X1

Essential
PowerShell
for Office 365

Managing and Automating Skills for
Improved Productivity

Vlad Catrinescu

Apress’

ww.allitebooks.cor

http://www.allitebooks.org

Essential PowerShell
for Office 365

Managing and Automating Skills
for Improved Productivity

Vlad Catrinescu

Apress’

vww .allitebooks.cond

http://www.allitebooks.org

Essential PowerShell for Office 365: Managing and Automating Skills for Improved
Productivity

Vlad Catrinescu
Greenfield Park, Québec, Canada

ISBN-13 (pbk): 978-1-4842-3128-9 ISBN-13 (electronic): 978-1-4842-3129-6
https://doi.org/10.1007/978-1-4842-3129-6

Library of Congress Control Number: 2018936350

Copyright © 2018 by Vlad Catrinescu

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, email orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please email rights@apress.com or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484231289. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

vww allitebooks.conl

https://doi.org/10.1007/978-1-4842-3129-6
http://www.allitebooks.org

To Genvieve, thank you for your love and support over the
years as 1 followed my passions!

vww allitebooks.conl

http://www.allitebooks.org

Table of Contents

About the Author ... ——————— ix
About the Technical REVIEWETcuvessssessnsssassssssnsannas Xi
Chapter 1: Introduction to PowerShell for Office 365......ccucccmmrmmsnnnnmsssssnnsssssssnnsessns 1
What IS OffiCE 3657ccviererrrieriesiriesissr s s sas s s sns s 1
Office 365 AdMIN TOOIS..........ccuvceririririrr s ————— 2
The 0ffice 365 AAMIN CENTET ..o 2

The Office 365 AAMIN APP ..eovrererereeereererererereseresersesessesessesassesseessesessesesassassessssesasnessensssssssesssserssnenes 3

The Office 365 ManagemMENt APl ...t res e ras e sa e ae e ae e sae e saesae e nae e es 3
PowerShell for OffiCe 365........ccurrmnnirii i ————— 4

The Importance of Learning PowerShell for Office 365........ccccvrevrrererererere s rereesersesessesessesessesessenes 4

The Different Types of Office 365 Deploymentscccoovvverriennnncsssc s 5
What About the Other APPlICALIONS?cceceeiererrcr e sr e sa e sr e sr e snenens 8

NEXE SEEPSeiererir e r e p e e R n e n s 8
Chapter 2: Managing Users and LiCENSEScuuemmrmsssssnmmsssssnssssssssnssssssssnssssssssnnssssss 9
Connecting 10 OffiCe 365.......cccerererererrrere e se s saesa e e e sn e sa s sa e sn e sae s 9
Managing Users with POWErShell ... 13
Viewing USers and PrOPEILIES........ccuccveerereresinesisesss s sss e e sse s sss e sse e ssssessssssssssssessssessssssssnsnes 13
Modifying USEr PrOPEITIESccceueererererinc s se e sss s se e sn e n s s r e sn s s n s ne s ne e enesnsnssnnnens 15
CrEALING USEIScveeeeeireeiseriec s ss e s s e s b ne e b b e R e e Re e e Re e e aeen e ne e nenennnnnnanas 17
Managing Licenses with PowerShell ... 19
Viewing the Available LICENSES..........ccceeerererencririne e 19
AsSIgNINg @ LICENSE 10 @ USETcoerureieeririeecreriee e ssnsans 23
AsSIgNING MUIIPIE LICENSESveeeererreeeresieeeser e ss s ssnsnns 26
Assigning Licenses with Some Features DiSabIedcccovreiererereienesersesesesse e sessns 28
REMOVING USEI LICENSESccovveueererreeerisseeesesssee s se s e e s se s s s ss s s ssssessssssssesssssssssssaes 31

v

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

Managing Security Groups with PowerShell............c.ccovvervrcncrrrcr e 32
Creating @ NEW SECUNLY GIOUDcocvveeeererreereresseeesessssesesesesseesessssssssesssss e e ssssssssessssssssssssssssssssssessaes 32
Changing the Properties of @ SECUItY GIOUPcccoererreereririeccrerire e ses 33
RemMOVING @ SECUITY GrOUPcveeecereeeererieeses st ne s s 34
Managing Security Group MemMDEISNIPcccoceureeiererireerere s 35

AutomMation SCENAIOScceirerrrrrsissse s 37
UPAAting USEI LICENSESc.crveereeereerereereeersesessesesaesessesassessssessesessessssessssessesesssssssssssessssessesssssnssassansens 37
Creating or Updating Users from @ CSV Fileccevercerriererererererererese e sessesessesessesasessesessesesassesaens 4

CONCIUSION....ceeccctt e s 46

Chapter 3: Managing SharePoint Online.......c..ccccsremsssnennesssnsssssssssssssssssnsssssssssnnsnnss 47

Connecting to SharePoint ONliNe..........ccccoeeeeececccere e e 47

Executing PowerShell cmdlets in SharePoint Onlineccccvvvvvvrrrcncensesses s, 51
The Available CIMAIETS ... ——————— 51
T 10T T R 54
Managing USEIS and GIOUPS.......ceceererererrersererserersesersessssessesessesessessssessssessessssssssessssessssessesessssssassassens 61
Managing Tenant-1eVel SELHNGSccoeeererererere et s s e s e e ra e rae e ae e se e s e ae e s aesesaenesaenanaens 66

Community EXTENSIONS.......cccieeeriirerirere e sas s se s sa s s sn s s e 7
Getting the Office 365 Dev PnP PowerShell CMAIELScccvecevricicnrnniessis e sesessssenes 72
Connecting t0 SharePOiNt ..o —————————— 73
SAMPIE CMAIBTS.....veceeeecie e e e e e e e e e e sa e e e s e e e e s e e e e saeneenaenan 73

AUtOMALION SCENANOSccvrerrerieressere e 77
Create Sites from @ CSV File........cococoeirerirrerccccesee s 77
COPY USEI PEIMISSIONSc.coererreuecresreesesesseesesessssssesessssssesesssssesessssssssessssasesessssssssssssssssnsssssesssssssessaes 79

CONCIUSION....cvercic it 82

Chapter 4: Managing Exchange Online.......ccccusseemmmssssssnsssssssssssssssssssssssssssssssssssnnees 83

Connecting to Exchange Online...........ccoeoieeiinenncne s sse e 83
Connecting with Multi-Factor Authentication ... e 85
Managing Users and MailDOXESccocrverrerieriersinsrses s 89
USBIS...eeicertereesesessee st se e e s e e s e e e s e e e e e e Re e e s A e Re e e A e AR e e e A e AR R e A e R e AR e A e R e e R e e Re e e e e R e e nn e nrenn s 89
0] 1 2T OSSPSR 91

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

T80 3 94
Calendar and OUt OF OFfiCE.......cocoererererererereresesesese e e 98
SendAs and MailboX PErMISSIONS.........ccueuruerrrrrrrererernresssnnes 102
Managing Organization Settingscccucrerrrinsnses s e 107
Managing Distribution GroUPS........ccouoeieresseresrsesessesesssse s ss s sresessssssessesessessssssnes 110
Manage Distribution Group Membership........ccccoveeeerrnesesrsesese s ssssssssenens 113
T 0 To) Q2 1=T o £ o S 114
Disconnecting from Exchange Onlingcocvcvcrcersscessscesses s sne s 116
00] o (1 [0 o TSRS 116
Chapter 5: Managing Skype for Business Online.........ccccuusseemnmsssssnnnsssssssssssssssnnnss 117
Connecting to Skype for BuSingss ONliNecccoceverereerssessesnesssessesessessessesssssassessenns 117
Available CMAIBES ..o s 120
Executing PowerShell cmdlets for Skype for Business Online............ccocvevververversennenns 122
Managing USErs @nd POLICIESccerreerererrsiesesesssssesessssssesesessssesessssssssesesssssssssssssssssssssssssnssssssssnnens 122
MaNAGING POJICIES ...coveerveueererrsreesesssseeseses s sss e sss e e e e sse e e s s esa e e s sse e e ssnse e s nansassnsnens 123
External CommUNICALIONS.cvveeeerrreesiresrsese e se s e s sn s se s s e e nsnsesnnnens 128
Skype for BuSiness BroadCast............cceeererererererererieseriesesseses e sessesassessesessesessessssesassesssssssesessesassens 129
Running cmdlets in a Hybrid Environment............cccovnrnncn s 133
070 T (1 [0 o 134
Chapter 6: Managing the Office 365 Security & Compliance Centerccccuue. 135
Connecting to the Office 365 Security & Compliance Center..........ccocevevvvrveriersennnnns 135
Office 365 Security & Compliance Center cmdAIEtsocevevevvrrrrsrses s reneens 137
Executing PowerShell cmdlets in the Office 365 Security & Compliance Center......... 140
Managing PErMISSIONSccoveieirirere et sa e r e e s b b e se e sp e n s 140
COMPIIANCE SBAICH.......cueceieeiecrec e bbb e e e e e e R e e 142
Searching the Unified AUdit LOQ........ccoourerrernserenensesesssessssessssessessesssssssssessesessssssssssens 147
(003 T 11T 152
vii

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

Chapter 7: Managing Office 365 Groups.......ccusseerrsssssnssssssssnnssssssssnssssssssnssssssnnnnss 153
PowerShell Modules to Manage Office 365 GroUPSc.ccvevrerrersessrssessessessessssssssensenns 153
BaSiC OPErationsScccvververierseriirser st se e e e sn s sn s sn s n s sa s sn e sn e nnenens 154

Creating an OffiCe 365 GrOUPccceeerrreerererresesesessssssesessssssesessssssesessssssssssssssssssssssssssssssssssssnsssssesssnsns 154
Updating OffiCE 365 GIOUDS.....cuurerererrrrerererersssesesessssssesessssssesessssasessessnnens 159
Deleting an OffiCe 365 GrOUD.......ccceurrrrererererresesesessssesesesssssesessssesesessssssssssesssssssssssssessssssssssssssssssssnnens 161
Restoring a Deleted OffiCe 365 GIOUDcoveverererrresererensesesesssseesesessssesesessssssessssssssssesssssssssssssssssnnns 162
Managing the Members of an OffiCe 365 GrOUP........ccovurererererereseresessssesesssssse e sesessssesesessssessens 165
Office 365 Group GOVEINANCEcceeeereereererssersessesssssssssssssasssssssssssssssssssssssassassassssssssanns 168
Enforcing a Naming Policy and BIOCKEA WOTASccccveverinennnenin s sss s s s e ssssessssssees 169
Group ClasSifiCaAtIONS.......ceceveerererereerere st rre e ra s e sae e a e sesae e s e e e a e e ae e ae e naesaenenaenees 176
1T N 10T =] =T 181
Only Allowing a Certain Group to Create Office 365 GIrOUPS........ccreverrererererseressersesersesessesessessssessesees 184
GUEST POICIES ...cueeercesceeesesesese e 186
Office 365 Group REPOrting........cccoeeeeerrereserressessessessessessessesssssessessssssssesssssssssssssssnsnns 191
00] o (1 [0 o PSS 194

Chapter 8: Automating Tasks with PowerShell...........cuccummssenmmssnsmsssanssssanssssanssssns 195
Connecting to Multiple Office 365 SEIVICESccevrerrrerrerrerreerseser s sesssessesessassasssssenns 195
Saving Credentials to Securely Use with PowerShell............c.coorervecrcrcscercrcescennn, 196
Creating Users in Azure AD Using SharePoint as an Input...........cccoeevevvrevrvessensennenns 198
Add Users to an Distribution List Using SharePoint as an Input..........ccccccoveeriernrenee. 210
Office 365 Groups ProviSiONiNgcccceeeeereresesessessessessessessessessssssssssssssssssssssssssssnns 217
Other Tips and OPtimMIZationsSccccvveerirreerrirre e s e sn e e sneens 226

Hiding Columns in SharePoint ONliNe.........ccccceerererererrerer s sa e sae s 226

USiNG CAML 10 FIREI HEIMScovvecererteceres s sasss e se s e sn s s e sssssssssnssssssnsnens 229

003 T 1] o] 230

11T - 231
viii

vww allitebooks.conl

http://www.allitebooks.org

About the Author

Vlad Catrinescu is a SharePoint and Office 365 consultant
specializing in PowerShell, SharePoint, and hybrid
scenarios. As an author, MVP, Microsoft Certified Trainer,
and recognized international speaker, Vlad has helped
hundreds of thousands of users and IT pros across the

globe to get the most out of their SharePoint and Office 365
deployments. Vlad writes the popular “Absolute SharePoint
Blog” and is a recipient of the “Top 25 Office 365 Influencers”

award. His contributions can also be found on other sites
such as CMSWire and ComputerWorld. He is author of Deploying SharePoint 2016: Best
Practices for Installing, Configuring, and Maintaining SharePoint Server 2016(Apress).

ix

vww allitebooks.conl

http://www.allitebooks.org

About the Technical Reviewer

Jeff Collins is the owner of Coupled Technology, a
SharePoint and Office 365 consulting agency. Jeff has a deep
love for new technology, especially when it comes to

Office 365 and SharePoint. Jeft’s passion for helping
businesses get the most out of the Office 365 and SharePoint
services is what drives his ability to think outside of the box
and implement creative solutions that maximize adoption
and consumption.

vww .allitebooks.cond

http://www.allitebooks.org

CHAPTER 1

Introduction to PowerShell
for Office 365

In this chapter, we will learn the tools we have available as Office 365 administrators
to manage our tenant as well as why PowerShell is a critical skill for every Office 365
administrator out there. We will also review the different ways of deploying Office 365
and how each affects us when managing our tenant.

What Is Office 365?

One of the major changes in technology over the past few years has been the move to the

cloud. Whether it’s using an Infrastructure-As-A-Service (IaaS) provider such as Azure

or Amazon Web Services (AWS) to host their virtual machines or using a Software-As-

A-Service (SaaS) provider such as Office 365 for their collaboration tools, employers are

moving to the cloud to provide more efficient service to their employees at a lower cost.
When Office 365 got released on June 28, 2011, it included mostly Microsoft’s

big three Office Servers products (Exchange, SharePoint, and Skype for Business),

but in an SaaS model in the cloud. Now, Office 365 has added a dozen new products

and is used by more than 100 million users every month. With the change from on-

premises software to the cloud, IT professionals have less to worry about since a lot of

the technology behind is managed by Microsoft, allowing IT staff to focus their time

on creating productive solutions for their users. However, even if Microsoft takes care

of the servers in the backend, IT professionals still have to configure Office 365 for

their company as well as manage the day-to-day tasks. Let’s take a look at the tools IT

professionals can use to manage Office 365.

© Vlad Catrinescu 2018
V. Catrinescu, Essential PowerShell for Office 365, https://doi.org/10.1007/978-1-4842-3129-6_1

CHAPTER 1 INTRODUCTION TO POWERSHELL FOR OFFICE 365

Office 365 Admin Tools

Microsoft offers four main tools with which to manage Office 365 that cover different
scenarios and capabilities. Let’s take a look at each one of them in detail.

The Office 365 Admin Center

The Office 365 Admin Center seen in Figure 1-1 is the most popular tool with which

to manage Office 365 and is probably the tool you are most familiar with. The Admin
Center provides a user interface where administrators can do the initial setup of Office
365, as well as an out-of-the-box solution that allows you to manage your users and
licenses, as well as every product in the Office 365 suite, such as Exchange, SharePoint,
Skype for Business, OneDrive, and more. While the Office 365 Admin tool is easy to use
and has a lot of possibilities, not all of the properties can be seen, and a lot of common
actions cannot be performed in this portal.

T Videos Message certer % Service heatth M9 Suggested foatures

Figure 1-1. The Office 365 Admin Center

CHAPTER 1 INTRODUCTION TO POWERSHELL FOR OFFICE 365

The Office 365 Admin App

The Office 365 Admin App seen in Figure 1-2 allows Office 365 administrators to stay
connected with their Office 365 administration on the go. You can manage your users
and do easy tasks, such as assigning a license, adding an alias, or resetting a password,
directly from the Office 365 Admin App. You can also view the latest information
about service health as well as the Office 365 Message Center and your support tickets.
While the Office 365 Admin App is very useful for the admin on the go, itisn’t a full

management tool, and it’s the tool with the fewest robust options out of the four we will

look at in this chapter.
= [Office 365 Admin —[* Health
Q Exchange Online
- Vlad CatrlneSCU A zsuivead-iiies.
" Admin
=
@ ° Identity Service
Messages Health P
L D) Microsoft Teams
Quick Links @, Reset password
2 Users = Assign license @ Mobile Device Management fo...
£ Groups il Delete
i Office 365 Portal
& Billing et (]
€ Support Z Contact info
o OneDrive for Business
@ Alias
User role

° Planner

Figure 1-2. The Office 365 Admin App

The Office 365 Management API

The Office 365 Management API can be used by developers in your company to

create applications on top of Office 365 that will make management easier as well as
offer more solutions for your employees. The Office 365 Management API sits on the
Microsoft Graph, and allows you to utilize data from all Office 365 products in your own
application or site. Multiple independent software vendors (ISVs) have taken advantage
of the API to create applications on top of Office 365.

CHAPTER 1 INTRODUCTION TO POWERSHELL FOR OFFICE 365

PowerShell for Office 365

Last, but not least, is PowerShell for Office 365. PowerShell is really the most powerful
tool out there to manage your Office 365 tenant without having to create a custom
solution. PowerShell is a command-line environment that is designed specifically

for system administration in the Microsoft ecosystem, and now extends to Linux as
well. Most of the Office 365 components have their own cmdlets with which to change
different settings in Office 365. PowerShell allows you to use cmdlets provided by
Microsoft as well as using the client-side object model (CSOM). By using CSOM you
can leverage the Microsoft API to connect and manage your Office 365 environment to
accomplish tasks that Microsoft didn’t release a cmdlet for.

The Importance of Learning PowerShell for Office 365

So, why is learning PowerShell for Office 365 that important when we already have the
Office 365 Admin Center? Office 365 PowerShell can display properties that cannot

be seen in the Office 365 Admin Center, as well as do actions that you cannot perform
from the Admin Center. Furthermore, with PowerShell you can easily execute bulk
operations, or operations that affect multiple Office 365 services at once. As an Office
365 administrator, you need to learn how to master PowerShell for Office 365 in order to
control and manage all of the parameters of your Office 365 deployment.

PowerShell also allows you to automate stuff you do on a regular basis, therefore
saving you time and enabling you to do things that will make your business more
productive. PowerShell is great at getting data from Office 365, filtering it, and saving it in
different formats that you can then print or import into other applications.

CHAPTER 1 INTRODUCTION TO POWERSHELL FOR OFFICE 365

The Different Types of Office 365 Deployments

Office 365 is used by a wide variety of enterprises, ranging from small one-person home
businesses to Fortune 100 companies with over 50,000 users. Depending on multiple
factors, such as enterprise size, how new the company is, and more, an enterprise might
deploy Office 365 differently. A small company that just launched and never had on-
premises servers to take care of probably went 100 percent in Office 365 while a Fortune
100 company that’s been around for a hundred years, had stuff hosted on-premises,
and probably still has a big part of its infrastructure on-premises with some parts in the
cloud. This can make a big difference in the way one manages some parts of Office 365,
especially the users.

In a small company that is 100 percent in the cloud with nothing on-premises, all of
the users will be what we call cloud users, meaning they are not synchronized from any
external locations. These users have probably been created directly in Office 365, and
technically they are stored in Azure Active Directory behind the scenes, as illustrated in
Figure 1-3. A lot of small-business owners do not go to Azure Active Directory at all and
simply manage everything from the Office 365 Admin Center.

o

Office 365 9
| =

Microsoft Azure

&

Figure 1-3. Cloud users

o Ko Be)

CHAPTER 1 INTRODUCTION TO POWERSHELL FOR OFFICE 365

The other type of deployment, which you will find most of the time when working
with enterprise customers, is one where the users are stored in Active Directory, running
on-premises in the company datacenter, and are also synchronized to Azure Active
Directory by using Azure AD Connect or a similar tool. This topology is illustrated in
Figure 1-4. One of the main differences in this topology from a management point of
view is that since users are synchronized from on-premises to Office 365, all changes to
users must be done in the on-premises Active Directory, which will then update the user
in Azure Active Directory and therefore in Office 365.

Microsoft Azure ——— Office 365
1

Figure 1-4. Synchronized users

CHAPTER 1 INTRODUCTION TO POWERSHELL FOR OFFICE 365

Microsoft also offers the possibility for companies to set up a two-way sync for
some properties between Azure AD and the on-premises Active Directory as seen
in Figure 1-5. However, this functionality is not included in the “base” Azure Active
Directory subscription, which is free, so companies must purchase the premium Azure
AD Subscription, which varies between $5 and $10/user per month at the time of writing
this book. As you see, for a big company with thousands of users, it can be a big price to
pay if you don’t need any of the other feature of Azure AD Premium, such as multi-factor
authentication.

Microsoft Azure Office 365
1

$ i
gt
i

Ll

Figure 1-5. Two-way sync

CHAPTER 1 INTRODUCTION TO POWERSHELL FOR OFFICE 365

In conclusion, knowing the type of deployment your enterprise is using is essential
when managing your Office 365 tenant. If your enterprise is synchronizing users
one-way from on-premises to Azure Active Directory, there is no use in modifying
synchronized user properties directly in Office 365, since those will get overwritten on
the next scheduled synchronization. Your first steps when starting to manage Office 365
should be to find out what the architecture looks like.

What About the Other Applications?

After figuring out how your Active Directory is designed, you need to look at how the

rest of the applications are deployed. While most companies that pay for Office 365
ultimately hope to move all their workloads into the cloud, some of them simply have to
stay on-premises because of customizations or regulations on data. All three main server
products (Exchange, SharePoint, and Skype for Business) can be run only on-premises,
purely online, or in a hybrid mode where some workloads stay on-premises and some
workloads go online. While we will not go into much detail about how to implement a
hybrid topology for those products, it’s important to understand where everything is
hosted in your organization so you know what has to be managed on-premises and what
has to be managed in the cloud.

Next Steps

In this chapter, we walked through the different tools available to us to manage Office
365 and looked at why learning PowerShell for Office 365 is important. We also looked at
the different topologies in which Office 365 can be implemented in the organization and
how it affects us as Office 365 administrators.

Now that we know the basics, in the next chapter we will learn how to manage Office
365 users and licenses!

CHAPTER 2

Managing Users
and Licenses

In this chapter, we will learn how to use PowerShell to connect to Office 365 and Azure
Active Directory from a client computer. We will also learn the cmdlets available to
create, modify, or delete users from Office 365. Furthermore, we will go over how to
view our available licenses, how to assign a license to a user, and how to create a custom
license if we don’t want all the services in our subscription!

Connecting to Office 365

One of the first things we will have to do to manage our users and licenses is connect to
Office 365 from PowerShell. In the past, when managing SharePoint, Exchange, Skype
for Business, or Active Directory we used to simply remote desktop into the server, run
the PowerShell cmdlets we had to run, and that’s it. Everything was already there on the
servers because when installing the server software all the PowerShell modules required
to manage this server were also installed.

With Office 365 it’s different because we cannot simply log on remotely to the
server and do our operations, as there is no server to log onto when talking about Office
365. Therefore, the first thing we will have to do is download the required PowerShell
modules on our local computer and then connect to Office 365.

For this book, we will use the Azure Active Directory V2 PowerShell Module, which
is the latest version of the Azure AD PowerShell module, replacing the old Azure Active
Directory (MSOnline) module. In order to be able to do all the cmdlets in this chapter,
the account that you will use for the cmdlets needs to have the Office 365 Global
Administrator role.

© Vlad Catrinescu 2018
V. Catrinescu, Essential PowerShell for Office 365, https://doi.org/10.1007/978-1-4842-3129-6_2

CHAPTER 2 MANAGING USERS AND LICENSES

Note We want to manage Office 365 users, so why do we need to download
the Azure Active Directory Module? The answer is that Office 365 uses the
cloud-based user-authentication service Azure Active Directory to store users.

The Azure Active Directory V2 PowerShell Module is hosted on the PowerShell
Gallery, which is the central repository for PowerShell content from Microsoft and the
community. To download modules from the PowerShell Gallery, you need to have
PowerShellGet, which is included out of the box in the following releases:

e Windows 10 or newer

e Windows Server 2016 or newer

e Windows Management Framework (WMF) 5.0 or newer
e PowerShell 6

If you have an earlier version of Windows or PowerShell, you can get the
PowerShellGet Module from the Microsoft Download Center. The minimum version of
PowerShell supported at the time of writing this book is PowerShell 3.0.

Note The PowerShellGet Module can be downloaded at
https://www.microsoft.com/en-us/download/details.aspx?id=51451.

After you have installed the PowerShellGet module—or if you have one of the
required releases already—you can simply open PowerShell as an administrator and run
the following cmdlet to install the Azure Active Directory V2 PowerShell Module:

Install-Module -Name AzureAD

PowerShell will look in the PowerShell Gallery for the module with the name
AzureAD and install it on your computer. You can also view the AzureAD PowerShell
Module page directly on the PowerShell Gallery at https://www.powershellgallery.
com/packages/AzureAD/. When installing the module, you might get a warning similar
to that shown in Figure 2-1, which you have to accept.

10

vww allitebooks.conl

https://www.microsoft.com/en-us/download/details.aspx?id=51451
https://www.powershellgallery.com/packages/AzureAD/
https://www.powershellgallery.com/packages/AzureAD/
http://www.allitebooks.org

CHAPTER 2 MANAGING USERS AND LICENSES

EX Administrator: Windows PowerShell
PS C:\WINDOWS\system32> Install-Module -Name AzureAD

Untrusted repository

You are‘insta11in? the modules from an untrusted repository. If you trust this repository,
change its InstallationPolicy value by running the Set-PSRepository cmdlet. Are you sure you
want to install the modules from 'PSGallery'?

[Y] ves [A] Yes to A11T [N] No [L] No to A11 [s] suspend [?] Help (default is "N"): _

<

Figure 2-1. Installing the Azure Active Directory V2 PowerShell module

After the module finishes installing, you will be able to connect to Azure Active
Directory. The first thing you will have to do is save your credentials into a variable,
which you do with the Get-Credential cmdlet:

$cred = Get-Credential

The preceding command line will open a PowerShell credential request pop-up as
seen in Figure 2-2, and it will save it in a variable called $cred.

Note PowerShell will not do any validation of the credentials you enter in the
pop-up window.

11

CHAPTER 2 MANAGING USERS AND LICENSES

BN Administrator: Windows PowerShe - o .
PS C:\WINDOWS\system32> S$cred = Get-Credential -
cmdlet Get-Credential at command pipeline position 1

Supply values for the following parameters:
Credential

Windows PowerShell credential request 7 X
2
e

< >

Figure 2-2. Saving our credentials into a variable

Afterward, run the Connect-AzureAD PowerShell cmdlet and specify the -Credential
parameter with the $cred variable you just created. You do not need to enter a tenant
name as Azure AD will automatically connect you to your tenant based on your email
address, as seen in Figure 2-3.

| Administrator: Windows PowerShell - o x
PS C:\WINDOWS\system32> Connect-AzureAD -Credential Scred

Account Environment TenantId TenantDomain AccountType

‘\ﬂad-ad‘m'in@ofﬁceBﬁSpowershe'l'I.ca AzureCloud 545c04df-2411-4d58-9378-7ec79e%e6b8e office3fSpowershell.ca User

PS C:\WINDOWS\system32>

Figure 2-3. Connecting to Azure AD

Note If the account you use to connect to Azure Active Directory has Multi
Factor Authentication enabled, you simply need to run Connect-AzureAD without
specifying the -Credential parameter.

Now that you have connected to Azure AD you can run PowerShell cmdlets against
your tenant. Let’s take a look at what can be done.

12

CHAPTER 2 MANAGING USERS AND LICENSES

Managing Users with PowerShell

One of the things we can do with the Azure AD PowerShell cmdlet is manage our users
as well as their properties. Let’s start with viewing our users and their properties.

Viewing Users and Properties

To view all the users in your tenant you can run the Get-AzureADUser cmdlet, which will
return all the users, including the external ones. You can also use PowerShell to filter on
any property of that user’s profile—for example, the department, as seen in Figure 2-4.

Select Administrator: Windows PowesShell - o x
PS C:\WINDOWS\system32> Get-AzureADUser ~
ObjectId DisplayName UserPrincipalname UserType
1651b416-3a9c-401d-Be36-56e65a6e0acs Jeff Collins Jeff@office36Spowershell.ca Member
fca50d76-9cld-47fd-8c33-dadcdaf91008 John Smith john@office365powershell.ca Member
158cd24d-8148-4c78-8168-e7a4d057afeé Vanessa Lee vanessa@office36Spowershell.ca Member
4fclccld-bacl-4cfd-b15d-c70d565e8200 viad Admin vlad-admin@office365powershell.ca Member

521ffed4-31df-415e-b00c-8a0149bb37da viad cCatrinescu vlad_vnext.solutions#EXT#Roffice36Spowershell.ca Guest

PS C:\WINDOWS\system32> Get-AzureADUser | Where {S_.Department -eq "Sales"}

objectId DisplayName UserPrincipalName UserType

1651b416-3a9c-401d-8e36-56e65a6e0acsd Jeff Collins Jeff@office3sSpowershell.ca Member

< >

Figure 2-4. Get-AzureADUser

To view all the properties of a user, you can run the following cmdlet:
Get-AzureADUser -ObjectId jeff@office365powershell.ca | Format-List

Some of the properties of an Azure AD user are, however, stored elsewhere in Office
365, so a different cmdlet is needed for them, such as the manager. To get a user’s
manager, you need to run the Get-AzureADUserManager cmdlet and specify the User
Principal Name or the Object ID of the user for which you want to know the manager, as
seen in Figure 2-5.

13

CHAPTER 2 MANAGING USERS AND LICENSES

EX Administrator: Windows PowerShell - (m] x
PS C:\WINDOWS\system32> Get-AzureADUserManager -ObjectId jeff@office365powershell.ca ~
ObjectId DisplayName UserPrincipalName UserType

4fclccld-bacl-4cfd-b15d-c70d565e8200 vlad Admin vlad-admin@office365powershell.ca Member

PS C:\WINDOWS\system32> _

Figure 2-5. Viewing the manager of a user

You can also do the opposite and get the direct reports of a user by using the
Get-AzureADUserDirectReport cmdlet and specifying the User Principal Name or the
Object ID of the user for which you want to view the direct reports. In Figure 2-6, we see
that John Smith and Jeff Collins both report to vlad-admin@office365powershell.ca.

EX Administrator: Windows PowerShell - m] o
PS C:\WINDOWS\system32> Get-AzureADUserDirectReport -ObjectId vlad-admin@office365powershell.ca -

objectId DisplayName UserPrincipalName UserType

fcas0d76-9cld-47fd-8c33-dadcdaf91008 John sSmith john@office365powershell.ca Member
1651b416-3a9c-401d-8e3€6-56e65a6e0acsd Jeff Collins Jeff@office36Spowershell.ca Member

PS C:\WINDOWS‘\system32> _

Figure 2-6. Viewing the direct reports of a user

Now that we are able to view the properties, we’ll learn how to modify them.

14

CHAPTER 2 MANAGING USERS AND LICENSES

Modifying User Properties

You can also use PowerShell to change the properties of a user—for example,
Department, Job Title, Phone Number, and so on—by using the Set-AzureADUser cmdlet
as seen in the following example and Figure 2-7.

Set-AzureADUser -ObjectId jeff@office365powershell.ca -City Seattle -Country
"United States" -JobTitle "Marketing Manager" -Department "Marketing"

E¥ acmatrator Windows PowerShel - 0 x
PS C:\WINDOWS\system32> Set-AzureADUser -ObjectId jeff@office3éSpowershell.ca -City Seattle -Country “United States” -Jo~
bTitle "Marketing Manager” -Department “Marketing™ .

PS C:\WINDOWS\system32> Get-AzureADUser -ObjectId jeff@cffice36Spowershell.ca | Select City, Country, JobTitle, Departme
nt
City Country JobTitle Department

Seattle United States Marketing Manager Marketing

PS C:\WINDOWS\system32> _
Figure 2-7. Changing the properties of a user

You can also change the manager by using the Set-AzureADUserManager cmdlet.
For this cmdlet, you need to specify the -ObjectId parameter, which is the User
Principal Name or Object ID of the user you want to change the parameter for, and the
-RefObjectId parameter, which is the Object ID of the manager. For this cmdlet, you
cannot specify the User Principal Name of the manager in the -RefObjectId, so you have
to specify the ID of the Azure AD object to assign as manager.

You first have to get the ID of the Azure AD object of your manager, in this case
vlad-admin@office365powershell.ca, by using the Get-AzureADUser cmdlet as seen
in Figure 2-8. The ObjectId is in the first column.

EX Administrator: Windows PowerShell - (m] x
PS C:\WINDOWS\system32> Get-AzureADUser -ObjectId vlad-admin@office365powershell.ca ~
ObjectId DisplayName UserPrincipalName UserType

4fclccld-bacl-4cfd-b15d-c70d565e8200 vlad Admin wvlad-admin@office365powershell.ca Member

PS C:\WINDOWS\system32> _

< >

Figure 2-8. Getting the ID of the Azure AD object
15

CHAPTER 2 MANAGING USERS AND LICENSES

You can then use the Set-AzureADUserManager cmdlet to specify your parameters,
as follows:

Set-AzureADUserManager
-ObjectId vanessa@office365powershell.ca
-RefObjectId 4fciccld-baci-4cfd-b15d-c70d565e8200

You can then use the Get-AzureADUserManager PowerShell cmdlet to verify that it
worked, as seen in Figure 2-9.

EX Administrator: Windows PowerShell (m]
PS C:\WINDOWS\system32> Get-AzureADUserManager -ObjectId vanessa@office365powershell.ca

x

ObjectId

DisplayName UserPrincipalName UserType

4fclccld-bacl-4cfd-b15d-c70d565e8200 viad Admin

vlad-admin@office365powershell.ca Member

PS C:\WINDOWS\system32>

<

~

Figure 2-9. Verifying the manager of a user

If you are more experienced with PowerShell, you can also do the operation in

a single cmdlet without having to copy and paste the ObjectId, as in the following
example:

Set-AzureADUserManager -ObjectId vanessa@office365powershell.ca
-RefObjectId (Get-AzureADUser
-ObjectId vlad-admin@office365powershell.ca).0ObjectId

Now that we have successfully edited users by using PowerShell, we will look at how
to create a brand-new user.

16

CHAPTER 2 MANAGING USERS AND LICENSES

Creating Users

You can use PowerShell to create new users with the New-AzureADUser PowerShell
cmdlet. This allows you to specify all the properties of the user on creation so you can
make sure they have a complete profile from the start. One of the required parameters of
the New-AzureADUser cmdlet is the password, which you cannot simply specify as text;
you will need to first build a Microsoft.Open.AzureAD.Model.PasswordProfile object
and pass that object as a parameter.

You will first create a variable called $PasswordProfile as seen in the following example:

$PasswordProfile = New-Object -TypeName Microsoft.Open.AzureAD.Model.
PasswordProfile

You will then set the Password property to the password that you want the user to
have, as seen here:

$PasswordProfile.Password = "Apress2017"

I find it important to force the user to change their password the next time they log in
to Office 365. This can be done by setting the ForceChangePasswordNextLogin property
to true as seen here:

$PasswordProfile.ForceChangePasswordNextLogin = $true

To put all this together, to create the PasswordProfile object, you would run the
following cmdlets:

$PasswordProfile = New-Object -TypeName Microsoft.Open.AzureAD.Model.
PasswordProfile

$PasswordProfile.Password = "Apress2017"
$PasswordProfile.ForceChangePasswordNextLogin = $true

You can now start creating your user with some basic properties, such as Name,
Department, Job Title, and so on. In the sample cmdlet that follows, we are creating the
user Jonathan King:

New-AzureADUser °
-GivenName "Jonathan" °
-Surname "King" °
-DisplayName "Jonathan King" °

17

CHAPTER 2 MANAGING USERS AND LICENSES

-UserPrincipalName "Jonathan@office365powershell.ca" ~
-MailNickName "Jonathan" °

-AccountEnabled $true °

-PasswordProfile $PasswordProfile °

-JobTitle "IT Manager" °

-Department "IT" °

While we provided a lot of profile properties for our sample user, the minimum
requirement parameters required are -UserPrincipalName, -PasswordProfile,
-AccountEnabled, -DisplayName, and -MailNickName.

You can see the results in Figure 2-10 from the Office 365 Admin Center.

Jonathan King

Jonathan ce3b5powershell.ca

Username Jonathan@office365powershell.ca Edit
Product licenses No products have been assigned

Group memberships (0 No groups for the user. Click edit to change Edit
group membership.

Sign-in status Sign-in allowed Edit
ales User (no admin access) Edit

splay name Jonathan King Edit

Figure 2-10. Newly created Office 365 user

Our user is created and can now log in, but cannot use Office 365 yet because we
did not assign a license for this user. Let’s take a look at how to manage licenses for
Office 365 with PowerShell.

18

CHAPTER 2 MANAGING USERS AND LICENSES

Managing Licenses with PowerShell

Another important aspect of managing users is their licenses. Unlike on-premises, where
you only need to make sure you have the right amount of Client Access Licenses (CAL)
and don’t need to do anything manually, in Office 365 every user must be assigned a
license that will specify what services they have access to. Let’s learn how to view the
available licenses in your tenant.

Viewing the Available Licenses

First, to view what subscriptions you have in your tenant, you need to use the
Get-AzureADSubscribedSku cmdlet. As seen in Figure 2-11, this will give you the ID of
your subscription as well as the internal name and that’s about it. The PrepaidUnits
property is displayed, but does not show us anything too useful . . . yet.

LB Administrator: Windows PowerShell - o =
S C:\WINDOWS\system32> Get-AzureADSubscribedsku -~

objectId skupartNumber Prepaidunits

|545c04df-2411-4d58-9378-7ec79eebb8e_c7df2760-2c81-4ef7-b578-5b5392b571df ENTERPRISEPREMIUM class LicenseUnitsDetail.
1545c04df-2411-4d58-9378-7ec79e9ebb8e_6fd2c87f-b296-42f0-b197-1e91e994b900 ENTERPRISEPACK class LicenseUnitsDetail.

PS C:\WINDOWS‘system32> _

Figure 2-11. Viewing the subscriptions of the current tenant

However, if you expand some of the properties of the Get-AzureADSubscribedSku
cmdlet, you can view more interesting things, such as the number of licenses that you
have used per subscription and how many you have available. To get this information,
you can run the following cmdlet:

Get-AzureADSubscribedSku | Select-Object -Property ObjectId,
SkuPartNumber, ConsumedUnits -ExpandProperty PrepaidUnits

19

CHAPTER 2 MANAGING USERS AND LICENSES

This will show you the Object ID, the Internal Name of the subscription, and how
many licenses of that subscription you currently have assigned to users (ConsumedUnits).
When expanding the PrepaidUnits property, you can view how many of them you have
enabled and suspended. In Figure 2-12, you can see that in my current tenant, I have two
subscriptions, an E5 (ENTERPRISEPREMIUM) and an E3 (ENTERPRISEPACK). I am currently
using four licenses of the E5, but I currently pay for 25 of them. For my E3 subscription,
I had 25 licenses but they are suspended (not renewed), and none of those were assigned
to any users.

PS C:\WINDOWS\system32> Get-AzureADSubscribedSku | Select-Object -Property ObjectId, SkuPartNumber, ConsumedUnits -E -
ndProperty PrepaidUnits

ObjectId : 545¢04df-2411-4d58-9378-7ec79e9ebbB8e_c7df2760-2¢c81-4ef7-b578-5b5392b57 1df
SkuPartNumber : ENTERPRISEPREMIUM

Consumedunits : 4

Enabled 1 25

suspended H]

warning : 0

objectId 1 545c04df-2411-4d58-9378-Tec79e%ebble_6fd2c87f-b296-42f0-b197-1e91e994b900
SskuPartNumber : ENTERPRISEPACK |
Consumedunits : 0

Enabled H)

Suspended HF-11

warning H

PS C:\WINDOWS\system32>

Figure 2-12. Consumption details of the Office 365 subscription in our tenant

You can also view the details of what services exactly are included in each
subscription by expanding the ServicePlans property. In the following example, I select
my E5 subscription by using its ObjectId, found earlier, and expand the ServicePlan
property:

Get-AzureADSubscribedSku -ObjectId 545c04df-2411-4d58-9378-7ec79e9e6b8e
c7df2760-2c81-4ef7-b578-5b5392b571df | Select-Object -ExpandProperty
ServicePlans

This will show me more in detail which services are applied at the user or company
levels and which of them are provisioned. You can view the output in Figure 2-13.

20

EX Adenirustrator. Windews PewerShell

PS5 C:\WINDOWS\system32> Get-AzureADSubscribedsku -ObjectId 545c04df-2411-4d58-9378-7ec79e9ebbie_c7df2760-2c81l-4ef7-b578~ ~

Sbh5392b571df | Select-oObject

-ExpandProperty ServicePlans

User Success
User Success
User Success
User Success
User Success
User Success
User success
User Success
User Success
User Success
User Success
uUser success
Company Success
User Success
User Success
User Success
Company PendingActivation
User Success
User Success
User Success
User sSuccess
User Success
User Success
User Success
User Success

e212cbe7-0961-4c40-9825-01117710dcbl
6c6042f5-6F01-4d67-b8c1-eb99d36ead3e
8e0c0a52-6a6c-4d40-8370-dd62790dcd?0
8c7d2df8-8670-4902-b2ed-a0458298f3b3
07699545-9485-468e-95b6-2fca3738be0l
9c0dab89-a30c-4117-86e7 -97bda240acdz2
57ff2da0-773e-42df-b2af-ffb7a2317929
8c098270-9dd4-4350-9b30-ba4703f3b36b
4de31727-a228-4ec3-asbf-8e45b5cad8cc
9f431833-0334-42de-a7dc-70aad0db4bdb
34c0d7a0-a70f-4665-9238-47F9Fc208882
a23b959c-7ceB8-4e57-9140-b90eb88a%e97
f20fedf3-f3c3-43c3-8267-2bfdd51c0939
4828c8ec-dc2e-4779-b502-87ac%ce28ab7
3e2beelf-8a5if-4d52-aee2-b8lced5cEf40
70d33638-9c74-4d01-bfd3-562de28bddba
882eld0S-acdl-4ccb-8708-6ee03664b117
b737dad2-2f6c-4c65-90e3-ca563267e8b9
bea4clle-220a-4e6d-8eb8-8eal5d019f90
7547a3fe-08ee-4ccb-b430-5077¢5041653
43de0ff5-c92c-492b-9116-175376d08c38
Ofeaeb32-d00e-4dé6-bd5a-43b5b83db82c
efb87545-963c-4e0d-99df-69c6916d9eb0
5dbe027f-2339-4123-9542-606e4d348a72
e95bec33-7¢c88-4a70-8e19-b10bd9d0c014

Figure 2-13. Viewing the ServicePlans

CHAPTER 2 MANAGING USERS AND LICENSES

- o *

ServicePlanName
FORMS_PLAN_ES
STREAM_O365_ES
THREAT_INTELLIGENCE
Deskless
FLOW_0365_P3
POWERAPPS_0365_P3
TEAMS1
ADALLOM_S_0365
EQUIVIO_ANALYTICS
LOCKBOX_ENTERPRISE
EXCHANGE_ANALYTICS
SWAY
ATP_ENTERFRISE
ICOEV

MCOMEETADV
BI_AZURE_P2
INTUNE_0365
PROJECTWORKMANAGEMENT
RMS_S_ENTERPRISE
YAMMER_ENTERPRISE
OFFICESUBSCRIPTION
MCOSTANDARD
EXCHANGE_S_ENTERPRISE
SHAREPOINTENTERFRISE
SHAREPOINTWAC

=

You can also use a single cmdlet to show you all the services for each different SKU

by using the PowerShell formatting cmdlets, as seen in the following example:

Get-AzureADSubscribedSku | Select-Object -Property

SkuPartNumber
SkuPartNumber

-ExpandProperty ServicePlans | Format-Table -GroupBy

This will display every subscription that you have in your tenant and the plans in

each one, grouped in a nice way, as seen in Figure 2-14.

