
Exploring Swi�
Playgrounds

The Fastest and Most Ef fective Way
to Learn to Code and to Teach Others
to Use Your Code
—
Jesse Feiler

www.allitebooks.com

http://www.allitebooks.org

Exploring Swift
Playgrounds

The Fastest and Most Effective
Way to Learn to Code and to

Teach Others to Use Your Code

Jesse Feiler

www.allitebooks.com

http://www.allitebooks.org

Exploring Swift Playgrounds: The Fastest and Most Effective Way to Learn to Code and to
Teach Others to Use Your Code

Jesse Feiler
Plattsburgh, New York, USA

ISBN-13 (pbk): 978-1-4842-2646-9 ISBN-13 (electronic): 978-1-4842-2647-6
DOI 10.1007/978-1-4842-2647-6

Library of Congress Control Number: 2017938279

Copyright © 2017 by Jesse Feiler

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Technical Reviewer: Massimo Nardone
Coordinating Editor: Jessica Vakili
Copy Editor: Corbin Collins
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover image designed by Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is
a California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-2646-9.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/978-1-4842-2646-9
http://www.apress.com/source-code
http://www.allitebooks.org

iii

Contents at a Glance

About the Author �� ix

About the Technical Reviewer �� xi

Introduction �� xiii

 ■Chapter 1: Introducing Swift Playgrounds ������������������������������������� 1

 ■Chapter 2: Creating a Simple Swift Playground on Xcode ������������ 13

 ■Chapter 3: Looking at Swift Basics for Playgrounds �������������������� 27

 ■Chapter 4: Editing Playgrounds on macOS ����������������������������������� 41

 ■Chapter 5: Editing Playgrounds on iOS ��� 65

 ■ Chapter 6: Entering Data and Viewing Results in
Swift Playgrounds ��91

 ■ Chapter 7: Adding Resources and Source Code to
Playgrounds ��113

 ■ Chapter 8: Using Touch Gestures in Interactive
Playgrounds �� 143

 ■Chapter 9: Building a Complex Playground �������������������������������� 167

Index �� 189

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Author �� ix

About the Technical Reviewer �� xi

Introduction �� xiii

 ■Chapter 1: Introducing Swift Playgrounds ������������������������������������� 1

Developer Overview �� 1

Xcode �� 2

Building the Single View Application in Xcode�� 2

Exploring the Single View Application �� 5

Looking into the Frameworks ��� 7

Swift Playgrounds ��� 7

Building the Classic Hello World App �� 7

Building a Hello Playground �� 8

Setting Fonts in Xcode �� 10

Summary ��� 11

 ■Chapter 2: Creating a Simple Swift Playground on Xcode ������������ 13

Getting Started with a Playground, Code, and Results �������������������������� 13

Setting Up the Playground �� 14

Watching Variables and Using Code Completion �� 15

Running the Playground �� 20

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vi

Dealing with Errors �� 20

Handling Syntax Errors ��� 20

Handling Contextual Errors ��� 22

Summary ��� 25

 ■Chapter 3: Looking at Swift Basics for Playgrounds �������������������� 27

Comments and Markup ��� 27

Globals and Objects ��� 30

Classes, Enumerations, and Structures ��� 31

Types in Swift �� 32

Properties �� 33

Constants and Variables ��� 34

Lazy Initialization �� 34

Optional Properties ��� 34

Summary ��� 39

 ■Chapter 4: Editing Playgrounds on macOS ����������������������������������� 41

Exploring the Two Playground Environments �� 41

Creating a Playground with Xcode on macOS ��������������������������������������� 42

Turning a Static Playground into an Interactive Playground ����������������� 43

Moving a Playground from Xcode/Mac to Playgrounds/iPad ���������������� 46

Managing Interaction in a Playground �� 51

Creating and Using an Editable Area �� 52

Summary ��� 63

 ■Chapter 5: Editing Playgrounds on iOS ��� 65

The Playgrounds App User Interface and Experience���������������������������� 65

Using the Shortcut Bar �� 69

Inserting a Simple Line of Code �� 69

Inserting More Complex Syntax �� 70

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vii

Choosing a Color ��� 74

Choosing an Image ��� 74

Putting the Pieces Together: Writing a Class in a Playground
with the Shortcut Bar �� 77

Typing the Code �� 77

Using the Shortcut Bar to Write the Code ��� 79

Summary ��� 89

 ■ Chapter 6: Entering Data and Viewing Results in
Swift Playgrounds ��91

Using the Timeline ��� 92

Creating a Basic Playground with a View �� 96

Looking at Your View in the Timeline �� 97

Add a Second View to the Live View ��� 98

Working with Interactive Data Entry �� 101

Creating a New Playground �� 102

Creating a View Controller for the Live View��� 102

Creating the View Controller Views ��� 103

Summary ��� 112

 ■ Chapter 7: Adding Resources and Source Code to
Playgrounds ��113

Looking Inside a Playground ��� 113

Exploring a Playground in the Finder (macOS) ��� 115

Exploring a Playground in Playgrounds (iOS) ��� 120

Adding Resources to a Playground ��� 124

Adding Code to a Playground �� 131

Summary ��� 141

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

 ■ Chapter 8: Using Touch Gestures in Interactive
Playgrounds �� 143

Understanding Gestures Using Playgrounds ��������������������������������������� 144

Creating a Basic Gesture Playground in Xcode on macOS ����������������������������������� 144

Creating a Basic Gesture Playground in Playgrounds on iPad ������������������������������ 153

Working with Gestures in a Playground �� 159

Summary ��� 166

 ■Chapter 9: Building a Complex Playground �������������������������������� 167

Collecting Your Playground Pages and Creating
the MultiPlayground �� 167

Assembling Playground Pages for Basic Navigation ��������������������������� 172

Using Basic Link Navigation �� 174

Enhancing Navigation �� 181

Changing Link and File Names ��� 181

Adding a Constant Link (Home) �� 183

Using a Basic File for All Pages �� 184

Making Further Enhancements ��� 186

Summary ��� 187

Index �� 189

www.allitebooks.com

http://www.allitebooks.org

ix

About the Author

Jesse Feiler is a developer, consultant, and author
focusing on Apple technologies for small businesses
and nonprofit organizations. His projects have included
database design and development with FileMaker and
Core Data as well as production process control,
publishing project management, and social media
strategies for clients such as Federal Reserve Bank of
New York, Young & Rubicam, Cutter Consortium, and

Archipenko Foundation. His books have been published by Wiley, Pearson, Apress, and
others. His apps, including Utility Smart, Minutes Machine, Saranac River Trail, and The
Nonprofit Risk App, are published by Champlain Arts Corp (http://champlainarts.com).
He is founder of Friends of Saranac River Trail, Inc. and has served on a variety of boards
for libraries and nonprofit cultural organizations. A native of Washington, DC, he has lived
in New York City and currently lives in Plattsburgh, New York. He can be reached at
jfeiler@champlainarts.com.

www.allitebooks.com

http://champlainarts.com
mailto:jfeiler@champlainarts.com
http://www.allitebooks.org

xi

About the Technical
Reviewer

Massimo Nardone has more than 22 years of
experiences in Security, Web/Mobile development,
Cloud and IT Architecture. His true IT passions are
Security and Android.

He has been programming and teaching how to
program with Android, Perl, PHP, Java, VB, Python,
 C/C++ and MySQL for more than 20 years.

He holds a Master of Science degree in Computing
Science from the University of Salerno, Italy.

He has worked as a Project Manager, Software
Engineer, Research Engineer, Chief Security Architect,
Information Security Manager, PCI/SCADA Auditor
and Senior Lead IT Security/Cloud/SCADA Architect
for many years.

Technical skills include: Security, Android, Cloud, Java, MySQL, Drupal, Cobol,
Perl, Web and Mobile development, MongoDB, D3, Joomla, Couchbase, C/C++, WebGL,
Python, Pro Rails, Django CMS, Jekyll, Scratch, etc.

He currently works as Chief Information Security Office (CISO) for Cargotec Oyj.
He worked as visiting lecturer and supervisor for exercises at the Networking

Laboratory of the Helsinki University of Technology (Aalto University). He holds four
international patents (PKI, SIP, SAML and Proxy areas).

Massimo has been reviewing more than 40 IT books for different publishing
company and he is the coauthor of Pro Android Games (Apress, 2015).

This book is dedicated to Antti Jalonen and his family who are always there when I
need them.

www.allitebooks.com

http://www.allitebooks.org

xiii

Introduction

Once you get beyond the basics of very simple code that doesn’t do very much, you
quickly discover a conundrum: testing code to do something pretty simple in the context
of an app requires you to write a pretty complicated app—in many cases before you can
test your simple code. Apple’s Swift playgrounds address that issue in many of its guises.
With a playground, you can experiment with a simple snippet of code on its own or within
a playground that provides the context that your snippet will run in. You don’t have to
write the whole app in order to test your few lines of code.

You can use a Swift playground as a trainer or teacher: you can build the app context
as a playground so that your students can write their snippets inside your playground.
Because playgrounds are often used for training and documentation, Apple’s Swift
playgrounds support their own markup language that lets you format your code and
create areas of the playground’s code where the user can or must provide their own code.
You can even hide some of your playground context so that the user or learner sees only
the snippet to be worked with.

Swift playgrounds can be built and run with Playgrounds for iPad or with Xcode
for macOS. The code that you write in a playground can be tested in that standalone
environment and then copied and pasted into an app being developed with Xcode for
macOS, iOS, watchOS, or tvOS.

This book provides an introduction to Swift playgrounds and gets you started either
as a developer of playgrounds or a user of playgrounds developed by someone else. As
the book progresses, you’ll see how to build more and more complex playgrounds.

Playgrounds can provide a powerful and intriguing entry into coding for new coders
of any age or background.

Downloading Playgrounds for the Book
You can download playgrounds from the book from the author’s website at
northcountryconsulting.com. Create an account, log in, and use the Downloads section
on the left-hand side of the landing page.

northcountryconsulting.com

1© Jesse Feiler 2017
J. Feiler, Exploring Swift Playgrounds, DOI 10.1007/978-1-4842-2647-6_1

CHAPTER 1

Introducing Swift
Playgrounds

Swift is Apple’s new programming language being used by developers inside and outside
Apple to create new apps for macOS, iOS, watchOS, and tvOS. Most Apple operating
systems and frameworks were written originally in Objective-C, and there are bridges
between the two so that you can write new apps in Swift that use the Objective-C
frameworks, sometimes without even knowing it. Examples and demos from Apple on
http://developer.apple.com and at the Apple Worldwide Developer Conferences
(WWDC) and Tech Talks now use Swift.

In and of itself, a new programming language isn’t an earth-shaking event. Yes, many
people think Swift is a terrific language (count me among them!), but new programming
languages have appeared many times over the years since the first programming
languages were developed in the 1950s. What is revolutionary is the Swift playground.
This book provides an introduction to playgrounds and covers how to use them with
Swift. (At the moment, Swift is the only language for playgrounds.)

This chapter introduces you to the pieces you’ll use to put together apps for the
operating systems and frameworks and talks about how they fit together. In different
ways, Swift and playgrounds simplify the process, but underneath it all, the components
described in this chapter are what make apps run.

 ■ Tip If you’ve used or even just looked at these components in the past, treat this chapter
as a review. Things were changing even before Swift and playgrounds came along. The app
development process—particularly the management of apps themselves—has been simplified.

Developer Overview
Getting started as an Apple developer has changed a little in the last few years. What
hasn’t changed is that apps for the App Store (including the Mac App Store) are curated—
meaning Apple reviews each app and its descriptive materials. Curation helps to enforce
basic standards of app quality and security to enhance consumers’ confidence in the

http://developer.apple.com/

ChapTer 1 ■ InTroduCIng SwIfT playgroundS

2

Apple and App Store brands. The only way an app can be installed on an Apple device
is through the relevant App Store using a special code that App Store reviewers place in
each app to guarantee that it has not been changed since the review.

That said, there are now more ways to distribute your apps on a limited basis without
going through the App Store. One important way to share your work with others is to
build a playground for part of your app. You won’t be able to build the next killer game or
must-have lifestyle app using only a playground, but you’ll be able to build small pieces
of it to try out your concept and share it with friends. You can also build a playground to
provide a proof-of-concept look at what your app will eventually be and do.

The App Store review and curation process require that you be a registered Apple
developer. You can find out more about the programs at http://developer.apple.com.
Most developers subscribe to the $99 per year membership category, which enables
access to the App Store as well as to Developer Technical Support (two incidents
per year). There are other development categories for corporations and educational
institutions, all described on http://developer.apple.com.

Most of the development tools and documentation are available for free through
http://developer.apple.com. You may need to register with a valid email address
to gain access, but for the most part, there is no cost. Where there is a cost involved is
for anything that you use for testing on the iOS Simulator or on live devices. For many
would-be developers, that is when they pay the $99 fee.

In short, there’s no cost involved in getting started programming with the Apple
environments.

Xcode
Xcode is the integrated development environment (IDE) used to develop apps. It’s
enormously powerful: in fact, it’s used to develop the operating systems themselves.
This power means that it may appear daunting to use it to build something small like a
Hello World app. As your development projects in Xcode increase in size and complexity,
Xcode’s power and features come into play for you. By the time you get up to even a small
app with a user interface for iOS or macOS, using Xcode is more efficient than writing out
code line by line.

This chapter gives only a very high-level overview of the Xcode development process.
Don’t worry, there are a lot more details as we move into playgrounds.

Building the Single View Application in Xcode
Let’s start with an example of building a simple iOS app with Xcode. This is not an Xcode
tutorial, but rather just a quick look at the Xcode process. As you move on in this chapter
and through the book, you’ll see how playgrounds can become part of that process,
saving you time and effort along the way.

We’re going to look at the Single View Application project that is built into Xcode.
You’ll see how pieces of it reappear in a Swift playground as you work with code in both
the project and the playground:

 1. Launch Xcode and choose New ➤ Project.

 2. Select Single View Application, as shown in Figure 1-1.

http://developer.apple.com/
http://developer.apple.com/
http://developer.apple.com/

ChapTer 1 ■ InTroduCIng SwIfT playgroundS

3

 3. Click Next and select the options for your project, as shown in
Figure 1-2. All that matters right now is the name and that the
language is set to Swift.

 4. Enter a name and location on disk for your project. In this
case, the project is named SimpleApp (you can use that name
if you want to follow along).

Figure 1-1. Single View Application has been selected

Figure 1-2. Enter your app’s product name and other basic information

ChapTer 1 ■ InTroduCIng SwIfT playgroundS

4

 5. Click Next, and the project is created for you. You may have to
open folders in the project navigator at the left of the window
to see your project files, as you see in Figure 1-3.

 6. Select the SimpleApp project itself (the blue icon at the top of
the project navigator). You’ll see the default settings, as shown
in Figure 1-3.

 7. If you see a status warning for code signing, you can safely
ignore it for now.

 8. Choose a device simulator for the project from the top of
the window. iPhone 7 Plus is chosen in Figure 1-3. Click the
triangle to build and run the app.

Figure 1-3. View the project navigator and the target in the main view

ChapTer 1 ■ InTroduCIng SwIfT playgroundS

5

 9. The app is built and runs in the iOS Simulator for iPhone 7
Plus, as shown in Figure 1-4. There’s not much to see, but the
app is running.

Exploring the Single View Application
You can explore the files that are automatically created for you. They’re shown in
Figure 1-5. What Xcode gives you is the ability to create all of those files and a runnable
app with only a few keystrokes.

Figure 1-4. A basic app just runs until you create its user interface

ChapTer 1 ■ InTroduCIng SwIfT playgroundS

6

These files are just the tip of the iceberg. If you look inside AppDelegate.swift (one of
the main files of the project), you’ll see the code shown in Figure 1-6 at the top of the file.

Figure 1-5. The app’s files are created inside the app’s folder

Figure 1-6. Basic app code is placed in the files for you

ChapTer 1 ■ InTroduCIng SwIfT playgroundS

7

Looking into the Frameworks
Most of the code in Figure 1-6 consists of comments and stubs for functions. At the top of
the file, you’ll notice a line of Swift code to include the UIKit framework:

import UIKit

UIKit is the framework that contains the classes to support windows, views, view
controllers, and most of the user interface in iOS, tvOS, and watchOS. (AppKit is the
comparable framework for macOS). You use UIKit in any app you write that has a user
interface, and Xcode puts it in place for you, so you may not even think about it as you
develop your app. Other frameworks need to be added for specific functionalities, such
as frameworks for system configuration, web services, Core Data, and many more. This
integration of frameworks with your code is a key component of Xcode. At the bottom of
Figure 1-3 you can see the Xcode interface that lets you add other frameworks.

In short, Xcode provides a simple and almost effortless way of integrating thousands
of lines of code in the various frameworks into your app.

Swift Playgrounds
Playgrounds in their basic form won’t help you create full-fledged apps. But you can build
a functioning playground for testing code and learning how to use the APIs. If you want to
build something extremely simple such as the traditional Hello World app that is one line
of C code, Xcode and UIKit are overkill.

Building the Classic Hello World App
As a point of reference, the classic Hello World code in C is the following (or some
variation):

#include <stdio.h>

main()
{
 printf("hello, world\n");
}

(This code is from Programming in C: A Tutorial by Brian Kernighan, www.lysator.
liu.se/c/bwk-tutor.html).

The heart of the Hello World code is the printf line: the rest is the environment that
makes it run. Depending on the spacing, this basic program can be anywhere from one
to six lines of code. Certainly, that’s simpler than the steps to create even the basic Single
View Application in Xcode.

http://www.lysator.liu.se/c/bwk-tutor.html
http://www.lysator.liu.se/c/bwk-tutor.html

ChapTer 1 ■ InTroduCIng SwIfT playgroundS

8

Building a Hello Playground
To build a comparable playground, follow these steps (you may want to compare them
with the Xcode steps earlier in this chapter):

 1. Launch Xcode and choose New ➤ Playground.

 2. Set the options for your playground: the main one is the
name. By default, you will probably be using iOS. If that is not
the choice for platform, change it. The options are shown in
Figure 1-7 (they’re much simpler than the full app options
shown in Figure 1-2).

 3. Click Next and choose the location on disk for the playground.

 4. The playground you created is shown, as you see in Figure 1-8.

Figure 1-7. Set options for a playground

ChapTer 1 ■ InTroduCIng SwIfT playgroundS

9

 5. You may have to wait a moment for the text in the sidebar
to appear. The playground is running, and it needs to make
the connection to the interface. Be patient if you don’t see it
immediately.

 6. To convert this to a Hello World app, edit the word playground
in the code to world, as shown in Figure 1-9.

There’s no build process, and there’s no iOS Simulator—the playground executes in
its own window.

Playgrounds and Xcode apps are similar in many respects, but different in many
others. You need the overhead, power, and complexity of Xcode to build an app for an iOS
device, but you can build code in a playground without any of that. If your objective at the
moment is to build and test some code, a playground may be the best choice. Once you
have tested your code, you can copy and paste it into an Xcode project.

Figure 1-8. A basic playground is created

Figure 1-9. Turn “Hello, playground” into “Hello, world”

www.allitebooks.com

http://www.allitebooks.org

ChapTer 1 ■ InTroduCIng SwIfT playgroundS

10

Before leaving this very high-level look at playgrounds, note that the code shown
for the playground here contains the default comment generated by Xcode for each
playground. It also contains the code to import the UIKit framework. These aren’t
necessary for your framework, and you can delete them, as shown in Figure 1-10. The
playground runs with a single line of code.

(Experienced programmers will tell you that deleting comments—unless they are
rendered incorrect or misleading by code revisions—is generally a bad idea. This deletion
is just to show that it can be one.)

UIKit isn’t needed because there are no windows or views. The playground itself
displays the result of setting a variable.

 ■ Tip when we use Xcode or any development environment to test code, we tend to rely
on debugging print statements. It’s an ingrained habit, but it involves writing extra code (and
not making syntax errors in the extra code, as well as removing it when it’s no longer needed).
a slightly more sophisticated technique is to just set breakpoints in the code and examine
variables at runtime. with playgrounds, because assignment statements can be echoed in
the sidebar, there is nothing extra to be done to inspect variables as they are set. Chapter 4
explains how this can pay off as you move your playgrounds from Mac to an ioS device.

