
www.allitebooks.com

http://www.allitebooks.org

HBase Administration
Cookbook

Master HBase configuration and administration for
optimum database performance

Yifeng Jiang

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

HBase Administration Cookbook
Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: August 2012

Production Reference: 1080812

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK..

ISBN 978-1-84951-714-0

www.packtpub.com

Cover Image by Asher Wishkerman (a.wishkerman@mpic.de)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Yifeng Jiang

Reviewers
Masatake Iwasaki

Tatsuya Kawano

Michael Morello

Shinichi Yamashita

Acquisition Editor
Sarah Cullington

Lead Technical Editor
Pramila Balan

Technical Editors
Merin Jose

Kavita Raghavan

Manmeet Singh Vasir

Copy Editors
Brandt D'Mello

Insiya Morbiwala

Project Coordinator
Yashodhan Dere

Proofreader
Aaron Nash

Indexer
Hemangini Bari

Graphics
Manu Joseph

Valentina D'silva

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Yifeng Jiang is a Hadoop and HBase Administrator and Developer at Rakuten—the
largest e-commerce company in Japan. After graduating from the University of Science and
Technology of China with a B.S. in Information Management Systems, he started his career as
a professional software engineer, focusing on Java development.

In 2008, he started looking over the Hadoop project. In 2009, he led the development of his
previous company's display advertisement data infrastructure using Hadoop and Hive.

In 2010, he joined his current employer, where he designed and implemented the Hadoop- and
HBase-based, large-scale item ranking system. He is also one of the members of the Hadoop
team in the company, which operates several Hadoop/HBase clusters.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgement

Little did I know, when I was first asked by Packt Publishing whether I would be interested in
writing a book about HBase administration on September 2011, how much work and stress
(but also a lot of fun) it was going to be.

Now that the book is finally complete, I would like to thank those people without whom it
would have been impossible to get done.

First, I would like to thank the HBase developers for giving us such a great piece of software.
Thanks to all of the people on the mailing list providing good answers to my many questions,
and all the people working on tickets and documents.

I would also like to thank the team at Packt Publishing for contacting me to get started with
the writing of this book, and providing support, guidance, and feedback.

Many thanks to Rakuten, my employer, who provided me with the environment to work on
HBase and the chance to write this book.

Thank you to Michael Stack for helping me with a quick review of the book.

Thank you to the book's reviewers—Michael Morello, Tatsuya Kawano, Kenichiro Hamano,
Shinichi Yamashita, and Masatake Iwasaki.

To Yotaro Kagawa: Thank you for supporting me and my family from the very start and
ever since.

To Xinping and Lingyin: Thank you for your support and all your patience—I love you!

About the Reviewers

Masatake Iwasaki is a Software Engineer at NTT DATA CORPORATION, providing technical
consultation for open source softwares such as Hadoop, HBase, and PostgreSQL.

Tatsuya Kawano is an HBase contributor and evangelist in Japan. He has been helping the
Japanese Hadoop and HBase community to grow since 2010.

He is currently working for Gemini Mobile Technologies as a Research & Development
software engineer. He is also developing Cloudian, a fully S3 API-complaint cloud storage
platform, and Hibari DB, an open source, distributed, key-value store.

He has co-authored a Japanese book named "Basic Knowledge of NOSQL" in 2012, which
introduces 16 NoSQL products, such as HBase, Cassandra, Riak, MongoDB, and Neo4j to
novice readers.

He has studied graphic design in New York, in the late 1990s. He loves playing with 3D
computer graphics as much as he loves developing high-availability, scalable, storage systems.

Michael Morello holds a Masters degree in Distributed Computing and Artificial
Intelligence. He is a Senior Java/JEE Developer with a strong Unix and Linux background.
His areas of research are mostly related to large-scale systems and emerging technologies
dedicated to solving scalability, performance, and high availability issues.

I would like to thank my wife and my little angel for their love and support.

Shinichi Yamashita is a Chief Engineer at the OSS Professional Service unit in NTT DATA
Corporation, in Japan. He has more than 7 years of experience in software and middleware
(Apache, Tomcat, PostgreSQL, Hadoop eco system) engineering.

Shinicha has written a few books on Hadoop in Japan.

I would like to thank my colleagues.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface	 1
Chapter 1: Setting Up HBase Cluster	 7

Introduction	 7
Quick start	 9
Getting ready on Amazon EC2	 12
Setting up Hadoop	 18
Setting up ZooKeeper	 22
Changing the kernel settings	 25
Setting up HBase	 27
Basic Hadoop/ZooKeeper/HBase configurations	 31
Setting up multiple High Availability (HA) masters	 33

Chapter 2: Data Migration	 47
Introduction	 47
Importing data from MySQL via single client	 48
Importing data from TSV files using the bulk load tool	 54
Writing your own MapReduce job to import data	 59
Precreating regions before moving data into HBase	 66

Chapter 3: Using Administration Tools	 71
Introduction	 71
HBase Master web UI	 72
Using HBase Shell to manage tables	 75
Using HBase Shell to access data in HBase	 78
Using HBase Shell to manage the cluster	 81
Executing Java methods from HBase Shell	 86
Row counter	 88
WAL tool—manually splitting and dumping WALs	 91

ii

Table of Contents

HFile tool—viewing textualized HFile content	 96
HBase hbck—checking the consistency of an HBase cluster	 98
Hive on HBase—querying HBase using a SQL-like language	 101

Chapter 4: Backing Up and Restoring HBase Data	 109
Introduction	 109
Full shutdown backup using distcp	 111
Using CopyTable to copy data from one table to another	 115
Exporting an HBase table to dump files on HDFS	 119
Restoring HBase data by importing dump files from HDFS	 122
Backing up NameNode metadata	 125
Backing up region starting keys	 130
Cluster replication	 132

Chapter 5: Monitoring and Diagnosis	 139
Introduction	 139
Showing the disk utilization of HBase tables	 140
Setting up Ganglia to monitor an HBase cluster	 142
OpenTSDB—using HBase to monitor an HBase cluster	 149
Setting up Nagios to monitor HBase processes	 157
Using Nagios to check Hadoop/HBase logs	 165
Simple scripts to report the status of the cluster	 170
Hot region—write diagnosis	 174

Chapter 6: Maintenance and Security	 179
Introduction	 179
Enabling HBase RPC DEBUG-level logging	 180
Graceful node decommissioning	 183
Adding nodes to the cluster	 186
Rolling restart	 189
Simple script for managing HBase processes	 193
Simple script for making deployment easier	 195
Kerberos authentication for Hadoop and HBase	 197
Configuring HDFS security with Kerberos	 203
HBase security configuration	 211

Chapter 7: Troubleshooting	 217
Introduction	 217
Troubleshooting tools	 218
Handling the XceiverCount error	 223
Handling the "too many open files" error	 225
Handling the "unable to create new native thread" error	 227

iii

Table of Contents

Handling the "HBase ignores HDFS client configuration" issue	 229
Handling the ZooKeeper client connection error	 230
Handling the ZooKeeper session expired error	 232
Handling the HBase startup error on EC2	 235

Chapter 8: Basic Performance Tuning	 245
Introduction	 245
Setting up Hadoop to spread disk I/O	 247
Using network topology script to make Hadoop rack-aware	 249
Mounting disks with noatime and nodiratime	 252
Setting vm.swappiness to 0 to avoid swap	 254
Java GC and HBase heap settings	 256
Using compression	 260
Managing compactions	 263
Managing a region split	 265

Chapter 9: Advanced Configurations and Tuning	 269
Introduction	 270
Benchmarking HBase cluster with YCSB	 270
Increasing region server handler count	 278
Precreating regions using your own algorithm	 280
Avoiding update blocking on write-heavy clusters	 285
Tuning memory size for MemStores	 288
Client-side tuning for low latency systems	 289
Configuring block cache for column families	 292
Increasing block cache size on read-heavy clusters	 295
Client side scanner setting	 297
Tuning block size to improve seek performance	 299
Enabling Bloom Filter to improve the overall throughput	 301

Index	 307

Preface
As an open source, distributed, big data store, HBase scales to billions of rows, with millions
of columns and sits on top of the clusters of commodity machines. If you are looking for a way
to store and access a huge amount of data in real time, then look no further than HBase.

