {1,1}}}

Note that the method name is given as an atom (in single quotes). This is because it’s
one of the seven common methods in the HTTP specification. For other, unrecog-
nized HTTP methods, the name is given as a binary—for example, <<"PATCH">>, or
<<"MKCOL">> for the WebDAV MKCOL method.

 An incoming request line C is handled by storing it in the server state. After that,
you need to reset the socket to {active, once} to allow it to read more data from the
client and hand it to you as another message. Note that this is done in all clauses of
the handle_info function where you want to continue reading from the socket.

285Building a web service from the ground up
 After the request line, you generally get some headers. A socket with the {packet,
http_bin} option enabled sends each HTTP header as a separate message in the fol-
lowing form:

{http, _Socket, {http_header, Length, Name, _ReservedField, Value}}

The handle_info clause that handles these messages D does most of its work in the
internal function header/3. It mainly accumulates the headers in a list in the server
state, but in a couple of cases some additional work is needed. For a Content-Length
header H, the data is stored as an integer in the content_remaining field of the state.
This will be needed later to collect the body of the request. For an Expect header with the
data "100-continue" I, an HTTP reply "100 Continue" should be sent to the client to
tell it to proceed. (See section 11.2.1.) If you don’t send this reply, the client will pause
a couple of seconds before transmitting the body, which slows things down quite a bit.

 When the empty line that signals the end of the headers is reached, the socket
sends a message in the following form:

{http, _Socket, http_eoh}

If the value from the Content-Length header (stored in content_remaining) is
zero at that point, you know that there will be no body following it E. In that case,
all that remains is to process the request and send a reply. If a nonempty body is
expected F, you need to switch the socket from {packet, http_bin} to {packet,
raw}, telling it to stop parsing HTTP-specific data. After that, the incoming mes-
sages will have the usual form {tcp, Socket, Data}. For each such message, you
must append the data to the body field of the state (initially an empty binary) and
decrement the content_remaining counter correspondingly, until the counter
reaches zero. Only then can you process the request as a whole, which is done in
the internal function handle_http_request/1.

 This is finally where the main interaction happens between the gen_web_server
container code and the user-supplied behaviour implementation (the callback mod-
ule). Previously, only the init/1 callback was called to initialize the user_data field of
the server state. Now, you need to take all the information gathered about the request
and dispatch to the corresponding callback function for the HTTP method.

 To do this J, you first match out the necessary fields from the state, including the
HTTP method name from the request structure. Then, you dispatch to the corre-
sponding function in the callback module: this is expected to return the text of the
HTTP reply. All that remains is to send the reply back to the client over the socket, and
you’re done!

 Phew! That was a lot to go through, but we hope you’re still with us. If you look
back on the code, it’s not all that bad—this is, after all, only a basic HTTP server.

 But this hard work is about to pay off: the gen_web_server behaviour will make it
absolutely trivial for you to implement the HTTP interface to the cache, which was the
main motivation for all this if you recall from the beginning of section 11.2. It’s only a
matter of creating a gen_web_server behaviour implementation module with a few

286 CHAPTER 11 Adding an HTTP interface to the cache
callback functions for interacting with the cache. But first, let’s see what REST is all
about and decide how the RESTful HTTP interface should look.

11.2.3 Getting REST

REST stands for representational state transfer. It’s a concept that’s been described as an
after-the-fact summary of some of the central ideas included in HTTP. These ideas
aren’t limited to the HTTP protocol, but HTTP is widely supported and provides a
well-known set of operations like GET, PUT, POST, and DELETE for manipulating and
transferring state. These verbs also map easily to typical database CRUD operations
(create, read, update, and delete), making it a simple task to design an HTTP inter-
face to the cache.

The interaction with Simple Cache is straightforward, as a RESTful interface should
be. Only three standard HTTP actions are needed: GET, PUT, and DELETE. You need to
define exactly what each one means in terms of operations on the cache. The simplest
is DELETE; it neither sends nor retrieves any data, apart from the resource name:

DELETE /key HTTP/1.1

This request causes a call to simple_cache:delete(Key), deleting the key from the
cache. It always results in a reply "200 OK" with an empty message body.

 Next, the GET action is only slightly more complicated:

GET /key HTTP/1.1

For this request, you need to call simple_cache:lookup(Key) and reply with either
"404 Not Found" and an empty body if the lookup failed, or with "200 OK" and the
value found in the cache as the body of the message (formatted as plain text).

Representational state transfer
The main principles of REST are that clients use a standardized interface (HTTP)
for working with representations (documents) of resources kept on servers, refer-
enced by global identifiers (URIs). That is, a client never gets the actual resource—
which could be an abstract concept like “the current view from my window”—but
gets a representation, which could possibly be offered in a number of different for-
mats (for example, JPEG, PNG, or TIFF). Each request makes the client transfer
from one state to the next, in the same way that you may click your way around a
website. Often, one document contains identifiers pointing to other resources,
such as the links in an HTML page.

An important point is that between requests from a client, the server should
never have to keep any implicit information in its state about that client: either
the client holds all the necessary information, or it should be stored explicitly on
the server as a resource with its own address. This last principle is perhaps the
main one that prevents you from slapping an HTTP interface onto any old service
and calling it RESTful.

287Building a web service from the ground up
 Last, in a PUT request, the message body contains the value to be stored in
the cache:

PUT /key HTTP/1.1

For such a request, you need to call simple_cache:insert(Key, Body), and the reply
to the client is always "200 OK" with an empty message body.

 That’s all there is to it. For a simple application like this, it’s easy to see that the
interface is indeed RESTful: it uses only basic HTTP operations to manipulate
resources (entries in the cache) identified by URLs, without keeping any information
about clients between requests. In the next section, you’ll implement this protocol on
top of the gen_web_server you created previously.

11.2.4 Implementing the RESTful protocol with gen_web_server

Like tcp_interface in section 11.1.2, The RESTful HTTP interface will be a separate
active application http_interface, with an application behaviour module and a top-
level supervisor. The supervisor will do one only thing: start up a single instance of the
gen_web_server behaviour container. Here’s the directory tree you should have when
this is finished:

http_interface
 |-- ebin
 | `-- http_interface.app
 `-- src
 |-- hi_app.erl
 |-- hi_server.erl
 `-- hi_sup.erl

Writing the .app file and the _app and _sup modules should be no problem for
you by now. The important part is that the _sup module uses ordinary one-for-one
supervision (that is, not simple-one-for-one) and starts a single, permanent child
process (not temporary) via the hi_server:start_link/1 function. Note that only
the hi_server module will know that you’re implementing the functionality on
top of gen_web_server.

 To make the port number easily configurable, you should try to read it with appli-
cation:get_env/2 in the start/2 function of the hi_app module, as you did in
ti_app in listing 11.1 (but don’t open a socket here). If no configuration setting is
found, the default port should be 1156, to keep it separate from the tcp_interface
port 1155. The port number is then passed to the start_link function in hi_sup so
that it can be used in the child specification for hi_server. (You can do the same with
the IP address, if you like, or rely on the default IP address to keep things simpler for
now.) We trust that you can do all this on your own.

 The structure of the application is illustrated in figure 11.4. The main module of
interest here is hi_server, which implements the actual RESTful HTTP interface
based on the gen_web_server behaviour. This is shown in listing 11.8.

288 CHAPTER 11 Adding an HTTP interface to the cache
-module(hi_server).

-behaviour(gen_web_server).

%% API
-export([start_link/1, start_link/2]).

%% gen_web_server callbacks
-export([init/1, get/3, delete/3, put/4, post/4,
 head/3, options/4, trace/4, other_methods/4]).

%%%===
%%% API

start_link(Port) ->
 gen_web_server:start_link(?MODULE, Port, []).

start_link(IP, Port) ->
 gen_web_server:start_link(?MODULE, IP, Port, []).

%%%===
%%% gen_web_server callbacks

init([]) ->
 {ok, []}.

get({http_request, 'GET', {abs_path, <<"/",Key/bytes>>}, _},
 _Head, _UserData) ->
 case simple_cache:lookup(Key) of
 {ok, Value} ->
 gen_web_server:http_reply(200, [], Value);
 {error, not_found} ->
 gen_web_server:http_reply(404, "Sorry, no such key.")
 end.

delete({http_request, 'DELETE', {abs_path, <<"/",Key/bytes>>}, _},
 _Head, _UserData) ->
 simple_cache:delete(Key),
 gen_web_server:http_reply(200).

Listing 11.8 hi_server.erl

Figure 11.4
Structure of the RESTful interface
application. The top-level
supervisor hi_sup (started by
hi_app) has a single child, which
is a gen_web_server instance
that calls back to hi_server.

Handles
GET

B

Handles
DELETE

C

289Building a web service from the ground up
put({http_request, 'PUT', {abs_path, <<"/",Key/bytes>>}, _},
 _Head, Body, _UserData) ->
 simple_cache:insert(Key, Body),
 gen_web_server:http_reply(200).

post(_Request, _Head, _Body, _UserData) ->
 gen_web_server:http_reply(501).

head(_Request, _Head, _UserData) ->
 gen_web_server:http_reply(501).

options(_Request, _Head, _Body, _UserData) ->
 gen_web_server:http_reply(501).

trace(_Request, _Head, _Body, _UserData) ->
 gen_web_server:http_reply(501).

other_methods(_Request, _Head, _Body, _UserData) ->
 gen_web_server:http_reply(501).

That’s all! The work you expended on the gen_web_server behaviour has paid off:
it makes implementing a specific HTTP server like this an almost trivial exercise.
Much as in a gen_server implementation module, you have the behaviour declara-
tion, the export list for the callbacks, and some API functions for things like start-
ing a server instance. In this case, the start_link functions want at least a port
number as input, to be passed from hi_sup. Also note that an empty list is given to
gen_web_server:start_link() as the UserArgs argument; this particular server
implementation doesn’t use it for anything.

 The init/1 callback function is called by the gen_web_server for each new con-
nection, to initialize the user_data field. The UserArgs argument that was given to
gen_web_server:start_link() is passed unchanged to init/1, so in this particular
implementation you expect an empty list as input. But this simple server doesn’t use
the user_data feature of gen_web_server for anything, so init/1 returns another
empty list here.

 The meat of the protocol implementation is in the get, delete, and put callbacks.
You use binary pattern matching (see section 2.10.2) to strip the leading slash from
the key (which is given as part of the URI). To keep this example simple, the keys and
the stored data are binaries representing plain text. Other Erlang terms that may be
stored in the cache aren’t handled; in particular, if simple_cache:lookup(Key) suc-
ceeds, the found value is expected to be a binary, string, or IO-list, or the server can’t
send it back on the socket as it is.

 For a GET request b, if the key is present in the cache, the value is returned as the
body of a "200 OK" reply; otherwise, the reply is "404 Not Found" with an empty body.
A DELETE request C is straightforward: you delete the key and reply "200 OK". A PUT
request D is almost as simple, inserting the request body as the value for the key.
(Note that the put callback gets Body as an argument, but get and delete don’t.)
The remaining HTTP methods E are left unimplemented and result in a reply of
"501 Not Implemented".

Handles
PUT

D

Remaining methods
reply “501 Not
Implemented”

E

290 CHAPTER 11 Adding an HTTP interface to the cache
 You could do a lot more to return a richer set of headers in the replies, but a
detailed discussion about conventions for HTTP headers is beyond the scope of this
book. The amount of additional information you need (or ought) to include depends
largely on your application.

 Let’s give the HTTP-enabled Simple Cache a try. Compile the files as follows (all on
one line), providing the path to the gen_web_server .beam files to erlc so the com-
piler can check that your hi_server module implements the gen_web_server behav-
iour interface correctly:

erlc -pa ./gen_web_server/ebin -o ./http_interface/ebin

➥./http_interface/src/*.erl

Start the system as described at the end of section 11.1.5 (if you like, also start the
tcp_interface application), and then call application:start(http_interface)
from the system shell. Check with Appmon that all applications are running as
expected.

 First, use curl to PUT the file put.txt (the one you created in section 11.2.1, con-
taining the word Erlang) to be stored under the key xyzzy, and then look up the same
key using a normal GET request:

$ curl -T put.txt http://localhost:1156/xyzzy
$ curl http://localhost:1156/xyzzy
Erlang

It’s working! You can also try looking up the same key via the TCP interface, but you
have to specify it as an Erlang binary

lookup[<<"xyzzy">>]
OK:{ok,<<"Erlang\n">>}.

because the HTTP interface treated all keys and data as binaries. If you feel like
improving the interface, you can make it handle storing and looking up any Erlang
data in the cache; or you can make it store the content-type in the cache along with
the body for each PUT, so you can set the content-type correspondingly when you
return each GET request.

11.3 Summary
You can now integrate the Simple Cache application with external clients through two
different protocols: a custom, text-based protocol over raw TCP, and a more structured
RESTful protocol over standard HTTP. Along the way, you learned some important
techniques for writing a concurrent TCP server in Erlang, how to create and use a cus-
tom behaviour, and just enough HTTP to be dangerous. The work you did here has
made it possible to use Simple Cache in places that aren’t necessarily Erlang shops,
which makes it much more useful in today’s multilanguage and multiplatform pro-
duction environments.

 In the next chapter, we’ll show you how to make Erlang interact directly with pro-
grams written in other languages, allowing tighter integration than over TCP/IP.

http://localhost:1156/xyzzy
http://localhost:1156/xyzzy

Integrating with
 foreign code using

 ports and NIFs
At this point, the cache does a number of interesting things, such as log its actions,
distribute across multiple nodes, and automatically connect to the cluster. It also
has a RESTful HTTP interface for storing binary data, as well as a simpler text-based
TCP interface for storing Erlang terms in general. Overall, the Erlware people are
happy. But it would be nice if the clients who use the HTTP interface were able to
store structured data in a standard way, and without doing their own marshalling
and unmarshalling. The Erlware people would like you to modify the RESTful API
to use the JavaScript Object Notation (JSON) format for storing and retrieving data.
(See www.json.org for details. Note that in this chapter, we’ll refer to JSON objects
as maps, to be consistent with the terminology used by YAJL.)

 To translate between JSON text and Erlang terms, they want you to use an
open source JSON library called YAJL, which is written in C. The YAJL parser is
based on SAX-style callbacks, which is useful to you because it’ll allow you to build

This chapter covers
■ Ports, linked-in drivers, and natively

implemented functions (NIFs)
■ Integrating a third-party C library
■ Integrating the C library using NIFs
291

http://www.json.org

292 CHAPTER 12 Integrating with foreign code using ports and NIFs
the resulting Erlang terms without having to go via an intermediate format. You can
find the latest version of YAJL at http://lloyd.github.com/yajl/. You’ll also find the
version used in this chapter bundled with the rest of the source code for this book,
at GitHub.com (search for Erlang and OTP in Action).

 The idea is that it’s better to use a well-tested library to parse a standardized format
like JSON, rather than write your own parser and spend a lot of time shaking out the
bugs. Furthermore, while there’ll be some overhead in communication with the C
library, and parsing small JSON documents won’t be noticeably faster than if you used
pure Erlang, it’s likely that this solution will pay off when it comes to parsing large
documents, perhaps containing several megabytes of Base64-encoded data. This
approach also gives us the opportunity to introduce you to Erlang’s general mecha-
nisms for communicating with the world outside.

 Like most programming languages, Erlang allows you to interface to code written
in other languages, but its standard mechanism for doing this is a bit unusual. Most
other languages have a foreign function interface (FFI) that provides a way to link
with C code so it can be called from the host language. Erlang instead extends the
message passing paradigm to interact with foreign code as well. To the Erlang code,
the foreign code behaves much like a separate Erlang process: it can receive messages
from the Erlang side and can send messages back to Erlang. On the Erlang side, it’s
represented by a process-like object called a port (see section 2.2.7).

 You can also integrate with foreign code via the Erlang distribution mechanism.
Using the Erl_Interface ei C library or the Jinterface Java library—both included in
Erlang/OTP—it’s possible to create a C or Java program that masquerades as an
Erlang node. To a real Erlang node (that is, an Erlang VM running in distributed
mode), the foreign program looks like another node—it has a node name and com-
municates using the Erlang distribution protocol. But for simple tasks, making such a
C node (or Java node) is usually overkill. Chapter 13 will go into detail about creating a
foreign node using Jinterface.

 Finally, and new as of this writing, natively implemented functions (NIFs) allow
you to create functions that behave just like Erlang’s built-in functions (BIFs). These
functions each belong to a specific Erlang module and are called like normal Erlang
functions, although they’re implemented in C via the erl_nif library. NIFs have min-
imal communication overhead; but a single bug in your NIF code can easily crash
the entire Erlang VM, so they shouldn’t be used willy-nilly—only when you’re cer-
tain they’re the right solution. We’ll talk more about NIFs after we’ve introduced you
to ports.

12.1 Ports and NIFs
Ports are the oldest and most basic form of connecting Erlang to the world outside. In
their plain form, ports are simple and elegant to use, provide an important layer of
isolation between your Erlang code and the foreign code, and are usually fast enough.
They’re also completely language neutral: the foreign program can be written in any

http://lloyd.github.com/yajl

293Ports and NIFs
language. Whenever in doubt, you should always start with a plain implementation
using ports and then optimize later if it turns out that you need more speed.

 The basic form of communication with a port is by passing messages. To pass data
from Erlang to the port (and on to the foreign code connected to it), you can send a
message to the port in the following form

PortID ! {self(), {command, Data}}

where Data is a binary or an IO-list (a possibly deep list of bytes and/or binaries). Note
that you need to include the pid of the port owner process in the message; this is usu-
ally the current process, but any other process that knows both the port ID and the
owner’s pid is allowed to send messages to the port. (There are also a number of BIFs
in the erlang module that allow direct manipulation of ports, regardless of owner-
ship, but we’ll stick to the message passing style here.)

 When a port has data to deliver from the foreign code, it sends it asynchronously
to the port owner process as a message on this form:

{PortID, {data, Data}}

The shape of the Data field depends on which options were used to create the port.
For example, it can be either a binary or a list of bytes, and the port can be instructed
to send the data in fixed-size chunks or line by line for a plain-text protocol.

 Ports come in two different flavors: plain ports execute the foreign code as an
external program running in a separate operating system process, using its standard
input and standard output streams for communication with Erlang. The external
program can be anything that can run as an executable under the host operating
system—including shell scripts—as long as it can perform its function through stdin
and stdout.

 For example, running an operating system command like echo 'Hello world!'
from within Erlang can be as simple as

Port = open_port({spawn, "echo 'Hello world!'"}, []).

(We’ll talk more about opening ports in section 12.2.) The resulting message from the
port will look like this:

{#Port<0.512>, {data,"'Hello world!'\n"}}

In some cases, you may need to write a small wrapper shell script or C program to
adapt an existing executable program to interact with Erlang over the standard I/O,
but many UNIX-style programs can be used from Erlang as is.

 With plain ports, the worst that can happen is that the external program crashes
and the port is closed; the Erlang VM isn’t affected, allowing the Erlang code to detect
and handle the situation, perhaps by restarting the external program.

 The other kind of port uses linked-in drivers, often also called port drivers. As
the name implies, a linked-in driver is a shared library, usually written in C, that’s
loaded and linked dynamically with the Erlang VM. This has the benefit of faster

294 CHAPTER 12 Integrating with foreign code using ports and NIFs
communication; but as with NIFs, a linked-in driver has the potential to crash or
corrupt the entire Erlang VM. Communication with a linked-in driver is still byte-
oriented, as with plain ports; and from the point of view of your Erlang code, both
kinds of ports look the same. This means it’s easy to go from a plain port to a
linked-in driver when the need arises.

 In this chapter, we’ll talk about both variants of ports and how and when to use
them. Both have their own benefits and drawbacks, and understanding these is key to
choosing the right approach in the context of your system.

12.1.1 Plain ports

Ports are the simplest and most common way to communicate with foreign code in
Erlang. They’re objects with one foot in each world: one on the Erlang language side
and one on the operating system side. On the Erlang side, a port is similar to a pro-
cess: it’s created, you can communicate with it using normal message passing, and it
can die. Each created port gets a unique identifier that won’t be recycled. Because
ports don’t execute any Erlang code themselves, each port also has an owner, which is
a normal Erlang process; when a port receives data from the outside, it’s sent to the
port owner, which can decide what to do with it. The process that opens a port
becomes the owner by default, but it’s possible to hand over ownership to another
process—for example, using the BIF erlang:port_connect/2. If the port owner dies,
the port is closed automatically.

 On the operating system side, a plain port is just another running program, which
happens to be connected to the Erlang VM via its standard input and standard out-
put. If the program crashes, Erlang can detect it and perhaps restart it or take some
other action. The program lives in its own address space, and the only interaction it
has with Erlang is over standard I/O. That means no matter what the program does,
it can’t crash the running Erlang system. Considering the unsafe nature of most for-
eign code, that’s a big benefit, and it’s one of the reasons systems written in Erlang
can achieve such a high grade of stability even if they communicate with other pro-
grams. Even hardware drivers can be implemented in this way, if real-time demands
aren’t too great. You can see in figure 12.1 how the external code is connected to the
Erlang side.

Figure 12.1
Communication between Erlang
and foreign code over standard
input and standard output, using a
plain port. If the external program
crashes, the port is closed.

295Ports and NIFs
Of course, there’s no such thing as a free lunch. To get this level of safety, you pay a
price in speed. All data that moves between the two processes must be passed as a byte
stream. You may need to define your own byte-oriented protocol, with marshalling
and unmarshalling of data. If you need to pass complex data, the Erl_Interface ei
library provides support functions if you’re writing in C. Similarly, the Jinterface
library provides support for talking to a Java program. For other languages, you may
need to define your own, or you may be able to use the IDL Compiler (IC) shipped
with Erlang/OTP. Depending on the application and your needs, this can be complex
or simple. For example, an external program for controlling a switch can have a
character-based protocol where “0” means off and “1” means on.

12.1.2 Linked-in port drivers

Superficially, linked-in drivers work exactly like plain ports: the foreign code commu-
nicates with the Erlang code via byte-oriented messages. But under the hood, the
mechanism through which those messages travel is different, and a linked-in driver
executes in the same operating system process space as the Erlang VM. The main pur-
pose is performance.

 The drawback—and it’s a severe one—is that if the port driver crashes, it brings
down the entire Erlang system. This situation is made worse by the fact that port driv-
ers are written in C, a language that leaves a lot of the error checking and resource
management to the developer. Unfortunately, developers are only human, and aren’t
good at handling these things. In general, code written in C and other low-level lan-
guages is much less reliable; and because the code is linked directly into the Erlang
VM, any error has the potential to bring down the entire Erlang system, which subverts
all your fault-tolerant Erlang code. Figure 12.2 illustrates how a linked-in port driver
works (compare it to figure 12.1).

 Keep in mind that when you use a linked-in driver, you’re trading safety for speed.
You should make this trade-off only when you’re sure you need the additional speed
for your system. See chapter 14 for a discussion about profiling and optimization.

12.1.3 Natively implemented functions (NIFs)

NIFs are a new feature in Erlang. Although ports remain the simplest and safest
solution for communicating with foreign programs, sometimes you want to make

Figure 12.2
Linked-in drivers live in the
same operating system
process space as the Erlang
VM, using a C API with
callback functions and buffers
for transferring the data.

296 CHAPTER 12 Integrating with foreign code using ports and NIFs
something like a new built-in function with minimal overhead. With NIFs, you define
a function in C in such a way that it becomes available as an Erlang function, just
like a BIF. This is similar to the way foreign function interfaces work in most other
languages—for example, Java and Python—so it probably looks more familiar if you
have experience with such languages. Don’t let that make you take the NIF
approach as your first choice—consider the consequences of getting a hard system
crash with no other clues than a core dump. If you do use NIFs, you may want to
run your most important systems on nodes separate from the ones that run the NIF
code, at least until the code has been sufficiently tested in battle.

NIFs also have another fundamental problem: the native function runs in the
context of the VM thread that calls it, and the thread can’t be rescheduled until
the NIF has returned control to the VM. This makes NIFs suitable only for functions
that execute and return quickly; long-running NIFs hold up resources for the Erlang
VM scheduler.

 To summarize, there are three low level mechanisms for interfacing between
Erlang and other languages: plain ports, linked-in port drivers, and NIFs. All are valu-
able for different reasons: plain ports are a safe and easy way to hook up an external
program over standard I/O, linked-in port drivers offer greater speed at the price of
safety, and NIFs are an efficient but perilous way of hooking in library functions. To
integrate the JSON parsing library with the Simple Cache, you’ll start by making a
plain port interface.

12.2 Integrating with the parser through a port
The task you’ve been given is to integrate an existing JSON parser written in C with the
Simple Cache application. That means you need to connect the C library to Erlang
using one of the approaches described in the previous section. This will let you have
the best of both worlds: you get to use a fast library to do the parsing, while you keep
the bulk of your code in Erlang. It also means you don’t need to learn a lot about how
to parse JSON correctly, so even if you have to spend some time on the integration, the
total amount of effort should be much reduced compared to writing a parser from
scratch in Erlang.

 Because you want to be able to easily change the implementation from using
plain ports to using a linked-in port driver or NIFs, the interface to the library should
be as modular as possible. Fortunately, the API is simple: the library should take a
JSON document as input, parse it, and return the resulting Erlang data structures to
the caller.

 As we said in section 12.1, a plain port should be the default choice unless there’s
good reason to use a linked-in driver or NIFs. That means you need to write an external
program that reads from stdin and writes to stdout as a wrapper around the library
code; and because the YAJL library is written in C, it’s easiest and most efficient to write
the external program in C as well. To integrate this with Erlang, you’ll need some func-
tionality on the Erlang side to create the port, send messages to it, and handle the data

297Integrating with the parser through a port
that comes back from the port. Let’s start with this code, both because it’s easier and
because it will give you a better idea of how the communication will work.

12.2.1 The Erlang side of the port

As we said in section 12.1.1, there’ll always be an associated Erlang process that owns
the port, and any incoming data from the port will end up in the owner’s mailbox. If
the owner dies, the port gets closed. This makes port management easy; and because
the theme of this book is Erlang and OTP, you should of course implement that pro-
cess as a gen_server. We won’t show all the code for this server, only some select bits;
you’ve seen many examples of gen_server modules already and should be able to fill
in the blanks yourself.

 To match the examples in this book, the module name should be jp_server, and
the server should be a locally registered process with the same name as the module.
Create a basic application named json_parser to contain this module, complete with
the usual jp_app and jp_sup modules, as well as a front-end API module named
json_parser that calls the corresponding functions in jp_server.

THE SERVER API
We’ll start with the jp_server API functions: you only need a single such func-
tion, apart from the usual start_link/0 for starting the server, and that is parse_
document/1. It looks like this:

parse_document(Data) when is_binary(Data) ->
 gen_server:call(?SERVER, {parse_document, Data}).

As usual, the API function is just a wrapper for a call to a gen_server function. In this
case, because you expect to receive a result, you want to use the synchronous gen_
server:call/2. The Data argument should be a binary that contains the text for the
JSON document you want to parse. Calling parse_document/1 makes the gen_server
call its callback function handle_call/3 with {parse_document, Data} as the first
argument. That’s where the communication with the port will happen.

OPENING THE PORT WHEN THE SERVER STARTS

Before we show how to transmit the data to the port, let’s first take care of opening the
port when the json_server process is started, so there’s a port to talk to in the first
place. This should be done in the init/1 callback function of the gen_server. Apart
from anything else you want to do in init/1, you need to call the BIF open_port/2
and store the resulting port identifier in the server state, as follows:

case code:priv_dir(?APPNAME) of
 {error, _} ->
 error_logger:format("~w priv dir not found~n", [?APPNAME]),
 exit(error);
 PrivDir ->
 Port = open_port({spawn, filename:join([PrivDir, "jp_prog"])},
 [binary, {packet, 4}, exit_status]),
 {ok, State#state{port=Port}}
end

298 CHAPTER 12 Integrating with foreign code using ports and NIFs
(This assumes you’ve defined the macro APPNAME to hold the name of your applica-
tion—in this case, json_parser—and that you’ve declared a field named port in the
state record in the gen_server module.) The previous code first gets the path of
the priv subdirectory of your application, then appends the name jp_prog, and uses
this path to launch the external C program using open_port({spawn, ProgramPath},
Options). The details of this C program will be the subject of the next section.

NOTE The normal location for external programs that are part of your appli-
cation is in the priv directory (or a subdirectory thereof). You can always get
the path of the priv directory of any application by calling code:priv_dir/1
with the application name.

The second argument to open_port/2 is a list of options that specify details on how
the port should treat the data going back and forth between Erlang and the foreign
code. In this case, you’ll use the following options:

■ binary specifies that the port should send you data as binaries instead of lists
of bytes.

■ {packet, N} tells Erlang to put an N-byte integer (1, 2, or 4 bytes) at the head of
each chunk of data it sends to the foreign code, specifying the number of bytes
that follow. This makes certain things easier for the C code later.

■ exit_status says that you want to get the exit status of the external program as
well as the data.

You can find more details in the Erlang/OTP documentation for erlang:open_port/2.
 Now that you know the port is opened and its identifier is stored in the process

state, let’s move on to the code that handles the {parse_document, Msg} request.

COMMUNICATING WITH THE PORT

The following code sends a message to the port, which will transfer the data to the for-
eign code, and then waits for a reply:

handle_call({parse_document, Msg}, _From, #state{port=Port}=State) ->
 Port ! {self(),{command, term_to_binary(Msg)}},
 receive

The application directory and the code path
When you use one of the functions like priv_dir/1 in the code module, it searches
your code path for the application name you specified. For instance, if you call
priv_dir(foo), and the path contains a directory …/foo/ebin, the priv_dir
function will return the corresponding directory name …/foo/priv. In a production
system where all paths are properly set up at the start, this works fine; but when
you’re testing things from the Erlang shell on your own computer, you may have
started Erlang with erl –pa ./ebin. That gives the system no clue as to the name
of the application, so priv_dir/1 will fail to locate application foo. To get around
this, you can start Erlang with erl –pa ../foo/ebin or similar.

299Integrating with the parser through a port
 {Port, {data, Data}} ->
 {reply, binary_to_term(Data), State}
 end.

Note the use of term_to_binary(Msg), which encodes the term Msg as binary data
using Erlang’s standard external transport format. This means you can send any
Erlang data to the external program, which in its turn can use the Erl_Interface ei
library to decode the data, as you’ll see in the next section. (In this example, Msg is a
binary already, sent from your parse_document/1 API function, but the previous code
can marshal any Erlang term into external format for sending over a port.)

 When the external program has processed the request and sends the parsed data
structure back to the Erlang side, it’s delivered as a message {Port, {data, Data}} to
the port owner: your gen_server, which is waiting for it. Here, you expect the incom-
ing data to be in the same external format, so all you need to do is transform it back to
an Erlang term using binary_to_term/1.

 You may have noticed one unusual thing about the code. Normally, you want to
avoid delays in the handling of a gen_server request; but here, it may take some
time (if the document is large) before the reply comes back from the port. For this
implementation, that’s not a problem: the external program is made to handle only
one client at a time, so there’s no point in having concurrent requests to the port—
it would require that you keep track of which client should receive which result. By
blocking the handling of a request until communication with the port is com-
pleted, you get the gen_server to do the concurrency control for you (which is par-
ticularly useful if you’re integrating with a hardware driver or similar). This
implementation may be good for parsing one document at a time, but in this naive
form it doesn’t parallelize.

DETECTING FAILURE

Because you created the port using the exit_status option, your server will receive
an out-of-band message when the external program exits. You can use this to track
and manage the external program. As an example, you could restart the program by
reopening the port, as follows:

handle_info({Port, {exit_status, Status}}, #state{port=Port}=State) ->
 error_logger:format("port exited with status ~p; restarting",
 [Status]),
 NewPort = create_port(),
 {noreply, State#state{port=NewPort}}.

(This assumes you’ve moved the details of opening the port to a function
create_port().)

 Another, possibly more elegant, way is to make the gen_server a true proxy for
the external program. You can make the server a transient child of a supervisor; and
if the external program exits with a nonzero status, you shut down the server with a
reason other than normal, which causes the supervisor to restart the entire server.
That way, there’ll be a one-to-one relationship between process restarts and restarts
of the external program, letting you take advantage of things like SASL logging and

300 CHAPTER 12 Integrating with foreign code using ports and NIFs
restart strategies in OTP. We won’t get into those details here, but we encourage you
to experiment with such a solution.