Setting Fonts in Xcode
As you are working with playgrounds, you may want to adjust the fonts both for your own
ease of viewing and so that printed or emailed images are easier to read. You can style
your default text in Xcode by clicking Xcode ➤ Preferences ➤ Fonts & Colors, as shown in
Figure 1-11.

Figure 1-10. You don’t need UIKit for a basic playground

http://dx.doi.org/10.1007/978-1-4842-2647-6_4

ChapTer 1 ■ InTroduCIng SwIfT playgroundS

11

There are at least ten built-in styles for your code. The images in this book typically
use Presentation. If you are demonstrating code, you may want to use Presentation Large,
which works well on projections. Xcode watches as you type code, so it can color your
code based on the syntax you are typing. You can add new styles or modify the existing
styles as you see fit.

Summary
Playgrounds are the fastest way to try out code. There is no separate build or compile
process because the code is interpreted as you type and you see the results of the syntax
scanner as well as variable assignments.

Figure 1-11. Choose built-in syntax styles or create your own in Xcode’s Fonts & Colors
panel

13© Jesse Feiler 2017
J. Feiler, Exploring Swift Playgrounds, DOI 10.1007/978-1-4842-2647-6_2

CHAPTER 2

Creating a Simple Swift
Playground on Xcode

You can create playgrounds with Xcode on macOS or with the Playgrounds app on iPad.
The code that you write works in either environment, and you can move it back and
forth with a few minor formatting issues. This chapter helps you get started building a
playground in Xcode. Remember, a playground is like a sandbox in that it is a safe area to
work in without building an entire app. If you’re familiar with Xcode, much of this chapter
will be familiar, but playgrounds are new to you, and so may be Swift. Or you may have a
basic knowledge of Swift and playgrounds thanks to the Playgrounds app on iPad. This
chapter can help you get up to speed.

One very important point to mention about this chapter and the following one: the
Swift code used is very basic. Specifically, it deliberately uses only the non-class features
of Swift. That is to say, this is code that is comparable to code you could write in C or any
other basic programming language. Objects and classes (critically important features of
Swift and most other modern programming languages) are waiting in the wings, covered
in Chapter 4. The focus here is on Xcode and the playground mechanics rather than
syntax. There’s plenty of that later on in the book.

Getting Started with a Playground, Code, and
Results
This section shows you the step-by-step process of writing code, reviewing your
results, and printing it out for debugging. In Swift playgrounds, this is similar to other
environments, but it’s probably a little different than what you may be used to. This
section is detailed, but the details won’t be repeated in the book each time you use this
code and these techniques.

http://dx.doi.org/10.1007/978-1-4842-2647-6_4

Chapter 2 ■ Creating a Simple Swift playground on XCode

14

Setting Up the Playground
The first example is a playground called BasicPlayground. You create it on on your Mac
with Xcode. As a refresher, here are the steps:

 1. In Xcode, choose New ➤ Project to open the Options window
shown in Figure 2-1.

Figure 2-1. Create a new playground

 2. Name the project and make certain that iOS is set as the
platform.

 3. Choose the location on disk for your project (note that there
will be several files in a folder created for you, so you’re only
selecting the location for that folder).

You now have a runnable app. When it runs you’ll see that the sidebar at the right
shows the result of that line of code. In this case, it is the value that is being set for the
variable str, as you see in Figure 2-2. You can resize the sidebar as you see fit.

Chapter 2 ■ Creating a Simple Swift playground on XCode

15

 ■ Note when you first create the playground, you may not see the sidebar log. that
may be because the default playground code that’s created for you may not show up as
anything other than the template. as soon as you actually enter or change code, the sidebar
value will be shown. if you don’t see it, try just typing in a space or any character and then
backspacing to delete it. that will bump the playground into recognizing that you have now
modified the code, and the sidebar will be activated.

Watching Variables and Using Code Completion
When you set a variable, its value is shown in the sidebar. Likewise, when you invoke a
function or method that returns a value, you’ll see that value (there’s more on functions
and methods in Chapter 4). That’s not enough for building apps: you need to be able to
display data when you want, regardless of whether it is changed, and in the format you
want. Most programming languages provide statements to let you print data in various
formats. Swift is no exception.

You can delete the code in your playground window and add a new comment as well
as a new line of code that’s comparable to the line of code that sets str in the template,
as you see in Figure 2-3. A new variable called test is now being set to "Hello", and the
sidebar is appropriately updated when that code is executed.

Figure 2-2. See results in the resizable sidebar at the right

http://dx.doi.org/10.1007/978-1-4842-2647-6_4

Chapter 2 ■ Creating a Simple Swift playground on XCode

16

You can print the value of test whenever you want to using the Swift print
statement. Don’t bother looking up the syntax: just remember (or commit to memory)
the fact that the command you need starts with p (as in print). Add a new line of code and
type p. You’ll see the possible code completion values, as shown in Figure 2-4.

You can keep typing if you want or just scroll down to the code you want to use. Or
keep typing by adding an r, as you see in Figure 2-5.

Figure 2-4. Playgrounds support code completion

Figure 2-3. The sidebar updates in real time

Chapter 2 ■ Creating a Simple Swift playground on XCode

17

Keep going with the i, as you see in Figure 2-6. What you see in this sequence is that
the possible choices are narrowed down as you continue to type. At any point you can
press Return to accept the code completion, and you can use it as is or modify the code.

What this sequence doesn’t show you is that the possible choices are smart—the
playground uses the context you’re creating to give you the most likely choices.

Press Return to accept the highlighted code. If you do that as shown in Figure 2-6, the
result will be what you see in Figure 2-7. Don’t panic.

Figure 2-5. You can interact with code completion as you type

Figure 2-6. You can just type single characters as you go along

Figure 2-7. Sometimes you need to modify the suggestions

Chapter 2 ■ Creating a Simple Swift playground on XCode

18

The print command has an argument in parentheses—it’s shown with a light blue
(highlighted) background. In case you can’t see it easily in Figure 2-7, here is the code
that is in the blue highlight:

Items: Any...

The light blue highlighting means that you should delete or type over the code from
the code completion prompt. If you don’t, the placeholder text is interpreted as code, and
it generates the error you see in Figure 2-7.

If what you want to print out is the test variable, just type t over the blue highlight. It
will replace the placeholder text, as shown in Figure 2-8.

This is an example of the context sensitivity of Xcode: it knows that when you type
the t into the print statement here, chances are you want to print out the test variable,
but any of the other choices is possible. In this case, just the t is enough to construct the
correct code, as you see in Figure 2-9.

Figure 2-8. Pick from any syntactically possible completions

Figure 2-9. Your code is complete

Chapter 2 ■ Creating a Simple Swift playground on XCode

19

 ■ Tip the \n at the end of the sidebar is a newline character—it will print the variable on
its own line. in the sidebar, you’ll just see the newline character.

There is a debug area that you can show or hide at the bottom of playground
windows. Use the up- or down-pointing arrow in the lower left of the window to hide or
show it. It is shown in Figure 2-10.

The sidebar shows the formatting code—the quotes indicate what is printed out, and
you can see the newline formatting. In the debug area at the bottom of the view, you see
the formatted result (no quotation marks, and the newline character takes effect, but you
don’t see the code).

Add two more lines to the code to set another variable and print it out, as you see in
Figure 2-11.

Figure 2-10. A newline character ends the output line and goes to the next line

Figure 2-11. The debug area shows print statements but not results of assignments

Chapter 2 ■ Creating a Simple Swift playground on XCode

20

What’s important to take away is that the sidebar displays results of assignment
statements as well as as print statements and the debug area show only print statements.
(The debug area is also known as the console.)

You’ll use both of the sidebar and console display over and over.

 ■ Tip you always see the result of assignment (or the result of a function or method) in
the sidebar. if you’re used to programming, you may be used to writing debug statements
frequently to check that your program is running correctly. Because the playground will
show you the result of assignment statements as well as results of functions and methods,
you can break the habit of writing those debug statements. each debug statement needs to
be removed before you finish your app. furthermore, remember that every keystroke has
the potential to introduce an error.

Running the Playground
You can control the appearance of the playground and run it yourself. The debug area
that is shown automatically at the bottom of Figure 2-11 can be opened and closed with
the down-pointing arrow in the box at the left. You can also click the right-pointing
arrow to rerun the playground. Try it and you’ll see that the debug area is erased and the
playground runs again.

Dealing with Errors
There are lots of tools in playgrounds to help you avoid errors and, if they do crop up,
to deal with them. The first set of tools is embodied in the code completion technology
shown in Figures 2-4 through 2-6. (Remember that code completion includes context
sensitivity so that the completion suggestions are relevant to the code you’re writing to
the extent possible.)

Handling Syntax Errors
Code completion doesn’t just come into play as you type new code. For example, in
Figure 2-12 you can see what happens if you change print to pring: you get suggestions
for corrections.

 ■ Note Code completion provides suggestions, but as you see in figure 2-12, you may
also see deprecated code shown with a red line through it. this is particularly helpful if
you’re working with out-of-date code where, perhaps, code that you wrote a month or so
ago no longer will compile.

Chapter 2 ■ Creating a Simple Swift playground on XCode

21

In addition to showing you immediate suggestions for code completion and
correction, playgrounds in Xcode will give you details of the error in the debug area
automatically after a moment if you do nothing. Figure 2-13 shows the actual error
message in this case.

There are several points to think about here. First of all, this is all happening
automatically. When you type something that’s clearly wrong (pring, for example) or
begin to type something that you don’t complete (pri for example), code completion
automatically kicks in. After a moment, the playground continues to try to execute, and
you see the error. This is happening behind the scenes in the playground—you don’t
enter a build or compile command.

Figure 2-12. Code suggestions may show deprecated code with a line through it

Figure 2-13. You get full error descriptions in the debug area

Chapter 2 ■ Creating a Simple Swift playground on XCode

22

As is generally the case with syntax errors, the error messages may not be complete.
You probably will get information about the code that causes the error shown in Figure 2-13,
but the analysis of it may be incomplete or misleading. The best strategy is to resolve any
obvious syntax errors and then try and track down more complex problems that may still
exist in syntactically correct code.

 ■ Tip as is true in all languages and compilers, the most common source of off-base
error messages is unmatched delimiters: parentheses, brackets, or quotes. the absence
of a closing delimiter means that the compiler keeps processing what you intend to be
code commands as part of the delimited string. when that string reaches a limit, the
compiler starts to process your code as a new command. thus, the error message for a
missing delimiter may well be many lines beyond or before the actual error of the missing
delimiter. one way to handle this is to pay attention to the automatic code indentation that
is generated for you—the code won't line up properly if the delimiters don't match. you can
also use Xcode’s fonts & Colors pane in Xcode preferences (Xcode ➤ preferences) as a
guide. mismatched delimiters may cause the code colors to be wrong.

Handling Contextual Errors
As in any programming language and environment, some of the errors aren’t just
misspellings. Code that may appear to be correct may not be correct in a specific context.
In Figure 2-14, you can see test misspelled as tst.

Chapter 2 ■ Creating a Simple Swift playground on XCode

23

 ■ Note this is a contextual error because in other contexts, the code print(tst) would
be correct (if tst were a known variable). pring(anything) would be an error anywhere
because pring is not a part of the language. there is some overlap here because pring
might be a valid function you have created, but the general principle of context vs. syntax
applies.

In this case, as in the previous examples, the feedback in the playground is nearly
instantaneous because the playground is parsing your code as you type. If you compare
Figure 2-13 with Figure 2-14, you’ll notice that the red indicator of the error shown in
the gutter to the left of the code is different in the two cases. In Figure 2-13, there is a red
circle with an exclamation point in it to indicate syntactically incorrect code (pring).

In Figure 2-14, the message is different, and the error indicator is a doughnut shape
with a white center. In the error messages, the playground identifies this as a possible
typing error and asks if you meant tst rather than test. As is always the case with Xcode,
you can click this doughnut shape to get Fix-It suggestions as you see in Figure 2-15. (In
some cases, there are multiple Fix-It choices: you can scroll up or down to the one you
want and then press Return. Alternatively, click the Fix-It you want.

Figure 2-14. tst is a contextual error in in this case

Chapter 2 ■ Creating a Simple Swift playground on XCode

24

Xcode and the playground will apply the Fix-It, and the playground will run again, as
you see in Figure 2-16.

Figure 2-16. The code is corrected, and the Fix-It badge goes away when you click the
solution

Figure 2-15. Fix-It suggestions offer solutions to code problems

Chapter 2 ■ Creating a Simple Swift playground on XCode

25

If you’re used to developing code with Xcode or another development environment or
with a language other than Swift, you can work pretty much the same way with playgrounds.
However, to get the most out of playgrounds, consider relying on the code completion and
as-you-type checking so that you can make development and debugging into a single,
continuous process rather than type-build-correct, as is the more traditional way.

Summary
In this chapter you saw the fundamentals of coding with Swift in Xcode. Code completion
and Fix-It catch possible errors and offer suggestions as you type so that you don’t have
to type something that may contain an error and come back to correct it when a compiler
objects. The immediate response saves time and typing, and, as any teacher or trainer will
tell you, immediate response is a great way to learn things.

27© Jesse Feiler 2017
J. Feiler, Exploring Swift Playgrounds, DOI 10.1007/978-1-4842-2647-6_3

CHAPTER 3

Looking at Swift Basics for
Playgrounds

Chapters 1 and 2 cover basic Swift playground features. The Swift code that is shown is
very similar to code you have seen and probably written in other programming languages.
Although Swift is an object-oriented language, you haven’t yet seen Swift object syntax in
the first two chapters because the emphasis has been on getting you used to playgrounds
and Xcode for entering code.

That changes with this chapter.
This chapter provides a very brief, high-level look at Swift. It’s not a definitive

language reference (for that, check out the free download from the iBooks Store at
www.apple.com/ibooks/, with the specific iBook reference at https://itunes.apple.
com/us/book/swift-programming-language/id881256329). What you will find in this
chapter is enough of an overview to get you started reading and writing the Swift you’ll
need to use with playgrounds. Remember, playgrounds are small and focus on teaching a
concept, demonstrating or testing some code to be used in an app, or documenting some
code. So you’ll not find deep Swift syntax discussions here. If you really want to get deep
into Swift and the APIs for Cocoa and Cocoa Touch (for example, an in-depth look at the
concurrency across multiple processors that you manage with Grand Central Dispatch),
you probably want Xcode and all of Swift.

 ■ Note This overview can give you more familiarity with Swift as you encounter it
in playgrounds. If you want to skip over it and come back to it as you encounter these
constructs, that’s fine.

Comments and Markup
One of the most important features that separates excellent code in any language from
other code is the presence of accurate documentation. This ranges from organizational
items such as the date and author of the code as well as a description of what it does all
the way to well-formatted documentation for the code’s users. (Remember that users of
code are typically other developers: users of apps are real people.)

http://dx.doi.org/10.1007/978-1-4842-2647-6_1
http://dx.doi.org/10.1007/978-1-4842-2647-6_2
http://www.apple.com/ibooks/
https://itunes.apple.com/us/book/swift-programming-language/id881256329
https://itunes.apple.com/us/book/swift-programming-language/id881256329

ChapTer 3 ■ LookIng aT SwIfT BaSICS for pLaygroundS

28

The basic Swift playground template starts out with a comment that is generated for
you automatically. Typically, it looks like this:

//: Playground - noun: a place where people can play

The comment begins with two slashes, which is typical syntax for a line of comment
in many languages. The parser or compiler ignores everything after the comment until
the end of the line. For multi-line comments, in many languages you can use delimiters
/* and */ to mark the beginning and end of the comment—that is, the syntax not to be
parsed or compiled. Here is the same code shown as a multi-line comment:

/*
Playground -
noun: a place where people can play
*/

Playgrounds and Xcode use rich markup, which adds a colon to the start of a multi-line
comment, as you see in Figure 3-1.

You can use Editor ➤ Show Rendered Markup to render the rich markup, as shown
in Figure 3-2, which shows the code from Figure 3-1 rendered. The command switches to
Editor ➤ Show Raw Markup so you can use it to edit the underlying text.

Figure 3-1. Use rich markup with Swift playgrounds

ChapTer 3 ■ LookIng aT SwIfT BaSICS for pLaygroundS

29

You can use more rich markup commands within the //: multi-line comment. For
example, Figure 3-3 shows a title style for the word Playground, using a # at the beginning
of the line and a bulleted style for the definition using a * at the beginning of the line.

The rich markup from Figure 3-3 is shown in Figure 3-4 with Editor ➤ Show
Rendered Markup.

Figure 3-2. Render the markup with a playground

Figure 3-3. Use headings in raw markup

ChapTer 3 ■ LookIng aT SwIfT BaSICS for pLaygroundS

30

 ■ Note rich markup for Swift is based on Markdown, John gruber’s text-to-hTML tool for
documentation. you can find out more about Markdown at https://daringfireball.net/
projects/markdown/. apple’s rich markup syntax is available at https://developer.apple.
com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_

ref/MarkupFunctionality.html#//apple_ref/doc/uid/TP40016497-CH54-SW1. note that
this includes syntax for Quick help as well as playgrounds.

Rich markup can make your playground code look much better. In fact, it looks so
much better that you can justify to yourself or your boss the time and effort to provide
good documentation for your playgrounds. (The time and effort are really not great,
particularly when you consider the result.)

Now it’s on to the Swift overview.

Globals and Objects
The Swift code and playgrounds that you’ve seen so far have all been non-object-oriented
globals: they are available throughout your playground. In general, globals are frowned
upon in modern programming. In object-oriented programming, almost everything is
written as an object, so global functions or variables aren’t used much.

However, you can declare global variables or functions as well as other Swift syntax.
Typically, these are used for special cases (such as perhaps a debugging function that
formats data).

Figure 3-4. Rendered markup shows headings and bullets

https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/MarkupFunctionality.html#//apple_ref/doc/uid/TP40016497-CH54-SW1
https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/MarkupFunctionality.html#//apple_ref/doc/uid/TP40016497-CH54-SW1
https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/MarkupFunctionality.html#//apple_ref/doc/uid/TP40016497-CH54-SW1

ChapTer 3 ■ LookIng aT SwIfT BaSICS for pLaygroundS

31

Classes, Enumerations, and Structures
Over time, as objects and object-oriented programming have become more
commonplace, many object-type functionalities have moved into other programming
constructs. With Swift, you’ll see overlap among classes, structures, and enumerations.

The heart of your Swift app or playground will be its objects (it is, after all, an object-
oriented language). As with most programming languages, Swift objects are runtime
instantiations of classes. That is, you write the code for a class, and at runtime it’s turned
into an object that is executed. If you look at diagnostics, you’ll be able to see the memory
location for the instantiated object.

Classes may contain methods (functions that are placed within the class) and
properties. Thus, a typical object-oriented class encapsulates the functionality (methods)
of an object and the data (properties) that an instance of the class can operate on.
Properties can be defined to be part of instances (that is, each instance of a class can have
its own values for the properties), but they also can be defined as values for the class itself.
Thus, for class properties, every instance of the class shares the class properties. Most of
the time, you’ll work with properties of instances rather than class properties.

You can define a subclass of a class. A subclass inherits the methods and properties
of its ancestor. An instance of the class Building might contain the property address.
A subclass of Building might be House. An instance of House would contain the
property address (inherited from Building) as well as its own property, such as
numberOfResidents. numberOfResidents would apply only to the Home subclass. A Store
subclass might contain a businessName property.

The naming of classes and properties in Swift is enforced by Xcode and playgrounds.
Classes are capitalized, and properties are lowercased. Because playgrounds enforce
these conventions, you don’t have to remember them: you’ll be reminded.

 ■ Tip playgrounds use the capitalization conventions as part of the code completion
suggestions so that it knows what you are dealing with.

Structures in Swift play a bigger role than they do in some other programming
languages. Classes in Swift are actually structures but they have some additional
functions. (Put another way, structures do not have some class features.)

Enumerations in Swift are constructs like classes and structures. If you’re used to thinking
of enumerations as just a shortcut for integers, you'll see that Swift goes far beyond that.

Table 3-1 shows the major features of classes, structures, and enumerations and
indicates which ones are supported in the three constructs. The functionalities shown in
the table are generally standard object-oriented functionalities, but there are a few points
to bear in mind:

•	 Classes, structures, and enumerations have significant similarities
in Swift.

