
Essential
PowerShell
for Office 365

Managing and Automating Skills for
Improved Productivity
—
Vlad Catrinescu

www.allitebooks.com

http://www.allitebooks.org

Essential PowerShell
for Office 365

Managing and Automating Skills
for Improved Productivity

Vlad Catrinescu

www.allitebooks.com

http://www.allitebooks.org

Essential PowerShell for Office 365: Managing and Automating Skills for Improved
Productivity

ISBN-13 (pbk): 978-1-4842-3128-9			 ISBN-13 (electronic): 978-1-4842-3129-6
https://doi.org/10.1007/978-1-4842-3129-6

Library of Congress Control Number: 2018936350

Copyright © 2018 by Vlad Catrinescu

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, email orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please email rights@apress.com or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484231289. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Vlad Catrinescu
Greenfield Park, Québec, Canada

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3129-6
http://www.allitebooks.org

To Genviève, thank you for your love and support over the
years as I followed my passions!

www.allitebooks.com

http://www.allitebooks.org

v

About the Author�� ix

About the Technical Reviewer�� xi

Table of Contents

Chapter 1: �Introduction to PowerShell for Office 365�� 1

What Is Office 365?��� 1

Office 365 Admin Tools�� 2

The Office 365 Admin Center��� 2

The Office 365 Admin App��� 3

The Office 365 Management API��� 3

PowerShell for Office 365�� 4

The Importance of Learning PowerShell for Office 365��� 4

The Different Types of Office 365 Deployments�� 5

What About the Other Applications?�� 8

Next Steps��� 8

Chapter 2: �Managing Users and Licenses��� 9

Connecting to Office 365��� 9

Managing Users with PowerShell��� 13

Viewing Users and Properties�� 13

Modifying User Properties��� 15

Creating Users��� 17

Managing Licenses with PowerShell�� 19

Viewing the Available Licenses��� 19

Assigning a License to a User��� 23

Assigning Multiple Licenses�� 26

Assigning Licenses with Some Features Disabled�� 28

Removing User Licenses��� 31

www.allitebooks.com

http://www.allitebooks.org

vi

Managing Security Groups with PowerShell��� 32

Creating a New Security Group��� 32

Changing the Properties of a Security Group�� 33

Removing a Security Group��� 34

Managing Security Group Membership��� 35

Automation Scenarios��� 37

Updating User Licenses��� 37

Creating or Updating Users from a CSV File�� 41

Conclusion��� 46

Chapter 3: �Managing SharePoint Online�� 47

Connecting to SharePoint Online��� 47

Executing PowerShell cmdlets in SharePoint Online�� 51

The Available cmdlets�� 51

Managing Sites�� 54

Managing Users and Groups��� 61

Managing Tenant-level Settings�� 66

Community Extensions�� 71

Getting the Office 365 Dev PnP PowerShell Cmdlets�� 72

Connecting to SharePoint�� 73

Sample cmdlets��� 73

Automation Scenarios��� 77

Create Sites from a CSV File�� 77

Copy User Permissions�� 79

Conclusion��� 82

Chapter 4: �Managing Exchange Online�� 83

Connecting to Exchange Online��� 83

Connecting with Multi-Factor Authentication�� 85

Managing Users and Mailboxes�� 89

Users��� 89

Contacts��� 91

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

vii

Mailboxes�� 94

Calendar and Out of Office�� 98

SendAs and Mailbox Permissions��� 102

Managing Organization Settings��� 107

Managing Distribution Groups��� 110

Manage Distribution Group Membership��� 113

Mailbox Reporting��� 114

Disconnecting from Exchange Online��� 116

Conclusion��� 116

Chapter 5: �Managing Skype for Business Online��� 117

Connecting to Skype for Business Online��� 117

Available cmdlets�� 120

Executing PowerShell cmdlets for Skype for Business Online�������������������������������������� 122

Managing Users and Policies�� 122

Managing Policies��� 123

External Communications�� 128

Skype for Business Broadcast��� 129

Running cmdlets in a Hybrid Environment�� 133

Conclusion��� 134

Chapter 6: �Managing the Office 365 Security & Compliance Center��������������������� 135

Connecting to the Office 365 Security & Compliance Center�� 135

Office 365 Security & Compliance Center cmdlets��� 137

Executing PowerShell cmdlets in the Office 365 Security & Compliance Center���������� 140

Managing Permissions�� 140

Compliance Search�� 142

Searching the Unified Audit Log�� 147

Conclusion��� 152

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

viii

Chapter 7: �Managing Office 365 Groups�� 153

PowerShell Modules to Manage Office 365 Groups�� 153

Basic Operations��� 154

Creating an Office 365 Group�� 154

Updating Office 365 Groups��� 159

Deleting an Office 365 Group��� 161

Restoring a Deleted Office 365 Group��� 162

Managing the Members of an Office 365 Group�� 165

Office 365 Group Governance��� 168

Enforcing a Naming Policy and Blocked Words��� 169

Group Classifications��� 176

Usage Guidelines��� 181

Only Allowing a Certain Group to Create Office 365 Groups�� 184

Guest Policies�� 186

Office 365 Group Reporting��� 191

Conclusion��� 194

Chapter 8: �Automating Tasks with PowerShell��� 195

Connecting to Multiple Office 365 Services�� 195

Saving Credentials to Securely Use with PowerShell�� 196

Creating Users in Azure AD Using SharePoint as an Input�� 198

Add Users to an Distribution List Using SharePoint as an Input������������������������������������ 210

Office 365 Groups Provisioning��� 217

Other Tips and Optimizations�� 226

Hiding Columns in SharePoint Online�� 226

Using CAML to Filter Items�� 229

Conclusion��� 230

�Index�� 231

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

ix

About the Author

Vlad Catrinescu is a SharePoint and Office 365 consultant

specializing in PowerShell, SharePoint, and hybrid

scenarios. As an author, MVP, Microsoft Certified Trainer,

and recognized international speaker, Vlad has helped

hundreds of thousands of users and IT pros across the

globe to get the most out of their SharePoint and Office 365

deployments. Vlad writes the popular “Absolute SharePoint

Blog” and is a recipient of the “Top 25 Office 365 Influencers”

award. His contributions can also be found on other sites

such as CMSWire and ComputerWorld. He is author of Deploying SharePoint 2016: Best

Practices for Installing, Configuring, and Maintaining SharePoint Server 2016(Apress).  

www.allitebooks.com

http://www.allitebooks.org

xi

About the Technical Reviewer

Jeff Collins is the owner of Coupled Technology, a

SharePoint and Office 365 consulting agency. Jeff has a deep

love for new technology, especially when it comes to

Office 365 and SharePoint. Jeff’s passion for helping

businesses get the most out of the Office 365 and SharePoint

services is what drives his ability to think outside of the box

and implement creative solutions that maximize adoption

and consumption.

www.allitebooks.com

http://www.allitebooks.org

1
© Vlad Catrinescu 2018
V. Catrinescu, Essential PowerShell for Office 365, https://doi.org/10.1007/978-1-4842-3129-6_1

CHAPTER 1

Introduction to PowerShell
for Office 365
In this chapter, we will learn the tools we have available as Office 365 administrators

to manage our tenant as well as why PowerShell is a critical skill for every Office 365

administrator out there. We will also review the different ways of deploying Office 365

and how each affects us when managing our tenant.

�What Is Office 365?
One of the major changes in technology over the past few years has been the move to the

cloud. Whether it’s using an Infrastructure-As-A-Service (IaaS) provider such as Azure

or Amazon Web Services (AWS) to host their virtual machines or using a Software-As-

A-Service (SaaS) provider such as Office 365 for their collaboration tools, employers are

moving to the cloud to provide more efficient service to their employees at a lower cost.

When Office 365 got released on June 28, 2011, it included mostly Microsoft’s

big three Office Servers products (Exchange, SharePoint, and Skype for Business),

but in an SaaS model in the cloud. Now, Office 365 has added a dozen new products

and is used by more than 100 million users every month. With the change from on-

premises software to the cloud, IT professionals have less to worry about since a lot of

the technology behind is managed by Microsoft, allowing IT staff to focus their time

on creating productive solutions for their users. However, even if Microsoft takes care

of the servers in the backend, IT professionals still have to configure Office 365 for

their company as well as manage the day-to-day tasks. Let’s take a look at the tools IT

professionals can use to manage Office 365.

2

�Office 365 Admin Tools
Microsoft offers four main tools with which to manage Office 365 that cover different

scenarios and capabilities. Let’s take a look at each one of them in detail.

�The Office 365 Admin Center
The Office 365 Admin Center seen in Figure 1-1 is the most popular tool with which

to manage Office 365 and is probably the tool you are most familiar with. The Admin

Center provides a user interface where administrators can do the initial setup of Office

365, as well as an out-of-the-box solution that allows you to manage your users and

licenses, as well as every product in the Office 365 suite, such as Exchange, SharePoint,

Skype for Business, OneDrive, and more. While the Office 365 Admin tool is easy to use

and has a lot of possibilities, not all of the properties can be seen, and a lot of common

actions cannot be performed in this portal.

Figure 1-1.  The Office 365 Admin Center

Chapter 1 Introduction to PowerShell for Office 365

3

�The Office 365 Admin App
The Office 365 Admin App seen in Figure 1-2 allows Office 365 administrators to stay

connected with their Office 365 administration on the go. You can manage your users

and do easy tasks, such as assigning a license, adding an alias, or resetting a password,

directly from the Office 365 Admin App. You can also view the latest information

about service health as well as the Office 365 Message Center and your support tickets.

While the Office 365 Admin App is very useful for the admin on the go, it isn’t a full

management tool, and it’s the tool with the fewest robust options out of the four we will

look at in this chapter.

Figure 1-2.  The Office 365 Admin App

�The Office 365 Management API
The Office 365 Management API can be used by developers in your company to

create applications on top of Office 365 that will make management easier as well as

offer more solutions for your employees. The Office 365 Management API sits on the

Microsoft Graph, and allows you to utilize data from all Office 365 products in your own

application or site. Multiple independent software vendors (ISVs) have taken advantage

of the API to create applications on top of Office 365.

Chapter 1 Introduction to PowerShell for Office 365

4

�PowerShell for Office 365
Last, but not least, is PowerShell for Office 365. PowerShell is really the most powerful

tool out there to manage your Office 365 tenant without having to create a custom

solution. PowerShell is a command-line environment that is designed specifically

for system administration in the Microsoft ecosystem, and now extends to Linux as

well. Most of the Office 365 components have their own cmdlets with which to change

different settings in Office 365. PowerShell allows you to use cmdlets provided by

Microsoft as well as using the client-side object model (CSOM). By using CSOM you

can leverage the Microsoft API to connect and manage your Office 365 environment to

accomplish tasks that Microsoft didn’t release a cmdlet for.

�The Importance of Learning PowerShell for Office 365
So, why is learning PowerShell for Office 365 that important when we already have the

Office 365 Admin Center? Office 365 PowerShell can display properties that cannot

be seen in the Office 365 Admin Center, as well as do actions that you cannot perform

from the Admin Center. Furthermore, with PowerShell you can easily execute bulk

operations, or operations that affect multiple Office 365 services at once. As an Office

365 administrator, you need to learn how to master PowerShell for Office 365 in order to

control and manage all of the parameters of your Office 365 deployment.

PowerShell also allows you to automate stuff you do on a regular basis, therefore

saving you time and enabling you to do things that will make your business more

productive. PowerShell is great at getting data from Office 365, filtering it, and saving it in

different formats that you can then print or import into other applications.

Chapter 1 Introduction to PowerShell for Office 365

5

�The Different Types of Office 365 Deployments
Office 365 is used by a wide variety of enterprises, ranging from small one-person home

businesses to Fortune 100 companies with over 50,000 users. Depending on multiple

factors, such as enterprise size, how new the company is, and more, an enterprise might

deploy Office 365 differently. A small company that just launched and never had on-

premises servers to take care of probably went 100 percent in Office 365 while a Fortune

100 company that’s been around for a hundred years, had stuff hosted on-premises,

and probably still has a big part of its infrastructure on-premises with some parts in the

cloud. This can make a big difference in the way one manages some parts of Office 365,

especially the users.

In a small company that is 100 percent in the cloud with nothing on-premises, all of

the users will be what we call cloud users, meaning they are not synchronized from any

external locations. These users have probably been created directly in Office 365, and

technically they are stored in Azure Active Directory behind the scenes, as illustrated in

Figure 1-3. A lot of small-business owners do not go to Azure Active Directory at all and

simply manage everything from the Office 365 Admin Center.

Figure 1-3.  Cloud users

Chapter 1 Introduction to PowerShell for Office 365

6

The other type of deployment, which you will find most of the time when working

with enterprise customers, is one where the users are stored in Active Directory, running

on-premises in the company datacenter, and are also synchronized to Azure Active

Directory by using Azure AD Connect or a similar tool. This topology is illustrated in

Figure 1-4. One of the main differences in this topology from a management point of

view is that since users are synchronized from on-premises to Office 365, all changes to

users must be done in the on-premises Active Directory, which will then update the user

in Azure Active Directory and therefore in Office 365.

Figure 1-4.  Synchronized users

Chapter 1 Introduction to PowerShell for Office 365

7

Microsoft also offers the possibility for companies to set up a two-way sync for

some properties between Azure AD and the on-premises Active Directory as seen

in Figure 1-5. However, this functionality is not included in the “base” Azure Active

Directory subscription, which is free, so companies must purchase the premium Azure

AD Subscription, which varies between $5 and $10/user per month at the time of writing

this book. As you see, for a big company with thousands of users, it can be a big price to

pay if you don’t need any of the other feature of Azure AD Premium, such as multi-factor

authentication.

Figure 1-5.  Two-way sync

Chapter 1 Introduction to PowerShell for Office 365

8

In conclusion, knowing the type of deployment your enterprise is using is essential

when managing your Office 365 tenant. If your enterprise is synchronizing users

one-way from on-premises to Azure Active Directory, there is no use in modifying

synchronized user properties directly in Office 365, since those will get overwritten on

the next scheduled synchronization. Your first steps when starting to manage Office 365

should be to find out what the architecture looks like.

�What About the Other Applications?
After figuring out how your Active Directory is designed, you need to look at how the

rest of the applications are deployed. While most companies that pay for Office 365

ultimately hope to move all their workloads into the cloud, some of them simply have to

stay on-premises because of customizations or regulations on data. All three main server

products (Exchange, SharePoint, and Skype for Business) can be run only on-premises,

purely online, or in a hybrid mode where some workloads stay on-premises and some

workloads go online. While we will not go into much detail about how to implement a

hybrid topology for those products, it’s important to understand where everything is

hosted in your organization so you know what has to be managed on-premises and what

has to be managed in the cloud.

�Next Steps
In this chapter, we walked through the different tools available to us to manage Office

365 and looked at why learning PowerShell for Office 365 is important. We also looked at

the different topologies in which Office 365 can be implemented in the organization and

how it affects us as Office 365 administrators.

Now that we know the basics, in the next chapter we will learn how to manage Office

365 users and licenses!

Chapter 1 Introduction to PowerShell for Office 365

9
© Vlad Catrinescu 2018
V. Catrinescu, Essential PowerShell for Office 365, https://doi.org/10.1007/978-1-4842-3129-6_2

CHAPTER 2

Managing Users
and Licenses
In this chapter, we will learn how to use PowerShell to connect to Office 365 and Azure

Active Directory from a client computer. We will also learn the cmdlets available to

create, modify, or delete users from Office 365. Furthermore, we will go over how to

view our available licenses, how to assign a license to a user, and how to create a custom

license if we don’t want all the services in our subscription!

�Connecting to Office 365
One of the first things we will have to do to manage our users and licenses is connect to

Office 365 from PowerShell. In the past, when managing SharePoint, Exchange, Skype

for Business, or Active Directory we used to simply remote desktop into the server, run

the PowerShell cmdlets we had to run, and that’s it. Everything was already there on the

servers because when installing the server software all the PowerShell modules required

to manage this server were also installed.

With Office 365 it’s different because we cannot simply log on remotely to the

server and do our operations, as there is no server to log onto when talking about Office

365. Therefore, the first thing we will have to do is download the required PowerShell

modules on our local computer and then connect to Office 365.

For this book, we will use the Azure Active Directory V2 PowerShell Module, which

is the latest version of the Azure AD PowerShell module, replacing the old Azure Active

Directory (MSOnline) module. In order to be able to do all the cmdlets in this chapter,

the account that you will use for the cmdlets needs to have the Office 365 Global

Administrator role.

10

Note  We want to manage Office 365 users, so why do we need to download
the Azure Active Directory Module? The answer is that Office 365 uses the
cloud-based user-authentication service Azure Active Directory to store users.

The Azure Active Directory V2 PowerShell Module is hosted on the PowerShell

Gallery, which is the central repository for PowerShell content from Microsoft and the

community. To download modules from the PowerShell Gallery, you need to have

PowerShellGet, which is included out of the box in the following releases:

•	 Windows 10 or newer

•	 Windows Server 2016 or newer

•	 Windows Management Framework (WMF) 5.0 or newer

•	 PowerShell 6

If you have an earlier version of Windows or PowerShell, you can get the

PowerShellGet Module from the Microsoft Download Center. The minimum version of

PowerShell supported at the time of writing this book is PowerShell 3.0.

Note  The PowerShellGet Module can be downloaded at
https://www.microsoft.com/en-us/download/details.aspx?id=51451.

After you have installed the PowerShellGet module—or if you have one of the

required releases already—you can simply open PowerShell as an administrator and run

the following cmdlet to install the Azure Active Directory V2 PowerShell Module:

Install-Module -Name AzureAD

PowerShell will look in the PowerShell Gallery for the module with the name

AzureAD and install it on your computer. You can also view the AzureAD PowerShell

Module page directly on the PowerShell Gallery at https://www.powershellgallery.

com/packages/AzureAD/. When installing the module, you might get a warning similar

to that shown in Figure 2-1, which you have to accept.

Chapter 2 Managing Users and Licenses

www.allitebooks.com

https://www.microsoft.com/en-us/download/details.aspx?id=51451
https://www.powershellgallery.com/packages/AzureAD/
https://www.powershellgallery.com/packages/AzureAD/
http://www.allitebooks.org

11

After the module finishes installing, you will be able to connect to Azure Active

Directory. The first thing you will have to do is save your credentials into a variable,

which you do with the Get-Credential cmdlet:

$cred = Get-Credential

The preceding command line will open a PowerShell credential request pop-up as

seen in Figure 2-2, and it will save it in a variable called $cred.

Note  PowerShell will not do any validation of the credentials you enter in the
pop-up window.

Figure 2-1.  Installing the Azure Active Directory V2 PowerShell module

Chapter 2 Managing Users and Licenses

12

Afterward, run the Connect-AzureAD PowerShell cmdlet and specify the -Credential

parameter with the $cred variable you just created. You do not need to enter a tenant

name as Azure AD will automatically connect you to your tenant based on your email

address, as seen in Figure 2-3.

Figure 2-2.  Saving our credentials into a variable

Figure 2-3.  Connecting to Azure AD

Note I f the account you use to connect to Azure Active Directory has Multi
Factor Authentication enabled, you simply need to run Connect-AzureAD without
specifying the -Credential parameter.

Now that you have connected to Azure AD you can run PowerShell cmdlets against

your tenant. Let’s take a look at what can be done.

Chapter 2 Managing Users and Licenses

13

�Managing Users with PowerShell
One of the things we can do with the Azure AD PowerShell cmdlet is manage our users

as well as their properties. Let’s start with viewing our users and their properties.

�Viewing Users and Properties
To view all the users in your tenant you can run the Get-AzureADUser cmdlet, which will

return all the users, including the external ones. You can also use PowerShell to filter on

any property of that user’s profile—for example, the department, as seen in Figure 2-4.

Figure 2-4.  Get-AzureADUser

To view all the properties of a user, you can run the following cmdlet:

Get-AzureADUser -ObjectId jeff@office365powershell.ca | Format-List

Some of the properties of an Azure AD user are, however, stored elsewhere in Office

365, so a different cmdlet is needed for them, such as the manager. To get a user’s

manager, you need to run the Get-AzureADUserManager cmdlet and specify the User

Principal Name or the Object ID of the user for which you want to know the manager, as

seen in Figure 2-5.

Chapter 2 Managing Users and Licenses

14

You can also do the opposite and get the direct reports of a user by using the

Get-AzureADUserDirectReport cmdlet and specifying the User Principal Name or the

Object ID of the user for which you want to view the direct reports. In Figure 2-6, we see

that John Smith and Jeff Collins both report to vlad-admin@office365powershell.ca.

Figure 2-5.  Viewing the manager of a user

Figure 2-6.  Viewing the direct reports of a user

Now that we are able to view the properties, we’ll learn how to modify them.

Chapter 2 Managing Users and Licenses

15

�Modifying User Properties
You can also use PowerShell to change the properties of a user—for example,

Department, Job Title, Phone Number, and so on—by using the Set-AzureADUser cmdlet

as seen in the following example and Figure 2-7.

Set-AzureADUser -ObjectId jeff@office365powershell.ca -City Seattle -Country

"United States" -JobTitle "Marketing Manager" -Department "Marketing"

Figure 2-7.  Changing the properties of a user

You can also change the manager by using the Set-AzureADUserManager cmdlet.

For this cmdlet, you need to specify the -ObjectId parameter, which is the User

Principal Name or Object ID of the user you want to change the parameter for, and the

-RefObjectId parameter, which is the Object ID of the manager. For this cmdlet, you

cannot specify the User Principal Name of the manager in the -RefObjectId, so you have

to specify the ID of the Azure AD object to assign as manager.

You first have to get the ID of the Azure AD object of your manager, in this case

vlad-admin@office365powershell.ca, by using the Get-AzureADUser cmdlet as seen

in Figure 2-8. The ObjectId is in the first column.

Figure 2-8.  Getting the ID of the Azure AD object

Chapter 2 Managing Users and Licenses

16

You can then use the Set-AzureADUserManager cmdlet to specify your parameters,

as follows:

Set-AzureADUserManager

-ObjectId vanessa@office365powershell.ca

-RefObjectId 4fc1cc1d-bac1-4cfd-b15d-c70d565e8200

You can then use the Get-AzureADUserManager PowerShell cmdlet to verify that it

worked, as seen in Figure 2-9.

Figure 2-9.  Verifying the manager of a user

If you are more experienced with PowerShell, you can also do the operation in

a single cmdlet without having to copy and paste the ObjectId, as in the following

example:

Set-AzureADUserManager -ObjectId vanessa@office365powershell.ca

-RefObjectId (Get-AzureADUser

 -ObjectId vlad-admin@office365powershell.ca).ObjectId

Now that we have successfully edited users by using PowerShell, we will look at how

to create a brand-new user.

Chapter 2 Managing Users and Licenses

17

�Creating Users
You can use PowerShell to create new users with the New-AzureADUser PowerShell

cmdlet. This allows you to specify all the properties of the user on creation so you can

make sure they have a complete profile from the start. One of the required parameters of

the New-AzureADUser cmdlet is the password, which you cannot simply specify as text;

you will need to first build a Microsoft.Open.AzureAD.Model.PasswordProfile object

and pass that object as a parameter.

You will first create a variable called $PasswordProfile as seen in the following example:

$PasswordProfile = New-Object -TypeName Microsoft.Open.AzureAD.Model.

PasswordProfile

You will then set the Password property to the password that you want the user to

have, as seen here:

$PasswordProfile.Password = "Apress2017"

I find it important to force the user to change their password the next time they log in

to Office 365. This can be done by setting the ForceChangePasswordNextLogin property

to true as seen here:

$PasswordProfile.ForceChangePasswordNextLogin = $true

To put all this together, to create the PasswordProfile object, you would run the

following cmdlets:

$PasswordProfile = New-Object -TypeName Microsoft.Open.AzureAD.Model.

PasswordProfile

$PasswordProfile.Password = "Apress2017"

$PasswordProfile.ForceChangePasswordNextLogin = $true

You can now start creating your user with some basic properties, such as Name,

Department, Job Title, and so on. In the sample cmdlet that follows, we are creating the

user Jonathan King:

New-AzureADUser `

 -GivenName "Jonathan" `

 -Surname "King" `

 -DisplayName "Jonathan King" `

Chapter 2 Managing Users and Licenses

18

 -UserPrincipalName "Jonathan@office365powershell.ca" `

 -MailNickName "Jonathan" `

 -AccountEnabled $true `

 -PasswordProfile $PasswordProfile `

 -JobTitle "IT Manager" `

 -Department "IT" `

While we provided a lot of profile properties for our sample user, the minimum

requirement parameters required are -UserPrincipalName, -PasswordProfile,

-AccountEnabled, -DisplayName, and -MailNickName.

You can see the results in Figure 2-10 from the Office 365 Admin Center.

Figure 2-10.  Newly created Office 365 user

Our user is created and can now log in, but cannot use Office 365 yet because we

did not assign a license for this user. Let’s take a look at how to manage licenses for

Office 365 with PowerShell.

Chapter 2 Managing Users and Licenses

19

�Managing Licenses with PowerShell
Another important aspect of managing users is their licenses. Unlike on-premises, where

you only need to make sure you have the right amount of Client Access Licenses (CAL)

and don’t need to do anything manually, in Office 365 every user must be assigned a

license that will specify what services they have access to. Let’s learn how to view the

available licenses in your tenant.

�Viewing the Available Licenses
First, to view what subscriptions you have in your tenant, you need to use the

Get-AzureADSubscribedSku cmdlet. As seen in Figure 2-11, this will give you the ID of

your subscription as well as the internal name and that’s about it. The PrepaidUnits

property is displayed, but does not show us anything too useful . . . yet.

Figure 2-11.  Viewing the subscriptions of the current tenant

However, if you expand some of the properties of the Get-AzureADSubscribedSku

cmdlet, you can view more interesting things, such as the number of licenses that you

have used per subscription and how many you have available. To get this information,

you can run the following cmdlet:

Get-AzureADSubscribedSku | Select-Object -Property ObjectId,

SkuPartNumber, ConsumedUnits -ExpandProperty PrepaidUnits

Chapter 2 Managing Users and Licenses

20

This will show you the Object ID, the Internal Name of the subscription, and how

many licenses of that subscription you currently have assigned to users (ConsumedUnits).

When expanding the PrepaidUnits property, you can view how many of them you have

enabled and suspended. In Figure 2-12, you can see that in my current tenant, I have two

subscriptions, an E5 (ENTERPRISEPREMIUM) and an E3 (ENTERPRISEPACK). I am currently

using four licenses of the E5, but I currently pay for 25 of them. For my E3 subscription,

I had 25 licenses but they are suspended (not renewed), and none of those were assigned

to any users.

Figure 2-12.  Consumption details of the Office 365 subscription in our tenant

You can also view the details of what services exactly are included in each

subscription by expanding the ServicePlans property. In the following example, I select

my E5 subscription by using its ObjectId, found earlier, and expand the ServicePlan

property:

Get-AzureADSubscribedSku -ObjectId 545c04df-2411-4d58-9378-7ec79e9e6b8e_

c7df2760-2c81-4ef7-b578-5b5392b571df | Select-Object -ExpandProperty

ServicePlans

This will show me more in detail which services are applied at the user or company

levels and which of them are provisioned. You can view the output in Figure 2-13.

Chapter 2 Managing Users and Licenses

21

You can also use a single cmdlet to show you all the services for each different SKU

by using the PowerShell formatting cmdlets, as seen in the following example:

Get-AzureADSubscribedSku | Select-Object -Property

SkuPartNumber -ExpandProperty ServicePlans | Format-Table -GroupBy

SkuPartNumber

This will display every subscription that you have in your tenant and the plans in

each one, grouped in a nice way, as seen in Figure 2-14.

Figure 2-13.  Viewing the ServicePlans

Chapter 2 Managing Users and Licenses

22

Now that we know how to view our subscriptions and services, we can look at how

to view the licenses assigned to a user and how to assign them new licenses. To view the

licenses assigned to a user, you can use the Get-AzureADUserLicenseDetail cmdlet.

In the example that follows, I am displaying the different subscriptions assigned to Jeff

Collins and showing only the Internal Name (SkuPartNumber):

Get-AzureADUserLicenseDetail -ObjectId jeff@office365powershell.ca |

Select-Object SkuPartNumber

In Figure 2-15, you can see that Jeff currently has the O365_BUSINESS_PREMIUM and

the ENTERPRISEPREMIUM licenses assigned to his account.

Figure 2-14.  Showing all the services in the tenant, grouped by subscription name

Chapter 2 Managing Users and Licenses

23

Now that we know how to view the licenses, let’s take a look at how to license a

new user.

�Assigning a License to a User
The first thing that you will have to do is set the UsageLocation parameter for your user,

as this parameter is mandatory before assigning a license. The UsageLocation parameter

accepts the two-letter country code of the location from which this user will be using

Office 365. To make things easier, save your user in a variable called $User so you do not

have to specify the username every time:

$User = Get-AzureADUser -ObjectId jonathan@office365powershell.ca

Set-AzureADUser -ObjectId $User.ObjectId -UsageLocation CA

Now that your user is ready to be assigned a license, you first need to create two

objects. The first one is the $Sku variable seen next, which is an object that represents a

single subscription. The second object, which is the $Licenses variable, is the collection

of licenses that will be assigned to the user. This will become useful when you want to

assign multiple licenses to certain users.

$Sku = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedLicense

$Licenses = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedLicenses

Tip  While in most cases you will only assign a single license to a user, you might,
for example, get a Power BI Pro license only for the executives of the company,
while the rest of the users have a simple E3 license. The executives would have
two licenses assigned, the E3 and the Power BI Pro.

Figure 2-15.  Displaying the different subscriptions assigned to a user

Chapter 2 Managing Users and Licenses

24

Next up, you need to enter the information in the variables just created. The first step

is to know the SkuID of the license that you want to assign to your user, which can be

discovered with the following cmdlet:

Get-AzureADSubscribedSku | Select-Object -Property SkuPartNumber, SkuID

The result shown in Figure 2-16 shows all the possible subscription IDs.

Figure 2-16.  All the subscription SkuIds in the tenant

Next up, you need to specify the SkuId parameter of the $Sku object you just created,

then tell it what license you want it to be:

$Sku.SkuId = "c7df2760-2c81-4ef7-b578-5b5392b571df"

You then need to add your $Sku object, part of the $Licenses array that you created

earlier, with the following cmdlet:

$Licenses.AddLicenses = $Sku

Lastly, you need to add the licenses to your user with the Set-AzureADUserLicense

cmdlet, as seen here:

Set-AzureADUserLicense -ObjectId $User.ObjectId -AssignedLicenses $Licenses

Now, to put it all together, these are the cmdlets required to add the E5 license to

your user:

$User = Get-AzureADUser -ObjectId jonathan@office365powershell.ca

Set-AzureADUser -ObjectId $User.ObjectId -UsageLocation CA

$Sku = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedLicense

$Licenses = New-Object -TypeName Microsoft.Open.AzureAD.Model.

AssignedLicenses

Chapter 2 Managing Users and Licenses

25

$Sku.SkuId = "c7df2760-2c81-4ef7-b578-5b5392b571df"

$Licenses.AddLicenses = $Sku

Set-AzureADUserLicense -ObjectId $User.ObjectId -AssignedLicenses $Licenses

You can look at the result either by using the Get-AzureADUserLicenseDetail

cmdlet, as you saw earlier in this chapter, or from the Office 365 Admin Center. As

you can see in the screenshot of the Office 365 Admin Center in Figure 2-17, you have

successfully assigned the E5 license to your user.

Figure 2-17.  User with assigned licenses

Now that you have successfully assigned a license to a user, let’s take a look at how

you can assign multiple licenses.

Chapter 2 Managing Users and Licenses

26

�Assigning Multiple Licenses
If you want to assign another license—for example, Power BI Pro—to the user that is

already licensed for E3, you could simply repeat the steps from earlier, since even if the

cmdlet is Set-AzureADUserLicense, and you would probably expect it to overwrite the

previous setting all together, the behavior is a bit different with the Azure AD V2 Module,

and you will learn how to remove or replace licenses later in this chapter. For now, let’s

see how to assign multiple licenses to a new user at once; for example, both Office 365

Business Premium and Power BI Pro licenses.

Start by saving your user into a variable and setting the usage location as you learned

previously:

$User = Get-AzureADUser -ObjectId vanessa@office365powershell.ca

Set-AzureADUser -ObjectId $User.ObjectId -UsageLocation CA

Afterward, create two objects of type Microsoft.Open.AzureAD.Model.AssignedLicense,

one for the Business Premium license and one for the Power BI Pro license:

$BusinessProSku = New-Object -TypeName Microsoft.Open.AzureAD.Model.

AssignedLicense

$PowerBiSku = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedLicense

Next up, use the Get-AzureADSubscribedSku as seen in Figure 2-18 to get the SkuIDs

of the subscriptions you want to add.