12.2.2 The C side of the port

The Erlang code you wrote in the previous section expects to find an executable pro-
gram file named jp_prog in the application’s priv subdirectory. Now it’s time to create
that program, and you’ll do so in C. You won’t need to be a C guru to understand
most of this code, but you’ll need a working C compiler such as gcc on your computer
if you want to try it out. On Windows, you might want to use MinGW, which is a port of
the gcc compiler together with a minimal set of UNIX utilities for running simple
scripts and makefiles.

 This C program will be a standalone executable that acts as a wrapper around the
YAJL library described at the start of this chapter. It’ll read a JSON document as text on
the standard input stream, use YAJL to parse it, and encode it as Erlang terms with the
help of the Erl_Interface ei library. These terms will then be written as a chunk of
bytes back to the standard output stream. This behavior is just what the Erlang side of
the port expects.

Remember that, usually, you don’t want to mix source code in other languages with
your Erlang source files in the src directory. Instead, create a separate directory named
c_src to hold the C files. The following listing shows the first part of the file c_src/
jp_prog.c, with some basic include statements and declarations that will be needed.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <ei.h>
#include <yajl/yajl_parse.h>

#define BUFSIZE 65536

static int handle_null(void *ctx);
static int handle_boolean(void *ctx, int boolVal);
static int handle_integer(void *ctx, long integerVal);

Using Erl_Interface or not
Note that Erl_Interface isn’t the only way to implement the C side of your code. If
it suits your application better—for example, if you’re only going to transmit plain
text or chunks of bytes in both directions and no structured Erlang data—you can
use a simple byte-oriented protocol and do the encoding and decoding yourself.
With Erl_Interface, you leave all that to the library and work with Erlang terms on
both sides, which is a more heavyweight solution but makes it easier if you want
to send complex Erlang terms back from the C code.

Listing 12.1 c_src/jp_prog.c: declarations

Erl_Interface and
YAJL header files

B

Declares parser
callback functions

C

301Integrating with the parser through a port
static int handle_double(void *ctx, double doubleVal);
static int handle_string(void *ctx, const unsigned char *stringVal,
 unsigned int stringLen);
static int handle_map_key(void *ctx, const unsigned char *stringVal,
 unsigned int stringLen);
static int handle_start_map(void *ctx);
static int handle_end_map(void *ctx);
static int handle_start_array(void *ctx);
static int handle_end_array(void *ctx);

static yajl_callbacks callbacks = {
 handle_null,
 handle_boolean,
 handle_integer,
 handle_double,
 NULL, /* can be used for custom handling of numbers */
 handle_string,
 handle_start_map,
 handle_map_key,
 handle_end_map,
 handle_start_array,
 handle_end_array
};

typedef struct container_t {
 int index; /* offset of container header */
 int count; /* number of elements */
 struct container_t *next;
} container_t;

typedef struct {
 ei_x_buff x;
 container_t *c;
 char errmsg[256];
} state_t;

#define ERR_READ 10
#define ERR_READ_HEADER 11
#define ERR_PACKET_SIZE 12

First, you need to include the header files for the Erl_Interface ei library and the YAJL
library B so you can use the functions and data structures that these libraries provide.
Then, you have to declare the names and type signatures of the callback functions
you’ll implement, so you can refer to them even though you haven’t implemented
them yet C. After that, you fill in the yajl_callbacks structure with the names of
your callbacks D, so the YAJL library can find them. One of the fields is left as NULL: it
can be used to override the default callbacks for integers and doubles, for example, if
you want to implement handling of numbers too large to fit into a long integer.

DATA STRUCTURES

You also need a couple of data structures of your own. First, the container_t struc-
ture E keeps track of information needed to handle JSON arrays and key/value
maps. Because these can be nested, you need to be able to represent containers
within containers—this is what the next field is for. The count field tracks how many

Tells YAJL about
callbacks

D

Tracks nested
data structures

E

Holds state during
YAJL parsingF

Exit status
codes

302 CHAPTER 12 Integrating with foreign code using ports and NIFs
elements have been seen so far—for example, the parser may currently be at the
fourth element of an array that is itself the value of the seventh entry in a key/value
map. Last, the index field is used to fix up the encoding of the resulting data struc-
ture: when the end of an array has been seen, and you know exactly how many ele-
ments it contains, you need to go back and update the header at the start of the
Erlang term you’re building with the total number of elements, and the position to
be back-patched is kept in the index field. You’ll see how this works shortly.

 The second data structure, state_t F, is used for the global state while the YAJL
parser is running. Each YAJL callback function is given a pointer to this structure as
the first parameter (called the context in the YAJL documentation). This is similar to
the way gen_server callbacks in Erlang are passed the current state as the last param-
eter. Your state contains a pointer to the current container (this is NULL if the parser
isn’t currently inside any container) and an ei_x_buff structure, which is defined by
the Erl_Interface ei library and is used for building an encoding of an Erlang data
structure. (Using an ei_x_buff lets the ei library take care of dynamically allocating
enough memory for the Erlang term that you’re building, which makes things sim-
pler.) It also holds a string buffer used for error reporting.

READING AND WRITING DATA

The first pieces of code you need are those that handle input and output. Recall that
communication with the Erlang side will be done over the standard I/O streams and
that the data packet—in both directions—will be preceded by a 4-byte integer in net-
work byte order (big-endian) that specifies the number of bytes following it.

This convention was decided back in section 12.2.1 when you used the {packet, 4}
option to open the port. On one hand, it complicates things by making it necessary to
read and decode the packet length in the C side of the code; but on the other hand, it
means that when you know the length of the packet, it’s simple and fast to read the
rest of the data. Similarly, writing data back to Erlang requires first sending a properly
formed length header; but after you’ve done that, you can output the data in a single
write operation. The following listing shows the code that handles I/O.

static void write_packet(char *buf, int sz, FILE *fd)
{
 uint8_t hd[4];

Network endianism alert
The packet header bytes are always in network byte order (big-endian), regardless
of platform, so make sure your code decodes this correctly regardless of the endi-
anness of the platform you’re currently running on. In particular, don’t just read the
bytes straight into a uint32_t integer and assume things will work.

Listing 12.2 c_src/jp_prog.c: reading and writing

Outputs data with
length headerB

303Integrating with the parser through a port
 hd[0] = (sz >> 24) & 0xff;
 hd[1] = (sz >> 16) & 0xff;
 hd[2] = (sz >> 8) & 0xff;
 hd[3] = sz & 0xff;
 fwrite(hd, 1, 4, fd);

 fwrite(buf, 1, sz, fd);
 fflush(fd);
}

static size_t read_bytes(unsigned char *buf, size_t max, FILE *fd)
{
 size_t n;
 n = fread(buf, 1, max, fd);
 if ((n == 0) && !feof(fd)) {
 exit(ERR_READ);
 }
 return n;
}

static void read_packet(unsigned char *buf, size_t max, FILE *fd)
{
 size_t n, sz;
 uint8_t hd[4];

 n = read_bytes(hd, 4, fd);
 if (n == 0 && feof(fd)) exit(EXIT_SUCCESS);
 if (n != 4) exit(ERR_READ_HEADER);
 sz = (hd[0] << 24) + (hd[1] << 16) + (hd[2] << 8) + hd[3];
 if (sz > max) {
 exit(ERR_PACKET_SIZE);
 }
 n = read_bytes(buf, sz, fd);
 if (n != sz) {
 exit(ERR_READ);
 }
}

The write_packet function B outputs a number of bytes but prefixes it with a 4-byte
length header in network byte order. The read_bytes function C is a utility function
that reads at most max bytes into a buffer, and the read_packet function D reads an
entire length-prefixed data packet. Note that if reading or writing fails, the program
exits with a nonzero exit status. This is because if there’s a communication error or
the protocol has become desynchronized so you no longer know what’s a packet
header and what’s raw data, it’s better to give up and let Erlang restart the program. If
the input stream is closed between documents, the program exits, signaling success.

RUNNING THE JSON PARSER

After a document has been successfully received from the Erlang side and resides in the
input buffer, you need to initialize and run the YAJL parser on the data. This is done in
the parse_json function (see listing 12.3). Note that this function takes a pointer to
your state_t structure as the first parameter, so it can be passed on to YAJL, which in
its turn passes it to each of your callback functions so they can access the state structure.

Reads bytes
into buffer C

Reads data with
length header D

304 CHAPTER 12 Integrating with foreign code using ports and NIFs
static const char *parse_json(state_t *st, unsigned char *buf, size_t len)
{
 yajl_parser_config cfg = {
 1, /* allow comments */
 0 /* don't check UTF-8 */
 };
 yajl_handle yh;
 yajl_status ys;
 const char *err=NULL;

 yh = yajl_alloc(&callbacks, &cfg, NULL, st);
 ys = yajl_parse(yh, buf, len);
 if (ys == yajl_status_insufficient_data) {
 ys = yajl_parse_complete(yh);
 }
 if (ys == yajl_status_insufficient_data) {
 err = "unexpected end of document";
 } else if (ys != yajl_status_ok) {
 unsigned char *msg = yajl_get_error(yh, 0, NULL, 0);
 strncpy(st->errmsg, (char *)msg, sizeof(st->errmsg)-1);
 yajl_free_error(yh, msg);
 st->errmsg[sizeof(st->errmsg)] = 0;
 err = st->errmsg;
 }
 yajl_free(yh);
 return err;
}

This function begins by creating a few things needed by YAJL: a configuration struc-
ture, a handle, and a status variable. Then, yajl_alloc is called to initialize the han-
dle B, using your callback specification from listing 12.1, the configuration structure,
and the state pointer (the context). The third argument is given as NULL for now. After
the handle is initialized, you can call yajl_parse on the data buffer using the handle.
YAJL then parses the data, using your callbacks to generate the result. After parsing,
the handle needs to be freed again by calling yajl_free C.

 If the return status indicates that the document seems to be incomplete, you call
yajl_parse_complete to tell it there’s no more data; and if the status is still the same,
you set the return value to indicate that the document ended unexpectedly. If some
other non-OK status is returned, you call yajl_get_error to get an error string that
you need to copy into your buffer in the state structure and then release with
yajl_free_error. That extra bit of work makes parse_json easy to use: if the parsing
succeeds, it returns NULL, and otherwise it returns a string that explains the error.

DECODING AND ENCODING ERLANG TERMS WITH EI

With all that in place, we can now look at the code that processes a single request
packet sent from the Erlang side that’s been read into the input buffer. This is done in
the function process_data, which also uses a helper function called make_error, both
shown in listing 12.4. Up until this point, we’ve only been talking about reading and

Listing 12.3 c_src/jp_prog.c: parsing JSON

Initializes YAJL
parser handle

B

Frees YAJL
handle

C

305Integrating with the parser through a port
writing data and calling the YAJL parser, but we now need to explain a little about how
Erlang terms are handled in the C code with the help of the ei library.

static void make_error(state_t *st, const char *text)
{
 ei_x_free(&st->x);
 ei_x_new_with_version(&st->x);
 ei_x_encode_tuple_header(&st->x, 2);
 ei_x_encode_atom(&st->x, "error");
 ei_x_encode_string(&st->x, text);
}

static void process_data(unsigned char *buf)
{
 state_t st;
 st.c = NULL;
 ei_x_new_with_version(&st.x);

 int index = 0;
 int ver = 0, type = 0, size = 0;

 if (ei_decode_version((char *)buf, &index, &ver)) {
 make_error(&st, "data encoding version mismatch");
 } else if (ei_get_type((char *)buf, &index, &type, &size)
 || type != ERL_BINARY_EXT) {
 make_error(&st, "data must be a binary");
 } else {
 ei_x_encode_tuple_header(&st.x, 2);
 ei_x_encode_atom(&st.x, "ok");
 const char *err;
 if ((err = parse_json(&st, &buf[index+5], size)) != NULL) {
 make_error(&st, err);
 }
 }
 write_packet(st.x.buff, st.x.buffsz, stdout);
 ei_x_free(&st.x);
}

The external term format used by erlang:term_to_binary/1 to serialize an Erlang term
is the same as that used in the Erlang distribution protocol. The details of this format
are documented in the ERTS User’s Guide section of the standard Erlang/OTP docu-
mentation, but you don’t need to know the exact byte-level representation in order to
use it—the ei library helps you with decoding and encoding serialized terms. In this
case, your input buffer contains the encoded term sent from Erlang to the port (see
section 12.2.1). You expect this term to be a binary, containing JSON text.

 Before you start decoding and parsing, you want to initialize the state structure,
and in particular the ei_x_buff structure B that’s used to build the term to be
sent back to the Erlang side. This is done with ei_x_new_with_version, which allo-
cates a dynamic buffer and at the same time conveniently inserts a version number
at the start of the buffer. Erlang’s external term format requires the version of

Listing 12.4 c_src/jp_prog.c: parsing a single document

Initializes
output buffer

B

Decodes version
byte of input

C

Encodes start
of {ok, …}

D

306 CHAPTER 12 Integrating with foreign code using ports and NIFs
the encoding as the first byte of the data chunk—this allows different nodes and cli-
ents to be sure that they’re exchanging data in a compatible way. You generally
don’t need to know what the current version number is; the ei functions handle
this for you.

 The ei decoding functions use an index variable that points into the buffer and is
advanced each time a decode operation succeeds. The initial offset is zero, and the
first thing you need to do to decode the input is call ei_decode_version C. If the ver-
sion in the input buffer isn’t compatible with your version of ei, the function returns
a nonzero value; in that case, you generate an error term to be sent back to Erlang. If
decoding succeeds, the found version number is stored in the ver variable (the actual
number isn’t of interest here).

 The next step is to inspect the actual encoded term following the version byte. This
is done in a similar way: ei_get_type returns nonzero if the data is invalid, and other-
wise fills in the variables type and size to match the found term. (But it doesn’t
advance index: the point is only to inspect the term, not do anything with it.) If the
type is ERL_BINARY_EXT, the term is a binary, as you wanted. The contents of the buffer
are illustrated in figure 12.3.

 At this point, you know that the encoded binary starts at buf[index]. To avoid
copying the data, you can cheat a little: the documentation of the external term for-
mat says that a binary is encoded as 1 byte for the type (109) followed by 4 bytes for
the size (which you’ve already decoded into the size variable). The actual binary data
starts at buf[index+5]. This address can be given directly to parse_json, along with
the size.

 But before you start parsing, you need to think about what sort of value you want to
return to Erlang. To allow the Erlang side to easily differentiate between successful
parses and errors, you want to use the normal {ok, Result}/{error, Message} con-
vention. This means that you’ll need to start encoding the {ok, ...} tuple before you
begin encoding the result data D.

 Encoding is the reverse of decoding: you already have a dynamic ei_x_buff out-
put buffer which automatically keeps track of the current buffer size and the offset for
the next data to be encoded. To make a tuple, you call ei_x_encode_tuple_header.
This inserts a header that signals “tuple start” and specifies the number of elements
that follow it. (These elements may in their turn also be tuples, in a nested fashion.)
In this case, you want a 2-tuple, and the first element of that tuple should be the atom
ok, which you insert with a call to ei_x_encode_atom. The next encoded term
becomes the second element of the tuple, and this is created by your callback func-
tions while YAJL is parsing the data.

Encoding
version

131 109

Length of data Binary data

L1 L2 L3 L4 . . .

Binary
type

Figure 12.3
The external term format encoding of
a binary term in the input buffer. The
ei library helps you decode this so you
don’t have to think about the details.

307Integrating with the parser through a port
The utility function make_error is used to report errors. Because you’ve already ini-
tialized the ei_x_buff output buffer and possibly inserted data into it, make_error
starts by freeing the existing buffer and initializing a new one. It then builds a tuple
{error, Message} in the same way that you made the {ok,...} tuple, but in this case
using ei_x_encode_string to create the Message term from the error string.

 Finally, at the end of process_data, you write the final encoded result term (either
{ok, Data} or {error, Message}) from the output buffer to the standard output
stream using the write_packet function, and de-allocate the output buffer.

THE MAIN FUNCTION

Only one detail is left before we start looking at the YAJL callback functions: the main
loop, shown in the following listing.

int main(int argc, char **argv)
{
 static unsigned char buf[BUFSIZE];
 for (;;) {
 read_packet(buf, sizeof(buf)-1, stdin);
 buf[sizeof(buf)-1] = 0; /* zero-terminate the read data */
 process_data(buf);
 }
}

The main function is the entry point of a C program. Its arguments are the number of
arguments (argc) passed on the command line and the actual argument strings
(argv), but this particular program doesn’t use any arguments. Because you’ve moved
all the real work to isolated functions, this main function is simple: it creates the buffer
for input data, and then it loops forever (or until one of the functions in listing 12.2
calls exit), reading a packet from the Erlang side at a time and processing it.

ENCODING JSON DATA AS ERLANG TERMS

We now come to the last part of the C program: the implementation of the YAJL parser
callback functions that will be called as YAJL parses the JSON data. For simple values
like null, true/false, numbers, and strings, there’s a single callback for each. For the
compound JSON data structures (arrays and maps), there’s one callback function for
the start of the structure and another for when the structure ends.

 Remember that each callback is handed a pointer to your state_t structure (the
YAJL context—see listing 12.3). All the information you need to build the correspond-
ing Erlang terms must be accessible via this structure. In C, it’s tempting to start using
global variables for this sort of thing; but if you do, you’ll have to rewrite it later for
the linked-in driver version in section 12.3, which requires that the code be reentrant.

 Before you begin coding these callback functions, you need to decide how the
JSON data should be represented as Erlang terms. This is shown in table 12.1.

 The representation tries to follow Erlang’s conventions (for instance, using the atom
'undefined' as the null value), be space-efficient (by representing JSON strings—

Listing 12.5 c_src/jp_prog.c: main loop

308 CHAPTER 12 Integrating with foreign code using ports and NIFs
including the labels in maps—as binaries), and be unambiguous. When you see a list,
you know it must be representing a map of key/value pairs and not a string or an array.
When you see a tuple that isn’t a key/value pair, you know it must be representing an
array. Representing JSON arrays as Erlang tuples means you can easily index into the
array, and uses less space than a list; but on the other hand, it requires that you convert
the tuple to a list in order to add or remove elements. This trade-off seems reasonable.

 Now that you know what output you should be generating, let’s look at the simple
YAJL callbacks first, shown in the following listing.

static void count_element(state_t *st)
{
 container_t *c = st->c;
 if (c != NULL) ++(c->count);
}

static int handle_null(void *ctx)
{
 state_t *st = (state_t *)ctx;
 count_element(st);
 ei_x_encode_atom(&st->x, "undefined");
 return 1;
}

static int handle_boolean(void *ctx, int boolVal)
{
 state_t *st = (state_t *)ctx;
 count_element(st);
 ei_x_encode_boolean(&st->x, boolVal);
 return 1;
}

static int handle_integer(void *ctx, long integerVal)
{

Table 12.1 The representation of JSON data as Erlang terms. Note that the null value translates to the
atom 'undefined', which suits Erlang’s conventions better.

JSON Erlang json() representation

null 'undefined'

true 'true'

false 'false'

42, 3.14, ... (integers and floats) number()

"..." (string) binary()

[x1, x2, ...] (array) { json(), json(), ... }

{"abc": x1, "def": x2, ...} (map) [{binary(), json()}, ...]

Listing 12.6 c_src/jp_prog.c: simple YAJL callbacks

Increments element count
of current containerB

309Integrating with the parser through a port
 state_t *st = (state_t *)ctx;
 count_element(st);
 ei_x_encode_long(&st->x, integerVal);
 return 1;
}

static int handle_double(void *ctx, double doubleVal)
{
 state_t *st = (state_t *)ctx;
 count_element(st);
 ei_x_encode_double(&st->x, doubleVal);
 return 1;
}

static int handle_string(void *ctx, const unsigned char *stringVal,
 unsigned int stringLen)
{
 state_t *st = (state_t *)ctx;
 count_element(st);
 ei_x_encode_binary(&st->x, stringVal, stringLen);
 return 1;
}

static int handle_map_key(void *ctx, const unsigned char *stringVal,
 unsigned int stringLen)
{
 state_t *st = (state_t *)ctx;
 ei_x_encode_tuple_header(&st->x, 2);
 ei_x_encode_binary(&st->x, stringVal, stringLen);
 return 1;
}

All of these use the helper function count_element, which increments the element
counter in the current container structure, if there is one (see listing 12.1) B. For
example, if you see an integer while within an array, you increment the element count
of the array. Apart from that, these functions are straightforward, each inserting some
data into the output buffer; for example, the handle_string callback uses ei_x_
encode_binary to build a binary term containing the text of the JSON string C. All the
callbacks return 1 to YAJL to signal “all OK, continue parsing.” The one notable func-
tion is handle_map_key. This is called for the key of a key/value pair in a JSON map.

 When a pair is seen, you’ve already started building a list to hold the pairs of the
map. Each pair is a 2-tuple of the key and the value; and much as you did to encode
the {ok, ...} tuple in listing 12.4, all you need to do here is insert a 2-tuple header D

How YAJL handles key/value pairs
Only the key part of a key/value pair has a special callback function in YAJL.
There’s no special callback to handle the value—the normal callbacks are used for
that. If necessary, you can put a flag in the state structure to signal that the next
value is part of a pair—you’ll need that in section 12.3—but right now, you don’t
need to do anything special to encode a value that’s part of a pair.

Encodes JSON
string as binary

C

Begins 2-tuple to
hold key/value pair

D

310 CHAPTER 12 Integrating with foreign code using ports and NIFs
followed by the key (a binary) as the first element. You know that the next called call-
back function will insert the value as the second element, completing the tuple. Sim-
ple! (Note that you don’t call count_element when handling keys, only values,
because the count should be incremented only once for the whole tuple.)

 Finally, you need to implement the callbacks for handling the start and end of
arrays and maps. This is a little trickier. The code is shown in the following listing.

static int handle_start(void *ctx, int array)
{
 state_t *st = (state_t *)ctx;
 count_element(st);

 container_t *c = malloc(sizeof(container_t));
 c->next = st->c;
 st->c = c;
 c->count = 0;
 c->index = st->x.index;

 if (array) {
 ei_x_encode_tuple_header(&st->x, 1);
 } else {
 ei_x_encode_list_header(&st->x, 1);
 }
 return 1;
}

static int handle_start_map(void *ctx)
{
 return handle_start(ctx, 0);
}

static int handle_start_array(void *ctx)
{
 return handle_start(ctx, 1);
}

static int handle_end(void *ctx, int array)
{
 state_t *st = (state_t *)ctx;
 container_t *c = st->c;
 if (array) {
 ei_encode_tuple_header(st->x.buff, &c->index, c->count);
 } else {
 ei_encode_list_header(st->x.buff, &c->index, c->count);
 ei_x_encode_empty_list(&st->x);
 }
 st->c = c->next;
 free(c);
 return 1;
}

static int handle_end_map(void *ctx)
{

Listing 12.7 c_src/jp_prog.c: map and array YAJL callbacks

Allocates, links,
and initializes
new container

B

Inserts
dummy tuple
or list header

C

Back-patches
header with
final count

D

Unlinks and frees
container structure

E

311Integrating with the parser through a port
 return handle_end(ctx, 0);
}

static int handle_end_array(void *ctx)
{
 return handle_end(ctx, 1);
}

The similarities between handling maps and arrays in this example are large enough
that it’s easier to combine the code into common handle_start and handle_end
functions using a flag to select whether you’re encoding an array.

 In handle_start, you first increment the element count of the current con-
tainer—an array within an array must be counted as an element of its parent, not of
itself. Then, you allocate space for a new container structure (using ordinary malloc),
link it into the state as the new current container, and initialize its count to zero. Cru-
cially, you also memorize the current index position of the ei_x_buff so you can
locate this point in the output buffer later B. When this is done, you insert a header
for a tuple or a list depending on whether you’re building an array or a map, respec-
tively C. Because you don’t yet know how many elements the container will have, a
dummy value of 1 is used for now.

 When handle_end is called, you know the final element count of the container. You
then need to update the header you created previously with this number. You do this by
calling ei_encode_tuple_header (or ei_encode_list_header for a list) with a pointer
to the start of the current ei_x_buff buffer together with the previously saved buffer
position from the container structure and the element count D. The ei_encode_ func-
tions differ from the ei_x_encode_ functions in that they leave all the memory man-
agement to you. Hence, this call doesn’t affect the current index position of the
ei_x_buff structure—it only overwrites the old dummy header you inserted before.
For the end of a list, you also need to insert the final empty list element by calling
ei_x_encode_empty_list—this is inserted after the last encoded element of the list,
not immediately after the header. The state of the output buffer at this point is illus-
trated in figure 12.4.

 Finally, you unlink the container structure from the state and free the memory E.

. . . 108

Number of
elements

(updated when
final count is known)

Current
index

N1 N2 N3 N4 . . . Elements

List
type

Tail . . .

Saved
index

Figure 12.4 Back-patching the list header with the final length. The saved
index points to the start of the list header, while the current index of the
dynamic ei_x_buff points to the first byte after the tail of the list.

312 CHAPTER 12 Integrating with foreign code using ports and NIFs
Phew! That was a lot, but we wanted to show a complete example of how to integrate a
real-world library with Erlang. Fortunately, only a small part of the code needs to be
modified when you implement the linked-in driver version in the next section, so the
effort spent in making the code well-structured will pay off. But now, it’s time to com-
pile the code and try it out.

12.2.3 Compiling and running the code

You compile your src/*.erl files to ebin/*.beam files as normal. For the C code, you
need to compile the file c_src/jp_prog.c to an executable file priv/jp_prog so the
Erlang code that opens the port (see section 12.2.1) is able to find it and run it. We
also assume here that you’ve written a front-end API module named json_parser that
exports a function like the following:

parse_document(Data) ->
 jp_server:parse_document(Data).

To compile the C code using the gcc compiler, run the following from your com-
mand line:

$ gcc -o ./priv/jp_prog -I${OTPROOT}/lib/erl_interface-3.6.5/include

➥ -I${YAJLROOT}/include -L${OTPROOT}/lib/erl_interface-3.6.5/lib

➥ -L${YAJLROOT}/lib ./c_src/jp_prog.c -lei_st -lyajl

This assumes you’ve set the OTPROOT environment variable to the path of your Erlang
installation (typically /usr/lib/erlang; you can call code:root_dir() in Erlang if you
don’t know what the path is) and the YAJLROOT variable to the path of your YAJL instal-
lation. (If you downloaded and built YAJL but didn’t install it, the path will be some-
thing like lloyd-yajl-1.0.9-0/build/yajl-1.0.9/.) Note that you must both specify –I flags
for the header files of Erl_Interface and YAJL, as well as –L flags for where to find the
link-time library code and –l flags for the names of the libraries to link. Furthermore,
the order of the source files and library files on the command line is significant.

 You should now have an executable file jp_prog in the priv directory. This isn’t
so simple to test directly from the command line, because of the requirement that
all input must be preceded by a 4-byte length header—it’s easier to run it from
Erlang. But in order to start jp_prog, the system must be told where to find the load-
time YAJL library. If you didn’t install YAJL in a standard location, you can set the
LD_LIBRARY_PATH variable as follows:

$ export LD_LIBRARY_PATH=${YAJLROOT}/lib

If you’re running on Mac OS X, your system uses DYLD_LIBRARY_PATH instead of
LD_LIBRARY_PATH:

$ export DYLD_LIBRARY_PATH=${YAJLROOT}/lib

Then, you can start Erlang, start the json_parser application, and try parsing some
JSON text. (Remember to include the directory name json_parser in the –pa flag so
code:priv_dir/1 can identify the application directory; see section 12.2.1.)

313Making a linked-in driver
$ erl -pa ../json_parser/ebin
...
1> application:start(json_parser).
ok
2> Doc = <<"[null, true, {\"int\": 42, \"float\": 3.14}]">>.
...
3> json_parser:parse_document(Doc).
{ok,{undefined,true,[{<<"int">>,42},{<<"float">>,3.14}]}}
4>

It works! Note that null has been translated to undefined, that the key strings in the
map are represented as binaries, and that the outermost JSON array is represented as a
tuple in Erlang, whereas the map is represented by a list of key/value tuples.

 The integration with the C library is finally complete and works as it should. But in
production, you find that when the servers are under heavy load, the marshalling and
unmarshalling and the communication over pipes takes more time than you’d like.
Fortunately, you can do something about that: you can convert the program to run as
a linked-in driver.

12.3 Making a linked-in driver
Creating a linked-in driver should almost never be the first step you take when inter-
facing with foreign code. But at this point, you already have an implementation of a
port connected to an external program that has been proven to be stable—it just
doesn’t seem to be efficient enough. It’s time to consider moving to a linked-in driver.

 The parser logic of your C code is already in working order, and you don’t need
to change it. You just need to take that logic and wrap it up in such a way that Erlang
can link it in, start it, and talk to it directly. This means you’ll be replacing the main
function with a callback function that conforms to the erl_driver API, and creating
some additional support structures and functions that are needed for linked-in driv-
ers. But first, let’s look at what makes linked-in driver code different from code in
external programs.

12.3.1 Understanding linked-in drivers

As we said in section 12.1.2, linked-in drivers have the same look and feel as plain
ports, but the underlying mechanism is different. A normal, external port program
communicates with Erlang over standard I/O, whereas in a linked-in driver, data
arrives via one or more callback functions that you define. The function may act on
the data and then output a result back to Erlang. As with external programs, the
same linked-in driver code can be activated any number of times for separate port
instances that may have overlapping lifetimes. Because all these instances execute
within the memory of the Erlang VM, possibly running as different threads, the driver
code must be designed to be reentrant—executable by multiple simultaneous callers—
and must not depend on global variables or locks.

 There are two types of long-lived data in a C program or library. The first type is
global variables, or external variables in C terminology. These are variables defined

314 CHAPTER 12 Integrating with foreign code using ports and NIFs
outside of any function, and they exist for the duration of the program, or as long as
the library is loaded. The problem is that if there may be several concurrent callers of
the code, there is still only one set of global variables, and the callers overwrite each
other’s data, causing corruption or crashes.

 For example, let’s say you want to write a
simple port driver that increments a coun-
ter and returns the current value. If you
don’t think about reentrancy, you may use a
global C variable to hold the counter. This
works as long as there’s only a single caller
at a time. But suppose a user needs five such
counters and starts five ports running the
same driver code. Unfortunately, these five
instances will stomp all over each other by
incrementing the same global variable, producing odd results. This sharing of driver
state is illustrated in figure 12.5.

 The other type of long-lived data is dynamically allocated memory. If the library
requires that each caller personally allocates the memory needed to service its call,
then it doesn’t matter how many simultaneous callers there are: they won’t overwrite
each others’ working memory. This is what you want for a linked-in driver. We’ll refer
to this memory and its contents as the instance-specific data. In the example of the
counter driver, if each instance has its own data area for the counter variable, you
should get the behavior that users expect: for each port they open, a separate counter
is maintained, and the counters don’t interfere with each other. This is illustrated in
figure 12.6.

 You’ll typically allocate this memory in the initialization phase of the driver, but
you may also allocate memory dynamically as needed. Erlang’s erl_driver API con-
tains support functions such as driver_alloc() and driver_free() specially for
managing memory in linked-in driver code.

 Having discussed this, it’s time to get on with the implementation. Most of the
code that you wrote for the external program can be reused as-is in the linked-in
driver. The only thing that needs to change is the bridge between Erlang and the
C code.

Figure 12.5 Nonreentrant linked-in driver
code using shared global memory. Each driver
instance tries to use the same memory area
for its data, usually ending in a crash.

Figure 12.6
Reentrant linked-in driver code using only
instance-specific data. Each instance of the
driver has its own working memory and isn’t
affected by the others.

315Making a linked-in driver
12.3.2 The C side of the driver

Previously, the C code was a normal standalone program with a main function, reading
from the standard input and writing to standard output, both of which were con-
nected to the port on the Erlang side. In the linked-in driver, the C code will run
within the same address space as the Erlang runtime system, and the communication
will be performed by a set of callback functions that the Erlang VM can call directly.
This uses the erl_driver API, which is described in the ERTS Reference Manual sec-
tion of the Erlang/OTP documentation.