21

CHAPTER 2

EX Adenivistrator: Windews PowerShell

PS C:\WINDOWS\system32Z> Get-AzureADSubscribedsku | Select-Object -Property SkuPartNumber

Format-Table -GroupBy SkuPartNumber

SkuPartNumber: ENTERPRISEPREMIUM

MANAGING USERS AND LICENSES

- o X
=-ExpandProperty ServicePlans |~

SkuPartNumber AppliesTo ProvisioningStatus ServicePlanId servicePlanName
ENTERPRISEPREMIUM User success e212cbc7-0961-4c40-9825-01117710dcbl FORMS_PLAN_ES
ENTERPRISEPREMIUM User Success 6c604275-6f01-4d67-b8cl-eb%9d36eedle STREAM_0365_ES
ENTERPRISEPREMIUM User Success 8e0c0as2-6a6c-4d40-8370-dd62790dcd70 THREAT_INTELLIGENCE
ENTERPRISEPREMIUM User Success 8c7d2df8-86T0-4902-b2ed-a0458298f3b3 Deskless
ENTERPRISEPREMIUM User Success 07699545-9485-468e-95b6-2fca3738be0l FLOW_D365_P3
ENTERPRISEPREMIUM User success 9c0dab89-230c-4117-86e7-97bda240acd2 POWERAFPS_0365_F3
ENTERPRISEPREMIUM User success S7ff2da0-773e-42df-b2af-ffb7a2317929 TEAMSL
ENTERPRISEPREMIUM User success 8c0958270-9dd4-4350-9b30-bad4703f3b36b ADALLOM_S_0365
ENTERPRISEPREMIUM User Success 4de31727-a228-4ec3-aSbf-8ed45b5cadScc EQUIVIO_ANALYTICS
ENTERPRISEPREMIUM User Success 9f431833-0334-42de-a7dc-70aad40db46db LOCKBOX_ENTERPRISE
ENTERPRISEFREMIUM User Success 34c0d720-a70f-4668-9238-47T9Fc208882 EXCHANGE_ANALYTICS
ENTERPRISEPREMIUM User Success a23b959c-7ce8-4e57-9140-b90eb8Ba%e97 SWAY
ENTERPRISEPREMIUM Company Success f20fedf3-f3c3-43c3-8267-2bfdd51c0939 ATP_ENTERPRISE
ENTERPRISEPREMIUM User success 4828c8ec-dc2e-4779-b502-87ac9ce28ab? MCOEV
ENTERPRISEPREMIUM User Success 3e26eelf-8a5f-4d52-aee2-b8lced5cEf40 MCOMEETADV
ENTERPRISEPREMIUM User Success 70d33638-9c74-4d01-bTd3-562de28bddba BI_AZURE_P2
ENTERPRISEPREMIUM Company PendingActivation 882eld05-acdl-4ccb-8708-6ee03664b117 INTUNE_0365
ENTERPRISEPREMIUM User Success b737dad2-2f6c-4cb5-90e3-ca563267e8b9 PROJECTWORKMANAGEMENT
ENTERPRISEPREMIUM User success beadclle-220a-4e6d-8eb8-8eal5d019f90 RMS_S_ENTERPRISE
ENTERPRISEPREMIUM User Success 7547a3fe-08ee-4cch-b430-5077¢5041653 YAMMER_ENTERPRISE
ENTERPRISEPREMIUM User Success 43de0ff5-c92c-492b-9116-175376d08c38 OFFICESUBSCRIPTION
ENTERPRISEPREMIUM User Success 0feaeb32-d00e-4d66-bd5a-43b5bE83db82c MCOSTANDARD
ENTERPRISEPREMIUM User Success efb87545-963c-4e0d-99df-69c6916d9eb0 EXCHANGE_S_ENTERPRISE
ENTERPRISEFPREMIUM User Success 5dbe027f-2339-4123-9542-606e4d348a72 SHAREPOINTENTERFPRISE
ENTERPRISEPREMIUM User Success e95bec33-7c88-4a70-8e19-b10bd9d0c014 SHAREPOINTWAC
skuParthNumber: ENTERPRISEPACK
SkuPartNumber AppliesTo ProvisioningStatus ServicePlanId ServicePlanName
ENTERPRISEPACK User Success 2789¢c901-cl4e-48ab-a76a-be334d9d793a FORMS_PLAN_E3
ENTERPRISEPACK User success 9e700747-8bld-45e5-ab8d-ef187ceec156 STREAM_0365_E3
ENTERPRISEPACK User Success 8c7d2df8-86f0-4902-b2ed-20458298f3b3 Deskless
ENTERPRISEPACK User Success 76846ad7-7776-4c40-a281-a386362dd1b9 FLOW_0365_F2
ENTERPRISEPACK User Success C68T8d98-5534-41c8-bT36-22Fad406Ta792 POWERAPPS_0365_P2
ENTERPRISEPACK User Success S57ff2da0-773e-42df-b2af-ffb7a2317929 TEAMS1
ENTERPRISEPACK User Success b737dad2-2f6c-4c65-90e3-cas563267e8b9 PROJECTWORKMANAGEMENT
ENTERPRISEPACK User success a23b959¢c-7ce8-4e57-9140-bI0eb8BaTed7 SWAY

Figure 2-14. Showing all the services in the tenant, grouped by subscription name

Now that we know how to view our subscriptions and services, we can look at how

to view the licenses assigned to a user and how to assign them new licenses. To view the

licenses assigned to a user, you can use the Get-AzureADUserLicenseDetail cmdlet.

In the example that follows, I am displaying the different subscriptions assigned to Jeff

Collins and showing only the Internal Name (SkuPartNumber):

Get-AzureADUserLicenseDetail -ObjectId jeff@office365powershell.ca |
Select-Object SkuPartNumber

In Figure 2-15, you can see that Jeff currently has the 0365 BUSINESS PREMIUM and
the ENTERPRISEPREMIUM licenses assigned to his account.

22

CHAPTER 2 MANAGING USERS AND LICENSES

| EN Select Administrator Windews PowerShell - (=] *]
PS5 C:\WINDOWS\system32> Get-AzureADUserLicenseDetail -ObjectId jeffa@office36Spowershell.ca | Select-Object SkuPartNumber ~

SkuPartNumber

0365_BUSINESS_PREMIUM
ENTERPRISEFREMIUM

PS C:\WINDOWS\system32>

Figure 2-15. Displaying the different subscriptions assigned to a user

Now that we know how to view the licenses, let’s take a look at how to license a

Nnew user.

Assigning a License to a User

The first thing that you will have to do is set the UsageLocation parameter for your user,
as this parameter is mandatory before assigning a license. The UsageLocation parameter
accepts the two-letter country code of the location from which this user will be using
Office 365. To make things easier, save your user in a variable called $User so you do not
have to specify the username every time:

$User = Get-AzureADUser -ObjectId jonathan@office365powershell.ca
Set-AzureADUser -ObjectId $User.ObjectId -UsagelLocation CA

Now that your user is ready to be assigned a license, you first need to create two
objects. The first one is the $Sku variable seen next, which is an object that represents a
single subscription. The second object, which is the $Licenses variable, is the collection
of licenses that will be assigned to the user. This will become useful when you want to
assign multiple licenses to certain users.

$Sku = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedlLicense

$Licenses = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedlLicenses

Tip While in most cases you will only assign a single license to a user, you might,
for example, get a Power BI Pro license only for the executives of the company,
while the rest of the users have a simple E3 license. The executives would have
two licenses assigned, the E3 and the Power BI Pro.

23

CHAPTER 2 MANAGING USERS AND LICENSES

Next up, you need to enter the information in the variables just created. The first step
is to know the SkuID of the license that you want to assign to your user, which can be
discovered with the following cmdlet:

Get-AzureADSubscribedSku | Select-Object -Property SkuPartNumber, SkuID

The result shown in Figure 2-16 shows all the possible subscription IDs.

.ﬂkjmnma‘eﬂ:wmmpml - o X]
PS5 C:'\WINDOWS\system32> Get-AzureADSubscribedsku | Select-Object -Property SkuPartNumber, sSkuID

skuPartNumber Skuld
ENTERPRISEPREMIUM c7df2760-2c81-4ef7-b578-5b5392b57 1df
POWER_BI_PRO f8aldbE8-bel6-40ed-86d5-cb42ce7 01560

ENTERPRISEFACK 6fd2c87f-b296-42f0-b197-1e91e994b900
0365_BUSINESS_PREMIUM f245ecc8-75af-4f8e-b61f-27d8114des5f3

PS C:\WINDOWS\system32> _

Figure 2-16. All the subscription Skulds in the tenant

Next up, you need to specify the Skuld parameter of the $Sku object you just created,
then tell it what license you want it to be:
$Sku.SkuId = "c7df2760-2c81-4ef7-b578-5b5392b571df"

You then need to add your $Sku object, part of the $Licenses array that you created
earlier, with the following cmdlet:

$Licenses.AddLicenses = $Sku

Lastly, you need to add the licenses to your user with the Set-AzureADUserLicense
cmdlet, as seen here:

Set-AzureADUserlLicense -ObjectId $User.ObjectId -AssignedlLicenses $Licenses

Now, to put it all together, these are the cmdlets required to add the E5 license to
your user:

$User = Get-AzureADUser -ObjectId jonathan@office365powershell.ca
Set-AzureADUser -ObjectId $User.ObjectId -Usagelocation CA

$Sku = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedlLicense

$Licenses = New-Object -TypeName Microsoft.Open.AzureAD.Model.
AssignedlLicenses

24

CHAPTER 2 MANAGING USERS AND LICENSES

$Sku.SkuId = "c7df2760-2c81-4ef7-b578-5b5392b571df"
$Licenses.AddLicenses = $Sku

Set-AzureADUserlLicense -ObjectId $User.ObjectId -AssignedlLicenses $Licenses

You can look at the result either by using the Get-AzureADUserLicenseDetail
cmdlet, as you saw earlier in this chapter, or from the Office 365 Admin Center. As
you can see in the screenshot of the Office 365 Admin Center in Figure 2-17, you have
successfully assigned the E5 license to your user.

Jonathan King

Jonathan@coffice365powershell.ca

Product licenses

Location *

I Canada

A NOTE: Once new users are set up for Skype for Business PSTN Calling, assign
them a phone number in the Skype for Business admin center. (If you don't see
them there, check back in 2 few minutes))

rprise E5 mmj o

25 of 25 licenses available

The trial subscription for this product is no longer

active. You need to buy a subscription before you can assign a
license.

v Qffice 365 Business Premium I Off

24 of 25 licenses available

Figure 2-17. User with assigned licenses

Now that you have successfully assigned a license to a user, let’s take a look at how

you can assign multiple licenses.

25

CHAPTER 2 MANAGING USERS AND LICENSES

Assigning Multiple Licenses

If you want to assign another license—for example, Power BI Pro—to the user that is
already licensed for E3, you could simply repeat the steps from earlier, since even if the
cmdlet is Set-AzureADUserLicense, and you would probably expect it to overwrite the
previous setting all together, the behavior is a bit different with the Azure AD V2 Module,
and you will learn how to remove or replace licenses later in this chapter. For now, let’s
see how to assign multiple licenses to a new user at once; for example, both Office 365
Business Premium and Power BI Pro licenses.

Start by saving your user into a variable and setting the usage location as you learned
previously:

$User = Get-AzureADUser -ObjectId vanessa@office365powershell.ca
Set-AzureADUser -ObjectId $User.ObjectId -Usagelocation CA

Afterward, create two objects of type Microsoft.Open.AzureAD.Model .AssignedLicense,
one for the Business Premium license and one for the Power BI Pro license:

$BusinessProSku = New-Object -TypeName Microsoft.Open.AzureAD.Model.
AssignedlLicense
$PowerBiSku = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedlLicense

Next up, use the Get-AzureADSubscribedSku as seen in Figure 2-18 to get the SkuIDs
of the subscriptions you want to add.

EX administrator: Windows PowerShell - o x
PS C:\WINDOWS\system32> Get-AzureADSubscribedsku | Select-Object -Property SkuPartNumber, SkuID "

SkupartNumber skuld

ENTERPRISEPREMIUM c7df2760-2c81-4ef7-b578-5b5392b571df
POWER_BI_PRO f8aldb68-bel6-40ed-86d5-cb42ce701560
ENTERPRISEPACK 6fd2c87f-b296-42f0-b197-1e91e994b3900

0365_BUSINESS_PREMIUM f245ecc8-75af-4f8e-b61f-27d8114de5f3

PS5 C:\WINDOWS\system32>

< ¥

Figure 2-18. List of the available subscriptions

26

CHAPTER 2 MANAGING USERS AND LICENSES

Now that you know the SKU IDs, you can add them in the $BusinessProSku and
$PowerBiSku variables that you created earlier:

$BusinessProSku.SkuId = "f245ecc8-75af-4f8e-b61f-27d8114de5f3"
$PowerBiSku.SkuId = "f8a1db68-bel16-40ed-86d5-cb42ce701560"

Now, create your $1icenses variable, which is an object of type Microsoft.Open.
AzureAD.Model.AssignedlLicenses, and add the $BusinessProSku and $PowerBiSku
licenses inside:

$Licenses = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedlLicenses
$Licenses.AddLicenses = $BusinessProSku, $PowerBiSku

Lastly, run Set-AzureADUserLicense to assign the license to your user, as seen in the
following cmdlet:

Set-AzureADUserlLicense -ObjectId $User.ObjectId -AssignedlLicenses $Licenses

If you look at the results of the previous cmdlet in the Office 365 Admin Center in
Figure 2-19, you can see that both licenses have been successfully assigned, with all the
licenses activated.

Vanessa Lee

vanessa@office365powershell.ca

Change €y Reset password ” [Delete user
Username vanessa@office365powershell.ca Edit
Product licenses Power Bl Pro Edit

Office 365 Business Premium

Group memberships (0) No groups for the user. Click edit to change
group membership.

m

(&8

Sign-in status Sign-in allowed

m
a

Figure 2-19. User with multiple licenses assigned

In the previous examples, we assigned either one license or multiple licenses at a
time to a user. In some business scenarios, we might want to assign a license but not
enable all the services inside.

27

CHAPTER 2 MANAGING USERS AND LICENSES

Assigning Licenses with Some Features Disabled

In some scenarios, we might want to assign some licenses to users, but not give them
access to all the services. This can happen for multiple reasons; let me give you a
concrete example. I was implementing Office 365 at a customer in Canada whose data
absolutely needed to stay on Canadian soil. At the time (and it might still be the case
today), Yammer was only hosted out of the United States, and there was no way to have
Yammer data hosted in Canada, so we had to disable it for all the existing users, as well
as for the new users. Let’s see how we can get this done with PowerShell.

First of all, we will save our user in a variable and set the Usage Location to Canada:

$User = Get-AzureADUser -ObjectId john@office365powershell.ca
Set-AzureADUser -ObjectId $User.ObjectId -UsagelLocation CA

We will then create our Microsoft.Open.AzureAD.Model.AssignedLicense object
and specify the ENTERPRISEPREMIUM SKU ID as we learned in the previous examples:

$Sku = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedlLicense
$Sku.SkuId = "c7df2760-2c81-4ef7-b578-5b5392b571df"

Next up, we need to get the ID of the Yammer Service part of the ENTERPRISEPREMIUM
subscription by using the Get-AzureADSubscribedSku cmdlet, specifying the ObjectId
of our ENTERPRISEPREMIUM subscription and expanding the service plans:

Get-AzureADSubscribedSku -ObjectId 545c04df-2411-4d58-9378-7ec79e9e6b8e
c7df2760-2c81-4ef7-b578-5b5392b571df | Select-Object -ExpandProperty
ServicePlans

In the result seen in Figure 2-20, you can see the service plan ID for each service, and
you can save the IDs of the one(s) you want to disable.

28

CHAPTER 2 MANAGING USERS AND LICENSES

EN Select Admintrator. Windows PowerShell - o *

PS5 C:\WINDOWS\system32> Get-AzureADSubscribedsku -ObjectId 545c04df-2411-4d58-9378-7ec79e9ebbie_c7df2760-2c81l-4ef7-b578~ ~
Sb5392b571df | Select-oObject -ExpandProperty ServicePlans

AppliesTo ProvisioningStatus ServicePlanId ServicePlanName

User Success e212cbec?-0961-4c40-9825-01117710dchl FORMS_PLAN_ES

uUser Success 6c6042f5-6f01-4d67-b8cl-eb99d36eed3e STREAM_O365_ES

User Success Belc0a52-6ab6c-4d40-8370-dd62790dcd?70 THREAT_INTELLIGENCE
User Success 8c7d2df8-8670-4902-b2ed-a0458298f3b3 Deskless

User Success 07699545-9485-468e-95b6-2fca3738be0l FLOW_O365_P3

User Success 9c0dab89-a30c-4117-86e7-97bdaz40acd2 POWERAPPS_0365_P3
User success 57ff2da0-773e-42df-b2af-ffb7a2317929 TEAMS1

User Success 8c098270-9dd4-4350-9b30-bad4703f3b36b ADALLOM_S_0365

User Success 4de31727-a228-4ec3-asbf-8e45b5cad48cc EQUIVIO_ANALYTICS
User Success 9f431833-0334-42de-a7dc-70aad0db46db LOCKBOX_ENTERPRISE
User Success 34c0d7a0-a70f-4668-9238-47F9Fc208882 EXCHANGE_ANALYTICS
User Success a23b959c-7ceB8-4e57-9140-b90eb88a%e97 SWAY

Company Success f20fedf3-f3c3-43¢3-8267-2bfdd51c0939 ATP_ENTERPRISE

User Success 4828c8ec-dc2e-4779-b502-87ac%ce28ab? MCOEV

User Success 3e26eelf-8a5if-4d52-aee2-b8lce45c8F40 MCOMEETADV

User Success 70d33638-9¢74-4d01-bfd3-562de28bd4ba BI_AZURE_P2

Company PendingActivation 882eld05-acdl-4ccb-8708-6ee03664b117 INTUNE_O365

User Success b737dad2-2f6c-4c65-90e3-ca563267e8b9 PROJECTWORKMANAGEMENT
User Success bea4clle-220a-4e6d-8eb8-8eal5d019f90 RMS_S_ENTERPRISE

User Success 7547a3fe-08ee-4ccb-b430-5077¢5041653 YAMMER_ENTERPRISE
User Success 43de0ff5-c92c-492b-9116-175376d08c38 OFFICESUBSCRIPTION
User Success Ofeaeb32-d00e-4d66-bd5a-43b5b83db82c MCOSTANDARD

User Success efb87545-963c-4e0d-99df -69c6916d9eb0 EXCHANGE_S_ENTERPRISE
User Success 5dbe027f-2339-4123-9542-606e4d348a72 SHAREPOINTENTERPRISE
User Success e95bec33-7c88-4a70-8e19-b10bd9d0c01l4 SHAREPOINTWAC

Figure 2-20. Viewing the service plan IDs of the services in a subscription

Next up, we will set the DisabledPlans property of the $Sku variable to the service
plan ID of the YAMMER_ENTERPRISE service:

$Sku.DisabledPlans

"7547a3fe-08ee-4cch-

b430-5077¢5041653"

If we wanted to disable multiple plans, we could create an array of plans to disable.
For example, the following would disable both YAMMER _ENTERPRISE and FORMS PLAN_E5:

$Sku.DisabledPlans

"e212cbc7-0961-4c40-9825-01117710dcb1")

@("7547a3fe-08ee-4cch-b430-5077¢5041653",

We would then create our Microsoft.Open.AzureAD.Model.AssignedlLicenses

object, add our $Sku variable as licenses to add, and apply it to our user, as seen in the

following cmdlets:

$Licenses = New-Object -TypeName
Microsoft.Open.AzureAD.Model.AssignedLicenses
$Licenses.AddLicenses = $Sku

Set-AzureADUserlLicense -ObjectId $User.ObjectId -AssignedlLicenses $Licenses

The result as seen in Figure 2-21 is a user that is E5 licensed but has the Yammer and
Forms services disabled.

29

CHAPTER 2 MANAGING USERS AND LICENSES

nith

ce365powershell.ca

Product licenses

Location ~

| Lanada v

A NOTE: Once new users are set up for Skype for Business PSTN Calling, assign
them a phone number in the Skype for Business admin center. (If you don't see
them there, check back in a few minutes,)

~ Office 365 Enterprise £5 o
22 of 25 licenses available

Microsoft Forms (Plan ES) I Off

Stream for Office 365 |

Office 365 Threat Intelligence -I On

|

ow |

Figure 2-21. User with E5 license and certain services disabled

Note In Figure 2-21, we only see the Forms service disabled due to limitations
on the size of the figure that would be readable. You will have to trust me that
Yammer was also disabled—or better yet, try it yourself!

We can also view the disabled plans of a user with the Get-AzureADUser cmdlet and
by expanding the AssignedLicenses property as seen in the next example. In Figure 2-22,
you can see the SkuId that we assigned to the user previously, as well as the IDs of the
services we disabled in the DisabledPlans property:

Get-AzureADUser -ObjectId $User.ObjectId | Select -ExpandProperty
AssignedlLicenses

30

CHAPTER 2 MANAGING USERS AND LICENSES

[EN Administraton Windows PowerShell - o x
PS C:\WINDOWS\system32> Get-AzureADUser -ObjectId SUser.ObjectId | Select -ExpandProperty AssignedLicenses -
DisabledPlans SkuId

{e212cbc7-0961-4c40-9825-01117710dcbl, 7547a3fe-08ee-4cch-b430-5077c5041653} c7df2760-2c81-4ef7-b578-5b5392b571df

PS C:\WINDOWS\System32>

Figure 2-22. Assigned licenses of a user

We have now looked at multiple scenarios and ways to add licenses to our users.
Next up, we will learn how to remove a license from a user.

Removing User Licenses

Removing a license from a user is very similar to adding a license, but instead of using
the AddLicenses method of our Microsoft.Open.AzureAD.Model.AssignedLicenses
object, we will use the RemovelLicenses method.

We will first save our user into a variable by using the Get-AzureADUser cmdlet as

seen here:
$User = Get-AzureADUser -ObjectId john@office365powershell.ca

We will then create aMicrosoft.Open.AzureAD.Model.AssignedlLicenses object
and save it into a variable called $Licenses as seen here:

$Licenses = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedLicenses

Since I know the plan I want to disable is the ENTERPRISEPREMIUM cmdlet, I can
run the following cmdlet to add the SKU ID of my ENTERPRISEPREMIUM plan in the
Removelicenses property of my object. In the past, we listed the different subscriptions
and manually copied their SkuId; this is just another way to do it!

$Licenses.Removelicenses = (Get-AzureADSubscribedSku | Where-Object
-Property SkuPartNumber -Value "ENTERPRISEPREMIUM" -EQ).SkuID

31

CHAPTER 2 MANAGING USERS AND LICENSES

Lastly, I will assign my $Licenses variable to the user by using the Set-
AzureADUserLicense cmdlet:

Set-AzureADUserlLicense -ObjectId $User.ObjectId -AssignedlLicenses $Licenses

We can then use PowerShell for the Office 365 Admin Center to verify the result,
which should be that the user does not have that license anymore. In Figure 2-23, the
subscription we just removed from John Smith was the only one he had assigned, so the
user is now unlicensed.

John Smith

john@office365powershell.ca

name Jjohn@office365powershell.ca

Product licenses No products have been assigned

Figure 2-23. License removed from the user

We have now learned how to manage licenses for our users in Office 365. Next up,
let’s learn how to manage security groups!

Managing Security Groups with PowerShell

The last section of our “Managing Users and Licenses” chapter will deal with security
groups. It’s important to know that this chapter will only focus on security groups,
and not on Office 365 Groups, as we will cover those in a later chapter. Let’s start with

creating a new security group.

Creating a New Security Group

To create a new security group, we will use the New-AzureADGroup cmdlet and specify
the display name, if the group is email enabled, if the group is security enabled, and
finally the mail nickname, which is mandatory, even if the group you want to create is
not enabled for email. In the example that follows, we are creating a new group called IT
Employees, which will only be used for security and will not be email enabled.

32

CHAPTER 2 MANAGING USERS AND LICENSES

New-AzureADGroup -DisplayName "IT Employees" -MailEnabled $false
-SecurityEnabled $true -MailNickName "IT" -Description "Security Group for
employees in the IT Department”

We can then run the Get-AzureADGroup cmdlet to view all the groups in our Office
365 tenant, as seen in Figure 2-24.

Note The Get-AzureADGroup cmdlet will also return Office 365 Groups, such
as the “PowerShell for Office 365 Book” group.

EX Adrmuratrator. Whndows PowerShel o x
PS C:\WINDOWS\system32> Get-AZureADGroup

object1d DisplayName Description
370883eb-8985-4d44-8643-91dfelfa88bd HR Employees
39d6d22e-ce57-45¢c2-bcb9-a2d2cb98617b IT Employees Security Group for employees in the IT Department

fofa77fd-fodd-4e5¢c-9fda-c3b73a755a2d PowerShell for Office 365 Book Powershell for office 365 Book

PS C:\WINDOWS\system32> _

Figure 2-24. Viewing all the AD groups in our tenant

Creating an Azure AD group is pretty easy, so now let’s take a look at how we can
modify the properties of an existing group.

Changing the Properties of a Security Group

To modify the properties of an Azure AD group, we will use Set-AzureADGroup, providing
the object ID as well as any parameters that we would like to change. For example, in
Figure 2-24, we have a group called HR Employees that has no description, and we want
to change that.

In the example that follows, we are running the Set-AzureADGroup cmdlet, and since
we need to give the ObjectId of the HR Employees group, we run Get-AzureADGroup to
get it. This only works because we currently have one group with the word HR inside; if
you have multiple, you will have to be more specific.

Set-AzureADGroup -ObjectId (Get-AzureADGroup -SearchString "Hr").ObjectId
-Description "Security Group for employees in the HR Department”

33

CHAPTER 2 MANAGING USERS AND LICENSES

To verify it, we can run the Get-AzureADGroup cmdlet, and as you see in Figure 2-25,
our description has been updated.

. EX Adenirsstrator. Windews PewerShell - o *
PS5 C:\WINDOWS\system32> Get-AzureADGroup

objectId DisplayName Description
370883eb-8985-4d44-8643-91dfelfaB8bd HR Employees Security Group for employees in the HR Department
39ded22e-ce57-45c2-bcb9-a2d2cb98617b IT Employees Security Group for employees in the IT Department

fofa77fd-f0dd-4e5c-9fda-c3b73a755a2d Powershell for office 365 Book Powershell for office 365 Book

PS C:\WINDOWS\system32> _

Figure 2-25. Updated description using the Set-AzureADGroup cmdlet

You can view some parameters that we can change in Table 2-1.

Table 2-1. Parameters of the Set-AzureADGroup cmdlet

Parameter Description

-DisplayName Specifies a display name
-MailEnabled Indicates whether mail is enabled
-MailNickName Specifies a nickname for the mail

-SecurityEnabled Indicates whether security is enabled

Removing a Security Group

To remove a security group, we need to use the Remove-AzureADGroup cdmlet, specifying
the object ID of the group we want to delete.

In the example that follows, we are running the Remove-AzureADGroup cmdlet, and
since we need to give the ObjectId of the IT Employees group, we run Get-AzureADGroup
to get it. This only works because we currently have one group with the word IT inside; if
you have multiple, you will have to be more specific.

Remove-AzureADGroup -ObjectId (Get-AzureADGroup -SearchString "IT").ObjectId

We have now looked at how to create, change, remove, and view security groups.
Next up, we will learn how to manage the members inside!

34

CHAPTER 2 MANAGING USERS AND LICENSES

Managing Security Group Membership

One of the most important things, if not the most important thing, about security groups
is the members inside. To view the members of a security group, we can use the
Get-AzureADGroupMember cmdlet and specify the object ID of the group, as seen here:

Get-AzureADGroupMember -ObjectId (Get-AzureADGroup -SearchString "Hr").ObjectId

While the previous cmdlet returns the members of the group, we can also use the
Get-AzureADGroupOwner cmdlet to view the owners of the group—and again, the only
thing you have to specify is the object ID of the group.

Get-AzureADGroupOwner -ObjectId (Get-AzureADGroup -SearchString "Hr").ObjectId

You can see the result of both cmdlets in Figure 2-26.

. EX Adenirustrator. Windews PewerShell - o *
PS C:'WINDOWS\system32> Get-AzureADGroupMember -ObjectId (Get-AzureADGroup -SearchString "Hr").ObjectId

ObjectId DisplayName UserPrincipalName UserType
fca50d76-9¢c1d-47fd-8c33-dadedaf91008 John Smith jehn@office365powershell.ca Member
1651b416-3a9c-401d-8e36-56e65a6e0acs leff Collins Jeff@office3sSpowershell.ca Member

PS5 C:\WINDOWS\system32> Get-AzZureADGroupOwner -ObjectId (Get-AzureADGroup -Searchstring "Hr").ObjectId
objectId DisplayName UserPrincipalName UserType

Figure 2-26. Results of the Get-AzureADGroupMember and Get-
AzureADGroupOwner cmdlets

To add a user, we can use the Add-AzureADGroupMember, specifying the ID of
the group first, followed by the ID of the user we want to add in the -RefObjectId
parameter. In the example that follows, we will first run the Get-AzureADUser and
Get-AzureADGroup cmdlets to save our user and group in variables for easier access
later on. Afterward, we will use the Add-AzureADGroupMember cmdlet and specify the
preceding variables to add the user to the group:

$UserId = Get-AzureADUser -ObjectId vanessa@office365powershell.ca
$GroupId = Get-AzureADGroup -SearchString "Hr Employees”
Add-AzureADGroupMember -ObjectId $GroupId.ObjectId -RefObjectId $UserId.
ObjectId

35

CHAPTER 2 MANAGING USERS AND LICENSES

We can verify the result by using the Get-AzureADGroupMember cmdlet, and as seen
in Figure 2-27, Vanessa has been added to the group!

EX Select Admanistrator Windows PowerShel - (u] *

PS C:\WINDOWS\system32> $Suserld = Get-AzureADUser -Objectld vanessa@off1c:!GSpowershe11 ca -
PS C:\WINDOWS\system32> $Groupld = Get-AzureADGroup -SearchString "Hr Employees"”

PS C:\WINDOWS\system32> Add-AzureADGroupMember -ObjectId $Groupld.ObjectId -RefObjectld SuserId.ObjectId

PS C:\WINDOWS\system32> Get-AzureADGroupMember -ObjectId $GroupId.ObjectId

oObjectId DisplayName UserPrincipalName UserType

fca50d76-9cld-47fd-8c33-dadcdaf91008 John Smith john@office3éSpowershell.ca Member
158cd24d-8148-4c78-8168-e7a4d057afe6 Vanessa Lee vanessa@office365powershell.ca Member
1651b416-3a9c~-401d-8e36-56e65a6e0ac8 Jeff Collins Jeff@office3eSpowershell.ca Member

PS C:\WINDOWS\system32> v
<

Figure 2-27. Adding a user to an Azure AD group

You can also add owners of the group in the same way; you simply have to use the
Add-AzureADGroupOwner cmdlet instead of the Get-AzureADGroupMember cmdlet.
Removing a user or an owner is done in a very similar way with the
Remove-AzureADGroupMember and Remove-AzureADGroupOwner cmdlets. To remove
a member, we will first save the member and the group in variables, as we have done
previously:
$UserId = Get-AzureADUser -ObjectId vanessa@office365powershell.ca
$GroupId = Get-AzureADGroup -SearchString "Hr Employees"

We will then use Remove-AzureADGroupMember, specifying the ObjectId parameter,
which is the ID of the group, and the MemberId of the user, which is the ID of the user we
want to remove:

Remove-AzureADGroupMember -ObjectId $GroupId.ObjectId -MemberId $UserId.
ObjectId
To remove the same user from the owners of the AD group, we would use the

Remove-AzureADGroupOwner cmdlet and specify the -OwnerId parameter instead,
as seen here:

Remove-AzureADGroupOwner -ObjectId $GroupId.ObjectId -OwnerId $UserId.ObjectId

We can also search the groups that a member is a part of by using
Get-AzureADUserMembership and specifying the ID of the user we want to get the
information about, as seen in the following example:

$UserId = Get-AzureADUser -ObjectId jeff@office365powershell.ca
Get-AzureADUserMembership -ObjectId $userid.ObjectId

36

CHAPTER 2 MANAGING USERS AND LICENSES

This will output all the groups that this member is a part of, as seen in Figure 2-28.

EX Administrator: Windows PowerShell = o x

PS C:\WINDOWS\system32> SUserlId = Get-AzureADUser -Objectld jeff@office36Spowershell.ca ~
PS C:\WINDOWS\system32> Get-AzureADUserMembership -ObjectId Suserid.ObjectId

ObjectId DisplayName Description

370883eb-8985-4d44-8643-91dfelfa88bd HR Employees Security Group for employees in the HR Department

PS5 C:\WINDOWS\system32>

< . »

Figure 2-28. Viewing the groups that a member is a part of

We have now covered how to manage users, licenses, and Azure AD security
groups using PowerShell. Now, let’s take a look at how we can automate some business
scenarios using what we have just learned!

Automation Scenarios

The goal of the “Automation Scenario” section of each chapter is to look at some real-life
examples of how you can apply what you have learned in the chapter. These examples
will be interesting and relatively simple, and in our eighth and final chapter we will look
at some more-advanced scenarios that cover multiple services in Office 365!

Tip Remember the scripts and input files demonstrated in each chapter are

also downloadable from the Apress GitHub repository, which you can find at
https://github.com/apress, or for a direct link to this book’s scripts, go to
the book page at www.apress.com and click the “Download Source Code” button.

Updating User Licenses

You have been using Office 365 as a company for the past few years with the Office 365
Business Premium licenses, and it was a perfect fit. Today, you just got news from
leadership that for the next renewal cycle, they have worked with Microsoft to optimize
licenses and use more Office 365 services. The new license plan can be seen in Table 2-2.

37

https://github.com/apress
http://www.apress.com/

CHAPTER 2 MANAGING USERS AND LICENSES

Table 2-2. Business Requirements for New Licenses

Department License
Sales Office 365 Enterprise E5
Dynamics 365 Customer Engagement Plan Enterprise Edition
Manufacturing Office 365 F1
Project Management Office 365 Enterprise E5
Project Online Professional
IT Office 365 Enterprise E5

You are now tasked with updating the license assignment for every user by the end
of the week, when your current Office 365 Business Premium licenses will expire. Let’s
get started!

The first thing you will do is save all the users in your tenant in a variable. You will filter
on those users that are a type “Member” so you do not get external users (type “Guest”):

$Users = Get-AzureADUser | Where {$_.UserType -eq "Member"}

You will then create a new object of type Microsoft.Open.AzureAD.Model.
AssignedLicense for each type of license that you want to assign to your users:

$E5Sku = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedlLicense
$DynamicsSku = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedlLicense
$F1Sku = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedlLicense
$ProjectProSku = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedLicense
$BusinessProSku = New-Object -TypeName Microsoft.Open.AzureAD.Model.
AssignedlLicense

For each of these objects, use the Get-AzureADSubscribedSku that you learned
earlier to get their SkuID and save it in the object, as seen here:

$E5Sku.SkuIld = "c7df2760-2c81-4ef7-b578-5b5392b571df"
$DynamicsSku.SkuId = "ea126fc5-a19e-42e2-a731-da9d437bffcf"
$F1Sku.SkuId = "4b585984-651b-448a-9e53-3b10f069cf7f"
$ProjectProSku.SkuIld = "53818b1b-4a27-454b-8896-0dba576410e6"
$BusinessProSku.SkuIld = "f245ecc8-75af-4f8e-b61f-27d8114de5f3"

38

CHAPTER 2 MANAGING USERS AND LICENSES

Next up, create your Microsoft.Open.AzureAD.Model.AssignedLicenses objects,
which make up the collection of licenses that you will add or remove from every user.
Since all the departments are different, you will need to create one for each account:

$SalesLicenses = New-Object -TypeName
Microsoft.Open.AzureAD.Model.AssignedLicenses

$Manufacturinglicenses = New-Object -TypeName
Microsoft.Open.AzureAD.Model.AssignedlLicenses

$PMLicenses = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedLicenses
$ITLicenses = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedlLicenses

With all the objects created, for each license collection you must add the different
subscriptions that will be inside, as follows:

$SaleslLicenses.AddLicenses = $E5Sku, $DynamicsSku
$Manufacturinglicenses.AddLicenses = $F1Sku
$PMLicenses.AddLicenses = $E5Sku, $ProjectProSku
$ITLicenses.AddLicenses = $E5Sku

Since you are removing the BusinessPro subscription for everyone, add the SkuID
of the BusinessPro subscription in the Removelicenses attribute of each of your license
collections:

$SaleslLicenses.Removelicenses = $BusinessProSku.SkuId
$Manufacturinglicenses.Removelicenses = $BusinessProSku.Skuld
$PMLicenses.Removelicenses = $BusinessProSku.Skuld
$ITLicenses.Removelicenses = $BusinessProSku.SkuId

Now, start looping through all your users, and for each user do an if statement
to see what department they are in; depending on the department, run the
Set-AzureADUserlLicense cmdlet and specify the appropriate license collection from
earlier:

Foreach ($user in $users)

{
if ($user.Department -eq "Sales")
{
Set-AzureADUserlicense -ObjectId $User.ObjectId -AssignedlLicenses
$SaleslLicenses
}

39

CHAPTER 2 MANAGING USERS AND LICENSES

elseif ($user.Department -eq "Project Management")

{

Set-AzureADUserLicense -ObjectId $User.ObjectId -AssignedLicenses

$PMLicenses

}

elseif ($user.Department -eq "Manufacturing")

{

Set-AzureADUserLicense -ObjectId $User.ObjectId -AssignedLicenses

$Manufacturinglicenses

}

elseif ($user.Department -eq "IT")
{

Set-AzureADUserlicense -ObjectId $User.ObjectId -AssignedlLicenses

$ITLicenses

}

That’s it! After refreshing the Office 365 Admin Center, all your users will have the

right licenses, as seen in Figure 2-29.

Office 365 Admin center b s Viad Admin @

Home > Active users Learn-PowerShell
@ -+ l [OrE l Views | All users '| |===.r.-i— users O l ’ 4 Export
(r‘\l name. A, Usern u
&£ Jeff Collins Jeff@office36Spowershell.ca Dynamics 365 Customer Enga..
John Smith john@office365 Office 36! prize E5 Projec...
B
Jonathan King Jonathan@office365powershell.ca Office 365 Enterprise E5
= Mary Wright mary@office365powershell.ca Office 365 F1
Sam Dion sam@office3a5powershell.ca Office 365 F1
Q
Vanessa Lee vanessa@office365powershell.ca Office 365 Enterprise ES Projec...
@3 Viad Admin viad-adm ice365powershell.ca Office 365 Enterprise ES
Vlad Catrinescu & vlad_vnext.solutions*EXT#@office365powershell... Guest
P

Figure 2-29. Users and their licenses in the Office 365 Admin Center

40

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 2 MANAGING USERS AND LICENSES

Creating or Updating Users from a GSV File

You are the Office 365 administrator of an 800-person company that is using Office 365
as its main collaboration suite; however, all HR-related information is stored in a
third-party solution. Users have complained that data in Office 365 is not in sync with
the HR system, which is always up to date, and since that system does not have any
available APIs to automatically update Office 365, you can’t do much other than tell
users to open Helpdesk tickets.

Recently, the third-party HR solution has implemented a new feature that allows you

to export changes made in the past week to a CSV file like the one seen in Figure 2-30.

A B < D | E F G H | 1 £ L | M
1 |Action Email FirstName LastName Title Department Manager OfficePhor MobilePhe City State ZIP CountryCode
2 INEW mary@office3tSpowershell.ca Mary Wright Event Planr Marketing vanessa@office3bSpowershell.ca (123)456-7¢(514)123-4 Honc Hawa 96316 US
3 INEW sam@office3sSpowershell.ca Sam Dion Line Waorke Manufacturing vl i 2365 hell.c (123)094-0; (450)405-1 Chica lllinoi 60007 US
4 UPDATE Jeff@office365powershell.ca Sales Mana Sales john@office 365powershell.ca
5 UPDATE vanessa@office365powershell.ca Marketing ! Marketing Jonathan@office36Spowershell.ca MoniQueb HOH 0ICA

6

—
Users

®
Figure 2-30. Users input file
Knowing that you can use CSV files as an input for your PowerShell script, you plan to

use PowerShell to update the properties of each user every week based on the input file.
First things first, create your $InputFile variable and import the CSV file:

$InputFile = Import-CSV C:\PowerShell\Users.csv

Since you might have new users to create, you should create your Password Profile
objects as well as License objects from the start, before you start looping trough the CSV file:

$Sku = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedlLicense
$Sku.SkuId = "c7df2760-2c81-4ef7-b578-5b5392b571df"

$Licenses = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedlLicenses
$Licenses.AddLicenses = $Sku

41

CHAPTER 2 MANAGING USERS AND LICENSES

Then, start looping through each user from the input file, saving every property from
the CSV file into a variable to make it easier to read later on, as follows:

foreach ($User in $InputFile)

{

$EMail = $User.Email

$FirstName = $User.FirstName
$LastName = $User.LastName
$Title = $User.Title

$Department = $User.Department
$Manager = Get-AzureADUser -ObjectId $User.Manager
$0fficePhone = $User.OfficePhone
$CellPhone = $User.MobilePhone
$City = $User.City

$State = $User.State

$Zip = $User.ZIP

$Country = $User.CountryCode

Then, create an If statement on the Action column, starting with the NEW action.
Run the New-AzureADUser cmdlet to create your account, then provide all the properties
that you saved in variables earlier, including the Password Profile, License, and Manager:

if ($user.Action -eq "NEW")
{
$NewUser = New-AzureADUser °

-GivenName $FirstName °
-Surname $LastName °
-DisplayName "$FirstName $LastName" °
-UserPrincipalName $EMail °
-MailNickName "FirstName.$LastName" °
-AccountEnabled $true °
-PasswordProfile $PasswordProfile °
-JobTitle $Title °
-Department $Department °
-Usagelocation $Country °
-PostalCode $ZIP °
-Mobile $CellPhone °

42

CHAPTER 2

-TelephoneNumber $0fficePhone °
-State $State °
-City $City

Set-AzureADUserManager ~
-ObjectId $EMail °
-RefObjectId $Manager.ObjectId

Set-AzureADUserlicense ~
-ObjectId $NewUser.ObjectId °
-AssignedlLicenses $Licenses

MANAGING USERS AND LICENSES

With the new users taken care of, you will need to run an elseif statement to take

care of the UPDATE action. You could also do an else statement if you are 100 percent

sure that there will never be another action; however, I like having a final else statement

at the end that will throw an error if the action in the file is not the expected NEW or
UPDATE. One of the challenges with the UPDATE action is that the HR system does not
output all the columns when a user is updated, so, as you saw in Figure 2-30, some of

the columns might be empty. Therefore, you should do an if statement on each of the

variables that you have saved, and if the variable is not empty, you should run the Set-

AzureADUser cmdlet to update the user’s profile with the information from your CSV file:

elseif ($user.Action -eq "UPDATE")

{
if ($FirstName)
{
Set-AzureADUser °
-ObjectId $EMail ~
-GivenName $FirstName
}
if ($LastName)
{

Set-AzureADUser °
-ObjectId $EMail -
-Surname $LastName

43

CHAPTER 2 MANAGING USERS AND LICENSES

if ($Title)
{
Set-AzureADUser ~
-ObjectId $EMail °
-JobTitle $Title
}
if ($Department)
{
Set-AzureADUser °
-ObjectId $EMail ~
-Department $Department
}
if ($Manager)
{
Set-AzureADUserManager ~
-ObjectId $EMail ~
-RefObjectId $Manager.ObjectId

}
if ($0fficePhone)

{

Set-AzureADUser °
-ObjectId $EMail °
-TelephoneNumber $0fficePhone

}
if ($CellPhone)

{

Set-AzureADUser °
-ObjectId $EMail °
-Mobile $CellPhone

}

if ($City)

{

Set-AzureADUser °
-ObjectId $EMail ~
-City $City

44

CHAPTER 2 MANAGING USERS AND LICENSES

if ($State)
{
Set-AzureADUser °
-ObjectId $EMail °
-State $State
}
if ($zip)
{
Set-AzureADUser °
-ObjectId $EMail ~
-PostalCode $Zip
}
if ($Country)
{
Set-AzureADUser °
-ObjectId $EMail ~
-Country $Country °
-Usagelocation $Country

}

While I am sure that was not the most exciting piece of PowerShell script, it gets the
job done in this business scenario!

Finally, do your else statement, in which you simply stop the PowerShell script and
throw an error, then close the foreach loop that you opened earlier—and that is it!

else

{

Throw "Action not supported”

1}

The result is that all the users in the CSV file have been successfully created or
updated!

45

CHAPTER 2 MANAGING USERS AND LICENSES

Conclusion

In this chapter, we first learned how to download the AzureAD module from the
PowerShell Gallery and install it on our computer. We then learned how to connect to
Azure Active Directory, which is the directory of our users, even if most of the time we
manage them through the Office 365 Admin Center interface.

We then learned how to view our users in order to create reports, modify their
properties, or even create new users directly from our PowerShell window. We then
learned how to manage our Office 365 subscriptions, from viewing what licenses and
how many we have all the way to assigning licenses—with some services disabled—to
users.

We also looked at how to manage Azure AD security groups, from creating them
to changing their properties and adding or removing members from them. Lastly, we
looked at two business scenarios that showed you how all the things you have learned in
this chapter can become useful in real-life scenarios!

In the next chapter, we will look at how to manage SharePoint Online with
PowerShell.

46

CHAPTER 3

Managing SharePoint
Online

In this chapter, we will first learn how to use PowerShell to connect to SharePoint Online.
We will then learn how to create and manage SharePoint sites and users using the
SharePoint PowerShell cmdlets provided to us by Microsoft.

Furthermore, we will look at open source SharePoint/Office 365 Dev PnP PowerShell
cmdlets that have been created by the community. We will look at what gaps those
cmdlets fill in your day-to-day life and how you can use those cmdlets to make your
SharePoint Online admin life easier.

Lastly, we will look at some interesting automation scenarios and examples of how
you can automate with PowerShell for SharePoint Online.

Connecting to SharePoint Online

The first thing you have to do is download the SharePoint Online PowerShell module
and connect to SharePoint Online. To get the PowerShell module for SharePoint Online,
you need to download the SharePoint Online Management Shell from the Microsoft
Download Center.

Note The SharePoint Online Management Shell can be downloaded at https://
www.microsoft.com/en-us/download/details.aspx?id=35588.

Similar to the previous chapter, you need to be on a machine that runs Windows 7
Service Pack 1 or later or Windows Server 2008 R2 Service Pack 1 or later, as well as have
an account that has the SharePoint Online Admin role assigned. You will also need to be
alocal administrator on your computer.

47
© Vlad Catrinescu 2018

V. Catrinescu, Essential PowerShell for Office 365, https://doi.org/10.1007/978-1-4842-3129-6_3

https://www.microsoft.com/en-us/download/details.aspx?id=35588
https://www.microsoft.com/en-us/download/details.aspx?id=35588

CHAPTER 3 MANAGING SHAREPOINT ONLINE

Once you have downloaded the SharePoint Online Management Shell, you can start
the installation. The first step is to accept the terms, as seen in Figure 3-1.

%

Please read the SharePoint Online Management
Shell License Agreement
@ MICROSOFT ONLINE MANAGEMENT SHELL A

FOR MICROSOFT OFFICE 365

PLEASE NOTE: Refer to your license terms for
Microsoft Office 365 software (the

“software”) to identify the entity licensing

this supplement to you and for support
information. You may use a copy of this
supplement with each validly licensed copy

of the software. You may not use the
supplement if you do not have a license for v

[11 accept the terms in the License Agreement

Print Back | Instal | Cancel

Figure 3-1. SharePoint Online Management Shell Setup

You then simply click on the “Install” button, and that is about it! To start managing
SharePoint Online, you have to open either the SharePoint Online Management Shell
or a normal PowerShell window and run the following cmdlet to import the SharePoint
Online module:

Import-Module Microsoft.Online.SharePoint.PowerShell

The next parameter you will need to know is the URL of your SharePoint Online
Admin Center. This URL is usually under the format of https://<0365 Organization
Name>-admin.sharepoint.com. The easiest way to find it is by navigating to the Office
365 Admin Center, then navigating to the SharePoint Online Admin Center and copying
the URL, as seen in Figure 3-2.