Figure 2-18.  List of the available subscriptions

Chapter 2 Managing Users and Licenses

27

Now that you know the SKU IDs, you can add them in the $BusinessProSku and

$PowerBiSku variables that you created earlier:

$BusinessProSku.SkuId = "f245ecc8-75af-4f8e-b61f-27d8114de5f3"

$PowerBiSku.SkuId = "f8a1db68-be16-40ed-86d5-cb42ce701560"

Now, create your $licenses variable, which is an object of type Microsoft.Open.

AzureAD.Model.AssignedLicenses, and add the $BusinessProSku and $PowerBiSku

licenses inside:

$Licenses = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedLicenses

$Licenses.AddLicenses = $BusinessProSku, $PowerBiSku

Lastly, run Set-AzureADUserLicense to assign the license to your user, as seen in the

following cmdlet:

Set-AzureADUserLicense -ObjectId $User.ObjectId -AssignedLicenses $Licenses

If you look at the results of the previous cmdlet in the Office 365 Admin Center in

Figure 2-19, you can see that both licenses have been successfully assigned, with all the

licenses activated.

Figure 2-19.  User with multiple licenses assigned

In the previous examples, we assigned either one license or multiple licenses at a

time to a user. In some business scenarios, we might want to assign a license but not

enable all the services inside.

Chapter 2 Managing Users and Licenses

28

�Assigning Licenses with Some Features Disabled
In some scenarios, we might want to assign some licenses to users, but not give them

access to all the services. This can happen for multiple reasons; let me give you a

concrete example. I was implementing Office 365 at a customer in Canada whose data

absolutely needed to stay on Canadian soil. At the time (and it might still be the case

today), Yammer was only hosted out of the United States, and there was no way to have

Yammer data hosted in Canada, so we had to disable it for all the existing users, as well

as for the new users. Let’s see how we can get this done with PowerShell.

First of all, we will save our user in a variable and set the Usage Location to Canada:

$User = Get-AzureADUser -ObjectId john@office365powershell.ca

Set-AzureADUser -ObjectId $User.ObjectId -UsageLocation CA

We will then create our Microsoft.Open.AzureAD.Model.AssignedLicense object

and specify the ENTERPRISEPREMIUM SKU ID as we learned in the previous examples:

$Sku = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedLicense

$Sku.SkuId = "c7df2760-2c81-4ef7-b578-5b5392b571df"

Next up, we need to get the ID of the Yammer Service part of the ENTERPRISEPREMIUM

subscription by using the Get-AzureADSubscribedSku cmdlet, specifying the ObjectId

of our ENTERPRISEPREMIUM subscription and expanding the service plans:

Get-AzureADSubscribedSku -ObjectId 545c04df-2411-4d58-9378-7ec79e9e6b8e_

c7df2760-2c81-4ef7-b578-5b5392b571df | Select-Object -ExpandProperty

ServicePlans

In the result seen in Figure 2-20, you can see the service plan ID for each service, and

you can save the IDs of the one(s) you want to disable.

Chapter 2 Managing Users and Licenses

29

Next up, we will set the DisabledPlans property of the $Sku variable to the service

plan ID of the YAMMER_ENTERPRISE service:

$Sku.DisabledPlans = "7547a3fe-08ee-4ccb-b430-5077c5041653"

If we wanted to disable multiple plans, we could create an array of plans to disable.

For example, the following would disable both YAMMER_ENTERPRISE and FORMS_PLAN_E5:

$Sku.DisabledPlans = @("7547a3fe-08ee-4ccb-b430-5077c5041653",

"e212cbc7-0961-4c40-9825-01117710dcb1")

We would then create our Microsoft.Open.AzureAD.Model.AssignedLicenses

object, add our $Sku variable as licenses to add, and apply it to our user, as seen in the

following cmdlets:

$Licenses = New-Object -TypeName

Microsoft.Open.AzureAD.Model.AssignedLicenses

$Licenses.AddLicenses = $Sku

Set-AzureADUserLicense -ObjectId $User.ObjectId -AssignedLicenses $Licenses

The result as seen in Figure 2-21 is a user that is E5 licensed but has the Yammer and

Forms services disabled.

Figure 2-20.  Viewing the service plan IDs of the services in a subscription

Chapter 2 Managing Users and Licenses

30

Note I n Figure 2-21, we only see the Forms service disabled due to limitations
on the size of the figure that would be readable. You will have to trust me that
Yammer was also disabled—or better yet, try it yourself!

We can also view the disabled plans of a user with the Get-AzureADUser cmdlet and

by expanding the AssignedLicenses property as seen in the next example. In Figure 2-22,

you can see the SkuId that we assigned to the user previously, as well as the IDs of the

services we disabled in the DisabledPlans property:

Get-AzureADUser -ObjectId $User.ObjectId | Select -ExpandProperty

AssignedLicenses

Figure 2-21.  User with E5 license and certain services disabled

Chapter 2 Managing Users and Licenses

31

We have now looked at multiple scenarios and ways to add licenses to our users.

Next up, we will learn how to remove a license from a user.

�Removing User Licenses
Removing a license from a user is very similar to adding a license, but instead of using

the AddLicenses method of our Microsoft.Open.AzureAD.Model.AssignedLicenses

object, we will use the RemoveLicenses method.

We will first save our user into a variable by using the Get-AzureADUser cmdlet as

seen here:

$User = Get-AzureADUser -ObjectId john@office365powershell.ca

We will then create a Microsoft.Open.AzureAD.Model.AssignedLicenses object

and save it into a variable called $Licenses as seen here:

$Licenses = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedLicenses

Since I know the plan I want to disable is the ENTERPRISEPREMIUM cmdlet, I can

run the following cmdlet to add the SKU ID of my ENTERPRISEPREMIUM plan in the

RemoveLicenses property of my object. In the past, we listed the different subscriptions

and manually copied their SkuId; this is just another way to do it!

$Licenses.RemoveLicenses = (Get-AzureADSubscribedSku | Where-Object

-Property SkuPartNumber -Value "ENTERPRISEPREMIUM" -EQ).SkuID

Figure 2-22.  Assigned licenses of a user

Chapter 2 Managing Users and Licenses

32

Lastly, I will assign my $Licenses variable to the user by using the Set-

AzureADUserLicense cmdlet:

Set-AzureADUserLicense -ObjectId $User.ObjectId -AssignedLicenses $Licenses

We can then use PowerShell for the Office 365 Admin Center to verify the result,

which should be that the user does not have that license anymore. In Figure 2-23, the

subscription we just removed from John Smith was the only one he had assigned, so the

user is now unlicensed.

Figure 2-23.  License removed from the user

We have now learned how to manage licenses for our users in Office 365. Next up,

let’s learn how to manage security groups!

�Managing Security Groups with PowerShell
The last section of our “Managing Users and Licenses” chapter will deal with security

groups. It’s important to know that this chapter will only focus on security groups,

and not on Office 365 Groups, as we will cover those in a later chapter. Let’s start with

creating a new security group.

�Creating a New Security Group
To create a new security group, we will use the New-AzureADGroup cmdlet and specify

the display name, if the group is email enabled, if the group is security enabled, and

finally the mail nickname, which is mandatory, even if the group you want to create is

not enabled for email. In the example that follows, we are creating a new group called IT

Employees, which will only be used for security and will not be email enabled.

Chapter 2 Managing Users and Licenses

33

New-AzureADGroup -DisplayName "IT Employees" -MailEnabled $false

-SecurityEnabled $true -MailNickName "IT" -Description "Security Group for

employees in the IT Department"

We can then run the Get-AzureADGroup cmdlet to view all the groups in our Office

365 tenant, as seen in Figure 2-24.

Note  The Get-AzureADGroup cmdlet will also return Office 365 Groups, such
as the “PowerShell for Office 365 Book” group.

Figure 2-24.  Viewing all the AD groups in our tenant

Creating an Azure AD group is pretty easy, so now let’s take a look at how we can

modify the properties of an existing group.

�Changing the Properties of a Security Group
To modify the properties of an Azure AD group, we will use Set-AzureADGroup, providing

the object ID as well as any parameters that we would like to change. For example, in

Figure 2-24, we have a group called HR Employees that has no description, and we want

to change that.

In the example that follows, we are running the Set-AzureADGroup cmdlet, and since

we need to give the ObjectId of the HR Employees group, we run Get-AzureADGroup to

get it. This only works because we currently have one group with the word HR inside; if

you have multiple, you will have to be more specific.

Set-AzureADGroup -ObjectId (Get-AzureADGroup -SearchString "Hr").ObjectId

-Description "Security Group for employees in the HR Department"

Chapter 2 Managing Users and Licenses

34

To verify it, we can run the Get-AzureADGroup cmdlet, and as you see in Figure 2-25,

our description has been updated.

Figure 2-25.  Updated description using the Set-AzureADGroup cmdlet

You can view some parameters that we can change in Table 2-1.

Table 2-1.  Parameters of the Set-AzureADGroup cmdlet

Parameter Description

-DisplayName Specifies a display name

-MailEnabled Indicates whether mail is enabled

-MailNickName Specifies a nickname for the mail

-SecurityEnabled Indicates whether security is enabled

�Removing a Security Group
To remove a security group, we need to use the Remove-AzureADGroup cdmlet, specifying

the object ID of the group we want to delete.

In the example that follows, we are running the Remove-AzureADGroup cmdlet, and

since we need to give the ObjectId of the IT Employees group, we run Get-AzureADGroup

to get it. This only works because we currently have one group with the word IT inside; if

you have multiple, you will have to be more specific.

Remove-AzureADGroup -ObjectId (Get-AzureADGroup -SearchString "IT").ObjectId

We have now looked at how to create, change, remove, and view security groups.

Next up, we will learn how to manage the members inside!

Chapter 2 Managing Users and Licenses

35

�Managing Security Group Membership
One of the most important things, if not the most important thing, about security groups

is the members inside. To view the members of a security group, we can use the

Get-AzureADGroupMember cmdlet and specify the object ID of the group, as seen here:

Get-AzureADGroupMember -ObjectId (Get-AzureADGroup -SearchString "Hr").ObjectId

While the previous cmdlet returns the members of the group, we can also use the

Get-AzureADGroupOwner cmdlet to view the owners of the group—and again, the only

thing you have to specify is the object ID of the group.

Get-AzureADGroupOwner -ObjectId (Get-AzureADGroup -SearchString "Hr").ObjectId

You can see the result of both cmdlets in Figure 2-26.

Figure 2-26.  Results of the Get-AzureADGroupMember and Get-
AzureADGroupOwner cmdlets

To add a user, we can use the Add-AzureADGroupMember, specifying the ID of

the group first, followed by the ID of the user we want to add in the -RefObjectId

parameter. In the example that follows, we will first run the Get-AzureADUser and

Get-AzureADGroup cmdlets to save our user and group in variables for easier access

later on. Afterward, we will use the Add-AzureADGroupMember cmdlet and specify the

preceding variables to add the user to the group:

$UserId = Get-AzureADUser -ObjectId vanessa@office365powershell.ca

$GroupId = Get-AzureADGroup -SearchString "Hr Employees"

Add-AzureADGroupMember -ObjectId $GroupId.ObjectId -RefObjectId $UserId.

ObjectId

Chapter 2 Managing Users and Licenses

36

We can verify the result by using the Get-AzureADGroupMember cmdlet, and as seen

in Figure 2-27, Vanessa has been added to the group!

Figure 2-27.  Adding a user to an Azure AD group

You can also add owners of the group in the same way; you simply have to use the

Add-AzureADGroupOwner cmdlet instead of the Get-AzureADGroupMember cmdlet.

Removing a user or an owner is done in a very similar way with the

Remove-AzureADGroupMember and Remove-AzureADGroupOwner cmdlets. To remove

a member, we will first save the member and the group in variables, as we have done

previously:

$UserId = Get-AzureADUser -ObjectId vanessa@office365powershell.ca

$GroupId = Get-AzureADGroup -SearchString "Hr Employees"

We will then use Remove-AzureADGroupMember, specifying the ObjectId parameter,

which is the ID of the group, and the MemberId of the user, which is the ID of the user we

want to remove:

Remove-AzureADGroupMember -ObjectId $GroupId.ObjectId -MemberId $UserId.

ObjectId

To remove the same user from the owners of the AD group, we would use the

Remove-AzureADGroupOwner cmdlet and specify the -OwnerId parameter instead,

as seen here:

Remove-AzureADGroupOwner -ObjectId $GroupId.ObjectId -OwnerId $UserId.ObjectId

We can also search the groups that a member is a part of by using

Get-AzureADUserMembership and specifying the ID of the user we want to get the

information about, as seen in the following example:

$UserId = Get-AzureADUser -ObjectId jeff@office365powershell.ca

Get-AzureADUserMembership -ObjectId $userid.ObjectId

Chapter 2 Managing Users and Licenses

37

This will output all the groups that this member is a part of, as seen in Figure 2-28.

Figure 2-28.  Viewing the groups that a member is a part of

We have now covered how to manage users, licenses, and Azure AD security

groups using PowerShell. Now, let’s take a look at how we can automate some business

scenarios using what we have just learned!

�Automation Scenarios
The goal of the “Automation Scenario” section of each chapter is to look at some real-life

examples of how you can apply what you have learned in the chapter. These examples

will be interesting and relatively simple, and in our eighth and final chapter we will look

at some more-advanced scenarios that cover multiple services in Office 365!

Tip R emember the scripts and input files demonstrated in each chapter are
also downloadable from the Apress GitHub repository, which you can find at
https://github.com/apress, or for a direct link to this book’s scripts, go to
the book page at www.apress.com and click the “Download Source Code” button.

�Updating User Licenses
You have been using Office 365 as a company for the past few years with the Office 365

Business Premium licenses, and it was a perfect fit. Today, you just got news from

leadership that for the next renewal cycle, they have worked with Microsoft to optimize

licenses and use more Office 365 services. The new license plan can be seen in Table 2-2.

Chapter 2 Managing Users and Licenses

https://github.com/apress
http://www.apress.com/

38

You are now tasked with updating the license assignment for every user by the end

of the week, when your current Office 365 Business Premium licenses will expire. Let’s

get started!

The first thing you will do is save all the users in your tenant in a variable. You will filter

on those users that are a type “Member” so you do not get external users (type “Guest”):

$Users = Get-AzureADUser | Where {$_.UserType -eq "Member"}

You will then create a new object of type Microsoft.Open.AzureAD.Model.

AssignedLicense for each type of license that you want to assign to your users:

$E5Sku = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedLicense

$DynamicsSku = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedLicense

$F1Sku = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedLicense

$ProjectProSku = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedLicense

$BusinessProSku = New-Object -TypeName Microsoft.Open.AzureAD.Model.

AssignedLicense

For each of these objects, use the Get-AzureADSubscribedSku that you learned

earlier to get their SkuID and save it in the object, as seen here:

$E5Sku.SkuId = "c7df2760-2c81-4ef7-b578-5b5392b571df"

$DynamicsSku.SkuId = "ea126fc5-a19e-42e2-a731-da9d437bffcf"

$F1Sku.SkuId = "4b585984-651b-448a-9e53-3b10f069cf7f"

$ProjectProSku.SkuId = "53818b1b-4a27-454b-8896-0dba576410e6"

$BusinessProSku.SkuId = "f245ecc8-75af-4f8e-b61f-27d8114de5f3"

Table 2-2.  Business Requirements for New Licenses

Department License

Sales Office 365 Enterprise E5

Dynamics 365 Customer Engagement Plan Enterprise Edition

Manufacturing Office 365 F1

Project Management Office 365 Enterprise E5

Project Online Professional

IT Office 365 Enterprise E5

Chapter 2 Managing Users and Licenses

39

Next up, create your Microsoft.Open.AzureAD.Model.AssignedLicenses objects,

which make up the collection of licenses that you will add or remove from every user.

Since all the departments are different, you will need to create one for each account:

$SalesLicenses = New-Object -TypeName

Microsoft.Open.AzureAD.Model.AssignedLicenses

$ManufacturingLicenses = New-Object -TypeName

Microsoft.Open.AzureAD.Model.AssignedLicenses

$PMLicenses = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedLicenses

$ITLicenses = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedLicenses

With all the objects created, for each license collection you must add the different

subscriptions that will be inside, as follows:

$SalesLicenses.AddLicenses = $E5Sku, $DynamicsSku

$ManufacturingLicenses.AddLicenses = $F1Sku

$PMLicenses.AddLicenses = $E5Sku, $ProjectProSku

$ITLicenses.AddLicenses = $E5Sku

Since you are removing the BusinessPro subscription for everyone, add the SkuID

of the BusinessPro subscription in the RemoveLicenses attribute of each of your license

collections:

$SalesLicenses.RemoveLicenses = $BusinessProSku.SkuId

$ManufacturingLicenses.RemoveLicenses = $BusinessProSku.SkuId

$PMLicenses.RemoveLicenses = $BusinessProSku.SkuId

$ITLicenses.RemoveLicenses = $BusinessProSku.SkuId

Now, start looping through all your users, and for each user do an if statement

to see what department they are in; depending on the department, run the

Set-AzureADUserLicense cmdlet and specify the appropriate license collection from

earlier:

Foreach ($user in $users)

{

 if ($user.Department -eq "Sales")

 {

 �Set-AzureADUserLicense -ObjectId $User.ObjectId -AssignedLicenses

$SalesLicenses

 }

Chapter 2 Managing Users and Licenses

40

 elseif ($user.Department -eq "Project Management")

 {

 �Set-AzureADUserLicense -ObjectId $User.ObjectId -AssignedLicenses

$PMLicenses

 }

 elseif ($user.Department -eq "Manufacturing")

 {

 �Set-AzureADUserLicense -ObjectId $User.ObjectId -AssignedLicenses

$ManufacturingLicenses

 }

 elseif ($user.Department -eq "IT")

 {

 �Set-AzureADUserLicense -ObjectId $User.ObjectId -AssignedLicenses

$ITLicenses

 }

}

That’s it! After refreshing the Office 365 Admin Center, all your users will have the

right licenses, as seen in Figure 2-29.

Figure 2-29.  Users and their licenses in the Office 365 Admin Center

Chapter 2 Managing Users and Licenses

www.allitebooks.com

http://www.allitebooks.org

41

�Creating or Updating Users from a CSV File
You are the Office 365 administrator of an 800-person company that is using Office 365

as its main collaboration suite; however, all HR-related information is stored in a

third-party solution. Users have complained that data in Office 365 is not in sync with

the HR system, which is always up to date, and since that system does not have any

available APIs to automatically update Office 365, you can’t do much other than tell

users to open Helpdesk tickets.

Recently, the third-party HR solution has implemented a new feature that allows you

to export changes made in the past week to a CSV file like the one seen in Figure 2-30.

Figure 2-30.  Users input file

Knowing that you can use CSV files as an input for your PowerShell script, you plan to

use PowerShell to update the properties of each user every week based on the input file.

First things first, create your $InputFile variable and import the CSV file:

$InputFile = Import-CSV C:\PowerShell\Users.csv

Since you might have new users to create, you should create your Password Profile

objects as well as License objects from the start, before you start looping trough the CSV file:

$Sku = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedLicense

$Sku.SkuId = "c7df2760-2c81-4ef7-b578-5b5392b571df"

$Licenses = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedLicenses

$Licenses.AddLicenses = $Sku

Chapter 2 Managing Users and Licenses

42

Then, start looping through each user from the input file, saving every property from

the CSV file into a variable to make it easier to read later on, as follows:

foreach ($User in $InputFile)

{

$EMail = $User.Email

$FirstName = $User.FirstName

$LastName = $User.LastName

$Title = $User.Title

$Department = $User.Department

$Manager = Get-AzureADUser -ObjectId $User.Manager

$OfficePhone = $User.OfficePhone

$CellPhone = $User.MobilePhone

$City = $User.City

$State = $User.State

$Zip = $User.ZIP

$Country = $User.CountryCode

Then, create an If statement on the Action column, starting with the NEW action.

Run the New-AzureADUser cmdlet to create your account, then provide all the properties

that you saved in variables earlier, including the Password Profile, License, and Manager:

if ($user.Action -eq "NEW")

{

 $NewUser = New-AzureADUser `

 -GivenName $FirstName `

 -Surname $LastName `

 -DisplayName "$FirstName $LastName" `

 -UserPrincipalName $EMail `

 -MailNickName "FirstName.$LastName" `

 -AccountEnabled $true `

 -PasswordProfile $PasswordProfile `

 -JobTitle $Title `

 -Department $Department `

 -UsageLocation $Country `

 -PostalCode $ZIP `

 -Mobile $CellPhone `

Chapter 2 Managing Users and Licenses

43

 -TelephoneNumber $OfficePhone `

 -State $State `

 -City $City

 Set-AzureADUserManager `

 -ObjectId $EMail `

 -RefObjectId $Manager.ObjectId

 Set-AzureADUserLicense `

 -ObjectId $NewUser.ObjectId `

 -AssignedLicenses $Licenses

}

With the new users taken care of, you will need to run an elseif statement to take

care of the UPDATE action. You could also do an else statement if you are 100 percent

sure that there will never be another action; however, I like having a final else statement

at the end that will throw an error if the action in the file is not the expected NEW or

UPDATE. One of the challenges with the UPDATE action is that the HR system does not

output all the columns when a user is updated, so, as you saw in Figure 2-30, some of

the columns might be empty. Therefore, you should do an if statement on each of the

variables that you have saved, and if the variable is not empty, you should run the Set-

AzureADUser cmdlet to update the user’s profile with the information from your CSV file:

elseif ($user.Action -eq "UPDATE")

 {

 if ($FirstName)

 {

 Set-AzureADUser `

 -ObjectId $EMail `

 -GivenName $FirstName

 }

 if ($LastName)

 {

 Set-AzureADUser `

 -ObjectId $EMail `

 -Surname $LastName

 }

Chapter 2 Managing Users and Licenses

44

 if ($Title)

 {

 Set-AzureADUser `

 -ObjectId $EMail `

 -JobTitle $Title

 }

 if ($Department)

 {

 Set-AzureADUser `

 -ObjectId $EMail `

 -Department $Department

 }

 if ($Manager)

 {

 Set-AzureADUserManager `

 -ObjectId $EMail `

 -RefObjectId $Manager.ObjectId

 }

 if ($OfficePhone)

 {

 Set-AzureADUser `

 -ObjectId $EMail `

 -TelephoneNumber $OfficePhone

 }

 if ($CellPhone)

 {

 Set-AzureADUser `

 -ObjectId $EMail `

 -Mobile $CellPhone

 }

 if ($City)

 {

 Set-AzureADUser `

 -ObjectId $EMail `

 -City $City

 }

Chapter 2 Managing Users and Licenses

45

 if ($State)

 {

 Set-AzureADUser `

 -ObjectId $EMail `

 -State $State

 }

 if ($Zip)

 {

 Set-AzureADUser `

 -ObjectId $EMail `

 -PostalCode $Zip

 }

 if ($Country)

 {

 Set-AzureADUser `

 -ObjectId $EMail `

 -Country $Country `

 -UsageLocation $Country

 }

 }

While I am sure that was not the most exciting piece of PowerShell script, it gets the

job done in this business scenario!

Finally, do your else statement, in which you simply stop the PowerShell script and

throw an error, then close the foreach loop that you opened earlier—and that is it!

 else

 {

 Throw "Action not supported"

 }}

The result is that all the users in the CSV file have been successfully created or

updated!

Chapter 2 Managing Users and Licenses

46

�Conclusion
In this chapter, we first learned how to download the AzureAD module from the

PowerShell Gallery and install it on our computer. We then learned how to connect to

Azure Active Directory, which is the directory of our users, even if most of the time we

manage them through the Office 365 Admin Center interface.

We then learned how to view our users in order to create reports, modify their

properties, or even create new users directly from our PowerShell window. We then

learned how to manage our Office 365 subscriptions, from viewing what licenses and

how many we have all the way to assigning licenses—with some services disabled—to

users.

We also looked at how to manage Azure AD security groups, from creating them

to changing their properties and adding or removing members from them. Lastly, we

looked at two business scenarios that showed you how all the things you have learned in

this chapter can become useful in real-life scenarios!

In the next chapter, we will look at how to manage SharePoint Online with

PowerShell.

Chapter 2 Managing Users and Licenses

47
© Vlad Catrinescu 2018
V. Catrinescu, Essential PowerShell for Office 365, https://doi.org/10.1007/978-1-4842-3129-6_3

CHAPTER 3

Managing SharePoint
Online
In this chapter, we will first learn how to use PowerShell to connect to SharePoint Online.

We will then learn how to create and manage SharePoint sites and users using the

SharePoint PowerShell cmdlets provided to us by Microsoft.

Furthermore, we will look at open source SharePoint/Office 365 Dev PnP PowerShell

cmdlets that have been created by the community. We will look at what gaps those

cmdlets fill in your day-to-day life and how you can use those cmdlets to make your

SharePoint Online admin life easier.

Lastly, we will look at some interesting automation scenarios and examples of how

you can automate with PowerShell for SharePoint Online.

�Connecting to SharePoint Online
The first thing you have to do is download the SharePoint Online PowerShell module

and connect to SharePoint Online. To get the PowerShell module for SharePoint Online,

you need to download the SharePoint Online Management Shell from the Microsoft

Download Center.

Note  The SharePoint Online Management Shell can be downloaded at https://
www.microsoft.com/en-us/download/details.aspx?id=35588.

Similar to the previous chapter, you need to be on a machine that runs Windows 7

Service Pack 1 or later or Windows Server 2008 R2 Service Pack 1 or later, as well as have

an account that has the SharePoint Online Admin role assigned. You will also need to be

a local administrator on your computer.

https://www.microsoft.com/en-us/download/details.aspx?id=35588
https://www.microsoft.com/en-us/download/details.aspx?id=35588

48

Once you have downloaded the SharePoint Online Management Shell, you can start

the installation. The first step is to accept the terms, as seen in Figure 3-1.

Figure 3-1.  SharePoint Online Management Shell Setup

You then simply click on the “Install” button, and that is about it! To start managing

SharePoint Online, you have to open either the SharePoint Online Management Shell

or a normal PowerShell window and run the following cmdlet to import the SharePoint

Online module:

Import-Module Microsoft.Online.SharePoint.PowerShell

The next parameter you will need to know is the URL of your SharePoint Online

Admin Center. This URL is usually under the format of https://<O365 Organization

Name>-admin.sharepoint.com. The easiest way to find it is by navigating to the Office

365 Admin Center, then navigating to the SharePoint Online Admin Center and copying

the URL, as seen in Figure 3-2.

Chapter 3 Managing SharePoint Online

49

Now that you have all the information that you need, open the SharePoint

Management Shell as an administrator and run the following cmdlet to get the

credentials of the account with which you want to connect to SharePoint Online:

$cred = get-credential

The preceding command line will open up a PowerShell credential request pop-up

as seen in Figure 3-3 and will save it in a variable called $cred.

Note  PowerShell will not do any validation of the credentials you enter in the
pop-up window.

Figure 3-2.  The SharePoint Online Admin Center

Chapter 3 Managing SharePoint Online

50

Afterward, you will have to run the Connect-SPOService cmdlet and specify the URL

of the SharePoint Online Admin Center you got earlier, as well as the credential you just

saved. For example, to connect to the tenant you saw in Figure 3-2, you would run the

following cmdlet:

Connect-SPOService -Url https://office365powershell-admin.sharepoint.com/

-Credential $cred

As seen in Figure 3-4, when connecting to SharePoint Online, no news is good news.

Figure 3-3.  Get-Credential

Figure 3-4.  Connecting to SharePoint Online

Chapter 3 Managing SharePoint Online

51

Something to be aware of is that the procedure to connect to SharePoint Online

is a little bit different if you have Multi-Factor Authentication (MFA) enabled. In that

case, skip the previous cmdlets and simply run the Connect-SPOService cmdlet with

the URL of your SharePoint Online Admin Center, as seen in the following command

line. A pop-up will open that asks you for the credentials, as well as provides further

instructions on how to provide additional authentication information, such as a

verification code.

Connect-SPOService -Url https://office365powershell-admin.sharepoint.com/

You are now ready to begin executing SharePoint Online commands. Let’s take a

look at what we have available.

�Executing PowerShell cmdlets in SharePoint Online
While the number of cmdlets in the SharePoint Online PowerShell module can change

each month because of the nature of the cloud, let’s take a look at some of the cmdlets

that are currently available. If you want to get a list of the latest cmdlets available to

you, simply run the Get-Command cmdlet and specify the SharePoint Online PowerShell

module, as seen here:

Get-Command -Module Microsoft.Online.SharePoint.PowerShell

�The Available cmdlets
Let’s first look at the PowerShell cmdlets to manage Site Collections in SharePoint

Online. Table 3-1 below lists the most common PowerShell cmdlets for Site Collection

Management.

Chapter 3 Managing SharePoint Online

52

Table 3-1.  Site Collection cmdlets in SharePoint Online

Cmdlet Description

Get-SPOSite Returns one or more site collections

New-SPOSite Creates a new SharePoint Online site collection

Remove-SPOSite Sends a SharePoint Online site collection to the SharePoint

Online Recycle Bin

Repair-SPOSite Checks and repairs the site collection and its contents

Set-SPOSite Sets or updates one or more properties’ values for a site collection

Test-SPOSite Tests a SharePoint Online site collection

Upgrade-SPOSite Starts the upgrade process on a site collection

Get-SPODeletedSite Returns all deleted site collections from the Recycle Bin

Remove-SPODeletedSite Removes a SharePoint Online deleted site collection from the

Recycle Bin

Restore-SPODeletedSite Restores a SharePoint Online deleted site collection from the

Recycle Bin

We then have the cmdlets that allow us to manage our tenant, seen in Table 3-2.

Those cmdlets allow us to view or change settings at the tenant level, such as sharing

default settings and content delivery network (CDN) settings as well as more advanced

ones like setting a list of allowed IP addresses that can access the tenant.

Chapter 3 Managing SharePoint Online

53

Finally, some of the other cmdlets you will use a lot are the cmdlets that have to do

with users and SharePoint groups; these can be seen in Table 3-3.

Table 3-2.  Tenant-level cmdlets in SharePoint Online

Cmdlet Description

Get-SPOTenant Returns SharePoint Online organization properties

Get-SPOTenantCdnEnabled Returns whether public content delivery network

(CDN) or private CDN is enabled on the tenant level

Get-SPOTenantCdnOrigins Lists all the configured origins under the tenancy or

under a given site

Get-SPOTenantCdnPolicies Returns the content delivery network (CDN) policies

from a tenant level

Get-SPOTenantSyncClientRestriction Returns the current OneDrive for Business Sync

configuration status

Get-SPOTenantLogEntry Retrieves SharePoint Online company logs

Set-SPOTenant Sets properties on the SharePoint Online

organization

Set-SPOTenantCdnEnabled Enables or disables public content delivery network

(CDN) or private CDN on the tenant level

Set-SPOTenantCdnPolicy Sets the content delivery network (CDN) policies

from the tenant level

Set-SPOTenantSyncClientRestriction Controls tenant-wide options and restrictions

specific to syncing files

Chapter 3 Managing SharePoint Online

54

�Managing Sites
Now that we have looked at some of the available cmdlets, let’s start you off using them.

First, simply output a list of all the site collections that exist in your tenant. To do so, you

need to run the Get-SPOSite cmdlet. The SharePoint Online Management Shell will

show you all the URLs, the owner, and the storage quota, as seen in Figure 3-5.

Table 3-3.  User- and SharePoint Groups–level cmdlets in SharePoint Online

Cmdlet Description

Get-SPOExternalUser Returns external users in the tenant

Get-SPOSiteGroup Gets all the groups on the specified site collection

Get-SPOUser Returns the SharePoint Online user or security group accounts that

match a given search criteria

New-SPOSiteGroup Creates a new group in a SharePoint Online site collection

Remove-SPOSiteGroup Removes a SharePoint Online group from a site collection

Remove-SPOUser Removes a user or a security group from a site collection or a group

Set-SPOSiteGroup Gets all the groups on the specified site collection

Set-SPOUser Configures properties on an existing user

Figure 3-5.  Get-SPOSite

Note I n some cases, PowerShell will return a warning that because there are too
many site collections, they have not all been returned. To show all the site collections,
add the -Limit All parameter. Your full cmdlet will be Get-SPOSite -Limit All.

Chapter 3 Managing SharePoint Online

55

You can also use PowerShell to display all the properties of the site collection directly

in the window. For example, you can output the URL, title, and template for each site by

running the following cmdlet:

Get-SPOSite | Select Url, Title, Template

The results can be seen in Figure 3-6.

Figure 3-6.  Get-SPOSite

Tip  To view all the available properties of a cmdlet, pipe the Get-Member cmdlet
on it. For example, to see all the available properties of the Get-SPOSite cmdlet,
run Get-SPOSite | Get-Member.

Now, let’s take a look at how to create a new site collection. You will use the New-

SPOSite cmdlet, and you will need to provide three mandatory parameters: Url, Owner,

and StorageQuota. Some of the optional parameters you might find useful are LocaleID,

TimeZoneID, Title, and Template. For all the parameters and what they do, you can go to

the TechNet page of the New-SPOSite cmdlet to find the latest information.