 The concrete details that we’ll talk about in this section deal mostly with the bridge
between the Erlang VM and the C code. Let’s copy the c_src/jp_prog.c file of the pre-
vious section to a new file c_src/jp_driver.c and start modifying it. First, all linked-in
driver code needs to include the erl_driver.h header file:

#include <erl_driver.h>

On the other hand, you won’t need the BUFSIZE and the ERR_... definitions any-
more, because no standard I/O and no exit status will be used in the linked-in driver.
This also means that the functions write_packet, read_bytes, read_packet, and
main can all be deleted.

 Next, you’ll need some new definitions for using the erl_driver API. These are
shown in the following listing.

static ErlDrvData drv_start(ErlDrvPort port, char *command);
static void drv_stop(ErlDrvData handle);
static void drv_output(ErlDrvData handle, char *buf, int sz);

static ErlDrvEntry jp_driver_entry = {
 NULL, /* init */
 drv_start, /* start */
 drv_stop, /* stop */
 drv_output, /* output */
 NULL, /* ready_input */
 NULL, /* ready_output */
 "jp_driver", /* driver_name */
 NULL, /* finish */
 NULL, /* handle (reserved) */
 NULL, /* control */
 NULL, /* timeout */
 NULL, /* outputv */
 NULL, /* ready_async */
 NULL, /* flush */
 NULL, /* call */
 NULL, /* event */
 ERL_DRV_EXTENDED_MARKER, /* ERL_DRV_EXTENDED_MARKER */
 ERL_DRV_EXTENDED_MAJOR_VERSION, /* ERL_DRV_EXTENDED_MAJOR_VERSION */
 ERL_DRV_EXTENDED_MAJOR_VERSION, /* ERL_DRV_EXTENDED_MINOR_VERSION */
 ERL_DRV_FLAG_USE_PORT_LOCKING /* ERL_DRV_FLAGs */
};

Listing 12.8 c_src/jp_driver.c: erl_driver definitions

Driver entry
structureB

316 CHAPTER 12 Integrating with foreign code using ports and NIFs
DRIVER_INIT(jp_driver)
{
 return &jp_driver_entry;
}

typedef struct {
 ErlDrvPort port;
} drv_data_t;

This starts with declarations of the callback functions that you implement further
down. After that, you need to tell the Erlang VM about your callbacks. You do so by
creating and filling in an ErlDrvEntry structure with pointers to the functions you’ve
implemented, and NULL for all the other callbacks B. This structure is the key to your
driver code. Most of the fields are pointers to a callback function that you can imple-
ment if you want to make use of it. In this case, you only fill in the callbacks start,
stop, and output. You also need to fill in one other important field: driver_name.
This lets Erlang identify which ErlDrvEntry structure you’re referring to when you
open the port; section 12.3.4 will show how this works.

 You use the DRIVER_INIT macro to register the structure with the Erlang VM. The
name given as the macro argument must be the same as the one used in the structure,
but without quotes. The body following the macro should return a pointer to the
structure C.

 Finally, you define the structure that holds the instance-specific driver data as
showed in figure 12.6. This holds the information that your driver needs to remem-
ber from one callback invocation to the next, much like the state record in a
gen_server D. For this example, only the Erlang port is stored here so your code
knows where to send the output. Typically, you allocate memory for this structure in
the start callback of the driver, which should return a pointer to the structure, cast
to the special pointer type ErlDrvData. This ErlDrvData pointer is then passed as an
argument from the Erlang VM to the other driver callback functions so you always
have access to it.

PORT DRIVER CALLBACKS

Some of the driver callback functions are life cycle functions, like start and stop,
called when a port using the driver is opened or closed. Others are called when data
from the Erlang side is available. Drivers may implement over a dozen different call-
back functions, but fortunately, you don’t have to implement all of them. Most linked-
in drivers implement the start and stop functions, and possibly init, but implement
only the communication functions they need.

 In this example, you only need the output communication function. Note that for
all except the start function, the first argument to every callback is the ErlDrvData
handle returned by start.

 Table 12.2 lists all the available callbacks. As you can see, there are many possibili-
ties, although you’ll probably never use all these callbacks in the same driver.

 For more information about these callback functions, see the documentation for
driver_entry in the ERTS Reference Manual.

Tells Erlang
about driverC

Structure for
instance-specific dataD

317Making a linked-in driver
MEMORY MANAGEMENT

One thing needs to change, now that your code will be running in the memory space
of the Erlang VM: you should no longer use the standard library functions malloc and
free in C to manage memory. When writing a linked-in driver, you should use the
erl_driver library functions driver_alloc() and driver_free() instead. Fortu-
nately, the YAJL library is flexible enough that it has a mechanism for telling it which
functions to use when it needs to allocate memory. All you need to do is write wrap-
pers that can be used by YAJL around the three functions driver_alloc(), driver_
realloc(), and driver_free(), and then fill in a structure with pointers to these
functions. This is shown in listing 12.9.

Table 12.2 The available erl_driver callback functions. You implement only the ones that are
needed for your driver and leave the rest as NULL.

Callback Description

init Called at system start-up for statically linked drivers, and after
loading for dynamically loaded drivers.

start Called when open_port/2 is invoked.

stop Called when the port is closed.

output Called when output is available from some Erlang process to
the port. Not used if the outputv callback is defined.

ready_input Called when input is available from one of the driver’s handles.
Used for asynchronous I/O.

ready_output Called when output is possible to one of the driver’s handles.
Used for asynchronous I/O.

finish Called before the driver is unloaded. Only used for dynamically
loaded drivers.

control Like an ioctl for drivers. Called when port_control/3 is
invoked from Erlang.

timeout Called when one of the drivers’ timers triggers.

outputv Called when someone writes to the port from Erlang. If this
callback isn’t defined, the output callback is used instead to
handle writes.

ready_async Called after an asynchronous driver_async call has
completed.

flush Called when the port is about to be closed and data in the
driver queue needs to be flushed before stop can be called.

call Much like the control callback, but uses Erlang’s external
term format for input and output.

event Called when an event selected by driver_event() has
occurred.

318 CHAPTER 12 Integrating with foreign code using ports and NIFs
static void *alloc_func(void *ctx, unsigned int sz)
{
 return driver_alloc(sz);
}

static void *realloc_func(void *ctx, void *ptr, unsigned int sz)
{
 return driver_realloc(ptr, sz);
}

static void free_func(void *ctx, void *ptr)
{
 driver_free(ptr);
}

static yajl_alloc_funcs alloc_funcs = {
 alloc_func,
 realloc_func,
 free_func,
 NULL
};

All these functions receive a context pointer as the first argument, which you specify
as the last element in the structure. (Don’t confuse this with the context pointer that
the other YAJL callbacks receive; they may be the same, but only if you’ve set them up
in that way.) You won’t need any context here, though, so you should leave the last
field of the structure as NULL. The only remaining thing is to tell YAJL to use these
alternative allocation functions. Recall that in the parse_json function, you called
yajl_alloc like this:

yh = yajl_alloc(&callbacks, &cfg, NULL, st);

The argument you gave as NULL is the one used to specify the yajl_alloc_funcs struc-
ture. You now need to change this call to the following

yh = yajl_alloc(&callbacks, &cfg, &alloc_funcs, st);

and YAJL will happily use the driver_alloc functions instead of malloc.
 Two more places in your code need to be changed with respect to memory man-

agement. Change the handle_start callback function

container_t *c = malloc(sizeof(container_t));

to

container_t *c = driver_alloc(sizeof(container_t));

And the handle_end function

free(c);

should now be

driver_free(c);

Listing 12.9 c_src/jp_driver.c: YAJL memory-handling callbacks

319Making a linked-in driver
Using the driver_alloc functions instead of malloc ensures that the memory man-
agement is done in a thread-safe, reentrant way, using the specially tailored memory
allocation routines of the Erlang VM.

SENDING DATA BACK TO ERLANG

When the linked-in driver wants to send data back to the Erlang node as output from
the port to the port owner process, it uses the driver_output API function provided
by erl_driver. This writes the specified buffer to the port specified in its first argu-
ment. To give the process_data function access to the port (stored in the instance-
specific driver data structure), it should take a pointer to this data structure as a
parameter. This means you need to change its definition from

static void process_data(unsigned char *buf)

to

static void process_data(drv_data_t *d, unsigned char *buf)

Then, at the end of the function body, change the call

write_packet(st.x.buff, st.x.buffsz, stdout);

to

driver_output(d->port, st.x.buff, st.x.buffsz);

By now, you’re almost done with converting the code to run as a linked-in driver. Only
the actual driver callback functions remain to be implemented.

THE DRIVER CALLBACK IMPLEMENTATIONS

Finally, we come to the implementation of the three callbacks you’ll be using: start,
stop, and output, shown in the following listing.

static ErlDrvData drv_start(ErlDrvPort port, char *command)
{
 drv_data_t *d = (drv_data_t *)driver_alloc(sizeof(drv_data_t));
 d->port = port;
 return (ErlDrvData)d;
}

static void drv_stop(ErlDrvData handle) {
 driver_free((char *)handle);
}

static void drv_output(ErlDrvData handle, char *buf, int sz)
{
 process_data((drv_data_t *)handle, (unsigned char *)buf);
}

The first is drv_start, which is called when a driver instance is started—that is, when
a port is opened using this driver. It creates the instance-specific data structure that
the rest of the functions use and stores the Erlang port identifier in it. The pointer to
this data structure is cast to the type ErlDrvData and returned as the result.

Listing 12.10 c_src/jp_driver.c: erl_driver callbacks

320 CHAPTER 12 Integrating with foreign code using ports and NIFs
 Next, drv_stop is called when the port is closed; it de-allocates the instance-specific
data structure again, using driver_free. In a more complex linked-in driver, it’s likely
that your start callback would do things like starting threads, allocating and initializ-
ing resources, and so on. Usually, you’ll then do the corresponding de-allocation of
resources and tearing down of threads in the stop callback.

 The drv_output function is the only communication callback used in this exam-
ple. Behavior-wise, it corresponds to the main function in the external program in sec-
tion 12.2, but the method of communication between this code and the Erlang VM
has changed. Instead of using byte streams between two separate operating system
processes, the Erlang VM calls this function directly, and the marshalling and unmar-
shalling take place in the same address space as the VM itself. There is also no need for
a handler loop; the Erlang VM calls this code on demand whenever data is sent to the
port, and you only have to pass a pointer to the data on to your process_data func-
tion, along with the pointer to the instance-specific data that you added as an extra
parameter to process_data.

 Compare your new code with the program from the previous section. Apart from
the communication, the rest of the code is exactly the same. This allows you to pick
the approach that works best for your application: an external program is safer but
not as efficient. A linked-in driver is faster, but it has the potential to crash the entire
VM. In either case, it’s not too difficult to rewrite the code to use the other method, if
the code is already well-structured.

12.3.3 Compiling the driver code

The jp_driver.c file needs to be compiled to a shared library (a shared object in UNIX
terminology, or a dynamic-link library in Windows). This means you have to specify
some different flags to gcc. From the command line, run the following:

gcc -o ./priv/jp_driver.so -fpic -shared -I${OTPROOT}/erts-5.7.5/include

➥ -I${OTPROOT}/lib/erl_interface-3.6.5/include -I${YAJLROOT}/include

➥ -L${OTPROOT}/lib/erl_interface-3.6.5/lib -L${YAJLROOT}/lib

➥ ./c_src/jp_driver.c -lei_st –lyajl

On Mac OS X, you need to specify the flags -bundle –flat_namespace –undefined
suppress instead of -shared:

gcc -o ./priv/jp_driver.so

➥ –fpic -bundle -flat_namespace -undefined suppress

➥ -I${OTPROOT}/erts-5.7.5/include

➥ -I${OTPROOT}/lib/erl_interface-3.6.5/include -I${YAJLROOT}/include

➥ -L${OTPROOT}/lib/erl_interface-3.6.5/lib -L${YAJLROOT}/lib

➥ ./c_src/jp_driver.c -lei_st –lyajl

Compare this to the command line you used in section 12.2.3. Apart from the names of
the source file and target file (c_src/jp_driver.c and priv/jp_driver.so, respectively), you
now also need to specify the –fpic and –shared flags and the include path ${OTPROOT}/
erts-5.7.5/include for the erl_driver.h header file. The .so extension is standard for
shared libraries on most UNIX-like platforms; on Windows, it’s .dll.

321Making a linked-in driver
 You’ve now finished migrating the C side of the code to run as a linked-in driver.
This mostly involved writing some wrapper code and changing the way you exchange
data with the Erlang VM. Next, you need to make some adjustments to the Erlang code.

12.3.4 The Erlang side of the driver

A few things need to change on the Erlang side in order to use a linked-in driver. The
OTP application structure will remain unchanged, but the parts of the gen_server
that manage the port must be modified.

 Your existing implementation of jp_server (see section 12.2.1) makes a call to
open_port({spawn, Name}, Options}) where Name is the path of an executable file.
The Erlang VM then takes care of starting the external program and connecting its
standard input and output streams to the port, and closing the port in case the exter-
nal program dies. It couldn’t be simpler.

 When you use a linked-in driver, the command for starting the port looks the
same, but this time you’re responsible for making sure that the C library has been
loaded and linked. The new code for ensuring that the library is loaded and opening
the port looks like this:

case erl_ddll:load(PrivDir, "jp_driver") of
 ok -> ok;
 Other -> exit(Other)
end,
open_port({spawn, "jp_driver"}, [binary])

The primary concern here is locating the actual shared library file and loading it. As
before with the external executable program, you should place the library file in the
application’s priv directory (or a subdirectory). This convention makes it easy to
locate the directory by calling code:priv_dir(AppName); see section 12.2.1.

 To load a shared library, you call erl_ddll:load(Path, Name) (note: two ds) where
Path is the path to the directory of the library file, and Name is the name of the file
itself without extension (usually .so or .dll). The filename must match the one you used
in the driver_name field of the ErlDrvEntry struct. If the call returns ok, it’s all right
to proceed and open the port. For a linked-in driver, there’s no point in using the
exit_status port option (and you no longer need the handle_info callback code for
handling exit status messages). Also, the {packet,N} option shouldn’t be used—the
erl_driver API already tells you the size of the data. Other than that, the call to
open_port looks almost the same as for an external program, but the name you spec-
ify is no longer the path of a file, but a string used to identify the loaded driver.

 If you’ve compiled the C code as described in section 12.3.3, you should now be able
to test your linked-in driver implementation. The procedure for running Erlang, start-
ing the json_parser application, and calling json_parser:parse_document/1 should
be exactly the same as in section 12.2.3. Users of your parser application shouldn’t
notice any difference in behavior except for the increase in speed.

 This completes the migration of the JSON parser from running as an external
program to a linked-in driver. Instead of communicating over standard I/O, data is

322 CHAPTER 12 Integrating with foreign code using ports and NIFs
exchanged via API calls in C. This eliminates the passing of data across process
boundaries and speeds up the communication between Erlang and the foreign code.
In this case, that gives you the additional speed you need, which makes the Erlware
people happy.

12.4 Implementing the parser as a NIF
NIFs are a new addition to Erlang, and they use a different approach than port-based
interfaces. Like port drivers, they’re based on a C API using a few callbacks; but on the
Erlang side they look like normal Erlang functions and don’t involve ports. The
erl_nif API has its own functions for passing data structures between Erlang and C
and doesn’t use the external term format. This means much less code can be shared
between the NIF implementation and the port driver. The advantages are speed and
ease of implementation.

 In this example, you’ll implement the interface to the JSON parser library as a NIF.
Let’s get started with the Erlang side of implementing the NIF code, to get an idea of
what you’ll be doing.

12.4.1 The Erlang side of the NIF

When you implement the JSON parser interface as NIFs, you’ll no longer need a
gen_server to hold an open port—all the functionality will be provided directly from
the module json_parser. There’ll be no need to start the application before it can be
used, and there’s no supervision tree. Thus, you can get rid of the jp_app, jp_sup,
and jp_server modules. The application will be a simple library application, and you
can simplify the file ebin/json_parser.app to the following:

{application, json_parser,
 [{description, "JSON parser (using NIFs)"},
 {vsn, "0.1.0"},
 {modules, [json_parser]},
 {applications, [kernel, stdlib]}
]}.

All your Erlang code goes in the json_parser module, and you need to do only a cou-
ple of small things. First, you must implement a function that loads the shared object.
This is done as follows:

init() ->
 case code:priv_dir(?APPNAME) of
 {error, _} ->
 error_logger:format("~w priv dir not found~n", [?APPNAME]),
 exit(error);
 PrivDir ->
 erlang:load_nif(filename:join([PrivDir, "jp_nifs"]), 0)
 end.

Calling erlang:load_nif(Path, LoadInfo) loads the shared library file specified by
Path (without file extension), links it in, and makes the NIFs that it contains available

323Implementing the parser as a NIF
as normal Erlang functions. The LoadInfo argument is passed to the load callback
(explained in a moment) and can be used for things like version upgrade handling.
In this case, just pass 0.

 Second, you don’t want to make your users have to call the init() function when-
ever they want to use your NIFs. That these functions are written as NIFs should be an
implementation detail, invisible to users. Fortunately, you can fix that by using the
module attribute -on_load (...) that was added to Erlang along with the erl_nif
API. The following declaration specifies that the init/0 function should be called
automatically when the module is loaded by the Erlang VM:

-on_load(init/0).

This ensures that the NIFs are available whenever the Erlang module they belong to
has been loaded, hiding the NIFness of the functions from the users.

 Finally, you must provide exported stub functions for the NIFs you implement—in
this case, the parse_document/1 function:

parse_document(Data) ->
 erlang:nif_error(nif_not_loaded).

When the NIF library is loaded, the NIF implementations will override the Erlang
versions.

With that in place, all you need to do is to create the shared library priv/jp_nifs.so to
be loaded by json_parser:init().

12.4.2 The C side of the NIF

Start by copying the file c_src/jp_driver.c that you implemented in section 12.3 to a
new file c_src/jp_nifs.c. They will have a lot in common, but a number of things need
to be modified.

 First, instead of including the header files erl_driver.h and ei.h at the start of the
code, you must include the erl_nif.h header file:

#include <erl_nif.h>

Using erlang:nif_error/1 in stub functions
The built-in function erlang:nif_error/1 used here has two purposes: First, if the
function is called before the NIF library has been loaded, it generates a runtime
error. In this respect, erlang:nif_error/1 behaves exactly like erlang:error/1.
Second, it indicates to code-analysis tools such as Dialyzer that the real behavior
of the function (when the NIF library is loaded) isn’t found by looking at the Erlang
code. Without this information, Dialyzer would draw the conclusion that this func-
tion always throws an exception and would warn you that your attempts to call it
won’t work. For this reason, you should always use erlang:nif_error/1 in the
body of your NIF stub functions.

324 CHAPTER 12 Integrating with foreign code using ports and NIFs
You should also delete the functions drv_start, drv_stop, drv_output, and make_
error, as well as the jp_driver_entry structure, the drv_data_t structure, and the
use of DRIVER_INIT.

THE ERLNIFENV ENVIRONMENT

In the linked-in driver, you had to define your own data structure to hold instance-
specific information. Here, the Erlang VM passes a pointer to an ErlNifEnv object to
your C functions, and you must use this pointer as a handle in most erl_nif API func-
tions that you call. (The erl_nif API is documented in the ERTS Reference Manual
section of the Erlang/OTP documentation.) To make the handle available to the YAJL
parser callback functions, you need to store it in your state_t structure. For reasons
that will be clear later, you now also need to keep a flag in the state structure to signal
whether the previous thing seen by the YAJL parser was the key in a key/value pair.
Thus, you should add these two lines to your state_t structure definition:

ErlNifEnv *env;
int key;

Also remove the following line

ei_x_buff x;

because you’ll no longer use the ei library for building terms. We’ll get into detail
about that later.

MEMORY MANAGEMENT

In the linked-in driver, you had to use the driver_alloc functions in the erl_driver
library to handle memory allocation. In a NIF, you must instead use the enif_alloc
functions provided by the erl_nif library. These functions need the ErlNifEnv as the
first argument, so you have to set this up to be passed as the allocation function con-
text. You do so in the parse_json function, just before you call yajl_alloc:

alloc_funcs.ctx = st->env;

(This overwrites the field you left as NULL in the alloc_funcs structure.)

NOTE The NIF API was finalized in Erlang/OTP R14. This book describes the
R13 version. The main difference is that the enif_alloc allocation functions
no longer take an ErlNifEnv pointer as the first argument. If you remove this
from the function calls, the code will work under R14.

Then, replace the calls to driver_alloc, driver_realloc, and driver_free in the
YAJL memory allocation wrappers with the following corresponding calls:

enif_alloc((ErlNifEnv *)ctx, sz)
enif_realloc((ErlNifEnv *)ctx, ptr, sz)
enif_free((ErlNifEnv *)ctx, ptr)

The memory allocation in the YAJL parser callback functions must also be changed,
but we’ll look at that later. They’ll need to be almost completely rewritten, so there’s
no point in making small changes to them right now.

325Implementing the parser as a NIF
KEEPING TRACK OF CONTAINER CONTENTS

One of the main complications with switching from the ei library to the erl_nif
library is that you no longer have an ei_x_buff buffer to incrementally build the rep-
resentations of arrays and maps. The erl_nif functions need to know the sizes of lists
and tuples when you create them; you can’t back-patch the size as you did in
handle_end in listing 12.7. But there is a solution: the erl_nif functions enif_make_
tuple_from_array and enif_make_list_from_array let you prepare your own C array
of Erlang terms and then turn them into a tuple or list with a single call. All you need
to do is manage this array while you’re parsing a JSON container. For this purpose, you
need to add the two fields arraysz and array to your container_t structure definition:

typedef struct container_t {
 int count; /* number of elements */
 int arraysz; /* size of elements array */
 ERL_NIF_TERM *array; /* elements array */
 struct container_t *next;
} container_t;

You should also remove the index field, which is no longer required.

THE NIF IMPLEMENTATION FUNCTION

We now come to the C function that implements the NIF. The corresponding Erlang
function is parse_document/1 (in the json_parser module), so name this C function
parse_document_1. This function replaces the process_data function used in the
previous versions of the code. The code for this, together with the declarations
needed to hook the NIF into the Erlang VM, is shown in the following listing.

static ERL_NIF_TERM parse_document_1(ErlNifEnv *env, int argc,
 const ERL_NIF_TERM argv[])
{
 state_t st;
 st.env = env;
 st.key = 0;
 ERL_NIF_TERM term;
 container_t c = { 0, 1, &term, NULL };
 st.c = &c;

 if (argc != 1 || !enif_is_binary(env, argv[0]))
 return enif_make_badarg(env);

 ErlNifBinary bin;
 if (!enif_inspect_binary(env, argv[0], &bin))
 return enif_make_badarg(env);
 const char *err;
 if ((err = parse_json(&st, bin.data, bin.size)) != NULL) {
 return enif_make_tuple2(env, enif_make_atom(env, "error"),
 enif_make_string(env, err, ERL_NIF_LATIN1));
 }
 return enif_make_tuple2(env, enif_make_atom(env, "ok"), term);
}

Listing 12.11 c_src/jp_nifs.c: NIF implementation function

Stores NIF
environment in state

B

Sets up dummy
top-level container

C

Gets address
and size of data

D

Runs parser E

326 CHAPTER 12 Integrating with foreign code using ports and NIFs
static ErlNifFunc json_parser_NIFs[] = {
 {"parse_document", 1, &parse_document_1}
};

ERL_NIF_INIT(json_parser, json_parser_NIFs, NULL, NULL, NULL, NULL);

All NIF implementation functions have the same signature: they must return an
ERL_NIF_TERM object (defined by the erl_nif API), and they always take three argu-
ments. The first, env, is the ErlNifEnv pointer that we described earlier. You store this
in your state_t structure for easy access B. The second argument, argc, is the num-
ber of Erlang arguments passed in the call to the NIF. (This makes it possible for several
NIFs on the Erlang side to use the same C function for the implementation.) Finally,
the arguments themselves—as many as given by argc—are passed in the array argv.

 Previously, you used the ei library to construct the result term in an ei_x_buff
buffer. In the NIF implementation, you need to do things differently. The return value
from the NIF function should be an ERL_NIF_TERM that represents the Erlang data to
be returned. To have a known location where the JSON callbacks can store this term,
you need to set up a dummy top-level container_t structure made to hold a single
element C. The element is stored in the variable term, which acts as a one-element C
array; and at the end of the NIF, if all goes well you return the value in term wrapped
in a tuple {ok, ...}.

 Typically, you want to check that the number of arguments and their individual
data types are what you expect before you get on with the real work of the NIF. In this
example, the (only) argument should be a binary; if it’s not, you report a runtime
error by returning a special kind of ERL_NIF_TERM that raises a badarg exception.

 To do the actual parsing, you need to find the JSON data embedded in the given
binary, with the help of enif_inspect_binary D, which you pass an ErlNifBinary
structure to be populated. Using the information in the ErlNifBinary, it’s then easy
to call the parse_json function as before E. If this returns an error string, you return
a tuple {error, String} back to Erlang.

REGISTERING YOUR NIFS

To inform the Erlang VM about which NIFs your library publishes, you must fill in an
ErlNifFunc array with the Erlang function name and arity of each NIF, and the corre-
sponding C function that implements it F. You must also use the macro ERL_NIF_INIT
to tell the Erlang VM about this array and to which module the functions should
belong. (Note that the module name—in this case json_parser—isn’t quoted.)

 The last four arguments of ERL_NIF_INIT are pointers to NIF life cycle functions
that you may use if you need them. (In this case, you can leave them all as NULL.)
These are, in the order they occur in the ERL_NIF_INIT call, load, reload, upgrade,
and unload. The load function is called when the NIF is loaded into the system, and
the unload function is called just before the NIF is unloaded from the system. The
reload function is called when the NIF is reloaded; and finally, the upgrade function is
called when the NIF is going through a code upgrade at runtime. For this example,
you don’t need to use any of these.

Lists your NIFsF

327Implementing the parser as a NIF
REWRITING THE YAJL PARSER CALLBACKS

The final thing to do in order to get the JSON parser working as a NIF is to re-
implement the YAJL parser callback functions. Previously, you used the ei library
functions to encode the resulting Erlang data, but now you must instead use the
functions in the erl_nif API, which work in a different way. This means you must
rewrite most of the callback code rather than reuse what you made before. Fortu-
nately, most of it is easily changed; the main differences are in the handle_map_key,
handle_start, and handle_end functions.

 You’ll also need to change the strategy used to track the elements in container
structures: instead of counting them, you’ll store them in your own temporary arrays.
The utility function count_element needs to be replaced with the more complicated
function add_element, shown in the following listing, which takes both the state and
the term to be added as input.

static void add_element(state_t *st, ERL_NIF_TERM t)
{
 container_t *c = st->c;
 if (c != NULL) {
 if (c->count >= c->arraysz) {
 c->arraysz *= 2;
 c->array = enif_realloc(st->env, c->array, c->arraysz);
 }
 if (st->key) {
 c->array[c->count-1] =
 enif_make_tuple2(st->env, c->array[c->count-1], t);
 st->key = 0;
 } else {
 c->array[c->count] = t;
 ++(c->count);
 }
 }
}

Initially, every container starts at zero elements and has a small pre-allocated array for
storing elements as they’re added. If the array isn’t large enough for the new ele-
ment, it’s first resized B. Then, there are two possible actions depending on whether
the element that is being added is the value part of a key/value pair, as signaled by the
st->key field: If it is, then the previously inserted element was in fact the key, and
you need to take it back out from the array, create a 2-tuple of the key and the value,
and put that tuple back in place of the key. The element count has already been
updated in this case, so you shouldn’t increment it again, but the key flag needs to be
reset C. If st->key isn’t set, the operation is much simpler: you only need to insert
the term at the current position in the array and increment the element count D.

 With this mechanism in place, it becomes an easy task to re-implement the simple
YAJL callbacks to use the erl_nif API, as shown in the following listing.

Listing 12.12 c_src/jp_nifs.c: add_element utility function

Resizes
array

B

Handles
complete
key/value pair

C

Handles other
elements

D

328 CHAPTER 12 Integrating with foreign code using ports and NIFs
static int handle_null(void *ctx)
{
 state_t *st = (state_t *)ctx;
 add_element(st, enif_make_atom(st->env, "undefined"));
 return 1;
}

static int handle_boolean(void *ctx, int boolVal)
{
 state_t *st = (state_t *)ctx;
 if (boolVal) {
 add_element(st, enif_make_atom(st->env, "true"));
 } else {
 add_element(st, enif_make_atom(st->env, "false"));
 }
 return 1;
}

static int handle_integer(void *ctx, long integerVal)
{
 state_t *st = (state_t *)ctx;
 add_element(st, enif_make_long(st->env, integerVal));
 return 1;
}

static int handle_double(void *ctx, double doubleVal)
{
 state_t *st = (state_t *)ctx;
 add_element(st, enif_make_double(st->env, doubleVal));
 return 1;
}

static int handle_string(void *ctx, const unsigned char *stringVal,
 unsigned int stringLen)
{
 state_t *st = (state_t *)ctx;
 ErlNifBinary bin;
 enif_alloc_binary(st->env, stringLen, &bin);
 strncpy((char *)bin.data, (char *)stringVal, stringLen);
 add_element(st, enif_make_binary(st->env, &bin));
 return 1;
}

static int handle_map_key(void *ctx, const unsigned char *stringVal,
 unsigned int stringLen)
{
 state_t *st = (state_t *)ctx;
 ErlNifBinary bin;
 enif_alloc_binary(st->env, stringLen, &bin);
 strncpy((char *)bin.data, (char *)stringVal, stringLen);
 add_element(st, enif_make_binary(st->env, &bin));
 st->key = 1;
 return 1;
}

Listing 12.13 c_src/jp_nifs.c: new simple YAJL callbacks

Signals that key
has been inserted

B

329Implementing the parser as a NIF
Note how all these functions follow the same pattern: they create an Erlang term
using enif_... functions and then call add_element to insert it in the current con-
tainer. Recall that you created a dummy top-level container in the parse_document_1
function (listing 12.11), so there’s always a container array to hold the element. Also
note how the handle_map_key function first inserts the key as if it was a normal string
element and then signals that the last insertion was a key so that the next element is
correctly encoded B.

 Finally, listing 12.14 shows the new container callbacks that handle the start and
end of arrays and maps. This is the last piece of code in this chapter, and it’s surpris-
ingly straightforward.

static int handle_start(void *ctx, int array)
{
 state_t *st = (state_t *)ctx;
 container_t *c = enif_alloc(st->env, sizeof(container_t));
 c->next = st->c;
 st->c = c;
 c->count = 0;
 c->arraysz = 32; /* initial term buffer size */
 c->array = enif_alloc(st->env, c->arraysz);
 return 1;
}

static int handle_start_map(void *ctx)
{
 return handle_start(ctx, 0);
}

static int handle_start_array(void *ctx)
{
 return handle_start(ctx, 1);
}

static int handle_end(void *ctx, int array)
{
 state_t *st = (state_t *)ctx;
 container_t *c = st->c;
 st->c = c->next;
 if (array) {
 add_element(st, enif_make_tuple_from_array(st->env, c->array,
 c->count));
 } else {
 add_element(st, enif_make_list_from_array(st->env, c->array,
 c->count));
 }
 enif_free(st->env, c);
 return 1;
}

static int handle_end_map(void *ctx)
{

Listing 12.14 c_src/jp_nifs.c: new YAJL container callbacks

Allocates,
links, and
initializes
container

B

Unlinks container
from state

C

Creates and adds
Erlang list or tuple

D

330 CHAPTER 12 Integrating with foreign code using ports and NIFs
 return handle_end(ctx, 0);
}

static int handle_end_array(void *ctx)
{
 return handle_end(ctx, 1);
}

When the start of a JSON array or map is seen, handle_start allocates a new con-
tainer structure (using enif_alloc), links it into the state, and initializes it. It also
allocates an initial, relatively small array to hold the elements of the container,
which add_element may resize later B.