•	 Properties in Swift can be static (set at initialization or runtime)
or computed (calculated as needed). Property is the term used in
object-oriented programming in preference to variable or field. In
database and other general computing terminology, attribute is
used in a somewhat similar way.

ChapTer 3 ■ LookIng aT SwIfT BaSICS for pLaygroundS

32

•	 The construct (class, structure, or enumeration) can automatically
be initialized with code that you write.

•	 Swift extensions can add functionality to constructs without
modifying the code. Thus, they can be used to extend constructs
you don’t have the code for.

•	 Functions that are part of classes, structures, or enumerations are
called methods.

In terms of syntax, the names of classes, structures, and enumerations that you
create are capitalized. Instances of classes, values for enumerations, and properties for all
of the constructs use lowercase names.

Types in Swift
Swift is a type-safe language. Many languages (particularly scripting languages such as
JavaScript and PHP) take data as it comes and convert it where necessary. In Swift, you
have to choose a type for each property you define. However, with type inference, Swift
often takes care of that for you.

Explicit typing is done with a type annotation, as in the following part of a property
declaration that annotates age as of type Int:

age: Int

This would be appropriate for declaring an integer value for a person’s age. For a
non-integer (floating-point) value, the comparable declaration would be the following:

age: Double

The annotation is the colon and the type name.

Table 3-1. Comparison of Functionalities for Classes, Structures, and Enumerations

Functionality Class Structure Enumeration

Methods X X X

Properties X X X (computed only)

Initializers X X X

Protocols X X X

Extensions X X X

Deinitializers X

Inheritance X

Multiple references
(access by reference
rather than copy)

X

ChapTer 3 ■ LookIng aT SwIfT BaSICS for pLaygroundS

33

 ■ Tip Double is the preferred type for floating-point numbers. It provides the most
flexible data storage. The Float type is used in special cases.

You often don’t need to set a type for a property because Swift wants properties to
have initial value (except in special cases—see the section “Optional Properties” later in
this chapter). This means that you can declare a property and give it an initial value, as in
the following:

age = 21

This declares the age property and sets it to an initial value of 21. The type of age is
then inferred to be Int.

You can use a type annotation to bypass type inference:

age: Double = 21

Instead of inferring age to be an Int, this annotation explicitly sets it to be a Double.
You can make the process even simpler for yourself by setting the initial value to the

type you want to use. The following two lines of code are arithmetically the same, but the
first sets an Int value and the second sets a Double value.

age = 21
aAge = 21.0

This is important to remember because if you just look at the code without thinking
about Swift types, you won’t notice the difference. Watch (and use!) decimal points in
setting values in Swift if you want to use the floating-point Double type.

There is much more in the Swift documentation as well as in the Fix-It and code
completion hints in your playgrounds.

Properties
Swift properties are declared with variations on the following basic syntax:

let myProperty = something

or

var myVariableProperty = something

ChapTer 3 ■ LookIng aT SwIfT BaSICS for pLaygroundS

34

Constants and Variables
You declare a property either as a constant or a variable. A constant (as in any programming
language) cannot be changed. A variable can be changed. The syntax is comparable:

let birthYear = 1990 // constant
var age = 27 //variable

Variables are more flexible, but constants are much more efficient to use because
the system knows that once they are set, they can never change. This has benefits in
optimizing memory usage.

Whether constants or variables, properties in Swift almost always have values. This
comes about in part from experience with other languages (particularly Objective-C),
where properties can have values but also can have no values. It turns out that not
being able to distinguish between a property that is not set and one that is set to an
indeterminate value can be the source of many, many crashes and debugging nightmares.
Thus, in Swift, we can assume that every property has a value with two exceptions.

Lazy Initialization
var properties can be declared to have lazy initialization with syntax such as this:

lazy var = some expression

In these cases, the initialization is done the first time the property is needed. This
is a particularly useful optimization in declaring properties that may never be needed—
particularly if their initialization process may be expensive.

Optional Properties
Properties can be declared as optional using syntax such as the following:

var birthYear: Int?

This violates the rule that every property must have a value; however, by declaring
birthYear as an optional Int (that’s the question mark), it need not have a value. As you
see in Figure 3-5, although the property is an optional and is initially set by default to nil,
it can be set to a value.

ChapTer 3 ■ LookIng aT SwIfT BaSICS for pLaygroundS

35

If you print it out as shown in Figure 3-6, you’ll see that it is shown as an optional.

The yellow triangle is a warning, and if you click it you’ll see the problem and three
potential Fix-It solutions, as shown in Figure 3-7.

Figure 3-5. Set an optional to a value

Figure 3-6. Optionals are identified as such in the sidebar

ChapTer 3 ■ LookIng aT SwIfT BaSICS for pLaygroundS

36

When working with an optional, checking whether it has a value is your
responsibiilty. You do that by unwrapping it in one of several ways. The simplest way to
unwrap an optional is to use an exclamation point, as in this code:

print (birthYear!)

The result is shown in Figure 3-8. Note that the value is shown as 21: the ! force-
unwraps it so it is now an Int rather than an Int?—an optional.

Figure 3-8. Force-unwrap an optional with !

Figure 3-7. Click the yellow warning badge to see what's wrong

ChapTer 3 ■ LookIng aT SwIfT BaSICS for pLaygroundS

37

If you haven’t set the optional, it has no value, so when you force-unwrap it you’ll get
an error, as you see in Figure 3-9.

One solution to this is to test to see whether the optional is not nil before
unwrapping it, as in the following code, shown also in Figure 3-10. That figure shows what
happens if the optional remains unset (that is, it is still nil when you force unwrap it with
an exclamation point !).

If birthYear != nil {
 Print (birthYear!)
}

Figure 3-9. Force-unwrapping an optional that isn’t set generates an error

ChapTer 3 ■ LookIng aT SwIfT BaSICS for pLaygroundS

38

Figure 3-10 also demonstrates an additional technique you can use. Instead of
testing to see if the property is not nil, you can use what is called optional binding to set
a new property to the unwrapped property. That’s what the second if statement in the
previous figure does.

The heart of that statement is this line of code:

let myBirthYear = birthYear

On its own, that line of code would create a new constant (notice let) that uses
type inference to be set to an optional of type Int? (the value of birthYear). If you use
that clause in an if statement, the clause is evaluated as a Boolean. If unwrapping of
birthYear reveals a nil, then the Boolean result is false.

Thus, the print statement is executing using the new myBirthYear constant that is
created in the optional binding. Note that you can take an optional variable and unwrap
it into a constant in this way. (The scope of the optionally bound variable is just the if
statement—it’s not valid beyond that.)

Just to double-check, you can test the case in which birthYear is set, as you see in
Figure 3-11. Thus, this code works for both nil and non-nil cases. You’ll see this over and
over again in Swift. It gets around many, many crashes that occur when nil values are set
but not caught in other programming languages.

Figure 3-10. Work with optionals

ChapTer 3 ■ LookIng aT SwIfT BaSICS for pLaygroundS

39

These are just a few Swift basics, and they point out some of the differences you may
encounter between languages you know and Swift. In the chapters that follow, you’ll see
Swift used with playgrounds.

Summary
This chapter has covered some of the similarities between Swift and other object-oriented
languages, as well as some of the differences. You have also seen the very important
aspect of handling nonexistent data using optionals, force-unwrapping, and optional
binding.

Figure 3-11. Work with optionals that do have a value

41© Jesse Feiler 2017
J. Feiler, Exploring Swift Playgrounds, DOI 10.1007/978-1-4842-2647-6_4

CHAPTER 4

Editing Playgrounds on
macOS

There are three basic ways to use playgrounds:

•	 You can build an ad hoc playground to experiment with code
and syntax. Developers frequently do this to test out an idea
before incorporating it in an actual project. Particularly if you are
transitioning to Swift from other languages (or to Swift 3 from
previous versions), it’s often faster to test out some syntax in a
playground than to search the various versions of documentation.

•	 You can use a playground that’s built as a learning experience by
others.

•	 You can build a playground that serves as a learning experience
for others. In a similar vein, you can build a playground that
serves as documentation for code you have built or intend to
build. (Playgrounds are found frequently as companions to
macOS or iOS projects both on open source repositories such as
GitHub and on private repositories.)

The first three chapters have looked primarily at the first of these ways to use
playgrounds (for ad hoc experimentation). You can use Apple’s downloadable
playgrounds on Everyone Can Code (www.apple.com/education/everyone-can-code/)
for yourself, your students, and others.

This chapter looks at building playgrounds on macOS so that they can be used by
others on macOS and on iOS.

Exploring the Two Playground Environments
There are two environments for creating and using playgrounds: macOS and iOS. You
can create a new playground on macOS using Xcode, and you can also create a new
playground on an iPad with the Playgrounds app.

Once you have created a playground in either environment, you can run it on iOS
using the built-in Playgrounds app for iPad or you can run it in Xcode on macOS.

http://www.apple.com/education/everyone-can-code/

Chapter 4 ■ editing playgrounds on maCos

42

It’s important to note that these two environments are not identical. They are similar
in many ways, but there are some differences. The most common way of integrating
them is to develop playgrounds using Xcode on macOS and then distribute and run them
with Playgrounds on iOS with an iPad. This works well for developing and distributing
training materials particularly because the more complex and expensive development
environment for macOS is leveraged to be deployed on much simpler and less expensive
devices such as the iPad models.

To get started, we’ll do a walk-through of the two environments and how they work
together in this common scenario. There are three basic steps to follow:

 1. Create a playground with Xcode on macOS.

 2. Move the playground to an iPad.

 3. Run and modify the playground on an iPad.

Creating a Playground with Xcode on macOS
Xcode is the integrated development environment (IDE) for all things Apple software.
Apps for iOS, macOS, tvOS, and watchOS are all built with Xcode, which is a free
download from http://developer.apple.com. If you’re used to writing code, it’s either
a tool you already know or one that you can learn with relatively little effort (learning the
APIs takes a bit more effort . . .).

If you’re not used to writing code, Xcode may be a hurdle for you, but it really is one
that you need to get over whether you’re writing a playground now or something else next
year. However, with that said, if you really, really don’t want to use Xcode, you can write
your code using another editor (BBEdit is a widely used tool). In fact, you could probably
write your playground’s code using Microsoft Word: you would just save it as a plain text
file and copy and paste it into an Xcode file.

That’s certainly not at all recommended, but it is possible. The fact of the matter,
however, is that if you want to build a playground on macOS, you are going to be writing
code, so download a copy of Xcode and install it to begin.

 ■ Note the only time when an alternate route might be needed is if you really want to get
started and can’t download or install Xcode right away. this can happen in some places where
the computer environments are tightly controlled and permission is needed from a manager
to download and install new software. With required signatures and everybody’s vacation time
factored in, it might take a week or more to actually get a free copy of Xcode installed. in a case
such as that, you can start typing code—but get it into Xcode at the first possible moment.

In Chapter 3, the section “Comments and Markup” introduced the basics of markup
that you can easily add to your playgrounds to create attention-getting titles that help you
structure a playground. You can go beyond that to turn your nicely formatted playground
into an interactive playground for yourself and others. This section brings you up to speed
on building a basic interactive playground.

www.allitebooks.com

http://developer.apple.com/
http://dx.doi.org/10.1007/978-1-4842-2647-6_3
http://www.allitebooks.org

Chapter 4 ■ editing playgrounds on maCos

43

Turning a Static Playground into an Interactive
Playground
As you saw in Chapter 3, you use rich markup commands within the /*: multi-line
comment that ends with */, as shown in Figures 4-1 and 4-2. The raw markup is shown in
Figure 4-1.

In a playground you use Editor ➤ Show Rendered Markup to view the markup when
you run the playground.

Figure 4-1. Raw markup for a playground

Figure 4-2. Rendered markup for a playground

http://dx.doi.org/10.1007/978-1-4842-2647-6_3

Chapter 4 ■ editing playgrounds on maCos

44

These examples from Chapter 3 show the basic steps of integrating markup into your
playgrounds. Now it’s time to move beyond merely formatting the playground to making
it interactive and useful. A more complex playground is created by the end of that chapter.
It’s shown in Listing 4-1 with one addition to the code.

At the end of Chapter 3, the playground is completed to demonstrate the use of
optionals. Listing 4-1 and Figure 4-3 show the code from Chapter 3 with one addition. To
recap, the playground declares an Int variable (birthYear) as an optional. This means it
might be nil. In Chapter 3 you saw how the playground behaves if it is set to 21 (that is,
not an optional) or if it’s not set. In the addition in Listing 4-1 and Figure 4-3, the line of
code to set it is inserted.

The basic playground then checks to see if birthYear is not equal to nil, and if it
isn’t, it is printed. Finally, myBirthYear uses optional chaining to be set either to the
non-optional value or not: if the value is nil, the if statement isn’t executed.

Listing 4-1. Using an Optional with Optional Binding

var birthYear:Int?

// birthYear = 21 DO NOT SET

birthYear = 21

if birthYear != nil {
 print (birthYear!)
}

if let myBirthYear = birthYear {
 print (myBirthYear)
}

http://dx.doi.org/10.1007/978-1-4842-2647-6_3
http://dx.doi.org/10.1007/978-1-4842-2647-6_3
http://dx.doi.org/10.1007/978-1-4842-2647-6_3
http://dx.doi.org/10.1007/978-1-4842-2647-6_3

Chapter 4 ■ editing playgrounds on maCos

45

All this is pretty straightforward, but it does require a bit of explanation so that you
can manipulate the playground to prove how things work. Is it possible to do that with
a playground? Yes. In fact, setting up the playground so you and others can experiment
with it in a guided way is one of the key objectives of playgrounds.

The next section shows you how to move interactivity into the playground itself and
suggest tests and experiments to users.

 ■ Note you may see this as a way to show others how to use a playground, but
interactivity like this can be just as valuable to you. this particular example is simple, but
building an interactive playground for yourself can be a very valuable project. First of all, it
lets you experiment in ways you may not have thought of before. (in this case, for example,
using the basic playground to test which types can be coerced automatically by swift is an
additional use of the code.) Beyond that, adding interactivity and text to the playground can
be very useful when you come back to it in a month or two from now and want to use it.

Figure 4-3. Test for nil and use optional binding

Chapter 4 ■ editing playgrounds on maCos

46

But notice one last change you can make before moving on: changing the subtitle so
that it’s correct, as you see in Figure 4-4.

Don’t get in the habit of putting off these minor changes. Before long, they mount
up, and pretty soon it’s a big job to add them back in (if you can even remember the steps
you’ve taken).

Moving a Playground from Xcode/Mac to
Playgrounds/iPad
The most straightforward way to move this playground to an iOS device is to make sure
it’s saved to disk. Start by turning on your iOS device and checking that it’s on the same
WiFi network as your Mac. It doesn’t have to be logged in with the same Apple ID, but it
does need to be logged in.

Xcode normally keeps track of your changes and keeps them saved, but it doesn’t
hurt to specifically use File ➤ Save to save the playground. Locate it in the Finder and
select it (a single click will do—you don’t need to open it with a double-click). Once it’s
selected in the Finder, use the Share button in the Finder toolbar and AirDrop to move
it to your iOS device, as shown in Figure 4-5. You’ll be prompted to choose the user you
want to share with. (If you haven’t done this very often, you may have to refer to the
online help for AirDrop, but once you’ve done it a few times, it’s very natural and simple.)

Figure 4-4. Change the playground title

Chapter 4 ■ editing playgrounds on maCos

47

You’ll need to choose where you want to send the file, as shown in Figure 4-6.

On the iOS device, you’ll be asked to receive the document, as you see in Figure 4-7.

Figure 4-5. Use AirDrop to move a file

Figure 4-6. Select the AirDrop destination

Chapter 4 ■ editing playgrounds on maCos

48

If you launch Playgrounds on your iPad (or return to the My Playgrounds view with
the four boxes in the top left of the Playgrounds view), you’ll see the new playground
marked as New, as shown in Figure 4-8. You’ll also notice that some of the playgrounds
may be indicated to be in iCloud and not yet downloaded. For now, concentrate on the
playground you just created.

Figure 4-7. Receive an AirDrop document

Chapter 4 ■ editing playgrounds on maCos

49

When you first open a foreign file, you’ll be asked to confirm that it’s okay, as shown
in Figure 4-9.

Figure 4-8. Playgrounds indicates playground files that are in iCloud or that are new to
your device

Chapter 4 ■ editing playgrounds on maCos

50

The playground opens in the Playgrounds app on iOS, as you see in Figure 4-10.

Figure 4-9. Confirm that you want to open an AirDrop document

Chapter 4 ■ editing playgrounds on maCos

51

Compare Figure 4-10 (Playgrounds on iOS) with the same playground shown in
Xcode on Mac (refer to Figure 4-4). There are some differences, particularly with the
shortcuts above where the keyboard will appear. Those are discussed in Chapter 5.

Managing Interaction in a Playground
The simplest form of interaction is to move the variable assignments that you would
test manually into the interactive playground. In this case, it means setting birthYear
interactively. It would also make sense to remove the comment DO NOT SET.

You already have a halfway interactive playground in any playground you create: the
code you type in is executed, and you can see the result. To make it more interactive, you
need to be able to type in parts of code (such as the values for variables) and have what
you type become part of a computation.

Figure 4-10. Open a playground that has been copied to your iPad with AirDrop

http://dx.doi.org/10.1007/978-1-4842-2647-6_5

Chapter 4 ■ editing playgrounds on maCos

52

The simplest interaction relies on the markup functionality that you’ve already used,
but you need to use some new commands to get data from the playground user:

•	 Editable area: An area of playground code into which the user can
type code.

•	 Placeholder token: A placeholder for something the user will type in.
(A placeholder token can only be placed inside an editable area.)
Chapter 5 talks more about placeholder tokens.

Both are described in the sections that follow.

Creating and Using an Editable Area
An editable area is just that: an area that contains code which can be edited. You can limit
the interaction within an editable area so that not everything is editable. What may be
most important is that once you create an editable area in a playground, nothing else is
editable in that playground. (You can have multiple editable areas and wind up making
the entire playground editable in various ways.)

An editable area is delimited with special markup. It begins with a line like this:

//#-editable-code

It ends with this line:

//#-end-editable-code

Listing 4-2 shows a new playground. The code is very simple. It sets a variable
to 2 and then proceeds to multiply it by 2, and later on add 4 to it and multiply it by 2.
A number of print statements are interspersed.

This collection of simple lines of code forms a playground that you can use to
experiment with. For example, you could change x to be 3 and multiply it by 4.5. The
possibilities are endless, but you’ll see a few of them in the interactive playground that
follows.

Listing 4-2. A Basic Playground

/*:
 # Playground
 * Making a playground interactive
 */

var x = 2
x = 2 * x
print (x)

print (x)

http://dx.doi.org/10.1007/978-1-4842-2647-6_5

Chapter 4 ■ editing playgrounds on maCos

53

x += 4 * 2
print (x)

print (x)

Using the code to delimit an editable area, you can create the playground shown in
Figure 4-11.

Move it to your iPad with AirDrop and run it in Playgrounds there, and you’ll see the
editable area, as shown in Figure 4-12.

Figure 4-11. An editable area in rendered markup in Xcode

Chapter 4 ■ editing playgrounds on maCos

54

The editable area is automatically framed, as you can see.
For each of the results shown in the right-hand side, you can tap them to see the

value of the numeric (123) or string (abc) viewer, as shown in Figure 4-13.

Figure 4-12. An editable area in rendered markup on Playgrounds

Chapter 4 ■ editing playgrounds on maCos

55

If you choose to add a viewer, it will show up as you see in Figure 4-14.

Figure 4-13. View results in the sidebar in Playgrounds

Chapter 4 ■ editing playgrounds on maCos

56

If you tap an editable area, you’ll see a menu of choices, as shown in Figure 4-15.
You’ll also see the keyboard and be able to edit the highlighted text.

Figure 4-14. Use a viewer in Playgrounds

Chapter 4 ■ editing playgrounds on maCos

57

When you have a viewer open, you can select its contents, as shown in Figure 4-16.

Figure 4-15. Edit code in an editable area on Playgrounds

Chapter 4 ■ editing playgrounds on maCos

58

If you select content inside a non-editable area, you have different menu options, as
you can see in Figure 4-17.