48

CHAPTER 3 MANAGING SHAREPOINT ONLINE

C | O https://office365powershell-admin.sharepoint.com/

Office 365

Admin

SharePoint admin center

site collections

Tl

Site Collections I
— — []) []
) =1 @ 9, D o |
E=a A~
600 L2 &% &3 V, V, st &
New Delete Properties Owners Sharing Buy Server Resource Upgrade Regycle
- - Storage Quota - Bin
Contribute Manage Restore
0o
| URL

Figure 3-2. The SharePoint Online Admin Center

Now that you have all the information that you need, open the SharePoint

Management Shell as an administrator and run the following cmdlet to get the

credentials of the account with which you want to connect to SharePoint Online:

$cred = get-credential

The preceding command line will open up a PowerShell credential request pop-up

as seen in Figure 3-3 and will save it in a variable called $cred.

Note PowerShell will not do any validation of the credentials you enter in the

pop-up window.

49

CHAPTER 3 MANAGING SHAREPOINT ONLINE

PS C:\WINDOWS\system32> $cred = get-credential f

cmdlet Get-Credential at command pipeline position 1

Supply values for the following parame Windows PowerShell credentialsequest 2 v
Credential

Figure 3-3. Get-Credential

Afterward, you will have to run the Connect-SP0Service cmdlet and specify the URL
of the SharePoint Online Admin Center you got earlier, as well as the credential you just
saved. For example, to connect to the tenant you saw in Figure 3-2, you would run the
following cmdlet:

Connect-SPOService -Url https://office365powershell-admin.sharepoint.com/
-Credential $cred

As seen in Figure 3-4, when connecting to SharePoint Online, no news is good news.

PS C:\WINDOWS\system32> $cred = Get-Credential A

cmdlet Get-Credential at command pipeline position 1

Supply values for the following parameters:

Credential

PS C:\WINDOWS\system32> Connect-SPOService -Url https://office365powershell-admi
n.sharepoint.com/ -Credential S$cred

PS C:\WINDOWS\system32>

Figure 3-4. Connecting to SharePoint Online

50

CHAPTER 3 MANAGING SHAREPOINT ONLINE

Something to be aware of is that the procedure to connect to SharePoint Online
is a little bit different if you have Multi-Factor Authentication (MFA) enabled. In that
case, skip the previous cmdlets and simply run the Connect-SP0Service cmdlet with
the URL of your SharePoint Online Admin Center, as seen in the following command
line. A pop-up will open that asks you for the credentials, as well as provides further
instructions on how to provide additional authentication information, such as a
verification code.

Connect-SPOService -Url https://office365powershell-admin.sharepoint.com/

You are now ready to begin executing SharePoint Online commands. Let’s take a
look at what we have available.

Executing PowerShell cmdlets in SharePoint Online

While the number of cmdlets in the SharePoint Online PowerShell module can change
each month because of the nature of the cloud, let’s take a look at some of the cmdlets
that are currently available. If you want to get a list of the latest cmdlets available to
you, simply run the Get-Command cmdlet and specify the SharePoint Online PowerShell
module, as seen here:

Get-Command -Module Microsoft.Online.SharePoint.PowerShell

The Available cmdlets

Let’s first look at the PowerShell cmdlets to manage Site Collections in SharePoint
Online. Table 3-1 below lists the most common PowerShell cmdlets for Site Collection
Management.

51

CHAPTER 3 MANAGING SHAREPOINT ONLINE

Table 3-1. Site Collection cmdlets in SharePoint Online

Cmdlet

Description

Get-SPOSite
New-SPOSite
Remove-SPOSite

Repair-SPOSite
Set-SPOSite
Test-SPOSite
Upgrade-SPOSite
Get-SPODeletedSite
Remove-SPODeletedSite

Restore-SPODeletedSite

Returns one or more site collections
Creates a new SharePoint Online site collection

Sends a SharePoint Online site collection to the SharePoint
Online Recycle Bin

Checks and repairs the site collection and its contents

Sets or updates one or more properties’ values for a site collection
Tests a SharePoint Online site collection

Starts the upgrade process on a site collection

Returns all deleted site collections from the Recycle Bin

Removes a SharePoint Online deleted site collection from the
Recycle Bin

Restores a SharePoint Online deleted site collection from the
Recycle Bin

We then have the cmdlets that allow us to manage our tenant, seen in Table 3-2.

Those cmdlets allow us to view or change settings at the tenant level, such as sharing

default settings and content delivery network (CDN) settings as well as more advanced

ones like setting a list of allowed IP addresses that can access the tenant.

52

CHAPTER 3 MANAGING SHAREPOINT ONLINE

Table 3-2. Tenant-level cmdlets in SharePoint Online

Cmdlet

Description

Get-SPOTenant
Get-SPOTenantCdnEnabled

Get-SPOTenantCdnOrigins

Get-SPOTenantCdnPolicies

Get-SPOTenantSyncClientRestriction

Get-SPOTenantLogEntry
Set-SPOTenant

Set-SPOTenantCdnEnabled

Set-SPOTenantCdnPolicy

Set-SPOTenantSyncClientRestriction

Returns SharePoint Online organization properties

Returns whether public content delivery network
(CDN) or private CDN is enabled on the tenant level

Lists all the configured origins under the tenancy or
under a given site

Returns the content delivery network (CDN) policies
from a tenant level

Returns the current OneDrive for Business Sync
configuration status

Retrieves SharePoint Online company logs

Sets properties on the SharePoint Online
organization

Enables or disables public content delivery network
(CDN) or private CDN on the tenant level

Sets the content delivery network (CDN) policies
from the tenant level

Controls tenant-wide options and restrictions
specific to syncing files

Finally, some of the other cmdlets you will use a lot are the cmdlets that have to do

with users and SharePoint groups; these can be seen in Table 3-3.

53

CHAPTER 3 MANAGING SHAREPOINT ONLINE

Table 3-3. User- and SharePoint Groups-level cmdlets in SharePoint Online

Cmdlet

Description

Get-SPOExternalUser
Get-SPOSiteGroup
Get-SPOUser

New-SPOSiteGroup
Remove-SPOSiteGroup
Remove-SPOUser
Set-SPOSiteGroup
Set-SPOUser

Returns external users in the tenant
Gets all the groups on the specified site collection

Returns the SharePoint Online user or security group accounts that
match a given search criteria

Creates a new group in a SharePoint Online site collection

Removes a SharePoint Online group from a site collection

Removes a user or a security group from a site collection or a group
Gets all the groups on the specified site collection

Configures properties on an existing user

Managing Sites

Now that we have looked at some of the available cmdlets, let’s start you off using them.

First, simply output a list of all the site collections that exist in your tenant. To do so, you
need to run the Get-SP0Site cmdlet. The SharePoint Online Management Shell will
show you all the URLs, the owner, and the storage quota, as seen in Figure 3-5.

Administrator: Windows PowerShell

PS C:\WINDOWS\system32> get-sposite

url Owner Storage Quota
https://office365powershell.sharepoint.com/search 26214400
https://office365powershell. sharepoint.com/portals/hub 26214400
https://office365powershell. sharepoint.com/sites/Project-ABCl23 26214400
https://office365powershell. sharepoint.com/portals/Community 26214400
https://office365powershell. sharepoint.com/teams/HR 26214400
https://office365powershell. sharepoint.com/sites/powershellforoffice365book 1048576
https://office365powershe11-mg.sharepoint.com/ 26214400
https://office365powershell. sharepoint.com/ gggl:igg
1

https://office365powershell. sharepoint.com/teams /Marketing Team Site

Figure 3-5. Get-SPOSite

Note In some cases, PowerShell will return a warning that because there are too

many site collections, they have not all been returned. To show all the site collections,
add the -Limit A1l parameter. Your full cmdlet will be Get-SPOSite -Limit All.

54

CHAPTER 3 MANAGING SHAREPOINT ONLINE

You can also use PowerShell to display all the properties of the site collection directly
in the window. For example, you can output the URL, title, and template for each site by
running the following cmdlet:

Get-SPOSite | Select Url, Title, Template

The results can be seen in Figure 3-6.

EX adrmnctratee Windows PowerShel - o ES
PS C:\WINDOWS\system32> get-sposite | Select Url, Title, Template

url Title Template

Ettps:ffcfficeBﬁSpowershe]].sharepaint.com{search SRCHCEN#0

https://office365powershell. sharepoint.com/portals/hub PointPublishing Hub Site POINTPUBL. . .

https://office365powershell. sharepoint.com/sites,/Project-aBC123 Project-aBcl23 STS#0
ttps://office365powershell. sharepoint. com/portals/Community Community POINTPUBL. ..
ttps://office365powershell. sharepoint. com/teams/HR HR Team Site STSED
ttps://office365powershell. sharepoint. com/sites/powershell1foroffice365book Powershell for Office 365 Book GROUP#0
ttps://office365powershell-my.sharepoint.com/ SPSMSITEH. .
ttps://office365powershell. sharepoint.com/ Learn-Powershell Team Site EHS#1

https: //office365powershell. sharepoint.com/teams/Marketing Team Site Marketing Team Site STS#0

PS C:ZWWINDOWS\s5ystem32>

Figure 3-6. Get-SPOSite

Tip To view all the available properties of a cmdlet, pipe the Get-Member cmdlet
on it. For example, to see all the available properties of the Get-SP0Site cmdlet,
run Get-SPOSite | Get-Member.

Now, let’s take a look at how to create a new site collection. You will use the New-
SPOSite cmdlet, and you will need to provide three mandatory parameters: Url, Owner,
and StorageQuota. Some of the optional parameters you might find useful are LocaleID,
TimeZonelID, Title, and Template. For all the parameters and what they do, you can go to
the TechNet page of the New-SP0Site cmdlet to find the latest information.

Tip You can navigate to the TechNet page of a cmdlet without ever quitting
PowerShell by using the Get-Help cmdlet! One of the switches of the cmdlet is
-online, and specifying that switch will open the TechNet page of the cmdlet
in your default browser. In this example, you would run the following cmdlet to
navigate to the TechNet Page of the New-SP0OSite cmadlet:

Get-Help New-SP0OSite -online

55

CHAPTER 3 MANAGING SHAREPOINT ONLINE

Let’s say you want to create a site collection with the URL https://office365powershell
.sharepoint.com/teams/IT, with the title “IT Team Site,” with language set to “English -
United States,” and with the Team Site template. Therefore, run the following cmdlet:

New-SPOSite ~
-Url https://office365powershell.sharepoint.com/teams/IT °
-Owner vlad-admin@office365powershell.ca ~
-StorageQuota 1024 °
-LocaleID 1033 -Template "STS#0" °
-Title "IT Team Site"

To remove a site collection, you can run the Remove-SP0Site cmdlet, and the only
mandatory parameter is the URL of the site you want to remove. You can also specify
the Confirm parameter to skip the confirmation. To remove the site you just created, you
would run the following cmdlet:

Remove-SPOSite -Identity https://office365powershell.sharepoint.com/teams/IT

Since you did not specify the Confirm parameter, PowerShell will ask for a
confirmation of whether that’s what you really want to do, as seen in Figure 3-7.

EX Adrninistrator: Windows PowerShell - o x

PS C:\WINDOWS\system32> Remove-SPOSite -Identity https://office365powershell.sharepoint.com/teams/IT

Confirm

Are you sure you want to perform this action?

performing the operation "Remove-SPOSite" on target "https://office365powershell. sharepomt com/teams,/IT".
[¥] ves %A] Yes to A11T [N] No [L] No to All S] suspend [?] Help (default 1is "y"):

Figure 3-7. Remove-SPOSite

56

https://office365powershell.sharepoint.com/teams/IT
https://office365powershell.sharepoint.com/teams/IT

CHAPTER 3 MANAGING SHAREPOINT ONLINE

To use the same cmdlet without the confirmation, you would need to include
-Confirm:$false, as seen in the following example:

Remove-SPOSite ~
-Identity https://office365powershell.sharepoint.com/teams/IT ~
-Confirm:$false

When you delete a site in SharePoint Online, it will go to a Site Collection Recycle
Bin. You can view all the sites in the SharePoint Online Site Collection Recycle Bin by
running the Get-SPODeletedSite cmdlet. PowerShell will show you the information
about the site, as well as deletion time and days remaining until the site is permanently
deleted. As you can see in Figure 3-8, the site was deleted on July 3, 2017, and still has 30
days remaining until it's permanently deleted.

2
PS C:\WINDOWS\system32> Get-SPODeletedSite

url Storage Quota Resource Quota Deletion Time Days Remaining

https://office365powershell. sharepoint. com/teams/IT 26214400 0 7/3/2017 2:12:15 PM 30

PS C:\WINDOWS\System32>

Figure 3-8. Get-SPODeletedSite

You can restore this site by using the Restore-SPODeletedSite cmdlet. The only
parameter you have to specify is - Identity, and you must provide the URL of the site
collection you want to restore, as seen in this example:

Restore-SPODeletedSite -Identity https://office365powershell.sharepoint.
com/teams/IT

Next up, you will focus on the site collection you have created and learn how you can
change some of the properties. Because you will be modifying multiple properties on
your site, the first thing you should do is save the SPOSite in a variable so you can reuse
this variable instead of typing in the URL every time. This can be done using the
Get-SPOSite cmdlet and saving the output in a variable called $site, as seen here:

$site = Get-SPOSite -Identity https://office365powershell.sharepoint.com/teams/IT

57

CHAPTER 3 MANAGING SHAREPOINT ONLINE

Once you have saved your site in the $site variable, you can easily look through all
its properties, as seen in Figure 3-9.

EX Administrator: Windows PowerShell - [u] X

PS C:\WINDOWS\system32> $site.Title ~
IT Team Site

PS C:\WINDOWS\system32> $site.StorageQuota

26214400

PS C:\WINDOWS\system32> $site.ResourceQuota

0

PS C:\WINDOWS\system32> $site.Template
STS#0
PS C:\WINDOWS\system32> $site.LastContentModifiedDate

Monday, July 3, 2017 2:00:18 PM

PS C:\WINDOWS\system32> $site.Localeld
1033 v

< >

Figure 3-9. SPOSite properties

You can also change the properties of a site. For example, you can change the title
of your SharePoint Online Site Collection by running Set-SP0Site and specifying the
parameter that you want to change:

Set-SPOSite $site °
-Title "Information Technology Team Site"

You can also specify the sharing capabilities of a certain site collection. By default,
when creating a new site collection in SharePoint Online, users inside that site collection
can only share it with users who are a part of your organization. When looking at the
Sharing screen in the user interface, there are four options, as seen in Figure 3-10.

58

CHAPTER 3 MANAGING SHAREPOINT ONLINE

sharing

Sharing outside your company
Control how users invite people outside your organization to access content

‘® Don't allow sharing outside your organization

) Allow sharing only with the external users that already exist in your
organization's directory

- Allow external users who accept sharing invitations and sign in as
authenticated users

' Allow sharing with all external users, and by using anonymous
access links

Figure 3-10. Sharing options in the SharePoint Online Admin Center

Of course, these settings can also be managed via PowerShell and the
SharingCapability parameter. For example, to change this site to allow external users
who accept sharing invitations and sign in as authenticated users, you would run the
following cmdlet:

Set-SPOSite $site -SharingCapability ExternalUserSharingOnly

Since there are four options in the user interface, you also have four options in
PowerShell; you can find the mapping of the PowerShell value with the Ul value in
Table 3-4.

Table 3-4. Mapping of the SharingCapability Parameter Options with the
Admin Center

PowerShell Value User Interface Option
Disabled Don’t allow sharing outside your organization.
ExternalUserSharingOnly Allow external users who accept sharing invitations

and sign in as authenticated users.

ExternalUserAndGuestSharing Allow sharing with all external users and by using
anonymous access links.

ExistingExternalUserSharingOnly Allow sharing only with the external users that
already exist in your organization’s directory.

59

CHAPTER 3 MANAGING SHAREPOINT ONLINE

By knowing these values, you can also query SharePoint Online via PowerShell and
easily see a list of your sites and what sharing options they have, which you couldn’t
easily do from the user interface. For example, to see all the SharePoint Online site
collections where users are allowed to share to both logged-in external users and
anonymous users, you would run the following cmdlet:

Get-SPOSite | Where {$_.SharingCapability -eq
"ExternalUserAndGuestSharing"} | Select Url

As aresult, you would see a list of URLs where sharing is set to external users and
anonymous, as seen in Figure 3-11.

. EX Aderanistratee. Windows PewesShell — o *
PS C:\WINDOWS\system32> Get-SPOSite | where {S_.sharingCapability -eq "ExternalUserAndGuestsharing"} | Select~

url

https://officesaspowershel1-mz. sharepoint.com/
https://office365powershell. sharepoint.com/

PS C:\WINDOWS\system32>

L >

Figure 3-11. Sites with the ExternalUserAndGuestSharing sharing option

Something else that you might want to change is whether you want to allow non-
owners to invite new users. By default in SharePoint Online, users in the “Members”
group can invite other people to your site, but you might not want to allow this. Luckily,
you can change this setting by using either the user interface or PowerShell. To change
it via PowerShell, run the Set-SP0Site cmdlet, give the site URL or SPOSite object, and
then use the DisableSharingForNonOwners switch. In this example, you would run the
following cmdlet:

Set-SP0OSite $site -DisableSharingForNonOwners

To further secure your site collection as a SharePoint Online admin, you can limit the
sharing options by domain. You can either create a list of allowed domains or set a list of
blocked domains. You do this using the Set-SP0Site cmdlet and the SharingDomain
RestrictionMode parameter. You can find the accepted values in Table 3-5.

60

CHAPTER 3 MANAGING SHAREPOINT ONLINE

Table 3-5. SharingDomainRestrictionMode Available Values

Value Description

None Feature not enabled

Allowlist Allow sharing only with users from these domains.
BlockList Don’t allow sharing with users from these blocked domains.

In the same cmdlet, you will need to provide a space-delimited list of domains you
want to allow, which is done using the SharingAllowedDomainlList parameter, or a list
of domains you want to block, which is done via the SharingBlockedDomainList. For
example, to set your site collection to only allow users from the Contoso.com, vNext.
solutions, and Microsoft.com domains, you would run the following cmdlet:

Set-SPOSite $site -SharingDomainRestrictionMode "Allowlist"
-SharingAllowedDomainList "contoso.com vnext.solutions microsoft.com"

If you wanted to allow all domains except the domains just specified, you would run
the following cmdlet:

Set-SPOSite $site -SharingDomainRestrictionMode "BlocklList"
-SharingBlockedDomainList "contoso.com vnext.solutions microsoft.com"

Now that we have looked at how to create, delete, and modify site collections in
SharePoint Online, let’s learn how to manage users and groups.

Managing Users and Groups

Managing users’ and groups’ access to SharePoint is a critical part of your job as a
SharePoint Online admin. By using PowerShell you are able to view the users in a site
collection as well as what groups they are a part of.

The first cmdlet that you have is Get-SP0SiteGroup, which allows you to see all the
groups in a certain site, as well as what permissions those groups have on a certain site
collection. When running the cmdlet, you simply need to specify the -Site parameter
and either give it the URL of a SharePoint Online site collection or a SPOSite object.

In Figure 3-12, you can see all the groups of the IT site collection you saved in the
$site variable earlier in this chapter, as well as the members in each group and the
permissions those groups have on the site.

61

CHAPTER 3 MANAGING SHAREPOINT ONLINE

[EX Adrmmistraton Windews PowerShell - (] »
PS C:\WINDOWS\system32> Get-SPOSiteGroup -Site 3site o
LoginName : Excel Services Viewers

Title . : Excel Services Viewers

OwnerLoginName : SHAREPOINT\system

ownerTitle 1 System Account

Users :

Roles : {view only}

LoginName : IT Team Site Members

Title : IT Team Site Members

ownerLoginName : IT Team Site Owners

OwnerTitle : IT Team Site Owners

Users : {jeff@office365powershell.ca, vanessa@office36Spowershell.ca}

Roles : {Edit}

LoginName : IT Team Site Owners

Title : IT Team Site Owners

ownerLoginName : IT Team Site Owners

ownerTitle ¢ IT Team Site Owners

Users : {SHAREPOINT\system}

Roles : {Full centrol

LoginName ¢ IT Team Site Visitors

Title ¢ IT Team Site Visitors

ownerLoginName : IT Team Site Owners

ownerTitle : IT Team Site Owners

Users : E}

Roles Read}

_(> y

Figure 3-12. Get-SPOSiteGroup

If you get a bit more advanced, you can create a small PowerShell script that will loop

through all the groups in a site collection and then show you the members inside. If you
look at the following script, you will see that you first get all the groups in the $site site
collection and save them in a variable called $Groups. You then loop through each group
and simply do another Get-SP0SiteGroup, but this time you specify the group you want
by using the -Group parameter and giving it the group title, and then you select the Users

property.

$Groups = Get-SPOSiteGroup -Site $site
foreach ($Group in $Groups)
{
Write-Host $Group.Title -ForegroundColor "Blue"
Get-SPOSiteGroup -Site $site -Group $Group.Title |
-ExpandProperty Users
Write-Host

Select-Object

}

The result seen in Figure 3-13 is a list of users in each SharePoint Online group.

62

CHAPTER 3 MANAGING SHAREPOINT ONLINE

EX Aderanistratee Windows PewerShell - [n] *
PS C:\WINDOWS\system32> 3Groups = Get-SPOSiteGroup -Site Ssite =
PS C:\N%Noows\systemsb foreach ($Group 1in $Groups)

>3

t:» Write-Host 3$Group.Title -ForegroundColor "Blue"

> Get-5P0SiteGroup -Site $site -Group $Group.Title | Select-Object -ExpandProperty Users

t» write-Host

>

IT Team Site Members
jeffeoffice36Spowershell.ca
wvanessa@office365powershell.ca

IT Team Site Owners
;SHAREPOINT\syStem
vlad-admin@office365powershell.ca

IT Team Site Visitors
john@office3espowershell.ca

PS C:\WINDOWS\system32>

Figure 3-13. List of users per SharePoint Online group

You can also query all the users in a site directly by using the Get-SPOUser cmdlet
and specifying the site. This will return all the users in the site, as well as what groups
they are a part of, as seen in Figure 3-14.

E¥ Admunistraton Windows PowerShel - o pod]
PS C:\WINDOWS\system32> Get-SPOUser -Site $site ~
Display Name Login Name Groups
Company Administrator §-1-5-21-1655370125-2674026898-3842197393-1811256 {}

Everyone true }

Everyone except external users spo-grid-all-users/545c04df-2411-4d58-9378-7ec7%e%e6bie i} .

Jeff Collins jeffl@office365powershell.ca IT Team Site Members}
John Smith Jjohn@office365powershell.ca {IT Team Site visit...
sharepoint App app@sharepoint 1} X
System Account SHAREPOINT\System {IT Team Site Owners}
\k.l’anessa Lee vanessa@office3sSpowershell.ca {IT Team Site Members}

lad Admin vlad-admin@office365powershell.ca {IT Team Site Owners}

lad catrinescu vlad_vnext.solutions#ext#@office3sSpowershell.ca {IT Team Site Members}
YLOOO1Y _spocrwl_818_18467 y10001%_spocrwl_818_18467 {}
i—%

Figure 3-14. Users in the IT site collection

Another cmdlet that will be useful is the Get-SPOExternalUser cmdlet, which allows
you to view all the users outside the company that have permission on at least one site in
your tenant.

63

CHAPTER 3 MANAGING SHAREPOINT ONLINE

The Get-SPOExternalUser cmdlet accepts the cmdlets seen in Table 3-6.

Table 3-6. Get-SPOExternalUser Properties

Parameter Description

Filter Limits the results to only those users whose first name, last name, or email
address begins with the text in the string, using a case-insensitive comparison

PageSize Specifies the maximum number of users to be returned in the collection. The
value must be less than or equal to 50.

Position Used to specify the zero-based index of the position in the sorted collection of the
first result to be returned

SiteUrl Specifies the site to retrieve external users for. If no site is specified, the external
users for all sites are returned.

SortOrder Specifies the sort results in ascending or descending.

In Figure 3-15, I am running the Get-SPOExternalUser cmdlet and selecting the first
50 external users in my tenant. As you can see, I currently only have one external user in

my organization.

N Select Administrator: Windows PowerShell -] X
PS C:\WINDOWS\system32> Get-SPOExternalUser -Position 0 -PageSize 50 |
Email : vlad@vnext.solutions
DisplayName : Vlad Catrinescu
UniqueId : 10033FFFA2F71F1D
AcceptedAs : vlad@vnext.solutions
wWhenCreated : 7/4/2017 3:20:13 AM
InvitedBy

PS C:\WINDOWS\system32>

< >

Figure 3-15. The first 50 external users from my tenant

Furthermore, if you specify the site collection, as seen in Figure 3-16, you also have
access to the information on who invited this user to the site collection, which can be
very valuable if you need more information about this external user.

64

CHAPTER 3 MANAGING SHAREPOINT ONLINE

E¥ Administrator: Windows PowerShell -] x
PS C:\WINDOWS\system32> Get-SPOExternalUser -Position 0 -PageSize 50 -SiteUr] S$site.url |

Email : vlad@vnext.solutions

DisplayName : Vlad Catrinescu

UniqueId : 10033FFFA2F71F1D

AcceptedAs : vlad@vnext.solutions

whenCreated : 7/4/2017 3:20:13 AM

InvitedBy : vlad-admin@office365powershell.ca

PS C:\WINDOWS\system32> _

< >

Figure 3-16. External users in a certain site collection

The previous examples only showed the first 50 External Users from your tenant,
or from the Site Collection you have specified. In order to return more than 50, you
will have to create a loop that will get 50 users at a time, while changing the Position
parameter. The following script will return all the external users from the tenant

try {
for ($i=0;;$i+=50) {
$ExternalUsers += Get-SPOExternalUser -PageSize 50 -Position

$i -ea Stop
}
}
catch {
}
$ExternalUsers

PowerShell can also be used to add users to certain groups. For example, if I wanted
to add John Smith to the IT Team Site Members group, I would run the following cmdlet:

Add-SPOUser -Site $site -LoginName john@office365powershell.ca -Group "IT
Team Site Members"

You can also remove users from a group by using the Remove-SPOUser cmdlet
and the same parameters. If you do not specify the -Group parameter, the user will be
removed from all the groups:

Remove-SPOUser -Site $site -LoginName john@office365powershell.ca -Group
"IT Team Site Members"

65

CHAPTER 3 MANAGING SHAREPOINT ONLINE

If you want to create a new group, you can do so with the New-SPOSiteGroup cmdlet.
You will need to specify the site where you want to create the new group, the group name,
and what permission level you want the group to have. In the following example, I create
a new SharePoint Online Group named IT Managers that has full control on my site:

New-SPOSiteGroup -Site $site -Group "IT Managers" -PermissionLevels "Full Control"

Now that we have reviewed what we can do with PowerShell to manage our users
and groups, let’s take a look at what settings we can configure at the tenant level.

Managing Tenant-level Settings

When you make changes at the tenant level, you affect all the site collections and the
users in your organization, so it is important to understand what a certain cmdlet does
before running it as it may change the way users in your organization get things done.
First of all, you can use the Get-SPOTenant cmdlet to view all the settings of your tenant.
This will not only give you all the current properties of your tenant, but will also show
you a list of the properties that you can change. In Table 3-7, you can see some of the
most popular ones.

Table 3-7. Set-SPOTenant Properties

Parameter Description

BccExternalSharingInvitations Enables the BCC for External Sharing feature.
When the feature is enabled, all external sharing
invitations will blind copy the email messages listed
in the BccExternalSharingsInvitationList.
Accepts a value of true (enabled) or false
(disabled). By default, this feature is set to false.

BccExternalSharingInvitationsList Specifies a list of email addresses to be BCC'd
when the BCC for External Sharing feature is
enabled. Multiple addresses can be specified by
creating a comma-separated list with no spaces.
(continued)

66

Table 3-7. (continued)

CHAPTER 3 MANAGING SHAREPOINT ONLINE

Parameter

Description

DefaultSharinglLinkType

DisplayStartASiteOption

StartASiteFormUrl

OneDriveStorageQuota

OrphanedPersonalSites
RetentionPeriod

RequireAcceptingAccountMatch
InvitedAccount

Lets administrators choose what type of link is
selected in the “Get a Link” sharing dialog box in
OneDrive for Business and SharePoint Online.
The values are:

e None

e Direct

e |nternal

e AnonymousAccess

Determines whether tenant users see the “Start a
Site” menu option

Specifies URL of the form to load in the “Start a
Site” dialog
Sets a default OneDrive for Business storage quota

for the tenant. It will be used for new OneDrive for
Business sites created.

Specifies the number of days after a user’s Active
Directory account is deleted that their OneDrive for
Business content will be deleted. The value range is in
days, between 30 and 3650. The default value is 30.

Ensures that an external user can only accept an
external sharing invitation with an account matching
the invited email address.

The parameter accepts two values: True or False.

True—~User must accept this invitation with bob@
contoso.com.

False—When a document is shared with an
external user, bob@contoso.com, it can be
accepted by any user with access to the invitation
link in the original email.

(continued)
67

CHAPTER 3 MANAGING SHAREPOINT ONLINE

Table 3-7. (continued)

Parameter

Description

RequireAnonymousLinksExpireInDays

SharingDomainRestrictionMode

Specifies that all anonymous links that have been
created (or will be created) will expire after the set
number of days

Specifies the external sharing mode for domains.
The allowed values are:

e None
e AllowList
¢ BlockList

SharingAllowedDomainList

SharingBlockedDomainList

SharingCapability

Specifies a list of email domains that are allowed
for sharing with external collaborators. Use the
space character as the delimiter for entering
multiple values.

Specifies a list of email domains that are blocked or
prohibited for sharing with external collaborators.
Use space character as the delimiter for entering
multiple values.

Determines what level of sharing is available for the

site. The possible values are: Disabled—external user
sharing (share by email) and guest link sharing are both
disabled; ExternalUserSharingOnly—external user
sharing (share by email) is enabled, but guest link sharing
is disabled; or ExternalUserAndGuestSharing—
external user sharing (share by email) and guest link
sharing are both enabled.

You can change all these properties with the Set-SPOTenant PowerShell cmdlet. For

example, let’s say you want to make the following changes to your tenant to adhere to

business regulations and security requirements:

o BCCyourself and adnin@office365powershell.ca on all external invites

o Set the default sharing link type to Internal

68

CHAPTER 3 MANAGING SHAREPOINT ONLINE

e Hide the “New Site” button in the SharePoint home

o Keep the MySites of users who have been deleted from the Active

Directory for ten years

¢ Require external users to log in with the same account that the invite

was sent to

e Only allow your users to share with external users that log in, and do

not allow them to create anonymous links

To meet those requirements, you would run the following cmdlet:

Set-SPOTenant

-BccExternalSharingInvitations $true °
-BccExternalSharingInvitationsList "vlad-admin@office365powershell.
ca,admin@office365powershell.ca" ~

-DefaultSharinglLinkType Internal °

-DisplayStartASiteOption $false °

-OrphanedPersonalSitesRetentionPeriod 3650

-RequireAcceptingAccountMatchInvitedAccount $true °
-SharingCapability ExternalUserSharingOnly

Some other settings not included in the Get/Set-SPOTenant cmdlets are the settings

for OneDrive for Business. Office 365 allows you to configure OneDrive for Business to

only allow users to sync files on a domain-joined machine, as well as to block certain

extensions. This can be done by using the Set-SPOTenantSyncClientRestriction

cmdlet. In Table 3-8 you can find some the parameters of this cmdlet.

Table 3-8. Set-SPOTenantSyncClientRestriction Parameters

Parameter Description

BlockMacSync Block Mac sync clients—the Beta version and the new sync client (OneDrive.exe)
The values for this parameter are True and False. The default value is False.

DomainGuids Sets the domain GUID to add to the safe recipient list. Requires a minimum of
one domain GUID. The maximum number of domain GUIDs allowed is 125.

Enable Enables the feature to block sync originating from domains that are not present
in the safe recipients list

ExcludedFile Blocks certain file types from syncing with the new sync client (OneDrive.exe).

Extensions

69

CHAPTER 3 MANAGING SHAREPOINT ONLINE

Tip To find out your domain GUID for the -DomainGuids parameter, follow this
guide on TechNet: https://technet.microsoft.com/en-us/library/
dn938435.aspx.

For example, let’s say you have the following business requirements:

e Users can only sync OneDrive for Business to computers joined to
the office365powershell.ca domain.

e Users on a MAC cannot use OneDrive for Business to sync files.
o Users cannot sync JavaScript files with OneDrive for Business.

Before running the Set-SPOTenantSyncClientRestriction cmdlet, it’s important
to note that this cmdlet uses parameter sets; therefore, you might not be able to specify
all the parameters that you want in a single cmdlet. You can view the parameter sets by
using the Get-Help cmdlet, as seen in Figure 3-17. Because of the parameter sets, you
cannot, for example, specify the -Enable, -DomainGuids, and -ExcludeFileExtensions
parameters in the same cmdlet.

[Admanetrator. Windows PowerShell - o x]
PS C:\WINDOWS'System32> Get-Help Set-SPOTenantsyncClientRestriction

NAME . L
set-SPOTenantsyncclientRestriction

SYNTAX
set-sPOTenantsyncClientRestriction [-Enable] [-DomainGuids <string>] [-BlockMacsync] [<CommonParameterss]

Set-S5POTenantsyncClientRestriction [-ExcludedFileExtensions <string=] [<CommonParameters>]
Set-5POTenantSyncClientRestriction [-GrooveBlockOption {OptOut | HardOptIn | SoftOptIn}] [<CommonParameters:]

Set-SPOTenantSyncClientRestriction -DisableReportProblemDialog <bool> [<CommonParameters>]

ALIASES
None

REMARKS
None

Figure 3-17. Set-SPOTenantSyncClientRestriction parameter sets

In going back to the example, you will find that the PowerShell cmdlets to follow the
business requirements discussed are as follows:

Set-SPOTenantSyncClientRestriction -Enable -DomainGuids "508C857F-B879-
4413-AB1E-AC33FA7D4477" -BlockMacSync:$true
Set-SPOTenantSyncClientRestriction -ExcludedFileExtensions "js"

70

vww allitebooks.conl

https://technet.microsoft.com/en-us/library/dn938435.aspx
https://technet.microsoft.com/en-us/library/dn938435.aspx
http://www.allitebooks.org

CHAPTER 3 MANAGING SHAREPOINT ONLINE

Note It may take up to 24 hours for the sync restriction to take effect.

That completes the tour around the PowerShell cmdlets available for your tenant,
and thus, when you include the previous sections, we have looked at all the available
cmdlets for SharePoint Online. You might think that you are very limited in what you
can do versus, for example, SharePoint On-Premises, and that is not untrue. There are
no PowerShell cmdlets to create SharePoint subsites, or lists/libraries in the SharePoint
Online PowerShell module provided by Microsoft, so, out of the box, you are limited in
what you can do. Luckily, the huge community behind SharePoint and Office 365 has
built some extensions for PowerShell that allow us to get more cmdlets.

Community Extensions

Even if the SharePoint Online PowerShell module has a limited number of cmdlets,
Office 365 administrators with development skills are able to do more by using the
client-side object model (CSOM) and SharePoint Online APIs directly from PowerShell.
However, since most Office 365 administrators are IT professionals that do not write
code on a daily basis, this is not the easiest option.

While there are a few community-created extensions for SharePoint Online
PowerShell out there, this book will focus on the OfficeDev Patterns and Practices (PnP)
PowerShell cmdlets. If you are new to the SharePoint PnP program, here is a definition
from their site at https://dev.office.com/patterns-and-practices:

“SharePoint Patterns and Practices (PnP) is an open source initiative
coordinated by SharePoint engineering. It's a channel for the SharePoint
engineering to share documentation, guidance, samples and reusable
component for the community. PnP initiative coordinates all SharePoint
developer documentation and guidance across on-premises and online.
Day to day work is coordinated by the PnP Core team, which consists of
Microsoft internal people and external MVPs.”

While most of what the PnP program publishes is code samples, there is also a
PowerShell extension for Office 365 that contains over 200 cmdlets for SharePoint Online
and Office 365. Let’s first look at how to get the module installed on your computer.

71

https://dev.office.com/patterns-and-practices

CHAPTER 3 MANAGING SHAREPOINT ONLINE

Getting the Office 365 Dev PnP PowerShell Cmdlets

The Office 365 Dev PnP PowerShell Cmdlets is an open source project that is hosted
on GitHub and can be found at https://github.com/SharePoint/PnP-PowerShell.
You will find all the latest releases as well as the documentation for each cmdlet in the
extension.

There are two options to install the module. The first—and recommended—option is
to install them from the PowerShell gallery. If you are running Windows 10, you can use
the PowerShell gallery without installing any extra software. If you are running an older
version of Windows, you will need to install Windows Management Framework (WMF)
5.0 or download the PowerShellGet module from the Microsoft Download Center.

Note Download links for the latest PowerShellGet module can be found on the
PowerShell gallery home page at https://www.powershellgallery.com/.

Once these prerequisites have been met, you simply need to run the following
cmdlet to install the latest version of the SharePoint Patterns and Practices PowerShell
Cmdlets for SharePoint Online on your computer:

Install-Module -Name SharePointPnPPowerShellOnline

The second option is to download a setup package from the “Releases” section of
the PnP PowerShell GitHub repository, which you can find at https://github.com/
SharePoint/PnP-PowerShell/releases.

If you already have a version of the PnP PowerShell Cmdlets installed, you can either
download the latest setup package or, if you got the cmdlets from the PowerShell gallery,
run the following cmdlet:

Update-Module SharePointPnPPowerShell*

Now that we have the latest version of the cmdlets installed, let’s learn how to use
them to connect to SharePoint Online.

72

https://github.com/SharePoint/PnP-PowerShell
https://www.powershellgallery.com/
https://github.com/SharePoint/PnP-PowerShell/releases
https://github.com/SharePoint/PnP-PowerShell/releases

CHAPTER 3 MANAGING SHAREPOINT ONLINE

Connecting to SharePoint

Connecting to SharePoint Online using this module is a bit different than connecting
with the Microsoft official module since with the PnP PowerShell module you connect to
a particular site collection instead of connecting to the whole tenant. You will first need
to get the credential by using the Get-Credential cmdlet and saving it to a variable as

seen here:
$cred = Get-Credential

You then need to connect to a site collection by using the Connect-PnPOnline
cmdlet, specifying the URL and the credential as seen here:

Connect-PnPOnline -Url https://office365powershell.sharepoint.com
-Credentials $cred

You are now connected to this site collection and can execute PowerShell cmdlets on
it. Let’s take a look at those cmdlets.

Sample cmdlets

The PnP SharePoint PowerShell module has over 200 cmdlets that can allow you to do
anything from creating new site collections to creating new subsites, lists/libraries, and
content types and even adding documents. Let’s take a look at a few of the cmdlets we
have available.

Tip Similar to Office 365, the PnP SharePoint PowerShell library is always
changing. You can find the latest version of the cmdlets included in this module as
well as the help for each cmdlet on the GitHub repository at https://github.
com/SharePoint/PnP-PowerShell/blob/master/Documentation/
readme.md.

For this section, we will concentrate on a few sample cmdlets that allow you to do stuff
you cannot do with the module provided by Microsoft. For example, by using the
New-PnPWeb cmdlet you can create a subsite in the current site collection. You will now
create a subsite of the site collection you connected to earlier, being sure to satisfy the
business requirements from Table 3-9.

73

https://github.com/SharePoint/PnP-PowerShell/blob/master/Documentation/readme.md
https://github.com/SharePoint/PnP-PowerShell/blob/master/Documentation/readme.md
https://github.com/SharePoint/PnP-PowerShell/blob/master/Documentation/readme.md

CHAPTER 3 MANAGING SHAREPOINT ONLINE

Table 3-9. Business Requirements for a New Subsite

Item Value

Title Managers Only Site

URL https://office365powershell.sharepoint.com/Managers

Template Team Site

Security Broken inheritance from the top-level site

Locale English — United States

Description Use this subsite to communicate about sensitive information between managers.

The PowerShell cmdlet to build this subsite would be as follows:

New-PnPWeb -Url Managers °
-Title "Managers Only Site" °
-Template "STS#0" °
-BreakInheritance °
-Locale 1033 °
-Description "Use this subsite to communicate about sensitive
information between managers."

You can also create lists or libraries. For example, to create a new list titled “Team
Announcements” with the Announcements template, you would run the following
cmdlet:

New-PnPList -Title “Team Announcements” -Template Announcements

Something else the PnP PowerShell module allows you to do is view the recycle
bin of your sites as well as restore their content. For example, you can use the
Get-PnPRecycleBinItem cmdlet to view all the items in the site collection recycle bin,
as seen in Figure 3-18. You could then use the Restore-PnpRecycleBinItem cmdlet to
restore an item back to the library.

74

EN naministratce Windows PowerShel

PS C:\WINDOWS\system32> Get-PnPRecycleBinItem
Title Id

testlz3

PS C:\WINDOWS\system32> _

Dell cMs SharePoint 2010 Upgrade.docx el22d36e-830c-4f55-a115-362959142513 File
DatabaseMaintenancesharePoint2010.docx fdf3621la-a670-4237-aee4-0994e8b47441 File
4463d8f7-2952-4923-94eb-306b0615ec2d List

CHAPTER 3 MANAGING SHAREPOINT ONLINE

ItemType LeafName
Dell cMs sharePoint 2010 Upgrad...
DatabaseMaintenancesharepoint20...
testl23

Figure 3-18. Get-PnPRecycleBinltem

There are also cmdlets for the lists and libraries. In Table 3-10, you can see some of

the cmdlets that are available for handling lists and list items.

Table 3-10. PnP PowerShell cmdlets for Lists

Cmdlet

Description

Get-PnPDefaultColumnValues
Set-PnPDefaultColumnValues
Get-PnPList

New-PnPList

Remove-PnPList

Set-PnPList
Add-PnPListItem
Get-PnPListItem
Remove-PnPListItem
Set-PnPListItem
Set-PnPListItemPermission
Move-PnPListItemToRecycleBin

Set-PnPListPermission

Gets the default column values for all folders in document library
Sets default column values for a document library
Returns a List object

Creates a new list

Deletes a list

Updates list settings

Adds an item to a list

Retrieves list items

Deletes an item from a list

Updates a list item

Sets list item’s permissions

Moves an item from a list to the recycle bin

Sets list’s permissions

(continued)

75

CHAPTER 3

Table 3-10. (continued)

MANAGING SHAREPOINT ONLINE

Cmdlet

Description

Request-PnPReIndexList

Add-PnPView
Get-PnPView

Remove-PnPView

Marks the list for full indexing during the next incremental crawl
Adds a view to a list
Returns one or all views from a list

Deletes a view from a list

In Table 3-11, you can see some of the cmdlets used to manage files and folders

within document libraries.

Table 3-11. PnP PowerShell cmdlet for Files and Folders

Cmdlet

Description

Add-PnPFile
Copy-PnPFile
Find-PnPFile
Get-PnPFile
Move-PnPFile
Remove-PnPFile
Rename-PnPFile
Set-PnPFileCheckedIn
Set-PnPFileCheckedOut
Add-PnPFolder

Ensure-PnPFolder

Get-PnPFolder
Move-PnPFolder
Remove-PnPFolder
Rename-PnPFolder

Get-PnPFolderItem

Uploads a file to Web

Copies a file or folder to a different location
Finds a file in the virtual file system of the Web
Downloads a file

Moves a file to a different location

Removes a file

Renames a file in its current location

Checks in a file

Checks out a file

Creates a folder within a parent folder

Returns a folder from a given site-relative path and will create it if
it does not already exist

Returns a folder object

Moves a folder to another location in the current Web
Deletes a folder within a parent folder

Renames a folder

Lists content in folder

76

CHAPTER 3 MANAGING SHAREPOINT ONLINE

These are only a few examples of what you can do with the PnP SharePoint
PowerShell module. As you can see from the cmdlets we have talked about, the PnP
SharePoint PowerShell module offers a lot more cmdlets to Office 365 administrators,
allowing them to manage site collections, subsites, lists, libraries, and even items. Since
there are over 200 cmdlets in the module and they constantly get updated or change,
it's recommended you always look at the most up-to-date list of cmdlets on the GitHub
repository at https://github.com/SharePoint/PnP-PowerShell.

Now that we have looked at both the SharePoint Online module provided by
Microsoft and the PnP SharePoint PowerShell module, let’s find out how we can
implement some interesting automation scenarios in SharePoint Online.

Automation Scenarios

One of the big benefits of using PowerShell is being able to automate tasks that you have
to do often and that can be boring to complete. Let’s look at two examples of things that
you can automate with PowerShell for SharePoint Online.

Create Sites from a CSV File

In this first example, you will focus on a specific business case at a fictional company
called Learn Office 365 PowerShell. Whenever a fiscal year begins, the Project
Management Office gets approvals for a lot of projects for the whole year, and each
project needs a new site collection.

The first step in automating this business case is to create an Excel file that you can
send to the Project Management Office in which they can supply information about the
sites they will need created. In Figure 3-19, you can see a sample Excel file that includes
three columns: Site Name, Site URL, and Owner. Since all these sites will use the Team
Site template, this column is not included; however, you can customize the columns
according to your business requirements.

77

https://github.com/SharePoint/PnP-PowerShell

CHAPTER 3 MANAGING SHAREPOINT ONLINE

SiteName Siteurl
Office 365 Migration hitp
SQL 2016 Upgrade hitp ¢
Migrating from AWS to Azure hittps.//olfic

"ok W N -

Figure 3-19. Sample Excel file to request sites

After receiving the file, save it in the Comma Separated Values (CSV) file format,
since that makes it a lot easier to handle in PowerShell. The first thing you should do in
your PowerShell script is import the CSV file by using the Import-CSV cmdlet and then
save it into a variable as seen here:

$SiteCollections = Import-CSV C:\Apress\Cho3\RequestedSites.csv

Then, do a for each loop and loop through every line in the CSV file, saving each
line object in a variable called $Site:

foreach ($Site in $SiteCollections){
}

Next, save each property of the site in a variable:

$Title = $Site.SiteName
$Url = $Site.SiteUrl
$0wner = $Site.Owner

Lastly, write a message to the PowerShell window to let the administrator know what
site is currently being created, then run the New-SP0Site cmdlet to create your new site
collection by specifying the variables you saved earlier:

Write-Host "Creating the $Title Site Collection at $Url with Site Owner $Owner”
New-SPOSite -Url $Url -Title $Title -Owner $Owner -Template STS#O -
StorageQuota 512

78

CHAPTER 3 MANAGING SHAREPOINT ONLINE
This is what it looks like if we put it all together:

$SiteCollections = Import-CSV C:\Apress\Cho3\RequestedSites.csv
foreach ($Site in $SiteCollections)

{

$Title = $Site.SiteName

$Url = $Site.SiteUrl

$Owner = $Site.Owner

Write-Host "Creating the $Title Site Collection at $Url with

Site Owner $Owner"

New-SPOSite -Url $Url -Title $Title -Owner $Owner -Template STS#O -
StorageQuota 512

}

With only nine lines of PowerShell we are able to automate the creation of site
collections from an Excel file! Let’s take a look at our second automation scenario.