Tip  You can navigate to the TechNet page of a cmdlet without ever quitting
PowerShell by using the Get-Help cmdlet! One of the switches of the cmdlet is
-online, and specifying that switch will open the TechNet page of the cmdlet
in your default browser. In this example, you would run the following cmdlet to
navigate to the TechNet Page of the New-SPOSite cmdlet:
Get-Help New-SPOSite -online

Chapter 3 Managing SharePoint Online

56

Let’s say you want to create a site collection with the URL https://office365powershell

.sharepoint.com/teams/IT, with the title “IT Team Site,” with language set to “English –

United States,” and with the Team Site template. Therefore, run the following cmdlet:

New-SPOSite `

 -Url https://office365powershell.sharepoint.com/teams/IT `

 -Owner vlad-admin@office365powershell.ca `

 -StorageQuota 1024 `

 -LocaleID 1033 -Template "STS#0" `

 -Title "IT Team Site"

To remove a site collection, you can run the Remove-SPOSite cmdlet, and the only

mandatory parameter is the URL of the site you want to remove. You can also specify

the Confirm parameter to skip the confirmation. To remove the site you just created, you

would run the following cmdlet:

Remove-SPOSite -Identity https://office365powershell.sharepoint.com/teams/IT

Since you did not specify the Confirm parameter, PowerShell will ask for a

confirmation of whether that’s what you really want to do, as seen in Figure 3-7.

Figure 3-7.  Remove-SPOSite

Chapter 3 Managing SharePoint Online

https://office365powershell.sharepoint.com/teams/IT
https://office365powershell.sharepoint.com/teams/IT

57

To use the same cmdlet without the confirmation, you would need to include

-Confirm:$false, as seen in the following example:

Remove-SPOSite `

 -Identity https://office365powershell.sharepoint.com/teams/IT `

 -Confirm:$false

When you delete a site in SharePoint Online, it will go to a Site Collection Recycle

Bin. You can view all the sites in the SharePoint Online Site Collection Recycle Bin by

running the Get-SPODeletedSite cmdlet. PowerShell will show you the information

about the site, as well as deletion time and days remaining until the site is permanently

deleted. As you can see in Figure 3-8, the site was deleted on July 3, 2017, and still has 30

days remaining until it’s permanently deleted.

Figure 3-8.  Get-SPODeletedSite

You can restore this site by using the Restore-SPODeletedSite cmdlet. The only

parameter you have to specify is -Identity, and you must provide the URL of the site

collection you want to restore, as seen in this example:

Restore-SPODeletedSite -Identity https://office365powershell.sharepoint.

com/teams/IT

Next up, you will focus on the site collection you have created and learn how you can

change some of the properties. Because you will be modifying multiple properties on

your site, the first thing you should do is save the SPOSite in a variable so you can reuse

this variable instead of typing in the URL every time. This can be done using the

Get-SPOSite cmdlet and saving the output in a variable called $site, as seen here:

$site = Get-SPOSite -Identity https://office365powershell.sharepoint.com/teams/IT

Chapter 3 Managing SharePoint Online

58

Once you have saved your site in the $site variable, you can easily look through all

its properties, as seen in Figure 3-9.

Figure 3-9.  SPOSite properties

You can also change the properties of a site. For example, you can change the title

of your SharePoint Online Site Collection by running Set-SPOSite and specifying the

parameter that you want to change:

Set-SPOSite $site `

 -Title "Information Technology Team Site"

You can also specify the sharing capabilities of a certain site collection. By default,

when creating a new site collection in SharePoint Online, users inside that site collection

can only share it with users who are a part of your organization. When looking at the

Sharing screen in the user interface, there are four options, as seen in Figure 3-10.

Chapter 3 Managing SharePoint Online

59

Of course, these settings can also be managed via PowerShell and the

SharingCapability parameter. For example, to change this site to allow external users

who accept sharing invitations and sign in as authenticated users, you would run the

following cmdlet:

Set-SPOSite $site -SharingCapability ExternalUserSharingOnly

Since there are four options in the user interface, you also have four options in

PowerShell; you can find the mapping of the PowerShell value with the UI value in

Table 3-4.

Figure 3-10.  Sharing options in the SharePoint Online Admin Center

Table 3-4.  Mapping of the SharingCapability Parameter Options with the

Admin Center

PowerShell Value User Interface Option

Disabled Don’t allow sharing outside your organization.

ExternalUserSharingOnly Allow external users who accept sharing invitations

and sign in as authenticated users.

ExternalUserAndGuestSharing Allow sharing with all external users and by using

anonymous access links.

ExistingExternalUserSharingOnly Allow sharing only with the external users that

already exist in your organization’s directory.

Chapter 3 Managing SharePoint Online

60

By knowing these values, you can also query SharePoint Online via PowerShell and

easily see a list of your sites and what sharing options they have, which you couldn’t

easily do from the user interface. For example, to see all the SharePoint Online site

collections where users are allowed to share to both logged-in external users and

anonymous users, you would run the following cmdlet:

Get-SPOSite | Where {$_.SharingCapability -eq

"ExternalUserAndGuestSharing"} | Select Url

As a result, you would see a list of URLs where sharing is set to external users and

anonymous, as seen in Figure 3-11.

Figure 3-11.  Sites with the ExternalUserAndGuestSharing sharing option

Something else that you might want to change is whether you want to allow non-

owners to invite new users. By default in SharePoint Online, users in the “Members”

group can invite other people to your site, but you might not want to allow this. Luckily,

you can change this setting by using either the user interface or PowerShell. To change

it via PowerShell, run the Set-SPOSite cmdlet, give the site URL or SPOSite object, and

then use the DisableSharingForNonOwners switch. In this example, you would run the

following cmdlet:

Set-SPOSite $site -DisableSharingForNonOwners

To further secure your site collection as a SharePoint Online admin, you can limit the

sharing options by domain. You can either create a list of allowed domains or set a list of

blocked domains. You do this using the Set-SPOSite cmdlet and the SharingDomain

RestrictionMode parameter. You can find the accepted values in Table 3-5.

Chapter 3 Managing SharePoint Online

61

In the same cmdlet, you will need to provide a space-delimited list of domains you

want to allow, which is done using the SharingAllowedDomainList parameter, or a list

of domains you want to block, which is done via the SharingBlockedDomainList. For

example, to set your site collection to only allow users from the Contoso.com, vNext.

solutions, and Microsoft.com domains, you would run the following cmdlet:

Set-SPOSite $site -SharingDomainRestrictionMode "AllowList"

-SharingAllowedDomainList "contoso.com vnext.solutions microsoft.com"

If you wanted to allow all domains except the domains just specified, you would run

the following cmdlet:

Set-SPOSite $site -SharingDomainRestrictionMode "BlockList"

-SharingBlockedDomainList "contoso.com vnext.solutions microsoft.com"

Now that we have looked at how to create, delete, and modify site collections in

SharePoint Online, let’s learn how to manage users and groups.

�Managing Users and Groups
Managing users’ and groups’ access to SharePoint is a critical part of your job as a

SharePoint Online admin. By using PowerShell you are able to view the users in a site

collection as well as what groups they are a part of.

The first cmdlet that you have is Get-SPOSiteGroup, which allows you to see all the

groups in a certain site, as well as what permissions those groups have on a certain site

collection. When running the cmdlet, you simply need to specify the -Site parameter

and either give it the URL of a SharePoint Online site collection or a SPOSite object.

In Figure 3-12, you can see all the groups of the IT site collection you saved in the

$site variable earlier in this chapter, as well as the members in each group and the

permissions those groups have on the site.

Table 3-5.  SharingDomainRestrictionMode Available Values

Value Description

None Feature not enabled

AllowList Allow sharing only with users from these domains.

BlockList Don’t allow sharing with users from these blocked domains.

Chapter 3 Managing SharePoint Online

62

If you get a bit more advanced, you can create a small PowerShell script that will loop

through all the groups in a site collection and then show you the members inside. If you

look at the following script, you will see that you first get all the groups in the $site site

collection and save them in a variable called $Groups. You then loop through each group

and simply do another Get-SPOSiteGroup, but this time you specify the group you want

by using the -Group parameter and giving it the group title, and then you select the Users

property.

$Groups = Get-SPOSiteGroup -Site $site

foreach ($Group in $Groups)

 {

 Write-Host $Group.Title -ForegroundColor "Blue"

 �Get-SPOSiteGroup -Site $site -Group $Group.Title | Select-Object

-ExpandProperty Users

 Write-Host

 }

The result seen in Figure 3-13 is a list of users in each SharePoint Online group.

Figure 3-12.  Get-SPOSiteGroup

Chapter 3 Managing SharePoint Online

63

You can also query all the users in a site directly by using the Get-SPOUser cmdlet

and specifying the site. This will return all the users in the site, as well as what groups

they are a part of, as seen in Figure 3-14.

Figure 3-13.  List of users per SharePoint Online group

Figure 3-14.  Users in the IT site collection

Another cmdlet that will be useful is the Get-SPOExternalUser cmdlet, which allows

you to view all the users outside the company that have permission on at least one site in

your tenant.

Chapter 3 Managing SharePoint Online

64

In Figure 3-15, I am running the Get-SPOExternalUser cmdlet and selecting the first

50 external users in my tenant. As you can see, I currently only have one external user in

my organization.

Table 3-6.  Get-SPOExternalUser Properties

Parameter Description

Filter Limits the results to only those users whose first name, last name, or email

address begins with the text in the string, using a case-insensitive comparison

PageSize Specifies the maximum number of users to be returned in the collection. The

value must be less than or equal to 50.

Position Used to specify the zero-based index of the position in the sorted collection of the

first result to be returned

SiteUrl Specifies the site to retrieve external users for. If no site is specified, the external

users for all sites are returned.

SortOrder Specifies the sort results in ascending or descending.

Figure 3-15.  The first 50 external users from my tenant

The Get-SPOExternalUser cmdlet accepts the cmdlets seen in Table 3-6.

Furthermore, if you specify the site collection, as seen in Figure 3-16, you also have

access to the information on who invited this user to the site collection, which can be

very valuable if you need more information about this external user.

Chapter 3 Managing SharePoint Online

65

Figure 3-16.  External users in a certain site collection

The previous examples only showed the first 50 External Users from your tenant,

or from the Site Collection you have specified. In order to return more than 50, you

will have to create a loop that will get 50 users at a time, while changing the Position

parameter. The following script will return all the external users from the tenant

try {

 for ($i=0;;$i+=50) {

 �$ExternalUsers += Get-SPOExternalUser -PageSize 50 -Position

$i -ea Stop

 }

}

catch {

}

$ExternalUsers

PowerShell can also be used to add users to certain groups. For example, if I wanted

to add John Smith to the IT Team Site Members group, I would run the following cmdlet:

Add-SPOUser -Site $site -LoginName john@office365powershell.ca -Group "IT

Team Site Members"

You can also remove users from a group by using the Remove-SPOUser cmdlet

and the same parameters. If you do not specify the -Group parameter, the user will be

removed from all the groups:

Remove-SPOUser -Site $site -LoginName john@office365powershell.ca -Group

"IT Team Site Members"

Chapter 3 Managing SharePoint Online

66

If you want to create a new group, you can do so with the New-SPOSiteGroup cmdlet.

You will need to specify the site where you want to create the new group, the group name,

and what permission level you want the group to have. In the following example, I create

a new SharePoint Online Group named IT Managers that has full control on my site:

New-SPOSiteGroup -Site $site -Group "IT Managers" -PermissionLevels "Full Control"

Now that we have reviewed what we can do with PowerShell to manage our users

and groups, let’s take a look at what settings we can configure at the tenant level.

�Managing Tenant-level Settings
When you make changes at the tenant level, you affect all the site collections and the

users in your organization, so it is important to understand what a certain cmdlet does

before running it as it may change the way users in your organization get things done.

First of all, you can use the Get-SPOTenant cmdlet to view all the settings of your tenant.

This will not only give you all the current properties of your tenant, but will also show

you a list of the properties that you can change. In Table 3-7, you can see some of the

most popular ones.

Table 3-7.  Set-SPOTenant Properties

Parameter Description

BccExternalSharingInvitations Enables the BCC for External Sharing feature.

When the feature is enabled, all external sharing

invitations will blind copy the email messages listed

in the BccExternalSharingsInvitationList.

Accepts a value of true (enabled) or false

(disabled). By default, this feature is set to false.

BccExternalSharingInvitationsList Specifies a list of email addresses to be BCC’d

when the BCC for External Sharing feature is

enabled. Multiple addresses can be specified by

creating a comma-separated list with no spaces.

(continued)

Chapter 3 Managing SharePoint Online

67

(continued)

Parameter Description

DefaultSharingLinkType Lets administrators choose what type of link is

selected in the “Get a Link” sharing dialog box in

OneDrive for Business and SharePoint Online.

The values are:

• N one

•  Direct

• I nternal

• A nonymousAccess

DisplayStartASiteOption Determines whether tenant users see the “Start a

Site” menu option

StartASiteFormUrl Specifies URL of the form to load in the “Start a

Site” dialog

OneDriveStorageQuota Sets a default OneDrive for Business storage quota

for the tenant. It will be used for new OneDrive for

Business sites created.

OrphanedPersonalSites

RetentionPeriod

Specifies the number of days after a user’s Active

Directory account is deleted that their OneDrive for

Business content will be deleted. The value range is in

days, between 30 and 3650. The default value is 30.

RequireAcceptingAccountMatch

InvitedAccount

Ensures that an external user can only accept an

external sharing invitation with an account matching

the invited email address.

The parameter accepts two values: True or False.

True—User must accept this invitation with bob@

contoso.com.

False—When a document is shared with an

external user, bob@contoso.com, it can be

accepted by any user with access to the invitation

link in the original email.

Table 3-7.  (continued)

Chapter 3 Managing SharePoint Online

68

You can change all these properties with the Set-SPOTenant PowerShell cmdlet. For

example, let’s say you want to make the following changes to your tenant to adhere to

business regulations and security requirements:

•	 BCC yourself and admin@office365powershell.ca on all external invites

•	 Set the default sharing link type to Internal

Parameter Description

RequireAnonymousLinksExpireInDays Specifies that all anonymous links that have been

created (or will be created) will expire after the set

number of days

SharingDomainRestrictionMode Specifies the external sharing mode for domains.

The allowed values are:

• N one

• A llowList

•  BlockList

SharingAllowedDomainList Specifies a list of email domains that are allowed

for sharing with external collaborators. Use the

space character as the delimiter for entering

multiple values.

SharingBlockedDomainList Specifies a list of email domains that are blocked or

prohibited for sharing with external collaborators.

Use space character as the delimiter for entering

multiple values.

SharingCapability Determines what level of sharing is available for the

site. The possible values are: Disabled—external user

sharing (share by email) and guest link sharing are both

disabled; ExternalUserSharingOnly—external user

sharing (share by email) is enabled, but guest link sharing

is disabled; or ExternalUserAndGuestSharing—

external user sharing (share by email) and guest link

sharing are both enabled.

Table 3-7.  (continued)

Chapter 3 Managing SharePoint Online

69

•	 Hide the “New Site” button in the SharePoint home

•	 Keep the MySites of users who have been deleted from the Active

Directory for ten years

•	 Require external users to log in with the same account that the invite

was sent to

•	 Only allow your users to share with external users that log in, and do

not allow them to create anonymous links

To meet those requirements, you would run the following cmdlet:

Set-SPOTenant `

 -BccExternalSharingInvitations $true `

 -�BccExternalSharingInvitationsList "vlad-admin@office365powershell.

ca,admin@office365powershell.ca" `

 -DefaultSharingLinkType Internal `

 -DisplayStartASiteOption $false `

 -OrphanedPersonalSitesRetentionPeriod 3650 `

 -RequireAcceptingAccountMatchInvitedAccount $true `

 -SharingCapability ExternalUserSharingOnly

Some other settings not included in the Get/Set-SPOTenant cmdlets are the settings

for OneDrive for Business. Office 365 allows you to configure OneDrive for Business to

only allow users to sync files on a domain-joined machine, as well as to block certain

extensions. This can be done by using the Set-SPOTenantSyncClientRestriction

cmdlet. In Table 3-8 you can find some the parameters of this cmdlet.

Table 3-8.  Set-SPOTenantSyncClientRestriction Parameters

Parameter Description

BlockMacSync Block Mac sync clients—the Beta version and the new sync client (OneDrive.exe)

The values for this parameter are True and False. The default value is False.

DomainGuids Sets the domain GUID to add to the safe recipient list. Requires a minimum of

one domain GUID. The maximum number of domain GUIDs allowed is 125.

Enable Enables the feature to block sync originating from domains that are not present

in the safe recipients list

ExcludedFile

Extensions

Blocks certain file types from syncing with the new sync client (OneDrive.exe).

Chapter 3 Managing SharePoint Online

70

Tip  To find out your domain GUID for the -DomainGuids parameter, follow this
guide on TechNet: https://technet.microsoft.com/en-us/library/
dn938435.aspx.

For example, let’s say you have the following business requirements:

•	 Users can only sync OneDrive for Business to computers joined to

the office365powershell.ca domain.

•	 Users on a MAC cannot use OneDrive for Business to sync files.

•	 Users cannot sync JavaScript files with OneDrive for Business.

Before running the Set-SPOTenantSyncClientRestriction cmdlet, it’s important

to note that this cmdlet uses parameter sets; therefore, you might not be able to specify

all the parameters that you want in a single cmdlet. You can view the parameter sets by

using the Get-Help cmdlet, as seen in Figure 3-17. Because of the parameter sets, you

cannot, for example, specify the -Enable, -DomainGuids, and -ExcludeFileExtensions

parameters in the same cmdlet.

Figure 3-17.  Set-SPOTenantSyncClientRestriction parameter sets

In going back to the example, you will find that the PowerShell cmdlets to follow the

business requirements discussed are as follows:

Set-SPOTenantSyncClientRestriction -Enable -DomainGuids "508C857F-B879-

4413-AB1E-AC33FA7D4477" -BlockMacSync:$true

Set-SPOTenantSyncClientRestriction -ExcludedFileExtensions "js"

Chapter 3 Managing SharePoint Online

www.allitebooks.com

https://technet.microsoft.com/en-us/library/dn938435.aspx
https://technet.microsoft.com/en-us/library/dn938435.aspx
http://www.allitebooks.org

71

Note I t may take up to 24 hours for the sync restriction to take effect.

That completes the tour around the PowerShell cmdlets available for your tenant,

and thus, when you include the previous sections, we have looked at all the available

cmdlets for SharePoint Online. You might think that you are very limited in what you

can do versus, for example, SharePoint On-Premises, and that is not untrue. There are

no PowerShell cmdlets to create SharePoint subsites, or lists/libraries in the SharePoint

Online PowerShell module provided by Microsoft, so, out of the box, you are limited in

what you can do. Luckily, the huge community behind SharePoint and Office 365 has

built some extensions for PowerShell that allow us to get more cmdlets.

�Community Extensions
Even if the SharePoint Online PowerShell module has a limited number of cmdlets,

Office 365 administrators with development skills are able to do more by using the

client-side object model (CSOM) and SharePoint Online APIs directly from PowerShell.

However, since most Office 365 administrators are IT professionals that do not write

code on a daily basis, this is not the easiest option.

While there are a few community-created extensions for SharePoint Online

PowerShell out there, this book will focus on the OfficeDev Patterns and Practices (PnP)

PowerShell cmdlets. If you are new to the SharePoint PnP program, here is a definition

from their site at https://dev.office.com/patterns-and-practices:

“SharePoint Patterns and Practices (PnP) is an open source initiative
coordinated by SharePoint engineering. It’s a channel for the SharePoint
engineering to share documentation, guidance, samples and reusable
component for the community. PnP initiative coordinates all SharePoint
developer documentation and guidance across on-premises and online.
Day to day work is coordinated by the PnP Core team, which consists of
Microsoft internal people and external MVPs.”

While most of what the PnP program publishes is code samples, there is also a

PowerShell extension for Office 365 that contains over 200 cmdlets for SharePoint Online

and Office 365. Let’s first look at how to get the module installed on your computer.

Chapter 3 Managing SharePoint Online

https://dev.office.com/patterns-and-practices

72

�Getting the Office 365 Dev PnP PowerShell Cmdlets
The Office 365 Dev PnP PowerShell Cmdlets is an open source project that is hosted

on GitHub and can be found at https://github.com/SharePoint/PnP-PowerShell.

You will find all the latest releases as well as the documentation for each cmdlet in the

extension.

There are two options to install the module. The first—and recommended—option is

to install them from the PowerShell gallery. If you are running Windows 10, you can use

the PowerShell gallery without installing any extra software. If you are running an older

version of Windows, you will need to install Windows Management Framework (WMF)

5.0 or download the PowerShellGet module from the Microsoft Download Center.

Note  Download links for the latest PowerShellGet module can be found on the
PowerShell gallery home page at https://www.powershellgallery.com/.

Once these prerequisites have been met, you simply need to run the following

cmdlet to install the latest version of the SharePoint Patterns and Practices PowerShell

Cmdlets for SharePoint Online on your computer:

Install-Module -Name SharePointPnPPowerShellOnline

The second option is to download a setup package from the “Releases” section of

the PnP PowerShell GitHub repository, which you can find at https://github.com/

SharePoint/PnP-PowerShell/releases.

If you already have a version of the PnP PowerShell Cmdlets installed, you can either

download the latest setup package or, if you got the cmdlets from the PowerShell gallery,

run the following cmdlet:

Update-Module SharePointPnPPowerShell*

Now that we have the latest version of the cmdlets installed, let’s learn how to use

them to connect to SharePoint Online.

Chapter 3 Managing SharePoint Online

https://github.com/SharePoint/PnP-PowerShell
https://www.powershellgallery.com/
https://github.com/SharePoint/PnP-PowerShell/releases
https://github.com/SharePoint/PnP-PowerShell/releases

73

�Connecting to SharePoint
Connecting to SharePoint Online using this module is a bit different than connecting

with the Microsoft official module since with the PnP PowerShell module you connect to

a particular site collection instead of connecting to the whole tenant. You will first need

to get the credential by using the Get-Credential cmdlet and saving it to a variable as

seen here:

$cred = Get-Credential

You then need to connect to a site collection by using the Connect-PnPOnline

cmdlet, specifying the URL and the credential as seen here:

Connect-PnPOnline -Url https://office365powershell.sharepoint.com

-Credentials $cred

You are now connected to this site collection and can execute PowerShell cmdlets on

it. Let’s take a look at those cmdlets.

�Sample cmdlets
The PnP SharePoint PowerShell module has over 200 cmdlets that can allow you to do

anything from creating new site collections to creating new subsites, lists/libraries, and

content types and even adding documents. Let’s take a look at a few of the cmdlets we

have available.

Tip  Similar to Office 365, the PnP SharePoint PowerShell library is always
changing. You can find the latest version of the cmdlets included in this module as
well as the help for each cmdlet on the GitHub repository at https://github.
com/SharePoint/PnP-PowerShell/blob/master/Documentation/
readme.md.

For this section, we will concentrate on a few sample cmdlets that allow you to do stuff

you cannot do with the module provided by Microsoft. For example, by using the

New-PnPWeb cmdlet you can create a subsite in the current site collection. You will now

create a subsite of the site collection you connected to earlier, being sure to satisfy the

business requirements from Table 3-9.

Chapter 3 Managing SharePoint Online

https://github.com/SharePoint/PnP-PowerShell/blob/master/Documentation/readme.md
https://github.com/SharePoint/PnP-PowerShell/blob/master/Documentation/readme.md
https://github.com/SharePoint/PnP-PowerShell/blob/master/Documentation/readme.md

74

The PowerShell cmdlet to build this subsite would be as follows:

New-PnPWeb -Url Managers `

 -Title "Managers Only Site" `

 -Template "STS#0" `

 -BreakInheritance `

 -Locale 1033 `

 -�Description "Use this subsite to communicate about sensitive

information between managers."

You can also create lists or libraries. For example, to create a new list titled “Team

Announcements” with the Announcements template, you would run the following

cmdlet:

New-PnPList -Title “Team Announcements” -Template Announcements

Something else the PnP PowerShell module allows you to do is view the recycle

bin of your sites as well as restore their content. For example, you can use the

Get-PnPRecycleBinItem cmdlet to view all the items in the site collection recycle bin,

as seen in Figure 3-18. You could then use the Restore‑PnpRecycleBinItem cmdlet to

restore an item back to the library.

Table 3-9.  Business Requirements for a New Subsite

Item Value

Title Managers Only Site

URL https://office365powershell.sharepoint.com/Managers

Template Team Site

Security Broken inheritance from the top-level site

Locale English – United States

Description Use this subsite to communicate about sensitive information between managers.

Chapter 3 Managing SharePoint Online

75

There are also cmdlets for the lists and libraries. In Table 3-10, you can see some of

the cmdlets that are available for handling lists and list items.

Figure 3-18.  Get-PnPRecycleBinItem

Table 3-10.  PnP PowerShell cmdlets for Lists

Cmdlet Description

Get-PnPDefaultColumnValues Gets the default column values for all folders in document library

Set-PnPDefaultColumnValues Sets default column values for a document library

Get-PnPList Returns a List object

New-PnPList Creates a new list

Remove-PnPList Deletes a list

Set-PnPList Updates list settings

Add-PnPListItem Adds an item to a list

Get-PnPListItem Retrieves list items

Remove-PnPListItem Deletes an item from a list

Set-PnPListItem Updates a list item

Set-PnPListItemPermission Sets list item’s permissions

Move-PnPListItemToRecycleBin Moves an item from a list to the recycle bin

Set-PnPListPermission Sets list’s permissions

(continued)

Chapter 3 Managing SharePoint Online

76

In Table 3-11, you can see some of the cmdlets used to manage files and folders

within document libraries.

Table 3-11.  PnP PowerShell cmdlet for Files and Folders

Cmdlet Description

Add-PnPFile Uploads a file to Web

Copy-PnPFile Copies a file or folder to a different location

Find-PnPFile Finds a file in the virtual file system of the Web

Get-PnPFile Downloads a file

Move-PnPFile Moves a file to a different location

Remove-PnPFile Removes a file

Rename-PnPFile Renames a file in its current location

Set-PnPFileCheckedIn Checks in a file

Set-PnPFileCheckedOut Checks out a file

Add-PnPFolder Creates a folder within a parent folder

Ensure-PnPFolder Returns a folder from a given site-relative path and will create it if

it does not already exist

Get-PnPFolder Returns a folder object

Move-PnPFolder Moves a folder to another location in the current Web

Remove-PnPFolder Deletes a folder within a parent folder

Rename-PnPFolder Renames a folder

Get-PnPFolderItem Lists content in folder

Cmdlet Description

Request-PnPReIndexList Marks the list for full indexing during the next incremental crawl

Add-PnPView Adds a view to a list

Get-PnPView Returns one or all views from a list

Remove-PnPView Deletes a view from a list

Table 3-10.  (continued)

Chapter 3 Managing SharePoint Online

77

These are only a few examples of what you can do with the PnP SharePoint

PowerShell module. As you can see from the cmdlets we have talked about, the PnP

SharePoint PowerShell module offers a lot more cmdlets to Office 365 administrators,

allowing them to manage site collections, subsites, lists, libraries, and even items. Since

there are over 200 cmdlets in the module and they constantly get updated or change,

it’s recommended you always look at the most up-to-date list of cmdlets on the GitHub

repository at https://github.com/SharePoint/PnP-PowerShell.

Now that we have looked at both the SharePoint Online module provided by

Microsoft and the PnP SharePoint PowerShell module, let’s find out how we can

implement some interesting automation scenarios in SharePoint Online.

�Automation Scenarios
One of the big benefits of using PowerShell is being able to automate tasks that you have

to do often and that can be boring to complete. Let’s look at two examples of things that

you can automate with PowerShell for SharePoint Online.

�Create Sites from a CSV File
In this first example, you will focus on a specific business case at a fictional company

called Learn Office 365 PowerShell. Whenever a fiscal year begins, the Project

Management Office gets approvals for a lot of projects for the whole year, and each

project needs a new site collection.

The first step in automating this business case is to create an Excel file that you can

send to the Project Management Office in which they can supply information about the

sites they will need created. In Figure 3-19, you can see a sample Excel file that includes

three columns: Site Name, Site URL, and Owner. Since all these sites will use the Team

Site template, this column is not included; however, you can customize the columns

according to your business requirements.

Chapter 3 Managing SharePoint Online

https://github.com/SharePoint/PnP-PowerShell

78

After receiving the file, save it in the Comma Separated Values (CSV) file format,

since that makes it a lot easier to handle in PowerShell. The first thing you should do in

your PowerShell script is import the CSV file by using the Import-CSV cmdlet and then

save it into a variable as seen here:

$SiteCollections = Import-CSV C:\Apress\Ch03\RequestedSites.csv

Then, do a for each loop and loop through every line in the CSV file, saving each

line object in a variable called $Site:

foreach ($Site in $SiteCollections){

}

Next, save each property of the site in a variable:

$Title = $Site.SiteName

$Url = $Site.SiteUrl

$Owner = $Site.Owner

Lastly, write a message to the PowerShell window to let the administrator know what

site is currently being created, then run the New-SPOSite cmdlet to create your new site

collection by specifying the variables you saved earlier:

Write-Host "Creating the $Title Site Collection at $Url with Site Owner $Owner"

New-SPOSite -Url $Url -Title $Title -Owner $Owner -Template STS#0 -

StorageQuota 512

Figure 3-19.  Sample Excel file to request sites

Chapter 3 Managing SharePoint Online

79

This is what it looks like if we put it all together:

$SiteCollections = Import-CSV C:\Apress\Ch03\RequestedSites.csv

foreach ($Site in $SiteCollections)

 {

 $Title = $Site.SiteName

 $Url = $Site.SiteUrl

 $Owner = $Site.Owner

 �Write-Host "Creating the $Title Site Collection at $Url with

Site Owner $Owner"

 �New-SPOSite -Url $Url -Title $Title -Owner $Owner -Template STS#0 -

StorageQuota 512

 }

With only nine lines of PowerShell we are able to automate the creation of site

collections from an Excel file! Let’s take a look at our second automation scenario.

�Copy User Permissions
One of the challenges that companies are facing is assigning permissions to new

employees when they join the company and making sure they have access to all the sites

and team sites they are supposed to have access to. Since a lot of new employees replace

an employee who just left, or is leaving soon, HR often sends the Office 365 administrator

a request asking them to assign the new employee the same rights that the old employee

had. While this may seem like an easy task, it can take quite a while to do so manually.

Let’s see how you can automate this by using PowerShell.

You will first create an input file of type CSV with two columns, UserName and

TemplateUserName, as seen in Figure 3-20. The UserName column is for the username of

the new user, and the TemplateUserName is the one you want to copy permission wise.

Chapter 3 Managing SharePoint Online

80

The first step in your script will be to save the site collection that you want to run this

script on in a variable, as well as all the groups in that site collection. Lastly, import the

CSV file into your script and save it in a variable as seen here:

$Site = Get-SPOSite https://office365powershell.sharepoint.com

$Groups = Get-SPOSiteGroup -Site $Site

$Users = import-csv 'C:\Apress\Ch03\CloneUsers.csv'

Note I n this sample script, the user permission cloning will only be done on a site
collection. You can modify this script to make it apply to all of your site collections
by adding an extra for each loop at the site-collection level.

Then, start a for each user in the input file loop and save each of the properties of

the user in a variable:

foreach ($User in $Users){

$NewUser = $User.UserName

$TemplateUser = $User.TemplateUserName

You then need to start looping through the content. Loop through every group in

the site collection, and then loop again through every user of that group. Compare every

Figure 3-20.  Copy user permissions input file

Chapter 3 Managing SharePoint Online

81

user with your template user, and if the username is the same, it means you have to add

the new user to that group as well as write a message to the host, as seen here:

foreach ($Group in $Groups)

 {

 foreach ($SPOUser in $Group.Users)

 {

 if ($SPOUser -eq $TemplateUser)

 {

 $GroupName = $Group.LoginName

 Write-Host "Adding $NewUser to $GroupName"

 Add-SPOUser -Site $Site -LoginName $NewUser -Group $GroupName | out-null

 }}}

If you put everything together, the script looks like this:

$Site = Get-SPOSite https://office365powershell.sharepoint.com

$Groups = Get-SPOSiteGroup -Site $Site

$Users = import-csv 'C:\Apress\Ch03\CloneUsers.csv'

foreach ($User in $Users){

 $NewUser = $User.UserName

 $TemplateUser = $User.TemplateUserName

 foreach ($Group in $Groups)

 {

 foreach ($SPOUser in $Group.Users)

 {

 if ($SPOUser -eq $TemplateUser)

 {

 $GroupName = $Group.LoginName

 Write-Host "Adding $NewUser to $GroupName"

 Add-SPOUser -Site $Site -LoginName $NewUser -Group $GroupName | out-null

 }

 }

 }

}

Chapter 3 Managing SharePoint Online

82

�Conclusion
In this chapter, we have looked at how to manage SharePoint Online using PowerShell.