Figure 4-16. Tap in a viewer to see options on Playgrounds

Chapter 4 ■ editing playgrounds on maCos

59

But notice what you don’t see: there’s no keyboard. Your menu choices just let you
view or even copy the data, but you can’t edit it. It’s not inside an editable area.

If you select something inside an editable area, you’ll have other choices. For
example, highlighting a number as in Figure 4-18 lets you choose to enter another
number from a numeric keypad. Playgrounds constrains your choices to what is logical
and syntactically correct.

Figure 4-17. Menu choices in a non-editable area on Playgrounds

Chapter 4 ■ editing playgrounds on maCos

60

Tap in the background of an editable area, as in Figure 4-19. You see the keyboard,
but you also have choices of logical syntax in the Shortcut Bar above the keyboard.

Figure 4-18. Edit a number in an editable area on Playgrounds

Chapter 4 ■ editing playgrounds on maCos

61

In this example, just tap let to begin an assignment statement. Figure 4-20 shows
what that one tap does:

•	 let is inserted.

•	 The required syntax (name = value) is shown.

•	 Both name and value are highlighted so that you know to replace
them with your own values and variables.

Figure 4-19. The keyboard appears in Playgrounds when it is appropriate

Chapter 4 ■ editing playgrounds on maCos

62

Explore the other features of Playgrounds to start writing whatever code you want, as
shown in Figure 4-21.

Figure 4-20. Playgrounds can suggest multiple items to be entered

Chapter 4 ■ editing playgrounds on maCos

63

Summary
This chapter showed you how to move playgrounds back and forth between a Mac and
iPad using AirDrop. You also saw how to use editable areas in markup to allow users to
enter simple values such as numbers, or even free-format code of any length. You also
saw the use of taps (iPad) or clicks (Mac) to bring up different menu bars depending on
the context, and learned that in an editable area, the menu choices differ from those
outside an editable area.

Figure 4-21. Explore the Run My Code options on Playgrounds

65© Jesse Feiler 2017
J. Feiler, Exploring Swift Playgrounds, DOI 10.1007/978-1-4842-2647-6_5

CHAPTER 5

Editing Playgrounds on iOS

Once you have a playground—written by you or others on macOS using Xcode—you can
use it with the Playgrounds app on your iPad. This is a very different process from using
Xcode. For one thing, now you’re working on your iPad rather than a Mac, and you’re
writing the code that is going to run in the Playgrounds app.

Note that the code that you write with Xcode on your Mac runs in a playground
inside Xcode on your Mac—but the playground running inside Xcode is different from a
playground running in the Playgrounds app on iPad. You’ll see that side of the process in
this chapter.

 ■ Tip Two Apple technologies work together to make editing code easier on both iOS
and macOS. The QuickType keyboard is a predictive keyboard that learns from your typing.
QuickType for code builds in predictions used in writing code. The Shortcut Bar uses
QuickType technology to help in providing shortcut suggestions.

The Playgrounds App User Interface and
Experience
Chapter 4 (particularly Figure 4-15 onwards) showed how you can modify a playground
running in the Playgrounds app. You saw how the keyboard can appear and how you can
get help with suggestions for code, but the focus was on the basic playground structure
and which areas are editable (remember, that’s something you set in Xcode).

Now we’ll look more closely at editing on Playgrounds. At the end of Chapter 4, the
playground was being modified so that it looked like Figure 5-1. In Figure 5-2, you see the
playground from the end of Chapter 4 as it appears in landscape (horizontal) mode on a
12.9-inch iPad Pro.

http://dx.doi.org/10.1007/978-1-4842-2647-6_4
http://dx.doi.org/10.1007/978-1-4842-2647-6_4
http://dx.doi.org/10.1007/978-1-4842-2647-6_4

ChApTer 5 ■ ediTing plAygrOundS On iOS

66

Figure 5-1. Editing a playground in Playgrounds on a 9.7-inch iPad

ChApTer 5 ■ ediTing plAygrOundS On iOS

67

The differences are in the keyboard, so this is a good spot to explore exactly what is in
both iPad keyboards that you see in landscape mode. (In portrait—vertical—mode, there
is no difference between the two iPad models.)

At the top left of both keyboards are the curved arrows for undo (left) and redo
(right). In the center (the Shortcut Bar) are suggestions for what might be used at the
current insertion point: there’s more on this in the Shortcut Bar section of this chapter.

The larger iPad Pro has an additional row of keys at the top above the standard
keyboard and below the Shortcut Bar. These keys (common on many standard
keyboards) are the numeric keys. The Shift key lets you alternate between the numbers
and symbols such as ! and @, just as on other keyboards.

On the smaller iPad Pro, that row of keys is missing. Its characters and symbols are
shown in gray on the standard keyboard, and you can access them by using the ?123 key
in the lower left. For keys with multiple symbols such as (, j, and) on the smaller iPad
shown in Figure 5-2, swipe from one of the upper symbols on the key (for example, the
(or)) to the center of the key to use the upper symbol.

On both keyboards, the small keyboard with the down-pointing arrow in the lower
left hides the keyboard.

When the keyboard is hidden, a variation of the Shortcut Bar is shown at the bottom of
the screen, as shown in Figure 5-3 (9.7-inch iPad Pro) and Figure 5-4 (12.9-inch iPad Pro).

Figure 5-2. The playground from Figure 5-1 in landscape mode on a 12.9-inch iPad

ChApTer 5 ■ ediTing plAygrOundS On iOS

68

Figure 5-3. Shortcut Bar on 9.7-inch iPad Pro

ChApTer 5 ■ ediTing plAygrOundS On iOS

69

Using the Shortcut Bar
The Shortcut Bar gives you suggestions of symbols that you can add to your playground
code with the tap of a finger. In Figures 5-1 and 5-2, when the insertion point is placed
after x = in the editable text area, your shortcut choices are x, Int, and 0. Understanding
those options will let you start to see how the Shortcut Bar works.

Inserting a Simple Line of Code
In the code shown in the playground shown in the preceding figures, a variable, x, is set to
2 in the first line. Swift can infer and recognize several things from that line of code:

•	 x is a variable (its values can be changed if you want).

•	 Its initial value is 2 because that’s what you set it to.

•	 Beyond that, Swift can infer that x is an Int because 2 is an Int.
Because Swift is a strongly-typed language, it is important that
each variable be typed before it is used.

With that information in the declaration and the inference from the value 2, Swift can
let you proceed with your code.

Figure 5-4. Shortcut Bar on 12.9-inch iPad Pro

ChApTer 5 ■ ediTing plAygrOundS On iOS

70

Your options in the Shortcut Bar are not exhaustive, but they are often just what you
need. Because x is an Int, you can set it to another Int such as 0. You can also set it to any
other Int such as 17. To do so, either tap 0 and then change it to 17 or just move to the
keyboard and type 17.

You can set any variable to another variable of the same type, so you certainly could
set x to itself—that’s the reason for the shortcut. It’s a suggestion, just as 0 is a suggestion.
You could set x to another variable of type Int if you already had one in your code.

Inserting More Complex Syntax
So far, you’ve see how to complete a simple line of code in an editable area. You can go far
beyond that if you want to turn your entire playground into an editable area.

 ■ Note This section covers such a common set of steps that you might want to bookmark
this page with a note on your preferred method of transferring them (saving the playground
file to your iCloud drive or using Airdrop to transfer it).

Start with creating a basic playground in Xcode on macOS that contains an editable
area and (in good practice) a title and subtitle, as you see in Figure 5-5.

When you open this playground in Playgrounds on an iPad, you’ll see the editable
area and a prompt to tap and enter your code, as shown in Figure 5-6.

Figure 5-5. Create an editable playground in Xcode

ChApTer 5 ■ ediTing plAygrOundS On iOS

71

As soon as you tap to start editing, the Shortcut Bar appears, as in Figure 5-7.

Figure 5-6. Open the editable playground in Playgrounds on iPad

ChApTer 5 ■ ediTing plAygrOundS On iOS

72

With an editable area, you can type anything you want, but with the Shortcut Bar,
you don’t need to do much typing at all. The suggestions there are usually syntactically
correct, but they may not be semantically correct (in other words, they may not be
what you want to write). There is no substitute for knowing where you’re going, but a
playground and the Shortcut Bar are a great substitute for checking the documentation
before every keystroke. Later in this chapter you’ll see two practical examples of using
the Shortcut Bar to actually create some code you can use in another playground or in an
Xcode app, but for now, here are some basic steps you’ll use as you write that code.

Start by creating a variable and setting it. In the Shortcut Bar, tap either let or var
depending on whether you want the variable to be a constant (let) or variable (var). The
text created for you will be one of the following:

let name = value

or

var name = value

Both name and value are highlighted: name in gray to indicate that it is a placeholder
and you must type your own name for the variable, and value in red to indicate that if you
tap it you’ll have further assistance in providing the value. (Figure 4-18 shows the keypad
for numeric data).

Figure 5-7. Use the Shortcut Bar in an editable area in Playgrounds

ChApTer 5 ■ ediTing plAygrOundS On iOS

73

As soon as you type a name of your own, the highlighting will disappear, but the red
highlighting behind value will remain. In addition, the Shortcut Bar will change, as you
see in Figure 5-8.

There are more choices now in the Shortcut Bar. From left to right they are as follows:

•	 0 represents any integer (or in fact anything else you want to type
there to replace the zero).

•	 "abc" represents a string you can change to be any string you
want (or in the same way as the zero, you can retype "abc" as any
value).

•	 true and false are the logical constants.

•	 The rectangle to the right of false lets you choose a color (see the
“Choosing a Color” section, next).

•	 The image of mountain and moon/sun to the right of the color
rectangle lets you select an image (see “Choosing an Image” later
in this chapter).

•	 [values] inserts the square brackets that will surround an array
or set.

Figure 5-8. Shortcut Bar changes as you type

www.allitebooks.com

http://www.allitebooks.org

ChApTer 5 ■ ediTing plAygrOundS On iOS

74

•	 [key:value] gives you the template for creating a dictionary. The
section “Putting the Pieces Together: Writing Data from an App”
later in this chapter provides an example.

•	 (values) lets you enter a tuple.

•	 nil is the nil value for an optional variable (only optionals can
have nil values).

Choosing a Color
If you decide to choose a color, tap the color rectangle to show the palette shown in
Figure 5-9 and select the color you want.

Choosing an Image
If you want to set your variable to an image, tap the image button in the Shortcut Bar and
you’ll be able to choose the image you want, as shown in Figure 5-10.

Figure 5-9. Use the color palette with the Shortcut Bar

ChApTer 5 ■ ediTing plAygrOundS On iOS

75

Your choices are the standard macOS and iOS image resources: a file, your Photo
Library, or your iPad’s camera. Figure 5-11 shows the permissions alert you see if you
choose Take Photo.

Figure 5-10. Use an image with the Shortcut Bar

ChApTer 5 ■ ediTing plAygrOundS On iOS

76

If you decide to pick a photo from your Photo Library, the standard interface you see
in Figure 5-12 lets you choose what you want.

Figure 5-11. You need permission to access the iPad’s camera

ChApTer 5 ■ ediTing plAygrOundS On iOS

77

Putting the Pieces Together: Writing a Class in a
Playground with the Shortcut Bar
This section discusses writing a class in a playground by typing it. In fact, that’s the
same way you would type it with Xcode for a traditional project. Then you’ll see how to
use the Shortcut Bar to do the same thing and not only save keystrokes but also let the
playground coach you and remind you what your coding options are.

Typing the Code
In Chapter 3, you saw the bare bones of a Swift class (ClassName) in the “Classes,
Enumerations, and Structures” section. The code for the class is repeated here (with a
change in the title) in Listing 5-1.

Figure 5-12. You can choose an image from your Photo Library

http://dx.doi.org/10.1007/978-1-4842-2647-6_3

ChApTer 5 ■ ediTing plAygrOundS On iOS

78

Listing 5-1. ClassName Bare-Bones Swift Class

/*:
 # Playing with Classes
 * exploring classes and instances
 */

import UIKit

class ClassName {
 var myVariable: String?
 let myConstant: String? = "Something"

 func myFunction (parameter: Double) -> String {
 return "my result"
 }
}

As with all Swift classes (and classes in most object-oriented programing languages),
you instantiate the class with code such as this:

let myInstance = ClassName()

Having done that, you can then use a method of the class instance with additional
code, like this:

let theResult = myInstance.myFunction (parameter: 17.2)

And you will get the response back as "my result" because at this point the class’s
method returns a constant string.

You can add a class function to the class: a class function is a function of the class
itself rather than an instance of the class. A class function is prefixed by the keyword class:

class func myClassFunction

You can then call that function on the class without having an instance.
Figure 5-13 shows the code shown previously with a class function added. You can

see the class description with the class function and the instance function within it.
Below the class, you see the creation of a class instance (myInstance), the result of calling
a function on the instance (myInstance.myFunction), and the result of calling a class
method on the class (ClassName.myClassFunction).

ChApTer 5 ■ ediTing plAygrOundS On iOS

79

Using the Shortcut Bar to Write the Code
Particularly if you’re a fast typist and know Swift very well, the Shortcut Bar may seem
unnecessary, and it may even seem as if it slows you down. In practice, many developers
(including the author) use a combination of typing, knowledge of Swift, and the Shortcut
Bar. This section covers a few steps to show you how to integrate the Shortcut Bar with
writing code, such as that shown in Figure 5-13.

Creating an Empty Playground
Begin with an empty playground, created in Playgrounds on your iPad. To begin with, the
comments, title, and subtitle at the top of the playground in Figure 5-13 aren’t necessary
for this example, so they’re not included. Also UIKit isn’t used here, so although it’s part of
a playground created in Xcode, it’s not part of a playground created on your iPad. Create a
new playground with the + from the My Playgrounds library, as you see in Figure 5-14.
(If you need to get back to the library, the four boxes in the top left will take you there.)

Figure 5-13. Use a class method

ChApTer 5 ■ ediTing plAygrOundS On iOS

80

If you’re looking at another view, such as a playground itself rather than the library,
the four-square button in the top left of the screen will take you to the library, as shown in
Figure 5-15.

Figure 5-14. Create a new playground on iPad with Playgrounds

ChApTer 5 ■ ediTing plAygrOundS On iOS

81

Show the Keyboard and Handle the Red Dot
From a new blank playground, begin by showing the keyboard with the up-arrow at the
right of the Shortcut Bar, as you see in Figure 5-15. If the keyboard is shown, the up- or
down-arrow is at the right of the bottom row of keys. Type a single character on the empty
playground view: type c (for class), as shown in Figure 5-16.

Figure 5-15. The completed playground as it will be at the end of this chapter

ChApTer 5 ■ ediTing plAygrOundS On iOS

82

You can type directly onto the empty playground view, but for a blank playground
your choices for the Shortcut Bar may not be the ones you want. It’s usually best to show
the keyboard and type the first character of the first line you want to write.

 ■ Note yes, that’s circular—how do you know what you want to type? A double-tap on
an empty playground will populate the Shortcut Bar with the most common beginnings, but
a class is not one of them. (The common beginnings that will be shown in the Shortcut Bar
are let, var, if, for, while, and func.)

As you see in Figure 5-16, if you type a c, you’ll soon see a red dot at the left (in
the gutter). That indicates an error, so tap it to see what it is. The message is that it’s an
unresolved identifier, but the Shortcut Bar has now expanded to show you new options
that start with c, and class is one of them.

In practice, once you get used to the keyboard, here’s how you start from a blank
playground to create a class:

 1. Type c.

 2. Tap class in the Shortcut Bar.

Figure 5-16. Start typing code

ChApTer 5 ■ ediTing plAygrOundS On iOS

83

Before long, you won’t even look at the Shortcut Bar to watch its changes. You’ll just
type something (often more than one character) and then look directly at the Shortcut Bar
to see what your choices are. It really is much faster to do than describe. Note that forcing
yourself to go step-by-step to watch the Shortcut Bar change will probably take you longer
than just taking a chance. Remember, the undo button in the top left of the keyboard is
always there for you.

Complete the Class Definition
After you tap class in the Shortcut Bar, you’ll get the shell of the class, as you see in
Figure 5-17. You’ll see this type of structure frequently in a playground: functions start out
looking much like classes. The name of the object (class or function) is highlighted in red;
you need to provide the name of it. The placeholder for code has a gray background; you
replace the placeholder with one or more lines of code.

To enter the name of the object, you won’t be able to rely on QuickType because
the name can be anything, and there’s nothing for QuickType to use to complete your
typing. So you’ll need to tap the red-highlighted name and type in a new name such as
ClassName, as shown in Figure 5-18.

Figure 5-17. The snippet for a class is generated automatically

ChApTer 5 ■ ediTing plAygrOundS On iOS

84

Moving down to the code placeholder, you may want to enter the var declaration
of myVariable (as shown in Figure 5-15). Just type the v of var as you see in Figure 5-19.
You’ll see the red error dot because your code is not complete, but the Shortcut Bar quickly
changes to give you two options beginning with v—a string starting with v and the keyword
var, which is what you want, so just tap that.

Figure 5-18. Enter your own class name

ChApTer 5 ■ ediTing plAygrOundS On iOS

85

As you continue entering the code for your class and its class function, you’ll switch
back and forth between typing and using the Shortcut Bar suggestions. For example, if
you continue to add a type annotation for myVariable, you’ll need to type the colon, but
having done so, you’ll see in the Shortcut Bar the various types you can use, as shown in
Figure 5-20.

Figure 5-19. QuickType knows the symbols you have created

ChApTer 5 ■ ediTing plAygrOundS On iOS

86

When you get down to entering the class function, as soon as you type the c,
QuickType will suggest a class declaration, as shown in Figure 5-21.

Figure 5-20. The Shortcut Bar shows you possible types for a variable declaration

ChApTer 5 ■ ediTing plAygrOundS On iOS

87

But as soon as you type just the f for func, the Shortcut Bar gives you the choices
shown in Figure 5-22, and you’re on your way.

Figure 5-21. QuickType can work even with a single character that you type

ChApTer 5 ■ ediTing plAygrOundS On iOS

88

Continue on in this way, bouncing between the keyboard and the Shortcut Bar.
Once you start using the Shortcut Bar, you’ll find it’s a big time saver, and the code it
writes with you will be syntactically correct, although you have to make certain that the
syntax is what you’re trying to create.

When you have reconstructed the code for this example, you can run it in your
playground and show the results, as you can see in Figure 5-23.

Figure 5-22. The Shortcut Bar adjusts for each additional character you type

ChApTer 5 ■ ediTing plAygrOundS On iOS

89

Summary
This chapter shows you the interplay between your typing (often not much of it) and
the Shortcut Bar’s suggestions. The suggestions are both context sensitive in that the
Swift syntax is parsed as you go along and the suggestions are usually valid syntax. The
suggestions also reflect your own data (the names of your symbols, for example).

Together these technologies can make your code more robust as well as speed up the
typing and debugging steps.

Figure 5-23. Try out your new playground on iPad

91© Jesse Feiler 2017
J. Feiler, Exploring Swift Playgrounds, DOI 10.1007/978-1-4842-2647-6_6

CHAPTER 6

Entering Data and Viewing
Results in Swift Playgrounds

You can use playgrounds to test your own code and try out experiments, but that’s just the
beginning. Instead of experimenting by changing code and rerunning your playground,
you can set it up so that you (or others) can enter data and then have the playground code
act on the data.

To do that, you need to be able to control what is shown in the playground’s timeline
and current view as it executes, and that’s what this chapter shows you how to do. You’ll
see how to view a playground’s timeline and current view in Xcode as well as Playgrounds
(the app on iPad). Using the current view in this way opens up many opportunities for
your own experimentation as well as possibilities for teaching, documenting code and
processes in your organization, and many other opportunities.

You’ll also see that you can draw in the current view as well as how to use view and
other graphical components of UIKit to build very powerful interfaces that you can then
move into another app or even into a playground.