 When handle_end is called, the array in the container structure holds all the terms
of the array or map. All that’s needed is to first unlink the container so that the new
tuple or list is added to the container above it C, create the Erlang term from the
array with the help of enif_make_tuple_from_array or enif_make_list_from_array

D, and add this term to the new current container. After that, the used container can
be de-allocated.

12.4.3 Compiling and running the code

To compile the C code using gcc, run the following from the command line:

$ gcc -o ./priv/jp_nifs.so -fpic -shared -I${OTPROOT}/erts-5.7.5/include

➥ -I${YAJLROOT}/include -L${YAJLROOT}/lib ./c_src/jp_nifs.c –lyajl

As with jp_driver, you must use slightly different options on Mac OS X:

gcc -o ./priv/jp_nifs.so -fpic -bundle -flat_namespace -undefined suppress

➥ -I${OTPROOT}/erts-5.7.5/include

➥ -I${YAJLROOT}/include -L${YAJLROOT}/lib ./c_src/jp_nifs.c -lyajl

Like the port driver code, this must be compiled to a shared library as you did in sec-
tion 12.3.3, the differences here being the names of the source and target files and
the fact that you don’t need to include or link with erl_interface. With the file priv/
jp_nifs.so in place, the code from section 12.4.1 should now be working. As we noted
in that section, everything needed to interface with the JSON library is now contained
in the json_parser module, which should have been set up to automatically load your
NIF library when the module is loaded. You no longer need to start the application in
order to use the NIF functions, as the following example illustrates:

$ erl -pa ../json_parser/ebin
...
1> Doc = <<"[null, true, {\"int\": 42, \"float\": 3.14}]">>.
...
2> json_parser:parse_document(Doc).
{ok,{undefined,true,[{<<"int">>,42},{<<"float">>,3.14}]}}
3>

That concludes this chapter. You’ve seen three separate ways of interfacing Erlang
with foreign code, each with its advantages and disadvantages. For NIFs, one of the dis-
advantages is concurrency: a call to a NIF will block the scheduler that calls it, until the

331Summary
NIF returns. If you’re running a typical Erlang system with one scheduler per CPU, it
means one of your CPUs is prevented from running other Erlang processes until the
NIF call finishes. NIFs are best suited for straightforward library calls that finish
quickly. Whether they’re a good choice for the JSON parser depends on your system
requirements: parsing large documents could degrade the responsiveness of your sys-
tem, although the throughput is likely to be very good.

12.5 Summary
In this chapter, we’ve looked at three fundamental methods of communicating with
foreign code from Erlang. The use of an independent external program connected to
a port is by far the preferred solution from a safety standpoint, and many existing
UNIX-style programs can be usefully called as they are without any additional C pro-
gramming, but in some cases speed may be of the essence. When you’re convinced
that something faster is needed, you may decide to use either a linked-in driver or
NIFs, depending on your further requirements—for example, whether you need to
perform asynchronous I/O from within the C code.

 But programming in C isn’t for everyone, and these days a lot of code is written in
Java. It would be neat if you could talk to that code directly instead of going via a C
layer. In the next chapter, we’ll look at a different form of communication with for-
eign code: Java nodes.

Communication
 between Erlang and
 Java via Jinterface
In the previous chapter, we talked about interfacing between Erlang and for-
eign code via Erlang’s ports. That’s a useful and general approach, but it isn’t the
most convenient route to take for every form of interaction. In this chapter, we
talk about a different kind of interface, where the foreign code masquerades as
an Erlang node and communicates over the Erlang distribution protocol (see
chapter 8). Fortunately, the Erlang language implementers have already done a
lot of the heavy lifting, providing solid libraries in C and Java to make this rela-
tively easy.

 After you rounded out your cache in part 2 of this book and made it suitable for
use in enterprise environments, other people and organizations picked it up and
started using it for their own projects. One of those groups needs to make the data

This chapter covers
■ Using Jinterface to communicate with Java

programs
■ Building a bridge between Erlang and the

HBase database
■ Integrating HBase with the Simple Cache

application
332

333Communication between Erlang and Java via Jinterface
persistent, rather than keep it in memory-resident Mnesia tables. Their requirement is
to preserve all the data they insert into the cache more or less forever. You could
switch the Mnesia tables to be disk resident, but it doesn’t feel like the right solution
for a potentially huge data store. To help them out, you instead decide to add the abil-
ity to store the cached objects in an external HBase cluster.

 In this chapter, we first outline how the connection to HBase will look. Then, you’ll
learn how Jinterface works and implement a basic Java node example. In the rest of
the chapter, you’ll build on those principles to implement a bridge between Erlang
and Java, allowing you to store Erlang terms in an HBase table and retrieve them.
Finally, you’ll integrate this bridge with your Simple Cache application.

HBase
HBase is a database from the Hadoop project (http://hadoop.apache.org/hbase/).
It’s based on Google’s Bigtable database design, and it offers a fast and reliable
store for big data sets. Integrating with HBase allows your users to rely on its
robust and well understood storage and distribution model and makes it possible
for them to store as much data as they want.

Interaction with the HBase system works along these lines: when the cache gets
a lookup request, it checks to see if the data is already present in the Mnesia table.
If so, it returns the data directly; otherwise, it tries to pull the data from HBase,
inserts it in Mnesia, and then returns it. When it gets a write request, the cache
writes both to HBase and to Mnesia. Users of this version of the cache use it basi-
cally as a fast, memory-resident cache in front of a reliable backing store. The fol-
lowing figure illustrates this relationship.

You can integrate HBase with Erlang in a number of ways, including accessing the
HBase RESTful API over HTTP. Here, you’ll make the HBase Java API accessible
via Jinterface—a Java library that allows an application written in Java to behave
as a node in an Erlang cluster.

This is a book about Erlang and OTP, not about Java and HBase. Consequently,
we give you enough information to get a working HBase node up and running as
a back end to your cache, but we won’t go into details about HBase itself or the
Java language.

The cache as a front end to a persistent storage. Reads access only the
cache, if possible, but writes are always performed on the backing store
as well.

http://hadoop.apache.org/hbase

334 CHAPTER 13 Communication between Erlang and Java via Jinterface
13.1 Integrating Erlang with Java using Jinterface
Before we dive into HBase and the integration code, let’s first look at Jinterface. Jinter-
face is a library written in Java that makes the Erlang distribution layer available to Java
programs. It doesn’t do this in an idiomatic Java way, but exposes the Erlang distribu-
tion model with as little modification as possible. For our purposes, coming from
Erlang to Java, this is a good thing: nearly every Erlang construct has a matching Java
class, from nodes and mailboxes to more granular objects like tuples and atoms. Let’s
go through the most important classes and talk about how they map to Erlang.

13.1.1 The OtpNode class

The Erlang distribution model is based on interconnected nodes. In the Jinterface
library, the node concept is represented by the OtpNode class. A node object provides
the means of connecting to and interacting with other nodes (which may or may not be
real Erlang nodes). Just like a normal Erlang node, a node implemented with Jinter-
face has a node name and optionally an authentication cookie (see section 8.2.4). To
start a node in Java, all you need to do is create an object instance of the OtpNode class
(the following is Java code):

OtpNode node = new OtpNode("myJavaNode");

It’s as simple as that. If the name string contains an @ character, it’s used as it is for the
full node name: for example, "myNode@frodo.erlware.org". Otherwise, an @ charac-
ter and the local hostname are added, forming a short name such as myNode@frodo.
(Recall that Erlang clusters require that all connected nodes use either short names
or long names, corresponding to the –sname and –name command-line flags, respec-
tively.) In section 13.1.4, we’ll show what you need to do to compile this code.

 If you also want to set a cookie for authorizing connections (see section 8.2.4), you
just pass that as an extra argument when you create the node:

OtpNode node = new OtpNode("myJavaNode", "secretcookie");

OtpNode is an interesting class that hides all of the underlying communication, con-
nection handling and so on from you, making it a relatively simple task to hook up
your Java code to an Erlang cluster. Next, to do anything with the node, you need to
create a mailbox.

13.1.2 The OtpMbox class

Mailboxes are used to interact with other nodes in the cluster. They behave like
Erlang’s process mailboxes, but they don’t belong to any process. In the Jinterface
model, a mailbox identifier serves the same purpose as an Erlang process identifier
from a communication perspective only—as an address where you can send messages.
Jinterface allows you to manage Java threads in any way that you like and gives you
direct access to the mailbox abstraction so that your threads can communicate via
messages as they please.

mailto:myNode@frodo.erlware.org

335Integrating Erlang with Java using Jinterface
 You create a mailbox by asking an OtpNode object to manufacture one for you.
Mailboxes can be created with or without a name. A mailbox with a name is registered
on the local node (that is, the Java node) in the exact same way as a registered process
on an Erlang node. This means you can send messages to the mailbox using its name,
just as for a registered Erlang process. If a mailbox doesn’t have a name, you need to
know its pid or have a direct reference to the mailbox object in order to interact with
it. The following example shows how to create a named mailbox:

OtpMbox named_mbox = node.createMbox("myNamedMbox");

Creating an anonymous mailbox is even simpler:

OtpMbox anon_mbox = node.createMbox();

When you have a mailbox, you can use it to send and receive messages. The two fun-
damental API methods you’ll use here are the send and receive methods of the Otp-
Mbox class. There are several variations of these methods, but we leave it to you to
study the Javadoc documentation to find out more (see www.erlang.org/doc/apps/
jinterface/java/).

 Sending and receiving data between Java and Erlang of course requires that you
marshal the data to and from the native Erlang format. Fortunately, Jinterface pro-
vides the tools you need for that.

13.1.3 Mapping Erlang data structures onto Java

All data that you want to pass as messages between nodes needs to be repre-
sented using the type-mapping classes that Jinterface provides. These classes, listed
in table 13.1, are a direct representation of the Erlang data types in Java. All are
subclasses of OtpErlangObject.

Table 13.1 Java classes in Jinterface for representing Erlang data

Erlang type Java class

Atom OtpErlangAtom, OtpErlangBoolean

Binary, bitstring OtpErlangBinary, OtpErlangBitstr

Fun OtpErlangFun, OtpErlangExternalFun

Float OtpErlangDouble, OtpErlangFloat

Integer OtpErlangInt, OtpErlangLong, OtpErlangShort,
OtpErlangChar, OtpErlangByte, OtpErlangUShort,
OtpErlangUInt

List OtpErlangList, OtpErlangString

Pid OtpErlangPid

Port OtpErlangPort

http://www.erlang.org/doc/apps

336 CHAPTER 13 Communication between Erlang and Java via Jinterface
The best way to understand how to use these classes is to go through some examples.
Take, for instance, the following Erlang term:

{some_atom, "Some string", 22}

Let’s map this onto Java and send it to your named mailbox from the anonymous
mailbox. Unfortunately, the Java side of things is more verbose:

OtpErlangAtom anAtom = new OtpErlangAtom("some_atom");
OtpErlangString aString = new OtpErlangString("Some string");
OtpErlangInt anInt = new OtpErlangInt(22);

OtpErlangTuple aTuple =
 new OtpErlangTuple(new OtpErlangObject[]{anAtom, aString, anInt});

anon_mbox.send("myNamedMbox", aTuple);

As you can see, the mapping between Erlang and Java is very direct. The main thing to
remember is that compound objects like tuples and lists must be built up incremen-
tally from individually mapped objects.

 Now, let’s take a quick look at transforming data in the other direction, from
Erlang into normal Java objects. Suppose you receive the message from the named
mailbox (and for simplicity, that you know its structure already, so you don’t need to
analyze it first):

OtpErlangObject msg = named_mbox.receive();

OtpErlangTuple t = (OtpErlangTuple) msg;

String theAtom = ((OtpErlangAtom) t.elementAt(0)).atomValue();
String theString = ((OtpErlangString) t.elementAt(1)).stringValue();
int theInt = ((OtpErlangInt) t.elementAt(2)).intValue();

The receive() method returns the first message in the mailbox or blocks until a mes-
sage arrives. The result is an OtpErlangObject, which you typically cast to some more
specific type. As long as you know what you expect to receive, it’s not too difficult to
convert the Jinterface representation to native Java data. (Exactly what you want to con-
vert it to depends on what you’ll do with the data; that part is up to you.)

 Remember that your goal is to create an interface between Simple Cache and
HBase using Jinterface, as shown in figure 13.1. For that, you need to understand how
to communicate between Erlang and Java. The next two sections will go through a
complete example, first from the Java side and then from the Erlang side.

Reference OtpErlangRef

Tuple OtpErlangTuple

Term OtpErlangObject

Table 13.1 Java classes in Jinterface for representing Erlang data (continued)

Erlang type Java class

337Integrating Erlang with Java using Jinterface
13.1.4 Message-handling example in Java

The following example code will expect to receive
a 2-tuple with a name string and the pid of the
sender, and reply with a similar tuple containing a
greeting and the pid of the mailbox, as shown in
figure 13.2.

 To hold this code, you’ll create a source file
named JInterfaceExample.java. Before you get
started on the code, let’s see how to compile it.

COMPILING A JAVA PROGRAM

Java programs (.java files) are compiled with
javac to form .class files. Just as erl uses the –pa
flag to add locations to the search path, java and javac use the –cp (class path) flag.
In Java, you need to give the correct search path for .class files both when you’re com-
piling a program and when you’re running it. (The Erlang compiler only needs this
path to check behaviour declarations, which is useful but not required.)

 You need to tell javac where it can find the Jinterface library that came with your
local installation of Erlang/OTP. The path to this library looks something like /usr/
local/lib/erlang/lib/jinterface-1.5.1/priv/OtpErlang.jar. Try to find the correspond-
ing OtpErlang.jar file on your computer before you read on.

 When you know the path, you can run javac with the following arguments:

$ javac –cp /path/to/OtpErlang.jar JInterfaceExample.java

If all goes well, that should produce a file named JInterfaceExample.class in your cur-
rent directory. If the command fails with a “javac not found” error, you probably
don’t have a Java Development Kit (JDK) installed on your machine. Download and
install one from http://java.sun.com/, and then check that javac is found in your sys-
tem’s search path and that the JAVA_HOME environment variable points to the direc-
tory where Java was installed.

THE JAVA EXAMPLE CODE

The OTP Jinterface library code belongs to the package com.ericsson.otp.erlang.
To use it, your JInterfaceExample.java file must start by importing this package:

import com.ericsson.otp.erlang.*;

Next, you need to declare the JInterfaceExample class that the code will belong to:

public class JInterfaceExample {
 // all the rest of the code goes here
}

Figure 13.1
The ultimate goal of this chapter: making
it possible to use HBase tables from
Simple Cache via Jinterface and the
HBase Java API

{SenderPid, "Bob"}

{MboxPid, "Greetings from Java, Bob!"}

Figure 13.2 Communication pattern
for the Jinterface example. When
receiving a message with a name string,
the Java code replies to the sender with
a greeting.

http://java.sun.com

338 CHAPTER 13 Communication between Erlang and Java via Jinterface
All of the following code goes between those two { and } characters. First comes the
main() method, which is the entry point when you start the program. It creates a class
instance and calls its process() method, passing on the argument strings from the
command line:

public static void main(String[] args) throws Exception {
 if (args.length != 3) {
 System.out.println("wrong number of arguments");
 System.out.println("expected: nodeName mailboxName cookie");
 return;
 }
 JInterfaceExample ex = new JInterfaceExample(args[0],args[1],args[2]);
 ex.process();
}

Then, you need two member fields, one for the node and one for the mailbox:

private OtpNode node;
private OtpMbox mbox;

The node initialization happens in the JInterfaceExample constructor. It looks
like this:

public JInterfaceExample(String nodeName, String mboxName, String cookie)
throws Exception {
 super();
 node = new OtpNode(nodeName, cookie);
 mbox = node.createMbox(mboxName);
}

First, it creates a node with the given node name and security cookie. Then, it uses the
node object to create the named mailbox.

 Finally, the real work happens in the process()method, shown in the following
listing. It handles the incoming messages and sends responses.

private void process() {
 while (true) {
 try {
 OtpErlangObject msg = mbox.receive();
 OtpErlangTuple t = (OtpErlangTuple) msg;
 OtpErlangPid from = (OtpErlangPid) t.elementAt(0);
 String name = ((OtpErlangString) t.elementAt(1)).stringValue();
 String greeting = "Greetings from Java, " + name + "!";
 OtpErlangString replystr = new OtpErlangString(greeting);
 OtpErlangTuple outMsg =
 new OtpErlangTuple(new OtpErlangObject[]{mbox.self(),
 replystr});
 mbox.send(from, outMsg);
 } catch (Exception e) {
 System.out.println("caught error: " + e);
 }
 }
}

Listing 13.1 Jinterface message-handling example

Deconstructs tuple B

Creates
response tuple C

339Integrating Erlang with Java using Jinterface
This method consists of an endless loop while (true) {...} whose only purpose is
to process incoming messages. If something goes wrong, it prints the error and con-
tinues. Messages are expected to be in the form of a 2-tuple with the pid of the
sender and a name string. The code deconstructs the tuple B and creates the reply
string. Then, a response tuple is created C, containing the greeting as well as the
pid of the mailbox. Finally, the response is sent back to the originator of the incom-
ing message. All this uses the same basic constructs that we showed you in the previ-
ous section.

 When you’ve entered the code in the file JInterfaceExample.java and successfully
compiled it, it’s time to get the example up and running.

13.1.5 Talking to the Java node from Erlang

As we explained in section 8.2.3, Erlang nodes find each other via the EPMD daemon.
Nodes based on the Jinterface library are no exception, but Jinterface doesn’t start
EPMD by itself. Whenever you start an Erlang node, however, it makes sure EPMD is
running on the host machine. This is the simplest approach to solving this problem:
start an Erlang node before you start any Jinterface-based code. (Even if that Erlang
node is stopped again, EPMD will keep running on the host machine until it’s killed
or the machine reboots.)

 Let’s start a normal Erlang node using –sname and with the cookie secret:

$ erl -sname erlangNode -setcookie secret

Eshell V5.7.4 (abort with ^G)
(erlangNode@frodo)1>

Next (in another terminal window), get the Java node up and running so you can con-
nect to it from Erlang. Getting this to work is the first major step toward integrating
your Simple Cache application with the HBase Java API.

 The command line for starting the Java node should look much like the following
(all of it on one line), except for the path to the .jar file, which you should change to
match the path on your local machine:

java -cp .:/path/to/OtpErlang.jar JInterfaceExample javaNode

➥theMailbox secret

As with javac, the –cp flag adds locations to the class search path. (Note in particular
that you also add the current directory "." here, so that java will find your JInterface-
Example.class file.) Next comes the name of the class that contains the main()
method that should be called—in this case, JInterfaceExample. The remaining argu-
ments are passed on to main(); they represent the node name, the mailbox name, and
the cookie the Java node should use.

 When the Java program has been started, the nodes should be able to find each
other and communicate directly over the Erlang distribution protocol, as shown in fig-
ure 13.3.

340 CHAPTER 13 Communication between Erlang and Java via Jinterface
You can now go back to the Erlang node in the other terminal window and play around:

(erlangNode@frodo)1> net_adm:ping(javaNode@frodo).
pong
(erlangNode@frodo)2> {theMailbox, javaNode@frodo} ! {self(), "Eric"}.
{<0.39.0>,"Eric"}
(erlangNode@frodo)3> receive {Mbox, Msg} -> Msg end.
"Greetings from Java, Eric!"
(erlangNode@frodo)4> Mbox.
<5569.1.0>
(erlangNode@frodo)5> Mbox ! {self(), "Martin"}.
{<0.39.0>,"Martin"}
(erlangNode@frodo)6> receive Tuple -> Tuple end.
{<5569.1.0>,"Greetings from Java, Martin!"}

From the Erlang side, the Java node behaves just like any other Erlang node, and you
use plain message-passing to communicate with it. Note that you use the form {Name,
Node} ! Message to send the message to a mailbox registered under a specific name
on a specific node without knowing its unique identifier (see section 8.2.5). After you
get the first reply from the Java side, you can also use the returned identifier to send
further messages.

 Now that you understand the basics of communicating with a Java node from
Erlang, you can begin implementing the interface between your Simple Cache and
HBase. The first step is to install HBase and configure it to work as a backing store for
the cache.

13.2 Installing and configuring HBase
Before you move on to implementing the actual interface, it’s just as well to set up
HBase first so you can start testing it immediately when you’re done. This section will
give a quick introduction to installing and configuring HBase, without going into
details. The main thing you need to do is set up the tables needed for storing the
cache data. But first: installation.

13.2.1 Downloading and installing

You can download HBase from http://hadoop.apache.org/hbase/. It comes as a sin-
gle tarball file (see section 10.4.1) that you can unpack in a suitable location. You
also need to download and unpack the Hadoop Common distribution, found at

Figure 13.3
An Erlang node and a Java node running
on the same machine, using the same
EPMD daemon to find each other, and
communicating over the Erlang
distribution protocol

http://hadoop.apache.org/hbase

341Installing and configuring HBase
http://hadoop.apache.org/common/, in order to compile the code in this chapter.
The class path to javac must include both the hbase-<version>.jar and hadoop-
<version>-core.jar files found in these packages.

HBase has one non-obvious requirement: you must have an SSH server (sshd) run-
ning on your system. On many Linux-based laptop and desktop installations, sshd isn’t
installed by default, and you’ll need to install it manually (preferably using the stan-
dard package manager for your system). Under Windows, you may want to install
OpenSSH for Windows; or if you’re using Cygwin, you can set up a Cygwin sshd service.

 After you’ve downloaded the HBase tarball, you can unpack it like this:

$ tar –xzf hbase-0.20.3.tar.gz

After that, you can start up HBase from the directory where you unpacked it. Change
directory to the unpacked HBase installation, and run the start script:

$ cd hbase-0.20.3
$./bin/start-hbase.sh

At this point, HBase will connect back to your local machine via SSH to gather certain
bits of information that it needs. It may ask you for your password a couple of times.

NOTE If HBase startup fails with the error “Java could not be found,” you
must edit the conf/hbase-env.sh file and add an export JAVA_HOME line that
points to your JDK installation path.

When the start script finishes, you can move on to configuration.

13.2.2 Configuring HBase

For your current needs, you don’t have to do a lot of configuration. You just have to
start an HBase shell and create a table that you can use to store the cache data. You
start the shell like this (note the space between hbase and shell):

$./bin/hbase shell

After a couple of seconds, you’re presented with some information about your version
of HBase, and you get a prompt. The table you want for the cache should hold map-
pings from unique identifiers to chunks of binary data. The HBase command for cre-
ating such a table looks like this:

HBase (main):001:0> create 'cache', {NAME => 'value'}
0 row(s) in 2.3180 seconds
HBase (main):002:0> exit

This creates a table (a map; see the HBase documentation for details) named cache
with a single field called value. HBase stores everything as binary data, so you don’t
need to specify the types of the fields as you do in most relational databases.

 That wasn’t so hard, right? Now that you’ve configured HBase, it’s finally time
to begin working on the interface that will let you access it from your Simple
Cache application.

http://hadoop.apache.org/common

342 CHAPTER 13 Communication between Erlang and Java via Jinterface
13.3 Building the bridge between Simple Cache and HBase
The bridge between Erlang and HBase that you’ll create here is fairly specific to
its intended use as a back end for your cache—it isn’t a general HBase binding.
That keeps down the amount of work required. Still, it’ll be a well-structured solu-
tion; and to make things a little more interesting, it’ll use a thread pool to han-
dle requests asynchronously.

 The bridge will have four major components, as shown in figure 13.4.

■ Erlang code—Consists of the API functions put, get, and delete, in the module
sc_hbase. Much as for a gen_server implementation, these functions are wrap-
pers around a simple message-based protocol.

■ Java class HBaseConnector—Implements these operations by talking directly to
the HBase Java API, hiding most of the gory details.

■ Main Java class HBaseNode—For the Java node. Much like the example code
in section 13.1.4, it handles incoming requests from the Erlang side and dis-
patches them.

■ Java class HBaseTask—Handles each request in its own thread. Uses HBase-
Connector to perform the requested function, and sends a reply back to the
Erlang client.

In the rest of this section, you’ll implement these components one at a time in this
order. The first is the easiest: the Erlang code, which also defines the protocol that’ll
be used between Erlang and Java. Let’s get started.

13.3.1 The Erlang side: sc_hbase.erl

Remember that the purpose of all this is to realize the plan described at the start of
this chapter and illustrated in figure 13.1. For each main database operation that Sim-
ple Cache performs, a corresponding operation must be made against HBase. These
operations are insert, lookup, and delete.

 Toward this end, the Erlang HBase API consists of a single module named
sc_hbase in the simple_cache application, with the three functions put, get, and
delete. The protocol messages sent to the Java node consist of tuples containing a

Figure 13.4
Components of the Erlang-HBase
bridge: a single module on the Erlang
side and three classes on the Java
side in order to get a good separation
of responsibilities

343Building the bridge between Simple Cache and HBase
request tag (put, get, or delete), the pid of the sender, a reference to uniquely iden-
tify the request, the database key in question, and (optionally) a value (for put). This
protocol should also be easy to handle from the Java side.

 All these API functions take the name of the Java node as their first argument.
They assume that the mailbox on the Java node is registered under the name
hbase_server. (You could start multiple HBase-serving Java nodes with different
names; but the mailbox name represents a known entry point, so it seems suitable to
hardcode it as part of the protocol.) Having decided this, the implementation of
sc_hbase:put/3 is straightforward:

put(Node, Key, Value) ->
 Ref = make_ref(),
 {hbase_server, Node} ! {put, self(), Ref, term_to_binary(Key),
 term_to_binary(Value)},
 receive
 {reply, Ref, ok} ->
 ok
 after 3000 ->
 {error, timeout}
 end.

The reference created with make_ref() ensures that the receive expression only
accepts a reply to this particular request—no stray messages can confuse it. Also
note that you convert both the keys and the inserted values to binaries on the
Erlang side using term_to_binary/1; this simplifies the Java side, making it oblivi-
ous to what kind of data you’re storing and what the keys are. (To HBase, keys and
data are just sequences of bytes anyway.) Finally, if there is no reply from Java, the
operation times out.

 The get function is even simpler. It only needs to take the binary value it gets in
the reply from Java and convert it back into a term. If not_found is returned instead of
a binary, get returns {error, not_found}:

get(Node, Key) ->
 Ref = make_ref(),
 {hbase_server, Node} ! {get, self(), Ref, term_to_binary(Key)},
 receive
 {reply, Ref, not_found} ->
 {error, not_found};
 {reply, Ref, Binary} ->
 {ok, binary_to_term(Binary)}
 after 3000 ->
 {error, timeout}
 end.

Finally, delete looks much like get, but it always returns ok:

delete(Node, Key) ->
 Ref = make_ref(),
 {hbase_server, Node} ! {delete, self(), Ref, term_to_binary(Key)},
 receive

Converts key and
value to binaries

Converts binary
back to term

344 CHAPTER 13 Communication between Erlang and Java via Jinterface
 {reply, Ref, ok} ->
 ok
 after 3000 ->
 {error, timeout}
 end.

That’s all. (Remember to add sc_hbase to the list of modules in the simple_cache.app
file.) The most important part is the protocol that these functions define: both the
request tuples and the expected replies.

 Now, let’s turn to the more complicated Java side of the HBase bridge. First, you’ll
make a small wrapper layer around the core interaction with the HBase system: the
HBaseConnector class.

13.3.2 The HBaseConnector class

Having implemented the Erlang API functions, it seems like a good idea to next imple-
ment the corresponding basic functions on the Java side—the rightmost component in
figure 13.4—so that you afterward can focus on connecting those two endpoints. The
HBase Java API is a general database API and can be somewhat baroque, but all you
need here is a way to perform the three operations put, get, and delete, as defined in
the previous section. You’ll create a class HBaseConnector that implements these oper-
ations, so the rest of the code doesn’t have to know anything about HBase.

Create the directory simple_cache/java_src, and then create a new source file HBase-
Connector.java in that directory. Because this class will need to access the HBase Java
API, you must import the corresponding libraries. You’ll also need to use the –cp flag
to point out the hbase-<version>.jar file (found in the directory of your unpacked
HBase distribution) and the hadoop-<version>-core.jar file (where you unpacked the
Hadoop Common distribution), both when you compile the Java code and when you
run it later. The source file begins with the following magic words:

import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.*;
import java.util.NavigableMap;

Then, define the HBaseConnector class and its constructor:

public class HBaseConnector {
 private HTable table;

Where to put Java or C code
To keep the Java code separate from the Erlang code in your application, it’s cus-
tomary to create a separate directory java_src for the .java files, rather than put-
ting them in the src directory. (For C code, the directory name should be c_src.)
Compiled C and Java files (DLLs, executables, .class files, .jar files, and so on) are
usually placed under the priv directory so they can be shipped along with the
release without including the source files.

345Building the bridge between Simple Cache and HBase
 public HBaseConnector() throws Exception {
 super();
 table = new HTable(new HBaseConfiguration(), "cache");
 }

 // the rest of the code goes here
}

Note that to keep things as simple as possible, the Java classes in this chapter all
belong to the empty package. When you compile them, you can keep the generated
.class files in the java_src directory for now, along with the sources.

 The HBaseConnector class has a single member variable table, which holds an
HTable object (a part of the HBase Java API) that provides access to an HBase table.
The HTable class is highly configurable, and its constructor requires an HBase-
Configuration object as input. For your purposes here, the default configuration
will do nicely, so you only have to pass a fresh configuration object to its constructor
along with the name of the database table you want to access (the table named
cache that you created back in section 13.2.2).

 With the initialization complete, you now need to create the get, put, and delete
methods. Recall that the HBase table you created is a simple mapping from keys to
binary values. First, the get method retrieves a value from the database:

public byte[] get(byte[] key) throws Exception {
 // Throws NullPointerException if key is not found
 Result result = table.get(new Get(key));
 NavigableMap<byte[], NavigableMap<byte[], byte[]>> map =
 result.getNoVersionMap();
 return map.get("value".getBytes()).get("".getBytes());
}

The value is retrieved using the HBase API. Via the table object, you perform a get
request by passing a Get object that describes the entry you’re interested in. Note that
the key argument and all other parameters sent to HBase are passed as byte arrays.
HBase sees everything you store as sequences of bytes, and makes no assumptions
about the types of the data. Any time you interact with HBase, it must be via byte
arrays; this is one reason for making a wrapper around the API.

 The get method returns a Result object that you can use to retrieve the actual
value from the database. To do that, you need to create a NavigableMap object to
describe the data to HBase and allow you to access it. Finally, you can fetch the result
through the map. All this can be a bit confusing: you take the NavigableMap and call
its get method with the name of your field (as bytes). That gives you another
NavigableMap object that contains the different values, identified by their domains.
In this case, you’ll specify an empty domain when you insert objects into HBase, so
you need to do the same thing when you retrieve them. Passing an empty byte array
to the second get finally gives you the byte array representation of the value identi-
fied by the key.

Passes
configuration
object

346 CHAPTER 13 Communication between Erlang and Java via Jinterface
 The put method is simpler, doing basically what get does but in reverse:

public void put(byte[] key, byte[] value) throws Exception {
 Put put = new Put(key);
 put.add("value".getBytes(), "".getBytes(), value);
 table.put(put);
}

You first create a Put object, specifying the bytes of the key. Next, you add the value to
the Put object, specifying the key name and an empty domain, both as byte arrays.
Then, you use the table object to put the value into HBase.

 The delete method is the simplest of the three:

public void delete(byte[] key) throws Exception {
 Delete del = new Delete(key);
 table.delete(del);
}

First, you create a Delete object with the key you want to delete, and then you pass
that to the delete method of the table object. That’s all.

 Now that you have a way to perform the basic database operations you need, it’s
time to move on to the core part of the Java node: the HBaseNode class, which con-
nects the Java side to the Erlang side in figure 13.4.

13.3.3 Java message handling

The main framework of the Java node looks a lot like the communication example in
section 13.1.4. It receives requests as Erlang messages, analyzes and deconstructs
them, and processes the requests. To make it more interesting and more asynchro-
nous, it processes each message in a separate Java thread rather than handling only
one request at a time. Java isn’t like Erlang when it comes to concurrency, so starting a
new thread for each request would be too inefficient. Instead, the code uses a thread-
pool class provided by the Java standard library. Fortunately, most of the complexity of
multithreading is handled by the libraries.