We first looked at how to get the SharePoint Online module from Microsoft and how to

connect to SharePoint Online, as well as how to manage our site collections, our users

and groups, and our tenant.

We then looked at the most popular and complete community-driven PowerShell

module, which is the Office 365 Dev PnP PowerShell module for SharePoint. We learned

what it is and where to find it, as well as how to get it installed on our computer. We

also looked at a few sample cmdlets that exist in the PnP PowerShell module that you

cannot find an equivalent of in the SharePoint Online PowerShell module provided by

Microsoft.

Lastly, we looked at two automation scenarios in which you took what you learned in

this chapter and applied it to real business cases.

In the next chapter, we will look at how to manage Exchange Online with PowerShell.

Figure 3-21.  Copying user permissions with PowerShell

When running the script, you will see which users have been added to which group,

as seen in Figure 3-21.

Chapter 3 Managing SharePoint Online

83
© Vlad Catrinescu 2018
V. Catrinescu, Essential PowerShell for Office 365, https://doi.org/10.1007/978-1-4842-3129-6_4

CHAPTER 4

Managing Exchange
Online
In this chapter, we will first learn the prerequisites, as well as how to use PowerShell to

connect to Exchange Online. We will then learn how to manage the different aspects of

Exchange Online, such as mailboxes, distribution lists, contacts, permissions, and more!

We will also look at a few real-life scenarios where PowerShell with Exchange Online

would help you automate boring tasks and save you time.

�Connecting to Exchange Online
Connecting to Exchange Online with PowerShell is done by creating a remote PowerShell

session from your local computer to Exchange Online. Unless you use multi-factor

authentication (MFA), you do not need to download any modules before connecting,

as a temporary module will be downloaded every time you connect. We will cover how

to authenticate using MFA a bit later in this chapter. You first get your credentials by

running the Get-Credential cmdlet and saving it in a variable called $cred:

$cred = Get-Credential

Then, use the following cmdlet to connect to create a new remote PowerShell

session:

$Session = New-PSSession -ConfigurationName Microsoft.Exchange `

-ConnectionUri https://outlook.office365.com/powershell-liveid/ `

-Credential $cred `

-Authentication Basic `

-AllowRedirection

84

The ConnectionUri used in this example will be the same for all tenants except in

two situations:

	 1.	 If your tenant is in the Office 365 Germany tenant, use the

following ConnectionUri: https://outlook.office.de/

powershell-liveid/.

	 2.	 If your Office 365 tenant is operated by 21Vianet, use the following

ConnectionUri: https://partner.outlook.cn/PowerShell.

Lastly, import the PowerShell Session by using the Import-PSSession cmdlet as seen

here:

Import-PSSession $Session

If everything goes well, PowerShell will download a temporary module, and you will

now be connected to Exchange Online with PowerShell. Some of the Exchange Online

PowerShell cmdlets use verbs that are not in the PowerShell-approved list, so when

connecting, you will get a warning, as seen in Figure 4-1.

Figure 4-1.  Connecting to Exchange Online using PowerShell

You have now connected to Exchange Online using PowerShell. In a lot of

organizations, accounts that have admin access to Office 365 have multi-factor

authentication enabled, which makes the procedure a bit different. Let’s take a look at

how to connect to Exchange Online when MFA is enabled!

Chapter 4 Managing Exchange Online

https://outlook.office.de/powershell-liveid/
https://outlook.office.de/powershell-liveid/
https://partner.outlook.cn/PowerShell

85

�Connecting with Multi-Factor Authentication
If multi-factor authentication is enabled on your account, you will first need to install

the Exchange Online Remote PowerShell module on your computer. To get the module,

you open the Office 365 Admin Center and navigate to the Exchange Online Admin

Center, then to the Hybrid section. On that page, you will see the option to configure the

Exchange Online PowerShell module, as seen in Figure 4-2.

Note T his step must be done using Internet Explorer. If you are using any other
browser, you will get an error, which will be shown later in this chapter.

Figure 4-2.  The Exchange Online PowerShell module in the Office 365 Admin
Center

After you click on the Configure button, an application will be downloaded which

you will have to double click to start. You will first get prompted if you want to Install the

application as seen in Figure 4-3.

Chapter 4 Managing Exchange Online

86

If you have used a browser other than Internet Explorer, you will get an error similar

to that in Figure 4-4 when you try to run the application.

Figure 4-3.  Exchange Online PowerShell module install prompt

Figure 4-4.  Application error when using a browser other than Internet
Explorer

After the application has been installed, you can find it under Microsoft Exchange

Online PowerShell module in your applications, as seen in Figure 4-5.

Chapter 4 Managing Exchange Online

87

To connect to most Office 365 tenants, you would run the following cmdlet using

your Office 365 username:

Connect-EXOPSSession -UserPrincipalName Jeff@office365powershell.ca

A pop-up will prompt you to enter your password, as seen in Figure 4-6.

Figure 4-5.  The Exchange Online PowerShell module

Figure 4-6.  Exchange Online PowerShell module password prompt

Next up, depending on your MFA authentication method, you will be prompted to

enter your second layer of authentication, as seen in Figure 4-7.

Chapter 4 Managing Exchange Online

88

Once logged in, you will see a warning similar to the one in Figure 4-8 explaining that

some commands in the Exchange Online module use unapproved verbs.

Figure 4-7.  Exchange Online PowerShell module second layer of
authentication

Figure 4-8.  Successfully connected to Exchange Online with multi-factor
authentication

If your tenant is in the Office 365 Germany region, you would need to provide

two more parameters when connecting to Exchange Online PowerShell using MFA,

specifically the ConnectionUri and AzureADAuthorizationEndPointUri parameters.

Chapter 4 Managing Exchange Online

89

If you wanted to log in to Office 365 Germany with the Jeff@office365powershell.ca

account, you would use the following cmdlet:

Connect-EXOPSSession `

-UserPrincipalName Jeff@office365powershell.ca `

-ConnectionUri https://outlook.office.de/PowerShell-LiveID `

-AzureADAuthorizationEndPointUri https://login.microsoftonline.de/common

You have now learned how to connect to Exchange Online by using both multi-factor

authentication and normal authentication. Next up, let’s learn the different cmdlets you

can use to manage Exchange Online using PowerShell!

�Managing Users and Mailboxes
Let’s start by having you learn how to manage probably the most important part of it all:

the users and mailboxes inside your Office 365 tenant. In this section, you will learn how

to change user properties, assign user permissions on other mailboxes, send emails via

PowerShell, and also manage users’ calendars!

�Users
You previously learned how to manage users with the Azure Active Directory PowerShell

module (Chapter 2), but you can also use the Exchange Online PowerShell module

to view most user properties. If you want to see all the users in your Exchange Online

tenant, you can run the Get-User cmdlet as seen in Figure 4-9.

Figure 4-9.  Running the Get-User cmdlet

Chapter 4 Managing Exchange Online

90

You can also select properties that make it easier for you to see the different types

of mailboxes that you have in your tenant. The following example cmdlet, also seen in

Figure 4-10, allows you to see the full email address, the recipient type, and the details. In

this example, you can easily see if it’s a user mailbox, a shared mailbox, a room mailbox,

or a guest user.

Get-User | Select UserPrincipalName, RecipientType, RecipientTypeDetails |

Format-Table -Wrap

Figure 4-10.  Selecting different properties with the Get-User cmdlet

You can also change user properties via the Set-User cmdlet, which will update it

throughout Office 365. In the example that follows, I am changing the display name of a

user with username jeff.collins@office365Powershell.ca to Jeff Collins.

Set-User jeff.collins@office365Powershell.ca -DisplayName "Jeff Collins"

In Figure 4-11, you can see that I first used the Azure AD PowerShell cmdlets to verify

the display name, which was Collins, Jeff, and after the display name was changed

with the Exchange Online PowerShell cmdlets, it also got changed in Azure Active

Directory.

Chapter 4 Managing Exchange Online

91

Let’s now look at how to manage contacts in Exchange Online!

�Contacts
Contacts in Exchange Online allow you to publish external emails into your Global

Address List in order to make them easier to find for your users. For example,

organizations often have external employee-assistance programs or external financial

organizations managing their 401K plan. Even if those email addresses are external, by

using Exchange Online Contacts you can easily add those to each employee’s Global

Address List.

To create a new mail contact, you use the New-MailContact cmdlet, specifying the

name of the contact as well as their email address:

New-MailContact -Name "401K Questions" -ExternalEmailAddress companyname@

financialcompany.com

New-MailContact -Name "Employee Assistance Program" -ExternalEmailAddress

companyname@eapprovider.com

When employees start typing part of the word, Outlook will automatically propose

one of the contacts that you have saved previously, as seen in Figure 4-12.

Figure 4-11.  Updating global Office 365 properties by using the Exchange Online
PowerShell module

Chapter 4 Managing Exchange Online

92

You can also change a mail contact by using the Set-MailContact PowerShell

cmdlet. For example, you can use the following cmdlet to change the email address of

the 401k contact:

Set-MailContact -Identity "401K Questions" -ExternalEmailAddress questions@

newfinancialcompany.com

You can also use PowerShell to update multiple contacts at once. For example, let’s

assume your company has a new policy where all the external email addresses in the

Global Address List must have the word “[External]” in their display name in order for

users to know right away that they are sending an email outside the organization. In

PowerShell, you could run the following script to automatically update all the contacts in

the organization to add the required words in the display name:

$Contacts = Get-MailContact

foreach ($contact in $contacts){

Set-MailContact -Identity $contact.Name -DisplayName "$contact [External]"

}

The result, seen in Figure 4-13, shows how the contacts are displayed after the

previous script.

Figure 4-12.  Mail contacts suggested in Outlook on the Web

Chapter 4 Managing Exchange Online

93

You can also assign MailTips to each mail contact. For example, if you wanted to

remind employees not to send confidential information by email to a contact, you could

run the following cmdlet:

Set-MailContact -Identity "401K Questions" -MailTip "Do not send

confidential information to this mailbox!"

The MailTip will appear at the top of the email as seen in Figure 4-14.

Figure 4-13.  Office 365 mail contacts shown with the [External] warning

Figure 4-14.  MailTips in Outlook Online

Chapter 4 Managing Exchange Online

94

Now that you have learned how to work with mail contacts, it’s time to look at how to

manage mailboxes using PowerShell!

�Mailboxes
To see all the mailboxes inside your Office 365 tenant, you can run the Get-Mailbox

PowerShell cmdlet, which will return basic information, as seen in Figure 4-15.

Figure 4-15.  All mailboxes inside the organization

You can also filter by any of the properties of the mailbox; for example, with the

following cmdlet you also get information about the display name, what type of mailbox

it is, and the quota for the mailbox:

Get-Mailbox | Select DisplayName, RecipientTypeDetails,ProhibitSendReceive

Quota | Format-Table -autosize

You can see the results in Figure 4-16.

Figure 4-16.  Selecting certain properties of the mailbox

Chapter 4 Managing Exchange Online

95

If you want to modify a certain mailbox, you can use the Set-Mailbox PowerShell

cmdlet. For example, if you wanted to hide the “Shared Mailbox” (seen in earlier figures)

from the Global Address List, you would run the Set-Mailbox cmdlet, specifying the alias—

which is “shared”—and the HiddenFromAddressListsEnabled property, as seen here:

Set-Mailbox -Identity Shared -HiddenFromAddressListsEnabled $true

The result, seen in Figure 4-17, is that this mailbox will not be suggested or appear in

search results when users search for an e-mail address in the Global Address List.

Figure 4-17.  Shared mailbox not displayed in search results

Note I t might take some time for the HiddenFromAddressListEnabled
parameter to take effect, but usually it will work in less than an hour.

Another popular change that administrators often apply to mailboxes is a permanent

forward when an employee leaves the company. To adjust this property, you need to

configure the properties shown in Table 4-1.

Chapter 4 Managing Exchange Online

96

Table 4-1.  Set-Mailbox Permissions

Property Description

DeliverToMailboxAndForward This parameter specifies the message-delivery

behavior when a forwarding address is specified by the

ForwardingAddress or ForwardingSmtpAddress

parameters. Valid values are:

•	 $true Messages are delivered to this mailbox and

forwarded to the specified recipient or email address.

•	 $false If a forwarding recipient or email address

is configured, messages are delivered only to the

specified recipient or email address, and messages

aren’t delivered to this mailbox. If no forwarding

recipient or email address is configured, messages are

delivered only to this mailbox.

The default value is $false. The value of this parameter is

meaningful only if you configure a forwarding recipient or

email address.

ForwardingAddress This parameter specifies a forwarding address for messages

that are sent to this mailbox. A valid value for this parameter

is a recipient in your organization.

ForwardingSmtpAddress This parameter specifies a forwarding SMTP address for

messages that are sent to this mailbox. Typically, you use this

parameter to specify external email addresses that aren’t

validated.

If you configure values for both the ForwardingAddress

and ForwardingSmtpAddress parameters, the value of

ForwardingSmtpAddress is ignored.

If John Smith is leaving the company, you would probably want to forward John’s

email to his manager, who is Jeff Collins. In this scenario, the company policy dictates

that email must be only forwarded to Jeff, but new mails must not be kept in John’s

mailbox. Furthermore, we will hide John from the Global Address List so new employees

do not find him by accident.

Chapter 4 Managing Exchange Online

97

Set-Mailbox -Identity john.smith `

-HiddenFromAddressListsEnabled $true `

-DeliverToMailboxAndForward $false `

-ForwardingAddress jeff.collins@office365powershell.ca

Another setting that you can change for your user’s experience is the Focused Inbox.

With the Focused Inbox feature, Microsoft uses its machine-learning algorithms to

decide which emails are important for you and which are less important. Your inbox is

separated into two tabs—Focused and Other. Your most important emails are on the

Focused tab while the rest remain accessible on the Other tab. Figure 4-18 showcases

the Focused Inbox in Outlook Online, but the same functionality also exists in Outlook

client. As you can see in the figure, I currently have no emails in my Focused inbox;

however, I have 40 unread emails in my inbox, and I need to switch over to the Other tab

in order to see them.

Figure 4-18.  Focused Inbox versus Other tab

Chapter 4 Managing Exchange Online

98

While most users and organizations like the features, some prefer not to have two

different tabs in their inbox. You can turn Focused Inbox on/off either at the mailbox

level or at the tenant level. We will look at the tenant-level permissions a bit later in this

chapter. To turn the Focused Inbox feature on/off you would use the Set-FocusedInbox

cmdlet, specifying the identity of the mailbox and the FocusedInboxOn parameter. In the

example that follows, I am turning off the Focused Inbox feature for a single mailbox:

Set-FocusedInbox -Identity vlad-admin@office365powershell.ca

-FocusedInboxOn $False

The result, seen in Figure 4-19, is that this user will have normal inbox functionality

without the Focused and Other tabs.

Figure 4-19.  Inbox without the Focused Inbox feature activated

Now that you have learned how to manage mailboxes, let’s look at how to manage

calendars with PowerShell!

�Calendar and Out of Office
There are multiple administrative operations you might want to perform on a user’s

calendar. One common event is that when a user leaves the company, sometimes they

forget to cancel recurring meetings, and you probably want to cancel them since you

Chapter 4 Managing Exchange Online

99

do not want a nonexistent user to be the organizer of those meetings. Some companies

also use Exchange to manage conference room reservations, and having those meetings

still exist will keep the room busy even if the user is no longer working for the company.

The Remove-CalendarEvents cmdlet allows you to cancel all upcoming meetings where

the mailbox is the meeting organizer and the meeting has one or more attendees or

resources. To delete all the upcoming meetings organized by John Smith, I would run the

following cmdlet:

Remove-CalendarEvents `

-Identity john.smith@office365powershell.ca `

-CancelOrganizedMeetings

In other cases, maybe the employee has only taken a maternity/paternity leave or a

leave of absence, and you do not want to cancel all their future meetings. By using the

QueryStartDate and QueryWindowInDays parameters, you can specify a starting date

and date range for which events should be canceled. In the example that follows, I am

canceling events by Jeff Collins starting on January 1, 2018, for 30 days. The date format

is defined by the Regional Options on the computer that is running the command.

Remove-CalendarEvents `

-Identity jeff.collins@office365powershell.ca `

-CancelOrganizedMeetings `

-QueryStartDate 1/1/2018 `

-QueryWindowInDays 30

In both these scenarios, another setting you might want to change is the Automatic

Reply for that mailbox to let other people know that the user is no longer working

for the company or is on an extended leave for a certain period of time. Let’s assume

that the account Vlad Admin has left the organization. You can first run the Get-

MailboxAutoReplyConfiguration cmdlet to see the current settings. As you can see in

Figure 4-20, the user has set an External Message linking to his LinkedIn account, but did

not specify who to contact in your organization, and that is not what the company wants.

Chapter 4 Managing Exchange Online

100

As an administrator, you could create an Out of Office message and even use HTML

and CSS to make it match the content and style you want. You should first create a here-

string with the HTML code of the message that you want to use:

$Body = @"

"Hello </br> </br>

Please Note I am not currently working for Office 365 PowerShell anymore.

</br> </br>

Please contact Jeff Collins <a href="mailto:jeff.collins@

office365powershell.ca">jeff.collins@office365powershell.ca for any

questions. </br> </br>

Thanks!"

"@

You would then assign this message to the mailbox by using the Set-

MailboxAutoReplyConfiguration cmdlet as seen in the following example:

Set-MailboxAutoReplyConfiguration `

-Identity vlad-admin@office365powershell.ca `

-ExternalMessage $body `

-InternalMessage $body

Figure 4-20.  Running the Get-MailboxAutoReplyConfiguration cmdlet

Chapter 4 Managing Exchange Online

101

The result, as seen in Figure 4-21, is the Out of Office message that users will receive

with the preceding cmdlets.

Figure 4-21.  Out of Office message result

If the Out of Office message were not yet enabled, and you wanted to enable it, you

would need to add the AutoReplyState parameter. To enable it without a schedule, you

would run the following cmdlet:

Set-MailboxAutoReplyConfiguration `

-Identity vlad-admin@office365powershell.ca `

-ExternalMessage $body `

-InternalMessage $body `

-AutoReplyState Enabled

If you only wanted to enable this message for a certain period of time, you would

need to set the AutoReplyState parameter to Scheduled and specify the start and end

times, as seen in the following example:

Set-MailboxAutoReplyConfiguration `

-Identity vlad-admin@office365powershell.ca `

-ExternalMessage $body `

-InternalMessage $body `

-AutoReplyState Scheduled `

-StartTime 1/1/2018 `

-EndTime 1/30/2018

Chapter 4 Managing Exchange Online

102

This would enable the Out of Office message only between January 1 and January 30,

2018.

You can also view all the calendar settings, such as work days, work hours, default

reminder times, and more by using the Get-MailboxCalendarConfiguration cmdlet.

You can view some of those settings in Figure 4-22.

Figure 4-22.  All calendar configuration events

You can change any of these settings by using the Set-MailboxCalendarConfiguration

PowerShell cmdlet and specifying the name of the parameter you want to change.

Now that you have learned how to manage the calendar and Out of Office events,

let’s look at how to manage different mailbox permissions in Exchange Online with

PowerShell.

�SendAs and Mailbox Permissions
As an Exchange administrator, you have probably already been tasked with

granting “SendAs” permission to a user’s mailbox. This is done with the Add-

RecipientPermission cmdlet. If I wanted to allow the account Vlad Admin to send

emails that appear to come directly from Jeff Collins, I would run the following cmdlet:

Add-RecipientPermission jeff.collins -AccessRights SendAs -Trustee vlad-

admin@office365powershell.ca

Chapter 4 Managing Exchange Online

103

To view permissions on a certain mailbox, you can run the Get-RecipientPermission

cmdlet, specifying the -Identity parameter. In Figure 4-23, you can see that Jeff Collins

himself, as well as Vlad Catrinescu, have SendAs permissions on the jeff.collins

mailbox.

Figure 4-23.  Get-RecipientPermission for a mailbox

Figure 4-24.  Get-RecipientPermission for a trustee

You can also use the -Trustee parameter to find out what mailboxes a certain

user (trustee) can send emails as. In Figure 4-24, you can see that vlad-admin@

office365powershell.ca can send emails as three other identities.

Note I t can take a few hours for new permissions to be visible for the user in
Outlook client or Outlook Online.

If you want to assign other permissions, such as full control of the mailbox, you need

to use the Add-MailboxPermission PowerShell cmdlet. Table 4-2 showcases some of the

most important parameters of the cmdlet

Chapter 4 Managing Exchange Online

104

In the following cmdlet, I am granting Vlad Admin full control of Jeff Collins’

mailbox:

Add-MailboxPermission -Identity jeff.collins `

-User vlad-admin@office365powershell.ca `

-AccessRights FullAccess `

-InheritanceType All

Since I let the AutoMapping parameter to its default value of True, Jeff Collins’

mailbox is automatically added to my Outlook client when I add the vlad-admin

account, as seen in Figure 4-25.

Table 4-2.  Parameters of the Add-MailboxPermission cmdlet

Parameter Description

Identity The Identity parameter specifies the identity of the mailbox that’s getting

permissions added.

AccessRights The AccessRights parameter specifies the rights needed to perform the

operation. Valid values include:

•	 FullAccess

•	 ExternalAccount

•	 DeleteItem

•	 ReadPermission

•	 ChangePermission

•	 ChangeOwner

Owner The Owner parameter specifies the owner of the mailbox object.

User The User parameter specifies the user mailbox that the permissions are

being granted to on the other mailbox.

AutoMapping The AutoMapping parameter specifies whether to ignore the auto-

mapping feature in Microsoft Outlook. This parameter accepts $true or

$false values.

InheritanceType The InheritanceType parameter specifies whether permissions are

inherited by folders within the mailbox.

Chapter 4 Managing Exchange Online

105

If you want to see the permissions for a certain mailbox, you can run the

Get-MailboxPermission permission cmdlet, specifying the identity of the mailbox that

you want to get the permissions for. As you can see in Figure 4-26, this will output all

permissions, including the ones you have manually assigned and some Microsoft service

accounts.

Figure 4-25.  Account automatically added with AutoMapping feature

Chapter 4 Managing Exchange Online

106

If you want to remove permissions from a certain mailbox for a user, you can use the

Remove-MailboxPermission PowerShell cmdlet and specify the identity of the mailbox

you want to remove permissions from, the user whose permissions you want to remove,

the access rights you want to remove, and other optional parameters, such as inheritance

type. In the following cmdlet, I am removing the FullAccess permission that Vlad-Admin

had on Jeff Collins’ mailbox:

Remove-MailboxPermission -Identity jeff.collins `

-User vlad-admin@office365powershell.ca `

-AccessRights FullAccess `

-InheritanceType All

Office 365 also gives you the ability to restore a mailbox to its default permissions by

using the ResetDefault parameter. This will remove mailbox permissions such as Full

Access, but will retain recipient permissions such as SendAs and SendOnBehalf.

To restore Jeff Collins’ mailbox to default permissions, I would run the following cmdlet:

Remove-MailboxPermission -Identity jeff.collins -ResetDefault

We have now covered how to manage SendAs and Mailbox permissions with

PowerShell. Next up, let’s learn how to manage organization settings!

Figure 4-26.  Mailbox permissions

Chapter 4 Managing Exchange Online

107

�Managing Organization Settings
Exchange Online offers the ability to apply settings at the mailbox level, as you saw earlier,

but you can also enable or disable features at the tenant level. If you want to see the

configuration data for the Exchange organization, you can run the Get-OrganizationConfig

cmdlet. This cmdlet will return a lot of information, but you can export it to a file if needed,

to make reading easier, with this example cmdlet:

Get-OrganizationConfig | Out-File c:\Users\Vlad\Desktop\OrgConfig.txt

To change the organization settings, you need to use the Set-OrganizationConfig

PowerShell cmdlet. Table 4-3 displays the most common parameters of the cmdlet,

which will also allow you to better understand the values from the

Get-OrganizationConfig cmdlet.

Note  Some parameters control features that are not available in all license
plans, such as Microsoft Bookings or Customer Lockbox. Make sure you have the
required licenses before changing those settings.

Table 4-3.  Set-OrganizationConfig cmdlet Parameters

Parameter Description

AppsForOfficeEnabled This parameter specifies whether to enable apps for Outlook

features. By default, the parameter is set to $true. If the flag

is set to $false, no new apps can be activated for any user in

the organization.

BookingsEnabled This parameter specifies whether to enable Microsoft Bookings

in an Exchange Online organization.

CustomerLockboxEnabled CustomerLockboxEnabled specifies whether Customer

Lockbox requests are enabled or disabled for the organization.

DirectReportsGroupAuto

CreationEnabled

This parameter specifies whether to enable or disable the

automatic creation of direct-report Office 365 Groups.

(continued)

Chapter 4 Managing Exchange Online

108

Tip T o view all the parameters of the Set-OrganizationConfig cmdlet,
you can run Get-Help Set-OrganizationConfig -Online, which will
automatically open the TechNet page of the cmdlet in your default browser.

If, for example, you wanted to disable Focused Inbox, Link Previews, and Microsoft

Bookings, you would run the following cmdlet:

Set-OrganizationConfig `

-FocusedInboxOn $false `

-LinkPreviewEnabled $false `

-BookingsEnabled $false

Some of the parameters specified in Table 4-3 also talk about the governance of

distribution lists and allowing you to set a naming convention, as well as blocked words.

Let’s look at those in detail. If you wanted to block the words Apress, Contoso, and CEO

from any distribution list name, you would run the following cmdlet:

Set-OrganizationConfig -DistributionGroupNameBlockedWordsList

Apress,Contoso,CEO

Table 4-3.  (continued)

Parameter Description

DistributionGroupName

BlockedWordsList

This parameter specifies words that can’t be included in the

names of distribution groups. Separate multiple values with

commas.

DistributionGroup

NamingPolicy

The DistributionGroupNamingPolicy parameter specifies

the template applied to the name of distribution groups that are

created in the organization.

FocusedInboxOn The FocusedInboxOn parameter enables or disables Focused

Inbox for the organization.

LinkPreviewEnabled The LinkPreviewEnabled parameter specifies whether

a link preview of URLs in email messages is allowed for the

organization.

Chapter 4 Managing Exchange Online

109

If you tried to create a distribution list using those words, you would be shown an

error similar to that in Figure 4-27.

Figure 4-27.  Blocked words in distribution lists

Figure 4-28.  Distribution created with new naming convention

The next option is the Distribution Group Naming Policy, which allows you to set

a naming policy for each distribution list; the policy can also be dynamic depending

on who creates it. Exchange Online allows you to add a prefix and a suffix to each

distribution list. For example, if you wanted every distribution group to start with the

word DL, have the requested group name, and finish with the country of the user who

created it, you would run the following cmdlet:

Set-OrganizationConfig -DistributionGroupNamingPolicy "DL_<GroupName>_

<CountryOrRegion>"

After applying the policy, if you wanted to create a group with the name “PowerShell

Book Review,” the final name would be DL_PowerShell Book Review_Canada as seen in

Figure 4-28.

We have now viewed how to manage organization changes for Exchange Online,

including the distribution list governance policies. Next up, let’s continue looking at how

to manage distribution groups using PowerShell!

Chapter 4 Managing Exchange Online

110

�Managing Distribution Groups
Distribution groups have been around for quite some time, and a lot of organizations

use them every day. While Microsoft recommends upgrading distribution groups to

Office 365 Groups due to the additional features Office 365 Groups offer, those additional

features are not always needed. You will start by learning how to see the distribution

groups in your tenant!

To view all the distribution groups in your environment, you need to use the

Get-DistributionGroup PowerShell cmdlet. In Figure 4-29, we are getting the alias,

display name, and primary email address of every distribution group.

Figure 4-29.  Get-DistributionGroup Cmdlet

To create a new distribution group, you must use New-DistributionGroup and

specify the name of the distribution group, as well as any parameters you might want to

configure. Some of the most common parameters are listed in Table 4-4.

Table 4-4.  New-DistributionGroup Parameters

Parameter Description

Name This parameter specifies the unique name of the group. The

maximum length is 64 characters.

Alias This parameter specifies the Exchange alias (also known as the

mail nickname) for the recipient.

DisplayName The DisplayName parameter specifies the display name of the

group.

(continued)

Chapter 4 Managing Exchange Online

111

Parameter Description

IgnoreNamingPolicy The IgnoreNamingPolicy switch specifies whether to prevent

this group from being affected by your organization’s distribution

group naming policy.

ManagedBy The ManagedBy parameter specifies an owner for the group. A

group must have at least one owner. If you don’t use this parameter

to specify the owner when you create the group, the user account

that created the group is the owner.

Members The Members parameter specifies the recipients (mail-enabled

objects) that are members of the group.

PrimarySmtpAddress The PrimarySmtpAddress parameter specifies the primary

return email address that’s used for the recipient.

RequireSender

AuthenticationEnabled

The RequireSenderAuthenticationEnabled parameter

specifies whether to accept messages only from authenticated

(internal) senders.

Table 4-4.  (continued)

If you wanted to create a new distribution group with the following requirements:

•	 Name: Contoso News

•	 Owners: John Smith

•	 Members: Jeff Collins, Vlad Admin

•	 Can only receive emails from internal employees

•	 Email Address: cnews@office365PowerShell.ca

you would run the following cmdlet:

New-DistributionGroup `

-Name "Contoso News" `

-Members jeff.collins,VladAdmin `

-ManagedBy john.smith `

-IgnoreNamingPolicy `

-RequireSenderAuthenticationEnabled $true `

-PrimarySmtpAddress cnews@office365PowerShell.ca

Chapter 4 Managing Exchange Online

112

To modify the properties of a distribution group, you need to use the

Set-DistributionGroup PowerShell cmdlet. You can change all the parameters that

you saw in Table 4-4, as well as configure some new ones. Table 4-5 showcases some of

the most common parameters that you can change using the Set-DistributionGroup

cmdlet.

Table 4-5.  Parameters of the Set-DistributionGroup cmdlet

Parameter Description

AcceptMessagesOnlyFrom The AcceptMessagesOnlyFrom parameter specifies

who is allowed to send messages to this recipient.

Messages from other senders are rejected.

HiddenFromAddressListsEnabled The HiddenFromAddressListsEnabled parameter

specifies whether this recipient is visible in address lists.

MailTip The MailTip parameter specifies the custom MailTip

text for this recipient. The MailTip is shown to senders

when they start drafting an email message to this

recipient.

If you wanted to modify a distribution group you previously created to have a

MailTip, as well as to hide the Distribution Group from the Global Address List, you

would run the following cmdlet:

Set-DistributionGroup cnews@office365PowerShell.ca `

-MailTip "Please Note this e-mail adress is reserved for Management Only" `

-HiddenFromAddressListsEnabled $true

Finally, to remove a distribution group, you can run the Remove-DistributionGroup

cmdlet, specifying which group you want to remove, as in the following example:

Remove-DistributionGroup cnews@office365PowerShell.ca

Now that we know how to manage distribution groups, let’s learn how to manage the

members inside them.

Chapter 4 Managing Exchange Online

113

�Manage Distribution Group Membership
To view the members of a distribution group, you simply have to run the Get-

DistributionGroupMember cmdlet and specify for which group you want to see the

membership, as seen in Figure 4-30.

Figure 4-30.  Viewing the members of a distribution group

To add a member to a distribution group, you need to use

Add-DistributionGroupMember, specifying the group that you want to add the

member to and the user that you wish to add, as seen in the following example:

Add-DistributionGroupMember `

-Identity cnews@office365PowerShell.ca `

-Member john.smith

You can also completely replace the members of a group by using the

Update-DistributionGroupMember cmdlet. This will remove all previous members

and add the ones you specify inside. If you run the following cmdlet, it will replace all

members inside with only Jeff Collins and Liam Jones, as you can see in Figure 4-31.

Update-DistributionGroupMember `

-Identity cnews@office365PowerShell.ca `

-Member liam.jones, jeff.collins `

-Confirm:$False

Chapter 4 Managing Exchange Online

114

Lastly, to remove a member from a distribution group, you can run the Remove-

DistributionGroupMember cmdlet, specifying the identity of the distribution group and

the member to remove. In the example that follows, Jeff Collins is being removed from

the distribution group:

Remove-DistributionGroupMember `

-Identity cnews@office365PowerShell.ca `

-Member jeff.collins

That’s it for distribution group membership management with PowerShell! Next up,

let’s look at what reports we can have on our Exchange mailboxes.

�Mailbox Reporting
Exchange Online provides us with cmdlets that allow us as administrators to get

information about how users are using their mailboxes. One of the first cmdlets we will

look at is the Get-MailboxStatistics cmdlet, which allows you to view the usage on

mailboxes. Simply running the cmdlet and specifying the identity of the mailbox will

show you the display name, how many items are in that mailbox, and the last logon time,

as you can see in Figure 4-32.

Figure 4-31.  Updating the members of a distribution group

Chapter 4 Managing Exchange Online

115

You can also view multiple other properties; for example, running the following

cmdlet will show you the information on size and deleted items you see in Figure 4-33.