Copy User Permissions

One of the challenges that companies are facing is assigning permissions to new
employees when they join the company and making sure they have access to all the sites
and team sites they are supposed to have access to. Since a lot of new employees replace
an employee who just left, or is leaving soon, HR often sends the Office 365 administrator
arequest asking them to assign the new employee the same rights that the old employee
had. While this may seem like an easy task, it can take quite a while to do so manually.
Let’s see how you can automate this by using PowerShell.

You will first create an input file of type CSV with two columns, UserName and
TemplateUserName, as seen in Figure 3-20. The UserName column is for the username of
the new user, and the TemplateUserName is the one you want to copy permission wise.

79

CHAPTER 3 MANAGING SHAREPOINT ONLINE

H - ¥ CloneUsers.csv - Excel Vlad Catrinescu

File Home Insert Page Layout Formulas Data Review View Q Tell me what you want to do

E1ll x f
' - A - . — B A c 4 D — E F L G . H 1 I —
1 |UserName TemplateUserName
2 |vanessa@office365powershell.ca John@office365powershell.ca
3 leff@office365powershell.ca John@office365powershell.ca
4 4
5
6

Figure 3-20. Copy user permissions input file

The first step in your script will be to save the site collection that you want to run this
script on in a variable, as well as all the groups in that site collection. Lastly, import the
CSV file into your script and save it in a variable as seen here:

$Site = Get-SPOSite https://office365powershell.sharepoint.com
$Groups = Get-SPOSiteGroup -Site $Site
$Users = import-csv 'C:\Apress\Cho3\CloneUsers.csv'

Note In this sample script, the user permission cloning will only be done on a site
collection. You can modify this script to make it apply to all of your site collections
by adding an extra for each loop at the site-collection level.

Then, start a for each user in the input file loop and save each of the properties of
the user in a variable:

foreach ($User in $Users){
$NewUser = $User.UserName
$TemplateUser = $User.TemplateUserName

You then need to start looping through the content. Loop through every group in
the site collection, and then loop again through every user of that group. Compare every

80

CHAPTER 3 MANAGING SHAREPOINT ONLINE

user with your template user, and if the username is the same, it means you have to add
the new user to that group as well as write a message to the host, as seen here:

foreach ($Group in $Groups)

{
foreach ($SPOUser in $Group.Users)
{
if ($SPOUser -eq $TemplateUser)
{
$GroupName = $Group.LoginName
Write-Host "Adding $NewUser to $GroupName"
Add-SPOUser -Site $Site -LoginName $NewUser -Group $GroupName | out-null
33,

If you put everything together, the script looks like this:

$Site = Get-SPOSite https://office365powershell.sharepoint.com
$Groups = Get-SPOSiteGroup -Site $Site

$Users = import-csv 'C:\Apress\Cho3\CloneUsers.csv'

foreach ($User in $Users){

$NewUser = $User.UserName
$TemplateUser = $User.TemplateUserName

foreach ($Group in $Groups)

{
foreach ($SPOUser in $Group.Users)
{
if ($SPOUser -eq $TemplateUser)
{
$GroupName = $Group.LoginName
Write-Host "Adding $NewUser to $GroupName"
Add-SPOUser -Site $Site -LoginName $NewUser -Group $GroupName | out-null
}
}
}
}

81

CHAPTER 3 MANAGING SHAREPOINT ONLINE

When running the script, you will see which users have been added to which group,
as seen in Figure 3-21.

| EN Aaministratce Windows PowerShel = o ®

|PS C:\WINDOWS\system32> $Site = Get-5POSite https://office365powershell.sharepoint.com -
|PS C:\WINDOWS\system32> SGroups = Get-SPOSiteGroup -Site $Site

|PS C:\WINDOWS\system32> SUsers = import-csv 'C:‘\Apress\cCh03\CloneUsers.csv'

PS C:\WINDOWS'system32> foreach (SUser in SUsers){

=

>> SNewUser = SUser.UserName

> STemplateUser = $user.TemplateUserhame

24

E>> foreach (SGroup in $Groups)
>>

E})
;))
p> 1f (35POUser -eq $TemplateUser)
B> {

oreach (SSPOUser in $Group.Users)

[
>> SGroupName = $Group.LoginName

>> Write-Host "Adding SNewUser to 3SGroupName"

> Add-SPOUser -Site $site -LoginName SNewUser -Group $GroupName | out-null
24

i

[

I
B>

>

?dding Vanessa@office36Spowershell.ca to Team Site Members

f\ddmg Vanessa@office36Spowershell.ca to Team Site Visitors

fudd'ing Jeffaoffice3doSpowershell.ca to Team 5ite Members

adding Jeff@officeisoSpowershell.ca to Team Site Visitors -

Figure 3-21. Copying user permissions with PowerShell

Conclusion

In this chapter, we have looked at how to manage SharePoint Online using PowerShell.
We first looked at how to get the SharePoint Online module from Microsoft and how to
connect to SharePoint Online, as well as how to manage our site collections, our users
and groups, and our tenant.

We then looked at the most popular and complete community-driven PowerShell
module, which is the Office 365 Dev PnP PowerShell module for SharePoint. We learned
what it is and where to find it, as well as how to get it installed on our computer. We
also looked at a few sample cmdlets that exist in the PnP PowerShell module that you
cannot find an equivalent of in the SharePoint Online PowerShell module provided by
Microsoft.

Lastly, we looked at two automation scenarios in which you took what you learned in
this chapter and applied it to real business cases.

In the next chapter, we will look at how to manage Exchange Online with PowerShell.

82

CHAPTER 4

Managing Exchange
Online

In this chapter, we will first learn the prerequisites, as well as how to use PowerShell to
connect to Exchange Online. We will then learn how to manage the different aspects of
Exchange Online, such as mailboxes, distribution lists, contacts, permissions, and more!

We will also look at a few real-life scenarios where PowerShell with Exchange Online
would help you automate boring tasks and save you time.

Connecting to Exchange Online

Connecting to Exchange Online with PowerShell is done by creating a remote PowerShell
session from your local computer to Exchange Online. Unless you use multi-factor
authentication (MFA), you do not need to download any modules before connecting,

as a temporary module will be downloaded every time you connect. We will cover how
to authenticate using MFA a bit later in this chapter. You first get your credentials by
running the Get-Credential cmdlet and saving it in a variable called $cred:

$cred = Get-Credential

Then, use the following cmdlet to connect to create a new remote PowerShell
session:

$Session = New-PSSession -ConfigurationName Microsoft.Exchange °
-ConnectionUri https://outlook.office365.com/powershell-liveid/ ~
-Credential $cred °

-Authentication Basic °

-AllowRedirection

83
© Vlad Catrinescu 2018

V. Catrinescu, Essential PowerShell for Office 365, https://doi.org/10.1007/978-1-4842-3129-6_4

CHAPTER 4 MANAGING EXCHANGE ONLINE

The ConnectionUri used in this example will be the same for all tenants except in
two situations:

1. Ifyour tenant is in the Office 365 Germany tenant, use the
following ConnectionUri: https://outlook.office.de/
powershell-liveid/.

2. Ifyour Office 365 tenant is operated by 21Vianet, use the following
ConnectionUri: https://partner.outlook.cn/PowerShell.

Lastly, import the PowerShell Session by using the Import-PSSession cmdlet as seen
here:

Import-PSSession $Session

If everything goes well, PowerShell will download a temporary module, and you will
now be connected to Exchange Online with PowerShell. Some of the Exchange Online
PowerShell cmdlets use verbs that are not in the PowerShell-approved list, so when
connecting, you will get a warning, as seen in Figure 4-1.

[EX Aderrustrator Windews PowerShell - [u] »
PS C:\WINDOWS\system32> $cred = Get-Credential "

cmdlet Get-Credential at command pipeline position 1
Supply values for the following parameters:
Credential
C:\WINDOWSSystem32> $Session = New-P5Session -ConfigurationName Microsoft.Exchange ~
> -Connectionuri https://outleook.office365.com/powershell-Tiveid/ ~
-Credential $cred -
-Authentication Basic =
-AllowRedirection
WWINDOWS\system32>

MeoduleType version Name ExportedCommands

Script 1.0 tmp_kpadtbxh.r2t {Add-AvailabilityAddressSpace, Add-DistributionGroupMember...

PS C:\WINDOWS\system32> _ vl

Figure 4-1. Connecting to Exchange Online using PowerShell

You have now connected to Exchange Online using PowerShell. In a lot of
organizations, accounts that have admin access to Office 365 have multi-factor
authentication enabled, which makes the procedure a bit different. Let’s take a look at
how to connect to Exchange Online when MFA is enabled!

84

https://outlook.office.de/powershell-liveid/
https://outlook.office.de/powershell-liveid/
https://partner.outlook.cn/PowerShell

CHAPTER 4 MANAGING EXCHANGE ONLINE

Connecting with Multi-Factor Authentication

If multi-factor authentication is enabled on your account, you will first need to install
the Exchange Online Remote PowerShell module on your computer. To get the module,
you open the Office 365 Admin Center and navigate to the Exchange Online Admin
Center, then to the Hybrid section. On that page, you will see the option to configure the
Exchange Online PowerShell module, as seen in Figure 4-2.

Note This step must be done using Internet Explorer. If you are using any other
browser, you will get an error, which will be shown later in this chapter.

Admin C & Vlad Admin R

Exchange admin center

setup

An Exchange hybrid deployment allows you to connect and manage both your on-premises and Exchange Online organizations. Learn more

configure

The Exchange Onling PowerShell Module supparts multi-factor authentication. Dewnload the medule to manage Exchange Online more securely. Learn more

configure

hybrid

@ Need help? Feedback:

Figure 4-2. The Exchange Online PowerShell module in the Office 365 Admin
Center

After you click on the Configure button, an application will be downloaded which
you will have to double click to start. You will first get prompted if you want to Install the
application as seen in Figure 4-3.

85

CHAPTER 4 MANAGING EXCHANGE ONLINE

Application Install - Security Warning X
Do you want to install this application? ?
L z'll
=
Name:

Microsoft Exchange Online Powershell Module

From (Hover over the string below to see the full domain):
cmdletpswmodule.blob.core.windows.net

Publisher:
Microsoft Corporation

Install Don't Install

While applications from the Internet can be useful, they can potentially harm your computer. [f
you do not trust the source, do not install this software. More Information...

Figure 4-3. Exchange Online PowerShell module install prompt

If you have used a browser other than Internet Explorer, you will get an error similar
to that in Figure 4-4 when you try to run the application.

Cannot Start Application X

i Application cannot be started. Contact the application
\I) vendor,

oK Details...

Figure 4-4. Application error when using a browser other than Internet
Explorer

After the application has been installed, you can find it under Microsoft Exchange
Online PowerShell module in your applications, as seen in Figure 4-5.

86

CHAPTER 4 MANAGING EXCHANGE ONLINE

0 i) Filters “v/
Best match
7z Microsoft Exchange Online Powershell

Module
Desktop app

Figure 4-5. The Exchange Online PowerShell module

To connect to most Office 365 tenants, you would run the following cmdlet using
your Office 365 username:

Connect-EXOPSSession -UserPrincipalName Jeff@office365powershell.ca
A pop-up will prompt you to enter your password, as seen in Figure 4-6.

PS C:\Users\vlad> Connect-EXOPSSession -UserPrincipalName Jeff@office365powershell.ca ~

Sign in to your account x

B® Microsoft
jeff@office365powershell.ca @

Enter password

Password

<) v

Figure 4-6. Exchange Online PowerShell module password prompt

Next up, depending on your MFA authentication method, you will be prompted to
enter your second layer of authentication, as seen in Figure 4-7.

87

CHAPTER 4 MANAGING EXCHANGE ONLINE

25 C:\USE!’S Sign in to your account e fo‘ice365p0wershe'|'| .Ca ~

BE Microsoft
Jeff@office365powershell.ca @

Enter code

[We texted your phone +X XX30000X02. Please
enter the code to sign in.

Code
< Verify | >

Having trouble? Sign in another way

Figure 4-7. Exchange Online PowerShell module second layer of
authentication

Once logged in, you will see a warning similar to the one in Figure 4-8 explaining that
some commands in the Exchange Online module use unapproved verbs.

>]

PS C:\Users\vlad> Connect-EXOPSSession -UserPrincipalName Jeff@office365powershell.ca
WARNING: The names of some Tmported commands u tmp_uup2aulv.2p0
unapproved verbs that might make them less discoverable. To find the commands with
unapproved verbs, run the Import-Module command again with the Verbose parameter.
1ist of approved verbs, type Get-Verb.

ModuleType Version Name ExportedCommands

script 1.0 tmp_uup2aulv.2p0 {Add-AvailabilityAddressSpace,

PS C:\Users\vlad>

Figure 4-8. Successfully connected to Exchange Online with multi-factor
authentication

If your tenant is in the Office 365 Germany region, you would need to provide
two more parameters when connecting to Exchange Online PowerShell using MFA,
specifically the ConnectionUri and AzureADAuthorizationEndPointUri parameters.

88

CHAPTER 4 MANAGING EXCHANGE ONLINE

If you wanted to log in to Office 365 Germany with the Jeff@office365powershell.ca
account, you would use the following cmdlet:

Connect-EXOPSSession ~

-UserPrincipalName Jeff@office365powershell.ca °

-ConnectionUri https://outlook.office.de/PowerShell-LiveID °
-AzureADAuthorizationEndPointUri https://login.microsoftonline.de/common

You have now learned how to connect to Exchange Online by using both multi-factor
authentication and normal authentication. Next up, let’s learn the different cmdlets you
can use to manage Exchange Online using PowerShell!

Managing Users and Mailboxes

Let’s start by having you learn how to manage probably the most important part of it all:
the users and mailboxes inside your Office 365 tenant. In this section, you will learn how
to change user properties, assign user permissions on other mailboxes, send emails via
PowerShell, and also manage users’ calendars!

Users

You previously learned how to manage users with the Azure Active Directory PowerShell
module (Chapter 2), but you can also use the Exchange Online PowerShell module

to view most user properties. If you want to see all the users in your Exchange Online
tenant, you can run the Get-User cmdlet as seen in Figure 4-9.

EX Administrator: Windows PowerShell - o x
PS C:\WINDOWS\system32> Get-User ~
Name RecipientType
VladAdmin UserMailbox
DiscoverySearchMailbox{D919BA05-46A6-415f-80AD-7E09334BB852} UserMailbox
viad_vnext.solutions#EXT# MailUser
?eff.co111ns UserMailbox

iam. jones UserMailbox
john.smith UserMailbox
Room AQ2 UserMailbox
Shared MaiTbox UserMailbox
PS C:\WINDOWS\system32> _
< >

Figure 4-9. Running the Get-User cmdlet
89

CHAPTER 4 MANAGING EXCHANGE ONLINE

You can also select properties that make it easier for you to see the different types
of mailboxes that you have in your tenant. The following example cmdlet, also seen in
Figure 4-10, allows you to see the full email address, the recipient type, and the details. In
this example, you can easily see if it’s a user mailbox, a shared mailbox, a room mailbox,
or a guest user.

Get-User | Select UserPrincipalName, RecipientType, RecipientTypeDetails |
Format-Table -Wrap

EW fgrvitrster dimcont Foweritel - B x
PS C:\WINDOWS\system32> Get-User | Select UserPrincipalName, RecipientType, RecipientTypeDetails Format-Table -wWrap

UserPrincipalName RecipientType ?cnpiantTypchta
s

vlad-admin®officeléSpowershell.ca UserMailbox UserMailbox
DiscoverySearchMailbox{D919BA0S-46A6-415f-80AD-7E09334BB852}@0fficel6SPowerShell .onmicrosoft.com UserMailbox DiscoveryMailbox
viad_wnext.solutions SEXT#Roff1ce3l65powershell . ca Mailuser GuestMal lUser
%’uf.co'l lins@office36Spowershell.ca uUserMailbox UserMailbox

iam. jones@officel6Spowershell.ca UserMailbox UserMai Ibox
john.smith@office36éSpowershell.ca UserMailbox UserMailbox
roomAD2@office365powershell . ca UserMailbox RoomMailbox
shareddoffice36Spowershell.ca UsermMailbox SharedMailbox

Figure 4-10. Selecting different properties with the Get-User cmdlet

You can also change user properties via the Set-User cmdlet, which will update it
throughout Office 365. In the example that follows, I am changing the display name of a
user with username jeff.collins@office365Powershell.cato Jeff Collins.

Set-User jeff.collins@office365Powershell.ca -DisplayName "Jeff Collins"

In Figure 4-11, you can see that I first used the Azure AD PowerShell cmdlets to verify
the display name, which was Collins, Jeff, and after the display name was changed
with the Exchange Online PowerShell cmdlets, it also got changed in Azure Active
Directory.

90

CHAPTER 4 MANAGING EXCHANGE ONLINE

EX administrator: Windows PowerShell - o %
PS C:\WINDOWS\system32> Get-AzureADUser -ObjectId jeff.collins@office3e5Powershell.ca -
ObjectId DisplayName UserPrincipalName UserType

dd797881-b469-40bc-8cdf-aedede3llce5 Collins, Jeff jeff.collins@office365powershell.ca Member
PS C:\WINDOWS\system32> Set-User jeff.collins@office365Powershell.ca -DisplayName "Jeff Collins”
PS C:\WINDOWS\system32> Get-AzureADUser -ObjectId jeff.collins@office365Powershell.ca

ObjectId DisplayName UserPrincipalName UserType

dd797881-b469-40bc-8c4f-ae9ed4e3llces5 Jeff Collins jeff.collins@office36Spowershell.ca Member

PS C:\WINDOWS\system32> _

Figure 4-11. Updating global Office 365 properties by using the Exchange Online
PowerShell module

Let’s now look at how to manage contacts in Exchange Online!

Contacts

Contacts in Exchange Online allow you to publish external emails into your Global
Address List in order to make them easier to find for your users. For example,
organizations often have external employee-assistance programs or external financial
organizations managing their 401K plan. Even if those email addresses are external, by
using Exchange Online Contacts you can easily add those to each employee’s Global
Address List.

To create a new mail contact, you use the New-MailContact cmdlet, specifying the
name of the contact as well as their email address:

New-MailContact -Name "401K Questions" -ExternalEmailAddress companyname@
financialcompany.com
New-MailContact -Name "Employee Assistance Program" -ExternalEmailAddress

companyname@eapprovider.com

When employees start typing part of the word, Outlook will automatically propose
one of the contacts that you have saved previously, as seen in Figure 4-12.

91

CHAPTER 4 MANAGING EXCHANGE ONLINE

Office 365
jo) *=Send B Attach Discard
Focused Other Filter v To 401k
Next: No events for the next two [~] Agenda

401K Questions

companyname@nnancialcompany.c

Ce

No additional results

Figure 4-12. Mail contacts suggested in Outlook on the Web

You can also change a mail contact by using the Set-MailContact PowerShell
cmdlet. For example, you can use the following cmdlet to change the email address of
the 401k contact:

Set-MailContact -Identity "401K Questions" -ExternalEmailAddress questions@
newfinancialcompany.com

You can also use PowerShell to update multiple contacts at once. For example, let’s
assume your company has a new policy where all the external email addresses in the
Global Address List must have the word “[External]” in their display name in order for
users to know right away that they are sending an email outside the organization. In
PowerShell, you could run the following script to automatically update all the contacts in
the organization to add the required words in the display name:

$Contacts = Get-MailContact
foreach ($contact in $contacts){
Set-MailContact -Identity $contact.Name -DisplayName "$contact [External]

}

The result, seen in Figure 4-13, shows how the contacts are displayed after the

previous script.

92

CHAPTER 4 MANAGING EXCHANGE ONLINE

Office 365 § (& 7 Viad Admin
jo) = Send B Attach Discard O
Focused Other Filter v To ° Employee Assistance Program [External]l X 401k
Mext: No events for the next two t_ Agenda

401K

questions

Ce

L Search Directory

Figure 4-13. Office 365 mail contacts shown with the [External] warning

You can also assign MailTips to each mail contact. For example, if you wanted to
remind employees not to send confidential information by email to a contact, you could
run the following cmdlet:

Set-MailContact -Identity "401K Questions" -MailTip "Do not send
confidential information to this mailbox!"

The MailTip will appear at the top of the email as seen in Figure 4-14.

= Office 365

e = Send B Attach Discard
Focused Other Filter v 401K Questions [External] : Do not send confidential information to this mailbox!
Next: No events for the next two [] Agenda

To o 401K Questions [External] X

Ce

Figure 4-14. MailTips in Outlook Online

93

CHAPTER 4 MANAGING EXCHANGE ONLINE

Now that you have learned how to work with mail contacts, it’s time to look at how to
manage mailboxes using PowerShell!

Mailboxes

To see all the mailboxes inside your Office 365 tenant, you can run the Get-Mailbox
PowerShell cmdlet, which will return basic information, as seen in Figure 4-15.

EX Administrator: Windows PowerShell - a x
PS C:\WINDOWS\system32> Get-Mailbox "
Name Alias ServerName ProhibitsendQuota
DiscoverySearchMailbox... DiscoverySearchMa... ygxprOlmb0456 50 GB (53,687,091,200 bytes)
jeff.collins jeff.collins ytxpr0l01lmb1917 99 GB (106 300 440 576 bytes)
john.smith john.smith yqbpr0l01mb1779 99 GB (106,300,440,576 bytes)
1iam.jones 1iam. jones ygxpr0101mb1078 99 GB (106,300,440,576 bytes)
Room AO02 roomaQ2 ygbpr0101mb2020 99 GE 5106,300,440,5?6 hytesg
Shared Mailbox shared yqbpr0l101mb0978 99 G (106,300,440,576 bytes
Vladadmin viad-admin yqbpr0l101mb0721 99 G (106,300,440,576 bytes)
PS C:\WINDOWS\system32>
< > v

Figure 4-15. All mailboxes inside the organization

You can also filter by any of the properties of the mailbox; for example, with the
following cmdlet you also get information about the display name, what type of mailbox
itis, and the quota for the mailbox:

Get-Mailbox | Select DisplayName, RecipientTypeDetails,ProhibitSendReceive
Quota | Format-Table -autosize

You can see the results in Figure 4-16.

EX Adeniristeator. Windows PowerShell - o o

PS C:\WINDOWS\system32> Get-Mailbox | Select DisplayName, RecipientTypeDetails,ProhibitSendReceiveqQuota | Format-Table -
auteosize

DisplayName RecipientTypeDetai1s ProhibitSendReceiveQuota

Discovery Search Mailbox DiscoveryMailbox 50 GB (53,687,091,200 bytes)
Jeff Collins UserMailbox 0 GB Elﬁ)" 3?4 182 400 bytes
John Smith UserMailbox 100 GB (107,374,182, 400 bytes
Liam Jones UserMailbox 100 GB (107,374,182,400 bytes
Reoom A02 RoomMailbox 100 GB (107,374,182,400 bytes
shared Mailbox sharedmailbox 100 GB Elo?,3?4.132,400 bytes
Vlad Admin UserMailbox 100 GB (107,374,182,400 bytes

PS C:\WINDOWS\System3Z:>

Figure 4-16. Selecting certain properties of the mailbox

94

CHAPTER 4 MANAGING EXCHANGE ONLINE

If you want to modify a certain mailbox, you can use the Set-Mailbox PowerShell
cmdlet. For example, if you wanted to hide the “Shared Mailbox” (seen in earlier figures)
from the Global Address List, you would run the Set-Mailbox cmdlet, specifying the alias—
which is “shared”—and the HiddenFromAddressListsEnabled property, as seen here:

Set-Mailbox -Identity Shared -HiddenFromAddressListsEnabled $true

The result, seen in Figure 4-17, is that this mailbox will not be suggested or appear in
search results when users search for an e-mail address in the Global Address List.

™ Send @ Attach Discard ee

To shared|

Cc No match was found.

Figure 4-17. Shared mailbox not displayed in search results

Note It might take some time for the HiddenFromAddressListEnabled
parameter to take effect, but usually it will work in less than an hour.

Another popular change that administrators often apply to mailboxes is a permanent
forward when an employee leaves the company. To adjust this property, you need to
configure the properties shown in Table 4-1.

95

CHAPTER 4 MANAGING EXCHANGE ONLINE

Table 4-1. Set-Mailbox Permissions

Property Description

DeliverToMailboxAndForward This parameter specifies the message-delivery
behavior when a forwarding address is specified by the
ForwardingAddress or ForwardingSmtpAddress
parameters. Valid values are:

¢ $true Messages are delivered to this mailbox and
forwarded to the specified recipient or email address.

o $false If a forwarding recipient or email address
is configured, messages are delivered only to the
specified recipient or email address, and messages
aren’t delivered to this mailbox. If no forwarding
recipient or email address is configured, messages are
delivered only to this mailbox.

The default value is $false. The value of this parameter is
meaningful only if you configure a forwarding recipient or
email address.

ForwardingAddress This parameter specifies a forwarding address for messages
that are sent to this mailbox. A valid value for this parameter
iS a recipient in your organization.

ForwardingSmtpAddress This parameter specifies a forwarding SMTP address for
messages that are sent to this mailbox. Typically, you use this
parameter to specify external email addresses that aren’t
validated.

If you configure values for both the ForwardingAddress
and ForwardingSmtpAddress parameters, the value of
ForwardingSmtpAddress is ignored.

If John Smith is leaving the company, you would probably want to forward John’s
email to his manager, who is Jeff Collins. In this scenario, the company policy dictates
that email must be only forwarded to Jeff, but new mails must not be kept in John’s
mailbox. Furthermore, we will hide John from the Global Address List so new employees
do not find him by accident.

96

CHAPTER 4 MANAGING EXCHANGE ONLINE

Set-Mailbox -Identity john.smith ~
-HiddenFromAddressListsEnabled $true °
-DeliverToMailboxAndForward $false °
-ForwardingAddress jeff.collins@office365powershell.ca

Another setting that you can change for your user’s experience is the Focused Inbox.
With the Focused Inbox feature, Microsoft uses its machine-learning algorithms to
decide which emails are important for you and which are less important. Your inbox is
separated into two tabs—Focused and Other. Your most important emails are on the
Focused tab while the rest remain accessible on the Other tab. Figure 4-18 showcases
the Focused Inbox in Outlook Online, but the same functionality also exists in Outlook
client. As you can see in the figure, I currently have no emails in my Focused inbox;
however, I have 40 unread emails in my inbox, and I need to switch over to the Other tab

in order to see them.

Search Mail and People ,O @' New | Vv

A Folders Focused Other Filter v
Inbox 40 Next: No events for the nexttwo [*] Agenda
Sent ltems
Drafts 5
More

v Groups

Your Focused inbox is cleared

View Other inbox

Figure 4-18. Focused Inbox versus Other tab
97

CHAPTER 4 MANAGING EXCHANGE ONLINE

While most users and organizations like the features, some prefer not to have two
different tabs in their inbox. You can turn Focused Inbox on/off either at the mailbox
level or at the tenant level. We will look at the tenant-level permissions a bit later in this
chapter. To turn the Focused Inbox feature on/off you would use the Set-FocusedInbox
cmdlet, specifying the identity of the mailbox and the FocusedInboxOn parameter. In the
example that follows, I am turning off the Focused Inbox feature for a single mailbox:

Set-FocusedInbox -Identity vlad-admin@office365powershell.ca
-FocusedInboxOn $False

The result, seen in Figure 4-19, is that this user will have normal inbox functionality
without the Focused and Other tabs.

Office 365 QOutlook

Search Mail and People ,O ® New|v [Delete & Archive Junk|v Sweep MovetoVv Cate
A Folders Inbox Filter v Message Center Major
Inbox 40 Next: No events for the next two m Agenda
Sent It) “ Office 365 Message
SELEE Office 365 Message C... Wed 1115 255 0 9
Drafts 5 Message Center Major Update Ne 1/15/2017 Visd A dm'in v
Organization: LEARN-POWERSHELL New...
More
v Groups Office 365 Message C... II e —
Weekly digest: Office 365 change: n13/2007
Here is a summary of your messages fro...]I To always show content

Office 365 Message C...
Weekly digest: Office 365 chang; 11/13/2017 Unsubscribe

Here is a summary of your messages fro.

Figure 4-19. Inbox without the Focused Inbox feature activated

Now that you have learned how to manage mailboxes, let’s look at how to manage

calendars with PowerShell!

Calendar and Out of Office

There are multiple administrative operations you might want to perform on a user’s
calendar. One common event is that when a user leaves the company, sometimes they
forget to cancel recurring meetings, and you probably want to cancel them since you

98

CHAPTER 4 MANAGING EXCHANGE ONLINE

do not want a nonexistent user to be the organizer of those meetings. Some companies
also use Exchange to manage conference room reservations, and having those meetings
still exist will keep the room busy even if the user is no longer working for the company.
The Remove-CalendarEvents cmdlet allows you to cancel all upcoming meetings where
the mailbox is the meeting organizer and the meeting has one or more attendees or
resources. To delete all the upcoming meetings organized by John Smith, I would run the
following cmdlet:

Remove-CalendarEvents °
-Identity john.smith@office365powershell.ca °
-CancelOrganizedMeetings

In other cases, maybe the employee has only taken a maternity/paternity leave or a
leave of absence, and you do not want to cancel all their future meetings. By using the
QueryStartDate and QueryWindowInDays parameters, you can specify a starting date
and date range for which events should be canceled. In the example that follows, I am
canceling events by Jeff Collins starting on January 1, 2018, for 30 days. The date format
is defined by the Regional Options on the computer that is running the command.

Remove-CalendarEvents ~

-Identity jeff.collins@office365powershell.ca °
-CancelOrganizedMeetings °

-QueryStartDate 1/1/2018 °

-QueryWindowInDays 30

In both these scenarios, another setting you might want to change is the Automatic
Reply for that mailbox to let other people know that the user is no longer working
for the company or is on an extended leave for a certain period of time. Let’s assume
that the account Vlad Admin has left the organization. You can first run the Get-
MailboxAutoReplyConfiguration cmdlet to see the current settings. As you can see in
Figure 4-20, the user has set an External Message linking to his LinkedIn account, but did
not specify who to contact in your organization, and that is not what the company wants.

99

CHAPTER 4 MANAGING EXCHANGE ONLINE

| EX Aderanistratee Windows PewerShell = o x]
PS C:\WINDOWS\system32> Get-MailboxautoReplyConfiguration -Identity vlad-admin@office36spowershell.ca

RunspaceId : 24ab0241-ce40-40b4-9175-51494a6daelb
AutoDeclineFutureRequestswhenOOF : False
AutoReplyState : Enabled
CreateOOFEvent : False
DeclineAll1EventsForScheduledOOF : False
DeclineEventsForScheduledoor : False
EventsToDeleteIDs :
EndTime 2 12{20{201? 8:00:00 PM
ExternalAudience t Al
ExternalMessage 1 <html>

<head>

<style type="text/css” style="display:none">
<l==

{margin-top:0;
marg?n-buttom 10}
-
</style>
</head>
<body dir="1tr"s
<div id=“d'ivtai|defau'ltwrapper dir="1tr" style="font-size:12pt; color:#000000;
font- fam11y Calibri,Helvetica,sans-serif'»
<p style="margin-top:0; margm-bottam 0"»>Please Note that I am no longer working

ﬂfor this organizations, please connect with me on LinkedIn: <a
href="https://www. 'I1nked1n com/in/viadcatrinescu,/"
class="owAAutoLink">https://www.linkedin.com/in/vladcatrinescu/</p>

bod
:ﬁhtm?

InternalMessage 1 <html>
<

Figure 4-20. Running the Get-MailboxAutoReplyConfiguration cmdlet

As an administrator, you could create an Out of Office message and even use HTML
and CSS to make it match the content and style you want. You should first create a here-
string with the HTML code of the message that you want to use:

$Body = @"

"Hello </br> </br>

Please Note I am not currently working for Office 365 PowerShell anymore.
</br> </br>

Please contact Jeff Collins <a href="mailto:jeff.collins@
office365powershell.ca">jeff.collins@office365powershell.ca for any
questions. </br> </br>

Thanks!"

ll@

You would then assign this message to the mailbox by using the Set-
MailboxAutoReplyConfiguration cmdlet as seen in the following example:

Set-MailboxAutoReplyConfiguration

-Identity vlad-admin@office365powershell.ca
-ExternalMessage $body ~

-InternalMessage $body

100

CHAPTER 4 MANAGING EXCHANGE ONLINE

The result, as seen in Figure 4-21, is the Out of Office message that users will receive
with the preceding cmdlets.

Meeting Minutes

P Viad Admin sent an automatic reply.

g Viad Admin

"Hello
Please Note | am not currently working for Office 365 PowerShell anymore.

Please contact Jeff Collins jeff.collins@office365powershell.ca for any questions.

Thanks!"

Figure 4-21. Out of Office message result

If the Out of Office message were not yet enabled, and you wanted to enable it, you
would need to add the AutoReplyState parameter. To enable it without a schedule, you
would run the following cmdlet:

Set-MailboxAutoReplyConfiguration °

-Identity vlad-admin@office365powershell.ca ~
-ExternalMessage $body ~

-InternalMessage $body °

-AutoReplyState Enabled

If you only wanted to enable this message for a certain period of time, you would
need to set the AutoReplyState parameter to Scheduled and specify the start and end
times, as seen in the following example:

Set-MailboxAutoReplyConfiguration °

-Identity vlad-admin@office365powershell.ca °
-ExternalMessage $body °

-InternalMessage $body °

-AutoReplyState Scheduled °

-StartTime 1/1/2018 °

-EndTime 1/30/2018

101

CHAPTER 4 MANAGING EXCHANGE ONLINE

This would enable the Out of Office message only between January 1 and January 30,

2018.

You can also view all the calendar settings, such as work days, work hours, default

reminder times, and more by using the Get-MailboxCalendarConfiguration cmdlet.

You can view some of those settings in Figure 4-22.

EX Adrinistrator. Windows PowesShell

- o X
PS C:\WINDOWS\system32> Get-MailboxCalendarConfiguration -Identity vlad-admin@office36Spowershell.ca | Format-List ~
RunspaceId : 24ab0241-ced0-40b4-9175-51494a6daelb
workDays : weekdays
workingHoursstartTime : 08:00:00
WorkingHoursEndTime : 17:00:00
WorkingHoursTimeZone : Eastern Standard Time
WeekstartDa i Sunday
ShowweekNumbers : False
FirstwWeekofyear : FirstDay
TimeIncrement : ThirtyMinutes
RemindersEnabled t True
Remindersoundenabled t True
pDefaultReminderTime : 00:15:00
wWeatherEnabled : FirstRun
Weatherunit ¢ Default
WeatherLocations : {LocationId:105808079;Name:Redmond, WA;Latitude:47.67399;Longitude:-122.12151
WeatherLocationBookmark H)
DefaultMeetingDuration 1 30
AgendaMailEnabled 1 False
skipagendaMailonFreeDays : True
DailyagendaMailschedule : Default
AgendaMailIntroductionEnabled : True
EventsFromEmailEnabled : True
EventsFromEmailDelegatechecked : False
EventsFromemailshadowMailboxChecked : False
ReportEventsCreatedFromEmailEnabled : True
CreateEventsFromEmailAsPrivate : True
FlightEventsFromEmailEnabled : True
DiningEventsFromEmailEnabled : True v

Figure 4-22. All calendar configuration events

You can change any of these settings by using the Set-MailboxCalendarConfiguration
PowerShell cmdlet and specifying the name of the parameter you want to change.

Now that you have learned how to manage the calendar and Out of Office events,
let’s look at how to manage different mailbox permissions in Exchange Online with
PowerShell.

SendAs and Mailbox Permissions

As an Exchange administrator, you have probably already been tasked with

granting “SendAs” permission to a user’s mailbox. This is done with the Add-
RecipientPermission cmdlet. If I wanted to allow the account Vlad Admin to send
emails that appear to come directly from Jeff Collins, I would run the following cmdlet:

Add-RecipientPermission jeff.collins -AccessRights SendAs -Trustee vlad-
admin@office365powershell.ca

102

CHAPTER 4 MANAGING EXCHANGE ONLINE

To view permissions on a certain mailbox, you can run the Get-RecipientPermission
cmdlet, specifying the -Identity parameter. In Figure 4-23, you can see that Jeff Collins
himself, as well as Vlad Catrinescu, have SendAs permissions on the jeff.collins

mailbox.

EX Administrator: Windows PowerShell - a X
PS C:\WINDOWS\system32> Get-RecipientPermission -Identity jeff.collins ~
Identity Trustee AccessControlType AccessRights Inherited
jeff.collins NT AUTHORITY\SELF Allow {SendAs} False
jeff.collins vlad-admin@office365powershell.ca Allow {SendAs} False
PS C:\WINDOWS\system32> _
< >

Figure 4-23. Get-RecipientPermission for a mailbox

You can also use the -Trustee parameter to find out what mailboxes a certain
user (trustee) can send emails as. In Figure 4-24, you can see that vlad-admin@
office365powershell.ca can send emails as three other identities.

S C:\WINDOWS\system32> Get-RecipientPermission -Trustee vlad-admin@office365powershell.ca ~
Identity Trustee AccessControlType AccessRights Inherited
jeff.collins vlad-admin@office365powershell.ca Allow SendAs False
John.smith vlad-admin@office365powershell.ca Allow SendAs False

hared Mailbox vlad-admin@office365powershell.ca Allow sendAs False

PS C:\WINDOWS\system32>

< >

Figure 4-24. Get-RecipientPermission for a trustee

Note It can take a few hours for new permissions to be visible for the user in
Outlook client or Outlook Online.

If you want to assign other permissions, such as full control of the mailbox, you need
to use the Add-MailboxPermission PowerShell cmdlet. Table 4-2 showcases some of the
most important parameters of the cmdlet

103

CHAPTER 4 MANAGING EXCHANGE ONLINE

Table 4-2. Parameters of the Add-MailboxPermission cmdlet

Parameter Description

Identity The Identity parameter specifies the identity of the mailbox that’s getting
permissions added.

AccessRights The AccessRights parameter specifies the rights needed to perform the
operation. Valid values include:

e FullAccess

ExternalAccount
DeleteItem
ReadPermission

ChangePermission
¢ ChangeOwner

Owner The Owner parameter specifies the owner of the mailbox object.

User The User parameter specifies the user mailbox that the permissions are
being granted to on the other mailbox.

AutoMapping The AutoMapping parameter specifies whether to ignore the auto-
mapping feature in Microsoft Outlook. This parameter accepts $true or
$false values.

InheritanceType The InheritanceType parameter specifies whether permissions are
inherited by folders within the mailbox.

In the following cmdlet, I am granting Vlad Admin full control of Jeff Collins’
mailbox:

Add-MailboxPermission -Identity jeff.collins °
-User vlad-admin@office365powershell.ca °
-AccessRights FullAccess °

-InheritanceType All

Since I let the AutoMapping parameter to its default value of True, Jeff Collins’
mailbox is automatically added to my Outlook client when I add the vlad-admin
account, as seen in Figure 4-25.

104

CHAPTER 4 MANAGING EXCHANGE ONLINE

4 ylad-admin@office365powershell.ca
Inbox 42
Drafts
Sent Items
Deleted Items 47
Archive
I Conversation History
Junk Email
Outbox
I Search Folders

I Groups

4 Jeff Collins
Inbox
Drafts
Sent Items
Deleted Items 2

Archive

» Conversation History
Junk Email

Qutbox

Figure 4-25. Account automatically added with AutoMapping feature

If you want to see the permissions for a certain mailbox, you can run the
Get-MailboxPermission permission cmdlet, specifying the identity of the mailbox that
you want to get the permissions for. As you can see in Figure 4-26, this will output all
permissions, including the ones you have manually assigned and some Microsoft service
accounts.

105

CHAPTER 4 MANAGING EXCHANGE ONLINE

X Adeninistrator: Windews PewerShell - o *

PS5 C:'\WINDOWS\system32> Get-MailboxPermission -Identity jeff.collins | Format-Table -Wrap ~

Identity User AccessRights IsInherited Deny

jeff.collins NT AUTHORITY\SELF %Fu'l'lﬂccess. ReadPermission} False False

jeff.collins vlad-admin@office365 {Fullaccess} False False
powershell.ca

jeff.collins CANPRDO1\Administrat {Fullaccess} True True
or

jeff.collins CSNI_‘RDOI\Doma'in {FullAccess} True True
Admins

jeff.collins l.‘.:NI?RDOl\Enterpr"ise {FullAccess} True True
Admins

jeff.collins CANPRDOL1\Organizatio {FullAccess} True True
n Management

jeff.collins NT AUTHORITY\SYSTEM EFu‘I'IAc:ess} True False

%eff.co'l'lﬁns NT ReadPermission} True False
AUTHORITY\NETWORK
SERVICE

jeff.collins 5-1-5-21-1589316702- {ReadPermission} True False
203252?14?—380?2382?

jeff.collins PRDTSBOL\JitUsers %Readr’ermiss‘ioni} True False

jeff.collins CANPRDO1\Administrat {FullAccess, DeleteItem, ReadPermission, ChangePermission, True False
or ChangeOwner

jeff.collins CANPRDOL\Domain {FullAccess, DeleteItem, ReadPermission, ChangePermission, True False
Admins ChangeOwner

jeff.collins CANPRDOL\Enterprise {FullAccess, DeleteItem, ReadPermission, ChangePermission, True False
Admins Changeowner

jeff.collins CANPRDOL\Organizatio {FullAccess, Deleteltem, ReadPermission, ChangePermission, True False
n Management ChangeOwner

jeff.collins CANPRDOL\Public {ReadPermission} True False

L Folder Management -

Figure 4-26. Mailbox permissions

If you want to remove permissions from a certain mailbox for a user, you can use the
Remove-MailboxPermission PowerShell cmdlet and specify the identity of the mailbox
you want to remove permissions from, the user whose permissions you want to remove,
the access rights you want to remove, and other optional parameters, such as inheritance
type. In the following cmdlet, I am removing the FullAccess permission that V1ad-Admin
had on Jeff Collins’ mailbox:

Remove-MailboxPermission -Identity jeff.collins
-User vlad-admin@office365powershell.ca
-AccessRights FullAccess

-InheritanceType All

Office 365 also gives you the ability to restore a mailbox to its default permissions by
using the ResetDefault parameter. This will remove mailbox permissions such as Full
Access, but will retain recipient permissions such as SendAs and SendOnBehalf.

To restore Jeff Collins’ mailbox to default permissions, I would run the following cmdlet:

Remove-MailboxPermission -Identity jeff.collins -ResetDefault

We have now covered how to manage SendAs and Mailbox permissions with
PowerShell. Next up, let’s learn how to manage organization settings!

106

CHAPTER 4 MANAGING EXCHANGE ONLINE

Managing Organization Settings

Exchange Online offers the ability to apply settings at the mailbox level, as you saw earlier,
but you can also enable or disable features at the tenant level. If you want to see the
configuration data for the Exchange organization, you can run the Get-0rganizationConfig
cmdlet. This cmdlet will return a lot of information, but you can export it to a file if needed,
to make reading easier, with this example cmdlet:

Get-OrganizationConfig | Out-File c:\Users\Vlad\Desktop\OrgConfig.txt

To change the organization settings, you need to use the Set-OrganizationConfig
PowerShell cmdlet. Table 4-3 displays the most common parameters of the cmdlet,
which will also allow you to better understand the values from the
Get-OrganizationConfig cmdlet.

Note Some parameters control features that are not available in all license
plans, such as Microsoft Bookings or Customer Lockbox. Make sure you have the
required licenses before changing those settings.

Table 4-3. Set-OrganizationConfig cmdlet Parameters

Parameter Description

AppsForOfficeEnabled This parameter specifies whether to enable apps for Outlook
features. By default, the parameter is set to $true. If the flag
is set to $false, no new apps can be activated for any user in
the organization.

BookingsEnabled This parameter specifies whether to enable Microsoft Bookings
in an Exchange Online organization.

CustomerLockboxEnabled CustomerLockboxEnabled specifies whether Customer
Lockbox requests are enabled or disabled for the organization.

DirectReportsGroupAuto This parameter specifies whether to enable or disable the
CreationEnabled automatic creation of direct-report Office 365 Groups.
(continued)

107

CHAPTER 4 MANAGING EXCHANGE ONLINE

Table 4-3. (continued)

Parameter Description

DistributionGroupName This parameter specifies words that can’t be included in the

BlockedWordslList names of distribution groups. Separate multiple values with
commas.

DistributionGroup The DistributionGroupNamingPolicy parameter specifies

NamingPolicy the template applied to the name of distribution groups that are

created in the organization.

FocusedInboxOn The FocusedInboxOn parameter enables or disables Focused
Inbox for the organization.

LinkPreviewEnabled The LinkPreviewEnabled parameter specifies whether
a link preview of URLs in email messages is allowed for the
organization.

Tip To view all the parameters of the Set-OrganizationConfig cmdlet,
you can run Get-Help Set-OrganizationConfig -Online, which will
automatically open the TechNet page of the cmdlet in your default browser.

If, for example, you wanted to disable Focused Inbox, Link Previews, and Microsoft
Bookings, you would run the following cmdlet:

Set-OrganizationConfig °
-FocusedInboxOn $false ~
-LinkPreviewEnabled $false ~
-BookingsEnabled $false

Some of the parameters specified in Table 4-3 also talk about the governance of
distribution lists and allowing you to set a naming convention, as well as blocked words.
Let’s look at those in detail. If you wanted to block the words Apress, Contoso, and CEO
from any distribution list name, you would run the following cmdlet:

Set-OrganizationConfig -DistributionGroupNameBlockedWordsList
Apress,Contoso,CEO

108

CHAPTER 4 MANAGING EXCHANGE ONLINE

Ifyou tried to create a distribution list using those words, you would be shown an
error similar to that in Figure 4-27.