 As in the example code, a class represents the main entry point of the node. This
initializes the Java node and the mailbox for incoming requests. The node then
enters a loop, receiving messages from the mailbox. For each message, it enqueues a
task object that processes the request in a separate thread and performs the database

Communication bottlenecks
One thing to be aware of in the current design of this system is that although it
uses a thread pool (see listing 13.2), it has only a single OtpMbox object. This
constitutes a bottleneck for incoming requests. For the purposes of this applica-
tion, it’s acceptable; but it may not be for more demanding applications. Many of
the approaches you’d take in Erlang to address the same problem can be used
here as well.

347Building the bridge between Simple Cache and HBase
operation. After the action is complete, it sends a response back to the caller that
originated the request. The flow of data and control is illustrated in figure 13.5.

 The main entry point to your Java node is the HBaseNode class (in a new source
file java_src/HBaseNode.java). The following listing shows its class definition and
constructor and the main method. Compare this to the JInterfaceExample class
in section 13.1.4. Here, the mailbox name is fixed, so the constructor takes only
two arguments.

import com.ericsson.otp.erlang.*;
import java.util.concurrent.*;

public class HBaseNode {
 private HBaseConnector conn;
 private ExecutorService exec;
 private OtpNode node;
 private OtpMbox mbox;

 public HBaseNode(String nodeName, String cookie)
 throws Exception {
 super();
 conn = new HBaseConnector();
 exec = Executors.newFixedThreadPool(10);
 node = new OtpNode (nodeName, cookie);
 mbox = node.createMbox("hbase_server");
 }

 public static void main(String[] args) throws Exception {
 if (args.length != 2) {
 System.out.println("wrong number of arguments");
 System.out.println("expected: nodeName cookie");
 return;
 }
 HBaseNode main = new HBaseNode(args[0],args[1]);
 main.process();
 }

 // the rest of the code goes here
}

In addition to the setup that you did in the JInterfaceExample constructor, you’re
also creating an instance of the HBaseConnector C, which sets up a connection to

Listing 13.2 The HBaseNode class

Figure 13.5
Requests are handled in separate
threads via a Java thread pool. This
makes it possible to process multiple
requests simultaneously, increasing the
throughput of the system.

Necessary for using
ExecutorServiceB

Instantiates
HBaseConnector

C

Creates Java
thread poolD

348 CHAPTER 13 Communication between Erlang and Java via Jinterface
the HBase server on your local machine, and you create the Java thread pool D
that will be used to dispatch requests. (The ExecutorService class is provided by
the Java standard library. To use it, you need to import some things B from the
java.util.concurrent package.)

 Next, the main() method is just like the one in the JInterfaceExample class,
except that in this case, you don’t need the mailbox name as a command-line argu-
ment. As before, the main loop of the program is in the process method, shown in
listing 13.3. This is an endless loop that waits for incoming messages, much like an
Erlang/OTP gen_server. Each new message is extracted from the mail queue, ana-
lyzed, and dispatched to a new HBaseTask object in order to be processed. (Note that
this code isn’t responsible for sending a reply to the caller.)

// message format: { Action, FromPID, UniqueRef, Key [, Value] }
private void process() {
 while (true) {
 try {
 OtpErlangObject msg = mbox.receive();
 OtpErlangTuple t = (OtpErlangTuple) msg;
 String action = ((OtpErlangAtom) t.elementAt(0)).atomValue();
 OtpErlangPid from = (OtpErlangPid) t.elementAt(1);
 OtpErlangRef ref = (OtpErlangRef) t.elementAt(2);
 byte[] key = ((OtpErlangBinary) t.elementAt(3)).binaryValue();
 byte[] value;
 HBaseTask task = null;
 if (t.arity() == 5 && action.equals("put")) {
 value = ((OtpErlangBinary) t.elementAt(4)).binaryValue();
 task = new HBaseTask(mbox, conn, from, ref, action, key, value);
 } else if (t.arity() == 4 && action.equals("put")) {
 task = new HBaseTask(mbox, conn, from, ref, action, key, null);
 } else if (t.arity() == 4 && action.equals("delete")) {
 task = new HBaseTask(mbox, conn, from, ref, action, key, null);
 } else {
 System.out.println("invalid request: " + t);
 continue;
 }
 exec.submit(task);
 } catch (Exception e) {
 System.out.println("caught error: " + e);
 }
 }
}

If a message has the wrong format, it’s handled by printing the error information to
the standard output. (Without a properly formed request tuple, you don’t know
who the sender is, so you couldn’t send a reply even if you wanted to.) For a more
production-ready implementation, you should use a proper logging service like
log4j; but for the purposes of this example, this solution is sufficient.

Listing 13.3 HBaseNode.process()

Decomposes message B

Creates HBaseTask
object

 C

Submits HBaseTask
object to thread poolD

349Building the bridge between Simple Cache and HBase
 As in the JInterfaceExample code, the message is first decomposed B, extracting
the message elements and casting them to the types you expect. If something goes
wrong, the exception is caught and printed, and the code loops to handle the next
message in the queue.

 The incoming request tuple may have four or five elements. A get or delete mes-
sage will only have four elements, but a put message will have five. In the latter case, an
HBaseTask object is created with a valid data field; in the former case, the HBaseTask
object has a null value as data C. If the arity of the tuple is anything other than four
or five, an error message is printed, and the next message is handled instead.

Finally, if everything works out and an HBaseTask object is created to hold the data,
it’s submitted to the thread pool D in order to process the request asynchronously
while the main loop handles more messages. HBaseTask is the last of the components
in figure 13.4 that you need to implement, and it’s not complicated.

13.3.4 The HBaseTask class

All the interesting things happen in the HBaseTask class, shown in listing 13.4. It
implements the Runnable interface in the Java standard library, which means it must
have a run method that provides the main entry point. In this case, run only analyzes
the requested action and dispatches to the appropriate handler method. (At this
point, the request tuple from the Erlang node has already been decomposed to a
form you can easily use.) If the request is a get, it’s handled by the doGet method, put
is handled by doPut, and delete by doDelete.

import com.ericsson.otp.erlang.*;

public class HBaseTask implements Runnable {
 private OtpMbox mbox;
 private HBaseConnector conn;

Message decomposition in Java versus Erlang
Take a moment to think about how you decompose a message in a language like
Java, compared to using a language with pattern matching like Erlang. In Java, it
takes almost 10 lines of code to decompose this simple tuple and decide what to
do. The corresponding code in Erlang would be

case Message of
 {Action, From, Ref, Key} -> ...;
 {Action, From, Ref, Action, Key, Value} -> ...;
end.

The difference in clarity and brevity is significant. This isn’t to pick on Java in par-
ticular, but to underline the power of declarative programming. Concise code tends
to have fewer bugs because it’s easier to see right away that it’s correct.

Listing 13.4 The HBaseTask class

350 CHAPTER 13 Communication between Erlang and Java via Jinterface
 private OtpErlangPid from;
 private OtpErlangRef ref;
 private String action;
 private byte[] key;
 private byte[] value;

 public HBaseTask(OtpMbox mbox, HBaseConnector conn,
 OtpErlangPid from, OtpErlangRef ref,
 String action, byte[] key, byte[] value) {
 super();
 this.mbox = mbox;
 this.conn = conn;
 this.from = from;
 this.ref = ref;
 this.action = action;
 this.key = key;
 this.value = value;
 }

 public void run() {
 try {
 if (action.equals("get")) {
 doGet();
 } else if (action.equals("put")) {
 doPut();
 } else if (action.equals("delete")) {
 doDelete();
 } else {
 System.out.println("invalid action: " + action);
 }
 } catch (Exception e) {
 System.out.println("caught error: " + e);
 }
 }

 // the rest of the code goes here
}

The methods doGet, doPut, and doDelete perform the requested actions. Any excep-
tions that occur in these methods are caught and handed by the run method, which
then sends an error reply back to Erlang. Let’s start by looking at doGet:

private void doGet() throws Exception {
 OtpErlangObject result;
 try {
 result = new OtpErlangBinary(conn.get(key));
 } catch (NullPointerException e) {
 result = new OtpErlangAtom("not_found");
 }
 OtpErlangTuple reply = new OtpErlangTuple(new OtpErlangObject[] {
 new OtpErlangAtom("reply"), ref,
 result
 });
 mbox.send(from, reply);
}

351Integrating HBase with Simple Cache
This gets the value for the given key and sends it back to Erlang as a binary (or sends
an atom not_found if the lookup fails). Note how the HBaseConnection conn object
makes it easy to retrieve the value, making this part of the code completely indepen-
dent of the details of the HBase API. Next, here’s the doPut method:

private void doPut() throws Exception {
 conn.put(key, value);
 OtpErlangTuple reply = new OtpErlangTuple(new OtpErlangObject[] {
 new OtpErlangAtom("reply"), ref,
 new OtpErlangAtom("ok")
 });
 mbox.send(from, reply);
}

Again, doPut is a mirror image of doGet, inserting the value into HBase for the speci-
fied key. In this case, a simple "ok" is sent back to Erlang as the result. Finally,
doDelete is similar:

private void doDelete() throws Exception {
 conn.delete(key);
 OtpErlangTuple reply = new OtpErlangTuple(new OtpErlangObject[] {
 new OtpErlangAtom("reply"), ref,
 new OtpErlangAtom("ok")
 });
 mbox.send(from, reply);
}

That concludes the Java side of the implementation. You should now have a working
Java node that provides an interface to HBase for the basic operations get, put, and
delete. The only thing left is integrating it with the Simple Cache application.

13.4 Integrating HBase with Simple Cache
To make the Simple Cache application use your shiny new Erlang-HBase bridge to store
cache data in an HBase table, you need to modify the lookup, insert, and delete func-
tions of the cache so they interact with HBase, as outlined at the start of the chapter.
Because you made the code for the cache so well-structured, the only file you need to
change is the front-end module simple_cache.erl, as illustrated by figure 13.6. This file
should still look much as it did back in listing 6.7 (section 6.4.3), apart from the calls to
sc_event that you added in chapter 7 to support logging.

Figure 13.6
Integrating the sc_hbase.erl module with the
simple_cache application. Each of the
lookup, insert, and delete API
functions of the cache need to be modified to
also communicate with HBase.

352 CHAPTER 13 Communication between Erlang and Java via Jinterface
First, define the name of the HBase Java node so that you only have a single place to
change if you want to rename it later. At the top of the file, after the export declara-
tion, add the following line:

-define(HBASE_NODE, 'hbase@localhost').

(The node name should be made a proper configurable parameter of the simple_
cache application, but we leave that as an exercise for you.) After that, you can move
on to modifying the access functions. Not a lot needs to be done; only the lookup
function requires more than a single line of code.

13.4.1 Lookup

First, you must modify simple_cache:lookup/1 to look up an entry in HBase if it can’t
find the entry locally (and only then). The new version is shown in the following list-
ing. As before, it relies on try/catch to handle errors and report not_found, includ-
ing if the calls to fetch and get return something other than {ok,...}.

lookup(Key) ->
 sc_event:lookup(Key),
 try
 case sc_store:lookup(Key) of
 {ok, Pid} ->
 {ok, Value} = sc_element:fetch(Pid),
 {ok, Value};
 {error, _} ->
 {ok, Value} = sc_hbase:get(?HBASE_NODE, Key),
 insert(Key, Value),
 {ok, Value}
 end
 catch
 _Class:_Exception ->
 {error, not_found}
 end.

If the local lookup fails, the function tries to look up the key in HBase. If it’s found,
the entry is inserted in the cache to make the lookup faster next time. If the HBase
lookup fails, the match against {ok, Value} fails, and the try expression handles it.

 That was the hard part; modifying the insert and delete functions is much
simpler.

13.4.2 Insert

All that simple_cache:insert/2 needs to do is make sure each entry that’s inserted in
the cache is also inserted into HBase. The new version looks as follows:

insert(Key, Value) ->
 case sc_store:lookup(Key) of
 {ok, Pid} ->
 sc_event:replace(Key, Value),

Listing 13.5 The new simple_cache:lookup/1

Tries local
lookup

Tries to
fetch from
HBase

353Running the integrated system
 sc_element:replace(Pid, Value);
 {error, _Reason} ->
 {ok, Pid} = sc_element:create(Value),
 sc_store:insert(Key, Pid),
 sc_event:create(Key, Value)
 end,
 sc_hbase:put(?HBASE_NODE, Key, Value).

The only thing added here is a call to sc_hbase:put/2 when a new value is inserted
into the system. The HBase interface doesn’t require different approaches depending
on whether the key already existed, so you need to add only a single line. But it should
be done after the corresponding entry is created in the cache, to avoid a race condi-
tion where a simultaneous lookup operation might find that the key isn’t yet in the
cache but can be retrieved from HBase.

 Finally, the delete function is similar to the insert case.

13.4.3 Delete

When a value is deleted from the cache, it must be deleted from the HBase table as
well. The new version of simple_cache:delete/1 looks like this:

delete(Key) ->
 sc_event:delete(Key),
 case sc_store:lookup(Key) of
 {ok, Pid} ->
 sc_hbase:delete(?HBASE_NODE, Key),
 sc_element:delete(Pid);
 {error, _Reason} ->
 ok
 end.

Note that the call to sc_element:delete/1 must be performed after the call to
sc_hbase:delete/2, to make sure the value isn’t reinserted into the cache by a
lookup operation that happens to run concurrently with the delete operation. If you
remove the entry from the cache first, a lookup may still be able to find the entry in
HBase and put it back in the cache before the delete operation has had time to
remove it from HBase.

 Assuming you’ve completed the three Java classes presented in this section
(HBaseConnector, HBaseNode, and HBaseTask) and compiled them successfully, it’s
now time to get things up and running.

13.5 Running the integrated system
Your cache system is no longer all that simple, and you need to ensure that several
things are started (and in the right order) for it to work:

■ Make sure HBase is started (see section 13.2.1).
■ Start one or more contact nodes (at least one on the local machine, ensuring

that EPMD is also running before you try to start a Java node). For example: erl
–sname contact1 –detached –setcookie secret.

Inserts into
HBase as well

Deletes entry
from HBase

Deletes from
cache last

354 CHAPTER 13 Communication between Erlang and Java via Jinterface
■ Start the Java node for the HBase bridge, making sure to use the same cookie as
the Erlang nodes. This is described in more detail next.

■ Start the simple_cache system (see section 10.2.6). For example: erl –sname
mynode –pa ./simple_cache/ebin –pa ./resource_discovery/ebin –boot
./simple_cache –config ./sys –setcookie secret.

■ If the nodes can’t find each other, check that all of them have been started
using the –sname flag (assuming your HBase Java node also uses a short name—
that is, without any dots in the host part of the node name) and that they all use
the same cookie.

Starting the HBase Java node is much like when you started the example node in sec-
tion 13.1.5, but you need a number of additional Java libraries to run the code for the
HBase bridge. In addition to the OTP Jinterface library, the HBase library, and the
Hadoop Common library that you needed to compile the code (see section 13.2.1),
you also need the following Java libraries:

■ Apache Commons Logging, from http://commons.apache.org/logging/
■ log4j, from http://logging.apache.org/log4j/
■ Apache ZooKeeper from http://hadoop.apache.org/zookeeper/

Luckily, you can find the JAR packages for these libraries in HBase’s lib directory, so
you don’t need to install them individually.

 Of course, to find the Java .class files that you’ve created for the HBase bridge, the
Java class path must include the simple_cache/java_src directory, or simple_cache/
priv/java if you prefer to keep the generated .class files separate from the .java source
files. The command line can get a bit unwieldy, but it should look something like this
(all on a single line—we’ve had to break it here for space reasons):

java -cp simple_cache/java_src:/path/to/OtpErlang.jar:/path/to/

➥ hbase-<version>.jar:/path/to/hadoop-<version>-core.jar:/path/to/

➥ commons-logging-<version>.jar:/path/to/log4j-<version>.jar:/path/to/

➥ zookeeper-<version>.jar HBaseNode hbase secret

Here, hbase is the node name, which must match the one defined by the HBASE_NODE
macro in simple_cache.erl (section 13.4); and secret is the cookie string for the Java
node. If you like, you can set the CLASSPATH environment variable for Java instead of
using the –cp command-line argument each time. Alternatively, you can create a small
shell script to run this command.

 If everything goes well, you should have an HBase database, a Java node for the
Erlang-HBase bridge, and a simple_cache Erlang target system, all up and running. You
should be able to insert data into the cache and look it up again via the simple_cache
module, and you should also be able to inspect and manipulate the HBase contents
directly via the sc_hbase module, as in the following example dialogue:

Eshell V5.7.3 (abort with ^G)
(mynode@localhost)1> sc_hbase:get(hbase@localhost, foo).
{error,not_found}

http://commons.apache.org/logging
http://logging.apache.org/log4j
http://hadoop.apache.org/zookeeper

355Running the integrated system
(mynode@localhost)2> simple_cache:insert(foo, bar).
=INFO REPORT==== 24-Apr-2010::21:25:27 ===
create(foo, bar)
ok
(mynode@localhost)3> simple_cache:lookup(foo).
=INFO REPORT==== 24-Apr-2010::21:25:50 ===
lookup(foo)
{ok,bar}
(mynode@localhost)4> sc_hbase:get(hbase@localhost, foo).
{ok,bar}
(mynode@localhost)5> simple_cache:lookup(17).
=INFO REPORT==== 24-Apr-2010::21:27:17 ===
lookup(17)
{error,not_found}
(mynode@localhost)6> sc_hbase:put(hbase@localhost, 17, 42).
ok
(mynode@localhost)7> sc_hbase:get(hbase@localhost, 17).
{ok,42}
(mynode@localhost)8> simple_cache:lookup(17).
=INFO REPORT==== 24-Apr-2010::21:29:09 ===
lookup(17)
=INFO REPORT==== 24-Apr-2010::21:29:09 ===
create(17, 42)
{ok,42}
(mynode@localhost)9> simple_cache:lookup(17).
=INFO REPORT==== 24-Apr-2010::21:34:49 ===
lookup(17)
{ok,42}
(mynode@localhost)10> simple_cache:delete(foo).
=INFO REPORT==== 24-Apr-2010::21:29:41 ===
delete(foo)
ok
(mynode@localhost)11> simple_cache:lookup(foo).
=INFO REPORT==== 24-Apr-2010::21:29:44 ===
lookup(foo)
{error,not_found}
(mynode@localhost)12> sc_hbase:get(hbase@localhost, foo).
{error,not_found}

Let’s walk through what happens in this dialogue. First, the lookup determines that
foo isn’t in HBase. You insert foo into the cache, after which you find foo both in the
cache and in HBase.

 Next, the lookup determines that 17 isn’t in the cache. You insert 17 → 42 directly
in HBase, after which the cache lookup finds 17 in HBase and inserts 17 → 42 into the
cache. In the next lookup, 17 is found directly in the cache. Finally, you remove foo
from the cache, after which the lookup no longer finds foo in HBase.

 As you can see, everything works just as expected. Note in particular the log info
message create(17,42) B: it shows that when key 17 isn’t found in the cache, it’s
looked up in HBase (where it was inserted beforehand) and then automatically stored
in the cache for future lookups. The following lookup operation C succeeds immedi-
ately. Your external users will be pleased.

Automatically caches
data found in HBase

B

Cache lookup
succeeds directly

C

356 CHAPTER 13 Communication between Erlang and Java via Jinterface
13.6 Summary
You should now have a working knowledge of how to use Jinterface to create a non-
Erlang node in Java, interact with it, and integrate it with your system. The same tech-
niques can be used to create a bridge to any other Java library you want to leverage.

 You’ve almost reached the end of this book. It’s been a long journey, and we hope
you’ve learned a lot of new things: details of the Erlang language; the use of behav-
iours via OTP applications, supervision, logging, and event handling; distributed
Erlang, Mnesia, and how to make releases; and integration with the outside world
through HTTP, ports, drivers, and Jinterface. In the next chapter, we’ll round all this
off by looking at some techniques for measuring and improving the performance of
your code.

Optimization
 and performance

There is no such thing as

 fast, only fast enough

—Joe Armstrong

Optimization should only be on your mind when you know you need to shave off
those extra milliseconds or kilobytes. That is what the Erlware team needs to do
right now. It turns out that having a repository of Erlang software available for
download is something that lots of people want. With the improved speed and
functionality of the site, thanks in part to the simple cache you’ve imple-
mented, more and more people are hitting the erlware.org site. Efficiency is
once again starting to become an issue. Throwing hardware at the problem isn’t
an option at the moment, so scaling up horizontally by adding machines isn’t a
viable approach. The Erlware team must optimize their code to save as many
clock cycles as possible.

This chapter covers
■ How to approach performance tuning
■ Profiling your code using cprof and fprof
■ Caveats and pitfalls of the Erlang

programming language
357

358 CHAPTER 14 Optimization and performance
Your code is already beautiful, which means all that’s left is low-level optimization.
This chapter aims to give you the tools for optimizing the code you’ve written in the
previous chapters, so that you can assist the Erlware team. We want you to go into this
chapter with an understanding that modifying your code for efficiency’s sake alone—
and possibly sacrificing simplicity, readability, and maintainability—should be done as
a last resort and only after your code has been made beautiful but still isn’t fast
enough. This chapter is about that small percentage of cases when making it beautiful
doesn’t do the trick.

 The only way to be successful at performance improvement in general is to be sys-
tematic. Some problems may be obvious enough that they practically jump up and wave
at you; but beyond that, you need to measure, establish base lines, look for bottlenecks,
optimize, and then measure again to see whether performance has improved. In this
chapter, we’ll discuss the tools and tricks you can employ to get the job done.

 We’ll begin by discussing how to be systematic about performance tuning, finding
what the problem is, and knowing when you’ve fixed it.

14.1 How to approach performance tuning
Performance tuning has been called an art, and in many respects it is. Some people
have great skill at divining bottlenecks and cleverly removing them, but that is largely
a result of the intuition that comes with years of practical experience—it isn’t some-
thing you can easily learn from a book. In this chapter, we’ll focus on the science of
performance tuning and how to go about it in a methodical manner.

 The Erlware group tries to approach the performance tuning problem system-
atically through the steps shown in figure 14.1. Let’s go through these steps in
more detail.

14.1.1 Determining your performance goals

Before you begin tuning, you should know when you can say that you’re finished. Your
goals should have the following characteristics (known by the SMART acronym):

■ Specific—Clearly defined in terms of, for example, CPU usage or throughput
per second.

■ Measurable—Verifiable through systematic measurement.

Martin says…
I remember the first time I met Joe Armstrong, one of the creators of Erlang, back
in 2002 at a functional programming conference in the United States. He was filled
with tons of great sayings and computer science maxims, some original and some
quoted. Many of them stuck with me. One of my favorites was, “Make it work, then
make it beautiful, then if you really, really have to, make it fast.” He went on to
say, “90 percent of the time, if you make it beautiful, it will already be fast. So
really, just make it beautiful!”

359How to approach performance tuning
■ Attainable—Reasonable to achieve. You should be able to expect to achieve the
goals within the limits of the project; otherwise, you’ve set them too high to
start with.

■ Realistic—Given the current resources and motivation, if the goals are only
attainable through tremendous effort by the whole team, they aren’t realistic.

■ Timely—Able to be finished in a predetermined time. Don’t leave the tuning
effort open ended: setting a time limit focuses your effort and helps you brush
away the unimportant.

For example, based on the number of actual hits to the erlware.org website and the
transaction volume generated on different parts of the system, the Erlware team
decides what the goals for acceptable performance are at this time. They also look at
the statistics over the last few months to see the overall trends in traffic, and they take
a stab at what traffic will look like six months from now considering the company’s
current promotional efforts. Based on this, the team sets the goals for the current per-
formance tuning effort.

14.1.2 Establishing a baseline

If your goals are measurable (as they should be), you can establish baselines. Run tests
to find out where you currently stand with regard to the metrics for your goals. For
example, what are the current CPU consumption and throughput of your system
(before you do any tuning)? The broader the baseline, the easier it will be to deter-
mine the impact of any changes you make.

14.1.3 Profiling the system

If your measurements show that your goals aren’t fulfilled—sometimes it turns out that
you didn’t have a problem to begin with, at least not where you thought—you need to
find out where the time is spent (or the memory or bandwidth is used). Profile the code

Figure 14.1
The process of performance tuning:
determine your goals, establish a
baseline, profile, optimize, measure again.
Repeat until the goals are satisfied or you
give up.

360 CHAPTER 14 Optimization and performance
and look for CPU bottlenecks, memory hogs, lock contention, processes stuck waiting
for I/O, or other problem points.

14.1.4 Decide which problems to attack

After you’ve identified what the main problems seem to be, you must decide which
ones to attack right now. Perhaps the one that seems to be the biggest overall problem
isn’t worth tackling at the moment, because it would take a lot of effort (and you’re
not sure exactly how much you’d gain). There may be other, smaller problems that
can be more easily fixed, which could let you achieve your optimization goals for now
without embarking on a perilous rewrite of a core component. Pick the issues that
seem likely to give the best payoff, considering that you should realistically be able to
fix them within the timeframe you have. And don’t try to fix them all at once: do them
one at a time so that you can see which changes really affect the performance.

14.1.5 Measure the results

Rerun the measurements after you’ve changed the code, and compare to your base-
line. Is the new code an improvement? (You’d be surprised how many times an “obvi-
ous improvement” to the code has no measurable effect or even turns out to be
worse.) If it is, have you reached your stated performance goals? In that case, congrat-
ulations—you’re finished, for now. Otherwise, go back to step 3 in figure 14.1 and
keep profiling, rewriting, and measuring until your goals are achieved (or you run out
of time and decide that you need to get more money and buy new hardware).

 You can use many tools to measure a system’s performance characteristics, from
simple logging and other kinds of instrumentation of the code, to various Erlang-spe-
cific tools like etop and percept or the open source project eper, to external operat-
ing system–specific tools. Most of them fall outside the scope of this book. In this
chapter we’ll show you how to use the basic tools provided by the Erlang/OTP stan-
dard library to profile Erlang code. This is the topic of the next section.

14.2 Profiling Erlang code
Profiling is the most reliable method for determining where the performance bottle-
necks are in your system. With practice, you can learn to spot typical gotchas and per-
formance pitfalls by just looking at the code; but at the end of the day, tracking down
performance bottlenecks usually requires profiling.

 In the general sense, profiling means gathering statistics about the code as it’s run-
ning, associating the data with corresponding points in the code. The most typical
form of profiling measures where in the code the most time is being spent: those are
your main bottlenecks. But time can be measured in different ways: spent CPU time
tells you how much real work your program is doing, whereas wall-clock time tells how
long you had to wait for the program to finish. If wall-clock time is high but CPU time
is low, it means your code is spending most of the time waiting for something else
(usually disk or network I/O) instead of working. If CPU time is high, you may be

361Profiling Erlang code
using a bad algorithm (perhaps with quadratic or exponential behaviour). As an
approximation of the amount of CPU time spent, some simple profilers only measure
the number of times each function has been called or each line of code has been exe-
cuted. Other things that profilers may measure include memory usage at different
points in the code, I/O usage, and the number of processes ready to run. (A program
point where few or no other processes tend to be ready to execute could be a synchro-
nization bottleneck, limiting the amount of parallelism in your system.)

 Erlang/OTP puts a number of profiling tools at your disposal, including cover for
code coverage, the instrument module for memory-usage analysis, and some new
ones like the percept tool for concurrency profiling. Here, we’ll cover the two main
time-profiling tools included with Erlang/OTP: fprof and cprof. We’ll start with
cprof, for no other reason than that it’s the easiest to use.

14.2.1 Counting calls with cprof

The cprof tool doesn’t provide the same depth of information that fprof does,
but it’s simple and straightforward to use. cprof counts function calls. The main
reason you’d want to use it instead of fprof is that it has minimal impact on the
running system (the profiled code becomes about 10 percent slower). This means
it’s more suitable for analyzing code running live in production, if that should
become necessary.

 Listing 14.1 shows a small module profile_ex containing some code that takes a
short time to run but otherwise doesn’t do anything interesting. The sole purpose of
the code is to give you something to profile. (The cache application is too big to use as
an example and isn’t particularly CPU intensive.)

-module(profile_ex).

%% API
-export([run/0]).

run() ->
 spawn(fun() -> looper(1000) end),
 spawn (fun() -> funner(1000) end).

looper(0) ->
 ok;
looper(N) ->
 _ = integer_to_list(N),
 looper(N - 1).

funner(N) ->
 funner(fun(X) -> integer_to_list(X) end, N).

funner(_Fun, 0) ->
 ok;
funner(Fun, N) ->
 Fun(N),
 funner(Fun, N - 1).

Listing 14.1 Example code for profiling

362 CHAPTER 14 Optimization and performance
The run() function spawns two processes to run in parallel: the first runs the looper/1
function, and the second runs the funner/1 function, in both cases with an argu-
ment of 1000. The looper/1 function calls integer_to_list(N) and discards the
result, for each N between 1 and the original input value. The funner/1 function does
much the same thing, but it uses a fun that’s passed as an extra argument to the loop
in funner/2.

 The following Erlang shell session demonstrates how you can use cprof to profile
the example module:

Eshell V5.7.4 (abort with ^G)
1> c(profile_ex).
{ok,profile_ex}
2> cprof:start().
5359
3> profile_ex:run().
<0.43.0>
4> cprof:pause().
5380
5> cprof:analyse(profile_ex).
{profile_ex,3006,
 [{{profile_ex,looper,1},1001},
 {{profile_ex,funner,2},1001},
 {{profile_ex,'-funner/1-fun-0-',1},1000},
 {{profile_ex,run,0},1},
 {{profile_ex,module_info,0},1},
 {{profile_ex,funner,1},1},
 {{profile_ex,'-run/0-fun-1-',0},1},
 {{profile_ex,'-run/0-fun-0-',0},1}]}
6> cprof:stop().
5380
7>

After the profile_ex module has been compiled and loaded (recall that c(...) also
loads the module), you call cprof:start() B. This enables call counting for all mod-
ules from this point on. You don’t need to do anything special with the code you’re
profiling—no special recompilation or reloading—and the code doesn’t need to have
been compiled with debugging information. This makes cprof a useful tool that you
can run on any system and without disturbing the running applications.

 Many times, you’ll only be interested in the call counts of a specific module, not of
all the modules in the system. For example, you could call cprof:start(profile_ex)
to profile only the profile_ex module. This further limits the impact of running with
call counting enabled. Right now, though, the overhead of profiling isn’t a problem.

 When cprof has been started and told what to profile, you run the code that you
want to measure. When it’s finished, you tell cprof to pause so that it stops count-
ing calls C. To get the results of the profiling session, you then call cprof:analyse
(profile_ex) to fetch the counts for all functions in the profile_ex module D.

 The returned term is fairly readable as it is: the functions are listed in decreasing
order of call count. You can see that the results are what you would have expected:

Starts cprofB

Stops profilingC

Fetches resultsD

363Profiling Erlang code
1,001 calls to both the main loop functions looper/1 and funner/2. (The 1001th call
was when the counter reached zero.) You also see that a function with the strange
name '-funner/1-fun-0-'/1 has been called exactly 1,000 times: this is the compiler-
generated function that contains the code for the fun defined in the funner/1 func-
tion. (This isn’t called in the case when the loop counter reaches zero.) All the other
functions are called exactly once. Note that the calls to integer_to_list/1 don’t
show up. First, this built-in function (BIF) isn’t part of the profile_ex module; and
second, even if you tried to profile the erlang module where it belongs, the BIFs in
Erlang can’t be call counted by cprof.

 Running cprof is an easy way to find out which functions are being called and how
many times. Sometimes this says everything you need to know, but you usually want
more detail. You can get this with the fprof tool.

14.2.2 Profiling execution time with fprof

The fprof profiler is perhaps the most valuable of the standard profiling tools. It gives
you a wealth of useful information in a digestible format, and it’s easy to use. It’s one
of the first tools to bring in when you need to diagnose performance issues. It super-
sedes the older eprof (which is still included in the distribution but is much less effi-
cient). Both fprof and eprof are built on top of Erlang’s tracing functionality, so
neither requires any special compilation of the code or additional debugging infor-
mation. They have much higher overhead than cprof and can make the code run up
to 10 times slower, so they should be used with some care if you need to profile a sys-
tem in production.