Get-MailboxStatistics -Identity vlad-admin@office365powershell.ca | Select

DisplayName, DeletedItemCount, ItemCount, TotalItemSize, LastLogonTime

Figure 4-33.  Filtered mailbox properties

Figure 4-32.  Viewing mailbox statistics for a user

You can also run the cmdlet across all mailboxes. For example, the following cmdlet

will return the display name of every user who hasn’t logged on since December 15, 2017:

Get-Mailbox | Get-MailboxStatistics | Where-Object {$_.LastLogonTime -lt

"12/15/2017"} | Select DisplayName

Chapter 4 Managing Exchange Online

116

Another useful feature would be to return all the mailboxes that have more than

20,000 emails in their mailbox, which is done with the following cmdlet:

Get-Mailbox | Get-MailboxStatistics | Where-Object {$_.ItemCount -gt 20000}

As you can see, Get-MailboxStatistics allows you to see how users are using

Exchange Online and gives you information you couldn’t normally see.

Before finishing this chapter, it is important you learn how to disconnect your remote

PowerShell Session from Exchange Online.

�Disconnecting from Exchange Online
When you are done with the tasks you wanted to do with PowerShell, make sure to

disconnect the remote PowerShell session. There is a limit to how many sessions you

can connect to Exchange Online, and if you simply close the PowerShell window without

disconnecting the session you might use all of the available sessions, forcing you to wait

until they expire before being able to reconnect. To disconnect the remote PowerShell

session, you can run the following cmdlet:

Remove-PSSession $Session

�Conclusion
In this chapter, we learned how to manage Exchange Online using PowerShell. We

first looked at how to connect to Exchange Online, whether you are using simple

authentication or multi-factor authentication. We then learned how to manage users

and mailboxes, as well as a few common tasks such as managing Out of Office replies

and permissions on other mailboxes.

We then looked at how to manage organizational settings that apply to the whole

tenant as well as how to manage distribution groups. Lastly, we learned how to view

reports on our Exchange Online mailboxes and how to disconnect from Exchange

Online.

In the next chapter, we will learn how to manage Skype for Business Online with

PowerShell.

Chapter 4 Managing Exchange Online

117
© Vlad Catrinescu 2018
V. Catrinescu, Essential PowerShell for Office 365, https://doi.org/10.1007/978-1-4842-3129-6_5

CHAPTER 5

Managing Skype
for Business Online
In this chapter, we will first learn how to get the Skype for Business PowerShell module

and connect to Skype for Business Online. We will then learn how to manage both the

tenant and the per-user Skype for Business policies using PowerShell.

Finally, we will look at how to run PowerShell cmdlets for Skype for Business when

you are working in a hybrid scenario where you have part of your topology running a

Skype for Business server on-premises and part using Skype for Business Online, part of

Office 365.

�Connecting to Skype for Business Online
Similar to SharePoint and Azure Active Directory, the first thing that you have to do

to connect to Skype for Business Online is download a module from the Microsoft

Download Center. This PowerShell module contains all the PowerShell cmdlets that

allow us to connect to Skype for Business Online.

Note  The Skype for Business Online Windows PowerShell Module can be
downloaded at https://www.microsoft.com/en-us/download/details.
aspx?id=39366.

Similar to the previous chapters, you need to be on a 64-bit machine that runs

Windows 7 Service Pack 1 or later, or Windows Server 2008 R2 Service Pack 1 or later, as

well as have an account that has the Skype for Business Admin Role assigned. You will

also need to be a local administrator on your computer in order to be able to install the

module.

https://www.microsoft.com/en-us/download/details.aspx?id=39366
https://www.microsoft.com/en-us/download/details.aspx?id=39366

118

After you download the Skype for Business Online Windows PowerShell Module

from the preceding link, you can start the installation. The first step is to agree to the

terms, as seen in Figure 5-1.

You then have to click on Install and wait a few seconds for the module to be

installed on your computer. This module only contains the cmdlets to connect to Skype

for Business Online, and not all the cmdlets that you can use in Skype for Business.

Similar to Exchange Online, a temporary module is downloaded every time you connect

to Skype for Business Online.

Once the module is installed, to connect to Skype for Business you will first have

to save the credentials with which you wish to connect in a variable. In the following

example, we are saving those credentials in a variable called $cred:

$cred=Get-Credential

We then need to connect to Skype for Business Online by using New-

CsOnlineSession and saving the information in a variable; for example, $session:

$session = New-CsOnlineSession -Credential $cred

Figure 5-1.  Skype for Business Online PowerShell Module Setup

Chapter 5 Managing Skype for Business Online

119

Optionally, you can add the -Verbose parameter if you want a more transparent view

of what PowerShell is doing in the background to connect to Skype for Business, as seen

in Figure 5-2:

$session = New-CsOnlineSession -Credential $cred -Verbose

Next, we have to import the session into our current PowerShell session to be able to

manage Skype for Business; we do this by using Import-PSSession:

Import-PSSession $session

This will import a temporary PowerShell module into our PowerShell session that

contains all the latest Skype for Business Online cmdlets. The module name can be

seen in the Name field, as seen in Figure 5-3. This name will be different every time you

connect to Skype for Business Online.

Figure 5-2.  New-CSOnlineSession

Figure 5-3.  Import-PSSession

Chapter 5 Managing Skype for Business Online

120

You are now connected to Skype for Business Online. Since you know the module

name, you can always run Get-Command -Module <Module Name> to see the most up-to-

date list of available cmdlets. Let’s take a look at some of the ones you will probably use

the most.

�Available cmdlets
The PowerShell module for Skype for Business Online allows you to configure policies

for certain users or for the whole tenant, as well as use more advanced cmdlets to

configure Conferencing, PTSN, and IP telephone.

In Table 5-1, you can see some of the cmdlets available to help you manage users in

Skype for Business Online.

We also have cmdlets that allow us to manage policies for the client, conferencing,

external access, presence, and more! In Table 5-2 you can see some of those.

Table 5-1.  User cmdlets for Skype for Business Online

Cmdlet Description

Get-CsOnlineUser Use this cmdlet to return information about users who have

accounts homed on Skype for Business Online.

Set-CsUser Use this cmdlet to modify Skype for Business Online properties

for an existing user account.

Get-CsUserPstnSettings Use the Get-CsUserPstnSettings cmdlet to retrieve a

voice-enabled user’s public switched telephone network (PSTN)

settings.

Set-CsUserPstnSettings Use the Set-CsUserPstnSettings cmdlet to modify an

existing voice-enabled user’s public switched telephone network

(PSTN) settings.

Get-CsUserSession Use the Get-CsUserSession cmdlet to retrieve user session

information within a specified date range.

Chapter 5 Managing Skype for Business Online

121

Table 5-2.  Policy cmdlets in Skype for Business Online

Cmdlet Description

Get-CsClientPolicy This cmdlet returns information about the client policies configured

for use in your organization. Among other things, client policies help

determine the features that are available to Skype for Business

Online users; for example, you might give some users the right to

transfer files while denying this right to other users.

Grant-CsClientPolicy This cmdlet assigns a client policy to a user or a group of users.

Get-CsConferencing

Policy

This cmdlet returns information about the conferencing policies that

have been configured for use in your organization. Conferencing

policies determine the features and capabilities that can be used

in a conference; this includes everything from whether or not the

conference can include IP audio and video to the maximum number

of people who can attend a meeting.

New-CsConferencing

Policy

This cmdlet creates a new conferencing policy for use in your Skype

for Business Online organization.

Get-CsMobilityPolicy This cmdlet retrieves information about the mobility policies currently in

use in an organization. Mobility policies determine whether or not a user

can use the Skype for Business app. These policies also manage a user’s

ability to employ Call via Work, a feature that enables users to make and

receive phone calls on their mobile phone by using their work phone

number instead of their mobile phone number. Mobility policies can also

be used to require Wi-Fi connections when making or receiving calls.

Remove-CsMobilityPolicy This cmdlet removes an existing mobility policy.

Get-CsOnline

VoicemailPolicy

Use the Get-CsOnlineVoicemailPolicy cmdlet to get a list of

all pre-configured policy instances of the Voicemail service.

Get-CsExternalAccess

Policy

This cmdlet returns information about the external access policies that

have been configured for use in your organization. External access

policies determine whether or not your users can 1) communicate

with users who have Session Initiation Protocol (SIP) accounts with

a federated organization; 2) communicate with users who have

SIP accounts with a public instant messaging (IM) provider such as

Windows Live; and 3) access Skype for Business Server 2015 over the

Internet without having to log on to your internal network.

Chapter 5 Managing Skype for Business Online

122

Another category of cmdlets that you might use often are the ones for Skype

Broadcast. Skype Meeting Broadcast is a feature of Skype for Business Online that

allows you to broadcast meetings to an audience of up to 10,000 attendees. This is very

useful when you want to invite the whole company to an announcement and so on. In

comparison, at the time of writing this book the limit for a normal Skype for Business

Online meeting was 250 participants. You can see the available cmdlets in Table 5-3.

Now that we have looked at a few of the available cmdlets, let’s learn how to use them.

�Executing PowerShell cmdlets for Skype
for Business Online
Now that we are connected to Skype for Business Online, we can manage our users as

well as our policies via PowerShell. Let’s start with the users.

�Managing Users and Policies
To see all the users—as well as all their properties—we need to use the Get-CsOnlineUser

cmdlet. This cmdlet returns a lot of properties for each user, but you can filter the results

that you want to show or output by using pipelines. In Figure 5-4, we opted to only show

the usernames and the SIP address of all our Skype for Business users.

Table 5-3.  Skype for Business Online Broadcast cmdlets

Cmdlet Description

Get-CsBroadcastMeeting

Configuration

Use the Get-CsBroadcastMeetingConfiguration

cmdlet to retrieve the global (and only) broadcast meeting

configuration for your organization.

Set-CsBroadcastMeeting

Configuration

Use the Set-CsBroadcastMeetingConfiguration cmdlet

to modify the settings of your global (and only) broadcast

meeting configuration.

Get-CsBroadcastMeeting

Policy

Use the Get-CsBroadcastMeetingPolicy cmdlet to retrieve

the predefined broadcast meeting policies and their settings.

Grant-CsBroadcastMeeting

Policy

Use the Grant-CsBroadcastMeetingPolicy cmdlet to

assign a broadcast meeting policy to a user.

Chapter 5 Managing Skype for Business Online

123

To modify a user’s properties, you could use the Set-CsUser PowerShell cmdlet. For

example, if you would like to block the user vanessa@office365powershell.ca from

using audio and video, you would use the following cmdlet:

Set-CsUser -Identity vanessa@office365powershell.ca -AudioVideoDisabled

$true

While this can easily also be done via the user interface, PowerShell becomes very

useful if you want to apply this setting to a whole department. For example, if you wanted

to apply the same block to the whole Research department you could run the following

cmdlet:

Get-CsOnlineUser -LdapFilter "Department=Research" | Set-CsUser

-AudioVideoDisabled $true

Another thing that you can do only with PowerShell in Skype for Business Online is

apply different policies to users. Let’s take a look at what those are!

�Managing Policies
Policies help determine the Skype for Business Online features and capabilities that are

available to certain users and/or to the whole organization. In Table 5-4, you can see the

available policy categories that are available.

Figure 5-4.  Get-CSOnlineUser

Chapter 5 Managing Skype for Business Online

124

In Skype for Business Online, you cannot create a custom policy as you could in the

on-premises version of Lync or Skype for Business Server. Instead, you need to use one of

the policies that has been pre-created by Microsoft specifically for Office 365. At the time

of writing this book, the following policies were available in Skype for Business Online:

•	 4 different client policies

•	 224 different conferencing policies

•	 5 different dial plans

•	 5 different external access policies

•	 1 hosted voicemail policy

•	 4 different voice policies

Table 5-4.  Skype for Business Online Policy Categories

Policy Description

Client Policy Client policies are used to determine the Lync client features that

are available to users. For example, you might give the capability to

transfer files to some users but not to others.

Conferencing Policy Conferencing policies determine the features and capabilities that can

be used in a conference. This includes everything from whether the

conference can include IP audio and video to the maximum number of

people who can attend a meeting.

External Access Policy External access policies are used to determine whether your users are

allowed to communicate with users from federated domains, and/or

whether your users are allowed to communicate with users who have

accounts on public IM providers, such as Windows Live or AOL.

Voice Policy Voice policies are used to manage Enterprise Voice features, such as

simultaneous ringing (the ability to have a second phone ring each

time someone calls your office phone) and call forwarding.

Chapter 5 Managing Skype for Business Online

125

Each type of policy has different parameters and can be assigned to individual users

or to the whole organization. There are two ways to find the name of the policy that you

are looking to assign to a certain user.

The first option is to export all the policies of a certain type to a CSV file so you can

analyze them. For example, you can export the external access policies to a CSV file by

using the following cmdlet:

Get-CsExternalAccessPolicy | Select Identity,

EnableFederationAccess, EnableXmppAccess, EnablePublicCloudAccess,

EnablePublicCloudAudioVideoAccess, EnableOutsideAccess | Export-csv

C:\Apress\Ch05\Policies\externalacess.csv -NoTypeInformation

The result will be a CSV file as seen in Figure 5-5; it will show the identity,

parameters, and values for each available policy.

The next step will be to understand what each parameter does. In Table 5-5, you can

see the definition and implication for each parameter.

Figure 5-5.  External access policies in Skype for Business Online

Chapter 5 Managing Skype for Business Online

126

Now that we know what each parameter means, if we want to allow Vanessa to

communicate with Federated Users, but not with Windows Live Users, we would need

to find a policy where EnableFederationAccess is true and EnablePublicCloudAccess

is false. By looking at the CSV file in Figure 5-5, we can see that the only available policy

with this criteria is Tag:FederationOnly.

The second way to find a policy that fits our needs is to query PowerShell directly.

This of course requires us to know exactly what parameters we want and with what

values. Since I know I want a policy where EnableFederationAccess is true and

EnablePublicCloudAccess is false, I could run the following cmdlet:

Get-CsExternalAccessPolicy | Where-Object {$_.EnableFederationAccess -eq

$True -and $_.EnablePublicCloudAccess -eq $False}

The result seen in Figure 5-6 is the same policy as with the other method.

Table 5-5.  External Access Policy Parameters in Skype for Business Online

Parameter Description

EnableFederation

Access

Indicates whether the user is allowed to communicate with people

who have SIP accounts with a federated organization

EnableXmppAccess Indicates whether the user is allowed to communicate with

users who have SIP accounts with a federated XMPP (Extensible

Messaging and Presence Protocol) partner; the default value is False

EnablePublicCloud

Access

Indicates whether the user is allowed to communicate with people

who have SIP accounts with a public Internet connectivity provider

such as MSN

EnablePublicCloudAudio

VideoAccess

Indicates whether the user is allowed to conduct audio/video

conversations with people who have SIP accounts with a public

Internet connectivity provider such as MSN. When set to False, audio

and video options in Skype for Business will be disabled any time a

user is communicating with a public Internet connectivity contact.

EnableOutsideAccess Indicates whether the user is allowed to connect to Skype for

Business Server 2015 over the Internet without logging on to the

organization’s internal network

Chapter 5 Managing Skype for Business Online

127

After we know the policy we want to assign, we can use the Grant-

CsExternalAccessPolicy cmdlet to assign this policy to Vanessa, as seen in the

following example.

Note  While the identity of certain policy names includes the word Tag:, you
must not include it when granting a policy to a user.

Grant-CsExternalAccessPolicy -Identity "vanessa@office365powershell.ca"

-PolicyName "FederationOnly"

Now that we have reviewed the external access policies, what about the others? In

Table 5-6 you can see the cmdlet to get the properties for each of the available policy

types.

Figure 5-6.  Get-CsExternalAccessPolicy

Table 5-6.  Skype for Business Online Policy Cmdlets

Policy Cmdlets

Client Policy Get-CsClientPolicy

Conferencing Policy Get-CsConferencingPolicy

External Access Policy Get-CsExternalAccessPolicy

Voice Policy Get-CsVoicePolicy

You can use the Export-CSV cmdlet to export all the properties available into a CSV

file; then, you will be able to filter and find the policies that you want.

Chapter 5 Managing Skype for Business Online

128

�External Communications
Skype for Business Online allows you to configure multiple settings for how your users

can communicate outside the company. Most of the settings at the organizational level

can be done via the Set-CsTenantFederationConfiguration cmdlet.

To turn off external communications completely, you can set -AllowFederatedUsers

to false as seen here:

Set-CsTenantFederationConfiguration -AllowFederatedUsers $false

If you keep it on (default) you can set either an allowed list or a blocked list of

domains. If you set an allowed list, your employees will only be allowed to add and talk

to external users from that domain. If you set a blocked list, your users will be able to

add users from every domain except the ones specified in the blocked list. You can be in

either “allowed list” or “blocked list” mode, but not both at the same time.

As an example, let’s enable external communication for our users, but only for the

Microsoft.com and Apress.com domains. We first need to create a new domains object

by using the New-CsEdgeDomainPattern cmdlet:

$domain = New-CsEdgeDomainPattern -Domain "Microsoft.com"

$domain2 = New-CsEdgeDomainPattern -Domain "Apress.com"

We then need to create a new allowed list by using the New-CSEdgeAllowList cmdlet:

$AllowedList = New-CSEdgeAllowList –AllowedDomain $domain,$domain2

Lastly, we have to apply this list to our tenant by using the Set-CsTenantFederation

Configuration cmdlet:

Set-CsTenantFederationConfiguration -AllowedDomains $AllowedList

It may take up to 24 hours for this to be applied, so wait a day before testing it out;

however, the change can be seen in the Skype for Business Online Admin Center right

away. The result of the preceding cmdlets can be seen in Figure 5-7.

Chapter 5 Managing Skype for Business Online

129

We have just looked at how to control external communications in our Skype for

Business tenant; now, let’s take a look at Skype for Business Broadcast.

�Skype for Business Broadcast
Skype for Business Broadcast is disabled by default in your Office 365 tenant because this

feature may not respect all the latest rules of the European Union. Here is the note, as

described by Microsoft on the support.office.com website.

Warning  Skype Meeting Broadcast is turned off by default because distribution of
the media content of a broadcast meeting uses Microsoft Azure’s Content Delivery
Network (CDN) to achieve very high scale to support thousands of people watching
a broadcast. The chunked media content passing through the CDN is encrypted,
and the CDN cache has a limited lifetime. Also, the Azure CDN component may
not yet meet all elements of the EU Model Clauses stemming from the EU Data
Protection Directive. By enabling this feature you acknowledge this notice.

Figure 5-7.  External communications in the Skype for Business Admin Center

Chapter 5 Managing Skype for Business Online

130

To view the current settings of Skype for Business Broadcast in your tenant, you need

to run the Get-CsBroadcastMeetingConfiguration cmdlet. To view if Skype for Business

Broadcast is enabled or not, you can look at the EnableBroadcastMeeting cmdlet as

highlighted in Figure 5-8.

To change the configuration of Skype for Business Broadcast, you must use the

Set-CsBroadcastMeetingConfiguration cmdlet and specify the parameters you want to

change. You can view some of those parameters in Table 5-7.

Figure 5-8.  Get-CsBroadcastMeetingConfiguration

Chapter 5 Managing Skype for Business Online

131

For example, a company might have the following business requirements:

•	 Skype for Business Broadcast must be enabled.

•	 Only authenticated members can join any Skype for Business

Broadcast.

•	 All Skype for Business Broadcast meetings must be recorded.

Table 5-7.  Skype for Business Broadcast Parameters

Parameter Description

BroadcastMeeting

SupportUrl

Specifies a URL where broadcast meeting attendees can find

support information or FAQs specific to that meeting. The URL will

be displayed during the broadcast meeting.

EnableAnonymous

BroadcastMeeting

Specifies whether non-authenticated attendees are allowed to join

and view the web-based portion of the meeting. Valid input for this

parameter is $true or $false. The default value is $true.

EnableBroadcast

Meeting

Specifies whether broadcast meetings are enabled. Valid input for

this parameter is $true or $false. The default value is $false.

EnableBroadcastMeeting

Recording

Specifies whether broadcast meetings can be recorded at the

server level. Valid input for this parameter is $true or $false.

The default value is $true.

EnableOpenBroadcast

Meeting

Specifies if the organizer is allowed to create broadcast meetings

that allow anyone in the organizer’s organization to attend. The

default and only setting is $true.

EnableTechPreview

Features

Set to $true to enable use of features available in a technical preview

program. Set to $false to disable the technical-preview features.

EnforceBroadcastMeeting

Recording

Specifies whether all meetings will be recorded. Valid input for this

parameter is $true or $false. The default value is $false.

Chapter 5 Managing Skype for Business Online

132

In order to respect these business requirements, here is the PowerShell cmdlet we

must run:

Set-CsBroadcastMeetingConfiguration

 –EnableBroadcastMeeting $true

 -EnableAnonymousBroadcastMeeting $false

 -EnforceBroadcastMeetingRecording $true

You can also assign a different configuration per user by assigning them a Skype

for Business Broadcast meeting policy. You can get all the policy options by using the

Get-CsBroadcastMeetingPolicy cmdlet. As discussed earlier in this chapter, I have used

the following cmdlet to export the available policies and their parameters to a CSV file,

which you can see in Figure 5-9.

Get-CsBroadcastMeetingPolicy | Select Identity, AllowBroadcastMeeting,

AllowOpenBroadcastMeeting, AllowAnonymousBroadcastMeeting,

BroadcastMeetingRecordingEnforced | Export-CSV C:\Apress\Ch05\Policies\

Broadcast.csv -NoTypeInformation

That’s about it for the Skype for Business Online PowerShell cmdlets that we can

run in our tenant. While a lot of companies are running Skype for Business in either

cloud-only mode or on-premises only, some organizations are running Skype for

Business in hybrid mode. Let’s take a look at how to run PowerShell cmdlets in a

hybrid deployment.

Figure 5-9.  Skype for Business Online Broadcast policies

Chapter 5 Managing Skype for Business Online

133

�Running cmdlets in a Hybrid Environment
A hybrid deployment is when we have Skype for Business Server or Lync Server running

on-premises for some of our users, while some are using Skype for Business Online.

If you are someone who has been a Lync or Skype for Business admin for a while, you

might have already realized that most Skype for Business Online cmdlets are the same

as the PowerShell cmdlets used in Lync Server 2013 or Skype for Business Server 2015.

Since you probably have all the tools to manage Skype for Business on your on-premises

server, you will likely want to connect to Skype for Business Online from there as well.

When you connect to Skype for Business Online from your Skype for Business on-

premises server, you will still have to download the required PowerShell module, save

your Office 365 credential, and start a New-CSOnlineSession as seen here:

$cred = Get-Credential

$Session= New-CsOnlineSession -Credential $cred

What is different is that when you run the Import-PSSession cmdlet, you must

specify the -AllowClobber switch, as seen here:

Import-PSSession $Session -AllowClobber

After you have successfully connected to Skype for Business Online, you will need to

find out what your tenant ID is by running the following cmdlet:

Get-CsTenant | Select TenantId

When running a cmdlet that is meant for Skype for Business Online, you will need to

specify the -Tenant parameter and specify the tenant ID. For example, the first cmdlet

that follows will get the external access policy for Skype for Business Online:

Get-CsExternalAccessPolicy

-Identity "global"

-Tenant "bf19b7db-6960-41e5-a139-2aa373474354"

This next one will get the same information, but from Skype for Business Server or

Lync Server on-premises:

Get-CsExternalAccessPolicy

-Identity "global"

Chapter 5 Managing Skype for Business Online

134

Specifying the tenant ID is only required when running cmdlets aimed at Skype for

Business Online on a Lync server or Skype for Business server.

�Conclusion
In this module, we have learned how to manage Skype for Business Online by using

PowerShell. We have learned that we first need to download the Skype for Business

PowerShell module, which only includes the cmdlets required to connect to Office 365.

We have also learned how to create a remote PSSession and import it into our current

session in order to be able to run cmdlets for Skype for Business Online from our

machine.

We have looked at how to manage our Skype for Business user’s properties and

how to assign policies to a user, to a department, or to the whole organization using

PowerShell. Since Skype for Business Online does not allow us to create our custom

policies, we have learned how to view the available ones and how to export them to CSV

files to make them easier to consume.

We have also learned how to manage external communications as well as Skype for

Business Broadcast settings using PowerShell, and also how to run cmdlets in a Skype for

Business hybrid environment.

In the next chapter, we will learn how to manage the Office 365 Compliance Center

using PowerShell.

Chapter 5 Managing Skype for Business Online

135
© Vlad Catrinescu 2018
V. Catrinescu, Essential PowerShell for Office 365, https://doi.org/10.1007/978-1-4842-3129-6_6

CHAPTER 6

Managing the Office 365
Security & Compliance
Center
The Office 365 Security & Compliance Center allows companies to create compliance

searches, put in place data-loss prevention (DLP) policies, create retention policies,

and more. In this chapter, we will first learn how to use PowerShell to connect to the

Compliance Center in Office 365. We will then look at the available cmdlets and learn

how to use them to manage the Compliance Center.

�Connecting to the Office 365 Security & Compliance
Center
The Office 365 Security & Compliance Center does not have a module you need to install

before connecting to it; you simply need to have a computer running Windows 7 Service

Pack 1/Windows Server 2008 R2 Service Pack 1 or later as well as have Microsoft .Net

Framework 4.5 and Windows Management Framework 4.0 installed.

After validating these requirements, open PowerShell as an administrator; the first

thing you will have to do is save the credentials with which you wish to connect to the

Office 365 Compliance Center in a variable.

In the following example, we are saving those credentials in a variable called $cred:

$cred=Get-Credential

136

We then need to create a remote PSSession to the Office 365 Compliance Center,

which is done by using the following cmdlet:

$Session = New-PSSession `

 -ConfigurationName Microsoft.Exchange `

 -�ConnectionUri https://ps.compliance.protection.outlook.com/

powershell-liveid/ `

 -Credential $cred `

 -Authentication Basic `

This cmdlet will be the same for everyone, unless you have a tenant in Germany.

For Office 365 Germany, change the ConnectionUri value to https://ps.compliance.

protection.outlook.de/powershell-liveid/.

We then have to import the session into our current PowerShell session in order

to be able to manage the Office 365 Compliance Center; this is done by using the

Import-PSSession cmdlet as seen here:

Import-PSSession $Session

This will import a temporary PowerShell module into our PowerShell session that

contains all the latest Office 365 Security & Compliance Center cmdlets. The module

name can be seen in the Name field, as shown in Figure 6-1. The name of this temporary

module will be different every time you connect to the Office 365 Compliance Center.

Figure 6-1.  Import-PSSession

Chapter 6 Managing the Office 365 Security & Compliance Center

https://ps.compliance.protection.outlook.de/powershell-liveid/
https://ps.compliance.protection.outlook.de/powershell-liveid/

137

You are now connected to the Office 365 Compliance & Security Center. To view all

the available cmdlets that you can use, run the Get-Command -Module <Module Name>

cmdlet as seen in Figure 6-2.

Let’s take a look at the ones you will likely use most.

�Office 365 Security & Compliance Center cmdlets
The Office 365 Security & Compliance Center PowerShell module allows you to create

content searches, manage data-loss prevention policies, create eDiscovery case-hold

policies and rules, as well as manage retention policies. Let’s take a look at some of

those. In Table 6-1 you can see some of the cmdlets for content search.

Figure 6-2.  The available cmdlets

Chapter 6 Managing the Office 365 Security & Compliance Center

138

We also have cmdlets that allow us to manage data-loss prevention policies for our

content. In Table 6-2 you can see some of those.

Table 6-1.  Content Search cmdlets

Cmdlet Description

Get-ComplianceSearch Use the Get-ComplianceSearch cmdlet to view

estimated compliance searches in Exchange Server

2016 and in the Office 365 Security & Compliance

Center.

New-ComplianceSearch Use the New-ComplianceSearch cmdlet to create

compliance searches in Exchange Server 2016 and in

the Office 365 Security & Compliance Center. You use

this cmdlet to define the search criteria.

Start-ComplianceSearch Use the Start-ComplianceSearch cmdlet to start

stopped, completed, or not yet started compliance

searches in Exchange Server 2016 and in the Office 365

Security & Compliance Center.

Get-ComplianceSearchAction Use the Get-ComplianceSearchAction cmdlet to

view information about compliance search actions in

Exchange Server 2016 and in the Office 365 Security &

Compliance Center.

Get-ComplianceSecurityFilter Use the Get-ComplianceSecurityFilter cmdlet

to view compliance security filters in the Security &

Compliance Center. These filters allow specified users

to search only a subset of mailboxes and SharePoint

Online or OneDrive for Business sites in your Office 365

organization.

Chapter 6 Managing the Office 365 Security & Compliance Center

139

Another important category of cmdlets that you will use when managing the Office

365 Compliance Center is the Security and Permissions cmdlets. Table 6-3 covers the

cmdlets used to assign different roles and groups for the Office 365 Compliance Center.

Table 6-2.  Data-loss Prevention (DLP) cmdlets

Cmdlet Description

Get-DlpCompliancePolicy Use the Get-DlpCompliancePolicy to view

data-loss prevention (DLP) policies in the Security &

Compliance Center.

New-DlpCompliancePolicy Use the New-DlpCompliancePolicy cmdlet to

create data-loss prevention (DLP) policies in the

Security & Compliance Center. DLP policies contain

DLP rules that identify, monitor, and protect sensitive

information.

Set-DlpComplianceRule Use the Set-DlpComplianceRule to modify

data-loss prevention (DLP) rules in the Security

& Compliance Center. DLP rules define sensitive

information to be protected and the actions to take

on rule violations.

Get-DlpSensitiveInformationType Use the Get-DlpSensitiveInformationType

cmdlet to list the sensitive information types that

are defined for your organization in the Security &

Compliance Center. Sensitive information types are

used by data-loss prevention (DLP) rules to check

for sensitive information such as social security,

passport, or credit card numbers.

Get-DlpSensitiveInformationType

RulePackage

Use the Get-DlpSensitiveInformation

TypeConfig cmdlet to view data-loss prevention

(DLP) sensitive information–type rule packages in

the Security & Compliance Center.

Chapter 6 Managing the Office 365 Security & Compliance Center

140

Now that we have looked at a few of the available cmdlets, let’s take a look at how to

use them.

�Executing PowerShell cmdlets in the Office 365
Security & Compliance Center
Now that we are connected to the Office 365 Compliance Center, we can begin managing

our security and policies using PowerShell. Let’s start with the permissions.

�Managing Permissions
To manage all the features and permissions of the Office 365 Security & Compliance

Center, you need to be in the Organization Management role. By default, in Office 365,

the Office 365 Global Administrators are assigned that role. If you are not an Office

365 Global Administrator, you might not be able to manage the Office 365 Security &

Compliance Center until you get permission from your Global Administrator. At the time

of writing this book, the Office 365 Compliance Center contains eight different roles,

which you can see in Table 6-4.

Table 6-3.  Office 365 Compliance Center Security and Permissions cmdlets

Cmdlet Description

Get-ManagementRole Use the Get-ManagementRole cmdlet to view management

roles that have been created in your organization.

Get-RoleGroup Use the Get-RoleGroup cmdlet to retrieve a list of management

role groups.

Set-RoleGroup Use the Set-RoleGroup cmdlet to modify who can add or

remove members to or from management role groups or change

the name of the role group.

Add-RoleGroupMember Use the Add-RoleGroupMember cmdlet to add members to a

management role group.

Update-RoleGroupMember Use the Update-RoleGroupMember cmdlet to modify the

members of a management role group.

Chapter 6 Managing the Office 365 Security & Compliance Center

141

To assign a role to someone in the organization, you need to use the Add-

RoleGroupMember cmdlet and specify the role as well as the member. For example, to

add John Smith with the username john@office365powershell.ca to the Compliance

Administrator group you would run the following cmdlet:

Add-RoleGroupMember -Identity "ComplianceAdministrator" -Member john

Table 6-4.  Description of Roles in the Office 365 Compliance Center

Role Group Description

Compliance

Administrator

Members can manage settings for device management, data-loss prevention,

reports, and preservation.

eDiscovery

Manager

Members can perform searches and place holds on mailboxes, SharePoint Online

sites, and OneDrive for Business locations. Members can also create and manage

eDiscovery cases, add and remove members to a case, and create and edit content

searches associated with a case.

Organization

Management

Members can control permissions for accessing features in the Security &

Compliance Center and also manage settings for device management, data-loss

prevention, reports, and preservation.

Reviewer Members can only view the list of cases on the eDiscovery cases page in the

Security & Compliance Center. They can't create, open, or manage an eDiscovery

case. The primary purpose of this role group is to allow members to view and

access case data in Advanced eDiscovery.

Security

Administrator

Membership in this role group is synchronized across services and managed

centrally. This role group is not manageable through the administrator portals.

Members of this role group may include cross-service administrators as well as

external partner groups and Microsoft Support. By default, this group may not be

assigned any roles. However, it will be a member of the Security Administrators role

group and will inherit the capabilities of that role group.

Chapter 6 Managing the Office 365 Security & Compliance Center

142

Tip  Being a member of the Organization Management does not automatically
give you full control over the Office 365 Security & Compliance Center; you still
need to add yourself to the other roles, such as eDiscovery Manager, to have
access to everything. The Organization Management role allows you to give
yourself those roles.