X Adeninistrator: Windows PewerShell - o x

PS C:\WINDOWS'\system32> New-DistributionGroup -Name "Apress Clients" ~
The group name contains the word "Apress", which isn't allowed in group names in your organization. Please rename your
group.
+ CategoryInfo : Notspecified: (:) [MNew-DistributionGroup], DatavalidationException
+ FullyQualifiedErrorId : [Server=YQBPROLOIMEQ721,RequestId=939faf33-1d64-4b65-bbca-10f488cb3e62,TimeStamp=12,/20/2
017 3:29:51 PM] [FailureCategory=Cmdlet-DatavalidationException] EBEDFDDF,Microsoft.Exchange.Management.RecipientT
asks .NewDistributionGroup
+ PSComputerhame : outlook.office365.com

PS C:\WINDOWS\system32> _

Figure 4-27. Blocked words in distribution lists

The next option is the Distribution Group Naming Policy, which allows you to set
a naming policy for each distribution list; the policy can also be dynamic depending
on who creates it. Exchange Online allows you to add a prefix and a suffix to each
distribution list. For example, if you wanted every distribution group to start with the
word DL, have the requested group name, and finish with the country of the user who
created it, you would run the following cmdlet:

Set-OrganizationConfig -DistributionGroupNamingPolicy "DL_<GroupName>_
<CountryOrRegion>"

After applying the policy, if you wanted to create a group with the name “PowerShell
Book Review,” the final name would be DL_PowerShell Book Review_Canada as seen in
Figure 4-28.

EN Aderanistrator: Windaws PowerShell - o x
PS C:\WINDOWS\system32> New-DistributionGroup =-Name "PowerShell Book Review" ~
Mew! Office 365 Groups are the next generation of distribution 1ists.

Groups give teams shared tools for collaborating using email, files, a calendar, and more.

You can start right away using the New-unifiedGroup cmdlet.

Name DisplayName GroupType PrimarysmtpAddress

DL_Powershell Book Review_Canada DL_Powershell Book Review_Canada Universal DL_PowershellBookReview_Canada@office3ss

PS C:\WINDOWS\system32>

Figure 4-28. Distribution created with new naming convention

We have now viewed how to manage organization changes for Exchange Online,
including the distribution list governance policies. Next up, let’s continue looking at how
to manage distribution groups using PowerShell!

109

CHAPTER 4 MANAGING EXCHANGE ONLINE

Managing Distribution Groups

Distribution groups have been around for quite some time, and a lot of organizations
use them every day. While Microsoft recommends upgrading distribution groups to
Office 365 Groups due to the additional features Office 365 Groups offer, those additional
features are not always needed. You will start by learning how to see the distribution
groups in your tenant!

To view all the distribution groups in your environment, you need to use the
Get-DistributionGroup PowerShell cmdlet. In Figure 4-29, we are getting the alias,
display name, and primary email address of every distribution group.

| EX adminmtrator: Windows PowerShell = o x
PS C:\WINDOWS\system32> Get-DistributionGroup | Select Alias, DisplayMame, PrimarySmtpAddress

Alias DisplayName Primarysmtpaddress

DL_Power'sheTIBookRewew Canada DL_Powershell Boock Review_Canada DL_PowerShellBookReview_Canada@office3éSpowershell.ca
Human Ressources HR@office3bSpowershell.ca

Markat‘lnq Marketing Team Marketing@office36Spowershell.ca

suggestions suggestions Suggesnons@ofﬁcesss:iowershe‘l‘l .ca

PS C:'\WINDOWS\system32>

K3 3

Figure 4-29. Get-DistributionGroup Cmdlet

To create a new distribution group, you must use New-DistributionGroup and
specify the name of the distribution group, as well as any parameters you might want to
configure. Some of the most common parameters are listed in Table 4-4.

Table 4-4. New-DistributionGroup Parameters

Parameter Description

Name This parameter specifies the unique name of the group. The
maximum length is 64 characters.

Alias This parameter specifies the Exchange alias (also known as the
mail nickname) for the recipient.

DisplayName The DisplayName parameter specifies the display name of the
group.

(continued)

110

CHAPTER 4 MANAGING EXCHANGE ONLINE

Table 4-4. (continued)

Parameter Description

IgnoreNamingPolicy The IgnoreNamingPolicy switch specifies whether to prevent
this group from being affected by your organization’s distribution
group naming policy.

ManagedBy The ManagedBy parameter specifies an owner for the group. A
group must have at least one owner. If you don’t use this parameter
to specify the owner when you create the group, the user account
that created the group is the owner.

Members The Members parameter specifies the recipients (mail-enabled
objects) that are members of the group.

PrimarySmtpAddress The PrimarySmtpAddress parameter specifies the primary
return email address that’s used for the recipient.

RequireSender The RequireSenderAuthenticationEnabled parameter
AuthenticationEnabled specifies whether to accept messages only from authenticated
(internal) senders.

If you wanted to create a new distribution group with the following requirements:
o Name: Contoso News
e Owners: John Smith
¢ Members: Jeff Collins, Vlad Admin
o Can only receive emails from internal employees
o Email Address: cnews@office365PowerShell.ca
you would run the following cmdlet:
New-DistributionGroup ~
-Name "Contoso News" °
-Members jeff.collins,VladAdmin °
-ManagedBy john.smith °
-IgnoreNamingPolicy ~

-RequireSenderAuthenticationEnabled $true °
-PrimarySmtpAddress cnews@office365PowerShell.ca

111

CHAPTER 4 MANAGING EXCHANGE ONLINE

To modify the properties of a distribution group, you need to use the
Set-DistributionGroup PowerShell cmdlet. You can change all the parameters that
you saw in Table 4-4, as well as configure some new ones. Table 4-5 showcases some of
the most common parameters that you can change using the Set-DistributionGroup
cmdlet.

Table 4-5. Parameters of the Set-DistributionGroup cmdlet

Parameter Description

AcceptMessagesOnlyFrom The AcceptMessagesOnlyFrom parameter specifies
who is allowed to send messages to this recipient.
Messages from other senders are rejected.

HiddenFromAddressListsEnabled The HiddenFromAddressListsEnabled parameter
specifies whether this recipient is visible in address lists.

MailTip The MailTip parameter specifies the custom MailTip
text for this recipient. The MailTip is shown to senders
when they start drafting an email message to this
recipient.

If you wanted to modify a distribution group you previously created to have a
MailTip, as well as to hide the Distribution Group from the Global Address List, you
would run the following cmdlet:

~

Set-DistributionGroup cnews@office365PowerShell.ca

LU

-MailTip "Please Note this e-mail adress is reserved for Management Only
-HiddenFromAddressListsEnabled $true

Finally, to remove a distribution group, you can run the Remove-DistributionGroup
cmdlet, specifying which group you want to remove, as in the following example:

Remove-DistributionGroup cnews@office365PowerShell.ca

Now that we know how to manage distribution groups, let’s learn how to manage the
members inside them.

112

CHAPTER 4 MANAGING EXCHANGE ONLINE

Manage Distribution Group Membership

To view the members of a distribution group, you simply have to run the Get-
DistributionGroupMember cmdlet and specify for which group you want to see the
membership, as seen in Figure 4-30.

EN Administrator: Windows PowerShell - (m] x
PS C:\WINDOWS\system32> Get-DistributionGroupMember cnews@office365Powershell.ca A

Name RecipientType

VladAdmin UserMailbox
jeff.collins UserMailbox

PS C:\WINDOWS\system32>

< >

Figure 4-30. Viewing the members of a distribution group

To add a member to a distribution group, you need to use
Add-DistributionGroupMember, specifying the group that you want to add the
member to and the user that you wish to add, as seen in the following example:

Add-DistributionGroupMember °
-Identity cnews@office365PowerShell.ca
-Member john.smith

~

You can also completely replace the members of a group by using the
Update-DistributionGroupMember cmdlet. This will remove all previous members
and add the ones you specify inside. If you run the following cmdlet, it will replace all
members inside with only Jeff Collins and Liam Jones, as you can see in Figure 4-31.

Update-DistributionGroupMember °
-Identity cnews@office365PowerShell.ca
-Member liam.jones, jeff.collins °
-Confirm:$False

~

113

CHAPTER 4 MANAGING EXCHANGE ONLINE

[EX Aderrustrator Windews PowerShell - o *
PS C:'WINDOWS'\system3Z> Get-DistributionGroup k i ffice3c5Powershell.ca

MName RecipientType

VladAdmin UserMailbox

%gff.qo111ns UserMailbox
iam.jones userMmailbox
john.smith UserMailbox

PS C:\WINDOWS\System32> Update-DistributionGroupMember -Identity cnews@office365Powershell.ca -Member 1iam.jones, jeff.c
ollins -Confirm:$False L i
PS C:\WINDOWS\System32> Get-DistributionGroupMember cnews@office3sSPowershell.ca

MName RecipientType

qgff.qo11ins UserMailbox
iam.jones UserMailbox

PS C:\WINDOWS\system32> _

Figure 4-31. Updating the members of a distribution group

Lastly, to remove a member from a distribution group, you can run the Remove-
DistributionGroupMember cmdlet, specifying the identity of the distribution group and
the member to remove. In the example that follows, Jeff Collins is being removed from
the distribution group:

Remove-DistributionGroupMember °
-Identity cnews@office365PowerShell.ca
-Member jeff.collins

~

That’s it for distribution group membership management with PowerShell! Next up,
let’s look at what reports we can have on our Exchange mailboxes.

Mailbox Reporting

Exchange Online provides us with cmdlets that allow us as administrators to get
information about how users are using their mailboxes. One of the first cmdlets we will
look at is the Get-MailboxStatistics cmdlet, which allows you to view the usage on
mailboxes. Simply running the cmdlet and specifying the identity of the mailbox will
show you the display name, how many items are in that mailbox, and the last logon time,

as you can see in Figure 4-32.

114

CHAPTER 4 MANAGING EXCHANGE ONLINE

. EX Adeniistrator: Windews PewerShell - o *
PS5 C:'\WINDOWS\system32> Get-MailboxStatistics -Identity vlad-admin@ocfficeisSpowershell.ca ~
DisplayName ItemCount StorageLimitStatus LastLogonTime
Vlad Admin 1045 12/20/2017 2:02:45 PM

PS5 C:\WINDOWS\system32>

Figure 4-32. Viewing mailbox statistics for a user

You can also view multiple other properties; for example, running the following
cmdlet will show you the information on size and deleted items you see in Figure 4-33.

Get-MailboxStatistics -Identity vlad-admin@office365powershell.ca | Select
DisplayName, DeletedItemCount, ItemCount, TotalItemSize, LastLogonTime

EN Adeninistrator. Windows PewerShell - o '8

PS C:\WINDOWS\system32> Get-MailboxStatistics -Identity vlad-admin@office36Spowershell.ca | Select DisplayName, DeletedI ~
temCount, ItemCount, TotalItemSize, LastLogonTime

DisplayName : Vlad Admin
DeletedItemCount : 16

ItemCount ¢ 1045

TotalItemSize : 15.31 M8 (16,051,543 bytes)
LastLogonTime 1 12/20/2017 2:02:45 PM

PS5 C:\WINDOWS\System32>

Figure 4-33. Filtered mailbox properties

You can also run the cmdlet across all mailboxes. For example, the following cmdlet
will return the display name of every user who hasn’t logged on since December 15, 2017:

Get-Mailbox | Get-MailboxStatistics | Where-Object {$.LastLogonTime -1t
"12/15/2017"} | Select DisplayName

115

CHAPTER 4 MANAGING EXCHANGE ONLINE

Another useful feature would be to return all the mailboxes that have more than
20,000 emails in their mailbox, which is done with the following cmdlet:

Get-Mailbox | Get-MailboxStatistics | Where-Object {$_.ItemCount -gt 20000}

Asyou can see, Get-MailboxStatistics allows you to see how users are using
Exchange Online and gives you information you couldn’t normally see.

Before finishing this chapter, it is important you learn how to disconnect your remote
PowerShell Session from Exchange Online.

Disconnecting from Exchange Online

When you are done with the tasks you wanted to do with PowerShell, make sure to
disconnect the remote PowerShell session. There is a limit to how many sessions you
can connect to Exchange Online, and if you simply close the PowerShell window without
disconnecting the session you might use all of the available sessions, forcing you to wait
until they expire before being able to reconnect. To disconnect the remote PowerShell
session, you can run the following cmdlet:

Remove-PSSession $Session

Conclusion

In this chapter, we learned how to manage Exchange Online using PowerShell. We
first looked at how to connect to Exchange Online, whether you are using simple
authentication or multi-factor authentication. We then learned how to manage users
and mailboxes, as well as a few common tasks such as managing Out of Office replies
and permissions on other mailboxes.

We then looked at how to manage organizational settings that apply to the whole
tenant as well as how to manage distribution groups. Lastly, we learned how to view
reports on our Exchange Online mailboxes and how to disconnect from Exchange
Online.

In the next chapter, we will learn how to manage Skype for Business Online with
PowerShell.

116

CHAPTER 5

Managing Skype
for Business Online

In this chapter, we will first learn how to get the Skype for Business PowerShell module
and connect to Skype for Business Online. We will then learn how to manage both the
tenant and the per-user Skype for Business policies using PowerShell.

Finally, we will look at how to run PowerShell cmdlets for Skype for Business when
you are working in a hybrid scenario where you have part of your topology running a
Skype for Business server on-premises and part using Skype for Business Online, part of
Office 365.

Connecting to Skype for Business Online

Similar to SharePoint and Azure Active Directory, the first thing that you have to do
to connect to Skype for Business Online is download a module from the Microsoft
Download Center. This PowerShell module contains all the PowerShell cmdlets that
allow us to connect to Skype for Business Online.

Note The Skype for Business Online Windows PowerShell Module can be
downloaded at https://www.microsoft.com/en-us/download/details.
aspx?1d=39366.

Similar to the previous chapters, you need to be on a 64-bit machine that runs
Windows 7 Service Pack 1 or later, or Windows Server 2008 R2 Service Pack 1 or later, as
well as have an account that has the Skype for Business Admin Role assigned. You will
also need to be a local administrator on your computer in order to be able to install the

module.

117
© Vlad Catrinescu 2018

V. Catrinescu, Essential PowerShell for Office 365, https://doi.org/10.1007/978-1-4842-3129-6_5

https://www.microsoft.com/en-us/download/details.aspx?id=39366
https://www.microsoft.com/en-us/download/details.aspx?id=39366

CHAPTER5 MANAGING SKYPE FOR BUSINESS ONLINE

After you download the Skype for Business Online Windows PowerShell Module
from the preceding link, you can start the installation. The first step is to agree to the
terms, as seen in Figure 5-1.

ﬂ Skype for Business Online, Windows PowerShell Module Se... — X

Skype for Business Online, Windows
PowerShell Module

MICROSOFT SOFTWARE LICENSE TERMS

SKYPE FOR BUSINESS ONLINE WINDOWS POWERSHELL MODULE

These license terms are an agreement between Microsoft Corporation (or
based on where you live, one of its affiliates) and you. Please read them.
They apply to the software named above, which includes the media on
which you received it, if any. The terms also apply to any Microsoft

e undates.

[11 agree to the license terms and conditions

@install || Close

Figure 5-1. Skype for Business Online PowerShell Module Setup

You then have to click on Install and wait a few seconds for the module to be
installed on your computer. This module only contains the cmdlets to connect to Skype
for Business Online, and not all the cmdlets that you can use in Skype for Business.
Similar to Exchange Online, a temporary module is downloaded every time you connect
to Skype for Business Online.

Once the module is installed, to connect to Skype for Business you will first have
to save the credentials with which you wish to connect in a variable. In the following
example, we are saving those credentials in a variable called $cred:

$cred=Get-Credential

We then need to connect to Skype for Business Online by using New-
CsOnlineSession and saving the information in a variable; for example, $session:

$session = New-CsOnlineSession -Credential $cred
118

CHAPTER5 MANAGING SKYPE FOR BUSINESS ONLINE

Optionally, you can add the -Verbose parameter if you want a more transparent view
of what PowerShell is doing in the background to connect to Skype for Business, as seen
in Figure 5-2:

$session = New-CsOnlineSession -Credential $cred -Verbose

EX Administrator: Windows PowerShell - o X
PS C:\WINDOWS\system32> $session = New-CsOnlineSession -Credential $cred -verbose ~

Start WinRM Service
WinRM service is not started currently. Running this command will start the WinRM service.

Do you want to continue?

[Y] Yyes [N] No [S] Suspend [?] Help (default is "Y"): Y

VERBOSE: Determining domain to admin

VERBOSE: AdminDomain = 'office365powershell.ca’

VERBOSE: Discovering Powershell endpoint URI

VERBOSE: Targeturi = 'https://admincal.online.lync.com/OcsPowershell10Auth’
VERBOSE: GET https://admincal.online.lync.com/0OcsPowershell1oAuth with O-byte payload
VERBOSE: AuthuUri = 'https://login.windows.net/common/oauth2/authorize"
VERBOSE: Requesting authentication token

VERBOSE: Success

VERBOSE: Initializing remote session

VERBOSE: Success

PS C:\WINDOWS\system32>

Figure 5-2. New-CSOnlineSession

Next, we have to import the session into our current PowerShell session to be able to
manage Skype for Business; we do this by using Import-PSSession:

Import-PSSession $session

This will import a temporary PowerShell module into our PowerShell session that
contains all the latest Skype for Business Online cmdlets. The module name can be
seen in the Name field, as seen in Figure 5-3. This name will be different every time you
connect to Skype for Business Online.

E¥ Administrator: Windows PowerShell - o x

PS C:\WINDOWS\system32> Import-PSSession $session "
ModuleType Version Name ExportedCommands

script 1.0 tmp_jhvejwwm.rje {Clear-csonlineTelephoneNumberReservation,

PS C:\WINDOWS\system32>

Figure 5-3. Import-PSSession
119

CHAPTER5 MANAGING SKYPE FOR BUSINESS ONLINE

You are now connected to Skype for Business Online. Since you know the module
name, you can always run Get-Command -Module <Module Name> to see the most up-to-
date list of available cmdlets. Let’s take a look at some of the ones you will probably use
the most.

Available cmdlets

The PowerShell module for Skype for Business Online allows you to configure policies
for certain users or for the whole tenant, as well as use more advanced cmdlets to
configure Conferencing, PTSN, and IP telephone.

In Table 5-1, you can see some of the cmdlets available to help you manage users in
Skype for Business Online.

Table 5-1. User cmdlets for Skype for Business Online

Cmdlet Description

Get-CsOnlineUser Use this cmdlet to return information about users who have
accounts homed on Skype for Business Online.

Set-CsUser Use this cmdlet to modify Skype for Business Online properties
for an existing user account.

Get-CsUserPstnSettings Use the Get-CsUserPstnSettings cmdlet to retrieve a
voice-enabled user’s public switched telephone network (PSTN)
settings.

Set-CsUserPstnSettings Use the Set-CsUserPstnSettings cmdlet to modify an
existing voice-enabled user’s public switched telephone network
(PSTN) settings.

Get-CsUserSession Use the Get-CsUserSession cmdlet to retrieve user session
information within a specified date range.

We also have cmdlets that allow us to manage policies for the client, conferencing,
external access, presence, and more! In Table 5-2 you can see some of those.

120

CHAPTER5 MANAGING SKYPE FOR BUSINESS ONLINE

Table 5-2. Policy cmdlets in Skype for Business Online

Cmdlet

Description

Get-CsClientPolicy

Grant-CsClientPolicy

Get-CsConferencing
Policy

New-CsConferencing
Policy
Get-CsMobilityPolicy

Remove-CsMobilityPolicy
Get-CsOnline
VoicemailPolicy

Get-CsExternalAccess
Policy

This cmdlet returns information about the client policies configured
for use in your organization. Among other things, client policies help
determine the features that are available to Skype for Business
Online users; for example, you might give some users the right to
transfer files while denying this right to other users.

This cmdlet assigns a client policy to a user or a group of users.

This cmdlet returns information about the conferencing policies that
have been configured for use in your organization. Conferencing
policies determine the features and capabilities that can be used

in a conference; this includes everything from whether or not the
conference can include IP audio and video to the maximum number
of people who can attend a meeting.

This cmdlet creates a new conferencing policy for use in your Skype
for Business Online organization.

This cmdlet retrieves information about the mobility policies currently in
use in an organization. Mobility policies determine whether or not a user
can use the Skype for Business app. These policies also manage a user’s
ability to employ Call via Work, a feature that enables users to make and
receive phone calls on their mobile phone by using their work phone
number instead of their mobile phone number. Mobility policies can also
be used to require Wi-Fi connections when making or receiving calls.

This cmdlet removes an existing mobility policy.

Use the Get-CsOnlineVoicemailPolicy cmdlet to get a list of
all pre-configured policy instances of the Voicemail service.

This cmdlet returns information about the external access policies that
have been configured for use in your organization. External access
policies determine whether or not your users can 1) communicate
with users who have Session Initiation Protocol (SIP) accounts with

a federated organization; 2) communicate with users who have

SIP accounts with a public instant messaging (IM) provider such as
Windows Live; and 3) access Skype for Business Server 2015 over the
Internet without having to log on to your internal network.

121

CHAPTER5 MANAGING SKYPE FOR BUSINESS ONLINE

Another category of cmdlets that you might use often are the ones for Skype
Broadcast. Skype Meeting Broadcast is a feature of Skype for Business Online that
allows you to broadcast meetings to an audience of up to 10,000 attendees. This is very
useful when you want to invite the whole company to an announcement and so on. In
comparison, at the time of writing this book the limit for a normal Skype for Business
Online meeting was 250 participants. You can see the available cmdlets in Table 5-3.

Table 5-3. Skype for Business Online Broadcast cmdlets

Cmdlet Description

Get-CsBroadcastMeeting Use the Get-CsBroadcastMeetingConfiguration
Configuration cmdlet to retrieve the global (and only) broadcast meeting
configuration for your organization.

Set-CsBroadcastMeeting Use the Set-CsBroadcastMeetingConfiguration cmdlet

Configuration to modify the settings of your global (and only) broadcast
meeting configuration.

Get-CsBroadcastMeeting Use the Get-CsBroadcastMeetingPolicy cmdlet to retrieve

Policy the predefined broadcast meeting policies and their settings.

Grant-CsBroadcastMeeting Use the Grant-CsBroadcastMeetingPolicy cmdlet to
Policy assign a broadcast meeting policy to a user.

Now that we have looked at a few of the available cmdlets, let’s learn how to use them.

Executing PowerShell cmdlets for Skype
for Business Online

Now that we are connected to Skype for Business Online, we can manage our users as
well as our policies via PowerShell. Let’s start with the users.

Managing Users and Policies

To see all the users—as well as all their properties—we need to use the Get-CsOnlineUser
cmdlet. This cmdlet returns a lot of properties for each user, but you can filter the results
that you want to show or output by using pipelines. In Figure 5-4, we opted to only show
the usernames and the SIP address of all our Skype for Business users.

122

CHAPTER5 MANAGING SKYPE FOR BUSINESS ONLINE

Select Administrator: Windows PowerShell - a x
PS C:\WINDOWS\system32> Get-CsOnlineUser | Select UserPrincipalName, SipAddress -
UserPrincipalName SipAddress
vanessa@office365powershell.ca sip:vanessa@office365powershell.ca
john@office365powershell.ca sip:john@office365powershell.ca
vlad_vnext.solutions#EXT#@office365powershell.ca

Jeff@office365powershell.ca sip:Jeff@office365powershell.ca
vlad-admin@office365powershell.ca sip:vlad-admin@office365powershell.ca

PS C:\WINDOWS\system32> _

Figure 5-4. Get-CSOnlineUser

To modify a user’s properties, you could use the Set-CsUser PowerShell cmdlet. For
example, if you would like to block the user vanessa@office365powershell.ca from
using audio and video, you would use the following cmdlet:

Set-CsUser -Identity vanessa@office365powershell.ca -AudioVideoDisabled
$true

While this can easily also be done via the user interface, PowerShell becomes very
useful if you want to apply this setting to a whole department. For example, if you wanted
to apply the same block to the whole Research department you could run the following
cmdlet:

Get-CsOnlineUser -LdapFilter "Department=Research" | Set-CsUser
-AudioVideoDisabled $true

Another thing that you can do only with PowerShell in Skype for Business Online is
apply different policies to users. Let’s take a look at what those are!

Managing Policies

Policies help determine the Skype for Business Online features and capabilities that are
available to certain users and/or to the whole organization. In Table 5-4, you can see the
available policy categories that are available.

123

CHAPTER5 MANAGING SKYPE FOR BUSINESS ONLINE

Table 5-4. Skype for Business Online Policy Categories

Policy Description

Client Policy Client policies are used to determine the Lync client features that
are available to users. For example, you might give the capability to
transfer files to some users but not to others.

Conferencing Policy Conferencing policies determine the features and capabilities that can
be used in a conference. This includes everything from whether the
conference can include IP audio and video to the maximum number of
people who can attend a meeting.

External Access Policy External access policies are used to determine whether your users are
allowed to communicate with users from federated domains, and/or
whether your users are allowed to communicate with users who have
accounts on public IM providers, such as Windows Live or AOL.

Voice Policy Voice policies are used to manage Enterprise Voice features, such as
simultaneous ringing (the ability to have a second phone ring each
time someone calls your office phone) and call forwarding.

In Skype for Business Online, you cannot create a custom policy as you could in the
on-premises version of Lync or Skype for Business Server. Instead, you need to use one of
the policies that has been pre-created by Microsoft specifically for Office 365. At the time
of writing this book, the following policies were available in Skype for Business Online:

o 4 different client policies

o 224 different conferencing policies
o 5 different dial plans

o 5 different external access policies
e 1 hosted voicemail policy

o 4 different voice policies

124

CHAPTER5 MANAGING SKYPE FOR BUSINESS ONLINE

Each type of policy has different parameters and can be assigned to individual users
or to the whole organization. There are two ways to find the name of the policy that you
are looking to assign to a certain user.

The first option is to export all the policies of a certain type to a CSV file so you can
analyze them. For example, you can export the external access policies to a CSV file by

using the following cmdlet:

Get-CsExternalAccessPolicy | Select Identity,
EnableFederationAccess, EnableXmppAccess, EnablePublicCloudAccess,
EnablePublicCloudAudioVideoAccess, EnableOutsideAccess | Export-csv
C:\Apress\Cho5\Policies\externalacess.csv -NoTypeInformation

The result will be a CSV file as seen in Figure 5-5; it will show the identity,
parameters, and values for each available policy.

externalacess.csv - Excel

Page Layout Farmulas Data Review View

Al17 b S

4 A B c | D | E | F |
1 |ldentity EnableFederationAccess EnableXmppAccess EnablePublicCloudAccess EnablePublicCloudAudicVideoAccess EnableQutsideAccess
2 |Global FALSE FALSE FALSE FALSE FALSE

3 |Tag:FederationAndPICDefault TRUE FALSE TRUE TRUE TRUE

4 |Tag:FederationOnly TRUE FALSE FALSE FALSE TRUE

5 ITag:NoFederatlnnAndPlc FALSE FALSE FALSE FALSE TRUE

L] 4

Figure 5-5. External access policies in Skype for Business Online

The next step will be to understand what each parameter does. In Table 5-5, you can

see the definition and implication for each parameter.

125

CHAPTER5 MANAGING SKYPE FOR BUSINESS ONLINE

Table 5-5. External Access Policy Parameters in Skype for Business Online

Parameter Description

EnableFederation Indicates whether the user is allowed to communicate with people
Access who have SIP accounts with a federated organization
EnableXmppAccess Indicates whether the user is allowed to communicate with

users who have SIP accounts with a federated XMPP (Extensible
Messaging and Presence Protocol) partner; the default value is False

EnablePublicCloud Indicates whether the user is allowed to communicate with people

Access who have SIP accounts with a public Internet connectivity provider
such as MSN

EnablePublicCloudAudio Indicates whether the user is allowed to conduct audio/video

VideoAccess conversations with people who have SIP accounts with a public

Internet connectivity provider such as MSN. When set to False, audio
and video options in Skype for Business will be disabled any time a
user is communicating with a public Internet connectivity contact.

EnableOutsideAccess Indicates whether the user is allowed to connect to Skype for
Business Server 2015 over the Internet without logging on to the
organization’s internal network

Now that we know what each parameter means, if we want to allow Vanessa to
communicate with Federated Users, but not with Windows Live Users, we would need
to find a policy where EnableFederationAccess is true and EnablePublicCloudAccess
is false. By looking at the CSV file in Figure 5-5, we can see that the only available policy
with this criteria is Tag:FederationOnly.

The second way to find a policy that fits our needs is to query PowerShell directly.
This of course requires us to know exactly what parameters we want and with what
values. Since I know I want a policy where EnableFederationAccess is true and
EnablePublicCloudAccess is false, I could run the following cmdlet:

Get-CsExternalAccessPolicy | Where-Object {$_.EnableFederationAccess -eq
$True -and $.EnablePublicCloudAccess -eq $False}

The result seen in Figure 5-6 is the same policy as with the other method.

126

CHAPTER5 MANAGING SKYPE FOR BUSINESS ONLINE

EX dcemntistor o Pome el o

PS C:\WINDOWS\System32> Getr-CsExternalAaccessPolicy | where-Object {$_.EnableFederationAccess -eq $True -and $_.EnablePub -~
TicCloudaccess -eq $False}

Identity : Tag:FederationOnly
Description s
EnableFederationAccess : True
EnablexmppAccess : False
EnablePublicCloudAccess : False
EnablePublicCloudAudiovideoAccess : False
EnableQutsideAccess : True

Figure 5-6. Get-CsExternalAccessPolicy

After we know the policy we want to assign, we can use the Grant-
CsExternalAccessPolicy cmdlet to assign this policy to Vanessa, as seen in the
following example.

Note While the identity of certain policy names includes the word Tag:, you
must not include it when granting a policy to a user.

Grant-CsExternalAccessPolicy -Identity "vanessa@office365powershell.ca”
-PolicyName "FederationOnly"

Now that we have reviewed the external access policies, what about the others? In
Table 5-6 you can see the cmdlet to get the properties for each of the available policy

types.
Table 5-6. Skype for Business Online Policy Cmdlets

Policy Cmdlets

Client Policy Get-CsClientPolicy
Conferencing Policy Get-CsConferencingPolicy
External Access Policy Get-CsExternalAccessPolicy
Voice Policy Get-CsVoicePolicy

You can use the Export-CSV cmdlet to export all the properties available into a CSV
file; then, you will be able to filter and find the policies that you want.

127

CHAPTER5 MANAGING SKYPE FOR BUSINESS ONLINE

External Communications

Skype for Business Online allows you to configure multiple settings for how your users
can communicate outside the company. Most of the settings at the organizational level
can be done via the Set-CsTenantFederationConfiguration cmdlet.

To turn off external communications completely, you can set -AllowFederatedUsers
to false as seen here:

Set-CsTenantFederationConfiguration -AllowFederatedUsers $false

If you keep it on (default) you can set either an allowed list or a blocked list of
domains. If you set an allowed list, your employees will only be allowed to add and talk
to external users from that domain. If you set a blocked list, your users will be able to
add users from every domain except the ones specified in the blocked list. You can be in
either “allowed list” or “blocked list” mode, but not both at the same time.

As an example, let’s enable external communication for our users, but only for the
Microsoft.comand Apress.com domains. We first need to create a new domains object
by using the New-CsEdgeDomainPattern cmdlet:

$domain = New-CsEdgeDomainPattern -Domain "Microsoft.com"
$domain2 = New-CsEdgeDomainPattern -Domain "Apress.com"

We then need to create a new allowed list by using the New-CSEdgeAllowlList cmdlet:
$AllowedList = New-CSEdgeAllowlList -AllowedDomain $domain,$domain2

Lastly, we have to apply this list to our tenant by using the Set-CsTenantFederation
Configuration cmdlet:

Set-CsTenantFederationConfiguration -AllowedDomains $AllowedlList

It may take up to 24 hours for this to be applied, so wait a day before testing it out;
however, the change can be seen in the Skype for Business Online Admin Center right
away. The result of the preceding cmdlets can be seen in Figure 5-7.

128

CHAPTER 5 MANAGING SKYPE FOR BUSINESS ONLINE

i Office 365 Admin

Skype for Business admin center

dashboard general external communications
users
external access
organization You can control access to Skype for Business users in other organizations in two ways: 1) block specific domains, but allow access
dial-in conferencing Cn only for allowed domains 4

online meetings

public IM connectivity
tools

| Let people use Skype for Business to communicate with Skype users outside your crganization.
reports

blocked or allowed domains

DOMAIN & STATUS
Apress.com Allowed

Microsoft.com Allowed

Figure 5-7. External communications in the Skype for Business Admin Center

We have just looked at how to control external communications in our Skype for
Business tenant; now, let’s take a look at Skype for Business Broadcast.

Skype for Business Broadcast

Skype for Business Broadcast is disabled by default in your Office 365 tenant because this
feature may not respect all the latest rules of the European Union. Here is the note, as
described by Microsoft on the support.office.comwebsite.

Warning Skype Meeting Broadcast is turned off by default because distribution of
the media content of a broadcast meeting uses Microsoft Azure’s Content Delivery
Network (CDN) to achieve very high scale to support thousands of people watching
a broadcast. The chunked media content passing through the CDN is encrypted,
and the CDN cache has a limited lifetime. Also, the Azure CDN component may

not yet meet all elements of the EU Model Clauses stemming from the EU Data
Protection Directive. By enabling this feature you acknowledge this notice.

129

CHAPTER5 MANAGING SKYPE FOR BUSINESS ONLINE

To view the current settings of Skype for Business Broadcast in your tenant, you need
to run the Get-CsBroadcastMeetingConfiguration cmdlet. To view if Skype for Business
Broadcast is enabled or not, you can look at the EnableBroadcastMeeting cmdlet as
highlighted in Figure 5-8.

EX Administeator v PowerShe
PS C:\WINDOWS\system32> Get-CsBroadcastMeetingConfiguration "

141w = 1ahkhal
EnableBroadcastMeetin : False I

cing - 1Tu

EnableBroadcastMeetingRecording : True
EnableAnonymousBroadcastMeeting : True
EnforceBroadcastMeetingRecording : False
BroadcastMeetingSupportur]l :
EnableSdnProviderForBroadcastMeeting : False
SsdnFallbackAttendeeThresholdCountForBroadcastMeeting : 0
EnableTechPreviewFeatures : False

< >

Figure 5-8. Get-CsBroadcastMeetingConfiguration

To change the configuration of Skype for Business Broadcast, you must use the
Set-CsBroadcastMeetingConfiguration cmdlet and specify the parameters you want to
change. You can view some of those parameters in Table 5-7.

130

CHAPTER5 MANAGING SKYPE FOR BUSINESS ONLINE

Table 5-7. Skype for Business Broadcast Parameters

Parameter

Description

BroadcastMeeting
SupportUrl

EnableAnonymous
BroadcastMeeting

EnableBroadcast
Meeting

EnableBroadcastMeeting
Recording

EnableOpenBroadcast
Meeting

EnableTechPreview
Features

EnforceBroadcastMeeting
Recording

Specifies a URL where broadcast meeting attendees can find
support information or FAQs specific to that meeting. The URL will
be displayed during the broadcast meeting.

Specifies whether non-authenticated attendees are allowed to join
and view the web-based portion of the meeting. Valid input for this
parameter is $true or $false. The default value is $true.

Specifies whether broadcast meetings are enabled. Valid input for
this parameter is $true or $False. The default value is $false.

Specifies whether broadcast meetings can be recorded at the
server level. Valid input for this parameter is $true or $false.
The default value is $true.

Specifies if the organizer is allowed to create broadcast meetings
that allow anyone in the organizer’s organization to attend. The
default and only setting is $true.

Set to $true to enable use of features available in a technical preview
program. Set to $false to disable the technical-preview features.

Specifies whether all meetings will be recorded. Valid input for this
parameter is $true or $false. The default value is $false.

For example, a company might have the following business requirements:

o Skype for Business Broadcast must be enabled.

e Only authenticated members can join any Skype for Business

Broadcast.

o All Skype for Business Broadcast meetings must be recorded.

131

CHAPTER5 MANAGING SKYPE FOR BUSINESS ONLINE

In order to respect these business requirements, here is the PowerShell cmdlet we
must run:

Set-CsBroadcastMeetingConfiguration
-EnableBroadcastMeeting $true
-EnableAnonymousBroadcastMeeting $false
-EnforceBroadcastMeetingRecording $true

You can also assign a different configuration per user by assigning them a Skype
for Business Broadcast meeting policy. You can get all the policy options by using the
Get-CsBroadcastMeetingPolicy cmdlet. As discussed earlier in this chapter, I have used
the following cmdlet to export the available policies and their parameters to a CSV file,
which you can see in Figure 5-9.

Get-CsBroadcastMeetingPolicy | Select Identity, AllowBroadcastMeeting,
AllowOpenBroadcastMeeting, AllowAnonymousBroadcastMeeting,
BroadcastMeetingRecordingEnforced | Export-CSV C:\Apress\Cho5\Policies\
Broadcast.csv -NoTypeInformation

Insert Fagelayout Formulas

1 .ldentil\' g Allowd g " g
2 |Global TRUE TRUE TRUE FaLSE

3 |Tag:BroadcastMeetingPolicyDefault TRUE TRUE TRUE FALSE
i ngPolicy
4 |Tag:BroadcastMeetingrolicyDisabled FALSE FALSE FALSE FALSE
5 |Tag:BroadcastMestingFolicyAllEnabled TRUE TRUE TRUE FALSE
6 [Tag \gPalicyanany TRUE TRUE FaLSE FaLSE
7 I Disabled TRUE TRUE TRUE FALSE
8 |Tag g bled g forced TRUE TRUE FALSE FALSE
9 [Tag ingFoli isabladA ing! TRUE TRUE FALSE TRUE
10T ingrolicy d ingDisabl TRUE TRUE FALSE FALSE

Figure 5-9. Skype for Business Online Broadcast policies

That’s about it for the Skype for Business Online PowerShell cmdlets that we can
run in our tenant. While a lot of companies are running Skype for Business in either
cloud-only mode or on-premises only, some organizations are running Skype for
Business in hybrid mode. Let’s take a look at how to run PowerShell cmdlets in a
hybrid deployment.

132

CHAPTER5 MANAGING SKYPE FOR BUSINESS ONLINE

Running cmdlets in a Hybrid Environment

A hybrid deployment is when we have Skype for Business Server or Lync Server running
on-premises for some of our users, while some are using Skype for Business Online.

If you are someone who has been a Lync or Skype for Business admin for a while, you
might have already realized that most Skype for Business Online cmdlets are the same
as the PowerShell cmdlets used in Lync Server 2013 or Skype for Business Server 2015.
Since you probably have all the tools to manage Skype for Business on your on-premises
server, you will likely want to connect to Skype for Business Online from there as well.
When you connect to Skype for Business Online from your Skype for Business on-
premises server, you will still have to download the required PowerShell module, save
your Office 365 credential, and start a New-CSOnlineSession as seen here:

$cred = Get-Credential
$Session= New-CsOnlineSession -Credential $cred

What is different is that when you run the Import-PSSession cmdlet, you must
specify the -AllowClobber switch, as seen here:

Import-PSSession $Session -AllowClobber

After you have successfully connected to Skype for Business Online, you will need to
find out what your tenant ID is by running the following cmdlet:

Get-CsTenant | Select TenantId

When running a cmdlet that is meant for Skype for Business Online, you will need to
specify the -Tenant parameter and specify the tenant ID. For example, the first cmdlet
that follows will get the external access policy for Skype for Business Online:

Get-CsExternalAccessPolicy
-Identity "global"
-Tenant "bf19b7db-6960-41e5-a139-2aa373474354"

This next one will get the same information, but from Skype for Business Server or

Lync Server on-premises:

Get-CsExternalAccessPolicy
-Identity "global"

133

CHAPTER5 MANAGING SKYPE FOR BUSINESS ONLINE

Specifying the tenant ID is only required when running cmdlets aimed at Skype for
Business Online on a Lync server or Skype for Business server.

Conclusion

In this module, we have learned how to manage Skype for Business Online by using
PowerShell. We have learned that we first need to download the Skype for Business
PowerShell module, which only includes the cmdlets required to connect to Office 365.
We have also learned how to create a remote PSSession and import it into our current
session in order to be able to run cmdlets for Skype for Business Online from our
machine.

We have looked at how to manage our Skype for Business user’s properties and
how to assign policies to a user, to a department, or to the whole organization using
PowerShell. Since Skype for Business Online does not allow us to create our custom
policies, we have learned how to view the available ones and how to export them to CSV
files to make them easier to consume.

We have also learned how to manage external communications as well as Skype for
Business Broadcast settings using PowerShell, and also how to run cmdlets in a Skype for
Business hybrid environment.

In the next chapter, we will learn how to manage the Office 365 Compliance Center
using PowerShell.

134

CHAPTER 6

Managing the Office 365
Security & Compliance
Center

The Office 365 Security & Compliance Center allows companies to create compliance
searches, put in place data-loss prevention (DLP) policies, create retention policies,
and more. In this chapter, we will first learn how to use PowerShell to connect to the
Compliance Center in Office 365. We will then look at the available cmdlets and learn
how to use them to manage the Compliance Center.

Connecting to the Office 365 Security & Compliance
Center

The Office 365 Security & Compliance Center does not have a module you need to install
before connecting to it; you simply need to have a computer running Windows 7 Service
Pack 1/Windows Server 2008 R2 Service Pack 1 or later as well as have Microsoft .Net
Framework 4.5 and Windows Management Framework 4.0 installed.

After validating these requirements, open PowerShell as an administrator; the first
thing you will have to do is save the credentials with which you wish to connect to the
Office 365 Compliance Center in a variable.

In the following example, we are saving those credentials in a variable called $cred:

$cred=Get-Credential

135
© Vlad Catrinescu 2018

V. Catrinescu, Essential PowerShell for Office 365, https://doi.org/10.1007/978-1-4842-3129-6_6

CHAPTER6 MANAGING THE OFFICE 365 SECURITY & COMPLIANCE CENTER

We then need to create a remote PSSession to the Office 365 Compliance Center,
which is done by using the following cmdlet:

$Session = New-PSSession °
-ConfigurationName Microsoft.Exchange °
-ConnectionUri https://ps.compliance.protection.outlook.com/
powershell-liveid/ ~
-Credential $cred °
-Authentication Basic °

This cmdlet will be the same for everyone, unless you have a tenant in Germany.
For Office 365 Germany, change the ConnectionUri value to https://ps.compliance.
protection.outlook.de/powershell-liveid/

We then have to import the session into our current PowerShell session in order
to be able to manage the Office 365 Compliance Center; this is done by using the
Import-PSSession cmdlet as seen here:

Import-PSSession $Session

This will import a temporary PowerShell module into our PowerShell session that
contains all the latest Office 365 Security & Compliance Center cmdlets. The module
name can be seen in the Name field, as shown in Figure 6-1. The name of this temporary
module will be different every time you connect to the Office 365 Compliance Center.

EX Administrator: Windows PowerShell - o x

PS C:\WINDOWS‘system32> Import-P55ession $5ession A

ModuleType version Name ExportedCommands

script 1.0 tmp_f3u2uxb5.z2q {Add-CompliancecaseMember, Add-eDiscove

PS C:\WINDOWS\system32> _

< >

Figure 6-1. Import-PSSession

136

https://ps.compliance.protection.outlook.de/powershell-liveid/
https://ps.compliance.protection.outlook.de/powershell-liveid/

CHAPTER6 MANAGING THE OFFICE 365 SECURITY & COMPLIANCE CENTER

You are now connected to the Office 365 Compliance & Security Center. To view all

the available cmdlets that you can use, run the Get-Command -Module <Module Name>

cmdlet as seen in Figure 6-2.

EX administrator: Windows PowerShell - *
PS C:\WINDOWS\system32> Get-Command -Module tmp_f3u2uxb5.z2q

CommandType Name Version Source

Function Add-ComplianceCaseMember 1.0 tmp_f3u2uxb5.z2q
Function Add-eDiscoveryCaseAdmin 1.0 tmp_f3u2uxbs.z2q
Function Add-RoleGroupMember 1.0 tmp_f3u2uxbs.z2q
Function Enable-ComplianceTagStorage 1.0 tmp_f3u2uxb5.z2q
Function Get-ActivityAlert 1.0 tmp_f3u2uxb5.z2q
Function Get-AdminauditLogConfig 1.0 tmp_f3u2uxb5.z2q
Function Get-AuditConfig 1.0 tmp_T3u2uxb5.z2q
Function Get-AuditConfigurationPolicy 1.0 tmp_f3u2uxb5.z2q
Function Get-AuditConfigurationRule 1.0 tmp_f3u2uxb5.z2q
Function Get-CaseHoldPolicy 1.0 tmp_T3u2uxb5.z2q
Function Get-CaseHoldrule 1.0 tmp_f3u2uxbs.z2q
Function Get-ComplianceCase 1.0 tmp_f3u2uxb5.z2q
Function Get-ComplianceCaseMember 1.0 tmp_f3u2uxb5.z2q
Function Get-ComplianceSearch 1.0 tmp_f3u2uxb5.z2q
Function Get-Compliancesearchaction 1.0 tmp_Tf3u2uxbs.z2q
Function Get-ComplianceSecurityFilter 1.0 tmp_f3u2uxb5.z2q
Function Get-ComplianceTag 1.0 tmp_f3u2uxb5.z2q
Function Get-ComplianceTagStorage 1.0 tmp_f3u2uxb5.z2q
Function Get-DataRetentionReport 1.0 tmp_f3u2uxb5.z2q
Function Get-DeviceComplianceDetailsReport 1.0 tmp_f3u2uxb5.z2q
Function Get-DeviceComplianceDetailsReportFilter 1.0 tmp_f3u2uxb5.z2q
Function Get-DeviceCompliancePolicyInventory 1.0 tmp_f3u2uxb5.z2q
Function Get-DeviceComplianceReportDate 1.0 tmp_f3u2uxb5.z2q
Function Get-DeviceComplianceSummaryReport 1.0 tmp_f3u2uxbs.z2q v
€ >

Figure 6-2. The available cmdlets

Let’s take a look at the ones you will likely use most.

Office 365 Security & Compliance Center cmdlets

The Office 365 Security & Compliance Center PowerShell module allows you to create
content searches, manage data-loss prevention policies, create eDiscovery case-hold
policies and rules, as well as manage retention policies. Let’s take a look at some of
those. In Table 6-1 you can see some of the cmdlets for content search.

137

CHAPTER6 MANAGING THE OFFICE 365 SECURITY & COMPLIANCE CENTER

Table 6-1. Content Search cmdlets

Cmdlet

Description

Get-ComplianceSearch

New-ComplianceSearch

Start-ComplianceSearch

Get-ComplianceSearchAction

Get-ComplianceSecurityFilter

Use the Get-ComplianceSearch cmdlet to view
estimated compliance searches in Exchange Server
2016 and in the Office 365 Security & Compliance
Center.