 ■ Note In this book, the playgrounds you’re seeing are all a single playground page in
length. There’s plenty to do with playground pages like this (particularly because in the
digital world, the pages can be as long as you want them to be). If you want to move on, you
can create playground books. On http://developer.apple.com search for “Playground
Book Package” and you’ll see how to build multi-page playgrounds along the lines of Apple’s
Learn to Code and other playgrounds. Even when you move on to playground books, you’ll
still be working on a single page at a time (along with a few other components you can put
into a playground book). In Chapter 9, you’ll see how to build multi-page playgrounds that
are midway in complexity between playground books and one-page playgrounds.

http://developer.apple.com/
http://dx.doi.org/10.1007/978-1-4842-2647-6_9

ChAPTEr 6 ■ EnTErIng DATA AnD VIEwIng rEsuLTs In swIfT PLAygrOunDs

92

Using the Timeline
The playground timeline lets you look at the state of your playground over time. In
previous chapters, you’ve seen how to use the print statement to show values of variables
and, if you want, to print out strings that you create to annotate what’s going on.

 ■ Note swift 3 and Xcode 8 changed a number of important features in playgrounds. They
are shown in the figures in this chapter. Older examples and documentation may no longer
work, but the API we now have for timelines and swift should be stable going forward.

If you have a repetition statement such as a loop, you’ll see the number of repetitions
in the sidebar, but you won’t see the values as shown in Figure 6-1 running a playground
on macOS in Xcode.

Figure 6-1. Watch the sidebar to see repetitions

ChAPTEr 6 ■ EnTErIng DATA AnD VIEwIng rEsuLTs In swIfT PLAygrOunDs

93

You might notice at the right of Figure 6-1 that the right-hand utilities pane of the
Xcode workspace window is exposed, and the File pane is selected so you can see the
file’s location. There are two playground-specific settings you can choose:

•	 The Render Documentation check box has the same effect as the
Editor ➤ Show Raw/Rendered Markup command.

•	 The Show Timeline check box will show a timeline at the bottom
of the main playground window. It is turned off in Figure 6-1.

You can view the results within the for loop (or any other repetition structure) by
clicking the Quick Look button at the right of the sidebar, as shown in Figure 6-2.

The Quick Look result is interactive—you can click a dot to see its value.
Alternatively, you can add a result viewer to the playground with the button to the

right of Quick Look, as shown in Figure 6-3.

Figure 6-2. Use Quick Look to see the reptitions in the timeline

ChAPTEr 6 ■ EnTErIng DATA AnD VIEwIng rEsuLTs In swIfT PLAygrOunDs

94

Control statements such as for, while, and do loops are the mainstays of procedural
(or imperative) programming (the style of do this, do that). Functional programming has
become more and more central to software development since its widespread adoption
by languages such as Perl, PHP, Haskell, C#, Java, and now Swift, from the 1980s through
today. (Many of those languages began as procedural languages and today can now
be used with both procedural and functional programming styles.) There is more on
functional programming in Chapter 9.

You can rewrite the playground as functional code, as shown in Figure 6-4. The map
function handles all the procedural work for you behind the scenes. You can still look at
each value, but the interface shown in Figure 6-4 running on an iPad is different.

Figure 6-3. Add the timeline to a result viewer in your playground

http://dx.doi.org/10.1007/978-1-4842-2647-6_9

ChAPTEr 6 ■ EnTErIng DATA AnD VIEwIng rEsuLTs In swIfT PLAygrOunDs

95

 ■ Tip As you will see in Chapter 9, the key implementations of functional programming
are the map, filter, and reduce functions. map and filter loop through each element in a
collection to either use them in a calculation (map) or test them for inclusion in a new collection
(filter). reduce loops through them to derive a single value using the algorithm you specify.

Timelines are a powerful and useful way of monitoring the execution of your
playground.

Figure 6-4. Use the map function for a functional approach to repetition

http://dx.doi.org/10.1007/978-1-4842-2647-6_9

ChAPTEr 6 ■ EnTErIng DATA AnD VIEwIng rEsuLTs In swIfT PLAygrOunDs

96

Creating a Basic Playground with a View
The first step in providing interactivity in your playground is to show a current view. The
second step will be to add interactivity to that view.

As always, begin with a playground. The playground used in this chapter is shown
both in Xcode and Playgrounds in this section, but the code is basically irrelevant to
which platform you’re using. (There definitely are some differences that will be pointed
out, but mostly the code is the code.)

The playground you see in Figure 6-5, which I’ll call Interactive Playground, is the
basis for this chapter, shown here on Xcode.

Enter the code shown in Listing 6-1 and show the Assistant.

Listing 6-1. Show View in Your Playground’s Current Live View

/*:
 ## Interactive Playground
 Use basic data entry and interactivity in a playground
 */

import UIKit
import PlaygroundSupport

let mainView = UIView(frame: CGRect
 (x: 50.0, y: 50.0, width: 100.00, height: 100.0))
mainView.backgroundColor = UIColor.blue

PlaygroundPage.current.liveView = mainView

Figure 6-5. Interactive Playground with a view

ChAPTEr 6 ■ EnTErIng DATA AnD VIEwIng rEsuLTs In swIfT PLAygrOunDs

97

After the initial title and subtitle you import UIKit, which is needed any time
you need the basic interface elements in a playground. You also need to import
PlaygroundSupport, the module that supports interactive playgrounds.

Inside every interactive playground that you build, you’ll need to have a view into
which you can draw. In this example, it is created with this line of code:

let mainView = UIView(let mainView = UIView(frame: CGRect
 (x: 50.0, y: 50.0, width: 100.00, height: 100.0))

For future use, this view is assigned a background color of blue:

mainView.backgroundColor = UIColor.blue

Remember as you’re typing that the Shortcut Bar will have your color choices as soon
as you type the UIC of UIColor.

Finally, you need to assign the view to the playground page you’re working with.
Here is the line of code for that (you use this line of code in most simple cases without
modification):

PlaygroundPage.current.liveView = mainView

Looking at Your View in the Timeline
You have created a view and colored it blue, but it doesn’t exist anywhere yet. The key
to using it in your playground is to assign it to the current view of the playground. That’s
where the PlaygroundSupport module comes into play: it has a reference to the current
playground page (PlaygroundPage.current). PlaygroundPage is the major class in
PlaygroundSupport, and it represents exactly what its name suggests. You may actually
have several PlaygroundPage instances at one time, but only one of them is current, and
that’s what this code snippet refers to. A PlaygroundPage can include variable data that
the user enters or that is generated as the playground runs, so it is a dynamic object.

Any PlaygroundPage can have a liveView. A liveView is any object that conforms to
the PlaygroundLiveViewable protocol. Those objects include UIView, UIViewController,
and all their descendants—basically the user interface elements of Cocoa and Cocoa
Touch. There are lots of opportunities for you here.

If you move this playground to Playgrounds on an iPad, you can run it in landscape
mode, as shown in Figure 6-6. On the iPad, you’ll see the color blue.

ChAPTEr 6 ■ EnTErIng DATA AnD VIEwIng rEsuLTs In swIfT PLAygrOunDs

98

 ■ Note Among the parts of playgrounds that have changed since the launch in 2016 are
the timeline and, with it, interactions with views beyond the simple text tools you’ve seen
in the early chapters of this book. for that reason make sure that, as you explore blogs and
websites for examples of swift playgrounds, you’re using the latest versions of swift and
Playgrounds (for Mac users, that means the latest version of Xcode). In a playground, if
you see import XCPlayground, you’re looking at the older version. you should see import
PlaygroundSupport instead. (In many playgrounds you don’t need either one.)

Add a Second View to the Live View
You can enhance your playground by adding a second view. You create another view and
give it a frame with dimensions in this line of code:

let innerView = UIView (frame: CGRect
 (x: 50.0, y: 50.0, width: 100.00, height: 100.0))

Figure 6-6. A simple view in a playground

ChAPTEr 6 ■ EnTErIng DATA AnD VIEwIng rEsuLTs In swIfT PLAygrOunDs

99

So you can see it easily against the blue of mainView, set its background color to
green (or any color other than the background color of the main view).

innerView.backgroundColor = UIColor.green

Finally, add this to mainView, which has already been set to the page’s live view:

mainView.addSubview(innerView)

 ■ Tip you may notice that the location of both views is the same, but remember that the
frame’s location (x and y) is relative to its superview. furthermore, the view that’s placed
in the live view behaves a bit differently from views that are placed in other views and is
resized as you rotate your iPad.

On Playgrounds on your iPad, when you tap Run My Code, you’ll see both views in
landscape mode, as shown in Figure 6-7, and in portrait mode, as in Figure 6-8. Note that
the inner view maintains the dimensions you set for it; the main view is resized as you
rotate your iPad.

Figure 6-7. Two views in a playground (landscape mode)

ChAPTEr 6 ■ EnTErIng DATA AnD VIEwIng rEsuLTs In swIfT PLAygrOunDs

100

As you might expect, on an iPad you can adjust the two views in the split view, as you
see in Figure 6-9.

Figure 6-8. Two views in a playground (portrait mode)

ChAPTEr 6 ■ EnTErIng DATA AnD VIEwIng rEsuLTs In swIfT PLAygrOunDs

101

Working with Interactive Data Entry
Putting colored views onto the Playgrounds timeline on macOS or onto the Playgrounds
app on iOS is a start, but it’s really not interactive. Interactive would allow for user input
and for changes in the display that are not code-based. That’s what this section shows you
how to do.

The preceding example shows how to create a new view and, within it, another view.
The first view (containing the innerview) is then set to the playground’s liveView. As
noted, liveView can be set to any object that conforms to the PlaygroundLiveViewable
protocol, which means that UIView and UIViewController can be used for liveView.

A view (that is, an instance of UIView) can contain other views, as is the case in this
example. The view in the Interactive example is essential at the top level of the view hierarchy.
(In reality, it becomes part of the view of the playground that is at the top level, but that’s a
digression into the mechanics of playgrounds that need not bother you at the moment.)

A view controller is designed to contain other views and, more importantly, to
manage interactions between those views. A view controller itself can contain properties
that are shared among its views, and that’s what’s going to happen here. There will be a
text field into which you can enter text. What you enter will then be shown in a label field
(labels in Cocoa Touch are not editable by the user, although you can modify them in
code as you will do here). The view controller will contain a property for the label as well
as for the text field. When editing of the text field is complete, its value (the text entered)
will be placed in the label.

Figure 6-9. Adjust the split view

ChAPTEr 6 ■ EnTErIng DATA AnD VIEwIng rEsuLTs In swIfT PLAygrOunDs

102

Creating a New Playground
Start by creating a new playground: DataEntry is a good name for it. You can do this
either on macOS with Xcode or on iOS with Playgrounds. The process on macOS has
been shown in previous chapters. To create a new playground in Playgrounds, use the +
in the top left of the window to create a new playground. It will have a default name (like
MyPlayground 3). Tap Edit in the top right and then select that new playground. You’ll be
able to enter a new name for it, and you can proceed.

Creating a View Controller for the Live View
The first step for creating a view controller in a new playground is shown in Listing 6-2.

Listing 6-2. Creating a New View Controller

/*:
 # Interactive Playground
 * DataEntry
 */

import UIKit
import PlaygroundSupport

class JFTextFieldController : UIViewController, UITextFieldDelegate {
 var textField: UITextField!
 var label: UILabel!
}

PlaygroundPage.current.liveView = JFTextFieldController()

You can place whatever title and subtitle you want at the top. Unlike the case where
you use a UIView in the live view of a playground just by instantiating a UIView, you
typically create a subclass of UIViewController when you want to use a view controller in
a playground. The reason is that because the view controller will need to coordinate data
and more than one view in many cases, you probably won’t find a view controller class
that exactly fits your needs for the playground.

 ■ Note This is not to say that you always need to override a UIViewController.
There are many cases when you can use the base class or one of its subclasses in your
apps or playgrounds. however, it seems that playgrounds often require a subclass of
UIViewController. This is only an observation and not a requirement in any way.

In this case, the subclass of UIViewController is called JFViewController. It is a
subclass of UIViewController as will be any view controller class that you create. In order
to manage the text field, the class will need to conform to UITextFieldDelegate protocol.
(See “Managing Text Fields” later in this chapter.)

ChAPTEr 6 ■ EnTErIng DATA AnD VIEwIng rEsuLTs In swIfT PLAygrOunDs

103

The view controller will need two properties, one for the text field and one for the
label. Their declarations are at the top of the class definition.

 ■ Note As is the case with most user interface elements, the properties of the elements
are implicitly unwrapped optionals using the ! postfix operator on the property type. An
implicitly unwrapped optional can be set to nil or its type. In the case of interface elements,
they are typically nil until they are set in the instantiated interface.

An instance of JFTestFieldController is created and set to the live view of the
current page, and with that the basic playground is set up, but nothing is visible and
nothing is operational yet.

Creating the View Controller Views
When you directly instantiate views in a playground as shown in the Interactive Playground
in the first part of this chapter, the view creation happens as your code is executed. The view
controller here will do the creation of its view and any subviews that view has. (This is not
always the case; subviews are sometimes created by other objects and then placed in the
view controller, but the process outlined here is perhaps more common.)

VIEW SETUP SUMMARY

The following are the methods that a view controller uses to set up itself and
its views. loadView() is called when the view controller itself is loaded. you
may override loadView() to create subviews and do anything else to initialize
the view controller right at the start. Companion methods viewWillLoad() and
viewDidLoad() are called before and after loadView().

Two other sets of methods are called later on: viewWillAppear() and its
companion viewDidAppear() are called first, and later viewWillDisappear() and
viewDidDisappear() are called. Appearing and disappearing happen after a view
has been loaded. Override loadView() or its companions for one-time setup, and
use the appearance methods to modify the data shown by a loaded view or, in the
case of disappearance, to save it to a persistent store.

Creating the subviews is done in the loadView() method in the DataEntry
playground shown in Listing 6-3. (loadView is a stub at this point.)

Listing 6-3. Add loadView()

class JFTextFieldController : UIViewController, UITextFieldDelegate {
 var textField: UITextField!
 var label: UILabel!

ChAPTEr 6 ■ EnTErIng DATA AnD VIEwIng rEsuLTs In swIfT PLAygrOunDs

104

 override func loadView() {
 }

}

PlaygroundPage.current.liveView = JFTextFieldController()

The code will be basically the same as you have seen in the Interactive Playground:

 1. Create an instance of a view.

 2. Set its frame.

 3. Set its color(s) if necessary as well as any other properties you
need.

These are the basic steps in creating any view programmatically (as opposed to using
a storyboard). For views that are to be shown in a playground, you add them as subviews
to the view that becomes part of the playground.

Creating the Main View Subview
Listing 6-4 shows the code to create the main view, called view for the sake of simplicity.
You can name it anything you want.

Listing 6-4. Creating the Main View

let view = UIView(frame: CGRect(x: 50, y: 50, width: 100, height: 100))
view.backgroundColor = UIColor.cyan

That listing is identical to the code you’ve seen previously in this chapter, but as
you type it you may want to try something new using QuickType. As you start typing the
CGRect, you’re presented with possible completions, as you can see in Figure 6-10.

ChAPTEr 6 ■ EnTErIng DATA AnD VIEwIng rEsuLTs In swIfT PLAygrOunDs

105

You can create the CGRect for the view with CGFloat, Double, or Int values. If you’re
not used to the QuickType keyboard, you’ll soon find it’s a big time saver (see Chapter
5 for more on that). It can also be a source of new ideas of how you can write code. For
instance, in this case, Int values work perfectly well.

Creating the Text Field Subview
Listing 6-5 shows the text field implementation. It’s almost exactly the same as what you
have seen before: the view is created with its frame, its background color is set, and it’s
added to the main view (called view).

Listing 6-5. Implementing the Text Field

textField = UITextField (frame: CGRect (x: 5, y: 5, width: 100, height: 15))
textField.backgroundColor = UIColor.white
view.addSubview (textField)

Figure 6-10. Use the QuickType completions

http://dx.doi.org/10.1007/978-1-4842-2647-6_5

ChAPTEr 6 ■ EnTErIng DATA AnD VIEwIng rEsuLTs In swIfT PLAygrOunDs

106

Creating the Label Subview
For the label view there is one additional step: the text color is set to white so it stands out
from the darker background. This is shown in Listing 6-6.

Listing 6-6. Implementing the Label

label = UILabel(frame: CGRect (x: 5, y: 25, width: 100, height: 15))
label.backgroundColor = UIColor.brown
label.textColor = UIColor.white
view.addSubview(label)

Assembling the View Controller
Finally, you assign the main view (view) to the view controller’s view property. Each
view controller has a single view property that is the primary view that it controls. That
view often has subviews, and in fact it can be a container view whose purpose is only to
contain subviews. After the main view, text field, and label have been created, you assign
the main view (view) that you have created to the view controller’s view:

self.view = view

Managing Text Fields
Cocoa and Cocoa Touch use the target-action design pattern extensively. It’s a very
simple idea that relies on the basic structure of Cocoa and its messaging structure.
User interface objects typically use target-action whether or not you notice it (with
storyboards, for example, the underpinnings are behind what you draw in a storyboard’s
graphical user interface).

The idea is that for a user interface control, when a certain action occurs send a
message to a target and specify what action that target should take. In the case of an
interface element like a text field, you set up the target and the action it should take
with addTarget, a method of UIControl that includes buttons and sliders. addTarget’s
signature is addTarget(_:action:for:).

Here’s the line of code you need to add to loadView():

textField.addTarget (self, action: #selector(updateText),
 for: UIControlEvents.editingChanged)

This method prepares the target-action design pattern for use:

•	 The first parameter is the target: in this case, the target is self—
the view controller in which this line of code occurs. (Using self
as the target is very common.)

•	 The action that’s sent to the target (self) is to run the updateText
method. This method is declared in the view controller, as you’ll
see in the next section.

ChAPTEr 6 ■ EnTErIng DATA AnD VIEwIng rEsuLTs In swIfT PLAygrOunDs

107

•	 The condition for which the target-action will be triggered
is specified by the for: parameter. In this case, it is
UIControlEvents.editingChanged, which is a constant declared
in the UIControlEvents struct.

Updating the Text
Once you have set up the target-action design pattern as shown here, you only need
to implement that updateText method that will be called when a UIControlEvents.
editingChanged message is received by the view controller. Remember that the view
controller has references to both the text field and the label so it can pick up the text
property of the text field and set its value to the label’s text property. Listing 6-7 shows the
code.

Listing 6-7. Updating the text label from the text field

func updateText () {
 self.label.text = textField.text
}

Finishing Up the View Controller
At the end of the view controller’s code is a line that invokes updateText during loadView.
This has the result of setting the value of label to the text in textField. Because
textField was just created, that value is blank, which is what you want.

Finally, you create an instance of JFTextFieldController and assign it to the live
view of the current page. Listing 6-8 shows the completed code.

Listing 6-8. Interactive Playground Code

/*:
 # Interactive Playground
 * DataEntry
 */

import UIKit
import PlaygroundSupport

class JFTextFieldController : UIViewController, UITextFieldDelegate {
 var textField: UITextField!
 var label: UILabel!

 override func loadView() {

 let view = UIView(frame: CGRect(x: 50, y: 50, width: 100, height: 100))
 view.backgroundColor = UIColor.cyan

ChAPTEr 6 ■ EnTErIng DATA AnD VIEwIng rEsuLTs In swIfT PLAygrOunDs

108

 textField = UITextField (frame: CGRect (x: 5, y: 5, width: 100, height: 15))
 textField.backgroundColor = UIColor.white
 view.addSubview (textField)

 label = UILabel(frame: CGRect (x: 5, y: 25, width: 100, height: 15))
 label.backgroundColor = UIColor.brown
 label.textColor = UIColor.white
 view.addSubview(label)

 self.view = view

 textField.addTarget (self, action: #selector(updateText),
 for: UIControlEvents.editingChanged)

 updateText()
 }

 func updateText () {
 self.label.text = textField.text
 }
}

PlaygroundPage.current.liveView = JFTextFieldController()

Trying Out the Playground
You can try out the playground, as shown in Figure 6-11.

ChAPTEr 6 ■ EnTErIng DATA AnD VIEwIng rEsuLTs In swIfT PLAygrOunDs

109

Exploring the Playground
As your playground is running, you can examine what’s happening. For example,
as Figure 6-12 shows, you can tap the code to bring up a menu of choices. Note the
disclosure triangles to the right of each property that is in play at the moment.

Figure 6-11. Try out the playground

ChAPTEr 6 ■ EnTErIng DATA AnD VIEwIng rEsuLTs In swIfT PLAygrOunDs

110

Tap a disclosure triangle to see its runtime values, as shown in Figure 6-9. For
example, tapping the view controller itself (such as the code that is the invocation of
updateText), you will see that the UIViewController is a descendent of UIResponder,
which in turn has its own disclosure triangle (shown in Figure 6-10).