HBase Administration Cookbook provides practical examples and simple step-by-step
instructions for you to administrate HBase with ease. The recipes cover a wide range of
processes for managing a fully distributed, highly available HBase cluster on the cloud.
Working with such a huge amount of data means that an organized and manageable process
is key, and this book will help you to achieve that.

The recipes in this practical cookbook start with setting up a fully distributed HBase cluster
and moving data into it. You will learn how to use all the tools for day-to-day administration
tasks, as well as for efficiently managing and monitoring the cluster to achieve the best
performance possible. Understanding the relationship between Hadoop and HBase will allow
you to get the best out of HBase; so this book will show you how to set up Hadoop clusters,
configure Hadoop to cooperate with HBase, and tune its performance.

What this book covers
Chapter 1, Setting Up HBase Cluster: This chapter explains how to set up an HBase cluster,
from a basic standalone HBase instance to a fully distributed, highly available HBase cluster
on Amazon EC2.

Chapter 2, Data Migration: In this chapter, we will start with the simple task of importing data
from MySQL to HBase, using its Put API. We will then describe how to use the importtsv and
bulk load tools to load TSV data files into HBase. We will also use a MapReduce sample to
import data from other file formats. This includes putting data directly into an HBase table and
writing to HFile format files on Hadoop Distributed File System (HDFS). The last recipe in this
chapter explains how to precreate regions before loading data into HBase.

Preface

2

This chapter ships with several sample sources written in Java. It assumes that you have basic
Java knowledge, so it does not explain how to compile and package the sample Java source in
the recipes.

Chapter 3, Using Administration Tools: In this chapter, we describe the usage of various
administration tools such as HBase web UI, HBase Shell, HBase hbck, and others. We explain
what the tools are for, and how to use them to resolve a particular task.

Chapter 4, Backing Up and Restoring HBase Data: In this chapter, we will describe how to
back up HBase data using various approaches, their pros and cons, and which approach to
choose depending on your dataset size, resources, and requirements.

Chapter 5, Monitoring and Diagnosis: In this chapter, we will describe how to monitor and
diagnose HBase cluster with Ganglia, OpenTSDB, Nagios, and other tools. We will start with a
simple task to show the disk utilization of HBase tables. We will install and configure Ganglia
to monitor an HBase metrics and show an example usage of Ganglia graphs. We will also set
up OpenTSDB, which is similar to Ganglia, but more scalable as it is built on the top of HBase.

We will set up Nagios to check everything we want to check, including HBase-related daemon
health, Hadoop/HBase logs, HBase inconsistencies, HDFS health, and space utilization.

In the last recipe, we will describe an approach to diagnose and fix the frequently asked hot
spot region issue.

Chapter 6, Maintenance and Security: In the first six recipes of this chapter we will learn about
the various HBase maintenance tasks, such as finding and correcting faults, changing cluster
size, making configuration changes, and so on.

We will also look at security in this chapter. In the last three recipes, we will install Kerberos
and then set up HDFS security with Kerberos, and finally set up secure HBase client access.

Chapter 7, Troubleshooting: In this chapter, we will look through several of the most
confronted issues. We will describe the error messages of these issues, why they happen,
and how to fix them with the troubleshooting tools.

Chapter 8, Basic Performance Tuning: In this chapter, we will describe how to tune HBase
to gain better performance. We will also include recipes to tune other tuning points such as
Hadoop configurations, the JVM garbage collection settings, and the OS kernel parameters.

Chapter 9, Advanced Configurations and Tuning: This is another chapter about performance
tuning in the book. The previous chapter describes some recipes to tune Hadoop, OS setting,
Java, and HBase itself, to improve the overall performance of the HBase cluster. These are
general improvements for many use cases. In this chapter, we will describe more specific
recipes, some of which are for write-heavy clusters, while some are aimed at improving the
read performance of the cluster.

Preface

3

What you need for this book
Everything you need is listed in each recipe.

The basic list of software required for this book are as follows:

ff Debian 6.0.1 (squeeze)

ff Oracle JDK (Java Development Kit) SE 6

ff HBase 0.92.1

ff Hadoop 1.0.2

ff ZooKeeper 3.4.3

Who this book is for
This book is for HBase administrators, developers, and will even help Hadoop administrators.
You are not required to have HBase experience, but are expected to have a basic
understanding of Hadoop and MapReduce.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "HBase can be stopped using its stop-hbase.sh
script."

A block of code is set as follows:

nameserver 10.160.49.250 #private IP of ns
search hbase-admin-cookbook.com #domain name

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

MAJOR_COMPACTION_KEY = \x00
MAX_SEQ_ID_KEY = 96573
TIMERANGE = 1323026325955....1323026325955
hfile.AVG_KEY_LEN = 31
hfile.AVG_VALUE_LEN = 4
hfile.COMPARATOR = org.apache.hadoop.hbase.KeyValue$KeyComparator

Preface

4

Any command-line input or output is written as follows:

$ bin/ycsb load hbase -P workloads/workloada -p columnfamily=f1 -p
recordcount=1000000 -p threadcount=4 -s | tee -a workloada.dat

YCSB Client 0.1

Command line: -db com.yahoo.ycsb.db.HBaseClient -P workloads/workloada -p
columnfamily=f1 -p recordcount=1000000 -p threadcount=4 -s -load

Loading workload...

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: " Verify the startup from AWS
Management Console".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

http://www.packtpub.com/
http://www.packtpub.com/support

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/support, selecting your book,
clicking on the errata submission form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded to our
website, or added to any list of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

1
Setting Up

HBase Cluster

In this chapter, we will cover:

ff Quick start

ff Getting ready on Amazon EC2

ff Setting up Hadoop

ff Setting up ZooKeeper

ff Changing the kernel settings

ff Setting up HBase

ff Basic Hadoop/ZooKeeper/HBase configurations

ff Setting up multiple High Availability (HA) masters

Introduction
This chapter explains how to set up HBase cluster, from a basic standalone HBase instance to
a fully distributed, highly available HBase cluster on Amazon EC2.

According to Apache HBase's home page:

HBase is the Hadoop database. Use HBase when you need random, real-time,
read/write access to your Big Data. This project's goal is the hosting of very
large tables—billions of rows X millions of columns—atop clusters of
commodity hardware.

Setting Up HBase Cluster

8

HBase can run against any filesystem. For example, you can run HBase on top of an EXT4
local filesystem, Amazon Simple Storage Service (Amazon S3), and Hadoop Distributed
File System (HDFS), which is the primary distributed filesystem for Hadoop. In most cases, a
fully distributed HBase cluster runs on an instance of HDFS, so we will explain how to set up
Hadoop before proceeding.