Use the New-ComplianceSearch cmdlet to create
compliance searches in Exchange Server 2016 and in
the Office 365 Security & Compliance Center. You use
this cmdlet to define the search criteria.

Use the Start-ComplianceSearch cmdlet to start
stopped, completed, or not yet started compliance
searches in Exchange Server 2016 and in the Office 365
Security & Compliance Center.

Use the Get-ComplianceSearchAction cmdlet to
view information about compliance search actions in
Exchange Server 2016 and in the Office 365 Security &
Compliance Center.

Use the Get-ComplianceSecurityFilter cmdlet
to view compliance security filters in the Security &
Compliance Center. These filters allow specified users
to search only a subset of mailboxes and SharePoint
Online or OneDrive for Business sites in your Office 365
organization.

We also have cmdlets that allow us to manage data-loss prevention policies for our

content. In Table 6-2 you can see some of those.

138

CHAPTER6 MANAGING THE OFFICE 365 SECURITY & COMPLIANCE CENTER

Table 6-2. Data-loss Prevention (DLP) cmdlets

Cmdlet

Description

Get-DIpCompliancePolicy

New-DIpCompliancePolicy

Set-DIpComplianceRule

Get-DlpSensitiveInformationType

Get-DlpSensitiveInformationType
RulePackage

Use the Get-DlpCompliancePolicy to view
data-loss prevention (DLP) policies in the Security &
Compliance Center.

Use the New-D1pCompliancePolicy cmdlet to
create data-loss prevention (DLP) policies in the
Security & Compliance Center. DLP policies contain
DLP rules that identify, monitor, and protect sensitive
information.

Use the Set-D1pComplianceRule to modify
data-loss prevention (DLP) rules in the Security

& Compliance Center. DLP rules define sensitive
information to be protected and the actions to take
on rule violations.

Use the Get-DlpSensitiveInformationType
cmdlet to list the sensitive information types that
are defined for your organization in the Security &
Compliance Genter. Sensitive information types are
used by data-loss prevention (DLP) rules to check
for sensitive information such as social security,
passport, or credit card numbers.

Use the Get-D1lpSensitiveInformation
TypeConfig cmdlet to view data-loss prevention
(DLP) sensitive information—type rule packages in
the Security & Compliance Center.

Another important category of cmdlets that you will use when managing the Office

365 Compliance Center is the Security and Permissions cmdlets. Table 6-3 covers the

cmdlets used to assign different roles and groups for the Office 365 Compliance Center.

139

CHAPTER6 MANAGING THE OFFICE 365 SECURITY & COMPLIANCE CENTER

Table 6-3. Office 365 Compliance Center Security and Permissions cmdlets

Cmdlet Description

Get-ManagementRole Use the Get-ManagementRole cmdlet to view management
roles that have been created in your organization.

Get-RoleGroup Use the Get-RoleGroup cmdlet to retrieve a list of management
role groups.

Set-RoleGroup Use the Set-RoleGroup cmdlet to modify who can add or

remove members to or from management role groups or change
the name of the role group.

Add-RoleGroupMember Use the Add-RoleGroupMember cmdlet to add members to a
management role group.

Update-RoleGroupMember Use the Update-RoleGroupMember cmdlet to modify the
members of a management role group.

Now that we have looked at a few of the available cmdlets, let’s take a look at how to
use them.

Executing PowerShell cmdlets in the Office 365
Security & Compliance Center

Now that we are connected to the Office 365 Compliance Center, we can begin managing
our security and policies using PowerShell. Let’s start with the permissions.

Managing Permissions

To manage all the features and permissions of the Office 365 Security & Compliance
Center, you need to be in the Organization Management role. By default, in Office 365,
the Office 365 Global Administrators are assigned that role. If you are not an Office

365 Global Administrator, you might not be able to manage the Office 365 Security &
Compliance Center until you get permission from your Global Administrator. At the time
of writing this book, the Office 365 Compliance Center contains eight different roles,
which you can see in Table 6-4.

140

CHAPTER6 MANAGING THE OFFICE 365 SECURITY & COMPLIANCE CENTER

Table 6-4. Description of Roles in the Office 365 Compliance Center

Role Group

Description

Compliance
Administrator

eDiscovery
Manager

Organization
Management

Reviewer

Security
Administrator

Members can manage settings for device management, data-loss prevention,
reports, and preservation.

Members can perform searches and place holds on mailboxes, SharePoint Online
sites, and OneDrive for Business locations. Members can also create and manage
eDiscovery cases, add and remove members to a case, and create and edit content
searches associated with a case.

Members can control permissions for accessing features in the Security &
Compliance Center and also manage settings for device management, data-loss
prevention, reports, and preservation.

Members can only view the list of cases on the eDiscovery cases page in the
Security & Compliance Center. They can't create, open, or manage an eDiscovery
case. The primary purpose of this role group is to allow members to view and
access case data in Advanced eDiscovery.

Membership in this role group is synchronized across services and managed
centrally. This role group is not manageable through the administrator portals.
Members of this role group may include cross-service administrators as well as
external partner groups and Microsoft Support. By default, this group may not be
assigned any roles. However, it will be a member of the Security Administrators role
group and will inherit the capabilities of that role group.

To assign a role to someone in the organization, you need to use the Add-

RoleGroupMember cmdlet and specify the role as well as the member. For example, to
add John Smith with the username john@office365powershell. ca to the Compliance

Administrator group you would run the following cmdlet:

Add-RoleGroupMember -Identity "ComplianceAdministrator" -Member john

141

CHAPTER6 MANAGING THE OFFICE 365 SECURITY & COMPLIANCE CENTER

Tip Being a member of the Organization Management does not automatically
give you full control over the Office 365 Security & Compliance Center; you still
need to add yourself to the other roles, such as eDiscovery Manager, to have
access to everything. The Organization Management role allows you to give
yourself those roles.

If we want to view the members of a certain group, we can run the Get-Role
GroupMember cmdlet. For example, to view the members of the Compliance
Administrators group, we would run the cmdlet seen in Figure 6-3.

E¥ Administrator: Windows PowerShell - 0 X
PS C:\WINDOWS\system32> Get-RoleGroupMember -Identity ComplianceAdministrator A

Name RecipientType

John Smith Mailuser

PS C:\WINDOWS\system32>

< >

Figure 6-3. Get-RoleGroupMember

Now that we have looked at how to assign users into roles, let’s learn how to start and
view a compliance search from PowerShell.

Compliance Search

To start a new compliance search we need to use the New-ComplianceSearch cmdlet.
This cmdlet has a lot of options on what to search and where to search for it. You can find
some of the important parameters in Table 6-5.

142

CHAPTER6 MANAGING THE OFFICE 365 SECURITY & COMPLIANCE CENTER

Table 6-5. New-ComplianceSearch Parameters

Parameter Description

Name The Name parameter specifies the name of the compliance search.
If the value contains spaces, enclose the value in quotation marks.

Case The Case parameter specifies the name of an eDiscovery case that
the new compliance search will be associated with. If the value
contains spaces, enclose the value in quotation marks.

ContentMatchQuery The ContentMatchQuery parameter specifies a content search
filter.
This parameter uses a text search string or a query that’s formatted
by using the Keyword Query Language (KQL).

Exchangelocation The ExchangelLocation parameter specifies the mailboxes to
include. Valid values are:

e A mailbox

e A distribution group or mail-enabled security group
(all mailboxes that are currently members of the group)

e The value A1l for all mailboxes. You can only use this value
by itself.

To specify a mailbox or distribution group, you can use any value that
uniquely identifies it. For example:

e Name

e Distinguished name (DN)
e Email address

e GUID

PublicFolderLocation The PublicFolderLocation parameter specifies that you want to
include all public folders in the search. You use the value A11 for this
parameter.

SharePointLocation The SharePointLocation parameter specifies the SharePoint
Online sites to include. You identify the site by its URL value, or you
can use the value A1l to include all sites.

143

CHAPTER6 MANAGING THE OFFICE 365 SECURITY & COMPLIANCE CENTER

To learn how to use the New-ComplianceSearch cmdlet, let’s look at the following
business case. Your company has been working on a top-secret project—a PowerShell
for Office 365 book—in collaboration with a partner called Apress. The information
has been leaked, so you want to find all the items in both SharePoint documents and
Exchange emails where the words “Apress” and “PowerShell” are included. With the
previous requirements, the cmmdlet we would need to run to create the compliance
search would be:

New-ComplianceSearch ~
-Name "PowerShell Office 365 Book" °
-SharePointLocation ALl °
-Exchangelocation All °
-ContentMatchQuery "'Apress' AND ‘PowerShell'"

We would then need to run the Start-ComplianceSearch cmdlet to start this search,
as seen here:

Start-ComplianceSearch -Identity "PowerShell Office 365 Book"

While the compliance search is running, you can run the Get-ComplianceSearch
cmdlet to see if the search is done, as seen in Figure 6-4. The status should be either
“In Progress” or “Completed.”

Windows PowerShell - (m] x
PS C:\WINDOWS\system32> Get-ComplianceSearch -Identity "Powershell office 365 Book" A
Name RUNBY JobEndTime Status

Powershell office 365 Book Vlad Admin 7/24/2017 8:04:56 PM Completed

PS C:\WINDOWS\system32> _

< >

Figure 6-4. Viewing the status of a compliance search

144

CHAPTER6 MANAGING THE OFFICE 365 SECURITY & COMPLIANCE CENTER

Once the status is “Completed,” you can view the results either directly from
PowerShell or from the Office 365 Compliance Center. To view the results in PowerShell,
you can use the New-ComplianceSearchAction cmdlet and specify the name of the
compliance search, selecting only the results, as seen in this example:

New-ComplianceSearchAction -SearchName "PowerShell Office 365 Book"
-Preview | Select results |Format-Table -Wrap

Tip To run the New-ComplianceSearchAction cmdlet with the -Preview
switch, you need to have the eDiscovery Manager role. After granting yourself the
role, it might take 24 hours for the cmdlet to work.

As seen in Figure 6-5, the Office 365 Compliance Center has found a document in
SharePoint as well as an email in Exchange with those keywords.

EN naministratee Windows PowerShel = o ®

PS C:\WINDOWS\system32> New-ComplianceSearchAction -SearchName “"Powershell office 365 Book" -Preview | Select results | »
Format-Table -Wrap

Results

{Location: https://office36ipowershell.sharepoint.com/teams/IT; Sender: Vlad catrinescu;viad Admin; Subject:
Powershell office 365 book: ﬁpe docx; Size: 17536; Received Time: 7/24/2017 3:57:58 PM; Data Link:

ttps: ffoffice365powershe11 sl areqoﬁnt cnmfteamstT}New Document Library/Powershell office 365 book. docx,

Location: john@office3sSpowershell.ca; Sender: Vlad Admin; subject: Upcoming Book on Powershell; Type: Emaf1; Size:
11329; Received Time: 7,/24/2017 §:03: 23 PM; Data Link:
'datafn11fFLDR8:bf300b lef9-4ae7-bcée- 9e8ff58c449ffBATCHOOOO!MSG?OSfldG1 -8all-4778-8694-feb58da756cs. em],
hocat1en viad-admin@cffice36Spowershell.ca; Sender: Viad Admln Subject: Upcoming Book on PowerShell; Type Email;
§1ze 4764; Received Time: 7/24/2017 8:03:24 PM; Data Link

data,-"A'I'Ig’FLDkde?OZOSD d7c4-4d2f-b0do- OGeaSBflsSSeIBATCHOOOO,-"MSGSSZS?4?e fec0-459d-b02b-f8el7946aefl.eml}

Figure 6-5. Preview of a compliance search in PowerShell

While it’s pretty user friendly to create and start compliance searches in PowerShell,
consuming them is not. Viewing the results from within the Office 365 Compliance
Center allows us to better view their contents in a more user-friendly way, as seen in

Figure 6-6.

145

CHAPTER6 MANAGING THE OFFICE 365 SECURITY & COMPLIANCE CENTER

= a x

'—i Preview Search Results - Google Chrome

@ Secure | https:;//can01b.compliance.protection.cutlook.com/Ucc/Search/PreviewSearchResults.aspx?ActivityCorrelation|D=a6040959-43d6-06a6-efc7-16b42f

Preview Search Results
PowerShell Office 365 Book

Subject/Title Type Sende.. M. ¥
Upcoming Book on PowerShell Emall Viad... T7/24/.. From Viad Admin <viad-admin@office365powershell.ca>
Upcoming Book on PowerShell Email Viad.. T/24/. To John Smith <john@office365powershell.ca>
PowerShell Office 365 book doex Viad.. 7/24f. | Subject Upcaming Book on PowerShell

Send Date 7/24/2017 8:03:23 PM

UTC)

Download Original Item
Hey,

| heard Apress is going to release a new book on PowerShell for Office 365, did you
hear anything about that?

Thanks,

1 selected of 3 total

Close |

Figure 6-6. Preview of a compliance search in the Office 365 Compliance
Center

Now that we have learned how to do a compliance search, we will learn how to
search the Unified Audit Log.

146

CHAPTER6 MANAGING THE OFFICE 365 SECURITY & COMPLIANCE CENTER

Searching the Unified Audit Log

One of the benefits of Office 365 from a security and auditing point of view is the Unified
Audit Log. The Unified Audit Log allows administrators and security managers to view
the audit logs for all the services in Office 365 from a single location. While you can
interact with the Unified Audit log from the Office 365 Admin Center, PowerShell can
become useful in a variety of scenarios. To give an example, the Office 365 Unified
Audit Log will only keep information for 90 days, and then that information is deleted.
Multiple companies have regulations requiring them to keep this information for years,
so they need to find a way to save this information into another system, such as an SQL
database. Since PowerShell can interact with both Office 365 and Microsoft SQL Server, it
is easy to create a script that will copy the information from the Unified Log into an SQL
Server database.

The required cmdlets to interact with the Unified Audit Log are in the Exchange
Online module, so the first thing I will do is connect to Exchange Online by using the
following cmdlet:

$Session = New-PSSession -ConfigurationName Microsoft.Exchange
-ConnectionUri https://outlook.office365.com/powershell-liveid/ -Credential
$UserCredential -Authentication Basic -AllowRedirection

Import-PSSession $Session

The cmdlet we will use to perform searches is Search-UnifiedAuditlLog, and we can
view some of the most important parameters in Table 6-6.

147

CHAPTER6 MANAGING THE OFFICE 365 SECURITY & COMPLIANCE CENTER

Table 6-6. Search-UnifiedAuditLog Parameters

Parameter

Description

StartDate

EndDate

IPAddresses

Operations

The StartDate parameter specifies the start date of the date range.

Use the short date format that’s defined in the Regional Options settings on the
computer where you’re running the command. For example, if the computer is
configured to use the short date format mm/dd/yyyy, enter 09/01/2015 to specify
September 1, 2015.

You can enter the date only, or you can enter the date and time of day. If you enter
the date and time of day, enclose the value in quotation marks ("); for example,
""09/01/2015 5:00 PM".

If you don’t include a timestamp in the value for this parameter, the default
timestamp is 12:00 AM (midnight) on the specified date.

The EndDate parameter specifies the end date of the date range. Use the same
formatting rules as for the StartDate parameter.

The IPAddresses parameter filters the log entries by the specified IP addresses.
You specify multiple IP addresses separated by commas.

The Operations parameter filters the log entries by operation. The available
values for this parameter depend on the RecordType value. For a list of the
available values for this parameter, see “Search the Audit Log in the Office 365
Security & Compliance Center” at
https://support.office.com/en-us/article/Search-the-audit-log-in-the-Office-365-
Security-Compliance-Center-0d4d0f35-390b-4518-800e-0c7ec95e946¢?ui=
en-US&rs=en-US&ad=US#PickTab=Activities

148

(continued)

https://support.office.com/en-us/article/Search-the-audit-log-in-the-Office-365-Security-Compliance-Center-0d4d0f35-390b-4518-800e-0c7ec95e946c?ui=en-US&rs=en-US&ad=US#PickTab=Activities
https://support.office.com/en-us/article/Search-the-audit-log-in-the-Office-365-Security-Compliance-Center-0d4d0f35-390b-4518-800e-0c7ec95e946c?ui=en-US&rs=en-US&ad=US#PickTab=Activities
https://support.office.com/en-us/article/Search-the-audit-log-in-the-Office-365-Security-Compliance-Center-0d4d0f35-390b-4518-800e-0c7ec95e946c?ui=en-US&rs=en-US&ad=US#PickTab=Activities

CHAPTER6 MANAGING THE OFFICE 365 SECURITY & COMPLIANCE CENTER

Table 6-6. (continued)

Parameter Description

RecordType The RecordType parameter filters the log entries by record type. Valid values are:

AzureActiveDirectory
AzureActiveDirectoryAccountLogon
AzureActiveDirectoryStsLogon
ComplianceDLPExchange
ComplianceDLPSharePoint

CRM

DataCenterSecurityCmdlet
Discovery

ExchangeAdmin
ExchangeAggregatedOperation
Exchangeltem

ExchangeItemGroup
MicrosoftTeams
MicrosoftTeamsAddOns
MicrosoftTeamsSettingsOperation
OneDrive

PowerBIAudit
SecurityComplianceCenterEOPCmdlet
SharePoint
SharePointFileOperation
SharePointSharingOperation
SkypeForBusinessCmdlets
SkypeForBusinessPSTNUsage
SkypeForBusinessUsersBlocked
Sway

ThreatIntelligence

Yammer

ResultSize The ResultSize parameter specifies the maximum number of results to return.
The default value is 100, maximum is 5,000.

(continued)

149

CHAPTER6 MANAGING THE OFFICE 365 SECURITY & COMPLIANCE CENTER

Table 6-6. (continued)

Parameter Description

Sitelds The Sitelds parameter filters the log entries by site ID. You can specify multiple
values separated by commas.

Userlds The UserIds parameter filters the log entries by the ID of the user who performed
the action.

Tip To view all the parameters of the Search-UnifiedAuditLog cmdlet,
navigate to the cmdlet page on TechNet:
https://technet.microsoft.com/en-us/library/
mt238501(v=exchg.160).aspx

Now that we know the parameters, let’s see how we can use them. If I wanted to view all
the logs between October 1, 2017 and October 12, 2017, I would run the following cmdlet:

Search-UnifiedAuditlog -StartDate 10/1/2017 -EndDate 10/12/2017

The result shown in Figure 6-7 will return all the entries and their properties, with
most of the details’ being found in the AuditData parameter. You can optimize your
scripts to return the information that you need from that parameter.

.}

RunspaceId : c65c6659-c50a-4435-9f2f-ble2allace22
RecordType : SharePoint
CreationDate : 10/11/2017 2:55:04

UserIds : vlad- adm1n@off1CGSGSDOWﬁrsh811 ca
Operations : PageViewed
AuditData HIES Creat1onTﬁme' '2017 10-11T02:55:04","1d":"280b8%ec-5ea7- 4564 6763-08d510537986", '0perat1on "Pageviewe

d", "or an1zat1on1d 545:04df 2411~ 4d58 93?8 ?ec?BeBeBbSe , "RecordType" 4& UserKey 1 Oh. f|member5h1p|1
003bFF aZc225f0@11u2 com”,"UserType":0,"version':1, wnrk1oad“ "SharePn1nt . "ClientIP”:"66.130.220.154
ObjectId":"https: >f\foff1cessspowersheil sharepoﬂnt com',/","UserId" v]ad-adm1n@off1:assspawershe11 ca '
"Customun1queld" alse,"EventSource":"SharePoint","ItemType": "Page", 'L1stId“ "aBe5182d-ffcf-4085-9ccc-be
2b00e2e099" L1stItemUnﬁquaId "49728dfd-227d- 4239 h??l-?2c95555e0e4 "Site":"06909703-c2f0-4b47 -b460-9F
233elecbad”, "uUseragent": "Mozi 1a\f$ 0 (windows NT 10 0; Winb4; x64) ﬁpp1ewebK1t\f537 36 (KHTML, Tike
Gecko) chrome\fsl 0.3163.100 safari\/537.36", "WebId" "39c5bef3-2ce6-47fe-884c-168720d68Fad" '}

ResultIndex : 10

rResultCount : 25

Identity : 280b89%ec-5ea7-4564-6763-08d51053798¢6

Isvalid : True

objectstate : Unchanged

RunspaceId : cB5c6659-c50a-4435-9f2f-ble2allace2?

RecordType AzureAct1veD1rectary

CreationDate : 10!11}201? 2:53:57

UserIds 1 39624784-6¢cbe-4a60- afbe-9f46d10fdb2?

Operations : Update user,

AuditData : {"CreationTime":"2017-10-11T02:53:57","Id": "6aec6664-1903-4b23~ 8fcb-f64839f?10dc "Operation":"Update us
er.", 0rnan1zat1on1d" "545c04df-2411~ 4d53- 9378 7ec79e9e6b8e", "RecordType"”:8§, “Resuitstatus“ "success" "us
erkey":"Not Ava1]ah1e P UsarType :6,"version":1,"Workload": AzureAct1vaD1rsct0ry ,"ObjectId": test123@of
f1:easipowershe11 ca","UserId": 39624?84 Gche- 4a60-afbe 9f45d10fdb2? N AzureAct1veD1rectoryEventType :1,
‘Extendedpraqerties' [{'Name' TargetId UserType","value"”:"Member"}], 'nctor s[{"1D": skyperorsusinesskem
otePowershel "Type":1}, "39624?84 Gche- 4a60 afbe- 9f46d10fdh2? "Type':4},{" ID":"ServicePrincipal_
5f44c125 ~bdSF-4574-bach-3 99adb09ff7" Type 2; nctorCnntextId "54 Scﬁddf 2411-4d58-9378-Tec79e9e6bge”

"InterSystemsId": anS?Ocﬁ f229-43e3-a: d=-64c SedaeEA IntraSystemId "ea7a2041-d10d-4d0c-908a-031c8c
86Fafe” “Target": [{“ID" User f36a425b-f71a-4c0d- 3??c-6bc218?0f3cb' 'Type" 2} {"ID":"testl23@office365p0
warshe11 ca","Type":5},{"ID": "1003BFFDAS4E99EE", "Type":3}], Targetcontaxt:d "545c04df-2411-4d58-9378-7e

<

Figure 6-7. Search-UnifiedAuditLog Filtered by date
150

https://technet.microsoft.com/en-us/library/mt238501(v=exchg.160).aspx
https://technet.microsoft.com/en-us/library/mt238501(v=exchg.160).aspx

CHAPTER6 MANAGING THE OFFICE 365 SECURITY & COMPLIANCE CENTER

If I wanted to do a search that was more specific, I could, for example, search for
what actions the user vlad-admin@office365PowerShell.ca did in SharePoint with the
following cmdlet:

Search-UnifiedAuditLog -StartDate 10/1/2017 -EndDate 10/12/2017 -RecordType
SharePoint -UserIds vlad-admin@office365powershell.ca

I could also use the ObjectId parameter to discover what happened to a certain
SharePoint document, for example. In the following cmdlet, I am searching on all
activities between October 1 and October 12, 2017 on the AUSTRALIA. docx document:

Search-UnifiedAuditlog -StartDate 10/1/2017 -EndDate 10/12/2017 -ObjectIDs
"https://office365powershell.sharepoint.com/teams/HR/Shared Documents/
AUSTRALIA.docx"

As you can see in Figure 6-8, the account vlad-admin@office365powershell.ca
uploaded the file on October 11, and that is the only activity that happened on the
document so far.

EX Adenirastrator. Windews PowerShell - o ®

P5s c:\scripts> search-unifiedauditLog -startpate 10/1/2017 -EndDate 10/12/2017 -ObjectIDs "https://office3eSpowershell.s ~
harepoint.com/teams/HR/Shared Documents/AUSTRALIA.docx"

RunspaceId : c65c6659-c50a-4435-9f2f-bleZallace22

IRecorQType : SharePointFileOperation

[creationDate : 10/11/2017 2:55:41 AM

UserIds : vlad-admin@office365powershell.ca

Operations : FileUploaded

uditData : {"CreationTime":"2017-10-11T02:55:41","Id":"1lcc5dd62-c92e-499e-e421-08d510538F7d", "Operation": "FileUploa
ded“,"organizationld":"545c04df-2411-4d58-93?8-?ec?9e9e6bSe“,“RecordType“:S,“UserKey“:“i:Oh.f]membership
| 1003bffda2c225f0@1ive.com”, "UserType":0, "version":1, "workload": "sharepPoint”,"ClientIP":"66.130,220,154"
,“obJectId":“https;\f\foff1ce365powershe11,sharepo1nt.com\fteams\fHﬁ\fshared Documents’ /AUSTRALIA.docx",
"UserId":"vlad-admin@office365powershell.ca”, "EventSource”:"sharePoint”, "ItemType":"File", "ListId":"dcf0
eela-f4ae-4160-86b4-70642bda2a. 0”."ListItamUniqueId“:“bs29cOc2-c9c0-4b?b-ac0f-614150c21f96”,”Sﬁta“:“Sadf

4987 -95ae-402c-964b-4d469b4024bF" , "Useragent”: "Moz111a\ /5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit\/537.36 (KHTML, 1ike Gecko) Chrome\/61.0.3163.100 Safari\/537.36", "webId":"449ea068-422f-443

4-b745-2129a732e4f4", "SourceFileExtension”: "docx”, "siteur1": "https:\/\/office365powershell.sharepoint.co

cesulting mh/teamsh /HR\ /", "SourceFileName": "AUSTRALIA.docx", "Sourcerelativeur1”:"shared Documents"}

ResultIndex

ResultCount : 1
Identity : lecSdd62-c92e-499%e-e421-08d510538F7d

Isvalid : True
objectstate : Unchanged

Figure 6-8. Searching the Unified Audit Log for activities on a certain document

As you can see, the Unified Audit Log is really a powerful tool for security
administrators to be able to view auditing logs across all Office 365 services. By using
PowerShell, you can get those results and export or transfer them to another system that
will store them for longer than the 90 days they are stored in Office 365.

151

CHAPTER6 MANAGING THE OFFICE 365 SECURITY & COMPLIANCE CENTER

Conclusion

In this module, we have learned how to manage the Office 365 Compliance Center
by using PowerShell. We first looked at the requirements and how to connect to the
Compliance Center, and we then looked at the available cmdlets.

We also learned the different administrative roles that we can use to grant
permissions to our users as well as how to assign them via PowerShell. Lastly, we looked
at how to create, start, and view the results of a compliance search by using PowerShell.

In the next chapter, we will learn how to manage Office 365 Groups using PowerShell.

152

CHAPTER 7

Managing Office 365
Groups

Office 365 Groups connect Office 365 services in a single place, increasing user
adoption and collaboration in the enterprise. While they have been very popular
among users, they can be a challenge from a governance standpoint for most Office 365
administrators.

In this chapter, we will learn what modules are needed to manage Office 365
Groups, as well as how to do basic operations on them. We will then learn how to create
advanced rules for who can create Office 365 Groups, naming conventions, and more.

PowerShell Modules to Manage Office 365 Groups

Since Office 365 Groups span multiple services in Office 365, there are multiple modules
from which we can manage them. There is no specific module for Office 365 Groups; the
two modules that we will have to connect to are the Exchange Online module we learned
about in Chapter 4 and the Azure Active Directory PowerShell for Graph module we
used in Chapter 2.

Note In order to allow customers to test cmdlets faster and get more feedback,
Microsoft publishes two versions of the Azure Active Directory PowerShell for
Graph modules: General Availability Release and Public Preview Release. At the
time of writing this book, some of the Office 365 Group cmdlets were only available
in the Public Preview Release module, but | encourage you to verify if those are
now in the General Availability module.

153
© Vlad Catrinescu 2018

V. Catrinescu, Essential PowerShell for Office 365, https://doi.org/10.1007/978-1-4842-3129-6_7

CHAPTER 7 MANAGING OFFICE 365 GROUPS

To install the Azure Active Directory PowerShell for Graph-Public Preview Release
module from the PowerShell Gallery, you will first need to have the same prerequisites
discussed in Chapter 2, and then run the following cmdlet:

Install-Module -Name AzureADPreview -AllowClobber

Once the AzureADPreview cmdlet is installed, run the following cmdlets to connect
to both Azure Active Directory and Exchange Online:

$cred = Get-Credential

$Session = New-PSSession -ConfigurationName Microsoft.Exchange
-ConnectionUri https://outlook.office365.com/powershell-liveid/ -Credential
$cred -Authentication Basic -AllowRedirection

Import-PSSession $Session

Import-Module AzureADPreview
Connect-AzureAD -Credential $cred

Now that you have the Preview version of the Azure AD module and are connected
to both Azure Active Directory and Exchange Online, you can start managing Office 365
Groups.

Basic Operations

Let’s start by learning how to perform basic operations on Office 365 Groups, such as
creating, updating, and deleting them! While one of the basic operations would be
viewing Office 365 Groups, we will cover that more in detail in the “Office 365 Group
Reporting” section later in this chapter.

Creating an Office 365 Group

To create a group, use the New-UnifiedGroup PowerShell cmdlet, part of the Exchange
Online module. In Table 7-1, you can find some of the most important parameters of the
New-UnifiedGroup cmdlet.

154

CHAPTER 7 MANAGING OFFICE 365 GROUPS

Table 7-1. Parameters of the New-UnifiedGroup cmdlet

Parameter

Description

Alias

AccessType

AlwaysSubscribeMembers
ToCalendarEvents

AutoSubscribeNewMembers

The Alias parameter specifies the Exchange alias (also
known as the mail nickname) for the Office 365 Group. This
value identifies the recipient as a mail-enabled object and
shouldn’t be confused with multiple email addresses for the
same recipient (also known as proxy addresses). A recipient
can have only one Alias value.

The AccessType parameter specifies the privacy type for

the Office 365 Group. Valid values are:

e Public—The group content and conversations are
available to everyone, and anyone can join the group
without approval from a group owner. This is the default
value.

e Private—The group content and conversations are
only available to members of the group, and joining the
group requires approval from a group owner.

You can change the privacy type at any point in the lifecycle

of the group.

The AlwaysSubscribeMembersToCalendarEvents
switch controls the default subscription settings of new
members that are added to the Office 365 Group.

If you use this switch without a value, all future members
that are added to the group will have their subscriptions set
to ReplyAndEvents.

If you use this exact syntax: -AlwaysSubscribeMember
sToCalendarEvents:$false, all future members that
are added to the group will have their subscriptions set to
ReplyOnly.

The AutoSubscribeNewMembers switch specifies
whether to automatically subscribe new members added to
the Office 365 Group to conversations and calendar events.
You don’t need to specify a value with this switch.

(continued)

155

CHAPTER 7 MANAGING OFFICE 365 GROUPS

Table 7-1. (continued)

Parameter Description

DisplayName The DisplayName parameter specifies the name of
the Office 365 Group. The display name is visible in the
Exchange Admin Center, address lists, and Outlook.
For Office 365 Groups, the DisplayName value is used
in the unique Name property. However, because the
DisplayName value doesn’t need to be unique, the
DisplayName value is appended with an underscore
character (_) and a short GUID value when it’s used for the
Name property.

HiddenGroupMembershipEnabled The HiddenGroupMembershipEnabled switch specifies
whether to hide the members of the Office 365 Group from
users who aren’t members of the group.

Language The Language parameter specifies the language
preference for the Office 365 Group.

Note To view all the parameters of the New-UnifiedGroup cmdlet, navigate to
the TechNet page of the cmdlet.

To create a public group with the name Office 365 Support Community with the email
0365community@office365powershell.ca you would run the following cmdlet:

New-UnifiedGroup -DisplayName "Office 365 Support Community" -Alias
0365community -AccessType Public

The group should only take a few seconds to create, and you will see a confirmation
on the screen similar to that shown in Figure 7-1.

156

CHAPTER 7 MANAGING OFFICE 365 GROUPS

-]
P? C:\WINDOWS'\system32> New-UnifiedGroup -DisplayName "office 365 Support Community" =-Alias o365community -AccessType Pu-~
blic

Name Alias ServerName AccessType

office 365 Support Com... o3B65community yqbprol0lmbl442 Public

PS C:\WINDOWS\5ystem32>

Figure 7-1. Creating a public group

Since this is a public group, every user could find the group from their Outlook
Online and join it, as seen in Figure 7-2.

IEE . 4 [" hal
e 0365community@office365powershell.ca roicgop on () tmenbe ®
Conversations e

Files Calendar

A~ Folder
Inbox 8 @ MNew -‘? Reply all => Forward
Sent ltems Seen conversations
Drates Office 365 Support Community The new Office 365 Support Comm... s v
Mare The new Cffice 365 Suppart Community gr 58 Office 365 Suppert Community:
Welcome to the Office 365 Support Community group....
~ Groups i Office 365 Support Community W
o Office 365 Support C Tha 10/19/2017 9:58 AM
= e Welcome to the Office 365 Support
Community group.
Use the group to share ideas, files, and important dates.
¥ N mane
» Lice
= I s M

Figure 7-2. Viewing an Office 365 public group in the browser

Now, if you wanted to create a new private group called 2019 Reorganization with an
email address of 2019reorg@office365powershell.ca you would run the following cmdlet:

New-UnifiedGroup -DisplayName "2019 Reorganization" -Alias 2019reorg
-AccessType Private

157

CHAPTER 7 MANAGING OFFICE 365 GROUPS

Something that you will have to be aware of is that private means different things
to different people, and some Office 365 administrators expect that once they create
a private group, members that are not inside the group cannot find it. However, with
Office 365 Groups, if a group is private and no additional configurations are made, every
member of your organization can find the group, as seen in Figure 7-3.

@ Create a group

Active groups All groups

2019 x O

e 2019 Reorganization

Figure 7-3. Searching for a private Office 365 Group

Furthermore, as seen in Figure 7-4, users who are not members of the group can also

see who is in that group.

Outlook
Search 2019 Reorganization JO e 2019reorg@office365powershell. | i £
Prreate group Request to j2in : member &2
A~ Folders +
Inbax 8 =
Sent ltems
Drafts
Mere
» Groups M
° 2019reorg@office36Z
2 Discover This group is private. To view its This group is private. To view its
messages, request to join the messages, request to join the group.
group.

Figure 7-4. Non-members can also view who the members are of a private Office
365 Group

158

CHAPTER 7 MANAGING OFFICE 365 GROUPS

Luckily, with PowerShell you are able to both hide the group from the Discover
tab as well as hide the member list if someone accidentally gets a direct link to the
group. The bad news, however, is that hiding the membership of the group can only
be done at group creation—not afterward. To create a new private group in which
non-members cannot see the current members, you would need to specify the
-HiddenGroupMembershipEnabled switch, as seen in the following example:

New-UnifiedGroup -DisplayName "Secret Reorganization" -Alias SecretReorg
-AccessType Private -HiddenGroupMembershipEnabled

The result, seen in Figure 7-5, is that while for now users can find the group, they do
not see the members list at the top right or the “Request to join” button.

Outlook #HO® A ? John St (g
R R e secretreorg@office365powershell.ca

~ Folders

Search

Inbox 8 E) New & >

Sent ltems

Drafts
Maore
A Groups
° secretreorg @office3¢
This group is private. To view its This group is private. To view its
= B messages, request to join the messages, request to join the group.
group.

Figure 7-5. Olffice 365 Group with hidden membership

At this point, users can still find the group in the Discover tab of Outlook Online, so
if you wanted to also hide it from there you would need to modify the group properties,
since the required parameter is not available at group creation. Let’s learn how to modify
a group’s properties after the group is created.

Updating Office 365 Groups

Once a group is created, to change its properties you need to use the Set-UnifiedGroup
cmdlet. This cmdlet not only allows you to change some of the properties you specified
when creating the group, such as the alias, email address, and display name, but also

159

CHAPTER 7 MANAGING OFFICE 365 GROUPS

allows you to modify new properties that you cannot set directly when creating the
group. Some of those new properties can be seen in Table 7-2.

Table 7-2. Parameters of the Set-UnifiedGroup cmdlet

Parameter Description

CalendarMemberReadOnly The CalendarMemberReadOnly switch specifies
whether to set read-only calendar permissions for
members of the group.

ConnectorsEnabled ConnectorsEnabled specifies whether to enable the
ability to use connectors for the Office 365 Group.

HiddenFromAddressListsEnabled HiddenFromAddressListsEnabled specifies
whether the Office 365 Group appears in the Global
Address List (GAL) and other address lists in your
organization.

MailTip The MailTip parameter specifies the custom MailTip
text for this recipient. The MailTip is shown to senders
when they start drafting an email message to this
recipient. If the value contains spaces, enclose the
value in quotation marks (").

UnifiedGrouphWelcomeMessageEnabled The UnifiedGroupWelcomeMessageEnabled
switch specifies whether to enable or disable sending
system-generated welcome messages to users who
are added as members to the Office 365 Group.

Note To view all the parameters of the Set-UnifiedGroup cmdlet, navigate to
the TechNet page of the cmdlet.

To continue what was started in the previous section, to hide an Office 365 Group
from the Global Address List and from the Discover tab in Outlook Online, you would
run the following cmdlet:

Set-UnifiedGroup -Identity SecretReorg -HiddenFromAddressListsEnabled:$true

160

CHAPTER 7 MANAGING OFFICE 365 GROUPS

Another very useful parameter to set for your groups is the MailTip. For example, my
organization has an Office 365 Group for asking HR staff questions about policies. You
might want to set up a MailTip reminding users not to share any private information in
that group. This can be done using the following cmdlet:

Set-UnifiedGroup -Identity HRPublic -MailTip "This community is public to
all company, please do not share any private information"

Whenever someone sends a message to that group, the MailTip will be visible at the
top of their Outlook or Outlook Online message, as seen in Figure 7-6.

® A B 2 John Smith .%

= Send B Attach Discard oo+ 0

H HR Public Questions : This community is public to all company, please do not share any private information

To + o HR Public Questions X Bee

Ce

Figure 7-6. Office 365 Group MailTip

Now that we have learned how to modify the properties of an Office 365 Group, let’s
learn how to delete an Office 365 Group.

Deleting an Office 365 Group

Removing an Office 365 Group is done with the Remove-UnifiedGroup PowerShell
cmdlet; you must specify the Office 365 Group you want to remove. You can use any of
the values that uniquely identify the Office 365 Group, such as the following:

¢ Name

o Display name
161

CHAPTER 7 MANAGING OFFICE 365 GROUPS

e Alias
o Email address
¢« GUID

To remove the HRPublic group, you would run the following cmdlet:
Remove-UnifiedGroup -Identity HRPublic

By default, you will have to confirm that you want to delete the group, as well as
any connected services inside that group, such as the group calendar, SharePoint site,
Planner contents, and so on! This confirmation, seen in Figure 7-7, can be useful, but it
can also be cumbersome when deleting multiple Office 365 Groups.

| EX Ademrustrator Windews PowerShell - (u] »
PS C:'WINDOWS'\system32> Remove-UnifiedGroup -Identity HRPublic

confirm

Are you sure gou want to perform this action?) . : . .
Removing mailbox "HRPublic" will remove the Active Directory user object and mark the mailbox and the archive (if
present) in the database for removal.

[¥] ves [A] ves to A11 [N] No [L] No to a1l [?] Help (default is "v"): _

Figure 7-7. Confirmation before deleting an Olffice 365 Group

To skip the confirmation, you can use the -Confirm parameter as seen in the
following example:

Remove-UnifiedGroup -Identity o365community -Confirm:$false

This will remove the Office 365 Group immediately, without requiring the person
running the PowerShell cmdlet to reconfirm.

But what happens if you or a user deleted an Office 365 Group by mistake? Let’s learn
how to restore deleted groups.

Restoring a Deleted Office 365 Group

When an Office 365 Group is deleted, Microsoft keeps it for 30 days in a soft-deleted
state, meaning you have 30 days to restore it if you need to. To view Office 365 Groups
that have been deleted, use the Get-AzureADMSDeletedGroup, part of the AzureAD
module. The result, seen in Figure 7-8, is the list of groups that are in a soft-deleted state.

162

CHAPTER 7 MANAGING OFFICE 365 GROUPS

EX administrator: Windows PowerShell - o x
PS C:\WINDOWS\system32> Get-AzureADMSDeletedGroup .
Id DisplayName Description

102c865c-af54-4cda-bb05-2c988b5adfee Reorg 2018

34061la2b-dfcb-400e-bdad-3cca7656ded8 Private ReOrg

38a721a5-e95d-4b3c-9026-2c1la5d8751db office 365 Support Community
50eb9le5-924a-4f19-8140-ed15¢f756441 IgnitePrivate

78bb5639-2ea7-4eaa-b0f2-783611598f54 2018 Reorganization

ab6daa502-24c6-4dfb-9dbe-502b96ac5e65 IgnitePrivate

a77e298f-fcaa-4805-9cb6-bc5644508813 Ignite Test Ignite Test
bc416978-4df7-4d5e-80e2-c444b0394b06 IgnitePrivate

bddb3dcf-25c1-46ba-8878-d906c30db5ad4 HR Public Questions

fofa77fd-f0dd-4e5c-9fda-c3b73a755a2d PowerShell for office 365 Book PowerShell for office 365 Book

PS5 C:\WINDOWS\system32> _

Figure 7-8. Office 365 Groups in a soft-deleted state
Something that can also be useful is viewing the time the group was deleted, which is

done by viewing the DeletedDateTime property, as seen here:

Get-AzureADMSDeletedGroup | Select Id, DisplayName, DeletedDateTime | Sort-
Object DeletedDateTime

By including the DeletedDate Time directly in the query, you can easily calculate
when the group will be fully deleted, as seen in Figure 7-9.

¥ Adenraitrator. Windows PowerShell (8] x]
PS C:\WINDOWS\system32> Get-AzureADMSDeletedGroup | Select Id, DisplayName, DeletedDateTime | Sort-Object DeletedDateTim-
e

Id DisplayName DeletedDateTime

78bb5639-2ea7-4eaa-b0f2-783611598f54 2018 neer nization 9/23/2017 7:58:08 PM
102c865c-af54-4cda-bb05-2c988b5adfee Reorg 2 9/23/2017 9:24:04 PM
a6daas02-24c6-4dfb-9dbe-502b9%6ac5e6s Iqmt-Prwatc 9/23/2017 9:24:17 PM
a77e298f -fcaa-4805-9cb6-bc5644508813 Ignite Test 9/23/2017 9:24:44 PM
S0eb9le5-924a-4f19-8140-ed15cf756441 IgnitePrivate 9/28/2017 12:01:05 PM
34061a2b-dfcb-400e-bdad-3cca7656ded8 Private ReOrg 9/28/2017 12:01:22 PM
bcd16978-4df7-4d5e-80e2-c444b0394b06 IgnitePrivate) 10/19/2017 7:17:38 PM
fofa77fd-f0dd-4e5c-9fda-c3b73a755a2d Powershell for Office 365 Book 10/19/2017 7:17:52 PM
bddb3dcf-25¢c1-46ba-8878-d906c30dbSa4 HR Public Questions 10/19/2017 9:09:25 PM

38a721a5-e95d-4b3c-9026-2c1a5d8751db office 365 Support Community 10/19/2017 9:10:08 PM

PS C:\WINDOWS\system32> _

Figure 7-9. Viewing when an Office 365 Group was deleted

Now that you can view the deleted groups, to restore a certain group you will have to
use the Restore-AzureADMSDeletedDirectoryObject PowerShell cmdlet and give the
ID of the group you want to restore. To restore the HR Public Questions group, you would
run the following cmdlet:

$0365Group = Get-AzureADMSDeletedGroup | Where-Object {$_.DisplayName -eq
"HR Public Questions"}
Restore-AzureADMSDeletedDirectoryObject -Id $0365Group.Id

163

CHAPTER 7 MANAGING OFFICE 365 GROUPS

Note It might take up to 24 hours for the contents of the group to be fully
restored.

If you want to permanently delete a group without waiting for the 30-day soft-
deleted period, you can force-delete it with the Remove-AzureADMSDeletedDirector
yObject cmdlet, in which you must specify the ID of the Office 365 Group you want
to permanently delete. For example, to permanently delete the Office 365 Support
Community group, you would run the following cmdlet:

$0365Group = Get-AzureADMSDeletedGroup | Where-Object {$_.DisplayName -eq
"Office 365 Support Community"}

Remove-AzureADMSDeletedDirectoryObject -Id $0365Group.Id

You can verify if the group was successfully deleted by running the
Get-AzureADMSDeletedGroup cmdlet. As you can see in Figure 7-10, both the group you
have restored and the one you have permanently deleted are not in the list anymore.

B o v
PS C:\WINDOWS\system32> Get-AzureADMSDeletedGroup ~

Id DisplayName Description
102c865c-af54-4cda-bb05-2¢c988b5a4fee Reorg 2018

34061la2b-dfcb-400e-bdad4-3cca7656deds Private ReOrg

50eb91e5-924a-4f19-8140-ed15cf756441 IgnitePrivate

78bb5639-2ea7-4eaa-b0f2-783611598f54 2018 Reorganization

abdaa502-24c6-4dfb-9dbe-502b96ac5e65 IgnitePrivate

a77e298f-fcaa-4805-9chb6-bc5644508813 Ignite Test Ignite Test
bc416978-4df7-4d5e-80e2-c444b0394b06 IgnitePrivate

fofa77fd-fodd-4e5c-9fda-c3b73a755a2d PowerShell for Office 365 Book PowerShell for office 365 Book

PS C:\WINDOWS\system32>

< >

Figure 7-10. List of deleted Office 365 Groups

Now that you have learned how to create, update, and delete Office 365 Groups, let’s
look at how to manage users in an Office 365 Group.

164

CHAPTER 7 MANAGING OFFICE 365 GROUPS

Managing the Members of an Office 365 Group

Another very important aspect of managing Office 365 Groups is, of course, the users
inside. With Office 365 Groups, membership information exists as a link between the
group and the user accounts of its members. The three types of membership can be seen
in Table 7-3. An Office 365 user can be present in one or more of these membership levels.

Table 7-3. Office 365 Group Membership Levels

Membership Level Description

Owners Group Owners are the administrators of the group. They can add or remove
members, change the group name or description, and delete conversations
inside the group.

Members Group Members are users that will collaborate inside the Office 365 Group.
They can create new conversations, add items inside the calendar (unless this
setting is changed by an admin), and upload files to the group. They are also
allowed to add new members in a public group. All Owners are also Members
of the Office 365 Group, from a technical point of view.

Subscribers A Subscriber is not a permission level, but simply a subset of the members
who opted in to receive copies of the conversations and group calendar invites
via email.