You could continue drilling down to see any of the properties. At any level, you can
stop drilling down and go back, as shown in Figure 6-13. You can then explore another
part of the hierarchy, as you can see in Figure 6-14, where the label is explored. You see
its property, the only one it has assigned at this point: the color. And in the playground’s
view, you see that color as it is (the actual color).

Figure 6-12. Explore the properties as the playground runs

ChAPTEr 6 ■ EnTErIng DATA AnD VIEwIng rEsuLTs In swIfT PLAygrOunDs

111

Figure 6-13. Use the back arrow to back out of data for a given property

ChAPTEr 6 ■ EnTErIng DATA AnD VIEwIng rEsuLTs In swIfT PLAygrOunDs

112

Summary
In this chapter, you saw how to create interactive playgrounds in several ways. You can
use the timeline to explore what is happening as the playground runs. You can build a
playground that is subtantially more sophisticated so that users can enter data and see it
in a text field or label. This interface uses the interface elements you will use in apps and
other playgrounds, rather than the default Swift playground interfaces.

Figure 6-14. Explore other parts of the playground’s data structure

113© Jesse Feiler 2017
J. Feiler, Exploring Swift Playgrounds, DOI 10.1007/978-1-4842-2647-6_7

CHAPTER 7

Adding Resources and
Source Code to Playgrounds

When you create a playground—either on a Mac with Xcode or using Playgrounds on an
iPad—you can start writing your code right away. You can use import to bring in modules
large and small, including ones that are focused on specific tasks such as managing audio
or video or even playgrounds themselves (with PlaygroundSupport). You can control
what parts of your code are visible in a playground by using markup commands such as
//#-editable-code and //#-end-editable-code (see Chapters 4 and 6 for examples).

Playgrounds are actually packages of files that can include resources (most
commonly images) and additional code. This chapter shows you how to add resources
and source code to your playgrounds as well as how to explore playgrounds (including
the Apple playgrounds) to see how things are done.

 ■ Note Playgrounds can be much more complex than just the packages of files that
you see in this chapter. You can assemble playgrounds into playground books. You’ll see an
example of that in Chapter 9.

Looking Inside a Playground
You can create a playground on a Mac with Xcode (a free download from http://
developer.apple.com or the Mac App Store) or on an iPad with the Playgrounds app. The
playgrounds are transferable from one environment to the other, or you can save them to
iCloud Drive or Dropbox so that you can access them from either place.

http://dx.doi.org/10.1007/978-1-4842-2647-6_4
http://dx.doi.org/10.1007/978-1-4842-2647-6_6
http://dx.doi.org/10.1007/978-1-4842-2647-6_9
http://developer.apple.com/
http://developer.apple.com/

ChaPter 7 ■ adding resourCes and sourCe Code to PlaYgrounds

114

 ■ Note in the figures in this chapter, you’ll see both Playgrounds and Xcode. as files are
moved back and forth, you can either share them or copy them to new versions. the figures in
this chapter reflect the fact that many are copied. as you work on your own projects, you may
prefer to share files because it’s more straightforward. in preparing the screenshots in this book,
copying them has been easier, so ignore the integers appended to playground titles.

A playground is actually a package of files that contain the components for a
playground. You can look inside a playground on Xcode or Playgrounds. You see a bit
more of the file structure when using Xcode and the Finder, so that way of exploring
a playground is shown first in this section, but then you’ll see how to look at the same
playground and its files using Playgrounds on iPad.

The playground we’ll explore is a very basic one called ExpandingPlaygrounds. You
can create it either on macOS or an iPad. It has a title and subtitle—you can see the raw
markup code in Figure 7-1 on macOS and rendered markup in Figure 7-2.

Figure 7-1. Raw markup for ExpandingPlaygrounds

ChaPter 7 ■ adding resourCes and sourCe Code to PlaYgrounds

115

Exploring a Playground in the Finder (macOS)
Using the Finder in macOS, locate the playground you have created, as shown in Figure 7-3.

Figure 7-2. Rendered markup for ExpandingPlaygrounds

ChaPter 7 ■ adding resourCes and sourCe Code to PlaYgrounds

116

If you double-click the playground file, it will open in Xcode as a playground on
macOS. But because it’s a package, you can open the package itself to see the internal
files. Control-clicking the playground file will show the shortcut menu in Figure 7-4.

 ■ Note as with most shortcut menus, you’ll see the available menu commands for the
selected file. this means that the specific commands toward the bottom of the shortcut
menu may be different on your Mac, but show Package Contents at the top should be in the
shortcut menu.

Figure 7-3. ExpandingPlaygrounds in the Finder on macOS

ChaPter 7 ■ adding resourCes and sourCe Code to PlaYgrounds

117

Choose Show Package Contents to open the package in its own Finder window, as
shown in Figure 7-5.

Figure 7-4. Use Control-click on macOS to open the playground’s package

ChaPter 7 ■ adding resourCes and sourCe Code to PlaYgrounds

118

You will see the three basic playground files: Contents.swift, contents.xcplayground,
and playground.workspace. You may also see two folders, Resources and Sources, which I
describe after I talk about the three basic files.

Contents.swift
This is the basic playground file, shown in Figure 7-6; compare it to Figure 7-1. This is
where the file shown in Figure 7-1 is located on disk. Resist the temptation to edit it inside
the package—edit it with Xcode or with Playgrounds. (This will become more important
as your playgrounds get bigger and more complex—see Chapter 9 for more details.)

Figure 7-5. Look inside the playground’s package

http://dx.doi.org/10.1007/978-1-4842-2647-6_9

ChaPter 7 ■ adding resourCes and sourCe Code to PlaYgrounds

119

contents.xcplayground
contents.xcplayground is the basic directory of your playground and its files. Right
now, there’s only one file involved, but the playground may well grow. You can’t open
contents.xcplayground directly from the Finder, but you can open it with an editor such
as BBEdit from the shortcut menu. (The comment about not editing these files directly
definitely applies to this file. Look but don’t edit!)

If you open this file, you’ll see that it’s an XML file. Listing 7-1 shows the code for this
file that is in ExpandingPlaygrounds.

Listing 7-1. contents.xcplayground

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<playground version='5.0' target-platform='ios' display-mode='rendered'>
 <timeline fileName='timeline.xctimeline'/>
</playground>

playground.workspace
Finally, playground.workspace is a typical Xcode workspace. (There’s more on Xcode
workspaces in the Xcode documentation, but you don’t need to worry about it at this
point—or possibly ever.) Because the package itself has your playground name in its title,
the name of the workspace is constant: it’s called playground.workspace even though in
this case it’s inside a playground called ExpandingPlaygrounds.

Figure 7-6. Look inside Contents.swift

ChaPter 7 ■ adding resourCes and sourCe Code to PlaYgrounds

120

Exploring a Playground in Playgrounds (iOS)
You can open the same playground in Playgrounds on an iPad, or you can construct it
from scratch in Playgrounds (and perhaps later you can open it on macOS in Xcode).
Figure 7-7 shows the playground in Playgrounds.

Use the three dots at the top right of the Playgrounds view to open the Tools popover,
as shown in Figure 7-8. You can use a variety of options to share your playground, such as
taking a picture, creating a PDF, recording it, or broadcasting it using a live streaming app
from the App Store (you’ll find a link to those under the Broadcast Live tool item).

Figure 7-7. ExpandingPlaygrounds in Playgrounds on iPad

ChaPter 7 ■ adding resourCes and sourCe Code to PlaYgrounds

121

To look inside the playground, tap Advanced at the bottom of the popover. You will
start to explore the files inside the playground, as shown in Figure 7-9.

Figure 7-8. Tools popover in Playgrounds on iPad

ChaPter 7 ■ adding resourCes and sourCe Code to PlaYgrounds

122

Tap View Auxiliary Source Files to delve into the playground, as you can see in
Figure 7-10.

Figure 7-9. Exploring advanced tools in Playgrounds

ChaPter 7 ■ adding resourCes and sourCe Code to PlaYgrounds

123

You’re back to the playground package you saw back in Figure 7-5.

 ■ Note there may be other files or directories that are shown at this point. unless you’ve
been changing the inside of the playground, don’t worry about them. contents.xcplayground
shown in listing 7-1 may not be shown. resources and sources folders may appear
(covered in the following sections).

If you have any doubts, tap Contents.swift; the result is shown in Figure 7-11.

Figure 7-10. Looking at auxiliary source files

ChaPter 7 ■ adding resourCes and sourCe Code to PlaYgrounds

124

Adding Resources to a Playground
You can add resources to a playground just by selecting them or dragging them into
the playground in Playgrounds (iOS) or in Xcode (macOS—see Figure 7-12) as part of a
statement, such as this one:

let myImage =

Figure 7-11. Look inside Contents.swift

ChaPter 7 ■ adding resourCes and sourCe Code to PlaYgrounds

125

 ■ Note You can use Xcode on macos or Playgrounds on ios as you switch back and
forth to a shared file (perhaps using iCloud drive). there is no single way to integrate
resources into your playgrounds, so this section moves back and forth to show the various
steps you can take on both platforms.

The completed line of code is shown in Figure 7-13.

Figure 7-12. Drag an image file on macOS

ChaPter 7 ■ adding resourCes and sourCe Code to PlaYgrounds

126

Behind the scenes, if you look at the package you’ll see that now there is a Resources
folder that may not have been there before. Inside it, you’ll find the image file that you just
dropped into the playground, as shown in Figure 7-14 (this is in Xcode on macOS).

Figure 7-13. The image is inserted into the code

ChaPter 7 ■ adding resourCes and sourCe Code to PlaYgrounds

127

The Resources folder is also now present in Playgrounds on iOS, as you can see in
Figure 7-15.

Figure 7-14. The image drag is completed and it is placed in Resources

ChaPter 7 ■ adding resourCes and sourCe Code to PlaYgrounds

128

In Playgrounds on iOS, you don’t drag files into playgrounds (dragging files is a
macOS technique). Instead, to add a file, double-tap an image placeholder or any other
place where an image may be placed.

In the Shortcut Bar at the bottom of the Playgrounds view in Figure 7-16, you’ll see
that in the context of the code, you can choose to complete the replacement statement
with (from left to right) a number, string, Boolean value, shape, or picture, as well as an
array, dictionary, tuple, or nil.

Figure 7-15. Resources folder is added if necessary

ChaPter 7 ■ adding resourCes and sourCe Code to PlaYgrounds

129

The picture button on the Shortcut Bar (the sun/moon and mountain button) opens
the popover shown in Figure 7-17. The popover lets you select from the three types of
resources that can be inserted into a playground. The segmented control at the top shows
them (from left to right): code snippets, pictures, and documents.

Figure 7-16. The Shortcut Bar lets you insert a picture

ChaPter 7 ■ adding resourCes and sourCe Code to PlaYgrounds

130

When you have chosen (or taken a photo of) an image that you want to use, you can
tap it to enlarge it and then tap Use in the top right of the view, as shown in Figure 7-18.

Figure 7-17. Insert a picture from Resources

ChaPter 7 ■ adding resourCes and sourCe Code to PlaYgrounds

131

Adding Code to a Playground
In addition to adding resources, you can add code to a playground. This code is added to
the Sources folder (you may need to create it) and is executed as your playground runs.
You can add more than one file to the Sources folder. Place Swift code in the files that you
want to reference in your playground. Code placed in the Sources folder runs faster than
code in your playground, so you may want to do this for reasons of efficiency.

More common is using code in the Sources folder to provide behind-the-scenes
features to your playground. The following are three common ways of using files in
Sources. The first is demonstrated in this chapter; the second two are shown in Chapter 9:

•	 You can create a function in a file in the Sources folder so that you
can use it in the playground. This is commonly used in training
and education playgrounds, where the emphasis is on the overall
view and the details of implementation for a function don’t matter
because the focus is on the big picture.

•	 You can create a class in a Sources file that you use in your
playground as needed.

•	 You can create a constant or an enum to be used in various parts of
your playground.

Figure 7-18. Use a photo

http://dx.doi.org/10.1007/978-1-4842-2647-6_9

ChaPter 7 ■ adding resourCes and sourCe Code to PlaYgrounds

132

Although you can edit any file in the Sources folder, you need to create a Swift file
in Xcode (or you can use one you have around). To create a Swift file in Xcode, open or
create a playground in Xcode. Then use File ➤ New ➤ File, as shown in Figure 7-19.

Click Next and continue to save the file wherever you want to. You can save it directly
into the Sources folder of your playground or save it elsewhere and then drag it into the
Sources folder of your playground.

You can also use the project navigator in Xcode to add a file. Open your playground
in Xcode and show the project navigator at the left of the workspace window, as shown
in Figure 7-20. (You use the navigator button at the top right of the workspace window or
View ➤ Navigators ➤ Show Project Navigator to show the project navigator).

Figure 7-19. Create a Swift file in Xcode

ChaPter 7 ■ adding resourCes and sourCe Code to PlaYgrounds

133

Use the + at the bottom left of the project navigator to add a new file, as you can see
in Figure 7-21.

Figure 7-20. Show the project navigator in Xcode on macOS

ChaPter 7 ■ adding resourCes and sourCe Code to PlaYgrounds

134

In Figure 7-21, the new file is named ExtraCode.swift, but you can name it anything
you want because the file name won’t appear in the main playground. In Xcode, you can
open the file from the project navigator and write a function or other code, as shown in
Figure 7-22.

Figure 7-21. Add a new file to your Xcode project

ChaPter 7 ■ adding resourCes and sourCe Code to PlaYgrounds

135

 ■ Tip Make functions and classes in your added source files public. also note that
the blank file that is created for you will have an import statement—typically to import
Foundation, Cocoa, or uiKit. Choose the lowest level you need. in other words, if you don’t
need the user interface, choose Foundation or Cocoa.

In Playgrounds on iOS, you can always use the three dots at the top right of the
window to look inside the playground. At this point, you’ll see more components, as
shown in Figure 7-23.

Figure 7-22. Open and edit the ExtraCode.swift file in Xcode

ChaPter 7 ■ adding resourCes and sourCe Code to PlaYgrounds

136

You can drill down into the Sources folder; your new file is there, as you can see in
Figure 7-24.

Figure 7-23. Look inside your playground as you add more components

ChaPter 7 ■ adding resourCes and sourCe Code to PlaYgrounds

137

Select ExtraCode.swift from Sources at the left, and you’ll see your code, as shown
in Figure 7-25. You can edit it either here in Playgrounds or in Xcode. Remember to
either move the playground back and forth or work on the shared copy in iCloud Drive or
Dropbox.

Figure 7-24. Drill down to ExtraCode.swift

ChaPter 7 ■ adding resourCes and sourCe Code to PlaYgrounds

138

Once you have your code in the Sources folder, you can use its functions, classes, and
other code in your main playground files. For example, you can use the playgroundSlug
function to return a string to use in your playground. Do that in your main playground, as
shown in Figure 7-26.

Figure 7-25. View and edit your code in Xcode

ChaPter 7 ■ adding resourCes and sourCe Code to PlaYgrounds

139

As you’re typing your code, you’ll see that although playgroundSlug isn’t visible,
it’s visible to QuickType—it’s among the choices available as you type. This is shown in
Figure 7-27.

Figure 7-26. Use the function from ExtraCode.swift in your playground

ChaPter 7 ■ adding resourCes and sourCe Code to PlaYgrounds

140

If you run the playground on Xcode, you’ll see that the function is being called, as
shown in Figure 7-28.

Figure 7-27. QuickType can see your added code in Sources

Figure 7-28. The function in ExtraCode.swift is called from your playground

ChaPter 7 ■ adding resourCes and sourCe Code to PlaYgrounds

141

In Playgrounds on your iPad, you’ll see that it’s also running there, as shown in
Figure 7-29.

There’s no visible reference to ExtraCode.swift, and the code that’s in the function
isn’t shown at all. For teaching purposes, this can be great because you can focus on
the flow of control in the playground and then drill down (if necessary) to the code in
Sources.

Summary
This chapter showed how to add images or other resources to a playground as well as
how to add code to a playground. Resources and source code are parts of the playground
and are available to the main playground and to any other pages you might add to your
playground. In Chapter 9 you’ll see how to add new pages to your playground that use the
added resources and code.

Figure 7-29. The code is available on both macOS and iPad

http://dx.doi.org/10.1007/978-1-4842-2647-6_9

143© Jesse Feiler 2017
J. Feiler, Exploring Swift Playgrounds, DOI 10.1007/978-1-4842-2647-6_8

CHAPTER 8

Using Touch Gestures in
Interactive Playgrounds

Chapter 6 explores interactivity in playgrounds for two major areas:

•	 Working with a playground live view and views that respond to
device rotation

•	 Creating and using data entry fields

This chapter explores yet another aspect of interactive views: creating and using
gesture recognizers so you can create playgrounds with objects that users can directly
manipulate.

All of these examples use views inside a playground live view. In Cocoa and Cocoa
Touch, views are not just displays of data—they also respond to events such as device
rotation, along with touches in subclasses of UIView such as UIButton. Views are also
movable and resizable when you add gesture recognizers to them.

Because both Chapter 6 and this chapter are based on views, you can mix and match
the various code snippets you see in the examples. For example, you can create a view
with subviews for display and data entry (as in Chapter 6) and then make it movable, as
shown in this chapter.

That’s not all. You can explore sample code on http://developer.apple.com
such as UIKit Dynamics Catalog (https://developer.apple.com/library/content/
samplecode/DynamicsCatalog/Introduction/Intro.html) to take advantage of built-in
physics functionality that reflects gravity, collisions, and other real-world movement.

Adding gestures to your playgrounds can make them much more powerful and
inviting for your users. For you, using playgrounds to explore the world of touch gestures
is a great way to get a firsthand understanding of gestures. Until you actually use
gestures and experiment with the code that backs them up, you don’t get a good sense
of what is going on. In part that’s because gestures combine many different aspects of
the user interface, so experimenting with gestures in code for an app can require a lot
of preparation and setup. In a playground that you use for exploration, you can use
stripped-down gestures to get a sense of the functionality and then go back to fully
implement them in an app or playground for others.

http://dx.doi.org/10.1007/978-1-4842-2647-6_6
http://dx.doi.org/10.1007/978-1-4842-2647-6_6
http://dx.doi.org/10.1007/978-1-4842-2647-6_6
http://developer.apple.com/
https://developer.apple.com/library/content/samplecode/DynamicsCatalog/Introduction/Intro.html
https://developer.apple.com/library/content/samplecode/DynamicsCatalog/Introduction/Intro.html

Chapter 8 ■ Using toUCh gestUres in interaCtive playgroUnds

144

Understanding Gestures Using Playgrounds
Gestures entered the Mac world with the advent of trackpads on Macs (specifically the
MacBook Air and models of MacBook Pro). As described in “Cocoa Event Handling
Guide,” https://developer.apple.com/library/content/documentation/Cocoa/
Conceptual/EventOverview/HandlingTouchEvents/HandlingTouchEvents.html,
“. . . gesture events are a species of multitouch events because they’re based on an
interpretation of a sequence of touches. In other words, gestures are a series of
multitouch events recognized by the trackpad as constituting a gesture.” What is
important is that they are sequences of more than one event. The sequence has a
beginning and an end with its first and last event; the intermediate events may be of
several types, but often they are of the same type. These intermediate events (such as
moving your finger on the trackpad or device screen) continue as the gesture continues.
Although each gesture has a start with a beginning event, it may not have an ending
event because it may be cancelled. This is much more complex than a tap gesture, which
consists of two events: touch down and touch up.

 ■ Note this chapter is an introduction to help you get started with understanding and
using gestures. there are many simplifications both in the structure of the playground and
its functionality, but you should get a working gesture-recognizing playground that you can
then enhance and customize for your own purposes.

Creating a Basic Gesture Playground in Xcode on macOS
In this section, you’ll see how to build a playground with a basic gesture to get a feel
for how gestures work. This will entail creating a new playground with a live view as a
background and then creating a view that’s inside the live view. That view will respond to
gestures.

Creating a Playground with Live View
Begin by creating a basic playground with a live view, as shown in Figure 8-1, where the
timeline is shown in the Assistant Editor. The code is shown in Listing 8-1.