Apache ZooKeeper is an open source software providing a highly reliable, distributed
coordination service. A distributed HBase depends on a running ZooKeeper cluster.

HBase, which is a database that runs on Hadoop, keeps a lot of files open at the same time.
We need to change some Linux kernel settings to run HBase smoothly.

A fully distributed HBase cluster has one or more master nodes (HMaster), which coordinate
the entire cluster, and many slave nodes (RegionServer), which handle the actual data storage
and request. The following diagram shows a typical HBase cluster structure:

Client HMaster

Hadoop Distributed File System(HDFS)

ZooKeeper Cluster

ZooKeeperZooKeeper ZooKeeper

Region Servers

Region Server Region Server Region ServerRegion Server ...

HBase can run multiple master nodes at the same time, and use ZooKeeper to monitor and
failover the masters. But as HBase uses HDFS as its low-layer filesystem, if HDFS is down,
HBase is down too. The master node of HDFS, which is called NameNode, is the Single Point
Of Failure (SPOF) of HDFS, so it is the SPOF of an HBase cluster. However, NameNode as a
software is very robust and stable. Moreover, the HDFS team is working hard on a real HA
NameNode, which is expected to be included in Hadoop's next major release.

Chapter 1

9

The first seven recipes in this chapter explain how we can get HBase and all its dependencies
working together, as a fully distributed HBase cluster. The last recipe explains an advanced
topic on how to avoid the SPOF issue of the cluster.

We will start by setting up a standalone HBase instance, and then demonstrate setting up a
distributed HBase cluster on Amazon EC2.

Quick start
HBase has two run modes—standalone mode and distributed mode. Standalone mode
is the default mode of HBase. In standalone mode, HBase uses a local filesystem instead
of HDFS, and runs all HBase daemons and an HBase-managed ZooKeeper instance, all in
the same JVM.

This recipe describes the setup of a standalone HBase. It leads you through installing HBase,
starting it in standalone mode, creating a table via HBase Shell, inserting rows, and then
cleaning up and shutting down the standalone HBase instance.

Getting ready
You are going to need a Linux machine to run the stack. Running HBase on top of Windows
is not recommended. We will use Debian 6.0.1 (Debian Squeeze) in this book, because we
have several Hadoop/HBase clusters running on top of Debian in production at my company,
Rakuten Inc., and 6.0.1 is the latest Amazon Machine Image (AMI) we have, at http://
wiki.debian.org/Cloud/AmazonEC2Image.

As HBase is written in Java, you will need to have Java installed first. HBase runs on
Oracle's JDK only, so do not use OpenJDK for the setup. Although Java 7 is available, we
don't recommend you to use Java 7 now because it needs more time to be tested. You
can download the latest Java SE 6 from the following link: http://www.oracle.com/
technetwork/java/javase/downloads/index.html.

Execute the downloaded bin file to install Java SE 6. We will use /usr/local/jdk1.6 as
JAVA_HOME in this book:

root# ln -s /your/java/install/directory /usr/local/jdk1.6

We will add a user with the name hadoop, as the owner of all HBase/Hadoop daemons and
files. We will have all HBase files and data stored under /usr/local/hbase:

root# useradd hadoop

root# mkdir /usr/local/hbase

root# chown hadoop:hadoop /usr/local/hbase

http://wiki.debian.org/Cloud/AmazonEC2Image
http://wiki.debian.org/Cloud/AmazonEC2Image
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Setting Up HBase Cluster

10

How to do it...
Get the latest stable HBase release from HBase's official site, http://www.apache.org/
dyn/closer.cgi/hbase/. At the time of writing this book, the current stable release was
0.92.1.

You can set up a standalone HBase instance by following these instructions:

1.	 Download the tarball and decompress it to our root directory for HBase. We will set an
HBASE_HOME environment variable to make the setup easier, by using the following
commands:
root# su - hadoop

hadoop$ cd /usr/local/hbase

hadoop$ tar xfvz hbase-0.92.1.tar.gz

hadoop$ ln -s hbase-0.92.1 current

hadoop$ export HBASE_HOME=/usr/local/hbase/current

2.	 Set JAVA_HOME in HBase's environment setting file, by using the following command:
hadoop$ vi $HBASE_HOME/conf/hbase-env.sh
 # The java implementation to use. Java 1.6 required.
 export JAVA_HOME=/usr/local/jdk1.6

3.	 Create a directory for HBase to store its data and set the path in the HBase
configuration file (hbase-site.xml), between the <configuration> tag, by using
the following commands:
hadoop$ mkdir -p /usr/local/hbase/var/hbase

hadoop$ vi /usr/local/hbase/current/conf/hbase-site.xml

 <property>
 <name>hbase.rootdir</name>
 <value>file:///usr/local/hbase/var/hbase</value>
 </property>

4.	 Start HBase in standalone mode by using the following command:
hadoop$ $HBASE_HOME/bin/start-hbase.sh

starting master, logging to /usr/local/hbase/current/logs/hbase-
hadoop-master-master1.out

http://www.apache.org/dyn/closer.cgi/hbase/
http://www.apache.org/dyn/closer.cgi/hbase/

Chapter 1

11

5.	 Connect to the running HBase via HBase Shell, using the following command:
hadoop$ $HBASE_HOME/bin/hbase shell

HBase Shell; enter 'help<RETURN>' for list of supported commands.

Type "exit<RETURN>" to leave the HBase Shell

Version 0.92.1, r1298924, Fri Mar 9 16:58:34 UTC 2012

6.	 Verify HBase's installation by creating a table and then inserting some values. Create
a table named test, with a single column family named cf1, as shown here:
hbase(main):001:0> create 'test', 'cf1'

0 row(s) in 0.7600 seconds

i.	 In order to list the newly created table, use the following command:
hbase(main):002:0> list

TABLE

test

1 row(s) in 0.0440 seconds

ii.	 In order to insert some values into the newly created table, use the following
commands:
hbase(main):003:0> put 'test', 'row1', 'cf1:a', 'value1'

0 row(s) in 0.0840 seconds

hbase(main):004:0> put 'test', 'row1', 'cf1:b', 'value2'

0 row(s) in 0.0320 seconds

7.	 Verify the data we inserted into HBase by using the scan command:
hbase(main):003:0> scan 'test'

ROW COLUMN+CELL
row1 column=cf1:a, timestamp=1320947312117, value=value1
row1 column=cf1:b, timestamp=1320947363375, value=value2

1 row(s) in 0.2530 seconds

8.	 Now clean up all that was done, by using the disable and drop commands:

i.	 In order to disable the table test, use the following command:
hbase(main):006:0> disable 'test'

0 row(s) in 7.0770 seconds

ii.	 In order to drop the the table test, use the following command:
hbase(main):007:0> drop 'test'

0 row(s) in 11.1290 seconds

Setting Up HBase Cluster

12

9.	 Exit from HBase Shell using the following command:
hbase(main):010:0> exit

10.	 Stop the HBase instance by executing the stop script:

hadoop$ /usr/local/hbase/current/bin/stop-hbase.sh

stopping hbase.......

How it works...
We installed HBase 0.92.1 on a single server. We have used a symbolic link named current
for it, so that version upgrading in the future is easy to do.

In order to inform HBase where Java is installed, we will set JAVA_HOME in hbase-env.
sh, which is the environment setting file of HBase. You will see some Java heap and HBase
daemon settings in it too. We will discuss these settings in the last two chapters of this book.