Managing the membership inside an Office 365 Group can be a little different than
doing so in other applications you are currently managing. To add a user as an owner,
you will first need to add that user as a member inside the group, and then you can add
them as an owner. If you want completely remove the owner of a group, you will have to
first remove them as an owner and then remove them as a member.

Viewing Office 365 Group Members

To view the current members of a group, you need to use the Get-UnifiedGrouplLinks
cmdlet, specifying the identity of the group and the type of membership level you want
to view. For example, to view the members of the HR Public Questions group created
earlier, you would run the following cmdlet:

Get-UnifiedGrouplLinks -Identity "HR Public Questions" -LinkType Members

165

CHAPTER 7 MANAGING OFFICE 365 GROUPS

This cmdlet will the show the user alias of every user that is a member of the Office
365 Group, as seen in Figure 7-11.

A = W, P, rhall — D x
PS C:\WINDOWS\system32> Get-UnifiedGroupLinks -Identity "HR Public Questions" -LinkType Members =~

Name RecipientType

Vladadmin UserMailbox
Jeff _ UserMailbox
FirstName.wWright UserMailbox

PS C:\WINDOWS\system32>

<

Figure 7-11. Members of an Office 365 Group

You can also display multiple properties of the users directly from their profile. The
following PowerShell cmdlet will return the owners of the HR Public Questions group as
well as some properties about those users:

Get-UnifiedGroupLinks -Identity "HR Public Questions" -LinkType Owners |
Select DisplayName, WindowslLiveId, Department

You can view the results in Figure 7-12.

EX Adeninistrator: Windews PewerShell - o x

PS C:\WINDOWS\system32> Get-UnifiedGroupLinks -Identity "HR Public Questions" -LinkType Owners | Select DisplayName, Win-~
dowsLiveld, Department

DisplayName wWindowsLiveID Department

Vlad Admin vlad-admin@office365powershell.ca IT)
vanessa Lee vanessa@office365powershell.ca Marketing

PS C:\WINDOWS\system32> _

Figure 7-12. Viewing the owners of an Office 365 Group as well as their properties

Now that you know how to view members, let’s take a look at how to add them.

166

CHAPTER 7 MANAGING OFFICE 365 GROUPS

Adding Users to an Office 365 Group

Adding users to an Office 365 Group is done with the Add-UnifiedGroupLinks cmdlet;
you must specify the group you want to add users to, as well as the membership level you
want to add them to. If you wanted to add Jeff and Vanessa as members to your group,
you would run the following cmdlet:

Add-UnifiedGrouplLinks -Identity "HRPublic" -LinkType Members -Links Jeff@
office365powershell.ca,vanessa@office365powershell.ca

If you wanted to add Vanessa as an owner afterward, you would run the following
cmdlet:

Add-UnifiedGrouplLinks -Identity "HRPublic" -LinkType Owners -Links vanessa@
office365powershell.ca

Remember that you cannot add someone with the owner or subscriber membership
level until you add them as a member. If you try to, PowerShell will give you an error
similar to that shown in Figure 7-13.

| EN Adeniristeator. Windows PowerShell - (=] *]
PS C:\WINDOWS\System32> Add-unifiedGroupLinks -Identity "HRPublic" -LinkType Owner -Links jonathan@office36Spowershell.c-

a
only Members can be Owners of a group. Please add 'Jonathan' first as members before adding them as owners.
+ CategoryInfo : NotSpecified: (HR Public Questions_acc9afdfed:aDObjectId) [Add-UnifiedGroupLinks], Recip
ientTaskException
+ FullyqQualifiedErrorId : [Server=YQBPROL01IMB1442,RequestId=a394175e-d5e5-4d06-9daa-9491ceacla3? , Timestamp=10/20/2
017 10:53:22 PM] [FailurecCategory=Cmdlet-RecipientTaskException] CFEA4248B,Microsoft.Exchange.Management.RecipientT
asks.AddunifiedGroupLinks
+ PSComputerName : outlook.office365.com

PS C:I\WINDOWS\system32> _

Figure 7-13. Only members can be owners of a group

Now that you have learned how to add users, let’s learn how to remove users from an
Office 365 Group.

Removing Users from an Office 365 Group

Removing users from an Office 365 Group is done with the Remove-UnifiedGrouplLinks
PowerShell cmdlet, in which you must specify the identity of the group from which you
want to remove users, the users you want to remove, and what type of membership you
want to remove them from. Remember that you cannot directly completely remove an
owner from the group; you have to first remove them as an owner, and then as a member.

167

CHAPTER 7 MANAGING OFFICE 365 GROUPS

If you wanted to remove Vanessa as an owner of the group, you would run the
following cmdlet:

Remove-UnifiedGrouplinks -Identity "HRPublic" -LinkType Owners -Links
vanessa@office365powershell.ca -Confirm:$False

At this point, Vanessa is still a member of this Office 365 Group and would still have
contribute rights on the group. If you wanted to remove Vanessa from the group as a
member as well, you would run the following cmdlet:

Remove-UnifiedGrouplinks -Identity "HRPublic" -LinkType Members -Links
vanessa@office365powershell.ca -Confirm:$False

As you have seen so far, doing basic operations on a group and managing its
membership with PowerShell is pretty straightforward. But with Office 365 Groups’ being
so open by default, how do you avoid groups chaos inside your organization? Luckily,
Microsoft has implemented multiple governance mechanisms that allow you to control
and manage Office 365 Groups. Let’s take a look at how you can implement an Office 365

Group governance inside your tenant.

Office 365 Group Governance

Implementing a governance in Office 365 can be a hard thing for the IT department.

On one side, you want to make sure that your users stay secure, do not put sensitive
information in the wrong place, and use Office 365 properly. On the other side, you do
not want to block users from being able to create and collaborate by themselves without
having to wait for IT for every small request they have. With Office 365 Groups and the
AzureAD PowerShell module, Microsoft has set up a few control mechanisms that allow
you to implement some controls, while still allowing your users to be productive and
dynamic. Let’s take a look at some of those settings.

Note Most of the settings that we will cover in this section will require an Azure
Active Directory Premium P1 license for every unique user that is a member of an
Office 365 Group. Since Microsoft licensing changes often, make sure to check
with your organization’s licensing expert or partner to get the latest information.

168

CHAPTER 7 MANAGING OFFICE 365 GROUPS

Enforcing a Naming Policy and Blocked Words

First, we will cover enforcing a naming policy for a group, as well as setting a list of
blocked words. For example, a user would not be able to create a group with sensitive
words inside of the name.

A naming convention allows you to bring consistency to how your Office 365
Groups are named, as well as allows you to easily identify the owners of the group and
its geographic location by pulling information directly from the creator’s Azure AD user
profile. To give you an example, a naming convention could be:

GRP_[Department] [GroupName] [CountryOrRegion]

If for example, Vlad Catrinescu is from Canada, in the marketing department, and
wants to create a group with the name SharePoint Campaign, the final group name
would be: GRP_Marketing SharePoint Campaign_Canada.

The full list of user profile properties we can use is as follows:

o [Department]
o [Company]

[Office]
[StateOrProvince]
[CountryOrRegion]
[

Title]

Tip The total length of the prefixes and suffixes is restricted to 53 characters.

Blocked words allow you to prevent users from including certain words like Payroll,
CEO, CFO, and so forth when creating Office 365 Groups. The entire Office 365 Group
name will be checked for the blocked words. When working with blocked words you
must be aware that there are no substring searches carried out when creating the group.
For example, if your group-naming policy were GRP_[Department] [GroupName]
[CountryOrRegion] and someone entered the name Payroll, the final name would be
GRP_Marketing_Payroll_Canada.

169

CHAPTER 7 MANAGING OFFICE 365 GROUPS

Because the system does not search substrings, it would not block the group’s creation
even if Payroll were on your list of blocked words. However, if you set your naming
policy with spaces, instead of underscores, as seen in GRP [Department] [GroupName]
[CountryOrRegion], your final result would be GRP Marketing Payroll Canada, and the
policy would apply; therefore, the user would not be able to create the group.

Some administrative roles, however, are exempt from these policies and will be
able to create Office 365 Groups that contain blocked words or that do not follow the
organization’s naming policies. Those roles are the following:

¢ Global admin

o Partner Tier 1 Support
o Partner Tier 2 Support
e User account admin

o Directory writers

Now that you know what both policies do and how they work, let’s see how to
actually implement them. You will first have to create a new Active Directory Setting
Object based on the Unified Group template. Microsoft offers several different settings
templates in Azure Active Directory, which you can view by using the Get-AzureADDire
ctorySettingTemplate PowerShell cmdlet. While there are multiple templates, as you
can see in Figure 7-14, for this task you will need to create a directory setting based on
the Group.Unified template.

EX Ldmvnistrator Windows PowerShell - o X

PS C:\WINDOWS\system32> Get-AzureADDirectorySettingTemplate -
Id DisplayName Description

62375ab9-6b52-47ed-826b-58e47e0e304b Group.Unified cas
08d542b9-071f-4e16-94b0-74abb372e3d9 Group.Unified.Guest settings for a specific uUnified Group
4bc7f740-180e-4586-adbé-38b2e9024e6b Application ca
898f1161-d651-43d1-805c-3b0b388a%fc2 Custom Policy Settings

Scf42378-d67d-4f36-bad6-e8b86229381d Password Rule Settings

80661d51-be2f-4d46-9713-98a2fcaec5bc Prohibited Names Settings
aad3907d-1dla-448b-b3ef-7bf7f63db63b Prohibited Names Restricted Settings ...

PS C:\WINDOWS\system32> _

< >

Figure 7-14. Available AzureAD Directory Setting templates

Note The settings in the Group.Unified Azure Active Directory Object will
apply to all the Office 365 Groups inside your tenant.

170

CHAPTER 7 MANAGING OFFICE 365 GROUPS
To create the new Azure AD Settings Object, run the following cmdlets:

$SettingTemplate = Get-AzureADDirectorySettingTemplate | where {$.
DisplayName -eq 'Group.Unified'}

$NewAADSetting = $SettingTemplate.CreateDirectorySetting()
$NewAADSetting = New-AzureADDirectorySetting -DirectorySetting
$NewAADSetting

Then, run the following cmdlet to get your newly created Azure AD Directory Setting
Object and save it in a new variable called $Setting:

$Setting = Get-AzureADDirectorySetting | where-object {$_.displayname -eq
"Group.Unified'}

If you want to see all the available options you can configure as part of this setting
object, you can run the following cmdlet:

$Setting.Values

Right now your settings object, seen in Figure 7-15, will only have the default settings
from the template.

| B
PS C:\WINDOWS\System32> $Settings.values

ame value
ustomBlockedwordsList
nableMsstandardBlockedwords False

51 assificationDescriptions
efaultclassification
refixsuffixNamingRequirement
1lowGues tsToEeGroupOwner False
1lowGuestsToAccessGroups True
uestUsageGuidelinesurl

GroupCreationAllowedGroupId

a1lowToaddGuests True
sageGuidelinesurl

KlassificationList

[Enab‘l eGroupCreation True

|

Figure 7-15. Default values of the new Azure Active Directory Setting Object

To apply the naming convention policy, add your custom naming convention in the
PrefixSuffixNamingRequirement property, as seen in the following example:

$Setting["PrefixSuffixNamingRequirement"] = "GRP [Department] [GroupName]

[CountryOrRegion]

171

CHAPTER 7 MANAGING OFFICE 365 GROUPS

To apply certain blocked words, you would modify the CustomBlockedWordsList
property with a comma-separated list of words you want to block, as seen in this example:

$Setting["CustomBlockedWordsList"]="CEO,Legal,Payroll”

Lastly, you can optionally enable the EnableMSStandardBlockedWords property,
which blocks a list of inappropriate words that Microsoft manages that you wouldn’t
want in your group titles, as follows:

$Setting["EnableMSStandardBlockedWords"]="True"

To apply these updates to your Azure AD Directory Setting, run the Set-
AzureADDirectorySetting cmdlet as seen here:

Set-AzureADDirectorySetting -Id $Setting.id -DirectorySetting $Setting
You can run the following cmdlets to verify that the settings have been updated:

$Setting = Get-AzureADDirectorySetting | where-object {$_.displayname -eq
"Group.Unified'}
$Setting.Values

Asyou can see in Figure 7-16, the settings have been successfully applied in your tenant.

EN Adminstrator. Windows PowerShell - o b4

PS C:\WINDOWS\system32> $Setting = Get-AzureADDirectorySetting | where-object {S_.displayname -eq 'Group.Unified'} »
PS C:\WINDOWS\system32> $Setting.values

CustomBlockedwordsList CEO,Legal,Payroll
EnableMsstandardelockedwords True

ClassificationDescriptions

pefaultclassification

pPrefixsuffixNamingRequirement GRP [Department] [GroupName] [CountryOrRegion]
AllowGuestsToBeGroupOwner False

AllowGuestsToAccessGroups True

GuestUsageGuidelinesurl

GroupCreationAllowedGroupId

AllowToAddGuests True
UsageGuidelinesurl
ClassificationList
EnableGroupCreation True

Figure 7-16. Updated blocked-words and naming-convention settings

Note It can take a few hours for the settings to be applied in the user interface
across all the Office 365 services.

172

CHAPTER 7 MANAGING OFFICE 365 GROUPS

To test that the policy has been successfully applied, you can navigate to each service
that creates an Office 365 Group and test both the naming convention and the blocked
words. Make sure to test using one of the accounts that is not part of the admin roles we
previously talked about, as those policies do not apply to certain admin accounts. In
Figure 7-17, you can see how the final group is shown in Outlook Online and the error
message that is displayed when a user attempts to create a group with a blocked word.

Create a group

A group provides a space for shared

conversations, files, a group calendar, and more.

Group name
Project XYZ
GRP Sales Project XYZ United States ©

Group email address

projectxyz
GRPSalesprojectxyzUnitedStates@office365po...

Avallable

Description

Figure 7-17. Naming policy and blocked words in Outlook Online

Next up, in Figure 7-18 you can view how Planner is blocking a user from creating a
group with a blocked word. Planner is compliant with the naming policy and will create
the plan and the Office 365 Group with the correct policy; however, there is no preview of
the final name of the Office 365 Group when creating it.

173

CHAPTER 7 MANAGING OFFICE 365 GROUPS

Legal Plan 2018

(D The plan name contains blocked words that do not meet campany policy.

Privacy

@ Public - Anyone in my organization can see plan contents

.+ Private - Only members | add can see plan contents

COptions

Create Plan

Figure 7-18. Blocked words in Planner

Microsoft Teams is also integrated with the policies in Office 365 Groups, and, as you
can see in Figure 7-19, it’s able to preview the name of the Office 365 Group as it’s created.

Create your team

Collaborate closely with a group of people inside your organization based on project. initiative, or
common interest. Here's a helpful video

Team name

PowerShell Bock @

GRP Sales PowerShell Book United States (7)

Description

Privacy

Private - Only team owners can add members b

Figure 7-19. Office 365 Groups naming policies in Microsoft Teams

Microsoft Teams also supports blocked words and will tell the user right away if they
attempted to create a team with a blocked word, as you can see in Figure 7-20.

174

CHAPTER 7 MANAGING OFFICE 365 GROUPS

Create your team

Collaborate closely with a group of people inside your organization based on project. initiative, ar
common interest, Here's a helpful video

Team name The name can't contain Legal.

Legal (0]

GRP Sales Legal United States (7}

Description

Privacy

Private - Only team owners can add members b

| Cancel |
Figure 7-20. Blocked words in Microsoft Teams

The last example we will look at is Microsoft Stream. As you can see in Figure 7-21,
Microsoft Stream supports both the naming policy preview and blocked words!

Create a group
Creste & Microsoft Stream group connected to an Offize 355 group a3 an easy way to organize who has permnission ta see and edit your

videos and channels.

Hame Group email sliss

vall Videos Payrolividess

Sales Payrall Videot United States GRPSalesPayrellideocUnitedStatesD...

The blocked word “Payrol” does not mest comparry polcy

O Make this group companywide (

Bl Allew rembers to contribute O

Figure 7-21. Naming policy preview and blocked words in Microsoft Stream

175

CHAPTER 7 MANAGING OFFICE 365 GROUPS

As you saw in the preceding examples, most Office 365 services support both the
blocked words and the naming policies natively, so your users can see the group they are
creating right away. At the time of writing this book—and it might have changed by the
time you are reading it—the following services did not fully support naming conventions
and blocked words:

e Dynamic CRM

e School Data Sync (SDS)
e C(Classroom App

e Power BI

e Azure Active Directory Portal

Note To view the most up-to-date list of what services support naming policies
and blocked words, visit the Office Support Page called “Office 365 Groups
naming policy” at the following link: https://support.office.com/en-us/
article/Office-365-Groups-naming-policy-6cecasdd3-cad1-4532-
9f0f-d469dfbbb552.

Now that you have learned how to apply a naming policy and blocked words to your
groups, it is time to see how to create classifications for them.

Group Classifications

Microsoft allows Office 365 administrators to set a list of classifications that users can
apply to Office 365 Groups. At the time of writing this book, classifications are not doing
anything technically; however, they are displayed at the top of every Office 365 Group.
This allows users to know how sensitive the data in that Office 365 Group is and what
security measures they need to take with the content inside that group. For example, you
could set up the following classifications for your Office 365 Groups:

e Restricted
¢ Confidential
e Secret

o Top Secret
176

https://support.office.com/en-us/article/Office-365-Groups-naming-policy-6ceca4d3-cad1-4532-9f0f-d469dfbbb552
https://support.office.com/en-us/article/Office-365-Groups-naming-policy-6ceca4d3-cad1-4532-9f0f-d469dfbbb552
https://support.office.com/en-us/article/Office-365-Groups-naming-policy-6ceca4d3-cad1-4532-9f0f-d469dfbbb552

CHAPTER 7 MANAGING OFFICE 365 GROUPS

The choices that you present your users with in terms of classifications need to
involve data sensitivity, as when selecting them, the question that Office 365 will ask
your user is similar to “How sensitive is your data?” We will review what classifications
look like in the user interface later in this section.

To implement the classification list, you will have to modify some properties of the
Azure AD Directory Setting created earlier. First, get the Azure AD Directory Setting and
save it into a variable called $Setting as seen here:

$Setting = Get-AzureADDirectorySetting | where-object {$_.displayname -eq
"Group.Unified'}

The first property you need to modify is the ClassificationlList. This property
accepts a comma-separated list of all the different classifications you want to make
available. You can include spaces between the commas, such as Top Secret, but make
sure to not include spaces between the classifications themselves. In the following
cmdlet, I am setting the classification list previously discussed:

$Setting["ClassificationlList"]="Restricted,Confidential,Secret,Top Secret"

You can then specify what default classification is proposed to your users by
updating the DefaultClassification property. In the cmdlet below, I am setting the
default to Confidential:

$Setting["DefaultClassification”]="Confidential"

Lastly, you can set the ClassificationDescriptions property, in which you can
specify a description for each of the classifications in your list. These descriptions will
help users make the right classification selection. This list needs to be in the format "C1
assification:Description,Classification:Description”, where Classification
matches one of the classifications in the ClassificationList property. In the example
that follows, you can view a sample description for each classification level:

$Setting["ClassificationDescriptions”]="Restricted:Restricted material
would cause undesirable effects if publicly available,Confidential:Confid
ential material would cause damage or be prejudicial to national security
if publicly available,Secret:Secret material would cause serious damage to
national security if it were publicly available,Top Secret:Top Secret is
the highest level of classified information"

177

CHAPTER 7 MANAGING OFFICE 365 GROUPS

The last thing you have to do is apply the updates to your Azure AD Directory Setting
by running the following cmdlet:

Set-AzureADDirectorySetting -Id $Setting.id -DirectorySetting $Setting

You are now ready to test if those settings have been successfully applied across Office 365.

Note It can take a few hours for the settings to be applied in the user interface
across all the Office 365 services.

When users create a new Office 365 Group from Outlook Online, they will be
presented with a dropdown of the classification choices, as you can see in Figure 7-22.

P Create X Discard

Create a group
A group provides a space for shared conversations, files, 3

group calendar, and more.

Group name

Description

Privacy
Public - Anyone in your organization can see what's ¥
Classification ©

Confidential -

Restricted
Confidential
Secret

Top Secret

Figure 7-22. Classification list in Outlook Online
178

CHAPTER 7 MANAGING OFFICE 365 GROUPS

The classification list is also available in Stream, as you can see in Figure 7-23.

Create a group

Figure 7-23. Classification list in Microsoft Stream

Lastly, classifications are also available in Microsoft Teams, as you can see in
Figure 7-24; however, at the time of writing this book, the classification description did
not show in Microsoft Teams.

179

CHAPTER 7 MANAGING OFFICE 365 GROUPS

Create your team

Collaborate closely with a group of people inside your organization based on project. initiative, or
common interest. Here's a helpful video

Team name

Project XTZ ;

GRP Sales Project XTZ United States (1)

Description

Privacy

Private - Only team owners can add members ~

Classification

Restricted N

Restricted

Confidential isting Office 365 group?

jroup. You can add Microsoft Teams functionality without changing
Secret osoft Teams functionality

-

Figure 7-24. Classifications in Microsoft Teams

After you have set up your groups classification list, you can use the Set-
UnifiedGroup PowerShell cmdlet to apply classifications to existing groups. For example,
if you wanted to add the Top Secret classification to the 2019 Reorganization group
created earlier, you would run the following cmdlet:

Set-UnifiedGroup -Identity "2019reorg" -Classification "Top Secret"

You have now learned what classifications are and how to create a classification list
with descriptions. Let’s now look at the usage guidelines.

180

CHAPTER 7 MANAGING OFFICE 365 GROUPS

Usage Guidelines

With improved governance around your Office 365 Groups, an important step is to
document what users can and cannot do. Office 365 allows you to set guidelines that
are available to your users when an Office 365 Group is created or edited, as well as a
separate set of guidelines for external users (guests). It is recommended that you host
your internal guidelines on a site that all your employees have access to, such as the
intranet, while hosting your guest guidelines on a public site that external users will be
able to access.

To configure usage guidelines, you will have to modify some properties of the Azure
AD Directory Setting you created earlier. First, get the Azure AD Directory Setting and
save it into a variable called $Setting as seen here:

$Setting = Get-AzureADDirectorySetting | where-object {$_ .displayname -eq
"Group.Unified'}

Then, set the UsageGuidelinesUrl property to the URL of your internal policies:

$Setting["UsageGuidelinesUrl"]="https://office365powershell.sharepoint.com/
SitePages/Office365GroupsPolicies.aspx”

Next up, set the guest policies by adding the URL to the GuestUsageGuidelinesUrl
property as seen here:

$Setting["GuestUsageGuidelinesUrl"]="https://office365powershell.ca/
guestpolicy"

To apply the new properties to your Azure AD Directory Setting, you need to run the
following cmdlet:

Set-AzureADDirectorySetting -Id $Setting.id -DirectorySetting $Setting

Note It can take a few hours for the settings to be applied in the user interface
across all the Office 365 services.

Once the usage guidelines are set up, a user creating a new group from Outlook
Online will see a link to the internal usage guidelines, as you can see in Figure 7-25.

181

CHAPTER 7 MANAGING OFFICE 365 GROUPS
P Create X Discard

Create a group
A group provides a space for shared conversations, files, 2

group calendar, and more.

Group name

Description

Tell people the purpose of your group.

Privacy
Public - Anyone in your organization can see what's ¥

Classification @

Confidential -
Language for group-related notifications

English (United States) v

Send all group conversations and events to
members' inboxes. They can stop following this group
later if they want to.

Group usage guidelines
Figure 7-25. Group usage guidelines when creating a new Olffice 365 Group

When you invite an external user to an Office 365 Group, they will have a link to the
guest usage guidelines at the bottom of their email, as you can see in Figure 7-26.

182

CHAPTER 7 MANAGING OFFICE 365 GROUPS

You'll start receiving group conversations and calendar events in your inbox.
To stop receiving group conversations and calendar events, you can always leave the group.
You'll be accessing Office 365 resources from Learmn-
PowerShell, please refer to the usage guidelines from Learn-
PowerShell.

Learn more about Office 365 Groups

Figure 7-26. Guest usage gidelines in the welcome email for Office 365 Groups
guests

When they click on the link, guests will first receive a message informing them that
the guidelines are managed by your organization and not by Microsoft or Office 365, as
you can see in Figure 7-27.

You're being redirected to guidelines managed by Learn-PowerShell,
the organization that hosts this group, not Microsoft or Office 365.

Figure 7-27. Redirection notice for Office 365 guest guidelines

You have now seen multiple ways to control how Office 365 users can create Office
365 Groups while following certain company policies, but what if you want to only allow
a certain group of users to create groups?

183

CHAPTER 7 MANAGING OFFICE 365 GROUPS

Only Allowing a Certain Group to Create Office 365 Groups

In some circumstances, you might not want to open Office 365 Group creation to all the
users inside your organization. To control who can create Office 365 Groups, you can
limit group creation to only a certain group inside your organization.

The first thing you will have to do is create a group—either a security group or an
Office 365 Group—that will contain the users who are allowed to create Office 365
Groups. For my example, I have created an Office 365 Group called Office 365 Group
Admins. The first step will be to save that group in a variable called $Group as seen here:

$Group = Get-AzureADGroup -SearchString "Office 365 Group Admins"

Next up, I have to modify some properties of the Azure AD Directory Setting that was
created earlier. I will first get the Azure AD Directory Setting and save it into a variable
called $Setting as seen here:

$Setting = Get-AzureADDirectorySetting | where-object {$_.displayname -eq
"Group.Unified'}

I then need to modify the EnableGroupCreation property to False in order to disable
Office 365 Group creation for all users:

$Setting["EnableGroupCreation”] = "False"

Afterward, I will add the ID of the group that will be allowed to create Office 365
Groups to the GroupCreationAllowedGroupId parameter:

$Setting["GroupCreationAllowedGroupId"] = $Group.ObjectId

Lastly, to apply the new properties to the Azure AD Directory Setting, I need to run
the following cmdlet:

Set-AzureADDirectorySetting -Id $Setting.id -DirectorySetting $Setting

Note It can take a few hours for the settings to be applied in the user interface
across all the Office 365 services.

Once the setting is applied, users that are not in that group will not be able to see
the “Create” button anymore in Outlook Online. Only the “Discover” button will be
available, as seen in Figure 7-28.

184

CHAPTER 7 MANAGING OFFICE 365 GROUPS

=2 Office 365 Outlook

Search Mail and People p @ New|Vv

A Folders Focused Other Filter v
Inbox 1 Next: No events for the next two days. [*] Agenda
Sent ltems
Drafts 1

Aore
A GroUpS # New

Here are some groups

you might want to join:

o Reorg 2013

o HR Public Que I

Your Focused inbox is cleared

=> Discover

View Other inbox

Figure 7-28. Only the “Discover” button appears in Outlook Online

Different Office 365 services will display different messages when Office 365 Group
creation is disabled for that user. In Figure 7-29, you can see the message that users get
when they try to create a new plan in Planner.

185

CHAPTER 7 MANAGING OFFICE 365 GROUPS

Plan and Office 365 Group Creation Disabled ~ *

Your organization's global admin has turned off the ability to create new Plans

and Office 365 Groups.

Figure 7-29. User message when they are not allowed to create Office 365 Groups
in Planner

Now that you have learned how to control who can create Office 365 Groups, let’s
learn how manage policies for external users, also called guests.

Guest Policies

Guest policies allow you to customize whether external users can be added to your Office
365 Groups, and even allow you to block access for all existing users if required. There
are three properties that you can set at the tenant level, which you can see in Table 7-4.

Table 7-4. Tenant-wide Guest Policies

Property Description

AllowGuestsToBeGroupOwner Indicates if guests can be added as owners of an Office 365
Group

AllowGuestsToAccessGroups Indicates if guests are allowed to access Office 365 Groups.
Setting this to false will also block guests that were already
granted permission to access Office 365 Groups.

AllowToAddGuests Indicates if you want to restrict the ability to add new guests to
Office 365 Groups, but not restrict existing Office 365 guests to
access groups they already have permission to.

186

CHAPTER 7 MANAGING OFFICE 365 GROUPS

If you want to completely restrict guest access tenant wide, you will have to modify
the preceding properties of the Azure AD Directory Setting created earlier. You first get
the Azure AD Directory Setting and save it into a variable called $Setting as seen here:

$Setting = Get-AzureADDirectorySetting | where-object {$_.displayname -eq
"Group.Unified'}

You then configure your settings to not allow guests to be group owners and to block
everyone from adding external users or other guests to a group:

$Setting["AllowGuestsToBeGroupOwner"] = "False"
$Setting["AllowToAddGuests"] = "False"

To block existing as well as new guests in your Office 365 Groups, configure the
following setting:

$Setting["AllowGuestsToAccessGroups"] = "False”

To apply the guest policies, you need to run the following cmdlet, which will update
the Azure AD Directory Setting Object with the latest changes:

Set-AzureADDirectorySetting -Id $Setting.id -DirectorySetting $Setting

When anyone in your organization tries to invite a guest, they will get a message
similar to that in Figure 7-30 and will not be able to add a guest—even if they are an
Office 365 global administrator.

187

CHAPTER 7 MANAGING OFFICE 365 GROUPS

H sa X Discard

m

Office 365 Group ...

office365groupadmins@office3...
Private group

Before you can add guests as members of
the group, you need to contact your
administrator.

Enter the name of a person or a group

vlad@apress.com

Figure 7-30. Unable to add guests to an Office 365 Group

What if you want to apply guest policies at the group level and not at the tenant level?
For demo purposes, I have reverted the changes we just made that allowed guests tenant
wide; we will block them for select groups instead. To only apply settings to certain
groups, you need to create a setting based on the Group.Unified.Guest template. You
can view all the available templates by running the Get-AzureADDirectorySettingTempl
ate cmdlet as seen in Figure 7-31.

E¥ Administrator; Windows PowerShell - o '
PS C:\WINDOWS'system32> Get-AzureADDirectorySettingTemplate ~
Id DisplayName Description

62375ab9-6b52-47ed-826b-58e47e0e304b
08d542b9-071f-4e16-94b0-74abb372e3d9
4bc7f740-180e-4586-adb6-38b2e9024e6b
898f1161-d651-43d1-805¢c-3b0b388agfc2
5cf42378-d67d-4f36-bad6-e8b86229381d
80661d51-be2f-4d46-9713-98a2fcaecSbe
aad3907d-1dla-448b-b3ef-7bf7f63dbe3b

PS C:\WINDOWS\system32>

3

Group.Unified
Group.Unified.Guest
Application

custom Policy Settings
Password Rule Settings
Prohibited Names Settings ve
Prohibited Names Restricted Settings ...

ééétings for a specific Unified Group

Figure 7-31. Available Azure Active Directory Setting templates

188

CHAPTER 7 MANAGING OFFICE 365 GROUPS

Now that you know the template you want to start from, you can run the following
cmdlets to create a new directory setting:

$SettingTemplate = Get-AzureADDirectorySettingTemplate | where {$.
DisplayName -eq 'Group.Unified.Guest'}
$NewSetting = $SettingTemplate.CreateDirectorySetting()

The Group.Unified.Guest directory setting only has one available property, which is
AllowToAddGuests, as you can see in Figure 7-32.

[B Acministrator Wingows Powershel o
PS C:\WINDOWS\System32> $NewSetting.values o

AllowToAddGuests True

PS C:\WINDOWS\System32>

< >

Figure 7-32. Available properties in the Group.Unified.Guest directory setting

You then change the AllowToAddGuests property to False in order to block guest
access in this setting:

$NewSetting["AllowToAddGuests"]=$False

To apply this setting to a group, save your Office 365 Group Admins group in a
variable called $Group and then apply the Azure AD Object Setting to the Office 365
Group as seen here:

$Group = Get-AzureADGroup -SearchString "Office 365 Group Admins"
New-AzureADObjectSetting -TargetType Groups -TargetObjectId $Group.ObjectId
-DirectorySetting $NewSetting

Note It can take a few hours for the settings to be applied in the user interface
across all the Office 365 services.

To test that it worked, navigate to a group that does not have this group-level setting
applied, and you should be able to add an external guest, as seen in Figure 7-33.

189

CHAPTER7 MANAGING OFFICE 365 GROUPS
Hsave= X Discard

2019 Reorganizati...

2019reorg@office365powershel...
Private group (Top Secret)

You're adding a guest to this group. They'll
have limited access to group resources.

Add members

Your group has been created. Add colleagues, Office 365

groups, distribution lists, or guests. ©

Enter a name or email address

1 member to be added

vlad@apress.com® x ...
Guest

Figure 7-33. Adding an external user to an Office 365 Group

However, when you try to do the same thing in the Office 365 Group you have
applied these new settings to, you will get an error similar to that in Figure 7-34.

190

CHAPTER 7 MANAGING OFFICE 365 GROUPS

X Discard

H save

Office 365 Group ...

office363groupadmins@office3...
Private group

Before you can add guests as members of
the group, you need to contact your
administrator.

Enter the name of a person or a group

vlad@apress.com

Figure 7-34. Not allowed to add external users to this specific Office 365 Group

You have now learned all the settings that allow you to control Office 365 Groups
in your organization as far as who can create Office 365 Groups, what naming policy
they should use, and so on. Next up, you will learn how to create reports on Office 365
Groups.

Office 365 Group Reporting

Once users start collaborating in Office 365 Groups that have your governance policies,
you still want to keep an eye on what is happening inside your tenant. You can use the
Get-UnifiedGroup cmdlet to view all the groups inside your organization, as well as their
properties. When running the cmdlet, the basic properties returned are the Name, Alias,
ServerName, and AccessType, which you can see in Figure 7-35.

191

CHAPTER 7 MANAGING OFFICE 365 GROUPS

Admini Windows P Shell -] X
S C:\WINDOWS\system32> Get-UnifiedGroup ~
ame Alias ServerName AccessType
reorg2018_4826c469¢eb reorg2018 yqbpr0101mb1442 Private
2019 Reorganization_6a... 2019reorg ygbpr0101mb1442 Private
ecret_Reorganization_... secretreorg yqbpr0101lmb1442 Private
R Public Questions_ac... HRPublic ygbpr0101mb1442 Public
Tobal 0365 Administra... globaladmins yqbpr0101mbl1442 Private

RPSalesoffice365Migra... GRPSalesOffice365... ygxpr0ilmb0023 Public
RPSalesStreamGroupUni... GRPSalesstreamGro... ygbpr0101lmb2130 Private
ffice365groupadmins_f... office365groupadmins ygbpr0l0lmb2130 Private
RPSalesProjectXTZUnit... GRPSalesProjectXT... ygxpr0lmb0293 Public

S C:\WINDOWS\system32> _

Figure 7-35. Running the Get-UnifiedGroup cmdlet

You can also select any properties of the group; for example, the following cmdlet
returns the display name, the date the Office 365 Group was created, the date it was last
changed, and the classification of the group, as in Figure 7-36.

PT c:\w:unow:}system32> Get-UnifiedGroup | Select-Object -Property DisplayName, wWhenCreated, whencChanged, Classification~
Format-Table

DisplayName whencCreated whenchanged Classification
Reorg 2018 9,-’28,-’201? 10: 25 53 AM 10/21/2017 12:42:50 PM Top Secret
2019 Reorganization 10/19/2017 11 :58 AM 10/21/2017 11:13:45 AM Top Secret
Secret_Reorganization lOflS{ZOl? 1:09:08 PM 10/21/2017 12:42:51 PM Secret

HR Public Questions 10/19/2017 4:01:01 PM 10/21/2017 12:42:51 PM Confidential
Global 0365 Administrators 10/20/2017 6:09:24 PM 10/21/2017 12:42:53 PM Top Secret

GRP Sales office 365 Migration Project United States 10/21/2017 12:41:30 AM 10/21/2017 12:42:53 PM Confidential
GRP Sales Stream Group United States 10/21/2017 12:43:04 AM 10/21/2017 12:42:54 PM Secret

office 365 Group Admins 10/21/2017 10:39:10 AM 10/21/2017 12:42:55 PM Restricted
GRP Sales Project XTZ United States 10/21/2017 11:56:33 AM 10/21/2017 12:02:53 PM Restricted

PS C:\WINDOWS‘system32>

Figure 7-36. Viewing properties of our Office 365 Groups

You can also use all the different cmdlets you have learned in this chapter to create
scripts that are a bit more advanced. For example, the small script that follows will
output all the groups in the Office 365 tenant, as well as the number of owners, members,
and Subscribers in each group. You can view the results in Figure 7-37.

192

CHAPTER 7 MANAGING OFFICE 365 GROUPS

EX Adeninistrator: Windews PewerShell - o x
PS C:\WINDOWS\system32> Get-UnifiedGroup |

B> select Id,Alias, AccessType, °

> @{Express1nn={(tarr‘ay]{Get-Un'if'iedGr‘uupL'inks =Identity $_.Id -LinkType Members)).Count }; ~

B Labe1='mmbers'%,)

== @{Expression={([array] (Get-UnifiedGroupLinks -Identity $_.Id -LinkType Owners)).Count };

= Label="0Owners’)

B> @{Expression={(tar‘ray:’(Get—unif*iedﬁroupLinks -Identity $_.Id -LinkType Subscribers)).Count }; ~
=53 Label="Subscribers'}

B> Format-Table Alias,Members,Owners,Subscribers -AutoSize

alias Members Owners Subscribers

reorg2018 3 1 1]

2019reorg 1 1]

secretreorg 1 1 0

HRPuUblic 2 1 0

globaladmins 1 1 0
RPSalesOffice365MigrationProject290Unitedstates 2 1 2
|GRP$a'Iesstreamﬁroqpumtedstates 1 2 0

|off1c9365|grqupadmns‘ 2 1 2
GRPSalesProjectXTZUnitedStates 1 1 1

PS C:‘\WINDOWS\system32>

Figure 7-37. Script showing the number and type of members inside each Office
365 Group

Tip Remember you can download the soft copy of these scripts in the GitHub
repository of the book! You can find the link to the repository on the book’s page on
Apress.com.

Get-UnifiedGroup |
select Id,Alias, AccessType, °
@{Expression={([array](Get-UnifiedGroupLinks -Identity $.Id -LinkType
Members)).Count }; °
Label="Members'}, °
@{Expression={([array](Get-UnifiedGroupLinks -Identity $.Id -LinkType
Owners)).Count }; °
Label="Owners'}, °
@{Expression={([array](Get-UnifiedGroupLinks -Identity $.Id -LinkType
Subscribers)).Count }; °
Label="Subscribers'} |
Format-Table Alias,Members,Owners,Subscribers -AutoSize

As you can see, you can create some really awesome reports by using PowerShell for
Office 365 Groups.

193

CHAPTER 7 MANAGING OFFICE 365 GROUPS

Conclusion

Office 365 Groups are one of the key collaboration tools in Office 365, and users love

their integration with multiple Office 365 services. However, there are not that many
management settings available for groups in the Office 365 Admin Center, and this is
where PowerShell can save the day. In this chapter, we have reviewed everything you can
do to manage Office 365 Groups with PowerShell, starting from basic operations such as
creating, updating, and deleting an Office 365 Group all the way to tenant-wide governance
settings that shape the way your organization will benefit from Office 365 Groups.

At this point in the book, you have learned how to manage all the services in Office
365, starting from your users and licenses in Azure Active Directory to other services
such as SharePoint Online, Exchange Online, Skype for Business Online, the Security &
Compliance Center, and Office 365 Groups, which spans many of the services previously
named. In our next and final chapter, we will take what we learned in the first seven
chapters of this book to the next level by automating scenarios across multiple Office 365

services.

194

CHAPTER 8

Automating Tasks
with PowerShell

We are now in the final chapter of the book, and by now you should be able to manage
every Office 365 service with PowerShell individually. In this chapter, you will take what
you have learned to the next level by creating scripts that interact with multiple Office
365 services and solve real business problems.

Connecting to Multiple Office 365 Services

Connecting to multiple Office 365 services is done by combining everything you have
learned in previous chapters. You will first have to create your credential object by
running the Get-Credential cmdlet, as seen here

$cred = Get-Credential

Next up, import all the modules you have worked with in this book—the AzureAD
module to manage users and licenses, the SharePoint Online module for SharePoint Online,
and finally the Skype Online Connector module to manage Skype for Business Online:

Import-Module AzureAD
Import-Module Microsoft.Online.SharePoint.PowerShell
Import-Module SkypeOnlineConnector

Afterwards, create the remote sessions required to connect to Skype for Business
Online, Exchange Online, and the Office 365 Compliance Center:

$S4B = New-CsOnlineSession -Credential $cred

195
© Vlad Catrinescu 2018

V. Catrinescu, Essential PowerShell for Office 365, https://doi.org/10.1007/978-1-4842-3129-6_8

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL

$Exchange = New-PSSession -ConfigurationName Microsoft.Exchange
-ConnectionUri "https://outlook.office365.com/powershell-liveid/"
-Credential $cred -Authentication "Basic" -AllowRedirection

$ComplianceCenter = New-PSSession -ConfigurationName Microsoft.Exchange
-ConnectionUri https://ps.compliance.protection.outlook.com/powershell-
liveid/ -Credential $cred -Authentication Basic -AllowRedirection

You then must import those sessions into your local PowerShell session with the
following cmdlets:

Import-PSSession $S4B
Import-PSSession $Exchange
Import-PSSession $ComplianceCenter

And lastly, connect to Azure Active Directory as well as SharePoint Online with their
module-specific cmdlets, as seen here:

Connect-AzureAD -Credential $cred
Connect-SPOService -Url https://office365powershell-admin.sharepoint.
com -credential $cred

You are now connected to Azure Active Directory, SharePoint Online, Exchange
Online, and Skype for Business Online as well as to the Office 365 Compliance Center,
and you can use PowerShell cmdlets that work with all the services in a single window.
Something that you have used throughout the book is the Get-Credential cmdlet to get
the credentials of the user you want to connect to Office 365 with. But if you want to run
a script at 2 a.m., you don’t really want to be there to give the credentials. Let’s take a look
at what you can do to securely store your credentials and use them in your scripts.

Saving Credentials to Securely Use with PowerShell

There are multiple ways to securely store your credentials on the computer, but let’s
take a look at one of the ones I use most often, which is saving the credential object as
an XML file on the computer. You will first run the Get-Credential cmdlet to get the
credentials, and afterward you will use the Export-Clixml cmdlet to save the credential
object into an XML file. The full cmdlet can be seen here:

Get-Credential | Export-Clixml C:\Scripts\pscred.xml
196

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL

A pop-up similar to Figure 8-1 will appear, in which you will have to enter the
username and password of the user you want to connect to Office 365 with.

B Administrator: Windows PowerShell -
PS C:\WINDOWS\system32> Get-Credential | Export-Clixml C:\Scripts\pscred.xml ~

cmdlet Get-Credential at_command pipeline position 1
Supply values for the following parameters:

Credential _

Windows PowerShell credential request

Xy

_%r§
Enter your credentials.
LUser name: [@ 1@office 365powershell.ca v.y-
Password: I LTI TITT TS |

[ox] conce
W
< >

Figure 8-1. Getting the credentials of a user before saving them to an XML file

The XML file will include an export of the System.Management.Automation.
PSCredential object, with the password encrypted, as seen in Figure 8-2.

<Obj RefId="0"> -
<TN RefId="0">
<T>System.Management.Automation.PSCredential</T>
<T>System.Object</T>
</TN>
<ToString>System.Management.Automation.PSCredential</ToString>
<Frops>
<5 N="UserName">vlad-admin@office365powershell.ca</5>
10 <S5 N="Password">
01000000d08c9dd£0115d1118c7a00c04£c297eb010000006£1089¢c9c0125b4b96£58e£47498£8
020000000002000000000010660000000100002000000092499ed497257345c9445532aca3fede
daed47cB8bd9£7c108d776b717287£486£000000000e80000000020000200000006295668963e54b
9d9d816dd180974fbTaed268dc691cc6207779c40a5bcb7£fbc20000000603¢c22dde51d01£710ed
£3££261a0ele7dbb06d931£1b9471612577827ceaf7640000000d617dlaccacb08241b68480e2c
391b0072fa8f0dccle8bfcbdaed5490362c507cb48de29e0b0b8143909eb25£fe8b6dc765d6a6el
aB869727£020215a6c7389568< /55>
</Props>
</0Okj>
13 '</0bjs> .

=] Oh N Wb W B

v @

Figure 8-2. Credential object saved in an XML file

197

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL

The password is encrypted by using the native Windows Data Protection API (DAPI)
functionality, and it can only be decrypted by the user who encrypted it and on this
specific machine. It cannot be decrypted by another user on the same machine, or by the
same user on a different machine. To use this XML file in your future scripts, you simply
have to use the Import-Clixml cmdlet. In Figure 8-3, I am starting with a brand-new
PowerShell window with an empty $cred variable, as seen on the first line. I then use the
Import-Clixml cmdlet to import the file with my credential object in the $cred variable:

$cred = Import-CliXML C:\Scripts\pass.xml

Lastly, I test that this is working by connecting to Azure Active Directory.

. . " bl _ O %

PS C:\WINDOWS\system32> $cred . . -
PS C:\WINDOWS\system32> S$cred = Import-Clixml C:\scripts\pscred.xml
PS C:\WINDOWS\system32> Connect-AzureAD -Credential Scred

Account Environment TenantId TenantDomain

wvlad-admin@office36Spowershell.ca AzureCloud 545c04df-2411-4d58-9378-7ec79e9%6b8e office3b6Spowershell.ca

PS C:\WINDOWS\system32> _

<

Figure 8-3. Testing the XML file with my credential information

Now that we have viewed some basic tricks, let’s take a look at some automation
scenarios!

Creating Users in Azure AD Using SharePoint
as an Input

Let’s start with our first scenario, which is automating the creation of users in Azure Active
Directory and using a SharePoint list as an input. Throughout the examples in this chapter,
you will see that when automating tasks in Office 365 where non-IT department personnel
need to provide the input, I prefer to use SharePoint lists because of how easy they are to
use for business users and how easy they are to secure from an IT perspective. I will first
create a SharePoint list with the columns seen in Table 8-1 and with the name New Users.

198

Table 8-1. Input List Columns

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL

Column Name Type Notes

Employee ID Single Line of Text ~ Renamed the default Title column from the list. Internal
name for this column will remain Title.

First Name Single Line of Text

Last Name Single Line of Text

JobTitle Single Line of Text

Department Choice

Manager People Picker

OfficePhone Single Line of Text

MobilePhone Single Line of Text

City Single Line of Text

State Single Line of Text

Country Choice

Processed Yes/No This column will tell PowerShell whether this account has

already been created or not. By default it will be at No,
and we will change it to Yes from our PowerShell script.