If we want to view the members of a certain group, we can run the Get-Role

GroupMember cmdlet. For example, to view the members of the Compliance

Administrators group, we would run the cmdlet seen in Figure 6-3.

Now that we have looked at how to assign users into roles, let’s learn how to start and

view a compliance search from PowerShell.

�Compliance Search
To start a new compliance search we need to use the New-ComplianceSearch cmdlet.

This cmdlet has a lot of options on what to search and where to search for it. You can find

some of the important parameters in Table 6-5.

Figure 6-3.  Get-RoleGroupMember

Chapter 6 Managing the Office 365 Security & Compliance Center

143

Table 6-5.  New-ComplianceSearch Parameters

Parameter Description

Name The Name parameter specifies the name of the compliance search.

If the value contains spaces, enclose the value in quotation marks.

Case The Case parameter specifies the name of an eDiscovery case that

the new compliance search will be associated with. If the value

contains spaces, enclose the value in quotation marks.

ContentMatchQuery The ContentMatchQuery parameter specifies a content search

filter.

This parameter uses a text search string or a query that’s formatted

by using the Keyword Query Language (KQL).

ExchangeLocation The ExchangeLocation parameter specifies the mailboxes to

include. Valid values are:

•	 A mailbox

•	 A distribution group or mail-enabled security group

(all mailboxes that are currently members of the group)

•	 The value All for all mailboxes. You can only use this value

by itself.

To specify a mailbox or distribution group, you can use any value that

uniquely identifies it. For example:

•	 Name

•	 Distinguished name (DN)

•	 Email address

•	 GUID

PublicFolderLocation The PublicFolderLocation parameter specifies that you want to

include all public folders in the search. You use the value All for this

parameter.

SharePointLocation The SharePointLocation parameter specifies the SharePoint

Online sites to include. You identify the site by its URL value, or you

can use the value All to include all sites.

Chapter 6 Managing the Office 365 Security & Compliance Center

144

To learn how to use the New-ComplianceSearch cmdlet, let’s look at the following

business case. Your company has been working on a top-secret project—a PowerShell

for Office 365 book—in collaboration with a partner called Apress. The information

has been leaked, so you want to find all the items in both SharePoint documents and

Exchange emails where the words “Apress” and “PowerShell” are included. With the

previous requirements, the cmdlet we would need to run to create the compliance

search would be:

New-ComplianceSearch `

 -Name "PowerShell Office 365 Book" `

 -SharePointLocation All `

 -ExchangeLocation All `

 -ContentMatchQuery "'Apress' AND 'PowerShell'"

We would then need to run the Start-ComplianceSearch cmdlet to start this search,

as seen here:

Start-ComplianceSearch -Identity "PowerShell Office 365 Book"

While the compliance search is running, you can run the Get-ComplianceSearch

cmdlet to see if the search is done, as seen in Figure 6-4. The status should be either

“In Progress” or “Completed.”

Figure 6-4.  Viewing the status of a compliance search

Chapter 6 Managing the Office 365 Security & Compliance Center

145

Once the status is “Completed,” you can view the results either directly from

PowerShell or from the Office 365 Compliance Center. To view the results in PowerShell,

you can use the New-ComplianceSearchAction cmdlet and specify the name of the

compliance search, selecting only the results, as seen in this example:

New-ComplianceSearchAction -SearchName "PowerShell Office 365 Book"

-Preview | Select results |Format-Table -Wrap

Tip T o run the New-ComplianceSearchAction cmdlet with the -Preview
switch, you need to have the eDiscovery Manager role. After granting yourself the
role, it might take 24 hours for the cmdlet to work.

As seen in Figure 6-5, the Office 365 Compliance Center has found a document in

SharePoint as well as an email in Exchange with those keywords.

While it’s pretty user friendly to create and start compliance searches in PowerShell,

consuming them is not. Viewing the results from within the Office 365 Compliance

Center allows us to better view their contents in a more user-friendly way, as seen in

Figure 6-6.

Figure 6-5.  Preview of a compliance search in PowerShell

Chapter 6 Managing the Office 365 Security & Compliance Center

146

Now that we have learned how to do a compliance search, we will learn how to

search the Unified Audit Log.

Figure 6-6.  Preview of a compliance search in the Office 365 Compliance
Center

Chapter 6 Managing the Office 365 Security & Compliance Center

147

�Searching the Unified Audit Log
One of the benefits of Office 365 from a security and auditing point of view is the Unified

Audit Log. The Unified Audit Log allows administrators and security managers to view

the audit logs for all the services in Office 365 from a single location. While you can

interact with the Unified Audit log from the Office 365 Admin Center, PowerShell can

become useful in a variety of scenarios. To give an example, the Office 365 Unified

Audit Log will only keep information for 90 days, and then that information is deleted.

Multiple companies have regulations requiring them to keep this information for years,

so they need to find a way to save this information into another system, such as an SQL

database. Since PowerShell can interact with both Office 365 and Microsoft SQL Server, it

is easy to create a script that will copy the information from the Unified Log into an SQL

Server database.

The required cmdlets to interact with the Unified Audit Log are in the Exchange

Online module, so the first thing I will do is connect to Exchange Online by using the

following cmdlet:

$Session = New-PSSession -ConfigurationName Microsoft.Exchange

-ConnectionUri https://outlook.office365.com/powershell-liveid/ -Credential

$UserCredential -Authentication Basic -AllowRedirection

Import-PSSession $Session

The cmdlet we will use to perform searches is Search-UnifiedAuditLog, and we can

view some of the most important parameters in Table 6-6.

Chapter 6 Managing the Office 365 Security & Compliance Center

148

Table 6-6.  Search-UnifiedAuditLog Parameters

Parameter Description

StartDate The StartDate parameter specifies the start date of the date range.

Use the short date format that’s defined in the Regional Options settings on the

computer where you’re running the command. For example, if the computer is

configured to use the short date format mm/dd/yyyy, enter 09/01/2015 to specify

September 1, 2015.

You can enter the date only, or you can enter the date and time of day. If you enter

the date and time of day, enclose the value in quotation marks ("); for example,

"09/01/2015 5:00 PM".

If you don’t include a timestamp in the value for this parameter, the default

timestamp is 12:00 AM (midnight) on the specified date.

EndDate The EndDate parameter specifies the end date of the date range. Use the same

formatting rules as for the StartDate parameter.

IPAddresses The IPAddresses parameter filters the log entries by the specified IP addresses.

You specify multiple IP addresses separated by commas.

Operations The Operations parameter filters the log entries by operation. The available

values for this parameter depend on the RecordType value. For a list of the

available values for this parameter, see “Search the Audit Log in the Office 365

Security & Compliance Center” at

https://support.office.com/en-us/article/Search-the-audit-log-in-the-Office-365-

Security-Compliance-Center-0d4d0f35-390b-4518-800e-0c7ec95e946c?ui=

en-US&rs=en-US&ad=US#PickTab=Activities

(continued)

Chapter 6 Managing the Office 365 Security & Compliance Center

https://support.office.com/en-us/article/Search-the-audit-log-in-the-Office-365-Security-Compliance-Center-0d4d0f35-390b-4518-800e-0c7ec95e946c?ui=en-US&rs=en-US&ad=US#PickTab=Activities
https://support.office.com/en-us/article/Search-the-audit-log-in-the-Office-365-Security-Compliance-Center-0d4d0f35-390b-4518-800e-0c7ec95e946c?ui=en-US&rs=en-US&ad=US#PickTab=Activities
https://support.office.com/en-us/article/Search-the-audit-log-in-the-Office-365-Security-Compliance-Center-0d4d0f35-390b-4518-800e-0c7ec95e946c?ui=en-US&rs=en-US&ad=US#PickTab=Activities

149

(continued)

Parameter Description

RecordType The RecordType parameter filters the log entries by record type. Valid values are:

•	 AzureActiveDirectory

•	 AzureActiveDirectoryAccountLogon

•	 AzureActiveDirectoryStsLogon

•	 ComplianceDLPExchange

•	 ComplianceDLPSharePoint

•	 CRM

•	 DataCenterSecurityCmdlet

•	 Discovery

•	 ExchangeAdmin

•	 ExchangeAggregatedOperation

•	 ExchangeItem

•	 ExchangeItemGroup

•	 MicrosoftTeams

•	 MicrosoftTeamsAddOns

•	 MicrosoftTeamsSettingsOperation

•	 OneDrive

•	 PowerBIAudit

•	 SecurityComplianceCenterEOPCmdlet

•	 SharePoint

•	 SharePointFileOperation

•	 SharePointSharingOperation

•	 SkypeForBusinessCmdlets

•	 SkypeForBusinessPSTNUsage

•	 SkypeForBusinessUsersBlocked

•	 Sway

•	 ThreatIntelligence

•	 Yammer

ResultSize The ResultSize parameter specifies the maximum number of results to return.

The default value is 100, maximum is 5,000.

Table 6-6.  (continued)

Chapter 6 Managing the Office 365 Security & Compliance Center

150

Tip T o view all the parameters of the Search-UnifiedAuditLog cmdlet,
navigate to the cmdlet page on TechNet: 
https://technet.microsoft.com/en-us/library/
mt238501(v=exchg.160).aspx

Now that we know the parameters, let’s see how we can use them. If I wanted to view all

the logs between October 1, 2017 and October 12, 2017, I would run the following cmdlet:

Search-UnifiedAuditLog -StartDate 10/1/2017 -EndDate 10/12/2017

The result shown in Figure 6-7 will return all the entries and their properties, with

most of the details’ being found in the AuditData parameter. You can optimize your

scripts to return the information that you need from that parameter.

Figure 6-7.  Search-UnifiedAuditLog Filtered by date

Parameter Description

SiteIds The SiteIds parameter filters the log entries by site ID. You can specify multiple

values separated by commas.

UserIds The UserIds parameter filters the log entries by the ID of the user who performed

the action.

Table 6-6.  (continued)

Chapter 6 Managing the Office 365 Security & Compliance Center

https://technet.microsoft.com/en-us/library/mt238501(v=exchg.160).aspx
https://technet.microsoft.com/en-us/library/mt238501(v=exchg.160).aspx

151

If I wanted to do a search that was more specific, I could, for example, search for

what actions the user vlad-admin@office365PowerShell.ca did in SharePoint with the

following cmdlet:

Search-UnifiedAuditLog -StartDate 10/1/2017 -EndDate 10/12/2017 -RecordType

SharePoint -UserIds vlad-admin@office365powershell.ca

I could also use the ObjectId parameter to discover what happened to a certain

SharePoint document, for example. In the following cmdlet, I am searching on all

activities between October 1 and October 12, 2017 on the AUSTRALIA.docx document:

Search-UnifiedAuditLog -StartDate 10/1/2017 -EndDate 10/12/2017 -ObjectIDs

"https://office365powershell.sharepoint.com/teams/HR/Shared Documents/

AUSTRALIA.docx"

As you can see in Figure 6-8, the account vlad-admin@office365powershell.ca

uploaded the file on October 11, and that is the only activity that happened on the

document so far.

As you can see, the Unified Audit Log is really a powerful tool for security

administrators to be able to view auditing logs across all Office 365 services. By using

PowerShell, you can get those results and export or transfer them to another system that

will store them for longer than the 90 days they are stored in Office 365.

Figure 6-8.  Searching the Unified Audit Log for activities on a certain document

Chapter 6 Managing the Office 365 Security & Compliance Center

152

�Conclusion
In this module, we have learned how to manage the Office 365 Compliance Center

by using PowerShell. We first looked at the requirements and how to connect to the

Compliance Center, and we then looked at the available cmdlets.

We also learned the different administrative roles that we can use to grant

permissions to our users as well as how to assign them via PowerShell. Lastly, we looked

at how to create, start, and view the results of a compliance search by using PowerShell.

In the next chapter, we will learn how to manage Office 365 Groups using PowerShell.

Chapter 6 Managing the Office 365 Security & Compliance Center

153
© Vlad Catrinescu 2018
V. Catrinescu, Essential PowerShell for Office 365, https://doi.org/10.1007/978-1-4842-3129-6_7

CHAPTER 7

Managing Office 365
Groups
Office 365 Groups connect Office 365 services in a single place, increasing user

adoption and collaboration in the enterprise. While they have been very popular

among users, they can be a challenge from a governance standpoint for most Office 365

administrators.

In this chapter, we will learn what modules are needed to manage Office 365

Groups, as well as how to do basic operations on them. We will then learn how to create

advanced rules for who can create Office 365 Groups, naming conventions, and more.

�PowerShell Modules to Manage Office 365 Groups
Since Office 365 Groups span multiple services in Office 365, there are multiple modules

from which we can manage them. There is no specific module for Office 365 Groups; the

two modules that we will have to connect to are the Exchange Online module we learned

about in Chapter 4 and the Azure Active Directory PowerShell for Graph module we

used in Chapter 2.

Note  In order to allow customers to test cmdlets faster and get more feedback,
Microsoft publishes two versions of the Azure Active Directory PowerShell for
Graph modules: General Availability Release and Public Preview Release. At the
time of writing this book, some of the Office 365 Group cmdlets were only available
in the Public Preview Release module, but I encourage you to verify if those are
now in the General Availability module.

154

To install the Azure Active Directory PowerShell for Graph–Public Preview Release

module from the PowerShell Gallery, you will first need to have the same prerequisites

discussed in Chapter 2, and then run the following cmdlet:

Install-Module -Name AzureADPreview -AllowClobber

Once the AzureADPreview cmdlet is installed, run the following cmdlets to connect

to both Azure Active Directory and Exchange Online:

$cred = Get-Credential

$Session = New-PSSession -ConfigurationName Microsoft.Exchange

-ConnectionUri https://outlook.office365.com/powershell-liveid/ -Credential

$cred -Authentication Basic -AllowRedirection

Import-PSSession $Session

Import-Module AzureADPreview

Connect-AzureAD -Credential $cred

Now that you have the Preview version of the Azure AD module and are connected

to both Azure Active Directory and Exchange Online, you can start managing Office 365

Groups.

�Basic Operations
Let’s start by learning how to perform basic operations on Office 365 Groups, such as

creating, updating, and deleting them! While one of the basic operations would be

viewing Office 365 Groups, we will cover that more in detail in the “Office 365 Group

Reporting” section later in this chapter.

�Creating an Office 365 Group
To create a group, use the New-UnifiedGroup PowerShell cmdlet, part of the Exchange

Online module. In Table 7-1, you can find some of the most important parameters of the

New-UnifiedGroup cmdlet.

Chapter 7 Managing Office 365 Groups

155

Table 7-1.  Parameters of the New-UnifiedGroup cmdlet

Parameter Description

Alias The Alias parameter specifies the Exchange alias (also

known as the mail nickname) for the Office 365 Group. This

value identifies the recipient as a mail-enabled object and

shouldn’t be confused with multiple email addresses for the

same recipient (also known as proxy addresses). A recipient

can have only one Alias value.

AccessType The AccessType parameter specifies the privacy type for

the Office 365 Group. Valid values are:

• �Public—The group content and conversations are

available to everyone, and anyone can join the group

without approval from a group owner. This is the default

value.

• �Private—The group content and conversations are

only available to members of the group, and joining the

group requires approval from a group owner.

You can change the privacy type at any point in the lifecycle

of the group.

AlwaysSubscribeMembers

ToCalendarEvents

The AlwaysSubscribeMembersToCalendarEvents

switch controls the default subscription settings of new

members that are added to the Office 365 Group.

If you use this switch without a value, all future members

that are added to the group will have their subscriptions set

to ReplyAndEvents.

If you use this exact syntax: -AlwaysSubscribeMember

sToCalendarEvents:$false, all future members that

are added to the group will have their subscriptions set to

ReplyOnly.

AutoSubscribeNewMembers The AutoSubscribeNewMembers switch specifies

whether to automatically subscribe new members added to

the Office 365 Group to conversations and calendar events.

You don’t need to specify a value with this switch.

(continued)

Chapter 7 Managing Office 365 Groups

156

Note  To view all the parameters of the New-UnifiedGroup cmdlet, navigate to
the TechNet page of the cmdlet.

To create a public group with the name Office 365 Support Community with the email

o365community@office365powershell.ca you would run the following cmdlet:

New-UnifiedGroup -DisplayName "Office 365 Support Community" -Alias

o365community -AccessType Public

The group should only take a few seconds to create, and you will see a confirmation

on the screen similar to that shown in Figure 7-1.

Parameter Description

DisplayName The DisplayName parameter specifies the name of

the Office 365 Group. The display name is visible in the

Exchange Admin Center, address lists, and Outlook.

For Office 365 Groups, the DisplayName value is used

in the unique Name property. However, because the

DisplayName value doesn’t need to be unique, the

DisplayName value is appended with an underscore

character (_) and a short GUID value when it’s used for the

Name property.

HiddenGroupMembershipEnabled The HiddenGroupMembershipEnabled switch specifies

whether to hide the members of the Office 365 Group from

users who aren’t members of the group.

Language The Language parameter specifies the language

preference for the Office 365 Group.

Table 7-1.  (continued)

Chapter 7 Managing Office 365 Groups

157

Since this is a public group, every user could find the group from their Outlook

Online and join it, as seen in Figure 7-2.

Now, if you wanted to create a new private group called 2019 Reorganization with an

email address of 2019reorg@office365powershell.ca you would run the following cmdlet:

New-UnifiedGroup -DisplayName "2019 Reorganization" -Alias 2019reorg

-AccessType Private

Figure 7-1.  Creating a public group

Figure 7-2.  Viewing an Office 365 public group in the browser

Chapter 7 Managing Office 365 Groups

158

Something that you will have to be aware of is that private means different things

to different people, and some Office 365 administrators expect that once they create

a private group, members that are not inside the group cannot find it. However, with

Office 365 Groups, if a group is private and no additional configurations are made, every

member of your organization can find the group, as seen in Figure 7-3.

Furthermore, as seen in Figure 7-4, users who are not members of the group can also

see who is in that group.

Figure 7-3.  Searching for a private Office 365 Group

Figure 7-4.  Non-members can also view who the members are of a private Office
365 Group

Chapter 7 Managing Office 365 Groups

159

Luckily, with PowerShell you are able to both hide the group from the Discover

tab as well as hide the member list if someone accidentally gets a direct link to the

group. The bad news, however, is that hiding the membership of the group can only

be done at group creation—not afterward. To create a new private group in which

non-members cannot see the current members, you would need to specify the

-HiddenGroupMembershipEnabled switch, as seen in the following example:

New-UnifiedGroup -DisplayName "Secret Reorganization" -Alias SecretReorg

-AccessType Private -HiddenGroupMembershipEnabled

The result, seen in Figure 7-5, is that while for now users can find the group, they do

not see the members list at the top right or the “Request to join” button.

At this point, users can still find the group in the Discover tab of Outlook Online, so

if you wanted to also hide it from there you would need to modify the group properties,

since the required parameter is not available at group creation. Let’s learn how to modify

a group’s properties after the group is created.

�Updating Office 365 Groups
Once a group is created, to change its properties you need to use the Set-UnifiedGroup

cmdlet. This cmdlet not only allows you to change some of the properties you specified

when creating the group, such as the alias, email address, and display name, but also

Figure 7-5.  Office 365 Group with hidden membership

Chapter 7 Managing Office 365 Groups

160

allows you to modify new properties that you cannot set directly when creating the

group. Some of those new properties can be seen in Table 7-2.

Note  To view all the parameters of the Set-UnifiedGroup cmdlet, navigate to
the TechNet page of the cmdlet.

To continue what was started in the previous section, to hide an Office 365 Group

from the Global Address List and from the Discover tab in Outlook Online, you would

run the following cmdlet:

Set-UnifiedGroup -Identity SecretReorg -HiddenFromAddressListsEnabled:$true

Table 7-2.  Parameters of the Set-UnifiedGroup cmdlet

Parameter Description

CalendarMemberReadOnly The CalendarMemberReadOnly switch specifies

whether to set read-only calendar permissions for

members of the group.

ConnectorsEnabled ConnectorsEnabled specifies whether to enable the

ability to use connectors for the Office 365 Group.

HiddenFromAddressListsEnabled HiddenFromAddressListsEnabled specifies

whether the Office 365 Group appears in the Global

Address List (GAL) and other address lists in your

organization.

MailTip The MailTip parameter specifies the custom MailTip

text for this recipient. The MailTip is shown to senders

when they start drafting an email message to this

recipient. If the value contains spaces, enclose the

value in quotation marks (").

UnifiedGroupWelcomeMessageEnabled The UnifiedGroupWelcomeMessageEnabled

switch specifies whether to enable or disable sending

system-generated welcome messages to users who

are added as members to the Office 365 Group.

Chapter 7 Managing Office 365 Groups

161

Another very useful parameter to set for your groups is the MailTip. For example, my

organization has an Office 365 Group for asking HR staff questions about policies. You

might want to set up a MailTip reminding users not to share any private information in

that group. This can be done using the following cmdlet:

Set-UnifiedGroup -Identity HRPublic -MailTip "This community is public to

all company, please do not share any private information"

Whenever someone sends a message to that group, the MailTip will be visible at the

top of their Outlook or Outlook Online message, as seen in Figure 7-6.

Now that we have learned how to modify the properties of an Office 365 Group, let’s

learn how to delete an Office 365 Group.

�Deleting an Office 365 Group
Removing an Office 365 Group is done with the Remove-UnifiedGroup PowerShell

cmdlet; you must specify the Office 365 Group you want to remove. You can use any of

the values that uniquely identify the Office 365 Group, such as the following:

•	 Name

•	 Display name

Figure 7-6.  Office 365 Group MailTip

Chapter 7 Managing Office 365 Groups

162

•	 Alias

•	 Email address

•	 GUID

To remove the HRPublic group, you would run the following cmdlet:

Remove-UnifiedGroup -Identity HRPublic

By default, you will have to confirm that you want to delete the group, as well as

any connected services inside that group, such as the group calendar, SharePoint site,

Planner contents, and so on! This confirmation, seen in Figure 7-7, can be useful, but it

can also be cumbersome when deleting multiple Office 365 Groups.

To skip the confirmation, you can use the -Confirm parameter as seen in the

following example:

Remove-UnifiedGroup -Identity o365community -Confirm:$false

This will remove the Office 365 Group immediately, without requiring the person

running the PowerShell cmdlet to reconfirm.

But what happens if you or a user deleted an Office 365 Group by mistake? Let’s learn

how to restore deleted groups.

�Restoring a Deleted Office 365 Group
When an Office 365 Group is deleted, Microsoft keeps it for 30 days in a soft-deleted

state, meaning you have 30 days to restore it if you need to. To view Office 365 Groups

that have been deleted, use the Get-AzureADMSDeletedGroup, part of the AzureAD

module. The result, seen in Figure 7-8, is the list of groups that are in a soft-deleted state.

Figure 7-7.  Confirmation before deleting an Office 365 Group

Chapter 7 Managing Office 365 Groups

163

Something that can also be useful is viewing the time the group was deleted, which is

done by viewing the DeletedDateTime property, as seen here:

Get-AzureADMSDeletedGroup | Select Id, DisplayName, DeletedDateTime | Sort-

Object DeletedDateTime

By including the DeletedDate Time directly in the query, you can easily calculate

when the group will be fully deleted, as seen in Figure 7-9.

Now that you can view the deleted groups, to restore a certain group you will have to

use the Restore-AzureADMSDeletedDirectoryObject PowerShell cmdlet and give the

ID of the group you want to restore. To restore the HR Public Questions group, you would

run the following cmdlet:

$O365Group = Get-AzureADMSDeletedGroup | Where-Object {$_.DisplayName -eq

"HR Public Questions"}

Restore-AzureADMSDeletedDirectoryObject –Id $O365Group.Id

Figure 7-8.  Office 365 Groups in a soft-deleted state

Figure 7-9.  Viewing when an Office 365 Group was deleted

Chapter 7 Managing Office 365 Groups

164

Note  It might take up to 24 hours for the contents of the group to be fully
restored.

If you want to permanently delete a group without waiting for the 30-day soft-

deleted period, you can force-delete it with the Remove-AzureADMSDeletedDirector

yObject cmdlet, in which you must specify the ID of the Office 365 Group you want

to permanently delete. For example, to permanently delete the Office 365 Support

Community group, you would run the following cmdlet:

$O365Group = Get-AzureADMSDeletedGroup | Where-Object {$_.DisplayName -eq

"Office 365 Support Community"}

Remove-AzureADMSDeletedDirectoryObject –Id $O365Group.Id

You can verify if the group was successfully deleted by running the

Get-AzureADMSDeletedGroup cmdlet. As you can see in Figure 7-10, both the group you

have restored and the one you have permanently deleted are not in the list anymore.

Now that you have learned how to create, update, and delete Office 365 Groups, let’s

look at how to manage users in an Office 365 Group.

Figure 7-10.  List of deleted Office 365 Groups

Chapter 7 Managing Office 365 Groups

165

�Managing the Members of an Office 365 Group
Another very important aspect of managing Office 365 Groups is, of course, the users

inside. With Office 365 Groups, membership information exists as a link between the

group and the user accounts of its members. The three types of membership can be seen

in Table 7-3. An Office 365 user can be present in one or more of these membership levels.

Managing the membership inside an Office 365 Group can be a little different than

doing so in other applications you are currently managing. To add a user as an owner,

you will first need to add that user as a member inside the group, and then you can add

them as an owner. If you want completely remove the owner of a group, you will have to

first remove them as an owner and then remove them as a member.

�Viewing Office 365 Group Members

To view the current members of a group, you need to use the Get-UnifiedGroupLinks

cmdlet, specifying the identity of the group and the type of membership level you want

to view. For example, to view the members of the HR Public Questions group created

earlier, you would run the following cmdlet:

Get-UnifiedGroupLinks -Identity "HR Public Questions" -LinkType Members

Table 7-3.  Office 365 Group Membership Levels

Membership Level Description

Owners Group Owners are the administrators of the group. They can add or remove

members, change the group name or description, and delete conversations

inside the group.

Members Group Members are users that will collaborate inside the Office 365 Group.

They can create new conversations, add items inside the calendar (unless this

setting is changed by an admin), and upload files to the group. They are also

allowed to add new members in a public group. All Owners are also Members

of the Office 365 Group, from a technical point of view.

Subscribers A Subscriber is not a permission level, but simply a subset of the members

who opted in to receive copies of the conversations and group calendar invites

via email.

Chapter 7 Managing Office 365 Groups

166

This cmdlet will the show the user alias of every user that is a member of the Office

365 Group, as seen in Figure 7-11.

You can also display multiple properties of the users directly from their profile. The

following PowerShell cmdlet will return the owners of the HR Public Questions group as

well as some properties about those users:

Get-UnifiedGroupLinks -Identity "HR Public Questions" -LinkType Owners |

Select DisplayName, WindowsLiveId, Department

You can view the results in Figure 7-12.

Now that you know how to view members, let’s take a look at how to add them.

Figure 7-11.  Members of an Office 365 Group

Figure 7-12.  Viewing the owners of an Office 365 Group as well as their properties

Chapter 7 Managing Office 365 Groups

167

�Adding Users to an Office 365 Group

Adding users to an Office 365 Group is done with the Add-UnifiedGroupLinks cmdlet;

you must specify the group you want to add users to, as well as the membership level you

want to add them to. If you wanted to add Jeff and Vanessa as members to your group,

you would run the following cmdlet:

Add-UnifiedGroupLinks -Identity "HRPublic" -LinkType Members -Links Jeff@

office365powershell.ca,vanessa@office365powershell.ca

If you wanted to add Vanessa as an owner afterward, you would run the following

cmdlet:

Add-UnifiedGroupLinks -Identity "HRPublic" -LinkType Owners -Links vanessa@

office365powershell.ca

Remember that you cannot add someone with the owner or subscriber membership

level until you add them as a member. If you try to, PowerShell will give you an error

similar to that shown in Figure 7-13.

Now that you have learned how to add users, let’s learn how to remove users from an

Office 365 Group.

�Removing Users from an Office 365 Group

Removing users from an Office 365 Group is done with the Remove-UnifiedGroupLinks

PowerShell cmdlet, in which you must specify the identity of the group from which you

want to remove users, the users you want to remove, and what type of membership you

want to remove them from. Remember that you cannot directly completely remove an

owner from the group; you have to first remove them as an owner, and then as a member.

Figure 7-13.  Only members can be owners of a group

Chapter 7 Managing Office 365 Groups

168

If you wanted to remove Vanessa as an owner of the group, you would run the

following cmdlet:

Remove-UnifiedGroupLinks -Identity "HRPublic" -LinkType Owners -Links

vanessa@office365powershell.ca -Confirm:$False

At this point, Vanessa is still a member of this Office 365 Group and would still have

contribute rights on the group. If you wanted to remove Vanessa from the group as a

member as well, you would run the following cmdlet:

Remove-UnifiedGroupLinks -Identity "HRPublic" -LinkType Members -Links

vanessa@office365powershell.ca -Confirm:$False

As you have seen so far, doing basic operations on a group and managing its

membership with PowerShell is pretty straightforward. But with Office 365 Groups’ being

so open by default, how do you avoid groups chaos inside your organization? Luckily,

Microsoft has implemented multiple governance mechanisms that allow you to control

and manage Office 365 Groups. Let’s take a look at how you can implement an Office 365

Group governance inside your tenant.

�Office 365 Group Governance
Implementing a governance in Office 365 can be a hard thing for the IT department.

On one side, you want to make sure that your users stay secure, do not put sensitive

information in the wrong place, and use Office 365 properly. On the other side, you do

not want to block users from being able to create and collaborate by themselves without

having to wait for IT for every small request they have. With Office 365 Groups and the

AzureAD PowerShell module, Microsoft has set up a few control mechanisms that allow

you to implement some controls, while still allowing your users to be productive and

dynamic. Let’s take a look at some of those settings.

Note  Most of the settings that we will cover in this section will require an Azure
Active Directory Premium P1 license for every unique user that is a member of an
Office 365 Group. Since Microsoft licensing changes often, make sure to check
with your organization’s licensing expert or partner to get the latest information.

Chapter 7 Managing Office 365 Groups

169

�Enforcing a Naming Policy and Blocked Words
First, we will cover enforcing a naming policy for a group, as well as setting a list of

blocked words. For example, a user would not be able to create a group with sensitive

words inside of the name.

A naming convention allows you to bring consistency to how your Office 365

Groups are named, as well as allows you to easily identify the owners of the group and

its geographic location by pulling information directly from the creator’s Azure AD user

profile. To give you an example, a naming convention could be:

GRP_[Department]_[GroupName]_[CountryOrRegion]

If for example, Vlad Catrinescu is from Canada, in the marketing department, and

wants to create a group with the name SharePoint Campaign, the final group name

would be: GRP_Marketing_SharePoint Campaign_Canada.

The full list of user profile properties we can use is as follows:

•	 [Department]

•	 [Company]

•	 [Office]

•	 [StateOrProvince]

•	 [CountryOrRegion]

•	 [Title]

Tip  The total length of the prefixes and suffixes is restricted to 53 characters.

Blocked words allow you to prevent users from including certain words like Payroll,

CEO, CFO, and so forth when creating Office 365 Groups. The entire Office 365 Group

name will be checked for the blocked words. When working with blocked words you

must be aware that there are no substring searches carried out when creating the group.

For example, if your group-naming policy were GRP_[Department]_[GroupName]_

[CountryOrRegion] and someone entered the name Payroll, the final name would be

GRP_Marketing_Payroll_Canada.

Chapter 7 Managing Office 365 Groups

170

Because the system does not search substrings, it would not block the group’s creation

even if Payroll were on your list of blocked words. However, if you set your naming

policy with spaces, instead of underscores, as seen in GRP [Department] [GroupName]

[CountryOrRegion], your final result would be GRP Marketing Payroll Canada, and the

policy would apply; therefore, the user would not be able to create the group.

Some administrative roles, however, are exempt from these policies and will be

able to create Office 365 Groups that contain blocked words or that do not follow the

organization’s naming policies. Those roles are the following:

•	 Global admin

•	 Partner Tier 1 Support

•	 Partner Tier 2 Support

•	 User account admin

•	 Directory writers

Now that you know what both policies do and how they work, let’s see how to

actually implement them. You will first have to create a new Active Directory Setting

Object based on the Unified Group template. Microsoft offers several different settings

templates in Azure Active Directory, which you can view by using the Get-AzureADDire

ctorySettingTemplate PowerShell cmdlet. While there are multiple templates, as you

can see in Figure 7-14, for this task you will need to create a directory setting based on

the Group.Unified template.

Note  The settings in the Group.Unified Azure Active Directory Object will
apply to all the Office 365 Groups inside your tenant.

Figure 7-14.  Available AzureAD Directory Setting templates

Chapter 7 Managing Office 365 Groups

171

To create the new Azure AD Settings Object, run the following cmdlets:

$SettingTemplate = Get-AzureADDirectorySettingTemplate | where {$_.