In step 1, we created a directory on the local filesystem, for HBase to store its data. For a
fully distributed installation, HBase needs to be configured to use HDFS, instead of a local
filesystem. The HBase master daemon (HMaster) is started on the server where start-
hbase.sh is executed. As we did not configure the region server here, HBase will start a
single slave daemon (HRegionServer) on the same JVM too.

As we mentioned in the Introduction section, HBase depends on ZooKeeper as its
coordination service. You may have noticed that we didn't start ZooKeeper in the previous
steps. This is because HBase will start and manage its own ZooKeeper ensemble, by default.

Then we connected to HBase via HBase Shell. Using HBase Shell, you can manage your
cluster, access data in HBase, and do many other jobs. Here, we just created a table called
test, we inserted data into HBase, scanned the test table, and then disabled and dropped
it, and exited the shell.

HBase can be stopped using its stop-hbase.sh script. This script stops both HMaster and
HRegionServer daemons.

Getting ready on Amazon EC2
Amazon Elastic Compute Cloud (EC2) is a web service that provides resizable computer
capacity in the cloud. By using Amazon EC2, we can practice HBase on a fully distributed
mode easily, at low cost. All the servers that we will use to demonstrate HBase in this book
are running on Amazon EC2.

Chapter 1

13

This recipe describes the setup of the Amazon EC2 environment, as a preparation for the
installation of HBase on it. We will set up a name server and client on Amazon EC2. You can also
use other hosting services such as Rackspace, or real servers to set up your HBase cluster.

Getting ready
You will need to sign up, or create an Amazon Web Service (AWS) account at http://aws.
amazon.com/.

We will use EC2 command-line tools to manage our instances. You can download and set up
the tools by following the instructions available at the following page:

http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/index.
html?SettingUp_CommandLine.html.

You need a public/private key to log in to your EC2 instances. You can generate your key pairs
and upload your public key to EC2, using these instructions:

http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/generating-
a-keypair.html.

Before you can log in to an instance, you must authorize access. The following link contains
instructions for adding rules to the default security group:

http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/adding-
security-group-rules.html.

After all these steps are done, review the following checklist to make sure everything is ready:

ff X.509 certificates: Check if the X.509 certificates are uploaded. You can check this
at your account's Security Credentials page.

ff EC2 key pairs: Check if EC2 key pairs are uploaded. You can check this at AWS
Management Console | Amazon EC2 | NETWORK & SECURITY | Key Pairs.

ff Access: Check if the access has been authorized. This can be checked at AWS
Management Console | Amazon EC2 | NETWORK & SECURITY | Security
Groups | Inbound.

ff Environment variable settings: Check if the environment variable settings are done.
As an example, the following snippet shows my settings; make sure you are using the
right EC2_URL for your region:
$ cat ~/.bashrc

export EC2_HOME=~/opt/ec2-api-tools-1.4.4.2

export PATH=$PATH:$EC2_HOME/bin

export EC2_PRIVATE_KEY=~/.ec2/pk-OWRHNWUG7UXIOPJXLOBC5UZTQBOBCVQY.
pem

http://aws.amazon.com/
http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/index.html?SettingUp_CommandLine.html
http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/index.html?SettingUp_CommandLine.html
http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/index.html?SettingUp_CommandLine.html

Setting Up HBase Cluster

14

export EC2_CERT=~/.ec2/cert-OWRHNWUG7UXIOPJXLOBC5UZTQBOBCVQY.pem

export JAVA_HOME=/Library/Java/Home

export EC2_URL=https://ec2.us-west-1.amazonaws.com

We need to import our EC2 key pairs to manage EC2 instances via EC2 command-line tools:

$ ec2-import-keypair your-key-pair-name --public-key-file ~/.ssh/id_rsa.
pub

Verify the settings by typing the following command:

$ ec2-describe-instances

If everything has been set up properly, the command will show your instances similarly to how
you had configured them in the previous command.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

The last preparation is to find a suitable AMI. An AMI is a preconfigured operating system
and software, which is used to create a virtual machine within EC2. We can find a registered
Debian AMI at http://wiki.debian.org/Cloud/AmazonEC2Image.

For the purpose of practicing HBase, a 32-bit, EBS-backed AMI is the most cost effective AMI
to use. Make sure you are choosing AMIs for your region. As we are using US-West (us-west-1)
for this book, the AMI ID for us is ami-77287b32. This is a 32-bit, small instance of EC2. A
small instance is good for practicing HBase on EC2 because it's cheap. For production, we
recommend you to use at least High-Memory Extra Large Instance with EBS, or a real server.

How to do it...
Follow these instructions to get your EC2 instances ready for HBase. We will start two EC2
instances; one is a DNS/NTP server, and the other one is the client:

1.	 Start a micro instance for the mentioned server. We will use ns1.hbase-admin-
cookbook.com (ns1) as its Fully Qualified Domain Name (FQDN), in a later section
of this book:
$ ec2-run-instances ami-77287b32 -t t1.micro -k your-key-pair

http://wiki.debian.org/Cloud/AmazonEC2Image
http://wiki.debian.org/Cloud/AmazonEC2Image

Chapter 1

15

2.	 Start a small instance for the client. We will use client1.hbase-admin-
cookbook.com (client1) as its FQDN, later in this book:
$ ec2-run-instances ami-77287b32 -t m1.small -k your-key-pair

3.	 Verify the startup from AWS Management Console, or by typing the following command:
$ ec2-describe-instances

You should see two instances from the output of the command. From the output of
the ec2-describe-instances command, or AWS Management Console, you
can find the public DNS of the instances that have already started. The DNS shows a
value such as ec2-xx-xx-xxx-xx.us-west-1.compute.amazonaws.com:

4.	 Log in to the instances via SSH, using the following command:
$ ssh root@ec2-xx-xx-xxx-xx.us-west-1.compute.amazonaws.com

5.	 Update the package index files before we install packages on the server, by using the
following command:
root# apt-get update

6.	 Change your instances' time zone to your local timezone, using the following command:
root# dpkg-reconfigure tzdata

7.	 Install the NTP server daemon on the DNS server, using the following command:
root@ns# apt-get install ntp ntp-server ntpdate

8.	 Install the NTP client on the client/server, using the following command:
root@client1# apt-get install ntp ntpdate

9.	 Configure /etc/ntp.conf on ns1 to run as an NTP server, and client1 to run as
an NTP client, using ns1 as its server.

Because there is no HBase-specific configuration for the NTP setup, we will skip the
details. You can find the sample ntp.conf files for both the server and client, from
the sample source of this book.

Setting Up HBase Cluster

16

10.	 Install BIND9 on ns1 to run as a DNS server, using the following command:
root@ns# apt-get install bind9

You will need to configure BIND9 to run as a primary master server for internal lookup,
and run as a caching server for external lookup. You also need to configure the DNS
server, to allow other EC2 instances to update their record on the DNS server.

We will skip the details as this is out of the scope of this book. For sample BIND9
configuration, please refer to the source, shipped with this book.