You can also view a sample of the input in Figure 8-4. The whole form is broken up

into two parts and shown side by side to make it easier to consume.

199

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL

OfficePhone
New Users > 007
Empl ID*
Shii MobilePhone
First Name .
City
Jarres i
Last Name
State
Srith
Qusbac
JobTitle
Country
TEEET Canada v
Department
3 Processed
I i (@) No
Manager Attachments
O Jeff Collins 3¢ Add attachments

Figure 8-4. New User form

Now that my list is ready, let’s take a look at the PowerShell part. Since I have to read
information from a SharePoint list, which is not possible using the PowerShell module
provided by Microsoft, I will use the Office 365 Dev PnP PowerShell cmdlets, and since I will
create users in Azure Active Directory I will also import the Azure Active Directory module:

Import-Module SharePointPnPPowerShellOnline
Import-Module AzureAD

I will then connect to both the site collection in which the list is located as well as
Azure Active Directory:

$cred = Import-CliXML C:\Scripts\pass.xml

Connect-PnPOnline -Url https://office365powershell.sharepoint.
com -credential $cred

Connect-AzureAD -Credential $cred

Next, I will use the Get-PnPListItem cmdlet to save the list in a variable:

$users = Get-PnPListItem -List 'New Users'
200

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL

I will then start a foreach loop on each user, where the Processed column is at No,
meaning all the users that haven’t already been created with PowerShell. Next, I will save
every column into a variable to make them easier to use later when I create the accounts.

In order to get the internal names (Key) of the fields, you can run the following cimdlet:

$users[0].FieldValues

This will show you all the fields of the first item in the list, as well as their values,
allowing you to easily find out which is which, as seen in Figure 8-5:

> |

PS C:\Scripts\Apress\Ch08> Susers[0].Fieldvalues

Key value

ContentTypeld 0x0100BC1E9BCE3FE65642A1B5C1EDDA41F7ER
Title 007

_ModerationComments

File_x0020_Type

ComplianceAssetId

First_x0020_Name James

Last_x0020_Name smith

JobTitle President

Department T

Manager Microsoft.SharePoint.Client.FieldUservalue
officePhone 212-460-1500

MobilePhone 212-460-1700

City Montreal

State Quebec

country Canada

Processed False

- I 1

Modified 11/22/2017 1:46:47 PM

Created 10/30/2017 11:27:18 PM

Author Microsoft.SharePoint.Client.Fielduservalue
Editor . _ Microsoft.SharePoint.Client.FieldUservalue
_HasCopyDestinations

_CopySource

owshiddenversion 14 v
< >

Figure 8-5. Finding out the internal names of our fields

foreach ($user in $users|Where {$.FieldValues.Processed -eq $false})
{

$EmployeeID = $user.FieldValues.Title

$FirstName = $user.FieldValues.First x0020 Name

$LastName = $user.FieldValues.Last x0020 Name

$JobTitle = $user.FieldValues.JobTitle

$Dept = $user.FieldValues.Department

$ManagerkEmail = $user.FieldValues.Manager.Email
$0fficePhone = $user.FieldValues.OfficePhone
$Cell = $user.FieldValues.MobilePhone

$City

$user.FieldValues.City

201

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL

$State = $user.FieldValues.State
$Country = $user.FieldValues.Country
$Email = "$FirstName.$LastName@office3b65powershell.ca”

When assigning a license to the user, I will need to provide the usage location of the
user, which is the country, but as a two-letter country code. Since I do not want to ask
my user, [will do a switch statement, as seen next, to set the $UsageLocation variable
depending on the country of the user:

switch ($Country)

{
"Canada" {$Usagelocation = "CA"}
"United States" {$Usagelocation = "US"}
"Mexico" {$Usagelocation = "MX"}
"France" {$Usagelocation = "FR"}
default {throw "User Location not valid"}
}

Now that I have all the information in variables, it’s time to create the user. I will first
create a new Password Profile object with the password that my company always uses for
new users, which is Apress2017. I will also create my license objects with the E5 SKU ID:

$PasswordProfile = New-Object -TypeName Microsoft.Open.AzureAD.Model.
PasswordProfile

$PasswordProfile.Password = "Apress2017"
$PasswordProfile.ForceChangePasswordNextLogin = $true

$Sku = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedlLicense
$Sku.SkuId = "c7df2760-2c81-4ef7-b578-5b5392b571df"

$Licenses = New-Object -TypeName Microsoft.Open.AzureAD.Model.
AssignedlLicenses

$Licenses.AddLicenses = $Sku

202

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL

I will then use the New-AzureADUser cmdlet and give it all the parameters I saved
earlier:

$NewUser = New-AzureADUser -GivenName $FirstName -Surname $LastName
-DisplayName "$FirstName $LastName" -UserPrincipalName $EMail -MailNickName
"$FirstName.$LastName" -AccountEnabled $true -PasswordProfile
$PasswordProfile -JobTitle $JobTitle -Department $Dept -Usagelocation
$Usagelocation -Country $Country -Mobile $Cell -TelephoneNumber
$0fficePhone -State $State -City $City

Next up, I will set the manager as well as the license for my new user:

$Manager = Get-AzureADUser -ObjectId $ManagerEmail
Set-AzureADUserManager -ObjectId $NewUser.ObjectId -RefObjectId $Manager.
ObjectId

Set-AzureADUserlLicense -ObjectId $NewUser.ObjectId -AssignedlLicenses
$Licenses

Once my user has been created, I want to notify the person who created the new
account request that the user has been created. I will first save the information about the
person who created the current item in two variables:

$RequesterDisplayName = $user.FieldValues.Author.LookupValue
$Requesteremail = $user.FieldValues.Author.email

I will then create the body of the email using HTML syntax, including variables that I
previously created in the script, as well as in the subject of the email:

$body = "Hello $RequesterDisplayName , </br> The account for Employee
ID $EmployeeID has been created with the following details: </br>
Username: $Email </br> Password: Apress2017 </br> For any
questions, don't hesitate to open a Helpdesk Ticket."

$Subject = "Account Created for New Employee $EmployeeID"

I will then use the Send-MailMessage cmdlet to send the email to the person who
requested the account:

Send-MailMessage -To $Requesteremail -from vlad-admin@office365powershell.
ca -Subject $Subject -Body $body -BodyAsHtml -smtpserver smtp.office365.com
-usessl -Credential $cred -Port 587

203

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL

Lastly, I will change the value of the Processed column to True so that it marks that
the account has been created and so it’s not processed the next time the script runs.
Iwill also close the foreach loop started earlier. The reason I create a variable on the
Set-PnPListItem cmdlet is to avoid a bug in the Office Dev PnP cmdlets that would
output an error of type “The collection has not been initialized”:

$updatedItem = Set-PnPListItem -List 'New Users' -Identity $user.id -Values
@{"Processed" = $true}

}

This is what the full script looks like. Note that I have moved the License and
Password objects outside of the foreach loop so they do not get created again and again
each time a user needs to be created!

Import-Module SharePointPnPPowerShellOnline
Import-Module AzureAD

$cred = Import-CliXML C:\Scripts\pass.xml

Connect-PnPOnline -Url https://office365powershell.sharepoint.com
-credential $cred

Connect-AzureAD -Credential $cred

$PasswordProfile = New-Object -TypeName Microsoft.Open.AzureAD.Model.
PasswordProfile

$PasswordProfile.Password = "Apress2017"

$PasswordProfile.ForceChangePasswordNextLogin = $true
$Sku = New-Object -TypeName Microsoft.Open.AzureAD.Model.AssignedlLicense

$Sku.SkuId = "c7df2760-2c81-4ef7-b578-5b5392b571df"

$Licenses = New-Object -TypeName Microsoft.Open.AzureAD.Model.
AssignedlLicenses

$Licenses.AddLicenses = $Sku

$users = Get-PnPListItem -List 'New Users'

foreach ($user in $users|Where {$.FieldValues.Processed -eq $false})

{

204

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL

$EmployeeID = $user.FieldValues.Title
$FirstName = $user.FieldValues.First x0020 Name
$LastName = $user.FieldValues.Last x0020 Name
$JobTitle = $user.FieldValues.JobTitle

$Dept = $user.FieldValues.Department
$ManagerEmail = $user.FieldValues.Manager.Email
$0fficePhone = $user.FieldValues.OfficePhone
$Cell = $user.FieldValues.MobilePhone

$City = $user.FieldValues.City

$State = $user.FieldValues.State

$Country = $user.FieldValues.Country

$Email = "$FirstName.$LastName@office365powershell.ca"”
switch ($Country)

{
"Canada" {$Usagelocation = "CA"}
"United States" {$Usagelocation = "US"}
"Mexico" {$Usagelocation = "MX"}
"France" {$Usagelocation = "FR"}
default {throw "User Location not valid"}
}

$NewUser = New-AzureADUser -GivenName $FirstName -Surname $LastName
-DisplayName "$FirstName $LastName" -UserPrincipalName $EMail -MailNickName
"$FirstName.$LastName" -AccountEnabled $true -PasswordProfile
$PasswordProfile -JobTitle $JobTitle -Department $Dept -Usagelocation
$Usagelocation -Country $Country -Mobile $Cell -TelephoneNumber
$0fficePhone -State $State -City $City

$Manager = Get-AzureADUser -ObjectId $ManagerEmail

Set-AzureADUserManager -ObjectId $NewUser.ObjectId -RefObjectId $Manager.
ObjectId

Set-AzureADUserlLicense -ObjectId $NewUser.ObjectId -AssignedlLicenses
$Licenses

$RequesterDisplayName = $user.FieldValues.Author.LookupValue

$Requesteremail = $user.FieldValues.Author.email

205

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL

$body = "Hello $RequesterDisplayName , </br> The account for Employee
ID $EmployeeID has been created with the following details: </br>
Username: $Email </br> Password: Apress2017 </br> For any
questions, don't hesitate to open a Helpdesk Ticket."

$Subject = "Account Created for New Employee $EmployeeID"

Send-MailMessage -To $Requesteremail -from vlad-admin@office365powershell.
ca -Subject $Subject -Body $body -BodyAsHtml -smtpserver smtp.office365.com
-usessl -Credential $cred -Port 587

$updatedItem = Set-PnPListItem -List 'New Users' -Identity $user.id -Values
@{"Processed" = $true}

}

Now, let’s test it out! I have logged in as Jeff and created the list entry seen in Figure 8-6.

New Users > 10151

EmployeelD *
Porse MobilePhone
10151
123-567-2109
First Name
City
U
cad Seattle
Last Name
State
Jones :
Washington
JobTitle
Country
M. ing Man,
Eeketing Manager United States W
Departi t
partmen Processed
Marketing @ No
Manager Attachments

() Jeff Collins ¢

OfficePhone
#1234

Figure 8-6. New User entry
206

Add attachments

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL

I will then run the full script that I have saved in a . ps1 file. A few seconds later, I
get the email to the Jeff Collins account with which I created the request stating that the
account was created and everything seems good, as seen in Figure 8-7.

Tue 11/7/2017 12:35 AM

Vlad Admin

Account Created for New Employee 10151
To Jeff Collins

Hello Jeff Collins,

The account for Employee ID 10151 has been created with the following details:
Username: Liam.Jones@office365powershell.ca

Password: Apress2017

For any questions, don't hesitate to open a Helpdesk Ticket.

Figure 8-7. Notification email from script

As you can see in the Office 365 Admin Center, the user has been created, with the
proper title and license, as seen in Figure 8-8.

207

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL

Liam Jones
Liam Jones@office365powershell.ca

Username / Ema Liam.Jones@office365powershell.ca Edit
Aliases none

Product licenses Office 365 Enterprise ES Edit
Group memberships (0 No groups for the user. Click edit to change Egit

group membership.
Sign-in status Sign-in allowed Edit

stalls View and manage which devices this person has Edit
Office apps installed on.

S User (no admin access)

m

y name Liam Jones

Q.

ne #1234

Figure 8-8. Newly created user in the Office 365 Admin Center

If we expand the properties, we can see that all the properties of the user have been

updated, as seen in Figure 8-9.

208

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL

Liam Jones

LiamJones@office365powershell.ca

Y

Edit contact information
First name

Liam

Last name

Jones

Dispiay name *

Liam Jones

~ Contact information

Job title
Marketing Manager
Department

Marketing

State or province
Washington

ZIP or postal code

Country or region

: United States
Figure 8-9. All properties of the newly created user

We have successfully created a script that takes information from a SharePoint list
and creates users in Azure Active Directory!

209

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL

Add Users to an Distribution List Using SharePoint
as an Input

This next scenario will work with SharePoint and Exchange Online. In many companies
that I have worked for, there are multiple levels of support, and a lot of times the first level
of support does not have any access to the Exchange Online Admin Center of a company.
In this scenario, I will create a SharePoint list as an input form where help-desk personnel
will be able to enter requests to add users to certain distribution lists. To make things
more interesting, I will also create a PowerShell script that will keep a Choice column

up to date with the existing distribution lists inside the organization. I will first create a
SharePoint list with the columns seen in Table 8-2 and with the name DL Request.

Table 8-2. DL Request List Columns

Column Name Type Notes

Helpdesk Ticket Single Line of Text Renamed the default Title column from the list.
ID Internal name for this column will remain Title.

User People Picker
Distribution List Choice

Processed Yes/No This column will tell PowerShell whether this item has
already been processed or not. By default, it will be at
No, and we will change it to Yes from our PowerShell
script.

You can also view the form in SharePoint in Figure 8-10.

210

New item

Helpdesk Ticket ID *
1031

User *

A Jeff Collins

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL

Distribution List *
HR@office365powershell.ca

Processed

@ wo

Attachments

Add attachments

Save Cancel

Figure 8-10. DL Request list form

The first script I will create is the script that will make sure my Distribution List
column is up to date. This script will connect to Exchange Online, get all the currently
available distribution lists, and populate them in the column as available choices.

I will first get my credentials and import the SharePoint Online PnP module:

Import-Module SharePointPnPPowerShellOnline
$cred = Import-CliXML C:\Scripts\pass.xml

211

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL

Next up, I will connect to the SharePoint Online site collection as well as Exchange
Online:

Connect-PnPOnline -Url https://office365powershell.sharepoint.com
-Credentials $cred

$Exchange = New-PSSession -ConfigurationName Microsoft.Exchange
-ConnectionUri "https://outlook.office365.com/powershell-1liveid/"
-Credential $cred -Authentication "Basic" -AllowRedirection

Import-PSSession $Exchange

I'will now get the email address of all the distribution lists and save it in a variable as
seen here:

$DistributionGroups = Get-DistributionGroup | Select PrimarySmtpAddress
-ExpandProperty PrimarySmtpAddress

Next, I will find the ID of the Distribution List column by using the Get-PnPField
cmdlet:

Get-PnPField -List "DL Request"

In Figure 8-11, you can see the ID of our column is b06268ba-4779-45f8-8b31-
c2d33fd18f9f.

EX Administrator: Windows PowerShell - o x
S C:\WINDOWS\system32> Get-PnPField -List "DL Request” ~|
itle InternalName Id
ontent Type ID ContentTypeId 03e45e84-1992-4d42-9116-26f756012634
Fe1pdesk Ticket ID Title faS€4e0f-0c70-4ab9-b863-0177e6ddd247
pprover Comments _ModerationComments 34ad21eb-75bd-4544-8c73-0e08330291fe
elpdesk Ticket ID LinkTitleNoMenu bc91lad37-52e7-49el-8c4e-4698904b2bed
elpdesk Ticket ID LinkTitle 82642ec8-ef9b-478f-acf9-31f7d45fbec3l
elpdesk Ticket ID LinkTitle2 5f190d91-3dbc-4489-9878-3c092caf35b6
File_Type File_x0020_Type 39360f11-34cf-4356-9945-25c44e68dade
ompliance Asset Id CcomplianceAssetId gﬁl‘)zggg-3f50-445c-alsf-gcs?aeagddas
lear Lsar L -
istribution List Distribution_x0020_List b06268ba-4779-45f8-8b31-c2d33fd18f9f
PFoc - - - - |
ao ID ld22eall-le32-424e-89ab-9fedbadbécel
fontent Type ContentType c042a256-787d-4a6f-8aBa-cf6ab767f12d v

Figure 8-11. Finding the ID of the DL Request distribution list

212

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL
Now what I know the ID, I can get the field and save it into a variable:

$DLField = Get-PnPField -List "DL Request" | Where {$.ID -eq "b06268ba-
4779-45f8-8b31-c2d33fd18f9f"}

I can then update the Choices property of the column with the email addresses of
the distribution groups that were previously saved in the $DistributionGroups variable:

$DLField.Choices = $DistributionGroups
$DLField.Update()

To apply the changes, I will run the following cmdlet:

Execute-PnPQuery

In Figure 8-12, you can see the final New Item form in the SharePoint Online list with
the available choices in the Distribution List field.

Save X Cancel @ Copylink oF Customize X

New item

Helpdesk Ticket ID *

m

nter text here

User *

Enter 2 name or email address

Distribution List *

HR@office365powershell.ca e

HR@office365powershell.ca
Marketing@office365powershell.ca

Suggestions@office365powershell.ca

Add attachments

Figure 8-12. Viewing the distribution lists as choices

213

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL

The script to update the Choice column with the list of distribution lists available in
the Office 365 tenant is now complete; here is what it looks like when put together:

Import-Module SharePointPnPPowerShellOnline

$cred = Import-CliXML C:\Scripts\pass.xml

Connect-PnPOnline -Url https://office365powershell.sharepoint.com
-Credentials $cred

$Exchange = New-PSSession -ConfigurationName Microsoft.Exchange
-ConnectionUri "https://outlook.office365.com/powershell-liveid/"
-Credential $cred -Authentication "Basic" -AllowRedirection

Import-PSSession $Exchange

$DistributionGroups = Get-DistributionGroup | Select PrimarySmtpAddress
-ExpandProperty PrimarySmtpAddress

$DLField = Get-PnPField -List "DL Request" | Where {$_.ID -eq "b06268ba-
4779-4578-8b31-c2d33fd18f9f"}

$DLField.Choices = $DistributionGroups

$DLField.Update()

Execute-PnPQuery

Next up, I need to write the second script, which will take the information from the
list and add the user to the chosen distribution list. I will first import the modules, get the
credentials, and connect to both Exchange and SharePoint Online using the OfficeDev
PnP cmdlets:

Import-Module SharePointPnPPowerShellOnline
$cred = Import-CliXML C:\Scripts\pass.xml
Connect-PnPOnline -Url https://office365powershell.sharepoint.com

-Credentials $cred

$Exchange = New-PSSession -ConfigurationName Microsoft.Exchange
-ConnectionUri "https://outlook.office365.com/powershell-liveid/"
-Credential $cred -Authentication "Basic" -AllowRedirection

Import-PSSession $Exchange

214

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL

I will then get all the items in the DL Request list and start a foreach loop on all the
items where the Processed field is set to false:

$NewD1Members = Get-PnPListItem -List 'DL Request'
foreach ($Member in $NewDIlMembers|Where {$.FieldValues.Processed -eq
$false})

{

Next up, I will save the values of my three fields in variables so I can easily reuse
them later:

$TicketNumber = $Member.FieldValues.Title
$DL = $Member.FieldValues.Distribution x0020 List
$User = $Member.FieldValues.User.Email

I can now run the simple Add-DistributionGroupMember cmdlet to add the user to
the required distribution list, as seen here:

Add-DistributionGroupMember -Identity $DL -Member $User

With the job done, I now need to notify the person who created the entry, telling
them that the job is done and they can close the ticket. I will first get the information
about the person who created the entry, and afterward I will send them an email letting
them know the request has been completed. See here:

$RequesterDisplayName = $Member.FieldValues.Author.LookupValue
$Requesteremail = $Member.FieldValues.Author.email

$body = "Hello $RequesterDisplayName , </br> The account $User has been
added to the following Distribution List: $DL </br> You can now close
ticket number #$TicketNumber"

$Subject = "User added to requested DL for Helpdesk Ticket #$TicketNumber"

Lastly, I will use the Send-MailMessage cmdlet to send the email and the
Set-PnPListItem cmdlet to change the value of the Processed field to True:

Send-MailMessage -To $Requesteremail -from vlad-admin@office365powershell.
ca -Subject $Subject -Body $body -BodyAsHtml -smtpserver smtp.office365.com
-usessl -Credential $cred -Port 587

215

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL

Set-PnPListItem -List 'DL Request' -Identity $Member.id -Values @
{"Processed" = $true}

}

After running the script, the user in the SharePoint list will get added to the required
distribution list and the person who created the request will get an email similar to that
in Figure 8-13.

User added to requested DL for Helpdesk Ticket #156
g Vlad Admin
Vkl;d!’-\;;in'.z

Hello Viad Admin,
The account john@office365powershell.ca has been added to the following Distribution List: Marketing@office365powershell.ca
You can now close ticket number #156

Figure 8-13. Email notification after the script is completed

Here is what the script looks like when put together:
Import-Module SharePointPnPPowerShellOnline
$cred = Import-CliXML C:\Scripts\pass.xml

Connect-PnPOnline -Url https://office365powershell.sharepoint.com
-Credentials $cred

$Exchange = New-PSSession -ConfigurationName Microsoft.Exchange
-ConnectionUri "https://outlook.office365.com/powershell-1liveid/"
-Credential $cred -Authentication "Basic" -AllowRedirection

Import-PSSession $Exchange
$NewD1Members = Get-PnPListItem -List 'DL Request'

foreach ($Member in $NewD1Members|Where {$.FieldValues.Processed -eq $false})

{
$TicketNumber = $Member.FieldValues.Title

$DL = $Member.FieldValues.Distribution x0020 List
$User = $Member.FieldValues.User.Email
Add-DistributionGroupMember -Identity $DL -Member $User

216

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL

$RequesterDisplayName = $Member.FieldValues.Author.LookupValue
$Requesteremail = $Member.FieldValues.Author.email

$body = "Hello $RequesterDisplayName, </br> The account $User has been
added to the following Distribution List: $DL </br> You can now close
ticket number #$TicketNumber"

$Subject = "User added to requested DL for Helpdesk Ticket #$TicketNumber"

Send-MailMessage -To $Requesteremail -from vlad-admin@office365powershell.
ca -Subject $Subject -Body $body -BodyAsHtml -smtpserver smtp.office365.com
-usessl -Credential $cred -Port 587

$updatedItem = Set-PnPListItem -List 'DL Request' -Identity $Member.id
-Values @{"Processed" = $true}

}

With this small automation scenario now done as well, let’s take a look at a third one
that provisions Office 365 Groups.

Office 365 Groups Provisioning

In the previous chapters, you learned how to work with Office 365 Groups using
PowerShell, and you also learned how to use governance policies to block end-users
from directly creating Office 365 Groups. In this automation scenario, you are going to
create a SharePoint list in which users will enter requests for Office 365 Groups, as well
as properties like classification, language, the members they would like to have inside
to start with, and a few other settings. You will start by creating a SharePoint list where
users will request Office 365 Groups. You can view the fields of the form in Table 8-3.

217

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL

Table 8-3. Office 365 Group Request List Columns

Column Name Type

Notes

Group Name Single Line of Text

Business Multiple lines of text
Justification

Classification Choice

Language Choice

Access Type Choice

Members Person or Group
Owners Person or Group
Processed Yes/No

Renamed the default Tit1le column from the list. Internal
name for this column will remain Title.

This list of Classification matches the classifications
created in the Office 365 Groups chapter.

The available choices are Public or Private, which are
out of the box, as well as Secret, which will be a private
group with hidden membership and hidden from the Global
Address List.

List of users who will be added as members of the Office
365 Group

List of users who will be added as owners of the Office
365 Group

This column will tell PowerShell whether this item has
already been processed or not. By default, it will be at No,
and we will change it to Yes from our PowerShell script.

You can also view the SharePoint list form in Figure 8-14.

218

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL

B save X Cancel @ Copylink ¢ Customize X

Project Beta

Group Name *

Project Beta

Business Justification 7

This group will be used to collaborate for Project Beta

Classification

Top Secret v

Language

English v

Access Type

Secret "

Members

N jettcoting X N jonnsmith X

Owners

N visgadmin X N vanessalee X

Processed

@ Do
Figure 8-14. The Office 365 Group request form

Tip You could add an approval workflow using Microsoft Flow on the group
creation and build your script to only create groups once they are approved.

219

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL

First, import your modules and connect to SharePoint Online using the SharePoint
PnP PowerShell cmmdlets as well as Exchange Online. See here:

Import-Module SharePointPnPPowerShellOnline
$cred = Import-CliXML C:\Scripts\pass.xml

Connect-PnPOnline -Url https://office365powershell.sharepoint.com
-Credentials $cred

$Exchange = New-PSSession -ConfigurationName Microsoft.Exchange
-ConnectionUri "https://outlook.office365.com/powershell-1iveid/"
-Credential $cred -Authentication "Basic" -AllowRedirection

Import-PSSession $Exchange

Then, get all the items in the Office 365 Group request list and start a foreach loop
on all the items where the Processed column is at false:

$GroupRequests = Get-PnPListItem -List 'Office 365 Group Request'

foreach ($Group in $GroupRequests|Where {$.FieldValues.Processed -eq
$false})

{

Next, save all the information from the columns into variables to make it easier to
use later. Since SharePoint stores columns with the type Multiple Lines of Text in HTML
format, use a -replace function on the Business Justification field value in order to return
pure text without any of the HTML formatting:

$GroupTitle = $Group.FieldValues.Title

$Description = $Group.FieldValues.Business x0020 Justification -replace
Ror o

$Classification = $Group.FieldValues.Classification

$Language = $Group.FieldValues.Language

$AccessType = $Group.FieldValues.Access x0020 Type

$Members = $Group.FieldValues.Members.Email

$Owners = $Group.FieldValues.Owners.Email

220

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL

Next, create the GroupAlias variable by using the group title preceded by 0365Group-
and without any spaces:

$GroupAlias = "0365Group-$GroupTitle" -replace '\s',"’

The last variable you need to build is the language of the group. While in the
SharePoint list the language was in a user-friendly name, you need to change it to a
supported culture-code value from the Microsoft .NET Framework:

switch ($Language)

{
"English" {$LanguageCode = "en-US"}
"French" {$LanguageCode = "fr-FR"}
"Spanish" {$LanguageCode = "es-ES"}
default {throw "Language not valid"}
}

Now that you have everything you need saved in variables, start creating the
Office 365 Groups. When creating the group, the big differentiator will be if they chose
one of the out-of-the-box access types (Public or Private) or if they chose Secret,
as that level does not actually exist, so you would need to manually configure some
parameters such as the -HiddenGroupMembershipEnabled switch. Do an If statement
on the AccessType variable first, and if it'’s Secret, create the group, specifying a
Private access type using the -HiddenGroupMembershipEnabled switch and setting
the -HiddenFromAddressListsEnabled property as well. Also, specify all the group
properties, such as classification, languages, description, and display name.

If ($AccessType -eq "Secret"){

New-UnifiedGroup -DisplayName $GroupTitle -Alias $GroupAlias
-EmailAddresses "$GroupAlias@office365powershell.ca” -AccessType Private
-HiddenGroupMembershipEnabled -Classification $Classification -Language
$LanguageCode -Notes $Description

Set-UnifiedGroup -Identity $GroupAlias -HiddenFromAddressListsEnabled $true
}

221

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL

If it’s not a secret Office 365 Group that you need to create, it means you need to
create either a public or private one, so you will do an Else statement in which you will
create an Office 365 Group using all the parameters you have saved from the user input
and setting the -AccessType parameter to the $AccessType variable:

Else{

New-UnifiedGroup -DisplayName $GroupTitle -Alias $GroupAlias
-EmailAddresses "$GroupAlias@office365powershell.ca" -AccessType
$AccessType -Classification $Classification -Language $LanguageCode -Notes
$Description

}

What you need to do next is add the members and owners. Since in the SharePoint
list those items are set at optional, you first need to make sure that some members have
been entered, and, if yes, add those members to the group:

If ($Members)

{

Add-UnifiedGrouplLinks -Identity $GroupAlias -LinkType "Members" -Links
$Members

}

Do the same thing for owners, and also make sure to first add them as members and
them as owners in order to avoid any potential errors:

If ($O0wners)

{

Add-UnifiedGrouplLinks -Identity $GroupAlias -LinkType "Members" -Links
$Owners

Add-UnifiedGrouplLinks -Identity $CGroupAlias -LinkType "Owners" -Links
$Owners

}

Lastly, change the Processed column to Yes in order to mark this item as processed
and then close the foreach loop you started at the beginning of the script. No email
notification will be sent in this example as all the members that have been added to the

222

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL

group have already been notified. If needed in your specific scenario, you can add an
email notification:

$updatedItem = Set-PnPListItem -List 'Office 365 Group Request' -Identity
$Group.id -Values @{"Processed" = $true}

}

To test it out, I have created a few entries in the list as seen in Figure 8-15. Some
columns are not shown in order to make the text readable.

Home

Learn-PowerShell Team Site

¢ Notfollowing & Share

+ New £ Quickedit [Export to Excel = Allltems ~ Y ®

Office 365 Group Request

Group Name Business Justification Classification Language

Project Beta This group will be used to collaborate for Top Secret English
Project Beta

HR Travel Policies Update Space to collaborate on our 2018 Travel Confidential English
Policies

Photoshop Expert Group Public group to collaborate on Photoshop tips Restricted English

and tricks

Figure 8-15. Input for the Office 365 Group creation

After the script has been run, the Office 365 Groups have been created, as seen in
Figure 8-16, and members and owners have been added, even if you cannot see it in the
figure.

223

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL

Hsae X i

Edit group

Name
Photoshop Expert Group
Description

Public group to collaborate on Photoshop tips and tricks

Privacy

Public - Anyons in your organization ¢an see what's insi
Classification ©

Restricted -
Language for group-relatad notifications

English (United States) ”

Hsve X Discars

Edit group

Name
HR Travel Policies Update
Description

Space to collaborate on our 2018 Travel Policies

Privacy
Private - Only approved members can see what's inside ¥
Classification @

Confidential -

Language for group-related notifications

English (United Statas) -

Figure 8-16. Office 365 Groups created by script

This is what the final script looks like when put together:

Import-Module SharePointPnPPowerShellOnline
$cred = Import-CliXML C:\Scripts\pass.xml
Connect-PnPOnline -Url https://office365powershell.sharepoint.com

-Credentials $cred
$Exchange =

X Discara

H e
Edit group

Name

Project Seta

Description

This group will be used to collaborate for Project Bata

Privacy

Private - Only approved members can see what's inside v
Classification @

Top Secret -
Language for group-related notifications

English (United States) ol

New-PSSession -ConfigurationName Microsoft.Exchange

-ConnectionUri "https://outlook.office365.com/powershell-liveid/"
-Credential $cred -Authentication "Basic" -AllowRedirection

Import-PSSession $Exchange

$GroupRequests =

Get-PnPListItem -List 'Office 365 Group Request'

foreach ($Group in $GroupRequests|Where {$.FieldValues.Processed -eq

$false})
{

$GroupTitle = $Group.FieldValues.Title
$Description = $Group.FieldValues.Business x0020 Justification -replace

ll<.*?>ll
224

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL

$Classification = $CGroup.FieldValues.Classification
$Language = $Group.FieldValues.Language

$AccessType = $Group.FieldValues.Access x0020 Type
$Members = $Group.FieldValues.Members.Email

$Owners = $Group.FieldValues.Owners.Email

$GroupAlias = "0365Group-$GroupTitle" -replace '\s',
switch ($Language)

{
"English" {$LanguageCode = "en-US"}
"French" {$LanguageCode = "fr-FR"}
"Spanish" {$LanguageCode = "es-ES"}
default {throw "Language not valid"}
}

If ($AccessType -eq "Secret"){

New-UnifiedGroup -DisplayName $GroupTitle -Alias $GroupAlias
-EmailAddresses "$GroupAlias@office365powershell.ca"” -AccessType Private
-HiddenGroupMembershipEnabled -Classification $Classification -Language
$LanguageCode -Notes $Description

Set-UnifiedGroup -Identity $GroupAlias -HiddenFromAddressListsEnabled $true
} Else
{
New-UnifiedGroup -DisplayName $GroupTitle -Alias $GroupAlias
-EmailAddresses "$GroupAlias@office365powershell.ca"™ -AccessType
$AccessType -Classification $Classification -Language $LanguageCode -Notes
$Description

}

If ($Members)

{
Add-UnifiedGrouplLinks -Identity $GroupAlias -LinkType "Members" -Links

$Members

}

225

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL

If ($Owners)

{
Add-UnifiedGrouplLinks -Identity $GroupAlias -LinkType "Members" -Links
$Owners
Add-UnifiedGrouplLinks -Identity $CGroupAlias -LinkType "Owners" -Links
$Owners

}

$updatedItem = Set-PnPListItem -List 'Office 365 Group Request' -Identity
$Group.id -Values @{"Processed" = $true}

}

We have now looked at three real-life automation scenarios with PowerShell for
Office 365. In the next section, we will look at a few tips and tricks on how we could
optimize the scripts we did for better performance and user experience, tips that you
could use in all of your PowerShell scripts!

Other Tips and Optimizations

Before finishing the book, let’s look at a few final configurations or optimizations you
can do with PowerShell for Office 365 that would make the automation scenarios in this
chapter better.

Hiding Columns in SharePoint Online

One of the columns we used in all three of the previous scripts was the Processed
column. This column worked really well; however, a problem happens when a user
does not understand it and switches it to Yes when creating a new item. By using the
Office 365 Dev PnP PowerShell cmdlets, we can hide certain columns in certain fields.
Let’s take the DL Request list, for example, for which you can see the New Item form in
Figure 8-17.

226

CHAPTER 8

& save X Cancel @ Copylink ©* Customize

New item

Helpdesk Ticket ID *

User *

Distribution List *

Select an option

Processed
(®) No

Attachments

Add attachments

Figure 8-17. The DL Request New Item form

Import-Module SharePointPnPPowerShellOnline
$cred = Import-CliXML C:\Scripts\pass.xml

Connect-PnPOnline -Url https://office365powershell.sharepoint.com
-Credentials $cred

SetShowInDisplayForm
SetShowInEditForm

SetShowInNewForm

AUTOMATING TASKS WITH POWERSHELL

If we wanted to hide the Processed column in the New Item form, we would first
import the Office 365 PnP PowerShell cmdlets and connect to our site collection:

We will then get the column and save it into a variable:

$ProcessedField = Get-PnPField -List "DL Request" | Where {$.Title -eq
"Processed"}

Each field has three properties that will help us define where this field is shown, or not:

227

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL

If we wanted to hide the field from the New Item form, but keep it in the Display and
Edit forms, we would run the following cmdlets:

$ProcessedField.SetShowInNewForm($false)
$ProcessedField.Update()

Lastly, we will run the following cmdlet to apply these changes to our site collection:

Execute-PnPQuery

The end result, seen in Figure 8-18, is that the Processed field is not seen when
creating an item in that list:

B save X Cancel @ Copylink ©# Customize X

New item

Helpdesk Ticket ID *

Enter texx here

User *

Enter 3 name or email address

Distribution List *

Select an option

Attachments

Add attachments

Save Cancel

Figure 8-18. Field hidden when creating an item

However, the field is still visible when viewing the item or when editing it, as seen in
Figure 8-19.

228

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL

B Save X Cancel @ Copylink o Customize X

156
Helpdesk Ticket ID *

156

User *

5{}% John Smith X

Distribution List *

Marketing@office365powershell.ca v

Processed

Attachments

Add attachments

Figure 8-19. Field visible in edit form

Knowing how to change when a field is visible can allow you to customize the user
experience and will only show the relevant columns when users create, edit, or view items!

Using CAML to Filter Items

In previous examples, we used code similar to the following to get items that had the
Processed field set to No:

$NewD1Members = Get-PnPListItem -List 'DL Request'

foreach ($Member in $NewDIMembers|Where {$.FieldValues.Processed -eq
$false})
{ #code }

229

CHAPTER 8 AUTOMATING TASKS WITH POWERSHELL

One of the issues with this approach is that when doing the Get-PnPListItem we
will retrieve all the items in the list, which can take a long time and make our script less
performant. With the Office 365 Dev PnP cmdlets, you can use Collaborative Application
Markup Language (CAML) to filter the information that you get from SharePoint. For
example, I could use the following cmdlet to only get the items where the field Processed
is equal to No:

Get-PnPListItem -List "New Users" -Query "<View><Query><Where><Eqg>
<FieldRef Name='Processed'/><Value Type='Boolean'>0</Value></Eq></Where>
</Query></View>"

Instead of returning all the items in the list in my PowerShell session, I would only
get the pre-filtered ones, which would make my script faster!

Conclusion

In this chapter, we looked at PowerShell scripts that allow us to automate real-life
scenarios that span multiple Office 365 services and can resolve real business needs.

As this is the final paragraph of the book, I would like to thank you for reading until
the end, and I hope it was informative and will help you manage and automate your
Office 365 tenant!

230

Index

A

Azure Active Directory, 6-8, 11

B

Blocked words
Azure AD settings object, 173
in Microsoft Stream, 177
in Microsoft Teams, 176
in Outlook Online, 175
in Planner, 176
update, 174

C

CAML, see Collaborative Application
Markup Language (CAML)
Client-side object model (CSOM), 73
Collaborative Application Markup
Language (CAML), 232
Connect-SPOService cmdlet, 52-53

D

Data-loss prevention (DLP) cmdlets, 141

E

Exchange online
calendar and out of office, 100-104
ConnectionUri, 86

© Vlad Catrinescu 2018

contacts, 93, 95-96
distribution groups, 112-114
mailboxes, 96, 98-100
mailbox reporting, 116, 118
managing
distribution group membership, 115
organization settings, 109-111
MFA, 85
PowerShell, 86
SendAs and mailbox permissions, 104-108
users, 91-92

F

ForceChangePasswordNextLogin

property, 19

GHIJ

Get-AzureADUserDirectReport cmdlet, 16
Get-AzureADUserManager cmdlet, 15
Get-CsOnlineUser cmdlet, 124
Get-RoleGroupMember cmdlet, 144

Guest policies

add external guest, 191, 193

block guests, 189

Get-AzureADDirectorySetting
Template cmdlet, 190-191

Group.Unified.Guest directory
setting, 191

tenant level, 188-189

231

V. Catrinescu, Essential PowerShell for Office 365, https://doi.org/10.1007/978-1-4842-3129-6

https://doi.org/10.1007/978-1-4842-3129-6

INDEX

K, L

Keyword Query Language (KQL), 145

Microsoft Download Center, 12, 49, 74
Multi-factor authentication
(MFA), 7, 53, 85
Exchange Online PowerShell
module, 88-90
Exchange Online Remote PowerShell
module, 87

N

Naming convention policy
Microsoft Stream, 177
Microsoft Teams, 176
Outlook Online, 175
Planner, 176
updation, 174

New-AzureADUser cmdlet, 19

O

Office 365
Active Directory, 11
Get-Credential cmdlet, 13
PowerShell Gallery, 12
Office 365 Groups
add users, 169
blocked words
administrative roles, 172
Azure AD settings object, 173
in Microsoft Stream, 177
in Microsoft Teams, 176

232

in Outlook Online, 175
in Planner, 176
update, 174
classifications, 178
ClassificationDescriptions
property, 179
ClassificationList property, 179
DefaultClassification property, 179
in Microsoft Stream, 181
in Microsoft Teams, 181-182
in Outlook Online, 180
connect to SharePoint Online, 222
governance, 170
group properties, 223
guest policies
add external guest, 191, 193
block guests, 189
Get-AzureADDirectorySetting
Template cmdlet, 190-191
Group.Unified.Guest directory
setting, 191
hidden membership, 161
MailTip, 163
membership levels, 167
naming convention policy
Microsoft Stream, 177
Microsoft Teams, 176
Outlook Online, 175
Planner, 176
update, 174
parameters of New-UnifiedGroup
cmdlet, 156-158
Outlook Online
Discover button, 186-187
private group
non-members, 160-161
search, 160

public group, 158-159
remove users, 169-170
parameters of Set-UnifiedGroup
cmdlet, 161-162
soft-deleted state, 164
usage guidelines, 183-185
user profile properties, 171
view members, 167-168
Office 365 Security and Compliance
Center
available cmdlets, 139
content search cmdlets, 140
DLP, 141
Import-PSSession cmdlet, 138
PowerShell cmdlets
compliance search, 144-145, 147
managing permissions, 142-144
Security and Permissions
cmdlets, 142

PQR

Patterns and Practices (PnP), 73
Get-AzureADSubscribedSku cmdlet, 21
Get-AzureADUserLicenseDetail
cmdlet, 24, 27
Get-AzureADSubscribedSku, 28
Set-AzureADUserLicense cmdlet, 28
removing user licenses, 33-34
save credentials, 198, 200
security groups
changing the properties, 35-36
membership, 37-39
removing, 36

user creation, 19-20

user properties, 17-18

viewing users and properties, 15-16

INDEX

S, T

Set-AzureADUser cmdlet, 17
Set-AzureADUserManager
cmdlet, 18
SharePoint
hide columns, 228-231
SharePoint Online
community extensions, 73
Connect-PnPOnline cmdlet, 75
ExternalUserAndGuestSharing
sharing option, 62
Get-PnPRecycleBinltem, 77
Get-SPODeletedSite cmdlet, 59
Get-SPOExternalUser cmdlet, 66
Get-SPOSite cmdlet, 56-57, 59
Get-SPOSiteGroup, 63-64
list of users, 65
Management Shell Setup, 50
managing tenant-level
settings, 68-73
New-PnPWeb cmdlet, 75
New-SPOSiteGroup, 67
Office 365 Dev PnP PowerShell
Cmdlets, 74
PnP PowerShell cmdlets, 77-79
PnPRecycleBinltem cmdlet, 76
PowerShell cmdlets, 53
Remove-SPOSite cmdlet, 58
Remove-SPOUser, 67
Restore-PnpRecycleBinltem
cmdlet, 76
SharingAllowedDomainList
parameter, 63
SharingCapability Parameter
Options, 61
SharingDomainRestrictionMode, 63

233

INDEX

SharePoint Online (cont.) Get-CsBroadcastMeeting
sharing options, 61 Configuration cmdlet, 132
Site Collection cmdlets, 54 managing policies, 125-129
SPOSite properties, 60 users and policies, 124-125
tenant-level cmdlets, 55 PowerShell module, 119
User-and SharePoint Groups-level SharePoint and Azure Active

cmdlets, 56 Directory, 119
user permissions, 81, 83-84 user cmdlets, 122

users property, 64
Skype for business online

Broadcast cmdlets, 124 Us Va W, X, Ys Z

hybrid environment, 135-136 Unified Audit Log
New-CSOnlineSession, 121 AuditData parameter, 152
policy cmdlets, 123 Exchange Online module, 149
PowerShell cmdlets searching, 153
Broadcast policies, 134 Search-UnifiedAuditLog
external communications, 130-131 Parameters, 150-151

234

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Introduction to PowerShell for Office 365
	What Is Office 365?
	Office 365 Admin Tools
	The Office 365 Admin Center
	The Office 365 Admin App
	The Office 365 Management API
	PowerShell for Office 365
	The Importance of Learning PowerShell for Office 365

	The Different Types of Office 365 Deployments
	What About the Other Applications?

	Next Steps

	Chapter 2: Managing Users and Licenses
	Connecting to Office 365
	Managing Users with PowerShell
	Viewing Users and Properties
	Modifying User Properties
	Creating Users

	Managing Licenses with PowerShell
	Viewing the Available Licenses
	Assigning a License to a User
	Assigning Multiple Licenses
	Assigning Licenses with Some Features Disabled
	Removing User Licenses

	Managing Security Groups with PowerShell
	Creating a New Security Group
	Changing the Properties of a Security Group
	Removing a Security Group
	Managing Security Group Membership

	Automation Scenarios
	Updating User Licenses
	Creating or Updating Users from a CSV File

	Conclusion

	Chapter 3: Managing SharePoint Online
	Connecting to SharePoint Online
	Executing PowerShell cmdlets in SharePoint Online
	The Available cmdlets
	Managing Sites
	Managing Users and Groups
	Managing Tenant-level Settings

	Community Extensions
	Getting the Office 365 Dev PnP PowerShell Cmdlets
	Connecting to SharePoint
	Sample cmdlets

	Automation Scenarios
	Create Sites from a CSV File
	Copy User Permissions

	Conclusion

	Chapter 4: Managing Exchange Online
	Connecting to Exchange Online
	Connecting with Multi-Factor Authentication

	Managing Users and Mailboxes
	Users
	Contacts
	Mailboxes
	Calendar and Out of Office
	SendAs and Mailbox Permissions

	Managing Organization Settings
	Managing Distribution Groups
	Manage Distribution Group Membership

	Mailbox Reporting
	Disconnecting from Exchange Online
	Conclusion

	Chapter 5: Managing Skype for Business Online
	Connecting to Skype for Business Online
	Available cmdlets
	Executing PowerShell cmdlets for Skype for Business Online
	Managing Users and Policies
	Managing Policies
	External Communications
	Skype for Business Broadcast

	Running cmdlets in a Hybrid Environment
	Conclusion

	Chapter 6: Managing the Office 365 Security & Compliance Center
	Connecting to the Office 365 Security & Compliance Center
	Office 365 Security & Compliance Center cmdlets
	Executing PowerShell cmdlets in the Office 365 Security & Compliance Center
	Managing Permissions
	Compliance Search

	Searching the Unified Audit Log
	Conclusion

	Chapter 7: Managing Office 365 Groups
	PowerShell Modules to Manage Office 365 Groups
	Basic Operations
	Creating an Office 365 Group
	Updating Office 365 Groups
	Deleting an Office 365 Group
	Restoring a Deleted Office 365 Group
	Managing the Members of an Office 365 Group
	Viewing Office 365 Group Members
	Adding Users to an Office 365 Group
	Removing Users from an Office 365 Group

	Office 365 Group Governance
	Enforcing a Naming Policy and Blocked Words
	Group Classifications
	Usage Guidelines
	Only Allowing a Certain Group to Create Office 365 Groups
	Guest Policies

	Office 365 Group Reporting
	Conclusion

	Chapter 8: Automating Tasks with PowerShell
	Connecting to Multiple Office 365 Services
	Saving Credentials to Securely Use with PowerShell
	Creating Users in Azure AD Using SharePoint as an Input
	Add Users to an Distribution List Using SharePoint as an Input
	Office 365 Groups Provisioning
	Other Tips and Optimizations
	Hiding Columns in SharePoint Online
	Using CAML to Filter Items

	Conclusion

	Index