Running fprof is similar to running cprof. The following dialogue demonstrates how
you can use fprof to analyze the profile_ex module from the previous section:

Eshell V5.7.4 (abort with ^G)
1> c(profile_ex).
{ok,profile_ex}
2> fprof:trace(start).
ok
3> profile_ex:run().
<0.42.0>
4> fprof:trace(stop).

runtime_tools application required
fprof depends on dbg, which is part of the runtime_tools application (described
in the Tools section of the Erlang/OTP documentation). This must be present on
your system in order to use fprof. runtime_tools is included in the standard
Erlang/OTP distribution, but if you’ve installed Erlang via a package manager, you
may need to check that you also have this package. The fprof module, together
with cprof, cover, instrument, and a few others, belong to the unimaginatively
named tools application.

Starts tracingB

364 CHAPTER 14 Optimization and performance
ok
5> fprof:profile().
Reading trace data...
.............
End of trace!
ok
6> fprof:analyse({dest, "profile.txt"}).
Processing data...
Creating output...
Done!
ok
7>

Instead of generating a term that you can inspect directly in the shell, this creates a
file called profile.txt in your current directory. First, fprof is told to start tracing B.
The tracing information is by default written to a file named fprof.trace, which is in a
binary format, not fit for human consumption. You call profile_ex:run() as before,
and after a moment or two, you stop the tracing again. Next, you must call
fprof:profile() C to take the trace accumulated in the file and turn it into raw
profiling data. This compiled data is kept in RAM by the fprof server. You can then
analyze the data by calling fprof:analyse/1 D, in this example telling it to output
the results (in human readable format) to a file named profile.txt.

 Several variations on how to start a trace and produce the final output exist, and
we leave it as an exercise for you to study the documentation for fprof. It’s also
important to be aware of the amount of code you’re actively profiling. Unlike cprof,
fprof can accumulate data quickly, and if you profile large chunks of code over an
extended period of time, fprof can generate gigabytes of profiling information.

 But the procedure for generating the output isn’t nearly as important as the ability
to understand what it means, which is what we’ll look at next.

INTERPRETING THE OUTPUT FROM FPROF

The output from the analysis is in the profile.txt file. As is common when you’re work-
ing with Erlang, the text has the form of Erlang terms (terminated by period charac-
ters) and contains some Erlang comments (beginning with % characters). This means
you can easily read it with the standard library file:consult(Filename) function and
process the contents if you want to compute some statistics. The format can be a bit
eye-watering at first glance, but it’s not so hard to read when you know what to look
for. We’ll go through the important parts of the file and explain what they mean.

 The file begins with a comment that says Analysis results followed by a sum-
mary of the options that were given to the analysis (useful in case you want to rerun
the analysis later with the exact same options):

%% Analysis results:
{ analysis_options,
 [{callers, true},
 {sort, acc},
 {totals, false},
 {details, true}]}.

Processes traceC

Analyzes profiling dataD

365Profiling Erlang code
Then comes a short section that shows the total number of function calls (CNT), the
total amount of time (in milliseconds) for the entire execution (ACC), and the total
amount of time spent within the functions listed in this file (OWN).

% CNT ACC OWN
[{ totals, 5045, 78.976, 78.929}].

In other words, time spent in functions that aren’t being profiled isn’t included in the
total OWN time. In this example, you didn’t limit the profiling to any particular mod-
ules, so OWN is very close to ACC. In general, own time means the time spent within a
particular function, not counting the time spent in calls to other functions, whereas
accumulated time means total time spent from start to end. Time is measured as wall-
clock time by default; you can change this with the cpu_time option.

 After the totals, the file contains a section for each Erlang process that was involved
in the trace. Every such section starts with a summary for the process, like this:

% CNT ACC OWN
[{ "<0.51.0>", 3012,undefined, 48.973},
 { spawned_by, "<0.38.0>"},
 { spawned_as, {erlang,apply,["#Fun<profile_ex.1.108254554>",[]]}},
 { initial_calls, [{erlang,apply,2},{profile_ex,'-run/0-fun-1-',0}]}].

This is the summary of the profiling data for one of the two processes spawned by
profile_ex:run(), as you may be able to see from the initial_calls and spawned_as
entries. You can also see that the total OWN time for the process is a bit more than half
the total OWN time for the entire file, which makes sense: profile_ex:run() started two
processes that did about the same amount of work, but one did it in a more compli-
cated way than the other. ACC is always shown as undefined for a process.

 A little further down in the file you’ll find another process summary with similar
initial_calls and spawned_as entries:

% CNT ACC OWN
[{ "<0.50.0>", 2011,undefined, 29.338}
 { spawned_by, "<0.38.0>"},
 { spawned_as, {erlang,apply,["#Fun<profile_ex.0.133762870>",[]]}},
 { initial_calls, [{erlang,apply,2},{profile_ex,'-run/0-fun-0-',0}]}].

That is of course the other process spawned by profile_ex:run(). Note that the
spawned_by entry confirms that these processes had the same parent. (You also see
from the numbers in the process identifiers that <0.50.0> was spawned before
<0.51.0> even though they showed up in reverse order in this file.) Adding up the
CNT and the OWN columns for these two processes yields just about the totals at the start
of the file.

 After the process summary (up to the next one in the file) come the functions
called by the process, one “paragraph” (an Erlang term) per function. For example:

{[{{profile_ex,funner,1}, 1, 49.047, 0.025},
 {{profile_ex,funner,2}, 1000, 0.000, 20.692}],
 { {profile_ex,funner,2}, 1001, 49.047, 20.717}, %
 [{{profile_ex,'-funner/1-fun-0-',1}, 1000, 28.217, 18.482},

366 CHAPTER 14 Optimization and performance
 {suspend, 1, 0.113, 0.000},
 {{profile_ex,funner,2}, 1000, 0.000, 20.692}]}.

Each such paragraph has one line marked with a final % character—that line shows
the function that the paragraph concerns: in this case, profile_ex:funner/2. It has
been called a total of 1,001 times, taking a total time of 49.047 milliseconds, of which
20.717 milliseconds were spent in this function alone. The lines above the % marker
show where this function was called from: in this case, it was called once from funner/1
and 1,000 times from funner/2. Looking at the code from listing 14.1, this makes per-
fect sense.

 The lines below the % marker show the functions that were called from this function.
Again, you see that it calls itself 1,000 times, and it also calls '-funner/1-fun-0-'/1
(the autogenerated function for the fun expression in funner/1) 1,000 times. These
additional calls to evaluate the fun are why the funner process performs 1,000 more
calls than the looper process, as you could see in their total call counts.

 Finally, you see that the process was suspended once within this function, for a
duration of 0.113 ms. Process suspension is shown in this file as if it was another func-
tion call, and it even gets a paragraph of its own:

{[{{erlang,apply,2}, 1, 29.427, 0.000},
 {{profile_ex,funner,2}, 1, 0.113, 0.000}],
 { suspend, 2, 29.540, 0.000}, %
 []}.

Here, the line that says suspend is the one marked with a % character. This paragraph
says that this process was suspended once within erlang:apply/2 and once within
funner/2. In all, the process was suspended for 29.540 ms. Garbage collection time is
noted the same way:

{[{{profile_ex,'-funner/1-fun-0-',1}, 6, 0.357, 0.357}],
 { garbage_collect, 6, 0.357, 0.357}, %
 []}.

This tells you that garbage collection for this process was performed 6 times, taking a
total time of 0.357 ms.

 When you know how to read these files, they aren’t mysterious—in fact, they’re
pretty straightforward. Figuring out exactly what the numbers mean, for a particular
application that you’re profiling, is a different story.

 An easy place to start the investigation of profile-analysis data is to look at the
times for suspension and garbage collection. A process is suspended either when it’s
waiting for a message or when the scheduler puts it on hold for a while to let some
other processes run. Garbage collection is when the runtime system is tracking down
and recycling memory that was previously allocated by the process but is no longer in
use. The garbage collector is also responsible for growing and shrinking process
heaps as needed. A process that performs a lot of I/O operations or waits to receive
messages will spend a lot of time suspended. A process that allocates a lot of temporary
data will also spend part of the time doing garbage collection. Looking at suspension

367Profiling Erlang code
and garbage collection first will quickly tell you if the differences in time spent
between two processes could be due to these things.

 Comparing the suspend times for the looper process with those of the funner pro-
cess shown earlier, you can see that they’re almost equal (32.649 vs. 29.540 ms):

{[{{profile_ex,looper,1}, 1, 32.224, 0.000},
 {{erlang,apply,2}, 1, 0.425, 0.000}],
 { suspend, 2, 32.649, 0.000}, %
 []}.

and comparing the garbage-collection times, you see that they’re both very small
(0.164 vs. 0.357 ms). The differences could be due to fluctuations in measurement,
and in either case they’re just fractions of the total execution times:

{[{{profile_ex,looper,1}, 6, 0.164, 0.164}],
 { garbage_collect, 6, 0.164, 0.164}, %
 []}.

Having ruled these things out, you can start looking at the actual functions called
by each process. You saw in the paragraph for the funner/2 function previously
that a total of 20.717 ms were spent in that function alone; and it calls the func-
tion '-funner/1-fun-0-'/1, whose paragraph in the file looks like this:

{[{{profile_ex,funner,2}, 1000, 28.217, 18.482}],
 { {profile_ex,'-funner/1-fun-0-',1}, 1000, 28.217, 18.482}, %
 [{{erlang,integer_to_list,1}, 1000, 9.378, 9.378},
 {garbage_collect, 6, 0.357, 0.357}]}.

A total of 18.482 ms is spent in the fun expression in funner/1, and that fun also calls
out to integer_to_list/1 for a total of 9.378 ms. These numbers add up to about
48.5 ms in all, which is near the total OWN time for the funner process (48.973 ms).
That means you’ve accounted for where this process spends its time.

 Looking at the corresponding paragraph for the looper/1 function instead, you
can see that it used 19.649 ms of OWN time, and it calls integer_to_list/1 directly

Caveats when reading fprof files
The trace file contains a lot of numbers, and interpreting them can be confusing.
Things don’t always seem to add up. For example:

■ Tallying ACC times is tricky when the function is part of a complex mutually
recursive operation.

■ When wall-clock time is measured, the scheduling in the operating system
may affect the execution times. When this happens, it can appear that a
function uses more time than it should, even when it’s doing nothing. If you
see something that looks unreasonable, it’s best to run the profiling again
and compare.

Don’t get hung up on trying to track down every microsecond. Look at the file as a
whole, and you’ll quickly be able to zero in on where the most time is spent.

368 CHAPTER 14 Optimization and performance
for a total of 9.505 ms (very close to the time that the funner process spent in the
same function):

{[{{profile_ex,'-run/0-fun-0-',0}, 1, 61.542, 0.021},
 {{profile_ex,looper,1}, 1000, 0.000, 19.628}],
 { {profile_ex,looper,1}, 1001, 61.542, 19.649}, %
 [{suspend, 1, 32.224, 0.000},
 {{erlang,integer_to_list,1}, 1000, 9.505, 9.505},
 {garbage_collect, 6, 0.164, 0.164},
 {{profile_ex,looper,1}, 1000, 0.000, 19.628}]}.

These numbers add up to about 29.2 ms, which again is very near the total OWN time for
the looper process. Now that you’ve accounted for where both processes spend their
time, it’s also easy to see exactly where the difference lies: the use of the intermediate
fun in the funner process took almost 19 ms for the 1,000 calls, or about 19 micro-
seconds per fun call.

 Looking back at the code in listing 14.1, it’s easy to see that funner/1 is more time
consuming than looper/1 (unless the compiler is allowed to use inlining to eliminate
the use of the intermediate fun). The important thing isn’t that you proved some-
thing obvious with the help of fprof, but that you’ve learned how to read these files
and determine where the time is being spent.

 With the cprof and fprof tools in your arsenal, you have a good starting point for
performance analysis of your system. This will both help you assess where problems
may exist in the code and, after you’ve fixed them, allow you to establish which of your
optimizations had any measurable effect.

 But sometimes even when you’ve found the problem points, it’s not necessarily
apparent why there is a problem with the code. In the next section, we’ll discuss vari-
ous caveats and pitfalls that you should be aware of so you can spot them in the wild.

14.3 Erlang programming language caveats
One of the things that make Erlang code easy to read and understand is that there is
generally little hidden complexity. In most cases, the cost of performing an operation
is clear and up front: there are no implicitly called object constructors and destruc-
tors, no overloaded instances of + that turn out to be copying entire objects behind
your back, no virtual function table indirections, no synchronized regions, and no
blocking send primitives. A call to some function can of course do almost anything,
but in that case it’s usually clearly documented (and if you haven’t read the documen-
tation, or there is none, you at least know that there is a point in the program where
all bets are off).

 That said, like any programming language, Erlang has its little caveats. We’ll start
this discussion by looking at some aspects of Erlang’s primitive data types that you
should be aware of when you’re trying to make your program more efficient. The
primitive data types are the most heavily used parts of the language, and proper
choice of data representation and how you handle that data can make an enor-
mous difference.

369Erlang programming language caveats
14.3.1 Performance aspects of the primitive data types

First, note that sizes of data types in Erlang are counted in machine words. This is due to
the way the BEAM emulator works. On a 32-bit machine, a word is 4 bytes; on a 64-bit
machine, a word is 8 bytes. Table 14.1 lists the sizes of the primitive data types.

Let’s go through some aspects of these data types with regard to efficiency. For the
purposes of this discussion, funs can be regarded as a kind of tuple with some addi-
tional metadata, and pids (and ports and references) are similar to integers.

SMALL INTEGERS

Small integers require only a single word of memory, but the BEAM needs to use a few
bits of that word as a tag, to be able to separate it from other things. This is illustrated
in figure 14.2.

 On a 32-bit machine, only 28 bits can be used for the value (including the sign bit);
integers between -134217728 and +134217727 fit in one word, whereas larger integers
are stored as so-called bignums.

Table 14.1 Sizes of data types in Erlang

Data type Size in memory

Small integer (immediate) 1 word

Large integer (bignum) 3 words or more (as large as needed)

Float 4 words on 32-bit architectures, 3 words on 64-bit architectures

Atom 1 word (the name string is stored only once per Erlang node, in
the so-called atom table)

Binary or bitstring 3-6 words + size of data divided by word size

Pid, port, or reference 1 word for a local process/port/reference, 5 words for a remote
process/port/reference

Fun 9-13 words + 1 word per captured variable

Tuple 2 words + 1 word per element

List 1 word + 2 words per element

Bit 31 (sign bit)
32-bit machine word (4 bytes)

Bit 0

28-bit signed “small integer” Tag bits

Figure 14.2 Tagged representation of small integers in the BEAM. On a
32-bit machine, only 28 bits are available for storing the integer value.
Integers that require more bits are stored as bignums.

370 CHAPTER 14 Optimization and performance
BIGNUMS

When you program in Erlang, you can use integers of any size. When they get too
large to fit in a single word, the runtime system automatically changes their represen-
tation to bignums, which can be of any size (up to the available memory). The only
visible difference to you is that arithmetic on large integers becomes slower than on
small integers. This is sometimes noticeable when you have a tight loop that does a lot
of arithmetic, and you give it some input that causes many of the operations to be
done on large numbers. It may then be possible to rewrite the program to do the cal-
culations a different way or factor out some large part of the numbers so that most of
the operations involve only small integers.

FLOATS AND BOXED REPRESENTATIONS

Erlang’s floats use 64-bit precision. This means they don’t fit in a single word (not
even on a 64-bit machine, because as we said about small integers, the BEAM also
needs some bits for the tag). Therefore, floats always use what’s called a boxed repre-
sentation: first, there’s one word that contains a tag and a pointer to a location on the
process’s heap memory where the rest of the data is stored. This word is all that’s cop-
ied when you pass the float as an argument to another function or store it in a data
structure. Then, the data on the heap begins with another word that describes the
kind of data (float) and its size. After that comes the actual 64-bit floating-point data:
two words on a 32-bit machine, or one word on a 64-bit machine. This is illustrated in
figure 14.3.

 Several other of the primitive data types also use a boxed representation, including
bignums (which is why they need at least three words) and tuples.

ATOMS

Atoms are similar to small integers: each occurrence uses only one word of memory.
The data stored in that word is an index into an atom table where the actual name
string for that atom is stored. The name also uses a little memory, but it’s stored only
once on each Erlang node. In particular, comparing two atoms for equality is just as
fast as comparing two small integers. This is what makes atoms efficient for use as

2-bit tag

Header word

Heap memory

Size Type

First data word Second data word

Tagged pointer

Figure 14.3 Boxed representation of values that don’t fit in a single
word, such as floats and bignums. The tagged pointer is the only thing
that gets passed between functions or inserted in another data structure.

371Erlang programming language caveats
labels in tagged tuples. Atoms are added to the table (if they aren’t already present)
when a module is loaded that contains an occurrence of the atom, or when the node
receives a message from another node that contains a new atom, or when you call
list_to_atom(NameString). But atoms aren’t garbage collected, so unused atoms
aren’t removed from the table: the only way to clear the table is to restart the node.

 Atoms should be used to represent mostly static sets of identifiers. Use them as
much as you like, but avoid creating arbitrary atoms from untrusted data sources. You
can use the BIF list_to_existing_atom(NameString) to ensure that you only con-
vert strings to already known atoms in the system. If the name string isn’t already in
the atom table, this function will throw an exception.

BINARIES AND BITSTRINGS

Binaries and bitstrings (see section 2.2.2) are just chunks of bytes. Their representa-
tion is similar to bignums but is a little more complicated because several different
kinds of binaries exist under the surface, even though this is invisible to you. There
are two main types:

■ Heap binaries (small) are up to 64 bytes in size. They’re stored on the process’s
own heap, like a float or a bignum. When passed in a message between pro-
cesses, the data is copied just as it is for any other Erlang data type.

■ Reference-counted binaries (large) are stored in a separate global memory area
shared by all processes, and garbage collection for these binaries is handled by
reference counting. When a large binary like this is passed from one process to
another within the same Erlang VM, only a pointer has to be transferred, which
saves a lot of copying. This makes it possible to let one process read a large
chunk of binary data from a file or a port and pass it on to a second process
without wasting time on additional copying of the data. Although it’s good to
know that this is handled well by the system, exploiting this property for effi-
ciency hacks is ugly and should be done only as a last resort.

Creating atoms dynamically can be a memory leak
It’s common for novice Erlang hackers to come up with the idea of creating atoms
on the fly for various purposes: atoms with names like x1, x2, …, x187634, and so
on. This may work fine for one-shot programs that generate at most a few hundred
thousand atoms and then halt the Erlang VM. But the atom table size is limited,
currently to just over a million entries. When it overflows, the VM crashes with a
“system limit” error. For a small standalone program, that’s not a big issue, but
you don’t want that to happen in a long-running production system.

As an example, you may be doing this sort of thing without realizing it in a server
that receives data from the outside world and transforms the data into Erlang mes-
sages. If you’re converting strings in the incoming data to Erlang atoms, rather
than representing them as Erlang strings or binaries, you may be open to an attack:
someone could bring down your node by sending large numbers of unique strings.

372 CHAPTER 14 Optimization and performance
The syntax for working with binaries is powerful but can be tricky to get right; and it
can be hard to see how to best use it, especially if you’re writing loops over binary
data. One way to quickly get an idea of whether you’re using binaries efficiently is to
compile your code with the bin_opt_info flag—for example, by setting the operating
system environment variable ERL_COMPILER_OPTIONS to [bin_opt_info]. This flag
makes the compiler print additional warnings and information about how binaries are
used in the code, which can be a big help.

TUPLES

Tuples are refreshingly straightforward. Keep in mind that they’re read-only data
structures, and updates require copying. Because records are really tuples, updating a
field in a record means you’re creating a new tuple: to update a record containing 10
fields, 12 words of data need to be written. On the other hand, picking out fields in a
tuple or record is as fast as it can be. This means you have a trade-off between fast
reads and fast updates. For data that doesn’t change, a huge tuple can work as a quick-
access array, but updating it is inefficient. By nesting tuples, you can build a tree struc-
ture where accesses have to go through several indirections and become slower, but
updates become less costly; this is how standard libraries like the array module work.

LISTS

We’ve talked about how lists are represented, and things to keep in mind when you’re
programming with lists (see sections 2.2.5, 2.2.10, and 2.15.5, and appendix B), so we’ll just
mention a few points about the storage requirements for lists. Recall what we said about
boxed representations earlier in the section about floats. List cells are a bit like tuples
with two elements, but with an important difference from an implementation perspective:
the first word, which contains the tag and the pointer to the heap where the rest is
stored, has a special tag that says list cell. Because list cells always have two elements,
there is no need for any additional type or size information; so whereas a tuple of two
elements has a header word as the first word on the heap, a list cell needs no such extra
word: it only consists of exactly two words on the heap, and nothing more (see figures 2.1
and 2.2 in section 2.2.10). This makes Erlang’s lists efficient as a general data structure.

Memory usage for strings
If the elements in the list are small integers, like the character codes in a string,
then the head word of each cell holds the entire element. That means a string uses
exactly two words per character in the string. When you’re working with relatively
short strings (say, less than 10,000 characters), and you’re using strings as tem-
porary data structures, this is generally no problem. But if you store text as strings
(lists of character codes) in a database or in an ETS table or other data structure
in memory, you’re using a lot more space than necessary. Converting the strings
to binaries could shrink them by a factor of 8 (or 16 on a 64-bit machine). On the
other hand, convenience should also be considered: if you have plenty of memory
and it’s not currently a problem for you, changing the code to use binaries every-
where may not be worth it, particularly if the code gets messier.

373Erlang programming language caveats
That concludes our discussion of the primitive data types. In the next section, we’ll
look at some performance aspects of Erlang’s BIFs and operators.

14.3.2 Performance of built-in functions and operators

Erlang defines a number of operators and a number of BIFs. These are implemented
directly in C code as part of the runtime system, which makes them efficient in gen-
eral, but you must still consider a few performance implications and caveats. In this
section, we’ll bring up a few common pitfalls when using the following:

■ ++

■ --
■ list_to_atom(CharList)
■ length(List)
■ size(Thing)

THE ++ OPERATOR

We talked about this in section 2.2.5 and at the end of section 2.15.5, so we’ll just say it
again: don’t make lists grow on the right side! Also note that the ++ operator is an alias
for lists:append/2, so the same warnings apply for that function.

THE -- OPERATOR

The -- operator is an alias for lists:subtract/2. It’s rarely used: it deletes the ele-
ments in the right-side list from ones in the left-side list. It only deletes the first found
occurrence for each element on the right side, so it can’t be used to remove all occur-
rences from the left side unless you know how many there are. The following example
demonstrates how it works:

1> [1,2,3,2,1] -- [2,1,2].
[3,1]

As you can see, only the first occurrence of 1 was removed from the left side, both 2s
were removed, and the 3 wasn’t affected. The order of the elements is preserved.

 The issue with this function is that it uses quadratic time: it has to go over the left-
side list once for each element in the right-side list. For short lists, it’s not noticeable;
but if the lists is long, it can be a problem. If the order of the elements isn’t important,
it’s a much better idea to sort them first and then use ordsets:subtract/2.

LIST_TO_ATOM/1
Remember that atoms are never garbage collected, so use this function with care. It
may be that list_to_existing_atom/1 is a better choice for your application; see the
discussion about atoms previously in section 14.3.1.

LENGTH/1
Always remember that length(List) traverses the list to count the elements, much
like the C function strlen counts the length of a string. It’s a common mistake for
people with a background in Java to forget this and assume it’s a constant time opera-
tion—it’s not! See the end of section 2.15.5 for tips on how to use pattern matching
instead in some common situations.

374 CHAPTER 14 Optimization and performance
SIZE/1
It’s sometimes a source of confusion that length/1 is used for lists only, whereas size/
1 works on tuples and binaries, but not on lists. The difference is that size/1 always
takes constant time and doesn’t need to traverse the data, so it’s a very fast operation.
But the fact that the size/1 function is overloaded to work both on tuples and bina-
ries is a little unfortunate, because it counts elements in the former case and bytes in
the latter. It also doesn’t give any hint to someone reading the code whether a tuple or
a binary is expected, and if you don’t know that, then you also don’t know what the
resulting number stands for. These things make it harder for a tool like Dialyzer to
help you find possible mistakes.

 In modern Erlang code, it’s recommended that you use tuple_size(T) to get
the number of elements of a tuple, and either byte_size(B) or bit_size(B) to get the
number of bytes or bits, respectively, of a binary or bitstring. In case of a bitstring
(whose length in bits isn’t evenly divisible by 8), byte_size(B) rounds upward—that
is, it always returns the smallest number of bytes that can contain all the bits in B.
Using these functions clarifies what you’re doing and also offers important hints to
the compiler and the Dialyzer tool.

 Now that we’ve talked about BIFs and operators, we’ll say a few words about the
efficiency of normal, user-defined functions.

14.3.3 Functions

Using functions efficiently can sometimes be important to shave off extra microsec-
onds when you really need that kind of performance tweaking. It’s also an area where
you may encounter several myths and misconceptions. We’ll start with table 14.2, which
shows the invocation times for the different ways in which functions can be called.

 The absolute times depend on the speed of the hardware, but the relative times
may also vary a bit with new releases of the compiler and runtime system. For exam-
ple, it used to be (many years ago) that calling a function in another module was
noticeably slower than calling a local function. Nowadays, they’re almost the same.
In general, you can see from table 14.2 that you don’t need to worry much about
function-invocation times unless you’re writing extremely performance-critical code:
only meta-calls are significantly slower, and they tend to be used rarely. Keep in mind

Table 14.2 Speed of function calls

Type of function call Time

Local function: foo() Very fast

Known remote function: bar:foo() Almost as fast as a local function call

Unknown remote function: Mod:Func() About 3 times slower than a local call

Fun application: F() About 2-3 times slower than a local call

Meta-call: apply(Mod,Func,Args) About 6-10 times slower than a local call

375Erlang programming language caveats
that if the number of arguments is fixed, the Mod:Func(...) form is a better choice
than calling apply/3.

TAIL RECURSION VERSUS BODY RECURSION

We talked about tail recursion and body recursion in section 2.15.2. Like the difference
between local and remote calls, it used to be that a body-recursive solution was often
slower than a tail-recursive one. Due to improvements in the runtime system and com-
piler, the difference is much smaller these days, and an elegant body-recursive function
may often be at least as fast as a tail-recursive version.

 If speed is important, and you’re able to implement both a tail-recursive and a
body-recursive version (one of them may be much easier than the other, depending
on the problem), then don’t assume—measure both versions. The results may even
vary between different hardware platforms, due to things like cache implementations.
It also depends a lot on the size of the input (which decides the depth of recursion),
so measure both for smaller inputs and for larger ones; and think about what kind you
expect to see most of, and if worst-case or average-case time is most important.

CLAUSE SELECTION

When a function or fun expression has multiple clauses (or you have a case-, if-, try-,
or receive-expression with multiple clauses), the compiler does its best to minimize
the number of tests needed to decide which clause should be selected. It does this
using an algorithm called pattern matching compilation, which groups and sorts clauses
and splits them into a series of nested if/then/else tests. But it can only change the
order in which tests are performed as long as it doesn’t have any visible effect on
the outcome (apart from being faster).

 For example, testing whether the input is either the atom true or the atom false
can be done in any order, because the alternatives are mutually exclusive: if it’s one,
it’s not the other. The same thing goes for testing whether a list is empty or non-
empty, and so on. But sometimes the alternatives overlap; for example, in the follow-
ing function

coffee_size(N) when N < 12 -> short;
coffee_size(N) when N < 16 -> tall;
coffee_size(N) when N < 20 -> grande;
coffee_size(_) -> venti.

the logic depends on the order of the tests, and switching the order of the two top-
most clauses would cause every N smaller than 16 to yield tall, even for N smaller than
12. The compiler can only detect when it’s definitely safe for it to reorder clauses, and
everything that seems unsafe is left in the order that you wrote it.

 The one thing you want to avoid, then, is introducing uncertainty in the middle of
otherwise straightforward clauses. Take the following code as an example:

handle_message(stop) -> do_stop();
handle_message(go) -> do_go();
handle_message(Msg) when Msg =:= Special -> do_special(Msg);
handle_message(report) -> do_report();

376 CHAPTER 14 Optimization and performance
handle_message(calc) -> do_calculate();
handle_message(OtherMsg) -> do_error(Other).

This expects either one of four atoms, or some particular term Special (as a vari-
able, to be given at runtime), and reports an error for all other terms. It may be
that Special is supposed to also be an atom, but the compiler can’t be sure of that.
In particular, Special could be one of the atoms report or calc, and that means
it’s not allowed to move the four clauses for stop, go, report, and calc together.
Instead, the best the compiler can do is to group the stop and go tests, then test for
Special, and then group the report and calc tests. If you as the programmer
know that Special can never be report or calc, you should manually move it
below the other tests. For a simple example like this, the performance difference
would be very small; but if you have many clauses with complicated patterns, it can
pay off to make sure tests can be grouped properly. (Not to mention that it it’s
more readable and better shows the intent.)

 We’ll finish this chapter by discussing some efficiency aspects of processes.

14.3.4 Processes

Processes are the fundamental execution environment of any Erlang program. When-
ever code is running, it’s being executed by a process. Even if you write a library mod-
ule that doesn’t start any processes of its own, the code is executed by the process that
called it.

 As we’ve pointed out before, processes are cheap in Erlang. Running lots of con-
current processes is what Erlang is all about. But what you choose to do within each
process can have a large impact on the overall performance of the system.

USING OTP BEHAVIOURS OR NOT

Although the actual time it takes to spawn a new process can be measured in
microseconds, the initialization of an OTP behaviour-container process is a differ-
ent story. When you call gen_server:start_link(), a number of things happen
behind the scenes, including the call to the init/1 callback function in your imple-
mentation module. As we’ve mentioned before, the start_link function doesn’t
return to the caller until the init/1 callback has finished. This is in order to make
the startup sequence deterministic so that when the caller gets the process ID of the
new server process and is allowed to proceed, the server is fully initialized and
ready to accept requests.

 Sometimes, though, you want to use large numbers of processes that come and go
rapidly. Take, for example, the connection-handling processes you wrote in chapter 11,
such as ti_server in listing 11.3. These spawn a new process for every incoming TCP
connection. Under heavy load, measurements will show that a lot of time is spent in
process initialization. The more transient the processes, the greater the proportion of
time is spent in the OTP library code. If speed becomes a major concern, it can be use-
ful to stray from OTP behaviours and instead roll your own extremely lightweight pro-
cesses with the direct use of spawn, having minimal overhead but also providing

377Erlang programming language caveats
minimal control beyond what you implement. This sort of thing is error prone and
should be left for special cases, and only after you’ve gained some experience program-
ming with processes and OTP so you understand what you’re giving up.

SETTING THE INITIAL HEAP SIZE

When many processes are being spawned and dying quickly, you can perform another
optimization: you can make the initial heap size of each process large enough to
avoid the need for garbage collection or memory allocation after the process has
been started.

 The default process heap size is 233 words (932 bytes on a 32-bit machine), but this
grows if the process needs more space (and it can also shrink again). This automatic
memory management is handy, but it has a certain cost in runtime performance. If
you know how much memory your transient processes need during their brief life
span, you can specify the initial heap size by using one of the spawn_opt functions to
start them, like this:

erlang:spawn_opt(Fun, [{min_heap_size, Words}])

In this way, a process works as a memory region; the memory is allocated when the
process starts and is reclaimed when the process dies, and no further memory man-
agement is necessary between those two points. This is illustrated in figure 14.4.

 The downside is that you are constantly over-approximating how much memory is
needed per process, so you may be sacrificing memory space for speed.

HIBERNATING

If you need a very large number of processes active for a long period, but most of
them will only be asleep and waiting for a message that is expected to arrive at some
point in the future, you should consider letting those processes go into hibernation.