DisplayName -eq 'Group.Unified'}

$NewAADSetting = $SettingTemplate.CreateDirectorySetting()

$NewAADSetting = New-AzureADDirectorySetting -DirectorySetting

$NewAADSetting

Then, run the following cmdlet to get your newly created Azure AD Directory Setting

Object and save it in a new variable called $Setting:

$Setting = Get-AzureADDirectorySetting | where-object {$_.displayname -eq

'Group.Unified'}

If you want to see all the available options you can configure as part of this setting

object, you can run the following cmdlet:

$Setting.Values

Right now your settings object, seen in Figure 7-15, will only have the default settings

from the template.

To apply the naming convention policy, add your custom naming convention in the

PrefixSuffixNamingRequirement property, as seen in the following example:

$Setting["PrefixSuffixNamingRequirement"] = "GRP [Department] [GroupName]

[CountryOrRegion]"

Figure 7-15.  Default values of the new Azure Active Directory Setting Object

Chapter 7 Managing Office 365 Groups

172

To apply certain blocked words, you would modify the CustomBlockedWordsList

property with a comma-separated list of words you want to block, as seen in this example:

$Setting["CustomBlockedWordsList"]="CEO,Legal,Payroll"

Lastly, you can optionally enable the EnableMSStandardBlockedWords property,

which blocks a list of inappropriate words that Microsoft manages that you wouldn’t

want in your group titles, as follows:

$Setting["EnableMSStandardBlockedWords"]="True"

To apply these updates to your Azure AD Directory Setting, run the Set-

AzureADDirectorySetting cmdlet as seen here:

Set-AzureADDirectorySetting -Id $Setting.id -DirectorySetting $Setting

You can run the following cmdlets to verify that the settings have been updated:

$Setting = Get-AzureADDirectorySetting | where-object {$_.displayname -eq

'Group.Unified'}

$Setting.Values

As you can see in Figure 7-16, the settings have been successfully applied in your tenant.

Note  It can take a few hours for the settings to be applied in the user interface
across all the Office 365 services.

Figure 7-16.  Updated blocked-words and naming-convention settings

Chapter 7 Managing Office 365 Groups

173

To test that the policy has been successfully applied, you can navigate to each service

that creates an Office 365 Group and test both the naming convention and the blocked

words. Make sure to test using one of the accounts that is not part of the admin roles we

previously talked about, as those policies do not apply to certain admin accounts. In

Figure 7-17, you can see how the final group is shown in Outlook Online and the error

message that is displayed when a user attempts to create a group with a blocked word.

Next up, in Figure 7-18 you can view how Planner is blocking a user from creating a

group with a blocked word. Planner is compliant with the naming policy and will create

the plan and the Office 365 Group with the correct policy; however, there is no preview of

the final name of the Office 365 Group when creating it.

Figure 7-17.  Naming policy and blocked words in Outlook Online

Chapter 7 Managing Office 365 Groups

174

Microsoft Teams is also integrated with the policies in Office 365 Groups, and, as you

can see in Figure 7-19, it’s able to preview the name of the Office 365 Group as it’s created.

Microsoft Teams also supports blocked words and will tell the user right away if they

attempted to create a team with a blocked word, as you can see in Figure 7-20.

Figure 7-18.  Blocked words in Planner

Figure 7-19.  Office 365 Groups naming policies in Microsoft Teams

Chapter 7 Managing Office 365 Groups

175

The last example we will look at is Microsoft Stream. As you can see in Figure 7-21,

Microsoft Stream supports both the naming policy preview and blocked words!

Figure 7-20.  Blocked words in Microsoft Teams

Figure 7-21.  Naming policy preview and blocked words in Microsoft Stream

Chapter 7 Managing Office 365 Groups

176

As you saw in the preceding examples, most Office 365 services support both the

blocked words and the naming policies natively, so your users can see the group they are

creating right away. At the time of writing this book—and it might have changed by the

time you are reading it—the following services did not fully support naming conventions

and blocked words:

•	 Dynamic CRM

•	 School Data Sync (SDS)

•	 Classroom App

•	 Power BI

•	 Azure Active Directory Portal

Note  To view the most up-to-date list of what services support naming policies
and blocked words, visit the Office Support Page called “Office 365 Groups
naming policy” at the following link: https://support.office.com/en-us/
article/Office-365-Groups-naming-policy-6ceca4d3-cad1-4532-
9f0f-d469dfbbb552.

Now that you have learned how to apply a naming policy and blocked words to your

groups, it is time to see how to create classifications for them.

�Group Classifications
Microsoft allows Office 365 administrators to set a list of classifications that users can

apply to Office 365 Groups. At the time of writing this book, classifications are not doing

anything technically; however, they are displayed at the top of every Office 365 Group.

This allows users to know how sensitive the data in that Office 365 Group is and what

security measures they need to take with the content inside that group. For example, you

could set up the following classifications for your Office 365 Groups:

•	 Restricted

•	 Confidential

•	 Secret

•	 Top Secret

Chapter 7 Managing Office 365 Groups

https://support.office.com/en-us/article/Office-365-Groups-naming-policy-6ceca4d3-cad1-4532-9f0f-d469dfbbb552
https://support.office.com/en-us/article/Office-365-Groups-naming-policy-6ceca4d3-cad1-4532-9f0f-d469dfbbb552
https://support.office.com/en-us/article/Office-365-Groups-naming-policy-6ceca4d3-cad1-4532-9f0f-d469dfbbb552

177

The choices that you present your users with in terms of classifications need to

involve data sensitivity, as when selecting them, the question that Office 365 will ask

your user is similar to “How sensitive is your data?” We will review what classifications

look like in the user interface later in this section.

To implement the classification list, you will have to modify some properties of the

Azure AD Directory Setting created earlier. First, get the Azure AD Directory Setting and

save it into a variable called $Setting as seen here:

$Setting = Get-AzureADDirectorySetting | where-object {$_.displayname -eq

'Group.Unified'}

The first property you need to modify is the ClassificationList. This property

accepts a comma-separated list of all the different classifications you want to make

available. You can include spaces between the commas, such as Top Secret, but make

sure to not include spaces between the classifications themselves. In the following

cmdlet, I am setting the classification list previously discussed:

$Setting["ClassificationList"]="Restricted,Confidential,Secret,Top Secret"

You can then specify what default classification is proposed to your users by

updating the DefaultClassification property. In the cmdlet below, I am setting the

default to Confidential:

$Setting["DefaultClassification"]="Confidential"

Lastly, you can set the ClassificationDescriptions property, in which you can

specify a description for each of the classifications in your list. These descriptions will

help users make the right classification selection. This list needs to be in the format "Cl

assification:Description,Classification:Description", where Classification

matches one of the classifications in the ClassificationList property. In the example

that follows, you can view a sample description for each classification level:

$Setting["ClassificationDescriptions"]="Restricted:Restricted material

would cause undesirable effects if publicly available,Confidential:Confid

ential material would cause damage or be prejudicial to national security

if publicly available,Secret:Secret material would cause serious damage to

national security if it were publicly available,Top Secret:Top Secret is

the highest level of classified information"

Chapter 7 Managing Office 365 Groups

178

The last thing you have to do is apply the updates to your Azure AD Directory Setting

by running the following cmdlet:

Set-AzureADDirectorySetting -Id $Setting.id -DirectorySetting $Setting

You are now ready to test if those settings have been successfully applied across Office 365.

Note  It can take a few hours for the settings to be applied in the user interface
across all the Office 365 services.

When users create a new Office 365 Group from Outlook Online, they will be

presented with a dropdown of the classification choices, as you can see in Figure 7-22.

Figure 7-22.  Classification list in Outlook Online

Chapter 7 Managing Office 365 Groups

179

The classification list is also available in Stream, as you can see in Figure 7-23.

Lastly, classifications are also available in Microsoft Teams, as you can see in

Figure 7-24; however, at the time of writing this book, the classification description did

not show in Microsoft Teams.

Figure 7-23.  Classification list in Microsoft Stream

Chapter 7 Managing Office 365 Groups

180

After you have set up your groups classification list, you can use the Set-

UnifiedGroup PowerShell cmdlet to apply classifications to existing groups. For example,

if you wanted to add the Top Secret classification to the 2019 Reorganization group

created earlier, you would run the following cmdlet:

Set-UnifiedGroup -Identity "2019reorg" -Classification "Top Secret"

You have now learned what classifications are and how to create a classification list

with descriptions. Let’s now look at the usage guidelines.

Figure 7-24.  Classifications in Microsoft Teams

Chapter 7 Managing Office 365 Groups

181

�Usage Guidelines
With improved governance around your Office 365 Groups, an important step is to

document what users can and cannot do. Office 365 allows you to set guidelines that

are available to your users when an Office 365 Group is created or edited, as well as a

separate set of guidelines for external users (guests). It is recommended that you host

your internal guidelines on a site that all your employees have access to, such as the

intranet, while hosting your guest guidelines on a public site that external users will be

able to access.

To configure usage guidelines, you will have to modify some properties of the Azure

AD Directory Setting you created earlier. First, get the Azure AD Directory Setting and

save it into a variable called $Setting as seen here:

$Setting = Get-AzureADDirectorySetting | where-object {$_.displayname -eq

'Group.Unified'}

Then, set the UsageGuidelinesUrl property to the URL of your internal policies:

$Setting["UsageGuidelinesUrl"]=”https://office365powershell.sharepoint.com/

SitePages/Office365GroupsPolicies.aspx”

Next up, set the guest policies by adding the URL to the GuestUsageGuidelinesUrl

property as seen here:

$Setting["GuestUsageGuidelinesUrl"]="https://office365powershell.ca/

guestpolicy"

To apply the new properties to your Azure AD Directory Setting, you need to run the

following cmdlet:

Set-AzureADDirectorySetting -Id $Setting.id -DirectorySetting $Setting

Note  It can take a few hours for the settings to be applied in the user interface
across all the Office 365 services.

Once the usage guidelines are set up, a user creating a new group from Outlook

Online will see a link to the internal usage guidelines, as you can see in Figure 7-25.

Chapter 7 Managing Office 365 Groups

182

When you invite an external user to an Office 365 Group, they will have a link to the

guest usage guidelines at the bottom of their email, as you can see in Figure 7-26.

Figure 7-25.  Group usage guidelines when creating a new Office 365 Group

Chapter 7 Managing Office 365 Groups

183

When they click on the link, guests will first receive a message informing them that

the guidelines are managed by your organization and not by Microsoft or Office 365, as

you can see in Figure 7-27.

You have now seen multiple ways to control how Office 365 users can create Office

365 Groups while following certain company policies, but what if you want to only allow

a certain group of users to create groups?

Figure 7-26.  Guest usage gidelines in the welcome email for Office 365 Groups
guests

Figure 7-27.  Redirection notice for Office 365 guest guidelines

Chapter 7 Managing Office 365 Groups

184

�Only Allowing a Certain Group to Create Office 365 Groups
In some circumstances, you might not want to open Office 365 Group creation to all the

users inside your organization. To control who can create Office 365 Groups, you can

limit group creation to only a certain group inside your organization.

The first thing you will have to do is create a group—either a security group or an

Office 365 Group—that will contain the users who are allowed to create Office 365

Groups. For my example, I have created an Office 365 Group called Office 365 Group

Admins. The first step will be to save that group in a variable called $Group as seen here:

$Group = Get-AzureADGroup -SearchString "Office 365 Group Admins"

Next up, I have to modify some properties of the Azure AD Directory Setting that was

created earlier. I will first get the Azure AD Directory Setting and save it into a variable

called $Setting as seen here:

$Setting = Get-AzureADDirectorySetting | where-object {$_.displayname -eq

'Group.Unified'}

I then need to modify the EnableGroupCreation property to False in order to disable

Office 365 Group creation for all users:

$Setting["EnableGroupCreation"] = "False"

Afterward, I will add the ID of the group that will be allowed to create Office 365

Groups to the GroupCreationAllowedGroupId parameter:

$Setting["GroupCreationAllowedGroupId"] = $Group.ObjectId

Lastly, to apply the new properties to the Azure AD Directory Setting, I need to run

the following cmdlet:

Set-AzureADDirectorySetting -Id $Setting.id -DirectorySetting $Setting

Note  It can take a few hours for the settings to be applied in the user interface
across all the Office 365 services.

Once the setting is applied, users that are not in that group will not be able to see

the “Create” button anymore in Outlook Online. Only the “Discover” button will be

available, as seen in Figure 7-28.

Chapter 7 Managing Office 365 Groups

185

Different Office 365 services will display different messages when Office 365 Group

creation is disabled for that user. In Figure 7-29, you can see the message that users get

when they try to create a new plan in Planner.

Figure 7-28.  Only the “Discover” button appears in Outlook Online

Chapter 7 Managing Office 365 Groups

186

Now that you have learned how to control who can create Office 365 Groups, let’s

learn how manage policies for external users, also called guests.

�Guest Policies
Guest policies allow you to customize whether external users can be added to your Office

365 Groups, and even allow you to block access for all existing users if required. There

are three properties that you can set at the tenant level, which you can see in Table 7-4.

Figure 7-29.  User message when they are not allowed to create Office 365 Groups
in Planner

Table 7-4.  Tenant-wide Guest Policies

Property Description

AllowGuestsToBeGroupOwner Indicates if guests can be added as owners of an Office 365

Group

AllowGuestsToAccessGroups Indicates if guests are allowed to access Office 365 Groups.

Setting this to false will also block guests that were already

granted permission to access Office 365 Groups.

AllowToAddGuests Indicates if you want to restrict the ability to add new guests to

Office 365 Groups, but not restrict existing Office 365 guests to

access groups they already have permission to.

Chapter 7 Managing Office 365 Groups

187

If you want to completely restrict guest access tenant wide, you will have to modify

the preceding properties of the Azure AD Directory Setting created earlier. You first get

the Azure AD Directory Setting and save it into a variable called $Setting as seen here:

$Setting = Get-AzureADDirectorySetting | where-object {$_.displayname -eq

'Group.Unified'}

You then configure your settings to not allow guests to be group owners and to block

everyone from adding external users or other guests to a group:

$Setting["AllowGuestsToBeGroupOwner"] = "False"

$Setting["AllowToAddGuests"] = "False"

To block existing as well as new guests in your Office 365 Groups, configure the

following setting:

$Setting["AllowGuestsToAccessGroups"] = "False"

To apply the guest policies, you need to run the following cmdlet, which will update

the Azure AD Directory Setting Object with the latest changes:

Set-AzureADDirectorySetting -Id $Setting.id -DirectorySetting $Setting

When anyone in your organization tries to invite a guest, they will get a message

similar to that in Figure 7-30 and will not be able to add a guest—even if they are an

Office 365 global administrator.

Chapter 7 Managing Office 365 Groups

188

What if you want to apply guest policies at the group level and not at the tenant level?

For demo purposes, I have reverted the changes we just made that allowed guests tenant

wide; we will block them for select groups instead. To only apply settings to certain

groups, you need to create a setting based on the Group.Unified.Guest template. You

can view all the available templates by running the Get-AzureADDirectorySettingTempl

ate cmdlet as seen in Figure 7-31.

Figure 7-31.  Available Azure Active Directory Setting templates

Figure 7-30.  Unable to add guests to an Office 365 Group

Chapter 7 Managing Office 365 Groups

189

Now that you know the template you want to start from, you can run the following

cmdlets to create a new directory setting:

$SettingTemplate = Get-AzureADDirectorySettingTemplate | where {$_.

DisplayName -eq 'Group.Unified.Guest'}

$NewSetting = $SettingTemplate.CreateDirectorySetting()

The Group.Unified.Guest directory setting only has one available property, which is

AllowToAddGuests, as you can see in Figure 7-32.

You then change the AllowToAddGuests property to False in order to block guest

access in this setting:

$NewSetting["AllowToAddGuests"]=$False

To apply this setting to a group, save your Office 365 Group Admins group in a

variable called $Group and then apply the Azure AD Object Setting to the Office 365

Group as seen here:

$Group = Get-AzureADGroup -SearchString "Office 365 Group Admins"

New-AzureADObjectSetting -TargetType Groups -TargetObjectId $Group.ObjectId

-DirectorySetting $NewSetting

Note  It can take a few hours for the settings to be applied in the user interface
across all the Office 365 services.

To test that it worked, navigate to a group that does not have this group-level setting

applied, and you should be able to add an external guest, as seen in Figure 7-33.

Figure 7-32.  Available properties in the Group.Unified.Guest directory setting

Chapter 7 Managing Office 365 Groups

190

However, when you try to do the same thing in the Office 365 Group you have

applied these new settings to, you will get an error similar to that in Figure 7-34.

Figure 7-33.  Adding an external user to an Office 365 Group

Chapter 7 Managing Office 365 Groups

191

You have now learned all the settings that allow you to control Office 365 Groups

in your organization as far as who can create Office 365 Groups, what naming policy

they should use, and so on. Next up, you will learn how to create reports on Office 365

Groups.

�Office 365 Group Reporting
Once users start collaborating in Office 365 Groups that have your governance policies,

you still want to keep an eye on what is happening inside your tenant. You can use the

Get-UnifiedGroup cmdlet to view all the groups inside your organization, as well as their

properties. When running the cmdlet, the basic properties returned are the Name, Alias,

ServerName, and AccessType, which you can see in Figure 7-35.

Figure 7-34.  Not allowed to add external users to this specific Office 365 Group

Chapter 7 Managing Office 365 Groups

192

You can also select any properties of the group; for example, the following cmdlet

returns the display name, the date the Office 365 Group was created, the date it was last

changed, and the classification of the group, as in Figure 7-36.

You can also use all the different cmdlets you have learned in this chapter to create

scripts that are a bit more advanced. For example, the small script that follows will

output all the groups in the Office 365 tenant, as well as the number of owners, members,

and Subscribers in each group. You can view the results in Figure 7-37.

Figure 7-35.  Running the Get-UnifiedGroup cmdlet

Figure 7-36.  Viewing properties of our Office 365 Groups

Chapter 7 Managing Office 365 Groups

193

Tip  Remember you can download the soft copy of these scripts in the GitHub
repository of the book! You can find the link to the repository on the book’s page on
Apress.com.

Get-UnifiedGroup |

 select Id,Alias, AccessType, `

 �@{Expression={([array](Get-UnifiedGroupLinks -Identity $_.Id -LinkType

Members)).Count }; `

 Label='Members'}, `

 �@{Expression={([array](Get-UnifiedGroupLinks -Identity $_.Id -LinkType

Owners)).Count }; `

 Label='Owners'}, `

 �@{Expression={([array](Get-UnifiedGroupLinks -Identity $_.Id -LinkType

Subscribers)).Count }; `

 Label='Subscribers'} |

 Format-Table Alias,Members,Owners,Subscribers -AutoSize

As you can see, you can create some really awesome reports by using PowerShell for

Office 365 Groups.

Figure 7-37.  Script showing the number and type of members inside each Office
365 Group

Chapter 7 Managing Office 365 Groups

194

�Conclusion
Office 365 Groups are one of the key collaboration tools in Office 365, and users love

their integration with multiple Office 365 services. However, there are not that many

management settings available for groups in the Office 365 Admin Center, and this is

where PowerShell can save the day. In this chapter, we have reviewed everything you can

do to manage Office 365 Groups with PowerShell, starting from basic operations such as

creating, updating, and deleting an Office 365 Group all the way to tenant-wide governance

settings that shape the way your organization will benefit from Office 365 Groups.

At this point in the book, you have learned how to manage all the services in Office

365, starting from your users and licenses in Azure Active Directory to other services

such as SharePoint Online, Exchange Online, Skype for Business Online, the Security &

Compliance Center, and Office 365 Groups, which spans many of the services previously

named. In our next and final chapter, we will take what we learned in the first seven

chapters of this book to the next level by automating scenarios across multiple Office 365

services.

Chapter 7 Managing Office 365 Groups

195
© Vlad Catrinescu 2018
V. Catrinescu, Essential PowerShell for Office 365, https://doi.org/10.1007/978-1-4842-3129-6_8

CHAPTER 8

Automating Tasks
with PowerShell
We are now in the final chapter of the book, and by now you should be able to manage

every Office 365 service with PowerShell individually. In this chapter, you will take what

you have learned to the next level by creating scripts that interact with multiple Office

365 services and solve real business problems.

�Connecting to Multiple Office 365 Services
Connecting to multiple Office 365 services is done by combining everything you have

learned in previous chapters. You will first have to create your credential object by

running the Get-Credential cmdlet, as seen here:

$cred = Get-Credential

Next up, import all the modules you have worked with in this book—the AzureAD

module to manage users and licenses, the SharePoint Online module for SharePoint Online,

and finally the Skype Online Connector module to manage Skype for Business Online:

Import-Module AzureAD

Import-Module Microsoft.Online.SharePoint.PowerShell

Import-Module SkypeOnlineConnector

Afterwards, create the remote sessions required to connect to Skype for Business

Online, Exchange Online, and the Office 365 Compliance Center:

$S4B = New-CsOnlineSession -Credential $cred

196

$Exchange = New-PSSession -ConfigurationName Microsoft.Exchange

-ConnectionUri "https://outlook.office365.com/powershell-liveid/"

-Credential $cred -Authentication "Basic" -AllowRedirection

$ComplianceCenter = New-PSSession -ConfigurationName Microsoft.Exchange

-ConnectionUri https://ps.compliance.protection.outlook.com/powershell-

liveid/ -Credential $cred -Authentication Basic -AllowRedirection

You then must import those sessions into your local PowerShell session with the

following cmdlets:

Import-PSSession $S4B

Import-PSSession $Exchange

Import-PSSession $ComplianceCenter

And lastly, connect to Azure Active Directory as well as SharePoint Online with their

module-specific cmdlets, as seen here:

Connect-AzureAD -Credential $cred

Connect-SPOService -Url https://office365powershell-admin.sharepoint.

com -credential $cred

You are now connected to Azure Active Directory, SharePoint Online, Exchange

Online, and Skype for Business Online as well as to the Office 365 Compliance Center,

and you can use PowerShell cmdlets that work with all the services in a single window.

Something that you have used throughout the book is the Get-Credential cmdlet to get

the credentials of the user you want to connect to Office 365 with. But if you want to run

a script at 2 a.m., you don’t really want to be there to give the credentials. Let’s take a look

at what you can do to securely store your credentials and use them in your scripts.

�Saving Credentials to Securely Use with PowerShell
There are multiple ways to securely store your credentials on the computer, but let’s

take a look at one of the ones I use most often, which is saving the credential object as

an XML file on the computer. You will first run the Get-Credential cmdlet to get the

credentials, and afterward you will use the Export-Clixml cmdlet to save the credential

object into an XML file. The full cmdlet can be seen here:

Get-Credential | Export-Clixml C:\Scripts\pscred.xml

Chapter 8 Automating Tasks with PowerShell

197

A pop-up similar to Figure 8-1 will appear, in which you will have to enter the

username and password of the user you want to connect to Office 365 with.

The XML file will include an export of the System.Management.Automation.

PSCredential object, with the password encrypted, as seen in Figure 8-2.

Figure 8-1.  Getting the credentials of a user before saving them to an XML file

Figure 8-2.  Credential object saved in an XML file

Chapter 8 Automating Tasks with PowerShell

198

The password is encrypted by using the native Windows Data Protection API (DAPI)

functionality, and it can only be decrypted by the user who encrypted it and on this

specific machine. It cannot be decrypted by another user on the same machine, or by the

same user on a different machine. To use this XML file in your future scripts, you simply

have to use the Import-Clixml cmdlet. In Figure 8-3, I am starting with a brand-new

PowerShell window with an empty $cred variable, as seen on the first line. I then use the

Import-Clixml cmdlet to import the file with my credential object in the $cred variable:

$cred = Import-CliXML C:\Scripts\pass.xml

Lastly, I test that this is working by connecting to Azure Active Directory.

Now that we have viewed some basic tricks, let’s take a look at some automation

scenarios!

�Creating Users in Azure AD Using SharePoint
as an Input
Let’s start with our first scenario, which is automating the creation of users in Azure Active

Directory and using a SharePoint list as an input. Throughout the examples in this chapter,

you will see that when automating tasks in Office 365 where non-IT department personnel

need to provide the input, I prefer to use SharePoint lists because of how easy they are to

use for business users and how easy they are to secure from an IT perspective. I will first

create a SharePoint list with the columns seen in Table 8-1 and with the name New Users.

Figure 8-3.  Testing the XML file with my credential information

Chapter 8 Automating Tasks with PowerShell

199

You can also view a sample of the input in Figure 8-4. The whole form is broken up

into two parts and shown side by side to make it easier to consume.

Table 8-1.  Input List Columns

Column Name Type Notes

Employee ID Single Line of Text Renamed the default Title column from the list. Internal

name for this column will remain Title.

First Name Single Line of Text

Last Name Single Line of Text

JobTitle Single Line of Text

Department Choice

Manager People Picker

OfficePhone Single Line of Text

MobilePhone Single Line of Text

City Single Line of Text

State Single Line of Text

Country Choice

Processed Yes/No This column will tell PowerShell whether this account has

already been created or not. By default it will be at No,

and we will change it to Yes from our PowerShell script.

Chapter 8 Automating Tasks with PowerShell

200

Now that my list is ready, let’s take a look at the PowerShell part. Since I have to read

information from a SharePoint list, which is not possible using the PowerShell module

provided by Microsoft, I will use the Office 365 Dev PnP PowerShell cmdlets, and since I will

create users in Azure Active Directory I will also import the Azure Active Directory module:

Import-Module SharePointPnPPowerShellOnline

Import-Module AzureAD

I will then connect to both the site collection in which the list is located as well as

Azure Active Directory:

$cred = Import-CliXML C:\Scripts\pass.xml

Connect-PnPOnline -Url https://office365powershell.sharepoint.

com -credential $cred

Connect-AzureAD -Credential $cred

Next, I will use the Get-PnPListItem cmdlet to save the list in a variable:

$users = Get-PnPListItem -List 'New Users'

Figure 8-4.  New User form

Chapter 8 Automating Tasks with PowerShell

201

I will then start a foreach loop on each user, where the Processed column is at No,

meaning all the users that haven’t already been created with PowerShell. Next, I will save

every column into a variable to make them easier to use later when I create the accounts.

In order to get the internal names (Key) of the fields, you can run the following cmdlet:

$users[0].FieldValues

This will show you all the fields of the first item in the list, as well as their values,

allowing you to easily find out which is which, as seen in Figure 8-5:

foreach ($user in $users|Where {$_.FieldValues.Processed -eq $false})

{

$EmployeeID = $user.FieldValues.Title

$FirstName = $user.FieldValues.First_x0020_Name

$LastName = $user.FieldValues.Last_x0020_Name

$JobTitle = $user.FieldValues.JobTitle

$Dept = $user.FieldValues.Department

$ManagerEmail = $user.FieldValues.Manager.Email

$OfficePhone = $user.FieldValues.OfficePhone

$Cell = $user.FieldValues.MobilePhone

$City = $user.FieldValues.City

Figure 8-5.  Finding out the internal names of our fields

Chapter 8 Automating Tasks with PowerShell

202

$State = $user.FieldValues.State

$Country = $user.FieldValues.Country

$Email = "$FirstName.$LastName@office365powershell.ca"

When assigning a license to the user, I will need to provide the usage location of the

user, which is the country, but as a two-letter country code. Since I do not want to ask

my user, I will do a switch statement, as seen next, to set the $UsageLocation variable

depending on the country of the user:

switch ($Country)

 {

 "Canada" {$UsageLocation = "CA"}

 "United States" {$UsageLocation = "US"}

 "Mexico" {$UsageLocation = "MX"}

 "France" {$UsageLocation = "FR"}

 default {throw "User Location not valid"}

 }

Now that I have all the information in variables, it’s time to create the user. I will first

create a new Password Profile object with the password that my company always uses for

new users, which is Apress2017. I will also create my license objects with the E5 SKU ID:

$PasswordProfile = New-Object -TypeName Microsoft.Open.AzureAD.Model.

PasswordProfile

$PasswordProfile.Password = "Apress2017"

$PasswordProfile.ForceChangePasswordNextLogin = $true

$Sku = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedLicense

$Sku.SkuId = "c7df2760-2c81-4ef7-b578-5b5392b571df"

$Licenses = New-Object -TypeName Microsoft.Open.AzureAD.Model.

AssignedLicenses

$Licenses.AddLicenses = $Sku

Chapter 8 Automating Tasks with PowerShell

203

I will then use the New-AzureADUser cmdlet and give it all the parameters I saved

earlier:

$NewUser = New-AzureADUser -GivenName $FirstName -Surname $LastName

-DisplayName "$FirstName $LastName" -UserPrincipalName $EMail -MailNickName

"$FirstName.$LastName" -AccountEnabled $true -PasswordProfile

$PasswordProfile -JobTitle $JobTitle -Department $Dept -UsageLocation

$UsageLocation -Country $Country -Mobile $Cell -TelephoneNumber

$OfficePhone -State $State -City $City

Next up, I will set the manager as well as the license for my new user:

$Manager = Get-AzureADUser -ObjectId $ManagerEmail

Set-AzureADUserManager -ObjectId $NewUser.ObjectId -RefObjectId $Manager.

ObjectId

Set-AzureADUserLicense -ObjectId $NewUser.ObjectId -AssignedLicenses

$Licenses

Once my user has been created, I want to notify the person who created the new

account request that the user has been created. I will first save the information about the

person who created the current item in two variables:

$RequesterDisplayName = $user.FieldValues.Author.LookupValue

$Requesteremail = $user.FieldValues.Author.email

I will then create the body of the email using HTML syntax, including variables that I

previously created in the script, as well as in the subject of the email:

$body = "Hello $RequesterDisplayName , </br> The account for Employee

ID $EmployeeID has been created with the following details: </br>

Username: $Email </br> Password: Apress2017 </br> For any

questions, don't hesitate to open a Helpdesk Ticket."

$Subject = "Account Created for New Employee $EmployeeID"

I will then use the Send-MailMessage cmdlet to send the email to the person who

requested the account:

Send-MailMessage -To $Requesteremail -from vlad-admin@office365powershell.

ca -Subject $Subject -Body $body -BodyAsHtml -smtpserver smtp.office365.com

-usessl -Credential $cred -Port 587

Chapter 8 Automating Tasks with PowerShell

204

Lastly, I will change the value of the Processed column to True so that it marks that

the account has been created and so it’s not processed the next time the script runs.

I will also close the foreach loop started earlier. The reason I create a variable on the

Set-PnPListItem cmdlet is to avoid a bug in the Office Dev PnP cmdlets that would

output an error of type “The collection has not been initialized”:

$updatedItem = Set-PnPListItem -List 'New Users' -Identity $user.id -Values

@{"Processed" = $true}

}

This is what the full script looks like. Note that I have moved the License and

Password objects outside of the foreach loop so they do not get created again and again

each time a user needs to be created!

Import-Module SharePointPnPPowerShellOnline

Import-Module AzureAD

$cred = Import-CliXML C:\Scripts\pass.xml

Connect-PnPOnline -Url https://office365powershell.sharepoint.com

-credential $cred

Connect-AzureAD -Credential $cred

$PasswordProfile = New-Object -TypeName Microsoft.Open.AzureAD.Model.

PasswordProfile

$PasswordProfile.Password = "Apress2017"

$PasswordProfile.ForceChangePasswordNextLogin = $true

$Sku = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedLicense

$Sku.SkuId = "c7df2760-2c81-4ef7-b578-5b5392b571df"

$Licenses = New-Object -TypeName Microsoft.Open.AzureAD.Model.

AssignedLicenses

$Licenses.AddLicenses = $Sku

$users = Get-PnPListItem -List 'New Users'

foreach ($user in $users|Where {$_.FieldValues.Processed -eq $false})

{

Chapter 8 Automating Tasks with PowerShell

205

$EmployeeID = $user.FieldValues.Title

$FirstName = $user.FieldValues.First_x0020_Name

$LastName = $user.FieldValues.Last_x0020_Name

$JobTitle = $user.FieldValues.JobTitle

$Dept = $user.FieldValues.Department

$ManagerEmail = $user.FieldValues.Manager.Email

$OfficePhone = $user.FieldValues.OfficePhone

$Cell = $user.FieldValues.MobilePhone

$City = $user.FieldValues.City

$State = $user.FieldValues.State

$Country = $user.FieldValues.Country

$Email = "$FirstName.$LastName@office365powershell.ca"

switch ($Country)

 {

 "Canada" {$UsageLocation = "CA"}

 "United States" {$UsageLocation = "US"}

 "Mexico" {$UsageLocation = "MX"}

 "France" {$UsageLocation = "FR"}

 default {throw "User Location not valid"}

 }

$NewUser = New-AzureADUser -GivenName $FirstName -Surname $LastName

-DisplayName "$FirstName $LastName" -UserPrincipalName $EMail -MailNickName

"$FirstName.$LastName" -AccountEnabled $true -PasswordProfile

$PasswordProfile -JobTitle $JobTitle -Department $Dept -UsageLocation

$UsageLocation -Country $Country -Mobile $Cell -TelephoneNumber

$OfficePhone -State $State -City $City

$Manager = Get-AzureADUser -ObjectId $ManagerEmail

Set-AzureADUserManager -ObjectId $NewUser.ObjectId -RefObjectId $Manager.