11.	 For client1, just set it up using ns1 as its DNS server:
root@client1# vi /etc/resolv.conf

nameserver 10.160.49.250 #private IP of ns
search hbase-admin-cookbook.com #domain name

12.	 Update the DNS hostname automatically. Set up hostname to the EC2 instance's
user data of the client. From the My Instances page of AWS Management Console,
select client1 from the instances list, stop it, and then click Instance Actions |
View | Change User Data; enter the hostname of the instance you want to use
(here client1) in the pop-up page:

13.	 Create a script to update the client's record on the DNS server, using user data:
root@client1# vi ec2-hostname.sh

#!/bin/bash
#you will need to set up your DNS server to allow update from this
key
DNS_KEY=/root/etc/Kuser.hbase-admin-cookbook.com.+157+44141.
private
DOMAIN=hbase-admin-cookbook.com

USER_DATA=`/usr/bin/curl -s http://169.254.169.254/latest/user-
data`
HOSTNAME=`echo $USER_DATA`
#set also the hostname to the running instance
hostname $HOSTNAME

#we only need to update for local IP

Chapter 1

17

LOCIP=`/usr/bin/curl -s http://169.254.169.254/latest/meta-data/
local-ipv4`
cat<<EOF | /usr/bin/nsupdate -k $DNS_KEY -v
server ns.$DOMAIN
zone $DOMAIN
update delete $HOSTNAME.$DOMAIN A
update add $HOSTNAME.$DOMAIN 60 A $LOCIP
send
EOF

14.	 Finally, to run this at boot time from rc.local, add the following script to the
rc.local file:

root@client1# vi /etc/rc.local

sh /root/bin/ec2-hostname.sh

How it works...
First we started two instances, a micro instance for DNS/NTP server, and a small one for
client. To provide a name service to other instances, the DNS name server has to be kept
running. Using micro instance can reduce your EC2 cost.

In step 3, we set up the NTP server and client. We will run our own NTP server on the same
DNS server, and NTP clients on all other servers.

Note: Make sure that the clocks on the HBase cluster
members are in basic alignment.

EC2 instances can be started and stopped on demand; we don't need to pay for stopped
instances. But, restarting an EC2 instance will change the IP address of the instance, which
makes it difficult to run HBase. We can resolve this issue by running a DNS server to provide
a name service to all EC2 instances in our HBase cluster. We can update name records on the
DNS server every time other EC2 instances are restarted.

That's exactly what we have done in steps 4 and 5. Step 4 is a normal DNS setup. In step
5, we stored the instance name in its user data property at first, so that when the instance
is restarted, we can get it back using EC2 API. Also, we will get the private IP address of the
instance via EC2 API. With this data, we can then send a DNS update command to our DNS
server every time the instance is restarted. As a result, we can always use its fixed hostname
to access the instance.

We will keep only the DNS instance running constantly. You can stop all other instances
whenever you do not need to run your HBase cluster.

Setting Up HBase Cluster

18

Setting up Hadoop
A fully distributed HBase runs on top of HDFS. As a fully distributed HBase cluster installation,
its master daemon (HMaster) typically runs on the same server as the master node of HDFS
(NameNode), while its slave daemon (HRegionServer) runs on the same server as the slave
node of HDFS, which is called DataNode.

Hadoop MapReduce is not required by HBase. MapReduce daemons do not need to be
started. We will cover the setup of MapReduce in this recipe too, in case you like to run
MapReduce on HBase. For a small Hadoop cluster, we usually have a master daemon of
MapReduce (JobTracker) run on the NameNode server, and slave daemons of MapReduce
(TaskTracker) run on the DataNode servers.

This recipe describes the setup of Hadoop. We will have one master node (master1) run
NameNode and JobTracker on it. We will set up three slave nodes (slave1 to slave3),
which will run DataNode and TaskTracker on them, respectively.

Getting ready
You will need four small EC2 instances, which can be obtained by using the following command:

$ec2-run-instances ami-77287b32 -t m1.small -n 4 -k your-key-pair

All these instances must be set up properly, as described in the previous recipe, Getting
ready on Amazon EC2. Besides the NTP and DNS setups, Java installation is required by
all servers too.

We will use the hadoop user as the owner of all Hadoop daemons and files. All Hadoop files
and data will be stored under /usr/local/hadoop. Add the hadoop user and create a
/usr/local/hadoop directory on all the servers, in advance.

We will set up one Hadoop client node as well. We will use client1, which we set up in
the previous recipe. Therefore, the Java installation, hadoop user, and directory should be
prepared on client1 too.

How to do it...
Here are the steps to set up a fully distributed Hadoop cluster:

1.	 In order to SSH log in to all nodes of the cluster, generate the hadoop user's public
key on the master node:
hadoop@master1$ ssh-keygen -t rsa -N ""

This command will create a public key for the hadoop user on the master node, at
~/.ssh/id_rsa.pub.

Chapter 1

19

2.	 On all slave and client nodes, add the hadoop user's public key to allow SSH login
from the master node:
hadoop@slave1$ mkdir ~/.ssh

hadoop@slave1$ chmod 700 ~/.ssh

hadoop@slave1$ cat >> ~/.ssh/authorized_keys

3.	 Copy the hadoop user's public key you generated in the previous step, and paste to
~/.ssh/authorized_keys. Then, change its permission as following:
hadoop@slave1$ chmod 600 ~/.ssh/authorized_keys

4.	 Get the latest, stable, HBase-supported Hadoop release from Hadoop's official site,
http://www.apache.org/dyn/closer.cgi/hadoop/common/. While this
chapter was being written, the latest HBase-supported, stable Hadoop release was
1.0.2. Download the tarball and decompress it to our root directory for Hadoop, then
add a symbolic link, and an environment variable:
hadoop@master1$ ln -s hadoop-1.0.2 current

hadoop@master1$ export HADOOP_HOME=/usr/local/hadoop/current

5.	 Create the following directories on the master node:
hadoop@master1$ mkdir -p /usr/local/hadoop/var/dfs/name

hadoop@master1$ mkdir -p /usr/local/hadoop/var/dfs/data

hadoop@master1$ mkdir -p /usr/local/hadoop/var/dfs/namesecondary

6.	 You can skip the following steps if you don't use MapReduce:
hadoop@master1$ mkdir -p /usr/local/hadoop/var/mapred

7.	 Set up JAVA_HOME in Hadoop's environment setting file (hadoop-env.sh):
hadoop@master1$ vi $HADOOP_HOME/conf/hadoop-env.sh

export JAVA_HOME=/usr/local/jdk1.6

8.	 Add the hadoop.tmp.dir property to core-site.xml:
hadoop@master1$ vi $HADOOP_HOME/conf/core-site.xml

 <property>
 <name>hadoop.tmp.dir</name>
 <value>/usr/local/hadoop/var</value>
 </property>

9.	 Add the fs.default.name property to core-site.xml:
hadoop@master1$ vi $HADOOP_HOME/conf/core-site.xml

 <property>
 <name>fs.default.name</name>
 <value>hdfs://master1:8020</value>
 </property>

http://www.apache.org/dyn/closer.cgi/hadoop/common/
http://www.apache.org/dyn/closer.cgi/hadoop/common/

Setting Up HBase Cluster

20

10.	 If you need MapReduce, add the mapred.job.tracker property to mapred-
site.xml:
hadoop@master1$ vi $HADOOP_HOME/conf/mapred-site.xml

 <property>
 <name>mapred.job.tracker</name>
 <value>master1:8021</value>
 </property>