Figure 14.4 Setting a larger initial heap size to avoid garbage collection and resizing
for processes that perform a known, fixed amount of work in a short period of time

378 CHAPTER 14 Optimization and performance
A process hibernates by calling erlang:hibernate(Mod, Func, Args). When it does
this, it throws away its call stack, making it forget where it is in the program. Thus, the
call to hibernate/3 never returns, and any active catch or try/catch expressions are
also forgotten. It then forces a garbage collection, minimizing the amount of space
allocated for the process. Finally, the process goes to sleep and stays suspended until
it gets a message in its mailbox. (If the mailbox isn’t empty when it hibernates, it
wakes up immediately.) When this happens, the process behaves as if it had called
apply(Mod, Func, Args), except that it has nowhere to return to.

 Hibernation minimizes the footprint of sleeping processes, allowing you to have
more of them around than would otherwise be possible. This can be useful in a system
that monitors a very large number of external entities.

 Processes based on proc_lib, such as gen_server and other OTP behaviours,
should use proc_lib:hibernate/3 instead of erlang:hibernate/3 to ensure that
things are properly set up again with respect to the OTP libraries when the process
wakes up.

 And with that, we end our coverage of all things performance related.

14.4 Summary
In this chapter, you’ve learned some basic methodology for tuning your code: setting
your goals, measuring what your system is doing, deciding which problems to attack,
and confirming that your changes were effective. You’ve learned how to use the cprof
and fprof tools to profile your code with respect to execution time, and you’ve been
introduced to some important caveats, pitfalls, and tricks with respect to the efficiency
of your Erlang code. This means you should be able to join the Erlware team in their
optimization effort and make your code as efficient as it can be. Just remember to
keep it beautiful.

appendix A
Installing Erlang

You can install Erlang several ways, depending on your operating system and your
personal preferences. Erlang currently runs on modern versions of Windows, on
Mac OS X, Linux, and most other UNIX-like operating systems, and on the VxWorks
real-time operating system.

A.1 Installing Erlang on Windows
If your operating system is Windows, download and run the latest installer .exe file
from www.erlang.org/download.html. This includes documentation and sets up
menus and icons for starting the special werl shell on Windows (see section 2.1.1).

A.2 Installing Erlang on Mac OS X, Linux, or other
UNIX-like systems
On Unix-like systems, you can build and install Erlang from source code, which is
the best way to ensure that you have the latest version; or, on some systems, you can
use a package manager such as Ubuntu’s synaptic to automatically download and
install the official Erlang package for your system—but note that this may not be
the latest release of Erlang. On Mac OS X, the current version of Erlang is available
in the Homebrew package manager (http://mxcl.github.com/homebrew/).

A.2.1 Compiling from source

Point your browser at www.erlang.org/download.html, and get the latest source
package. After it downloads, un-tar the package, cd into the directory, and run the
./configure script. You can add a –-prefix=... flag if you want to install to a loca-
tion other than the default, which is /usr/local/lib/erlang. For example:

./configure –-prefix=/home/jdoe/lib
379

http://www.erlang.org/download.html
http://mxcl.github.com/homebrew
http://www.erlang.org/download.html

380 APPENDIX A Installing Erlang
When the code is configured properly (see the next section if you have issues), run

make

and then

make install

Note that you’ll probably need to do the install step with root privileges, if you’re
installing to the default location. On many systems these days, that means running
it as

sudo make install

After installing, you should be able to enter erl to start Erlang or erlc to run the
Erlang compiler. If you install to a nonstandard location, make sure the bin subdirec-
tory of that location is listed in your PATH environment variable.

A.2.2 Resolving configuration problems

To compile Erlang from source, some libraries and tools must be installed already on
your system. Some of the more common items that may not be installed by default are

■ A fully working GCC compiler environment
■ Ncurses development libraries

Try installing any missing packages and run configure again, before you run make.
(The exact package names may vary with your system.)

 Some libraries, if missing, only cause a warning in the configure step, telling you
that some Erlang applications won’t be built. If you don’t need these applications,
you can go ahead and run make; otherwise, you need to install the missing packages
and reconfigure. Some typical examples are

■ OpenSSL development libraries
■ ODBC development libraries
■ Java

If you’re running with some applications disabled, and you later find out that you
need one of them, you can do the ./configure, make, make install again after you
get the missing packages.

appendix B
Lists and referential

 transparency

What is the point of Erlang’s list data type, you may ask (in particular if you’re used
to languages like Java, Python, and so on, where you work a lot with arrays, buf-
fers, and whatnot). For every element, you also need a pointer to the next one,
using valuable memory, and you can’t even add elements on the right side of the
list! Pah!

 This is all true; but in Erlang, you’re never allowed to modify the value of some-
thing if it could cause someone else’s data to be changed behind their back. This is
the main idea behind the fancy words referential transparency.

B.1 A definition of referential transparency
Referential transparency is a simple concept. It boils down to this: If you get hold of
a value (a term), and you give it a name (let’s say X) to keep track of it for the time
being, then you’re guaranteed that X remains unchanged no matter what, even if
you pass a reference to X to some other part of the program. In other words, values
kept in variables (or parts of those values) are never changed behind your back. As
you can see, this goes hand in hand with Erlang’s single-assignment variables.

B.2 Advantages of referential transparency
The same reasoning is behind why strings are constant in Java: you don’t want to be
embarrassed by printing something rude instead of your intended “More tea,
Vicar?” just because you happened to pass a reference to that string to another,
rather naughty function, before you printed the string.

 On a more serious note, there are several reasons why this is done for all data
in Erlang:
381

382 APPENDIX B Lists and referential transparency
■ It makes programming a lot less error prone—a very important property
when you have million-line projects with dozens or even hundreds of pro-
grammers involved.

■ Things that used to work fine when you were running the code in a single pro-
cess don’t suddenly need rewriting if you want to divide the work over two or
more processes: there can be no covert channels between different parts of the
program that stop working when you split the code into separate processes
(perhaps running on multiple machines).

■ It allows the system to do creative things behind the scenes with respect to
memory management and multithreading, because it knows there will be no
write accesses to existing data structures.

Hence, referential transparency isn’t merely a nice property enjoyed by people of
a theoretical persuasion—it has important consequences for the stability and scal-
ability of your program, not to mention for readability, debuggability, and speed
of development.

B.3 What it has to do with lists
Getting back to lists, this referential transparency guarantee means that if you already
have a list (maybe you got it as an argument to a function), you can’t add elements to
the end of that list, because if you did, then anybody who had a reference to it would
discover that an extra last element had materialized from nowhere. That’s not allowed
in Erlang.

 But adding to the left (using list cells) is no problem, because the original list is
never disturbed—you create a new cell that points to the first cell of the original list,
saying “I’m like that list over there, but with this new element added to the head.”

 Hence, list cells are an elegant solution to the problem of growing lists dynamically
in a referentially transparent system; and the implementation is so simple that cells
work very efficiently indeed. Many extremely clever people have tried (for decades) to
come up with a solution that would allow both adding to the end and lower memory
usage while preserving the transparency property, but those solutions have tended to
be both very complicated to implement and less efficient in the general case.

index
Symbols

- - operator 373
_ (don’t-care pattern) 51
_app suffix 124
_sup suffix 126
; 54
! 12, 77–78, 106
. 42, 54
$ 29, 35, 51
'$_' 229
'$' 166
'$$' 229
$1, $2, and so on 229
$ROOT 250
[] 33
@ 32, 334
@ tags in EDoc comments

102, 109
/ 30
/= 37
\ 63
29, 70
% 42–43
+ 41
++ 34, 52, 89–90, 373
+W option 174
< 36
<- 66, 69
<<...>> 31
<= 37, 69
= 47, 49
=:= 37
=/= 37
== 36–37
-> 42

> 36
>= 37
| 33
|| 66
~n 53
~p 53, 174
~w 53

Numerics

100 Continue 273, 285
200 OK 286–287, 289
404 Not Found 289
501 Not Implemented 289

A

accumulated time 365
accumulator parameter 85, 88,

90
ACID 226
active application 120

vs. library application 121
{active, false} 280
{active, once} 281, 284
Ada 29
after 64, 77
alias pattern 210
Amnesia 220
Apache Commons Logging 354
Apache log4j 354
Apache ZooKeeper 354
API 104, 126
.app file 121–122, 129, 243, 248

loading 245
parameters 123

append operator 34
application 120–125

.app file, loading 245
active. See active application
behaviour 123–125, 152, 244

implementation 154
controller 144, 244–245
dependencies 123, 244, 246,

249
indirect 244

directory layout 121, 153
from system viewpoint

243–245
introduction 119
library. See library application
master processes 134, 245
meaning of, in OTP 120
metadata 120, 122–123, 130,

154, 243
root supervisor 120
skeleton, creating 153–157
start types 245
starting 129
structure 243

organization of 120–122
visualizing 132

application:get_env/2 235, 287
application:start/1 129, 245
application-level API 167
applications parameter 123
apply/3 116, 269

using Mod:Func(...)
instead 375
383

INDEX384
Appmon 132–137, 252
GUI 133–136
in Toolbar 146
in WebTool 136
killing a process in 136
menus 133
process information

window 135
tracing in 136

appmon:start() 133
arithmetic 30
arity of a function 40
Armstrong, Joe 92, 358
array 372
array module 41
arrows 37
ASCII 29, 31
ASN.1 122
assertion 234
assignment 47

vs. pattern matching 49
associative array 207
asynchronous cache. See distrib-

uted cache, asynchronous
asynchronous

communication 214–215
broadcasting 217
message passing 191

atom 370–371
atom table 370
efficiency of 31
introduction 31
limit on atom table size 32
maximum length of 32
not garbage collected 371
size 369

atom_to_list(A) 35
{atomic, Data} 229
atomicity 227

definition 8
auth:get_cookie() 198
auto-imported functions 41

B

badarg 62
badmatch 49, 118, 234
bag 81, 224, 228

duplicate 81
band 30
bang operator 12
base case 83, 86, 88

minimizing 88
baseline, for performance

tuning 359

batch job 24
BEAM 17–20

tag bits 369
.beam 43–45
.beam file

debugging information 141
beautiful code 358
behaviour

API 103–109
attribute 102
callbacks 102, 109–116, 276
components of 97–98, 274
container 98, 138, 244, 274
gen_event 171, 179, 181, 188

creating custom event
stream with 183

example 180
gen_server 158
implementation 97
instantiating 99
interaction with compiler 275
interface 97
introduction 97–100
message wrapper 107
module header 101–103
module layout 100
supervisor 123, 126, 155

behaviour declaration 275
behaviour_info/1 275
BIF. See built-in function
big, specifier in bitstring 68
big-endian 302
bignum 370

boxed representation 370
introduction 29
size 369

Bigtable 333
bin_opt_info compiler flag 372
binaries, pattern matching

on 289
binary 30

heap binary 371
large 371
reference-counted binary 371
representation of 371
size 369
specifier in bitstring 68

binary_to_term/1 299
binding variables 47, 49
bit syntax 67–68
bit_size/1 374
bits, specifier in bitstring 68
bitstring 31

building 67–68
comprehension 69

length 67
representation of 371
size 369

black box 246
blocking communication 215
bnot 30
body recursion, efficiency

of 375
Bogdan 17
Boolean function 54
Boolean switch 57
-boot 251
.boot file 249, 255

regenerating 250
boot script 249–250
booting 249, 252
bor 30
bottleneck 346

identifying with profiling 360
synchronization

bottleneck 361
box with a name 47
boxed representation 370
brain damage 82
BREAK menu 27
breakpoint 141

conditional 143
broadcasting, and asynchronous

communication 217
brutal_kill 128, 156
bsl 30
bsr 30
built-in function

can’t be call-counted with
cprof 363

performance caveats
373–374

bulwark 14
bxor 30
byte 30
byte_size/1 374
bytes, specifier in bitstring 68

C

C
array vs. ETS table 80
C node 292
c_src directory 344
dynamically allocated

memory 314
external (global)

variables 313
external port program

300–312

INDEX 385
C (continued)
implementation of ETS

tables 80
implementing built-in func-

tions in 41
looping 82
preprocessor 72
shared library 293
syntax 21
unsafe code 295

c_src directory 300, 344
c(...) 43, 73
C10K problem 19
cache

architecture and process
scheduling 18

asynchronous. See distributed
cache, asynchronous

creating 157–169
design 151–153
distributing 214–219
in HBase 341
synchronous. See distributed

cache, synchronous
weak consistency 217

calendar module 161
call 111
CamelCase 46
case expression 56–57
cast 112
cast/2 185
catch 63, 65
cd(Dir) 26
Cesarini, Francesco 92
character code 29, 31

writing with string 34
character, printable 35
child process 12
child specification 128
.class file 354

priv directory 344
.class files 337
clause 54

guards 55
in case expression 57
in if expression 58
mutually exclusive 56, 89, 375
order 83
order of 92
ordering of 89
pattern-matching

compilation 375
selecting with pattern

matching 56
selection 54

selection and efficiency
375–376

Clojure 9
closure 60–61
cloud environment, node

discovery 197
cluster 193

and asynchronous
communication 217

communication overhead 195
connecting to 234
creating 195–197
fully connected 193
number of nodes 195

clustering 193–203
cmd.exe 45
code

beautiful 358
instrumenting 187
loading at boot time 252
procedural 82

code module 44
code path 129, 249

introduction 44
code:get_path 44
code:lib_dir/1 130
code:priv_dir() 122
code:priv_dir/1 298
code:root_dir() 254, 312
collection, iteration over 90
com.ericsson.otp.erlang 337
command-line Erlang

compiler 44
comment 42–43

file-level 101
with EDoc annotations 101

Common Test 117
communication

asynchronous. See asynchro-
nous communication

blocking 215
bottleneck 346
model 191–192
strategies 214–216
synchronous. See synchronous

communication
transparent 191

comparison operators 36–37
compiler

bin_opt_info flag 372
erlc 44

compiling
conditional. See conditional

compilation
module, from the shell 43

compound data structure,
constructing 33

comprehension 67
See also bitstring comprehen-

sion
concurrency 5–13

cheapness of 11
profiling 361

Concurrent Programming in
Erlang 92

Concurrent Prolog, futures 10
conditional compilation 74
-config 251
.config file 251
configuration file 204, 250–251
configuration settings 236
Cons 129
cons 90
cons cell 38
consistency 227
console window 201
constant space 86
consumer, in resource

discovery 204
contact node 234
container 99, 274
Content-Length 273, 285
Content-Type 272
control flow 49
controlled shutdown of Erlang

system 26
cookie file 198
cookie, setting when creating a

node 334
copying 16

and processes 7
overhead of 10

CouchDB 193
cover (profiling tool) 361
cover module 363
covert channel 382
-cp (class path) flag 337
cprof 361–363
CPU

consumption 359
multiple 5
time 133

measuring usage 138
topology and process

scheduling 18
crash report 178
CRUD 164, 286
Ctrl-Break 27, 202
Ctrl-C 27, 202
Ctrl-G 27, 201–202

INDEX386
Ctrl-N 24
Ctrl-P 24
cubic time 90
curl 271
current directory 44
current function 138
currently running jobs 202
Cygwin, and HBase 341

D

-D 74
daemon

EPMD 197
running as 24

data model 220
data structure

decomposing 49
mapping into Java 335–336
traversing 86

data types 29–39
abstract 33
built in 29
primitive 369–373
size of 369
test 55

data, checking untrusted
input 115

database
distributed 219
schema 222

dataflow variables 10
dbg 136, 363
DEBUG 74
debug_info compiler flag 141
debuggability, and referential

transparency 382
debugger

attached process window 141
source-level 140–143

Debugger, in Toolbar 146
debugger:start() 140
debugging

information in .beam file 141
via BREAK menu 27

declaration, introduction 42
declarative programming, power

of 349
deep list 115
DEFAULT_LEASE_TIME 158
define 72
delegate 59
DELETE request 273
delete/1 162, 268
delivery guarantee 78

dependencies, eliminating 6
dependency 244
description parameter 123
-detached 252
development and referential

transparency 382
Dialyzer 37, 323, 374

and case expressions 57
dict module 41, 207, 209
dict:find/2 209
dictionary (data structure) 207
dirty operation, in Mnesia 227
dirty_read 228
disc_copies 225
disk_only_copies 225
distributed cache

asynchronous 216–219
in Mnesia 230
making aware of other

nodes 233–236
synchronous 216–219

latency 218
weak consistency 217

distributed database 219
distributed programming 190
distributed system,

nondeterminism 192
distributed table 219
distributed transaction 218
distribution 7, 16–17

fundamentals 190–193
net_adm:ping/1 196
transparent 8

div 30
.dll 320
DNS, and distributed mode 194
do_sum 85
doc directory 121
documentation

generating with EDoc 130
documentation, generating with

EDoc 130
don’t-care pattern 51
dot notation, for accessing

record fields 70
double precision 30
double quotes 34, 51
driver_alloc() 314, 317
driver_entry 316
driver_free() 314, 317
DRIVER_INIT 316
driver_output 319
durability 227
dynamic-link library (DLL) 320

E

E programming language,
futures 10

ebin 45, 129
directory 121–122, 129

EC2, node discovery 197
editor, comments in 43
EDoc 101, 130

@ tags 102
comments, type specification

in 109
eggs, breaking 5
ei 292

and plain ports 295
decoding and encoding

Erlang terms 304–307
header file 301

ei_decode_version 306
ei_encode_tuple_header 311
ei_get_type 306
ei_x_buff 302, 305

index position 311
ei_x_encode_atom 306
ei_x_encode_empty_list 311
ei_x_encode_tuple_header 306
ei_x_new_with_version 305
Emacs

comments in 43
key bindings 24

embedded mode 252
encapsulation 166
end 57, 59, 63
enif_alloc 324
enif_inspect_binary 326
enif_make_list_from_array 325
enif_make_tuple_from_array

325
enum 31
eper 360
EPMD 197, 339

daemons 197
eprof 363
equality comparison 37

exact equality 37, 48
exact inequality 37

Ericsson 92
.erl 42–44
erl 24, 45, 380
ERL_BINARY_EXT 306
ERL_COMPILER_OPTIONS

environment variable 372
erl_driver API 315

callback functions 317
erl_driver.h 315

INDEX 387
Erl_Interface 292, 300
erl_nif 292
erl_nif API 322, 324
ERL_NIF_INIT 326
ERL_NIF_TERM 326
erl_nif.h 323
erl_parse 269
erl_scan 269
erl_tar 253
erl_tar:create/3 256
erl_tar:extract/2 257
erl.src 255
Erlang

books 92
code, straightforward 368
communication model

191–192
compiling from source

code 379
configuration problems,

resolving 380
data structure, mapping into

Java 335–336
data types, sizes of 369
decomposing data

structures 349
distributed message

passing 199–201
distributed mode 194
distribution 197–199
distribution protocol 339

external term format 305
icon (in Windows) 195
installing

on Linux, Unix, or Unix-
like system 379–380

on Mac OS X 379–380
on Windows 379
via package manager 379

integrating with Java using
Jinterface 334–340

language caveats 368–378
magic cookies 198
traffic, tunneling 198
version of running system 27
VM 193

as a node 194
website 92

Erlang icon 24, 45
erlang module 41
Erlang Port Mapper Daemon.

See EPMD
Erlang Programming 92
Erlang Runtime System. See

ERTS

Erlang Term Storage 79, 163
Erlang VM 17
erlang:'+'/2 41
erlang:get_stacktrace() 64
erlang:hibernate/3 378
erlang:load_nif/2 322
erlang:nif_error/1 323
erlang:port_connect/2 294
erlang:raise/3 64
erlang:self() 41
erlang:trace/3 136
.erlang.cookie 198
Erlang/OTP 3

installer 255
Erlang-HBase bridge 351–355
erlang-questions@erlang.org 92
erlc 44–45, 73–74, 129, 380

providing path to behaviour
.beam file 290

ErlDrvData 319
ErlDrvEntry 316
erlIDE, comments in 43
ErlNifEnv 324, 326
Erlware 149–150

application skeleton,
creating 153–157

cache design 151–153
caching 150
web server 150
working cache 157–169

error handling 7
error logger 62
error report 176
error_logger 172, 180

API 173–175
events 181–183
report type 174

error_logger:error_msg/1 173
error_logger:error_report/1

174
error_logger:info_msg/1 173
error_logger:info_report/1 174
error_logger:warning_msg/1

173
error_logger:warning_report/1

174
error_msg 174
error_report 182
ERTS 17, 20, 163

including in release 253
version 247–248

erts 253
atom 248

etop 360

ETS
match pattern 167
match_delete function 164
matching functions 166
named table 164
pattern match syntax 166
switching from, to

Mnesia 230–233
table handle 164

ets 80
ETS table 79–81, 163

and Mnesia 224
creating 80
design philosophy 79
lookup 165
set 165
using patterns to search

tables 166
viewing in TV 144

ets:insert/2 165
ets:lookup/2 81, 165
ets:match_delete/2 166
ets:match/2 167
ets:new/2 80, 164
EUnit 117
event handler 180, 183

custom 179–183
event handling 170

gen_event 179–180
event manager 179, 184
event stream

API 184–185
custom 183–189

subscribing to 188–189
integrating into

application 185–187
protocol 185

event, posting 187
exception 61–65

catching everything 63
classes 62
cleaning up side effects 64
handling 13, 62
rethrowing 64
stack trace 64
throwing (raising) 62

execution time, profiling with
fprof 363–368

ExecutorService 348
'EXIT' 14
exit 62
exit signal 13, 78

trapping 14–15, 76
exit(normal) 62
exit/1 62, 76

mailto:questions@erlang.org

INDEX388
exit/2 76
Expect header 273

100-continue 285
exponential time 90
export declaration 42
expression, entering 24–25
external term format 305

F

f() 47
f(X) 48
factory 156
failing early 55
false 32

and Boolean function 54
in case expressions 57

fault isolation 280
fault tolerance 13–16, 191

adding with supervisors
125–129

fetch_resources/1 209
fetch/1 161
FILE 73
file:consult/1 364
file.hrl 73
filtering with list

comprehension 66
fire and forget 214
firewall problems 196
float 30

boxed representation 370
precision 370
single precision, lack of 30
size 369
specifier in bitstring 68

flow control, and TCP
sockets 279

foreign function interface
(FFI) 292

foreign key 163
fprof 361, 363–368

vs. cprof 361
fully connected network 193
fully qualified domain

name 194
fun 36, 58–61

anonymous 59–61
dependency on module

version 60
format 36
local alias 58
remote alias 59
size 369

function 52–56, 96
anonymous functions 59–61
arity of 40
as data 36
auto-imported 41
body 42
Boolean 54
built-in 41
call 374–376
current 136
definition 42
function clauses 54–55
head 42
higher order 59
introduction 39–46
recursive 82

non-tail 84
tail 84
tips for writing 86

side effects 53
function calls

counting with cprof 361–363
dynamic 269

function_clause 54
functional programming 20
futures 8, 10

G

garbage collection 19, 56
avoiding by setting heap

size 377
definition 366
pause times 20

GC 19
gcc 300, 312
gen_event 125, 171

creating custom event stream
with 183

custom event handler
179–183

handlers 179
implementing 179
instance 179, 184
interface 179
start_link 180

gen_event:add_handler/3 180
gen_event:notify/2 185
gen_event:start_link/1 184
gen_fsm 125
gen_server 97, 125, 157, 175,

207, 348
callbacks 160
calling itself 117
library functions 104

main loop 138
managed by simple-one-for-

one supervisor 262
server timeout 267
start_link 267
stopping 112
timeout between requests 113

gen_server:call/2 104, 107–108,
110, 218

gen_server:call/3 107, 214
deadlock 210

gen_server:cast/2 104, 108, 110
between gen_server

processes 210
gen_server:handle_info/2 269
gen_server:loop/6 138
gen_server:start_link/3 160
gen_server:start_link/4 104,

108, 110
gen_tcp 111
gen_tcp:accept/1 267
gen_tcp:read() 280
gen_web_server 274, 290

container calling implementa-
tion module 285

implementation module 287
parallel instances of 283
source code 276
structure of 274
top level supervisor 279

generator 66
generic server 97
GET request 271
get_count() 105
get_count/0 107
get/1 79
GHC 9
Gleader 182
Google 20

and slow-serving pages 150
Bigtable 333

GOTO 8
graphical tools 132
Gregorian seconds 161
guard 55

in case expressions 57
gws_connection_sup 275, 278
gws_server 275, 278, 280–281
.gz 253
gzip 253

H

h() 26
Hadoop 333

INDEX 389
Hadoop Common 340, 354
handle_call/3 110–111, 209
handle_cast/2 110, 112, 210
handle_data/3 268
handle_event/2 179, 188
handle_info 285
handle_info/2 110, 113, 175
hash table 163, 224

in ETS 165
Haskell 9

futures 10
HBase 333

cache 341
configuring 341
Erlang-HBase bridge 342–355

Erlang code 342–344
HBaseConnector class

344–346
HBaseNode class 346–349
HBaseTask class 349–351
running 353–355

installing 340
integrating with Erlang 333
interface with Simple

Cache 336
Java API 344
Java byte arrays 345
map 341
NavigableMap 345
shell 341
SSH requirement 341
table, creating 341, 345

hbase_server 343
HBaseConfiguration 345
HBaseConnection 351
HBaseConnector 342, 344–347
HBaseNode 342, 346–349
HBaseTask 342, 348–351
head, of a list 38
header file 73, 121

and record declarations 71
macro definitions in 73

header word 372
heap binary 371
heap size, initial, setting 377
heart 245
heart process 245
help() 26
hi_server 287–288

implementing RESTful
interface 287

highly available systems 19
home directory 198
Homebrew 379
HOMEDRIVE 198

HOMEPATH 198
host machine, nodes running

on 194
.hrl file 73, 121
HTable 345
HTTP 271–274

100 Continue 273
and REST 286
body 271, 285
DELETE request 273
empty line (end of

headers) 285
Expect header 273
GET request 271
headers 271, 290

sending as separate
message 285

protocol 271
handling 284

PUT request 272
reply 271–272, 285
request 271

general form of 284
request line 284
resource 273
status code 272
verbs 272

HTTP client, curl 271
HTTP server

and gws_server 281
creating 270
handling requests 289

http_bin 279, 284
http_eoh 285
http_interface 287
httpd, Inets 274
hyperthreads 5

I

-I 73
i() 26
I/O system 19

usage, measuring during
profiling 361

IC 295
idempotent, definition 233
identifier 35
IDL Compiler (IC). See IC
IEEE 754-1985 30
if expression 58
ifdef 74
ifndef 74
include 73

declarations 43

directive 73
directory 121
path 73

include_lib 73
inconsistent state,

temporary 217
index, in Mnesia 231
inet:setopts/2 281
Inets httpd 274
inets httpd 198
infinity 77, 128, 161
info_msg 182
info_report 182
init 77
init_tables() 225
init:stop() 26

in remote shell 202
init:stop/0 116
init/1 108, 111
initial call 99
initialization code, location 165
inlining 368
insert/2 268
instrument (profiling tool) 361
instrument module 363
instrumenting code 187
integer 29

arbitrary size 29
bignums 370

base-N notation 29
division 30
no smallest 88
range of small integers 369
specifier in bitstring 68
to-float conversion,

automatic 30
integration testing 17, 117
interactive development 53
interactive mode 252
interpreting 140
io module 41
io_lib:fwrite/2 116
io:format(...) 52
io:format/1 11, 173
io:format/2 173–174
IO-list 293
io-list 115
IP address, and start_link 277
IP packet header parsing 68
IPsec 198
is_atom/1 55
is_boolean/1 55
is_integer/1 55
isolation 227

of processes 7

INDEX390
iteration 82
I-vars 10

J

j command 202
.jar file 344
Java

and Jinterface 334
and plain ports 295

and list length 91
array vs. ETS table 80
classes in Jinterface to repre-

sent Erlang data 335
CLASSPATH 354
–cp flag 339
decomposing data

structures 349
Erlang node 340
futures 10
Java node 292
looping 82
main() 338–339, 348
memory management 19
message handling 346–349

example 337–339
node, talking to from

Erlang 339–340
process() 338
program, compiling 337
run() 349
strings, constant on 381
thread pool 342, 347
threads 346

managing 334
.java file 337
java_src 354
java_src directory 344
java.util.concurrent 348
javac 337
Javadoc vs. EDoc 101
JavaScript Object Notation. See

JSON
Jinterface 292, 334–340

EPMD 339
Java classes to represent

Erlang data 335
mailboxes 334
OtpErlangObject 335–336
OtpMbox 334, 346
OtpNode 334, 338, 347

JInterfaceExample.java 337
job

connecting to 202
killing 27

job control 27–28, 202
remote jobs 203

JSON 291
data, encoding as Erlang

terms 307–312
parser

implementing as NIF
322–331

integrating with through
plain port 296–313

running 303–304
representation in Erlang 307

JVM 9

K

Kegel, Dan 19
key/value pair 151
kill 76, 136
killing a process from

Appmon 136

L

lambda expressions 36, 59, 61
LAN, home, nodes on 196
large integer

bignum 370
size 369

last call 84
latency, and synchronous

cache 218
Latin-1 29, 31
LD_LIBRARY_PATH 312
lease time 158, 169
left arrow 66
length, avoiding in guards 91
length/1 373
let it crash 115, 240
lib 255
library application 120, 274

vs. active application 121
LINE 73
linear time 89, 91
link request 78
linked-in driver 293, 295

creating 313–322
driver callback functions 316
erl_driver.h 315
instance-specific data 314
lifecycle functions 316
managing memory 317
reentrant code 313
safety vs. speed 295

sending output from port 319
underlying mechanism

313–314
Linux

installing Erlang on 379–380
starting the Erlang shell 24

Lisp 31, 33
list 33–34

adding to 33
adding to the end 382
adding to the left 34, 90, 382
and referential

transparency 382
appending 34
cells 382

representation 372
checking if empty 91
deep list 115
empty 33
head 38
improper 39
io-list 115
length of 91
point of 381
proper 39
representation of 372
reversing 34, 86
singly linked 38
size 369
storage requirements 372
structure 38
tail 38
understanding 38–39

list cell 51, 87
creating list from 38

list comprehension 66, 229
list_to_atom/1 373
list_to_existing_atom/1

371, 373
lists module 39, 41
lists:append/2 373
lists:delete/2 208
lists:foldl/3 211
lists:foreach/2 200
lists:reverse/1 40
lists:reverse/2 40
lists:sort/1 37
lists:subtract/2 373
little, specifier in bitstring 68
load balancer, stateless 213
local call 40
local flag 250
location transparency 17, 193,

201, 219
location-transparent syntax 192

INDEX 391
lock, definition 8
locking, problems with 9
log format 179
log4j 171, 348, 354
logging 171–179

error reports 176
example 181
format 179
report type 174
severity levels 171–172
standard functions 173–175

long jump 62
long node name 334
lookup/1 268
loop

ensuring termination 88
forever 86
initialization 85
initializing 83

looping 82
ls() 26, 44
ls(Dir) 26

M

Mac OS X
Homebrew 379
installing Erlang on 379–380
starting the Erlang shell 24

machine words 369
macro

defining 72
expanding 72
MODULE 155, 158, 163
predefined 72
SERVER 155, 158
TABLE_ID 163–164
undefining 72

magic cookie 198–199
mailbox 7, 12

creating 335
extracting messages 76
ordering of messages 76
sending and receiving

messages 335
mailing list 92
main function 307
Make 129
make_ref() 36, 343
make_tar() 253
mapping

indirect 152
with list comprehension 66

MapReduce 20
marshalling, not needed 210

master process 245
match operator 47, 49
match specification 229
math 30
math:pow/2 66
math:sqrt/1 30
memory

dynamically allocated 314
region 20
shared 7, 16
usage, measuring during

profiling 361
memory management 19

and referential
transparency 382

memory() 26
message 97

decomposition in Java vs.
Erlang 349

delivery 78
naming 161
out-of-band 112–114
receiving 76
sending asynchronously 106
sending to a process on a dif-

ferent machine 193
sending to a process on the

same machine 192
verification 218

message handling, in Java
337–339

message passing 7–8, 10–11,
192, 199–201

asynchronous 10
basics 12
by copying 20
synchronous 10

message queue, length of 136
messages, broadcasting 210
messaging 105
meta-call 116, 374
metadata 125, 243
MIB 122
MinGW 300
Mnesia 219–230

and HBase 333
cache, distributing 230
connecting to nodes and rep-

licating data 240
database

creating 220–221
initializing 221–223

default settings 224
dirty operations 227
dirty write 232

distributing 238
indexes 231, 233
initializing depending on

nodes discovered 239
instead of ETS 231
name 220
node, starting 221
queries 228–230
reading 228
record, writing 227
records 221, 224
resource discovery,

integrating 236–238
schema 222

in RAM 239
remote, fetching 240

searching 228
starting 222
storage types 225
switching to, from ETS

230–233
tables

creating 223–226
dynamic replication 238
populating 226–228
storage types 225
types 224
viewing in TV 144

transactions 226
using QLC 229

mnesia, index_read/3 233
mnesia:change_config/2 240
mnesia:create_schema/1 222
mnesia:create_table/2 223
mnesia:delete_schema/1 222
mnesia:dirty_write/1 227
mnesia:info() 222
mnesia:read/2 228
mnesia:select/2 228
mnesia:start() 222
mnesia:system_info(tables) 240
mnesia:table/1 230
mnesia:transaction/1 227, 229
mnesia:wait_for_tables/2 240
MochiWeb 198, 274
mod parameter 123
-mode 252
MODULE 72, 108
module 39–46, 96

calling a function in 40
canonical behavior

implementation 100
compiled vs. evaluation in

shell 45
compiling 43–44

INDEX392
module (continued)
compiling from the shell 43
creating 42–43
declaration 42
dependencies 128
loading, automatic 44
name prefix 101
namespace 101
naming conventions 152
one process type per 105

Module:handle_call/3 104
Module:handle_cast/2 104
Module:init/1 104, 110
modules parameter 123
modulo operator 30
monads 21
monitor 76
monitor/2 76
monotonically decreasing

arguments 88
most specific pattern 92
multicore 5
MultiLisp, futures 10
multithreading, and referential

transparency 382
mutex 8
M-vars 10
my_module 44, 86
my_module.erl 42, 81, 83

N

-name 194, 334
named_table 80, 164
native implemented function.