 ■ Note the background of mainView in Figure 8-1 and listing 8-1 is set to brown to
make it clearer in some of the figures of this chapter. it’s better to set it to white as you
work on this project, and that’s how it is used in the later figures in this chapter. if you look
very carefully at the timeline with a white mainView, you’ll see that the background of the
timeline is a very light gray, and the white mainView is visible as a separate view—but it’s
not easy to spot unless you’re used to it, thus the much more visible brown in some of the
figures in this chapter.

https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/EventOverview/HandlingTouchEvents/HandlingTouchEvents.html
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/EventOverview/HandlingTouchEvents/HandlingTouchEvents.html

Chapter 8 ■ Using toUCh gestUres in interaCtive playgroUnds

145

Listing 8-1. Creating a Simple Playground

/*:
 # BasicGesture
 * Experimenting with gestures in a playground
 */

import UIKit
import PlaygroundSupport

let mainFrame = CGRect (x:0, y:0, width: 200, height: 200)
let mainView = UIView (frame: mainFrame)
mainView.backgroundColor = UIColor.brown

PlaygroundPage.current.liveView = mainView

Create a GestureView Class
Create the inner view that will respond to gestures. To do so, you will need to create a
subclass of UIView that responds to gestures. Thus, you need to create a new class (call
it GestureView) which is a subclass of UIView, and you’ll need to create an instance of
GestureView that you add to mainView.

 ■ Note this is not the only way to create a view that responds to gestures, but it’s simple
enough to get started.

Figure 8-1. Code for simple playground

Chapter 8 ■ Using toUCh gestUres in interaCtive playgroUnds

146

Show the utilities navigator, as shown in Figure 8-2, and select the code snippet
library at the lower right. In it, you’ll find a Swift subclass snippet that you can use for the
GestureView subclass of UIView.

For now, it makes sense to put the GestureView subclass at the top of your
playground file, right after the import statements. (This choice is to keep your code
organized—you’ll move it after you’ve confirmed that your basic gesture is working.)
Figure 8-3 shows the code snippet dragged into your playground.

Figure 8-2. Use a Swift subclass snippet

Figure 8-3. Add the snippet to your playground’s code

Chapter 8 ■ Using toUCh gestUres in interaCtive playgroUnds

147

When you release the mouse button (or let up on the trackpad), the code snippet is
inserted in your playground as you see in Figure 8-4.

As with all code snippets, there are placeholders you have to fill in with actual code.
If you try to build an app or playground with them in place, you’ll get errors. In the case
of the subclass snippet, you need to name the new subclass as well as its superclass. Then
you need to add its code.

In the case of this new subclass, the first two substitutions are simple: the new
subclass is GestureView, and the superclass is UIView, so you can type those in. Listing 8-2
shows your playground’s code as it should be at this point. The results are shown in
Figure 8-5.

Listing 8-2. Entering the Class Name and Superclass Name

/*:
 # BasicGesture
 * Experimenting with gestures in a playground
 */

import UIKit
import PlaygroundSupport

public class GestureView: UIView {

}

Figure 8-4. Check the snippet once it’s added to your code

Chapter 8 ■ Using toUCh gestUres in interaCtive playgroUnds

148

let mainFrame = CGRect (x:0, y:0, width: 200, height: 200)
let mainView = UIView (frame: mainFrame)
mainView.backgroundColor = UIColor.brown

PlaygroundPage.current.liveView = mainView

 ■ Note When you add classes or functions to your class for a playground, they must be
declared as public.

Make the new class public as you see in Figure 8-5.

Once you see that the playground runs with the GestureView class (even though it’s
not used yet), it’s a good time to change the mainView backgroundColor to white from
brown. As noted previously, it will be a bit more difficult to see it, but you’ve now seen
that the code is working, so that doesn’t matter.

Creating an Instance of GestureView
Create an instance of GestureView and add it to your mainView. The code is the same as
you’ve seen in similar cases—it’s shown in Listing 8-3.

Listing 8-3. Creating a GestureView Instance

let innerFrame = CGRect (x:0, y:0, width: 200, height: 100)
let innerView = GestureRect (frame: innerFrame)
innerView.backgroundColor = UIColor.blue

mainView.addSubview(innerView)

Figure 8-5. Run the playground with the GestureView class in it (but not yet used)

Chapter 8 ■ Using toUCh gestUres in interaCtive playgroUnds

149

Adding a Gesture to GestureView
With no gestures in place, when you look at the view in the timeline, it just sits there.
Tap it or click it and nothing happens. The first gesture we’ll explore will let you move it
is called a pan gesture. You tap or click a view and drag it to a new position. Remember,
gestures consist of a collection of multitouch events, so there will be several such events
in the pan gesture, but you don’t have to worry about that; Cocoa Touch will put the
events together into a gesture for you.

To add a gesture to your view, you need to make five changes to the GestureView
class. They are summarized here and shown in detail after the summary:

•	 Add an override of the init function for your class so you can use
it to implement the gesture recognizer in the next step.

•	 You will need to add a required init function once you have
added your init override, but the code need not be customized
beyond the code shown in this section.

•	 Create a gesture recognizer to do just that—put the events
together into a gesture. Your gesture recognizer in this case will be
an instance of UIPanGestureRecognizer. (You’ll see how to use a
different gesture recognizer—UITapGestureRecognizer—later in
this chapter.)

•	 Create the gesture recognizer in the UIView subclass init
function and store it in a property of the class instance, as you will
see in this section.

•	 Create a function to handle the pan gesture once it’s recognized
and while it continues.

The gesture recognizer will use the function that handles the pan gesture, so until
you have the gesture recognizer and the gesture handler implemented, you can’t test your
code. Fortunately, there are only a few lines to test. They are shown in Listing 8-4. Create
an override of the init function in your GestureView class.

Listing 8-4. Adding an init Function

override public init (frame: CGRect) {
 super.init(frame: frame)

 let panRecognizer = UIPanGestureRecognizer
 (target: self, action: #selector(pan(sender:)))
 addGestureRecognizer(panRecognizer)
}

Listing 8-4 creates the gesture recognizer and sets it up to notify itself (that is, the
GestureView instance) and to use the pan gesture handler, which you’ll write in the next
step. Note that the syntax for selectors has changed with Swift 3, so this code may look
a bit different from what you’re used to. The main difference is that you no longer use
quotes around a function name.

Chapter 8 ■ Using toUCh gestUres in interaCtive playgroUnds

150

Once you add your override of init, you need to add the override of the required
init, as shown in Listing 8-5. You normally use this code as-is.

Listing 8-5. Add the Required init

required public init?(coder aDecoder: NSCoder) {
 fatalError("init(coder:) has not been implemented")
}

Implement the gesture handler with the code in Listing 8-6.

Listing 8-6. Implement the pan Function

public func pan (sender: UIPanGestureRecognizer) {
 self.superview?.bringSubview (toFront: self)
 let translation = sender.translation (in: self.superview)
 sender.view!.center = CGPoint (
 x: sender.view!.center.x + translation.x,
 y: sender.view!.center.y + translation.y)
 sender.setTranslation(CGPoint (x:0, y:0), in: self.superview)
}

You may be able to use this code without any alteration in your own app or
playground (if you do, use the version at the end of this chapter which incorporates a few
additions). The code does the following:

•	 It asks the superview to bring the view (GestureView, in this case)
to the front. Only a superview can bring a subview forward or
move it in most cases.

•	 It stores the translation property of sender in a local variable
called translation. translation is a CGPoint representing
where the new panned location is. With the superview passed in,
that panned location is in the superview’s coordinates. Remember
that the pan gesture recognizer is called repeatedly during the pan
(that is, during the move) of a view.

•	 The handler then sets the center of the GestureView to the
translated location.

•	 Finally, the translation is reset to 0, 0 in the superview’s
coordinates, reflecting the new position. If you don’t do this, the
view will move erratically as you drag it.

Adding Another GestureView
You add another GestureView with the code in Listing 8-7 so that you can try moving
two views around. It’s the same code you’ve used before, but the names of the frame and
the view are changed, and the background color is changed, as well as the location of the
view.

Chapter 8 ■ Using toUCh gestUres in interaCtive playgroUnds

151

Listing 8-7. Add innerView2

let innerFrame2 = CGRect (x:20, y:20, width: 50, height: 50)
let innerView2 = GestureView (frame: innerFrame2)
innerView2.backgroundColor = UIColor.green
mainView.addSubview(innerView2)

Finishing Up
If all has gone well, you should have a green view that looks just like a UIView in your
timeline, as shown in Figure 8-6.

The full code for the playground is shown in Listing 8-8.

Figure 8-6. Test your code with the second GestureView

Chapter 8 ■ Using toUCh gestUres in interaCtive playgroUnds

152

Listing 8-8. Complete Code for the Playground

import UIKit
import PlaygroundSupport

public class GestureView: UIView {

 override public init (frame: CGRect) {
 super.init(frame: frame)

 let panRecognizer = UIPanGestureRecognizer (target: self,
 action: #selector(pan(sender:)))
 addGestureRecognizer(panRecognizer)
 }

 required public init?(coder aDecoder: NSCoder) {
 fatalError("init(coder:) has not been implemented")
 }

 public func pan (sender: UIPanGestureRecognizer) {
 self.superview?.bringSubview (toFront: self)
 let translation = sender.translation (in: self.superview)
 sender.view!.center = CGPoint (
 x: sender.view!.center.x + translation.x,
 y: sender.view!.center.y + translation.y)
 sender.setTranslation(CGPoint (x:0, y:0), in: self.superview)
 }
}

let mainFrame = CGRect (x:0, y:0, width: 200, height: 200)
let mainView = UIView (frame: mainFrame)
mainView.backgroundColor = UIColor.white

let innerFrame = CGRect (x:5, y:5, width: 50, height: 50)
let innerView = GestureView (frame: innerFrame)
innerView.backgroundColor = UIColor.blue
mainView.addSubview(innerView)

let innerFrame2 = CGRect (x:20, y:20, width: 50, height: 50)
let innerView2 = GestureView (frame: innerFrame2)
innerView2.backgroundColor = UIColor.green
mainView.addSubview(innerView2)

PlaygroundPage.current.liveView = mainView

Chapter 8 ■ Using toUCh gestUres in interaCtive playgroUnds

153

Creating a Basic Gesture Playground in Playgrounds
on iPad
You can repeat the steps to create a basic gesture playground with Playgrounds on iPad.
The few differences you’ll see along the way are highlighted in this section. Start by
creating a new playground from the blank template you see when you tap the + in the top
left of the screen and choose Create Playground, as shown in Figure 8-7.

In the blank playground you see, you can start to type your code (if you want to refer
to Listing 8-8, that may help you).

To begin creating your playground in a blank template, you’ll need to start with the
import statements. They’re not shown in the Shortcut Bar, so show the keyboard with the
button at the bottom right of the playground view, and start typing import, as shown in
Figure 8-8. As soon as you have the first few characters typed, the Shortcut Bar will be able
to guide you along.

Figure 8-7. Create a new playground in Playgrounds for iPad

Chapter 8 ■ Using toUCh gestUres in interaCtive playgroUnds

154

As soon as you finish with the import statements, start typing the public class
declaration. Once again, the Shortcut Bar will catch up with you quickly and begin to offer
you more help, as you can see in Figure 8-9.

Figure 8-8. Start to create a new playground on iPad

Chapter 8 ■ Using toUCh gestUres in interaCtive playgroUnds

155

As is always the case with the Shortcut Bar, it can’t offer you suggestions when you
create a new symbol of any kind because you could name it anything. Thus, in Figure 8-10,
you will have to type GestureView without any prompting. You also will need to provide
the colon and the superclass (UIView) name because these can’t be predicted.

Figure 8-9. The Shortcut Bar helps you out

Chapter 8 ■ Using toUCh gestUres in interaCtive playgroUnds

156

At this point, either type the code from Listing 8-8 or copy and paste it from the
playground you created on Xcode (if you worked through that section—if you didn’t, refer
to the section “Creating a Basic Gesture Playground in Xcode on macOS,” earlier in this
chapter).

Whichever way you proceed, you should now have the playground shown in
Figure 8-11.

Figure 8-10. Type GestureView

Chapter 8 ■ Using toUCh gestUres in interaCtive playgroUnds

157

You can test it, as shown in Figure 8-12. It should work the same way as it does in
Xcode on macOS.

Figure 8-11. The entire playground in Playgrounds on iPad

Chapter 8 ■ Using toUCh gestUres in interaCtive playgroUnds

158

As you’re entering the code, if you type it you may notice that as you are about to set
the background color (or, in fact any color in a playground), you’ll be given a choice from
the color palette, as shown in Figure 8-13.

Figure 8-12. Test the code on iPad

Chapter 8 ■ Using toUCh gestUres in interaCtive playgroUnds

159

Working with Gestures in a Playground
The previous sections of this chapter show you how to build a simple playground that
incorporates gestures. As noted, it’s a basic getting-started overview. In this section, you’ll
see how to restructure the playground into a more robust structure that you can then use
for the basis of serious playground (and app) development.

Chapter 7 showed you how to add source code to a playground by putting it in the
Sources folder so that the main playground can use it without your users getting into the
weeds. The GestureView class is a great candidate for such a structure. This section shows
you how to split a playground apart so that you move part of it into a Sources file.

 ■ Note splitting a playground apart like this is a bit easier to do with Xcode at this time,
but once you’ve restructured your code (a matter of a minute or two if you follow the steps
in this section), you can continue working on the playground either with playgrounds on ipad
or Xcode on your Mac.

Figure 8-13. Set the color in Playgrounds on iPad

http://dx.doi.org/10.1007/978-1-4842-2647-6_7

Chapter 8 ■ Using toUCh gestUres in interaCtive playgroUnds

160

BasicGesture is constructed so that the GestureView class is placed at the beginning
of the playground so it can easily be used by the code that creates GestureView instances
later in the playground. This is a structural choice: you could create an equally well-
organized playground by putting GestureView at the end. You can also intermingle the
code for GestureView with the other code in the playground, but structuring playgrounds
and apps to keep the supporting structures apart from the active code is generally a good
idea. (This an example of factoring or decomposition. If you will be writing much code, it
is good to use these techniques.)

Begin from the BasicGesture playground from this chapter, as shown in Listing 8-8.
(If you have created a version on Playgrounds for iPad, the color setting may look different,
but underneath it will be the same.) Show the project navigator by using the button at the
top right of the Xcode workspace window, as shown in Figure 8-14.

At the bottom left, use the + to create a new file. Xcode shows you the files that it can
create, as shown in Figure 8-15. Choose Swift File.

Project Navigator Show Navigator

Figure 8-14. Show the project navigator for the playground in Xcode on macOS

Chapter 8 ■ Using toUCh gestUres in interaCtive playgroUnds

161

Click Next and then name and place the file. In Figure 8-16, you see it being named
GestureSwiftClass (but you can name it anything), and it is placed in a local folder called
Files. You can put it anywhere, because you’ll be moving it.

Figure 8-15. Create a new Swift file in Xcode

Figure 8-16. Name and place your Swift file

Chapter 8 ■ Using toUCh gestUres in interaCtive playgroUnds

162

Now that you have the new file, move the GestureView class code out of the
playground and into the file. In the playground, highlight the GestureView class, as
shown in Figure 8-17.

Cut the class definition (you will paste it into a Sources file shortly). When you cut the
class definition, you will immediately generate some errors in the remaining code that refers
to the now-cut class, as you see in Figure 8-18. Don’t worry about the errors at this point.

Figure 8-17. Highlight the GestureView class code

Chapter 8 ■ Using toUCh gestUres in interaCtive playgroUnds

163

Paste the GestureView code that you just cut into the file you created in Figure 8-16
and save it. It should look like Figure 8-19, and the errors should be gone now that the
GestureView class is defined in the Sources folder’s GestureViewClass file.

Figure 8-18. Don’t worry about errors as you cut and paste code

Chapter 8 ■ Using toUCh gestUres in interaCtive playgroUnds

164

Return to the + at the bottom of the file navigator and this time choose Add Files to
GesturePlayground (or whatever the name of your playground is). After you add the file,
you’ll see it in the file navigator in the Sources folder. (If necessary, the Sources folder will
be created for you automatically.) Figure 8-20 shows the Add Files command as well as
the structure that results in the file navigator after you have used it.

Figure 8-19. Paste the code in

Chapter 8 ■ Using toUCh gestUres in interaCtive playgroUnds

165

You can now show the timeline, and you should be able to move the two shapes
around, as you can see in Figures 8-21 and 8-22.

Figure 8-21. Test the app

Figure 8-20.

Chapter 8 ■ Using toUCh gestUres in interaCtive playgroUnds

166

Summary
This chapter showed you how to explore gestures in playgrounds. Gestures are collections
of multitouch events that are combined into a single gesture. You need to create a gesture
recognizer for each type of gesture you want to recognize and then add it to the view that
should be equipped to handle gestures of that type. (When you use storyboards in Xcode
apps, you can create and add gesture recognizers in a storyboard for a view.)

Figure 8-22. Move a view in the app to test the gesture

167© Jesse Feiler 2017
J. Feiler, Exploring Swift Playgrounds, DOI 10.1007/978-1-4842-2647-6_9

CHAPTER 9

Building a Complex
Playground

The playgrounds you’ve seen in the other chapters of this book are one page long
(page means a playground page and not necessarily a printed page). The heart of each
playground page is the code that assigns the live view of the current page to a view or view
controller that contains the playground page:

PlaygroundPage.current.liveView = your playground view

 ■ Tip Remember that technically the current page can be any object that conforms to the
PlaygroundLiveViewable protocol. Objects that conform to this protocol include UIView,
UIViewController, NSView, and NSViewController. Subclasses of those objects that you
create automatically conform to PlaygroundLiveViewable.

You can combine multiple pages into a playground easily using Xcode on macOS.
(Becase this involves manipulating files, it’s easier to do it on macOS than iOS, at least
at the time of this writing.) As you do so in Xcode, basic navigation from page to page
is automatically implemented. You can modify it or add your own to create a multi-
page playground. This chapter shows you how to do build a multi-page playground
and implement page-to-page navigation. You’ll also see how to use playground links to
navigate to web pages and any other web link resource.

Collecting Your Playground Pages and Creating
the MultiPlayground
Begin by collecting a few playground pages—DataEntry and Interactive from Chapter 6
and GesturePlayground from Chapter 8. If you haven’t worked on them, download them
as described in the Introduction and put them somewhere safe so you can modify them
easily.

http://dx.doi.org/10.1007/978-1-4842-2647-6_6
http://dx.doi.org/10.1007/978-1-4842-2647-6_8

ChapteR 9 ■ Building a COmplex playgROund

168

Start by creating a new playground (I call it MultiPlayground) that will combine the
playgrounds you have collected. Figure 9-1 shows MultiPlayground started in Xcode.

After you have created the playground and stored it on disk, show the project
navigator, as shown previously in Figure 8-14 in Chapter 8. Then click the menu in
the lower left frame of the window to open the menu shown in Figure 9-2. (You may
remember that you used this menu in Chapter 8 to add a file to your playground.) Rather
than adding a file, use the New Page command to add a new page to the playground.
Before you do so, take a moment to look at the structure of the playground.

Figure 9-1. Create the MultiPlayground playground

http://dx.doi.org/10.1007/978-1-4842-2647-6_8
http://dx.doi.org/10.1007/978-1-4842-2647-6_8

ChapteR 9 ■ Building a COmplex playgROund

169

As you can see in Figure 9-2, the playground consists of the main playground page
file, and within it are the Sources and Resources folders. (If they’re not there yet, don’t
worry—they will be placed there when you need them.)

As soon as you release the mouse button (or lift your finger off the keypad), the New
Page command will be executed, and you’ll see the workspace changed so that it looks
like Figure 9-3.

Figure 9-2. Add a new page to the playground

ChapteR 9 ■ Building a COmplex playgROund

170

Very quickly, the following things happen:

•	 A page named Untitled Page is created.

•	 A second page named Untitled Page 2 is created.

The project navigator may also be rearranged a little to accommodate the new files.
You may wonder why you have two files when you only asked for one. What actually

has happened is that the code from your original playground has been moved to Untitled
Page, and that’s what you see in Figure 9-3.