11.	 Add a slave server list to the slaves file:
hadoop@master1$ vi $HADOOP_HOME/conf/slaves

slave1
slave2
slave3

12.	 Sync all Hadoop files from the master node, to client and slave nodes. Don't sync
${hadoop.tmp.dir} after the initial installation:
hadoop@master1$ rsync -avz /usr/local/hadoop/ client1:/usr/local/
hadoop/

hadoop@master1$ for i in 1 2 3

 do rsync -avz /usr/local/hadoop/ slave$i:/usr/local/hadoop/

 sleep 1

done

13.	 You need to format NameNode before starting Hadoop. Do it only for the
initial installation:
hadoop@master1$ $HADOOP_HOME/bin/hadoop namenode -format

14.	 Start HDFS from the master node:
hadoop@master1$ $HADOOP_HOME/bin/start-dfs.sh

15.	 You can access your HDFS by typing the following command:
hadoop@master1$ $HADOOP_HOME/bin/hadoop fs -ls /

You can also view your HDFS admin page from the browser. Make sure the 50070
port is opened. The HDFS admin page can be viewed at http://master1:50070/
dfshealth.jsp:

http://master1:50070/dfshealth.jsp
http://master1:50070/dfshealth.jsp

Chapter 1

21

16.	 Start MapReduce from the master node, if needed:
hadoop@master1$ $HADOOP_HOME/bin/start-mapred.sh

Now you can access your MapReduce admin page from the browser. Make
sure the 50030 port is opened. The MapReduce admin page can be viewed at
http://master1:50030/jobtracker.jsp:

http://master1:50030/jobtracker.jsp
http://master1:50030/jobtracker.jsp

Setting Up HBase Cluster

22

17.	 To stop HDFS, execute the following command from the master node:
hadoop@master1$ $HADOOP_HOME/bin/stop-dfs.sh

18.	 To stop MapReduce, execute the following command from the master node:
hadoop@master1$ $HADOOP_HOME/bin/stop-mapred.sh

How it works...
To start/stop the daemon on remote slaves from the master node, a passwordless SSH login
of the hadoop user is required. We did this in step 1.

HBase must run on a special HDFS that supports a durable sync implementation. If HBase
runs on an HDFS that has no durable sync implementation, it may lose data if its slave
servers go down. Hadoop versions later than 0.20.205, including Hadoop 1.0.2 which
we have chosen, support this feature.

HDFS and MapReduce use local filesystems to store their data. We created directories
required by Hadoop in step 3, and set up the path to the Hadoop's configuration file in step 5.

In steps 9 to 11, we set up Hadoop so it could find HDFS, JobTracker, and slave servers.
Before starting Hadoop, all Hadoop directories and settings need to be synced with the slave
servers. The first time you start Hadoop (HDFS), you need to format NameNode. Note that you
should only do this at the initial installation.

At this point, you can start/stop Hadoop using its start/stop script. Here we started/stopped
HDFS and MapReduce separately, in case you don't require MapReduce. You can also
use $HADOOP_HOME/bin/start-all.sh and stop-all.sh to start/stop HDFS and
MapReduce using one command.

Setting up ZooKeeper
A distributed HBase depends on a running ZooKeeper cluster. All HBase cluster nodes and
clients need to be able to access the ZooKeeper ensemble.

This recipe describes how to set up a ZooKeeper cluster. We will only set up a standalone
ZooKeeper node for our HBase cluster, but in production it is recommended that you run a
ZooKeeper ensemble of at least three nodes. Also, make sure to run an odd number of nodes.

We will cover the setting up of a clustered ZooKeeper in the There's more... section
of this recipe.

Chapter 1

23

Getting ready
First, make sure Java is installed in your ZooKeeper server.

We will use the hadoop user as the owner of all ZooKeeper daemons and files. All the
ZooKeeper files and data will be stored under /usr/local/ZooKeeper; you need to create
this directory in advance. Our ZooKeeper will be set up on master1 too.

We will set up one ZooKeeper client on client1. So, the Java installation, hadoop user, and
directory should be prepared on client1 as well.

How to do it...
To set up a standalone ZooKeeper installation, follow these instructions:

1.	 Get the latest stable ZooKeeper release from ZooKeeper's official site,
http://ZooKeeper.apache.org/releases.html#download.

2.	 Download the tarball and decompress it to our root directory for ZooKeeper. We will
set a ZK_HOME environment variable to make the setup easier. As of this writing,
ZooKeeper 3.4.3 is the latest stable version:
hadoop@master1$ ln -s ZooKeeper-3.4.3 current

hadoop@master1$ export ZK_HOME=/usr/local/ZooKeeper/current

3.	 Create directories for ZooKeeper to store its snapshot and transaction log:
hadoop@master1$ mkdir -p /usr/local/ZooKeeper/data

hadoop@master1$ mkdir -p /usr/local/ZooKeeper/datalog

4.	 Create the $ZK_HOME/conf/java.env file and put the Java settings there:
hadoop@master1$ vi $ZK_HOME/conf/java.env

JAVA_HOME=/usr/local/jdk1.6
export PATH=$JAVA_HOME/bin:$PATH

5.	 Copy the sample ZooKeeper setting file, and make the following changes to set where
ZooKeeper should store its data:
hadoop@master1$ cp $ZK_HOME/conf/zoo_sample.cfg $ZK_HOME/conf/zoo.
cfg

hadoop@master1$ vi $ZK_HOME/conf/zoo.cfg

dataDir=/usr/local/ZooKeeper/var/data
dataLogDir=/usr/local/ZooKeeper/var/datalog

6.	 Sync all files under /usr/local/ZooKeeper from the master node to the client.
Don't sync ${dataDir} and ${dataLogDir} after this initial installation.

http://zookeeper.apache.org/releases.html#download
http://zookeeper.apache.org/releases.html#download

Setting Up HBase Cluster

24

7.	 Start ZooKeeper from the master node by executing this command:
hadoop@master1$ $ZK_HOME/bin/zkServer.sh start

8.	 Connect to the running ZooKeeper, and execute some commands to verify
the installation:
hadoop@client1$ $ZK_HOME/bin/zkCli.sh -server master1:2181

[zk: master1:2181(CONNECTED) 0] ls /

[ZooKeeper]

[zk: master1:2181(CONNECTED) 1] quit

9.	 Stop ZooKeeper from the master node by executing the following command:
hadoop@master1$ $ZK_HOME/bin/zkServer.sh stop

How it works...
In this recipe, we set up a basic standalone ZooKeeper instance. As you can see, the setting
is very simple; all you need to do is to tell ZooKeeper where to find Java and where to save
its data.

In step 4, we created a file named java.env and placed the Java settings in this file. You
must use this filename as ZooKeeper, which by default, gets its Java settings from this file.

ZooKeeper's settings file is called zoo.cfg. You can copy the settings from the sample file
shipped with ZooKeeper. The default setting is fine for basic installation. As ZooKeeper
always acts as a central role in a cluster system, it should be set up properly to gain the
best performance.

To connect to a running ZooKeeper ensemble, use its command-line tool, and specify the
ZooKeeper server and port you want to connect to. The default client port is 2181. You don't
need to specify it, if you are using the default port setting.

All ZooKeeper data is called a Znode. Znodes are constructed like a filesystem hierarchy.
ZooKeeper provides commands to access or update Znode from its command-line tool; type
help for more information.

There's more...
As HBase relays ZooKeeper as its coordination service, the ZooKeeper service must be
extremely reliable. In production, you must run a ZooKeeper cluster of at least three nodes.
Also, make sure to run an odd number of nodes.