See NIF
native, specifier in bitstring

68
NavigableMap 345
nc 271
net_adm:ping/1 196, 199,

234–235
netcat 271
network

communicating over 192
fully connected 193

network byte order 302
NIF 292, 295–296

erl_nif API 322, 324
ERL_NIF_INIT 326
erl_nif.h 323
erlang:nif_error/1 323
ErlNifEnv 324
implementation C

functions 326

implementing 325
implementing parser as

322–331
managing memory 324
-on_load(...) attribute 323
problems with 296
registering 326
stub functions 323

nil 33
creating list from 38

nocatch 62
node 193–203

clusters 193
joining 233–236

communication 197
connecting 195–197
contact 234
controlling remotely

201–203
cookies and 198
discovery 197
hidden 195
implementing with

Jinterface 334
Java, talking to from

Erlang 339–340
locating other nodes 195
long names 194, 334
message passing 199–201
network (cluster) 193
remote shell job 202
setting a cooking when

creating 334
short names 194, 334
starting 194–195
subnet 194
temporary 203

node() 194
Nodefinder 197
nodes() 196
nonlocal return 62
nonode@nohost 194
noreply 162
normal 162
-noshell 24
Not Invented Here

syndrome 270

O

object file, introduction 44
ok 32
-on_load(...) attribute 323
one_for_one 127
one_for_one supervision 155

one_for_one supervisor 186
open source Erlang 92
Open Telecom Platform. See

OTP
open_port/2 297–298
OpenSSH, and HBase 341
operating system process 18
operation, dirty, in Mnesia 227
optimization. See performance

tuning
or 54
order-constrained tasks 5
ordered set 224
ordsets:subtract/2 373
OTP 4

application 120–125
metadata 122–123
organization of 120–122

development team 92
OTP behaviour 376
OTP Test Server 117
OtpErlang.jar 337
OtpErlangObject 335–336
OtpMbox 334

receive() 336
OtpNode 334
own time 365
Oz, futures 10

P

-pa 129, 249
{packet, http_bin} 279, 284
pang 196
parallelism 5

limited by bottleneck 361
parameter, accumulator

parameter 85
parser 269
PATH 45
pattern 50–52

most specific 92
pattern matching 33, 49–50,

349
and clause selection 54
checking if a list is empty 91
equality operator and 37
in list comprehensions 66
selecting clause with 56
with bit syntax 68
with record syntax 71

peer-to-peer system 204
percept 360–361
performance goals 358

INDEX 393
performance tuning 358
baselines for

measurements 359
cprof 361–363
deciding which problems to

attack 360
determining performance

goals 358
fprof 363–368
measuring results 360
profiling the system 359
steps 358

period character 54
in shell 24

permanent 128, 162, 245
pid. See process identifier
ping

(command-line tool) 196
periodically reconnecting 212

pizza, delivery 273
planeterlang.org 92
Pman 137–140

in Toolbar 146
menus 138
Trace window 139

pman:start() 137
pong 196
port 36, 292–295

binary option 298
communicating with 293,

298–299
concurrency control 299
exit_status option 298–299,

321
external program 293

in C 300–312
format 36
linked-in driver. See linked-in

driver
opening 297–298
owner 294, 297
{packet,N} option 298, 302,

321
plain 293–295

speed 295
port ID 293
size 369
standard I/O streams 293

port 4369 197
port driver. See linked-in driver
posting events 185
preprocessor 72–74

conditionals 74
include files 73
macros 72

pretty-printing 174
primary key 144
printable character 35
printing text 11, 52
priv directory 122, 298, 344
proc_lib 179
proc_lib:hibernate/3 378
proc_lib:spawn/1 178
procedural code 82
process 5, 74–79, 97

as memory region 377
as storage element 219
child 12
communication 7, 12

by copying 7
paradigms 8–11

creating 11
default heap size 377
definition 6
efficiency of 376–378
encapsulating state 7
ending by throwing an

exception 76
example of 7
exit signal 13

trapping 14
hibernating 377–378
identifier 12
initial call 99
isolation 7
layering 15–16
lightweight 11
links 13
mailbox 7, 12, 105
monitoring 76
operating on 75–76
programming with 11–13
protocol 106
registered 77
registered on other node 199
restarting 15
scheduler 18–19
scheduling 366
sending explicit signal to 76
setting initial heap size 377
singleton 77, 107
size of 138
spawn signature 99
spawning 11
stack 84
stack space 11
supervisor process 14
suspended 77
suspension 366
system process 14

terminating 12
trapping exit signals 15
type 99
worker process 14

process communication 78
by copying 191–192
by message passing 192
through shared memory 191

process dictionary 79
process flag 14
process identifier 35, 193

deciphering 200
format 35
size 369
uniqueness of 35

process mailbox, size of 137
Process Manager. See Pman
process model 6–8
process queue 133
process tree 125
process_flag/2 76
producer, in resource

discovery 204
productivity

and OTP 4
due to task separation 6

profile_ex 361, 363
profile.txt 364
profiling 360–368

cprof 361–363
example code 361
fprof 363, 368
measuring 361

where the most time is
spent 360

tools 361
profiling, during performance

tuning 359
Programming Erlang—Software for

a Concurrent World 92
programming resources 92
Prolog

less-than-or-equals 37
syntax 21

promises 10
protocol message 208
protocol, documenting 185
public 164
PUT request 272
put/2 79
PuTTY 116
pwd() 26

INDEX394
Q

q() 26
beware in remote shell 202

QLC 229
qlc:q(...) 229
quadratic time 89, 91, 373

avoiding 90
Query List Comprehension. See

QLC

R

r command 202
Rake 129
ram_copies 225, 239
re 115
readability

and referential
transparency 382

due to task separation 6
receive 12, 76

blocking 77
selective 76
traversal of mailbox 77

record 69–71
in Mnesia 224

record syntax 33
record_info/2 224
recursion 81–92

body recursion 84
over numbers 88
tail recursion 84
tail vs. body, efficiency of 375

recursive call 84
recursive case 86, 88

simplest non-base case 90
recursive function 82

tips for writing 86
reduction 138
reentrant code 313
ref. See reference
reference 36

size 369
reference-counted binary 371
referential transparency 33, 61,

381
advantages 381
and lists 382

region, in memory 20
register/2 78
registered parameter 123
registered() 77
regular expression 115
.rel file 247, 255

release 242
basics 246
configuration 250–251
creating 245–252
installing 256–257
interface apps, including

in 263
metadata 247–249
packaging 253–256
preparing for 247
root path 257
versioning 246

release atom 248
release file 247–249
release package

contents 254–255
creating 253–254
customizing 255–256
structure of 254

release_handler 256
reliability, and OTP 4
rem 30, 66
remainder operator 30
remote call 40
remote monitoring 188
remote procedure call. See RPC
remote shell 201–203
remove_handler 181
replace/2 161
representational state transfer.

See REST
resource 205
resource discovery 204–212

algorithm 205
broadcasting messages 210
dynamic 204
fetching information 209–211
implementation 206–212
integrating 236–238
making an application of 236
module header 207
publishing simple_cache 237
starting the server 207–209
terminology 204

resource trading 209
triggering 211

resource tuple 205
resource, HTTP 273
REST 286

DELETE 286
GET 286
PUT 287

restart frequency 127

RESTful 286
interface, implementation

of 287
reuseaddr 279
rev/1 86
reversing a list 86
RFC 2222 171
root supervisor 120, 123–125,

134, 152, 243
implementing 155–157

round-trip time, multiplied 218
RPC

vs. remote call 40
RPC server 122

implementing 100–116
running 116–117

Runnable 349
runtime error 62
runtime_tools 136, 363

S

s command 202
SASL 249, 256

crash report 178–179
event handler 177
extending logging with 172
introduction 171
log messages 176
logging and 175, 179
OTP vs. network

authentication 171
starting 176
when it doesn’t help 178

sc_ prefix 152
sc_app 152, 155
sc_element 152

API section 158–160
gen_server callback

section 160–162
header 157
processes, coding 157–162

sc_element_sup 186
sc_element:replace/2 168
sc_element:terminate/2 166
sc_hbase 342
sc_store 152, 231

data, reading 165
entries 165–166
implementing 162–167
initializing 164–165

sc_store:delete(Pid) 162
sc_store:init/0 238
sc_store:lookup/1 168
sc_sup 152, 156, 186

INDEX 395
scalability 16
and referential

transparency 382
scheduler 18–19
schema 222
SCons 129
scope 47

of variables, in function
clauses 56

.script file 249
selective receive 105
self() 36
semaphore 8
send and pray 10, 214
SERVER 108, 156
server timeout 161
server, and recursion 84
set 81, 224, 228

ordered 224
set notation 65
set_cookie/2 199
shallow copying 71
shared library 320, 330
shared memory 7–9

use in process
communication 191

sharing, in concurrent systems 8
shell 23–28

compiling a module from 43
ending expression with

period 24
entering strings 25
escaping from 26–27
interpreted code 45
introduction 23
job, killing 28
process 36
remote shell 201
starting 24
variables 47

shell functions 26
shell prompt 24, 202

node name in 195
short node name 334
shutdown 128

brutal_kill 156
soft 128

signal 78
signals, propagation of 13
signed, specifier in bitstring 68
Simple Cache

application-specific
events 185

bridge to HBase 342–355
Erlang code 342–344

HBaseConnector class
344–346

HBaseNode class 346–349
HBaseTask class 349–351

custom event stream 183–189
event stream

integrating 185–187
subscribing to 188–189

interface with HBase 336
logging 171

simple_cache 152
API module, creating

167–169
exported functions 268

simple_cache:delete/1 168, 353
simple_cache:insert/2 168, 352
simple_cache:lookup/1

168, 352
simple_cache.app 344
simple_cache.erl 351
simple_one_for_one restart

strategy 185
simple_one_for_one

supervision 155, 159
simple-one-for-one supervisor,

gen_server, managing 262
single assignment 47–49, 381
single point of failure 16
single quotes 32
single-stepping, in

debugger 141
singleton process 107
size/1 374
small integer 369
SMART 358
SMP 18
-sname 194, 334
.so 320
socket

active 111, 113
active mode 267–268
blocking on accept() 267
dedicated 266
listening 111, 266

opening 264
supervising 266

listening, ownership of 264
message from 114
writing data 115

soft shutdown 128
software transactional memory.

See STM
sorting problem 5
source code 42
source file 42, 122

spawn 11–12, 75, 361
spawn signature 99
spawn_link 75
spawn_opt 75, 377
src directory 122
SSH 198
SSH server, required for

HBase 341
sshd 341
SSL 198
stability, and OTP 4
stability, and referential

transparency 382
stack 84
stack trace 64
stackoverflow.com 92
standard library 41
start 99
start_link 99, 156, 277
start_link() 184
start_link/0 107
start_link/1 107
start.boot 255
state

encapsulating 7
inconsistent, temporary 217

statistics system 188
stdlib 120

proc_lib 179
STM 8–9
stop 112, 162, 181
stop/0 107
storage element, process as 219
storage, decoupling from

application 163
string 34

as list 34
constant, in Java 381
entering in shell 25
in binary syntax 31
in the shell 35
matching on prefixes 51
memory usage 372
prefixes, matching with ++ 51
printable characters in 35

struct 33
subnet, nodes 194
subsystem termination 14
succeed or die 234
sum/1 81
supervision

and OTP 4
one_for_one 155
simple_one_for_one 155, 159

INDEX396
supervision structure,
viewing 134

supervision tree 15–16, 125, 127
dynamically generated 156

supervisor 152, 185, 187
adding fault tolerance

with 125–129
avoid adding code to 264
avoiding application code

in 280
child specification 127–128
children 156
creating 125
implementing 126–127
introduction 119, 125
module 156
naming 186
nesting 187
restart strategy 127, 155
root 126
self-termination 127
simple-one-for-one, as

factory 266
temporary worker

process 156
supervisor behaviour 125, 138
supervisor hierarchy,

visualizing 132
supervisor process 14
supervisor_bridge 125
supervisor:start_child/2

156, 159
supervisor:start_link/3 126
symbols (Lisp) 31
synaptic 379
synchronization bottleneck 361
synchronous cache. See distrib-

uted cache, asynchronous
synchronous

communication 214–216
support for timeouts 216

synchronous request 107
syntax 21
sys.config 250, 255
system

configuration 250–251
profiling, during performance

tuning 359
System Architecture Support

Libraries. See SASL
system load 133
system process 14
systools 249, 253
systools:make_script 249, 253
systools:make_tar/2 253

systools:script2boot/1 250

T

Table Viewer. See TV
TABLE_ID macro 164
table, distributed 219
tail call 84
tail recursion

efficiency of 85, 375
to avoid quadratic time 90
vs. non-tail recursion 85

tail, of a list 38
tailrev 90
.tar 253
tar 253
tarball 253
target system 246

definition 242
starting 251–252

tasks
order-constrained 5
separating 6

TCP 95
connecting via 116
connection, accepting 264
inspecting traffic over 271
listening socket 111

TCP port, and start_link 277
TCP server

efficient servers in
Erlang 262–263

highly concurrent, pattern
for 263

implementing 262–270
TCP socket

{active, once} 281
active mode 279
built-in HTTP parsing 279,

284
flow control 279
options 278
ownership of listening

socket 279
{packet, raw} 285
passive mode 279

tcp_interface 263
directory structure 264

telnet 116, 270
temporary 128, 245
term 29

comparing 36
in ETS table 79
pretty-printing 53
printing 53

term_to_binary/1 299, 305, 343
terminate/2 callback 162
test case, writing 117
test, in guards 55
test-driven development 86
testing 117–118
text interface 268–270
text, printing 52
text-based protocol,

implementing 267–268
.tgz 253
Thompson, Simon 92
thread pool 342
threads 11, 18

communicating via
messages 334

concurrency 7
stack space 11

throughput 359
throw 62
throw/1 62
ti_app 264–265
ti_server 266–267

handle_data/3 268
OTP-compliant factory

for 266
ti_sup 265–266
time

accumulated time 365
changing default

measurement 365
CPU time 360
own time 365
wall-clock time 360, 365

timeout 77, 113, 216
after init/1 111

timeout message 161
timing, nondeterministic 19
token 72
tokenizer 269
Toolbar 146
toolbar:start() 146
tools application 363
tr_server:start_link() 128
tracing

a warning 139
fprof built on top of 363
in Appmon 136
in Pman 139

trade_resources() 209
traffic, tunneling 198
transaction 9

in Mnesia 226
transient 128, 245
transparent distribution 8

INDEX 397
trap_exit 14, 76
trapexit.org 92
traversing a data structure 86
true 32

and Boolean function 54
in case expressions 57

try 62, 115
after 64
body 63
try...of 63

try/catch, handling errors
in 269

tunneling Erlang traffic 198
tuple 32

access/update times 372
boxed representation 370
creation, fast 71
inflexibility of 69
pattern matching 33
record syntax 33
representation of 372
size 369
tagged 33, 56, 70

tuple_size/1 374
TV 144–145

in Toolbar 146
viewing tables 144

tv:start() 144
two-phase commit 218
type specifications, in EDoc

comments 109
type test 55
TypeSpecifiers 68

U

Ubuntu, synaptic 379
undef 72
undefined 32, 70
underscore 32

as don’t-care pattern 51
starting variable name with 46

Unicode 29
unit test 86
unit testing 117

UNIX
installing Erlang on 379–380
starting the Erlang shell 24

unsigned, specifier in
bitstring 68

unused-variable warning 46
upgradability, and OTP 4
User Switch Command

menu 27
UTF encoding, in bitstrings 68
utf16 68
utf32 68
utf8 68

V

v(N) 24, 26
variable 46–52

and referential
transparency 381

binding 47, 49
external 313
in the shell 47
inspecting in debugger 141
multiple occurrences in

patterns 50
scope, in function clauses 56
single assignment 47–50
starting with underscore 46
syntax 46
updates 48

vector comparison 37
verification message 218
version string 123
versioning, of releases 246
Virding, Robert 92
virtual machine emulator 17–20
vsn 244
vsn parameter 123

W

wait_for_nodes/2 236
wall-clock time 365
warning_msg 174, 182

warning_report 182
weak consistency 217
web server 7

as container 274
implementing as generic

behaviour 274–286
logging in 214

web service, building 270–290
WebAppmon 136
WebDAV 277
WebTool 136, 257
webtool:start() 136
werl 24, 27, 45, 129, 379
when 55
whereis/1 77
while loop 85
Wikström, Claes 92
Williams, Mike 92
Windows 27

erlc compiler in 45
installer 379
installing Erlang on 379
starting the Erlang shell 24
werl shell 379

wireless LAN, and distributed
mode 194

worker 128, 187
worker process 14

Y

YAJL 291
handling key/value pairs 309
managing memory 317
parser callbacks 307–312,

324, 327
running 303–304

yajl_alloc 304
yajl_free 304
yajl_free_error 304
yajl_get_error 304
yajl_parse_complete 304
Yaws 193, 198, 274
YECC 122

Martin Logan Eric Merritt Richard Carlsson

E
rlang is an adaptable and fault tolerant functional program-
ming language originally designed for the unique demands
of the telecom industry. With Erlang/OTP’s interpreter,

compiler, database server, and libraries, developers are fi nding
they can satisfy tough uptime and performance requirements in
all kinds of other industries.

Erlang and OTP in Action teaches you the concepts of concurrent
programming and the use of Erlang’s message-passing model.
It walks you through progressively more interesting examples,
building systems in Erlang and integrating them with C/C++,
Java, and .NET applications, including SOA and web architec-
tures. Th is book is written for readers new to Erlang and inter-
ested in creating practical applications.

Build apps that...
Never deadlock on a shared resource
Keep running, even during code upgrades
Recover gracefully from errors
Scale unchanged from one to many processors
Handle many simultaneous connections, and
Maintain fast response times

A core developer for Erlware, Martin Logan has worked with
Erlang since 1999. Eric Merritt is a core developer for Erlware
and the Sinan build system. An Erlang pioneer, Richard Carlsson
is an original member of the High-Performance Erlang group.

For online access to the authors and a free ebook for owners
of this book, go to manning.com/ErlangandOTPinAction

$49.99 / Can $57.99 [INCLUDING eBOOK]

Erlang AND OTP IN ACTION

FUNCTIONAL PROGRAMMING

“An enormous amount of
 experience, combined.”
 —From the Foreword by Ulf
 Wiger, Erlang Solutions Ltd.

“Full of practical, real-world
 code samples.”
 —Greg Donald
 Vanderbilt University

“Illuminates how to do things
 the Erlang way.”
 —John S. Griffi n
 Overstock.com, Inc.

“Th e missing link on the
 Erlang learning curve.”
 —Ken Pratt, Ruboss Technology
 Corporation

“An indispensable resource.”
 —David Dossot
 Programmer and Author

M A N N I N G

SEE INSERT

	Front cover
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	Source code
	Author Online
	About the authors
	About the cover illustration

	introduction
	Where Erlang comes from
	A comparison with C
	Stockholm, mid-1980s: an Englishman gets a license to poke around
	Some perplexing demands
	Erlang comes to life
	The in-between years
	Getting dressed for success

	Part 1 – Getting past pure Erlang: the OTP basics
	The Erlang/OTP platform
	1.1 Concurrent programming with processes
	1.1.1 Understanding concurrency
	1.1.2 Erlang’s process model
	1.1.3 Four process communication paradigms
	1.1.4 Programming with processes in Erlang

	1.2 Erlang’s fault tolerance infrastructure
	1.2.1 How process links work
	1.2.2 Supervision and trapping of exit signals
	1.2.3 Layering processes for fault tolerance

	1.3 Distributed Erlang
	1.4 The Erlang runtime system and virtual machine
	1.4.1 The scheduler
	1.4.2 I/O and scheduling
	1.4.3 Process isolation and the garbage collector

	1.5 Functional programming: Erlang’s face to the world
	1.6 Summary

	Erlang language essentials
	2.1 The Erlang shell
	2.1.1 Starting the shell
	2.1.2 Entering expressions
	2.1.3 Shell functions
	2.1.4 Escaping from the shell
	2.1.5 Job-control basics

	2.2 Data types in Erlang
	2.2.1 Numbers and arithmetic
	2.2.2 Binaries and bitstrings
	2.2.3 Atoms
	2.2.4 Tuples
	2.2.5 Lists
	2.2.6 Strings
	2.2.7 Pids, ports, and references
	2.2.8 Functions as data: funs
	2.2.9 Comparing terms
	2.2.10 Understanding lists

	2.3 Modules and functions
	2.3.1 Calling functions in other modules (remote calls)
	2.3.2 Functions of different arity
	2.3.3 Built-in functions and standard library modules
	2.3.4 Creating modules
	2.3.5 Compiling and loading modules
	2.3.6 The stand-alone compiler, erlc
	2.3.7 Compiled modules versus evaluation in the shell

	2.4 Variables and pattern matching
	2.4.1 Variable syntax
	2.4.2 Single assignment
	2.4.3 Pattern matching: assignment on steroids
	2.4.4 More about patterns

	2.5 Functions and clauses
	2.5.1 A function with side effects: printing text
	2.5.2 Multiple clauses and pattern matching for choice
	2.5.3 Guards
	2.5.4 Patterns, clauses, and variable scope

	2.6 Case and if expressions
	2.6.1 Boolean if-then-else switches in Erlang
	2.6.2 If expressions

	2.7 Funs
	2.7.1 Funs as aliases for existing functions
	2.7.2 Anonymous funs

	2.8 Exceptions, try, and catch
	2.8.1 Throwing (raising) exceptions
	2.8.2 Using try...catch
	2.8.3 try...of...catch
	2.8.4 after
	2.8.5 Getting a stack trace
	2.8.6 Rethrowing
	2.8.7 Plain old catch

	2.9 List comprehensions
	2.9.1 List comprehension notation
	2.9.2 Mapping, filtering, and pattern matching

	2.10 Bit syntax and bitstring comprehensions
	2.10.1 Building a bitstring
	2.10.2 Pattern matching with bit syntax
	2.10.3 Bitstring comprehensions

	2.11 Record syntax
	2.11.1 Record declarations
	2.11.2 Creating records
	2.11.3 Record fields and pattern matching
	2.11.4 Updating record fields
	2.11.5 Where to put the record declarations

	2.12 Preprocessing and include files
	2.12.1 Defining and using macros
	2.12.2 Include files
	2.12.3 Conditional compilation

	2.13 Processes
	2.13.1 Operating on processes
	2.13.2 Receiving messages, selective receive
	2.13.3 Registered processes
	2.13.4 Delivery of messages and signals
	2.13.5 The process dictionary

	2.14 ETS tables
	2.14.1 Why ETS tables work like they do
	2.14.2 Basics of using ETS tables

	2.15 Recursion: it’s how you loop
	2.15.1 From iteration to recursion
	2.15.2 Understanding tail recursion
	2.15.3 Accumulator parameters
	2.15.4 Some words on efficiency
	2.15.5 Tips for writing recursive functions

	2.16 Erlang programming resources
	2.16.1 Books
	2.16.2 Online material

	2.17 Summary

	Writing a TCP-based RPC service
	3.1 What you’re creating
	3.1.1 A reminder of the fundamentals
	3.1.2 Behaviour basics

	3.2 Implementing the RPC server
	3.2.1 Canonical module layout for a behaviour implementation
	3.2.2 The module header
	3.2.3 The API section
	3.2.4 The callback function section

	3.3 Running the RPC server
	3.4 A few words on testing
	3.5 Summary

	OTP applications and supervision
	4.1 OTP applications
	4.1.1 The organization of an OTP application
	4.1.2 Adding the application metadata
	4.1.3 The application behaviour
	4.1.4 Application structure summary

	4.2 Adding fault tolerance with supervisors
	4.2.1 Implementing a supervisor
	4.2.2 The supervisor restart strategy
	4.2.3 Writing the child specification

	4.3 Starting the application
	4.4 Generating documentation with EDoc
	4.5 Summary

	Using the main graphical introspection tools
	5.1 Appmon
	5.1.1 The Appmon GUI
	5.1.2 The WebTool version of Appmon

	5.2 Pman
	5.3 Debugger
	5.4 TV, the Table Viewer
	5.5 Toolbar
	5.6 Summary

	Part 2 – Building a production system
	Implementing a caching system
	6.1 The background story
	6.2 The design of your cache
	6.3 Creating the basic OTP application skeleton
	6.3.1 Laying out the application directory structure
	6.3.2 Creating the application metadata
	6.3.3 Implementing the application behaviour
	6.3.4 Implementing the supervisor

	6.4 From application skeleton to a working cache
	6.4.1 Coding the sc_element processes
	6.4.2 Implementing the sc_store module
	6.4.3 Rounding off with the application-level API module

	6.5 Summary

	Logging and event handling the Erlang/OTP way
	7.1 Logging in Erlang/OTP
	7.1.1 Logging in general
	7.1.2 Erlang/OTP built-in logging facilities
	7.1.3 The standard logging functions
	7.1.4 SASL and crash reports

	7.2 A custom event handler with gen_event
	7.2.1 Introducing the gen_event behaviour
	7.2.2 Event handler example
	7.2.3 Acting on error events

	7.3 Adding a custom event stream to the Simple Cache
	7.3.1 The event stream API
	7.3.2 Integrating the handler with Simple Cache
	7.3.3 Subscribing to a custom event stream

	7.4 Summary

	Introducing distributed Erlang/OTP
	8.1 The fundamentals of Erlang distribution
	8.1.1 Process communication by copying
	8.1.2 Location transparency

	8.2 Nodes and clustering
	8.2.1 Starting a node
	8.2.2 Connecting nodes
	8.2.3 How Erlang nodes find each other and communicate
	8.2.4 The magic cookie security system
	8.2.5 Sending messages between connected nodes
	8.2.6 Working with remote shells

	8.3 The nuts and bolts of resource discovery
	8.3.1 Terminology and taxonomy
	8.3.2 The algorithm
	8.3.3 Implementing the resource discovery application

	8.4 Summary

	Adding distribution to the cache with Mnesia
	9.1 Distributing the cache
	9.1.1 Choosing a communication strategy
	9.1.2 Synchronous versus asynchronous cache
	9.1.3 If you only had a distributed table...

	9.2 Distributed data storage with Mnesia
	9.2.1 Creating a project database
	9.2.2 Initializing the database
	9.2.3 Creating the tables
	9.2.4 Populating the tables
	9.2.5 Do some basic queries on your data

	9.3 Distributing the cache with Mnesia
	9.3.1 Switching from ETS to Mnesia
	9.3.2 Making the cache aware of other nodes
	9.3.3 Integrating resource discovery to find other cache instances
	9.3.4 Bringing the Mnesia tables into dynamic replication

	9.4 Summary

	Packaging, services, and deployment
	10.1 Applications from a system viewpoint
	10.1.1 Structure
	10.1.2 Metadata
	10.1.3 How the system manages running applications

	10.2 Making a release
	10.2.1 Releases
	10.2.2 Preparing to release your code
	10.2.3 The release metadata file
	10.2.4 The script and boot files
	10.2.5 System configuration
	10.2.6 Starting a target system

	10.3 Release packaging
	10.3.1 Creating a release package
	10.3.2 Release package contents
	10.3.3 Customizing a release package

	10.4 Installing a release
	10.5 Summary

	Part 3 – Integrating and refining
	Adding an HTTP interface to the cache
	11.1 Implementing a TCP server
	11.1.1 A pattern for efficient TCP servers
	11.1.2 Sketching the tcp_interface application
	11.1.3 Fleshing out the TCP server
	11.1.4 The simple text-based protocol
	11.1.5 Text interface implementation

	11.2 Building a web service from the ground up
	11.2.1 A quick-and-dirty introduction to HTTP
	11.2.2 Implementing a generic web server behaviour
	11.2.3 Getting REST
	11.2.4 Implementing the RESTful protocol with gen_web_server

	11.3 Summary

	Integrating with foreign code using ports and NIFs
	12.1 Ports and NIFs
	12.1.1 Plain ports
	12.1.2 Linked-in port drivers
	12.1.3 Natively implemented functions (NIFs)

	12.2 Integrating with the parser through a port
	12.2.1 The Erlang side of the port
	12.2.2 The C side of the port
	12.2.3 Compiling and running the code

	12.3 Making a linked-in driver
	12.3.1 Understanding linked-in drivers
	12.3.2 The C side of the driver
	12.3.3 Compiling the driver code
	12.3.4 The Erlang side of the driver

	12.4 Implementing the parser as a NIF
	12.4.1 The Erlang side of the NIF
	12.4.2 The C side of the NIF
	12.4.3 Compiling and running the code

	12.5 Summary

	Communication between Erlang and Java via Jinterface
	13.1 Integrating Erlang with Java using Jinterface
	13.1.1 The OtpNode class
	13.1.2 The OtpMbox class
	13.1.3 Mapping Erlang data structures onto Java
	13.1.4 Message-handling example in Java
	13.1.5 Talking to the Java node from Erlang

	13.2 Installing and configuring HBase
	13.2.1 Downloading and installing
	13.2.2 Configuring HBase

	13.3 Building the bridge between Simple Cache and HBase
	13.3.1 The Erlang side: sc_hbase.erl
	13.3.2 The HBaseConnector class
	13.3.3 Java message handling
	13.3.4 The HBaseTask class

	13.4 Integrating HBase with Simple Cache
	13.4.1 Lookup
	13.4.2 Insert
	13.4.3 Delete

	13.5 Running the integrated system
	13.6 Summary

	Optimization and performance
	14.1 How to approach performance tuning
	14.1.1 Determining your performance goals
	14.1.2 Establishing a baseline
	14.1.3 Profiling the system
	14.1.4 Decide which problems to attack
	14.1.5 Measure the results

	14.2 Profiling Erlang code
	14.2.1 Counting calls with cprof
	14.2.2 Profiling execution time with fprof

	14.3 Erlang programming language caveats
	14.3.1 Performance aspects of the primitive data types
	14.3.2 Performance of built-in functions and operators
	14.3.3 Functions
	14.3.4 Processes

	14.4 Summary

	appendix A: Installing Erlang
	A.1 Installing Erlang on Windows
	A.2 Installing Erlang on Mac OS X, Linux, or other UNIX-like systems
	A.2.1 Compiling from source
	A.2.2 Resolving configuration problems

	appendix B: Lists and referential transparency
	B.1 A definition of referential transparency
	B.2 Advantages of referential transparency
	B.3 What it has to do with lists

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

	Back cover