ObjectId

Set-AzureADUserLicense -ObjectId $NewUser.ObjectId -AssignedLicenses

$Licenses

$RequesterDisplayName = $user.FieldValues.Author.LookupValue

$Requesteremail = $user.FieldValues.Author.email

Chapter 8 Automating Tasks with PowerShell

206

$body = "Hello $RequesterDisplayName , </br> The account for Employee

ID $EmployeeID has been created with the following details: </br>

Username: $Email </br> Password: Apress2017 </br> For any

questions, don't hesitate to open a Helpdesk Ticket."

$Subject = "Account Created for New Employee $EmployeeID"

Send-MailMessage -To $Requesteremail -from vlad-admin@office365powershell.

ca -Subject $Subject -Body $body -BodyAsHtml -smtpserver smtp.office365.com

-usessl -Credential $cred -Port 587

$updatedItem = Set-PnPListItem -List 'New Users' -Identity $user.id -Values

@{"Processed" = $true}

}

Now, let’s test it out! I have logged in as Jeff and created the list entry seen in Figure 8-6.

Figure 8-6.  New User entry

Chapter 8 Automating Tasks with PowerShell

207

I will then run the full script that I have saved in a .ps1 file. A few seconds later, I

get the email to the Jeff Collins account with which I created the request stating that the

account was created and everything seems good, as seen in Figure 8-7.

As you can see in the Office 365 Admin Center, the user has been created, with the

proper title and license, as seen in Figure 8-8.

Figure 8-7.  Notification email from script

Chapter 8 Automating Tasks with PowerShell

208

If we expand the properties, we can see that all the properties of the user have been

updated, as seen in Figure 8-9.

Figure 8-8.  Newly created user in the Office 365 Admin Center

Chapter 8 Automating Tasks with PowerShell

209

We have successfully created a script that takes information from a SharePoint list

and creates users in Azure Active Directory!

Figure 8-9.  All properties of the newly created user

Chapter 8 Automating Tasks with PowerShell

210

�Add Users to an Distribution List Using SharePoint
as an Input
This next scenario will work with SharePoint and Exchange Online. In many companies

that I have worked for, there are multiple levels of support, and a lot of times the first level

of support does not have any access to the Exchange Online Admin Center of a company.

In this scenario, I will create a SharePoint list as an input form where help-desk personnel

will be able to enter requests to add users to certain distribution lists. To make things

more interesting, I will also create a PowerShell script that will keep a Choice column

up to date with the existing distribution lists inside the organization. I will first create a

SharePoint list with the columns seen in Table 8-2 and with the name DL Request.

You can also view the form in SharePoint in Figure 8-10.

Table 8-2.  DL Request List Columns

Column Name Type Notes

Helpdesk Ticket

ID

Single Line of Text Renamed the default Title column from the list.

Internal name for this column will remain Title.

User People Picker

Distribution List Choice

Processed Yes/No This column will tell PowerShell whether this item has

already been processed or not. By default, it will be at

No, and we will change it to Yes from our PowerShell

script.

Chapter 8 Automating Tasks with PowerShell

211

The first script I will create is the script that will make sure my Distribution List

column is up to date. This script will connect to Exchange Online, get all the currently

available distribution lists, and populate them in the column as available choices.

I will first get my credentials and import the SharePoint Online PnP module:

Import-Module SharePointPnPPowerShellOnline

$cred = Import-CliXML C:\Scripts\pass.xml

Figure 8-10.  DL Request list form

Chapter 8 Automating Tasks with PowerShell

212

Next up, I will connect to the SharePoint Online site collection as well as Exchange

Online:

Connect-PnPOnline -Url https://office365powershell.sharepoint.com

-Credentials $cred

$Exchange = New-PSSession -ConfigurationName Microsoft.Exchange

-ConnectionUri "https://outlook.office365.com/powershell-liveid/"

-Credential $cred -Authentication "Basic" -AllowRedirection

Import-PSSession $Exchange

I will now get the email address of all the distribution lists and save it in a variable as

seen here:

$DistributionGroups = Get-DistributionGroup | Select PrimarySmtpAddress

-ExpandProperty PrimarySmtpAddress

Next, I will find the ID of the Distribution List column by using the Get-PnPField

cmdlet:

Get-PnPField -List "DL Request"

In Figure 8-11, you can see the ID of our column is b06268ba-4779-45f8-8b31-

c2d33fd18f9f.

Figure 8-11.  Finding the ID of the DL Request distribution list

Chapter 8 Automating Tasks with PowerShell

213

Now what I know the ID, I can get the field and save it into a variable:

$DLField = Get-PnPField -List "DL Request" | Where {$_.ID -eq "b06268ba-

4779-45f8-8b31-c2d33fd18f9f"}

I can then update the Choices property of the column with the email addresses of

the distribution groups that were previously saved in the $DistributionGroups variable:

$DLField.Choices = $DistributionGroups

$DLField.Update()

To apply the changes, I will run the following cmdlet:

Execute-PnPQuery

In Figure 8-12, you can see the final New Item form in the SharePoint Online list with

the available choices in the Distribution List field.

Figure 8-12.  Viewing the distribution lists as choices

Chapter 8 Automating Tasks with PowerShell

214

The script to update the Choice column with the list of distribution lists available in

the Office 365 tenant is now complete; here is what it looks like when put together:

Import-Module SharePointPnPPowerShellOnline

$cred = Import-CliXML C:\Scripts\pass.xml

Connect-PnPOnline -Url https://office365powershell.sharepoint.com

-Credentials $cred

$Exchange = New-PSSession -ConfigurationName Microsoft.Exchange

-ConnectionUri "https://outlook.office365.com/powershell-liveid/"

-Credential $cred -Authentication "Basic" -AllowRedirection

Import-PSSession $Exchange

$DistributionGroups = Get-DistributionGroup | Select PrimarySmtpAddress

-ExpandProperty PrimarySmtpAddress

$DLField = Get-PnPField -List "DL Request" | Where {$_.ID -eq "b06268ba-

4779-45f8-8b31-c2d33fd18f9f"}

$DLField.Choices = $DistributionGroups

$DLField.Update()

Execute-PnPQuery

Next up, I need to write the second script, which will take the information from the

list and add the user to the chosen distribution list. I will first import the modules, get the

credentials, and connect to both Exchange and SharePoint Online using the OfficeDev

PnP cmdlets:

Import-Module SharePointPnPPowerShellOnline

$cred = Import-CliXML C:\Scripts\pass.xml

Connect-PnPOnline -Url https://office365powershell.sharepoint.com

-Credentials $cred

$Exchange = New-PSSession -ConfigurationName Microsoft.Exchange

-ConnectionUri "https://outlook.office365.com/powershell-liveid/"

-Credential $cred -Authentication "Basic" -AllowRedirection

Import-PSSession $Exchange

Chapter 8 Automating Tasks with PowerShell

215

I will then get all the items in the DL Request list and start a foreach loop on all the

items where the Processed field is set to false:

$NewDlMembers = Get-PnPListItem -List 'DL Request'

foreach ($Member in $NewDlMembers|Where {$_.FieldValues.Processed -eq

$false})

{

Next up, I will save the values of my three fields in variables so I can easily reuse

them later:

$TicketNumber = $Member.FieldValues.Title

$DL = $Member.FieldValues.Distribution_x0020_List

$User = $Member.FieldValues.User.Email

I can now run the simple Add-DistributionGroupMember cmdlet to add the user to

the required distribution list, as seen here:

Add-DistributionGroupMember -Identity $DL -Member $User

With the job done, I now need to notify the person who created the entry, telling

them that the job is done and they can close the ticket. I will first get the information

about the person who created the entry, and afterward I will send them an email letting

them know the request has been completed. See here:

$RequesterDisplayName = $Member.FieldValues.Author.LookupValue

$Requesteremail = $Member.FieldValues.Author.email

$body = "Hello $RequesterDisplayName , </br> The account $User has been

added to the following Distribution List: $DL </br> You can now close

ticket number #$TicketNumber"

$Subject = "User added to requested DL for Helpdesk Ticket #$TicketNumber"

Lastly, I will use the Send-MailMessage cmdlet to send the email and the

Set-PnPListItem cmdlet to change the value of the Processed field to True:

Send-MailMessage -To $Requesteremail -from vlad-admin@office365powershell.

ca -Subject $Subject -Body $body -BodyAsHtml -smtpserver smtp.office365.com

-usessl -Credential $cred -Port 587

Chapter 8 Automating Tasks with PowerShell

216

Set-PnPListItem -List 'DL Request' -Identity $Member.id -Values @

{"Processed" = $true}

}

After running the script, the user in the SharePoint list will get added to the required

distribution list and the person who created the request will get an email similar to that

in Figure 8-13.

Here is what the script looks like when put together:

Import-Module SharePointPnPPowerShellOnline

$cred = Import-CliXML C:\Scripts\pass.xml

Connect-PnPOnline -Url https://office365powershell.sharepoint.com

-Credentials $cred

$Exchange = New-PSSession -ConfigurationName Microsoft.Exchange

-ConnectionUri "https://outlook.office365.com/powershell-liveid/"

-Credential $cred -Authentication "Basic" -AllowRedirection

Import-PSSession $Exchange

$NewDlMembers = Get-PnPListItem -List 'DL Request'

foreach ($Member in $NewDlMembers|Where {$_.FieldValues.Processed -eq $false})

{

$TicketNumber = $Member.FieldValues.Title

$DL = $Member.FieldValues.Distribution_x0020_List

$User = $Member.FieldValues.User.Email

Add-DistributionGroupMember -Identity $DL -Member $User

Figure 8-13.  Email notification after the script is completed

Chapter 8 Automating Tasks with PowerShell

217

$RequesterDisplayName = $Member.FieldValues.Author.LookupValue

$Requesteremail = $Member.FieldValues.Author.email

$body = "Hello $RequesterDisplayName, </br> The account $User has been

added to the following Distribution List: $DL </br> You can now close

ticket number #$TicketNumber"

$Subject = "User added to requested DL for Helpdesk Ticket #$TicketNumber"

Send-MailMessage -To $Requesteremail -from vlad-admin@office365powershell.

ca -Subject $Subject -Body $body -BodyAsHtml -smtpserver smtp.office365.com

-usessl -Credential $cred -Port 587

$updatedItem = Set-PnPListItem -List 'DL Request' -Identity $Member.id

-Values @{"Processed" = $true}

}

With this small automation scenario now done as well, let’s take a look at a third one

that provisions Office 365 Groups.

�Office 365 Groups Provisioning
In the previous chapters, you learned how to work with Office 365 Groups using

PowerShell, and you also learned how to use governance policies to block end-users

from directly creating Office 365 Groups. In this automation scenario, you are going to

create a SharePoint list in which users will enter requests for Office 365 Groups, as well

as properties like classification, language, the members they would like to have inside

to start with, and a few other settings. You will start by creating a SharePoint list where

users will request Office 365 Groups. You can view the fields of the form in Table 8-3.

Chapter 8 Automating Tasks with PowerShell

218

You can also view the SharePoint list form in Figure 8-14.

Table 8-3.  Office 365 Group Request List Columns

Column Name Type Notes

Group Name Single Line of Text Renamed the default Title column from the list. Internal

name for this column will remain Title.

Business

Justification

Multiple lines of text

Classification Choice This list of Classification matches the classifications

created in the Office 365 Groups chapter.

Language Choice

Access Type Choice The available choices are Public or Private, which are

out of the box, as well as Secret, which will be a private

group with hidden membership and hidden from the Global

Address List.

Members Person or Group List of users who will be added as members of the Office

365 Group

Owners Person or Group List of users who will be added as owners of the Office

365 Group

Processed Yes/No This column will tell PowerShell whether this item has

already been processed or not. By default, it will be at No,

and we will change it to Yes from our PowerShell script.

Chapter 8 Automating Tasks with PowerShell

219

Tip  You could add an approval workflow using Microsoft Flow on the group
creation and build your script to only create groups once they are approved.

Figure 8-14.  The Office 365 Group request form

Chapter 8 Automating Tasks with PowerShell

220

First, import your modules and connect to SharePoint Online using the SharePoint

PnP PowerShell cmdlets as well as Exchange Online. See here:

Import-Module SharePointPnPPowerShellOnline

$cred = Import-CliXML C:\Scripts\pass.xml

Connect-PnPOnline -Url https://office365powershell.sharepoint.com

-Credentials $cred

$Exchange = New-PSSession -ConfigurationName Microsoft.Exchange

-ConnectionUri "https://outlook.office365.com/powershell-liveid/"

-Credential $cred -Authentication "Basic" -AllowRedirection

Import-PSSession $Exchange

Then, get all the items in the Office 365 Group request list and start a foreach loop

on all the items where the Processed column is at false:

$GroupRequests = Get-PnPListItem -List 'Office 365 Group Request'

foreach ($Group in $GroupRequests|Where {$_.FieldValues.Processed -eq

$false})

{

Next, save all the information from the columns into variables to make it easier to

use later. Since SharePoint stores columns with the type Multiple Lines of Text in HTML

format, use a -replace function on the Business Justification field value in order to return

pure text without any of the HTML formatting:

$GroupTitle = $Group.FieldValues.Title

$Description = $Group.FieldValues.Business_x0020_Justification -replace

"<.*?>"

$Classification = $Group.FieldValues.Classification

$Language = $Group.FieldValues.Language

$AccessType = $Group.FieldValues.Access_x0020_Type

$Members = $Group.FieldValues.Members.Email

$Owners = $Group.FieldValues.Owners.Email

Chapter 8 Automating Tasks with PowerShell

221

Next, create the GroupAlias variable by using the group title preceded by O365Group-

and without any spaces:

$GroupAlias = "O365Group-$GroupTitle" -replace '\s',''

The last variable you need to build is the language of the group. While in the

SharePoint list the language was in a user-friendly name, you need to change it to a

supported culture-code value from the Microsoft .NET Framework:

switch ($Language)

 {

 "English" {$LanguageCode = "en-US"}

 "French" {$LanguageCode = "fr-FR"}

 "Spanish" {$LanguageCode = "es-ES"}

 default {throw "Language not valid"}

 }

Now that you have everything you need saved in variables, start creating the

Office 365 Groups. When creating the group, the big differentiator will be if they chose

one of the out-of-the-box access types (Public or Private) or if they chose Secret,

as that level does not actually exist, so you would need to manually configure some

parameters such as the -HiddenGroupMembershipEnabled switch. Do an If statement

on the AccessType variable first, and if it’s Secret, create the group, specifying a

Private access type using the -HiddenGroupMembershipEnabled switch and setting

the -HiddenFromAddressListsEnabled property as well. Also, specify all the group

properties, such as classification, languages, description, and display name.

If ($AccessType -eq "Secret"){

New-UnifiedGroup -DisplayName $GroupTitle -Alias $GroupAlias

-EmailAddresses "$GroupAlias@office365powershell.ca" -AccessType Private

-HiddenGroupMembershipEnabled -Classification $Classification -Language

$LanguageCode -Notes $Description

Set-UnifiedGroup -Identity $GroupAlias -HiddenFromAddressListsEnabled $true

}

Chapter 8 Automating Tasks with PowerShell

222

If it’s not a secret Office 365 Group that you need to create, it means you need to

create either a public or private one, so you will do an Else statement in which you will

create an Office 365 Group using all the parameters you have saved from the user input

and setting the -AccessType parameter to the $AccessType variable:

Else{

New-UnifiedGroup -DisplayName $GroupTitle -Alias $GroupAlias

-EmailAddresses "$GroupAlias@office365powershell.ca" -AccessType

$AccessType -Classification $Classification -Language $LanguageCode -Notes

$Description

}

What you need to do next is add the members and owners. Since in the SharePoint

list those items are set at optional, you first need to make sure that some members have

been entered, and, if yes, add those members to the group:

If ($Members)

{

Add-UnifiedGroupLinks -Identity $GroupAlias -LinkType "Members" -Links

$Members

}

Do the same thing for owners, and also make sure to first add them as members and

them as owners in order to avoid any potential errors:

If ($Owners)

{

Add-UnifiedGroupLinks -Identity $GroupAlias -LinkType "Members" -Links

$Owners

Add-UnifiedGroupLinks -Identity $GroupAlias -LinkType "Owners" -Links

$Owners

}

Lastly, change the Processed column to Yes in order to mark this item as processed

and then close the foreach loop you started at the beginning of the script. No email

notification will be sent in this example as all the members that have been added to the

Chapter 8 Automating Tasks with PowerShell

223

group have already been notified. If needed in your specific scenario, you can add an

email notification:

$updatedItem = Set-PnPListItem -List 'Office 365 Group Request' -Identity

$Group.id -Values @{"Processed" = $true}

}

To test it out, I have created a few entries in the list as seen in Figure 8-15. Some

columns are not shown in order to make the text readable.

After the script has been run, the Office 365 Groups have been created, as seen in

Figure 8-16, and members and owners have been added, even if you cannot see it in the

figure.

Figure 8-15.  Input for the Office 365 Group creation

Chapter 8 Automating Tasks with PowerShell

224

This is what the final script looks like when put together:

Import-Module SharePointPnPPowerShellOnline

$cred = Import-CliXML C:\Scripts\pass.xml

Connect-PnPOnline -Url https://office365powershell.sharepoint.com

-Credentials $cred

$Exchange = New-PSSession -ConfigurationName Microsoft.Exchange

-ConnectionUri "https://outlook.office365.com/powershell-liveid/"

-Credential $cred -Authentication "Basic" -AllowRedirection

Import-PSSession $Exchange

$GroupRequests = Get-PnPListItem -List 'Office 365 Group Request'

foreach ($Group in $GroupRequests|Where {$_.FieldValues.Processed -eq

$false})

{

$GroupTitle = $Group.FieldValues.Title

$Description = $Group.FieldValues.Business_x0020_Justification -replace

"<.*?>"

Figure 8-16.  Office 365 Groups created by script

Chapter 8 Automating Tasks with PowerShell

225

$Classification = $Group.FieldValues.Classification

$Language = $Group.FieldValues.Language

$AccessType = $Group.FieldValues.Access_x0020_Type

$Members = $Group.FieldValues.Members.Email

$Owners = $Group.FieldValues.Owners.Email

$GroupAlias = "O365Group-$GroupTitle" -replace '\s',''

switch ($Language)

 {

 "English" {$LanguageCode = "en-US"}

 "French" {$LanguageCode = "fr-FR"}

 "Spanish" {$LanguageCode = "es-ES"}

 default {throw "Language not valid"}

 }

If ($AccessType -eq "Secret"){

New-UnifiedGroup -DisplayName $GroupTitle -Alias $GroupAlias

-EmailAddresses "$GroupAlias@office365powershell.ca" -AccessType Private

-HiddenGroupMembershipEnabled -Classification $Classification -Language

$LanguageCode -Notes $Description

Set-UnifiedGroup -Identity $GroupAlias -HiddenFromAddressListsEnabled $true

 } Else

 {

New-UnifiedGroup -DisplayName $GroupTitle -Alias $GroupAlias

-EmailAddresses "$GroupAlias@office365powershell.ca" -AccessType

$AccessType -Classification $Classification -Language $LanguageCode -Notes

$Description

 }

If ($Members)

 {

Add-UnifiedGroupLinks -Identity $GroupAlias -LinkType "Members" -Links

$Members

 }

Chapter 8 Automating Tasks with PowerShell

226

If ($Owners)

 {

Add-UnifiedGroupLinks -Identity $GroupAlias -LinkType "Members" -Links

$Owners

Add-UnifiedGroupLinks -Identity $GroupAlias -LinkType "Owners" -Links

$Owners

 }

$updatedItem = Set-PnPListItem -List 'Office 365 Group Request' -Identity

$Group.id -Values @{"Processed" = $true}

}

We have now looked at three real-life automation scenarios with PowerShell for

Office 365. In the next section, we will look at a few tips and tricks on how we could

optimize the scripts we did for better performance and user experience, tips that you

could use in all of your PowerShell scripts!

�Other Tips and Optimizations
Before finishing the book, let’s look at a few final configurations or optimizations you

can do with PowerShell for Office 365 that would make the automation scenarios in this

chapter better.

�Hiding Columns in SharePoint Online
One of the columns we used in all three of the previous scripts was the Processed

column. This column worked really well; however, a problem happens when a user

does not understand it and switches it to Yes when creating a new item. By using the

Office 365 Dev PnP PowerShell cmdlets, we can hide certain columns in certain fields.

Let’s take the DL Request list, for example, for which you can see the New Item form in

Figure 8-17.

Chapter 8 Automating Tasks with PowerShell

227

If we wanted to hide the Processed column in the New Item form, we would first

import the Office 365 PnP PowerShell cmdlets and connect to our site collection:

Import-Module SharePointPnPPowerShellOnline

$cred = Import-CliXML C:\Scripts\pass.xml

Connect-PnPOnline -Url https://office365powershell.sharepoint.com

-Credentials $cred

We will then get the column and save it into a variable:

$ProcessedField = Get-PnPField -List "DL Request" | Where {$_.Title -eq

"Processed"}

Each field has three properties that will help us define where this field is shown, or not:

•	 SetShowInDisplayForm

•	 SetShowInEditForm

•	 SetShowInNewForm

Figure 8-17.  The DL Request New Item form

Chapter 8 Automating Tasks with PowerShell

228

If we wanted to hide the field from the New Item form, but keep it in the Display and

Edit forms, we would run the following cmdlets:

$ProcessedField.SetShowInNewForm($false)

$ProcessedField.Update()

Lastly, we will run the following cmdlet to apply these changes to our site collection:

Execute-PnPQuery

The end result, seen in Figure 8-18, is that the Processed field is not seen when

creating an item in that list:

However, the field is still visible when viewing the item or when editing it, as seen in

Figure 8-19.

Figure 8-18.  Field hidden when creating an item

Chapter 8 Automating Tasks with PowerShell

229

Knowing how to change when a field is visible can allow you to customize the user

experience and will only show the relevant columns when users create, edit, or view items!

�Using CAML to Filter Items
In previous examples, we used code similar to the following to get items that had the

Processed field set to No:

$NewDlMembers = Get-PnPListItem -List 'DL Request'

foreach ($Member in $NewDlMembers|Where {$_.FieldValues.Processed -eq

$false})

{ #code }

Figure 8-19.  Field visible in edit form

Chapter 8 Automating Tasks with PowerShell

230

One of the issues with this approach is that when doing the Get-PnPListItem we

will retrieve all the items in the list, which can take a long time and make our script less

performant. With the Office 365 Dev PnP cmdlets, you can use Collaborative Application

Markup Language (CAML) to filter the information that you get from SharePoint. For

example, I could use the following cmdlet to only get the items where the field Processed

is equal to No:

Get-PnPListItem -List "New Users" -Query "<View><Query><Where><Eq>

<FieldRef Name='Processed'/><Value Type='Boolean'>0</Value></Eq></Where>

</Query></View>"

Instead of returning all the items in the list in my PowerShell session, I would only

get the pre-filtered ones, which would make my script faster!

�Conclusion
In this chapter, we looked at PowerShell scripts that allow us to automate real-life

scenarios that span multiple Office 365 services and can resolve real business needs.

As this is the final paragraph of the book, I would like to thank you for reading until

the end, and I hope it was informative and will help you manage and automate your

Office 365 tenant!

Chapter 8 Automating Tasks with PowerShell

231
© Vlad Catrinescu 2018
V. Catrinescu, Essential PowerShell for Office 365, https://doi.org/10.1007/978-1-4842-3129-6

Index

A
Azure Active Directory, 6–8, 11

B
Blocked words

Azure AD settings object, 173
in Microsoft Stream, 177
in Microsoft Teams, 176
in Outlook Online, 175
in Planner, 176
update, 174

C
CAML, see Collaborative Application

Markup Language (CAML)
Client-side object model (CSOM), 73
Collaborative Application Markup

Language (CAML), 232
Connect-SPOService cmdlet, 52–53

D
Data-loss prevention (DLP) cmdlets, 141

E
Exchange online

calendar and out of office, 100–104
ConnectionUri, 86

contacts, 93, 95–96
distribution groups, 112–114
mailboxes, 96, 98–100
mailbox reporting, 116, 118
managing

distribution group membership, 115
organization settings, 109–111

MFA, 85
PowerShell, 86
SendAs and mailbox permissions, 104–108
users, 91–92

F
ForceChangePasswordNextLogin

property, 19

G, H, I, J
Get-AzureADUserDirectReport cmdlet, 16
Get-AzureADUserManager cmdlet, 15
Get-CsOnlineUser cmdlet, 124
Get-RoleGroupMember cmdlet, 144
Guest policies

add external guest, 191, 193
block guests, 189
Get-AzureADDirectorySetting

Template cmdlet, 190–191
Group.Unified.Guest directory

setting, 191
tenant level, 188–189

https://doi.org/10.1007/978-1-4842-3129-6

232

K, L
Keyword Query Language (KQL), 145

M
Microsoft Download Center, 12, 49, 74
Multi-factor authentication

(MFA), 7, 53, 85
Exchange Online PowerShell

module, 88–90
Exchange Online Remote PowerShell

module, 87

N
Naming convention policy

Microsoft Stream, 177
Microsoft Teams, 176
Outlook Online, 175
Planner, 176
updation, 174

New-AzureADUser cmdlet, 19

O

Office 365
Active Directory, 11
Get-Credential cmdlet, 13
PowerShell Gallery, 12

Office 365 Groups
add users, 169
blocked words

administrative roles, 172
Azure AD settings object, 173
in Microsoft Stream, 177
in Microsoft Teams, 176

in Outlook Online, 175
in Planner, 176
update, 174

classifications, 178
ClassificationDescriptions

property, 179
ClassificationList property, 179
DefaultClassification property, 179
in Microsoft Stream, 181
in Microsoft Teams, 181–182
in Outlook Online, 180

connect to SharePoint Online, 222
governance, 170
group properties, 223
guest policies

add external guest, 191, 193
block guests, 189
Get-AzureADDirectorySetting

Template cmdlet, 190–191
Group.Unified.Guest directory

setting, 191
hidden membership, 161
MailTip, 163
membership levels, 167
naming convention policy

Microsoft Stream, 177
Microsoft Teams, 176
Outlook Online, 175
Planner, 176
update, 174

parameters of New-UnifiedGroup
cmdlet, 156–158

Outlook Online
Discover button, 186–187

private group
non-members, 160–161
search, 160

Index

233

public group, 158–159
remove users, 169–170
parameters of Set-UnifiedGroup

cmdlet, 161–162
soft-deleted state, 164
usage guidelines, 183–185
user profile properties, 171
view members, 167–168

Office 365 Security and Compliance
Center

available cmdlets, 139
content search cmdlets, 140
DLP, 141
Import-PSSession cmdlet, 138
PowerShell cmdlets

compliance search, 144–145, 147
managing permissions, 142–144

Security and Permissions
cmdlets, 142

P, Q, R
Patterns and Practices (PnP), 73
Get-AzureADSubscribedSku cmdlet, 21

Get-AzureADUserLicenseDetail
cmdlet, 24, 27

Get-AzureADSubscribedSku, 28
Set-AzureADUserLicense cmdlet, 28
removing user licenses, 33–34
save credentials, 198, 200
security groups

changing the properties, 35–36
membership, 37–39
removing, 36

user creation, 19–20
user properties, 17–18
viewing users and properties, 15–16

S, T

Set-AzureADUser cmdlet, 17
Set-AzureADUserManager

cmdlet, 18
SharePoint

hide columns, 228–231
SharePoint Online

community extensions, 73
Connect-PnPOnline cmdlet, 75
ExternalUserAndGuestSharing

sharing option, 62
Get-PnPRecycleBinItem, 77
Get-SPODeletedSite cmdlet, 59
Get-SPOExternalUser cmdlet, 66
Get-SPOSite cmdlet, 56–57, 59
Get-SPOSiteGroup, 63–64
list of users, 65
Management Shell Setup, 50
managing tenant-level

settings, 68–73
New-PnPWeb cmdlet, 75
New-SPOSiteGroup, 67
Office 365 Dev PnP PowerShell

Cmdlets, 74
PnP PowerShell cmdlets, 77–79
PnPRecycleBinItem cmdlet, 76
PowerShell cmdlets, 53
Remove-SPOSite cmdlet, 58
Remove-SPOUser, 67
Restore-PnpRecycleBinItem

cmdlet, 76
SharingAllowedDomainList

parameter, 63
SharingCapability Parameter

Options, 61
SharingDomainRestrictionMode, 63

Index

234

sharing options, 61
Site Collection cmdlets, 54
SPOSite properties, 60
tenant-level cmdlets, 55
User-and SharePoint Groups–level

cmdlets, 56
user permissions, 81, 83–84
users property, 64

Skype for business online
Broadcast cmdlets, 124
hybrid environment, 135–136
New-CSOnlineSession, 121
policy cmdlets, 123
PowerShell cmdlets

Broadcast policies, 134
external communications, 130–131

Get-CsBroadcastMeeting
Configuration cmdlet, 132

managing policies, 125–129
users and policies, 124–125

PowerShell module, 119
SharePoint and Azure Active

Directory, 119
user cmdlets, 122

U, V, W, X, Y, Z
Unified Audit Log

AuditData parameter, 152
Exchange Online module, 149
searching, 153
Search-UnifiedAuditLog

Parameters, 150–151

SharePoint Online (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Introduction to PowerShell for Office 365
	What Is Office 365?
	Office 365 Admin Tools
	The Office 365 Admin Center
	The Office 365 Admin App
	The Office 365 Management API
	PowerShell for Office 365
	The Importance of Learning PowerShell for Office 365

	The Different Types of Office 365 Deployments
	What About the Other Applications?

	Next Steps

	Chapter 2: Managing Users and Licenses
	Connecting to Office 365
	Managing Users with PowerShell
	Viewing Users and Properties
	Modifying User Properties
	Creating Users

	Managing Licenses with PowerShell
	Viewing the Available Licenses
	Assigning a License to a User
	Assigning Multiple Licenses
	Assigning Licenses with Some Features Disabled
	Removing User Licenses

	Managing Security Groups with PowerShell
	Creating a New Security Group
	Changing the Properties of a Security Group
	Removing a Security Group
	Managing Security Group Membership

	Automation Scenarios
	Updating User Licenses
	Creating or Updating Users from a CSV File

	Conclusion

	Chapter 3: Managing SharePoint Online
	Connecting to SharePoint Online
	Executing PowerShell cmdlets in SharePoint Online
	The Available cmdlets
	Managing Sites
	Managing Users and Groups
	Managing Tenant-level Settings

	Community Extensions
	Getting the Office 365 Dev PnP PowerShell Cmdlets
	Connecting to SharePoint
	Sample cmdlets

	Automation Scenarios
	Create Sites from a CSV File
	Copy User Permissions

	Conclusion

	Chapter 4: Managing Exchange Online
	Connecting to Exchange Online
	Connecting with Multi-Factor Authentication

	Managing Users and Mailboxes
	Users
	Contacts
	Mailboxes
	Calendar and Out of Office
	SendAs and Mailbox Permissions

	Managing Organization Settings
	Managing Distribution Groups
	Manage Distribution Group Membership

	Mailbox Reporting
	Disconnecting from Exchange Online
	Conclusion

	Chapter 5: Managing Skype for Business Online
	Connecting to Skype for Business Online
	Available cmdlets
	Executing PowerShell cmdlets for Skype for Business Online
	Managing Users and Policies
	Managing Policies
	External Communications
	Skype for Business Broadcast

	Running cmdlets in a Hybrid Environment
	Conclusion

	Chapter 6: Managing the Office 365 Security & Compliance Center
	Connecting to the Office 365 Security & Compliance Center
	Office 365 Security & Compliance Center cmdlets
	Executing PowerShell cmdlets in the Office 365 Security & Compliance Center
	Managing Permissions
	Compliance Search

	Searching the Unified Audit Log
	Conclusion

	Chapter 7: Managing Office 365 Groups
	PowerShell Modules to Manage Office 365 Groups
	Basic Operations
	Creating an Office 365 Group
	Updating Office 365 Groups
	Deleting an Office 365 Group
	Restoring a Deleted Office 365 Group
	Managing the Members of an Office 365 Group
	Viewing Office 365 Group Members
	Adding Users to an Office 365 Group
	Removing Users from an Office 365 Group

	Office 365 Group Governance
	Enforcing a Naming Policy and Blocked Words
	Group Classifications
	Usage Guidelines
	Only Allowing a Certain Group to Create Office 365 Groups
	Guest Policies

	Office 365 Group Reporting
	Conclusion

	Chapter 8: Automating Tasks with PowerShell
	Connecting to Multiple Office 365 Services
	Saving Credentials to Securely Use with PowerShell
	Creating Users in Azure AD Using SharePoint as an Input
	Add Users to an Distribution List Using SharePoint as an Input
	Office 365 Groups Provisioning
	Other Tips and Optimizations
	Hiding Columns in SharePoint Online
	Using CAML to Filter Items

	Conclusion

	Index