Chapter 1

25

The procedure to set up a clustered ZooKeeper is basically the same as shown in this recipe.
You can follow the previous steps to set up each cluster node at first. Add the following
settings to each node's zoo.cfg, so that every node knows about every other node in
the ensemble:

hadoop@node{1,2,3}$ vi $ZK_HOME/conf/zoo.cfg

server.1=node1:2888:3888
server.2=node2:2888:3888
server.3=node3:2888:3888

Also, you need to put a myid file under ${dataDir}. The myid file consists of a single line
containing only the node ID. So myid of node1 would contain the text 1 and nothing else.

Note that clocks on all ZooKeeper nodes must be synchronized. You can
use Network Time Protocol (NTP) to have the clocks synchronized.

Start ZooKeeper from each node of your cluster respectively. Then, you can connect to the
cluster from your client, by using the following command:

$ zkCli.sh -server node1,node2,node3

ZooKeeper will function as long as more than half of the nodes in the ZooKeeper cluster are
alive. This means, in a three node cluster, only one server can die.

Changing the kernel settings
HBase is a database running on Hadoop, and just like other databases, it keeps a lot of files
open at the same time. Linux limits the number of file descriptors that any one process may
open; the default limits are 1024 per process. To run HBase smoothly, you need to increase
the maximum number of open file descriptors for the user, who started HBase. In our case,
the user is called hadoop.

You should also increase Hadoop's nproc setting. The nproc setting specifies the maximum
number of processes that can exist simultaneously for the user. If nproc is too low, an
OutOfMemoryError error may happen.

We will describe how to show and change the kernel settings, in this recipe.

Getting ready
Make sure you have root privileges on all of your servers.

Setting Up HBase Cluster

26

How to do it...
You will need to make the following kernel setting changes to all servers of the cluster:

1.	 To confirm the current open file limits, log in as the hadoop user and execute the
following command:
hadoop$ ulimit -n

1024

2.	 To show the setting for maximum processes, use the -u option of the
ulimit command:
hadoop$ ulimit -u

unlimited

3.	 Log in as the root user to increase open file and nproc limits. Add the following
settings to the limits.conf file:
root# vi /etc/security/limits.conf

hadoop soft nofile 65535
hadoop hard nofile 65535
hadoop soft nproc 32000
hadoop hard nproc 32000

4.	 To apply the changes, add the following line into the /etc/pam.d/common-
session file:
root# echo "session required pam_limits.so" >> /etc/pam.d/
common-session

5.	 Log out and back in again, as the hadoop user, and confirm the setting values again;
you should see the above changes have been applied:
hadoop$ ulimit -n

65535

hadoop$ ulimit -u

32000

How it works...
The previous setting changes the hadoop user's open file limit to 65535. It also changes
the hadoop user's max processes number to 32000. With this change of the kernel setting,
HBase can keep enough files open at the same time and also run smoothly.

Chapter 1

27

See also
ff Chapter 8, Basic Performance Tuning

Setting up HBase
A fully distributed HBase instance has one or more master nodes (HMaster), and many slave
nodes (RegionServer) running on HDFS. It uses a reliable ZooKeeper ensemble to coordinate
all the components of the cluster, including masters, slaves, and clients.

It's not necessary to run HMaster on the same server of HDFS NameNode, but, for a small cluster,
it's typical to have them run on the same server, just for ease of management. RegionServers are
usually configured to run on servers of HDFS DataNode. Running RegionServer on the DataNode
server has the advantage of data locality too. Eventually, DataNode running on the same server,
will have a copy on it of all the data that RegionServer requires.

This recipe describes the setup of a fully distributed HBase. We will set up one HMaster on
master1, and three region servers (slave1 to slave3). We will also set up an HBase client
on client1.

Getting ready
First, make sure Java is installed on all servers of the cluster.

We will use the hadoop user as the owner of all HBase daemons and files, too. All HBase files
and data will be stored under /usr/local/hbase. Create this directory on all servers of
your HBase cluster, in advance.

We will set up one HBase client on client1. Therefore, the Java installation, hadoop user,
and directory should be prepared on client1 too.

Make sure HDFS is running. You can ensure it started properly by accessing HDFS, using the
following command:

hadoop@client1$ $HADOOP_HOME/bin/hadoop fs -ls /

MapReduce does not need to be started, as HBase does not normally use it.

We assume that you are managing your own ZooKeeper, in which case, you can start it and
confirm if it is running properly. You can ensure it is running properly by sending the ruok
command to its client port:

hadoop@client1$ echo ruok | nc master1 2181

Setting Up HBase Cluster

28

How to do it...
To set up our fully distributed HBase cluster, we will download and configure HBase on the
master node first, and then sync to all slave nodes and clients.

Get the latest stable HBase release from HBase's official site, http://www.apache.org/
dyn/closer.cgi/hbase/.

At the time of writing this book, the current stable release was 0.92.1.

1.	 Download the tarball and decompress it to our root directory for HBase. Also, set an
HBASE_HOME environment variable to make the setup easier:
hadoop@master1$ ln -s hbase-0.92.1 current

hadoop@master1$ export HBASE_HOME=/usr/local/hbase/current

2.	 We will use /usr/local/hbase/var as a temporary directory of HBase on
the local filesystem. Remove it first if you have created it for your standalone
HBase installation:
hadoop@master1$ mkdir -p /usr/local/hbase/var

3.	 To tell HBase where the Java installation is, set JAVA_HOME in the HBase
environment setting file (hbase-env.sh):
hadoop@master1$ vi $HBASE_HOME/conf/hbase-env.sh

The java implementation to use. Java 1.6 required.
export JAVA_HOME=/usr/local/jdk1.6

4.	 Set up HBase to use the independent ZooKeeper ensemble:
hadoop@master1$ vi $HBASE_HOME/conf/hbase-env.sh

Tell HBase whether it should manage it's own instance of
ZooKeeper or not.
export HBASE_MANAGES_ZK=false

5.	 Add these settings to HBase's configuration file (hbase-site.xml):
hadoop@master1$ vi $HBASE_HOME/conf/hbase-site.xml

<configuration>
 <property>
 <name>hbase.rootdir</name>
 <value>hdfs://master1:8020/hbase</value>
 </property>
 <property>
 <name>hbase.cluster.distributed</name>
 <value>true</value>
 </property>
 <property>

http://www.apache.org/dyn/closer.cgi/hbase/

Chapter 1

29

 <name>hbase.tmp.dir</name>
 <value>/usr/local/hbase/var</value>
 </property>
 <property>
 <name>hbase.ZooKeeper.quorum</name>
 <value>master1</value>
 </property>
</configuration>

6.	 Configure the slave nodes of the cluster:
hadoop@master1$ vi $HBASE_HOME/conf/regionservers

slave1
slave2
slave3

7.	 Link the HDFS configuration file (hdfs-site.xml) to HBase's configuration folder
(conf), so that HBase can see the HDFS's client configuration on your Hadoop cluster:
hadoop@master1$ ln -s $HADOOP_HOME/conf/hdfs-site.xml $HBASE_HOME/
conf/hdfs-site.xml