 ■ Note if you want to verify this, after you create the new playground, delete the template
code that you see in Figure 9-2 and replace it with a comment like this: // My Comment

Figure 9-3. View the result of adding a page to the playground

ChapteR 9 ■ Building a COmplex playgROund

171

You’ll see that it has become Untitled Page. The original playground file contains
the playground workspace and playground xcplayground file as well as a new Pages
folder, shown in Figure 9-4 in the Finder when you show the package contents of the
MultiPlayground.playground file.

If you open the folders in the new playground, as shown in Figure 9-5, you’ll see that
each playground page has its own Sources and Resources folders.

Figure 9-4. Look inside the playground package

ChapteR 9 ■ Building a COmplex playgROund

172

In addition, you’ll see a Sources and Resources folder at the top level of the
playground page. It may not be immediately apparent in Figure 9-5, but if you look at the
left margins of the Untitled Page 2 and Untitled Page, you’ll see that they align with the
Sources and Resources folders for the playground as a whole (the bottom two folders in
Figure 9-5.

Assembling Playground Pages for Basic
Navigation
You can move from one playground page to another by clicking it in the project navigator.
Remember, typically Untitled Page will be the playground page you started from; it’s
copied into the multi-file playground. You can drag the pages to another order if you
want, but remember not to move the Sources and Resources folders out of a page because
they may be needed to support that page.

Figure 9-5. Look inside a page

ChapteR 9 ■ Building a COmplex playgROund

173

Untitled Page 2 is a brand new page that has been created by the New Page
command that you executed (refer to Figure 9-2 as a reminder). The rendered version
of Untitled Page 2 is shown in Figure 9-6, and you can see that it has Next/Previous
navigation added to it.

Figure 9-7 shows the raw markup.

Figure 9-6. Next/Previous rendered markup added automatically to a new page

ChapteR 9 ■ Building a COmplex playgROund

174

At this point, Next should work when Untitled Page 2 is selected and rendered
markup is shown, so it is worth exploring how the links work.

Using Basic Link Navigation
Basic Next/Previous links rely on the project navigator and the sequence of files it
contains. Remember that each file can be expanded to show its subfolders (Sources and
Resources). In Figure 9-8 the files have been closed up so the subfolders aren’t visible.
This makes it possible to click in a file name and start to edit it, as you see in Figure 9-8.

Figure 9-7. Next/Previous raw markup code

ChapteR 9 ■ Building a COmplex playgROund

175

Untitled Page 2 should have the Next and Previous links (as you see in Figure 9-9).

Figure 9-8. Rename a page in the project navigator

ChapteR 9 ■ Building a COmplex playgROund

176

If you’re curious, you can try them out. You’ll see that Previous doesn’t work, but
Next takes you to the Welcome page, as you can see in Figure 9-10.

Figure 9-9. Double-check Next/Previous rendered markup in a renamed page

ChapteR 9 ■ Building a COmplex playgROund

177

Next and Previous links rely on the order of pages in the project navigator. At this
point, the order is as follows:

•	 Untitled Page 2

•	 Welcome

Reverse the seqeuence by dragging the files in the project navigator so that Welcome
is the first page and you’ll be ready to continue. You’ve seen the Next/Previous code in
Figures 9-6 and 9-7. Figure 9-7 is the more complete version; its code is shown in Listing 9-1.

Listing 9-1. Code for Next/Previous links

//: [Previous](@previous)

import Foundation

var str = "Hello, playground"

//: [Next](@next)

Figure 9-10. Click Next in Untitled Page 2 and go to the Welcome page

ChapteR 9 ■ Building a COmplex playgROund

178

As always with playground markup, you begin with //: at the beginning of the line.
The format for a link is the link name in square brackets and then a link destination. The
@previous and @next link destinations are generated by the playground from the project
navigator based on the position of the current page.

The links appear where you want them to on a page. Typically, that’s at the top or
bottom, as is the case with this code.

To make your playground work properly, you can add links to both pages. Add the
Next link to the bottom of the code in Welcome so that it looks like Figure 9-11 and
Listing 9-2.

Listing 9-2. Code for Next (no Previous) navigation

//: Playground - noun: a place where people can play

import UIKit

var str = "Hello, playground"

//: [Next](@next)

You can bring Untitled Page 2 up to date by going to the existing code, shown in
Figure 9-12.

Figure 9-11. Add Next to Welcome

ChapteR 9 ■ Building a COmplex playgROund

179

This is the new page that was added to your basic playground. As a new page, it can
serve as a model for all your pages: it is a middle page, so it has both Next and Previous
links on it. For now, you can remove the Next link because there is no next page in the
project navigator. Your code should look like Listing 9-3 at this point.

Listing 9-3. Remove the Next Link from a Final Page

//: [Previous](@previous)

import Foundation

var str = "Hello, playground"

You can open the playground, show the rendered markup, and run it with the Next
and Previous buttons. You can even hide the project navigator so your playground is self-
contained.

You can move it to your iPad and run it, as shown in Figures 9-13 and 9-14.

Figure 9-12. Next/Previous links on a new middle page

ChapteR 9 ■ Building a COmplex playgROund

180

Figure 9-13. Welcome page with a Next link

ChapteR 9 ■ Building a COmplex playgROund

181

Enhancing Navigation
There are many things you can do to improve the navigation in this playground. You may
want to use some of them in other playgrounds—sometimes as a standard practice.

Changing Link and File Names
Cleaning up your MultiPlayground now is a good idea: rename files as necessary and
change the links to match. Renaming files as soon as possible is a good idea. When you
come back to MultiPlayground after a weekend, you may not remember what Untitled
Page 2 was.

Renaming a file in the project navigator is very simple: you click in the file name and
type the new one. For the moment, it can make sense to rename Untitled Page 2 to be
Middle Page. (You will shortly remove it entirely from the playground.) Figure 9-15 shows
the renamed file in the project navigator.

Figure 9-14. Middle page with a Previous link

ChapteR 9 ■ Building a COmplex playgROund

182

The playground works as it has in the past because the Next and Previous links
go to the next and previous pages relative to the current page in the project navigator.
Playgrounds on your iPad shows the name of each page along with Next/Previous
arrows at the top of each page. As you see in Figure 9-16, Middle Page is now named
appropriately, and the navigation still works even though you have renamed the files.

Figure 9-15. Rename a file in the project naviagator

Figure 9-16. On Playgrounds for iPad, renamed pages have appropriate arrows
shown (or not)

ChapteR 9 ■ Building a COmplex playgROund

183

This doesn’t mean that you don’t break links when you rename a page in a
playground; you just don’t break the Next/Previous links. (And you do break them if you
rearrange the files; you’ll always go to the next or previous page relative to the current
page in the project navigator).

Adding a Constant Link (Home)
You sometimes do want to add a link to a specific page rather than the Next/Previous
page. A common such link is a link to the first page in a playground. In MultiPlayground
at the moment, that file is named Welcome. It happens to be the previous page from
Middle Page at the moment, but if you had more pages, you still may want to go back to it
from wherever you are.

The syntax for a constant link is similar to the links you’ve already seen. It starts with
the text to be displayed in square brackets and then has the page to link to in parentheses.
Thus, the link to Welcome will look like this:

//: Welcome

You can see it in raw markup in Figure 9-17 and in rendered markup in Figure 9-18.

Figure 9-17. Raw markup for named links

ChapteR 9 ■ Building a COmplex playgROund

184

It’s important to note that neither the link name in square brackets or the page
name in parentheses is enclosed in quotes. Note too that although the link name can be
anything you want, the page name is case-sensitive. Also note that the page name in the
parentheses is a single string with no embedded spaces. If you have a page name with an
embedded space, you have to use the escape code you would use in a URL: %20.

Using a Basic File for All Pages
It’s often a good idea to have a standard section of markup on each of your playground
pages. Figure 9-19 shows what the raw code for Welcome can look in such cases.

Figure 9-18. Rendered markup for named links

Figure 9-19. Basic code for a middle page

ChapteR 9 ■ Building a COmplex playgROund

185

Figure 9-20 shows Welcome rendered.

The code itself is shown in Listing 9-4.

Listing 9-4. Standard Page Raw Markup for a Playground

/*:

 # MultiPlayground
 ## Middle Page

 * Welcome
 * Text Entry
 * [Using Gestures to Move Views](Middle%20Page)

 ### From Jesse Feiler's Playgrounds Book

 */

//: [Previous](@previous)

import Foundation

var str = "Hello, playground"

//: Welcome

Figure 9-20. Rendered markup for Welcome

ChapteR 9 ■ Building a COmplex playgROund

186

As you create playgrounds, having some consistency can make your job easier; it also
makes it easier for users of your playground. The entire section of code is enclosed in

/*:

and

*/

Immediately following, a single line of markup implements the Previous link:

//: [Previous]*(@previous)

This single line could be added to the main block, but it’s totally up to you. There are
two lines of regular playground code, and then there’s a final line of markup to implement
the link to the Welcome page.

To reuse this code, one strategy is to place the name of the playground in a headline
1 style with # and the name of the specific page in headline 2 with ##. These are just style
choices that you may want to use. What’s important is that they be consistent and easy to
implement.

For each playground page, you just need to change the page name. For most pages,
you can use a Previous and Next link without making any other changes. You may want to
change the Next link on the last page to the name of the first page (such as Welcome as is
the case here). You may also want to remove the Previous link from the first page.

 ■ Tip if you make changes like this, remember to redo them if you rearrange the pages
in your playground.

Making Further Enhancements
In Chapter 8 you saw how to create the GestureView class, which can be used to move
views around with multitouch gestures. At the end of the chapter, GestureView is moved
to be in its own file in the Sources folder of the playground page.

A class like this might be useful for more than one playground; in that case, you can
move it to the Sources folder for the entire playground rather than sources for a single
playground page. Keep an eye out for classes such as this one that can be used to build your
own library of playground classes. (That’s also a good way to learn how to structure apps!)

http://dx.doi.org/10.1007/978-1-4842-2647-6_8

ChapteR 9 ■ Building a COmplex playgROund

187

Summary
In this chapter you saw how to start adding new pages to a playground and how to
implement links based on the names of pages in the project navigator as well as their
relative positions. Expand your playgrounds with code that’s hidden on pages or places in
files in the Sources folder for a specific page or for the playground as a whole.

What you create with Swift playgrounds is up to you—the possibilities are literally
endless. You can use playgrounds to test your own code snippets as you’re building
apps or other playgrounds, or you can use Swift playgrounds as the framework for
implementing documentation, teaching, or training materials.

The code that you write in playgrounds is transportable to apps that you write (the
playground markup will be passed over as comments when pasted into apps).

When you’re thinking about building a playground, you need to think about what
you want to accomplish with it, and in particular how the code needs to work. Whether
you want to focus on writing control code that manipulates functionalities defined in
Sources or you want to do the reverse and focus on writing the functional code that
control structures in Sources will use, Swift playgrounds can not only make your job
easier but help you to define it more precisely.

189© Jesse Feiler 2017
J. Feiler, Exploring Swift Playgrounds, DOI 10.1007/978-1-4842-2647-6

��������� A, B
Apple programming language, 1

��������� C
Classes, structures and

enumerations, 31–32
Code completion

completions, 18
interaction, 17
modification, 17
newline character ends, 19
playgrounds, 16
print statements, 19
sidebar updates, 16
type single characters, 17
variables, 15

Comments and markup, 27
headings and bullets, 30
multi-line comment, 28
raw markup, 29
rendered markup, 28
rich markup, 28, 30
template, 28

Complete version, 177
contents.xcplayground, 119

��������� D
Destination selection, 47

��������� E
Enumerations, 31–32
Errors, 20

��������� F
Finder (macOS)

Contents.swift, 118
contents.xcplayground, 119
explore, 115–116
package contents, 117–118
playground.workspace, 119
use control-click, 117

��������� G
Gestures events, 144

iPad
code testing, 158
color option, 159
creation, 153–154
entire playground, 157
type GestureView, 156
Shortcut Bar, 154–155

working process
BasicGesture code, 160
cut and paste code, 163
files command, 164
GestureView class code, 162
moving view, 166
name and place option, 161
paste code, 164
project navigator, 160
Swift file creation, 161
testing app, 165

Xcode and macOS, 144
add option, 149
another code, 151
code, 150
code completion, 151–152

Index

■ INDEX

190

GestureView class, 145
init function, 149
instance, 148
live view, 144
pan function, 149–150

Globals, 30

��������� H
Handling contextual errors, 22
Handling syntax errors, 20

��������� I, J, K
Integrated development

environment (IDE), 2
Interaction, 51

commands, 52
editable area, 52

assignment statement, 61
basic playground, 52
editable area, 60
edit code, 57
features, 62
keyboard appears, 61
multiple items, 62
non-editable area, 59
numeric keypad, 59
rendered markup, 53–54
run my code options, 63
viewer open, 56–57
view results, 55

Interactive data entry, 101
liveView, 101–102
new playground

creation, 102
view controller views, 101, 103

back arrow properties, 112
completed code, 107
data structure, 111
explore, 109–110
interactive playground, 104
label subview, 106
loadView() method, 103
main view subview, 104
target-action design, 106
text field subview, 105–106
text updation, 107
try out, 108
view controller, 106

iOS
user interface, 65

editing page, 66
shortcut bar, 69

user interfacelandscape mode, 67
iPad/Playgrounds, 46

advanced tools, 122
AirDrop file, 47
auxiliary source files, 123
Contents.swift, 124
document, 48, 50
expandingplaygrounds, 120
foreign file, 48
iCloud, 49
iOS playgrounds app, 50
tap view files, 122
tools popover, 121

��������� L
loadView() method, 103

��������� M
macOS

environments, 41
static and interactive

playground, 43
optional binding, 44–45
raw markup, 43
rendered markup, 43

use of, 41
Xcode file, 42

��������� N, O
Non-object-oriented globals, 30

��������� P, Q
Pages, 167

enhancements, 186
link navigation

complete version, 177
double-check markup, 176
final page, 179
middle page, 179
next link, 180
previous link, 181
rename file, 174–175
welcome page, 177–178

Gestures events (cont.)

■ INDEX

191

MultiPlayground
creation, 167
new page adding, 169
playground package, 171
project navigator, 170
result view, 170
sources and resources folders, 171

navigation, 172, 181
basic file, 184
constant link (Home), 183
link and file names, 181
next/previous rendered

markup, 173
raw markup, 173–174

Playgrounds
BasicPlayground, 14
creation, 14
expandingplaygrounds

raw markup, 114
rendered markup, 115

Finder (macOS)
Contents.swift, 118
contents.xcplayground, 119
explore, 115–116
package contents, 117–118
playground.workspace, 119
use control-click, 117

iPad, 113
advanced tools, 122
auxiliary source files, 123
Contents.swift, 124
expandingplaygrounds, 120
tap view files, 122
tools popover, 121

resizable sidebar, 15
runs, 20
view

current live view code, 96
interactive, 96–97
landscape mode, 99
liveView protocol, 97
portrait mode, 100
second view, 98
simple view, 98
split view, 101
timeline, 97

Xcode, 114
playground.workspace, 119
Properties

constant/variables, 34
force-unwrapping option, 36–37

lazy initialization, 34
nil values, 38
optional binding, 38
optional set, 35
print statement, 38
sidebar, 35
syntax, 33–34
unwrapping, 36
working optionals, 38
yellow warning badge, 36

��������� R
Resources, 124

code
components, 136
ExtraCode.swift file, 135, 137, 140
function, 139
macOS and iPad code, 141
new file, 133–134
project navigator, 133
QuickType code, 140
source code, 131
view and edit code, 138
Xcode, 132

code completion, 125
folder, 127–128
image drag, 127
image file, 125
photo option, 131
picture button, 129–130
Shortcut Bar, 129

��������� S
Shortcut Bar

class definition, 83
character type, 88
class name, 84
iPad, 89
QuickType, 85
single character, 87
snippet, 83
variable declaration, 86

class method, 79
color option, 74
complex syntax, 70
editable area, 72
editable playground creation, 70
empty playground creation, 79
image option, 74–75

■ INDEX

192

insert code, 69–70
iPad’s camera, 71, 75–76
let/var option, 72
photo library, 77
red dot, 81
steps, 73
type sets, 73
writing code, 79

Structures, 31–32
Swift playgrounds

classic Hello World code, 7
developer overview, 1–2
Hello playground

convertion, 9
creation, 8
set options, 8
steps, 8
UIKit framework, 10

Xcode (see Xcode)

��������� T, U, V, W
Timeline, 92

map function, 95
playground-specific code, 93

procedural/imperative, 94
quick look button, 93
repetition statement, 92
result viewer, 94

Type-safe language
annotation, 32
bypass type

inference, 33
interface, 32
properties, 33

��������� X, Y, Z
Xcode, 2, 13

file explore, 5
fonts, 10–11
frameworks, 7
single view application

project
apps product name and basic

information, 3
project navigator and

target view, 4
selection, 3
steps, 2
user interface, 5

Shortcut Bar (cont.)

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Introducing Swift Playgrounds
	Developer Overview
	Xcode
	Building the Single View Application in Xcode
	Exploring the Single View Application
	Looking into the Frameworks

	Swift Playgrounds
	Building the Classic Hello World App
	Building a Hello Playground

	Setting Fonts in Xcode
	Summary

	Chapter 2: Creating a Simple Swift Playground on Xcode
	Getting Started with a Playground, Code, and Results
	Setting Up the Playground
	Watching Variables and Using Code Completion

	Running the Playground
	Dealing with Errors
	Handling Syntax Errors
	Handling Contextual Errors

	Summary

	Chapter 3: Looking at Swift Basics for Playgrounds
	Comments and Markup
	Globals and Objects
	Classes, Enumerations, and Structures
	Types in Swift
	Properties
	Constants and Variables
	Lazy Initialization
	Optional Properties

	Summary

	Chapter 4: Editing Playgrounds on macOS
	Exploring the Two Playground Environments
	Creating a Playground with Xcode on macOS
	Turning a Static Playground into an Interactive Playground
	Moving a Playground from Xcode/Mac to Playgrounds/iPad
	Managing Interaction in a Playground
	Creating and Using an Editable Area

	Summary

	Chapter 5: Editing Playgrounds on iOS
	The Playgrounds App User Interface and Experience
	Using the Shortcut Bar
	Inserting a Simple Line of Code
	Inserting More Complex Syntax
	Choosing a Color
	Choosing an Image

	Putting the Pieces Together: Writing a Class in a Playground with the Shortcut Bar
	Typing the Code
	Using the Shortcut Bar to Write the Code
	Creating an Empty Playground
	Show the Keyboard and Handle the Red Dot
	Complete the Class Definition

	Summary

	Chapter 6: Entering Data and Viewing Results in Swift Playgrounds
	Using the Timeline
	Creating a Basic Playground with a View
	Looking at Your View in the Timeline
	Add a Second View to the Live View

	Working with Interactive Data Entry
	Creating a New Playground
	Creating a View Controller for the Live View
	Creating the View Controller Views
	Creating the Main View Subview
	Creating the Text Field Subview
	Creating the Label Subview
	Assembling the View Controller
	Managing Text Fields
	Updating the Text
	Finishing Up the View Controller
	Trying Out the Playground
	Exploring the Playground

	Summary

	Chapter 7: Adding Resources and Source Code to Playgrounds
	Looking Inside a Playground
	Exploring a Playground in the Finder (macOS)
	Contents.swift
	contents.xcplayground
	playground.workspace

	Exploring a Playground in Playgrounds (iOS)

	Adding Resources to a Playground
	Adding Code to a Playground
	Summary

	Chapter 8: Using Touch Gestures in Interactive Playgrounds
	Understanding Gestures Using Playgrounds
	Creating a Basic Gesture Playground in Xcode on macOS
	Creating a Playground with Live View
	Create a GestureView Class
	Creating an Instance of GestureView
	Adding a Gesture to GestureView
	Adding Another GestureView
	Finishing Up

	Creating a Basic Gesture Playground in Playgrounds on iPad

	Working with Gestures in a Playground
	Summary

	Chapter 9: Building a Complex Playground
	Collecting Your Playground Pages and Creating the MultiPlayground
	Assembling Playground Pages for Basic Navigation
	Using Basic Link Navigation
	Enhancing Navigation
	Changing Link and File Names
	Adding a Constant Link (Home)
	Using a Basic File for All Pages

	Making Further Enhancements
	Summary

	Index