8.	 Copy the hadoop-core and Zookeeper JAR file, and their dependencies, from your
Hadoop and ZooKeeper installation:
hadoop@master1$ rm -i $HBASE_HOME/lib/hadoop-core-*.jar

hadoop@master1$ rm -i $HBASE_HOME/lib/ZooKeeper-*.jar

hadoop@master1$ cp -i $HADOOP_HOME/hadoop-core-*.jar $HBASE_HOME/
lib/

hadoop@master1$ cp -i $HADOOP_HOME/lib/commons-configuration-
1.6.jar $HBASE_HOME/lib/

hadoop@master1$ cp -i $ZK_HOME/ZooKeeper-*.jar $HBASE_HOME/lib/

9.	 Sync all the HBase files under /usr/local/hbase from master, to the same
directory as client and slave nodes.

10.	 Start the HBase cluster from the master node:
hadoop@master1$ $HBASE_HOME/bin/start-hbase.sh

11.	 Connect to your HBase cluster from the client node:
hadoop@client1$ $HBASE_HOME/bin/hbase shell

Setting Up HBase Cluster

30

You can also access the HBase web UI from your browser. Make sure your master
server's 60010 port is opened. The URL is http://master1:60010/master.jsp:

12.	 Stop the HBase cluster from the master node:
hadoop@master1$ $HBASE_HOME/bin/stop-hbase.sh

How it works...
Our HBase cluster is configured to use /hbase as its root directory on HDFS, by specifying the
hbase.rootdir property. Because it is the first time HBase was started, it will create the
directory automatically. You can see the files HBase created on HDFS from the client:

hadoop@client1$ $HADOOP_HOME/bin/hadoop fs -ls /hbase

We want our HBase to run on distributed mode, so we set hbase.cluster.distributed
to true in hbase-site.xml.

We also set up the cluster to use an independent ZooKeeper ensemble by specifying
HBASE_MANAGES_ZK=false in hbase-env.sh. The ZooKeeper ensemble is specified by
the hbase.ZooKeeper.quorum property. You can use clustered ZooKeeper by listing all the
servers of the ensemble, such as zoo1,zoo2,zoo3.

http://master1:60010/master.jsp

Chapter 1

31

All region servers are configured in the $HBASE_HOME/conf/regionservers file. You
should use one line per region server. When starting the cluster, HBase will SSH into each
region server configured here, and start the HRegionServer daemon on that server.

By linking hdfs-site.xml under the $HBASE_HOME/conf directory, HBase will use
all the client configurations you made for your HDFS in hdfs-site.xml, such as the
dfs.replication setting.

HBase ships with its prebuilt hadoop-core and ZooKeeper JAR files. They may be out of
date, compared to what you used in your Hadoop and ZooKeeper installation. Make sure
HBase uses the same version of .jar files with Hadoop and ZooKeeper, to avoid any
unexpected problems.

Basic Hadoop/ZooKeeper/HBase
configurations

There are some basic settings we should tune, before moving forward. These are very basic
and important Hadoop (HDFS), ZooKeeper, and HBase settings that you should consider to
change immediately after setting up your cluster.

Some of these settings take effect due to data durability or cluster availability, which must be
configured, while some are recommended configurations for running HBase smoothly.

Configuration settings depend on your hardware, data, and cluster size. We will describe a
guideline in this recipe. You may need to change the settings to fit your environment.

Every time you make changes, you need to sync to all clients and slave nodes, then restart the
respective daemon to apply the changes.

How to do it...
The configurations that should be considered for change are as follows:

1.	 Turn on dfs.support.append for HDFS. The dfs.support.append property
determines whether HDFS should support the append (sync) feature or not. The
default value is false. It must be set to true, or you may lose data if the region
server crashes:
hadoop$ vi $HADOOP_HOME/conf/hdfs-site.xml

 <property>
 <name>dfs.support.append</name>
 <value>true</value>
 </property>

Setting Up HBase Cluster

32

2.	 Increase the dfs.datanode.max.xcievers value to have DataNode keep more
threads open, to handle more concurrent requests:
hadoop$ vi $HADOOP_HOME/conf/hdfs-site.xml

 <property>
 <name>dfs.datanode.max.xcievers</name>
 <value>4096</value>
 </property>

3.	 Increase ZooKeeper's heap memory size so that it does not swap:
hadoop$ vi $ZK_HOME/conf/java.env

export JAVA_OPTS="-Xms1000m -Xmx1000m"

4.	 Increase ZooKeeper's maximum client connection number to handle more
concurrent requests:
hadoop$ echo "maxClientCnxns=60" >> $ZK_HOME/conf/zoo.cfg

5.	 Increase HBase's heap memory size to run HBase smoothly:
hadoop$ vi $HBASE_HOME/conf/hbase-env.sh

export HBASE_HEAPSIZE=8000

6.	 Decrease the zookeeper.session.timeout value so that HBase can find the
crashed region server fast, and recover it in a short time:
hadoop$ vi $HBASE_HOME/conf/hbase-site.xml

<property>
 <name>zookeeper.session.timeout</name>
 <value>60000</value>
</property>

7.	 To change Hadoop/ZooKeeper/HBase log settings, edit the log4j.properties
file and the hadoop-env.sh/hbase-env.sh file under the conf directory of the
Hadoop/ZooKeeper/HBase installation. It's better to change the log directory out of
the installation folder. For example, the following specifies HBase to generate its logs
under the /usr/local/hbase/logs directory:
hadoop$ vi $HBASE_HOME/conf/hbase-env.sh

export HBASE_LOG_DIR=/usr/local/hbase/logs

How it works...
In step 1, by turning on dfs.support.append, the HDFS flush is enabled. With this feature
enabled, a writer of HDFS can guarantee that data will be persisted by invoking a flush call.
So, HBase can guarantee that when a region server dies, data can be recovered and replayed
on other region servers using its Write-Ahead Log (WAL).

Chapter 1

33

To verify if the HDFS append is supported or not, see your HMaster log of the HBase startup. If
the append is not turned to on, you will find a log like the following:

$ grep -i "HDFS-200" hbase-hadoop-master-master1.log

...syncFs -- HDFS-200 -- not available, dfs.support.append=false

For step 2, we configured the dfs.datanode.max.xcievers setting, which specifies the
upper bound on the number of files HDFS DataNode will serve at any one time.

Note that the name is xcievers—it's a misspelled name. Its default
value is 256, which is too low for running HBase on HDFS.

Steps 3 and 4 are about ZooKeeper settings. ZooKeeper is very sensitive to swapping, which
will seriously degrade its performance. ZooKeeper's heap size is set in the java.env file.
ZooKeeper has an upper bound on the number of connections it will serve at any one time. Its
default is 10, which is too low for HBase, especially when running MapReduce on it. We would
suggest setting it to 60.

In step 5, we configured HBase's heap memory size. HBase ships with a heap size of 1 GB,
which is too low for modern machines. A reasonable value for large machines is 8 GB or
larger, but under 16 GB.

In step 6, we changed the ZooKeeper's session timeout to a lower value. Lower timeout
means HBase can find crashed region servers faster, and thus, recover the crashed regions
on other servers in a short time. On the other hand, with a very short session timeout, there
is a risk that the HRegionServer daemon may kill itself when the cluster is in heavy load,
because it may not be able to send a heartbeat to the ZooKeeper before getting a timeout.

See also
ff Chapter 8, Basic Performance Tuning

ff Chapter 9, Advanced Configurations and Performance Tuning

Setting up multiple High Availability (HA)
masters

Hadoop and HBase are designed to handle the failover of their slave nodes automatically.
Because there may be many nodes in a large cluster, a hardware failure of a server or shut
down of a slave node are considered as normal in the cluster.

Setting Up HBase Cluster

34

For the master nodes, HBase itself has no SPOF. HBase uses ZooKeeper as its central
coordination service. A ZooKeeper ensemble is typically clustered with three or more servers;
as long as more than half of the servers in the cluster are online, ZooKeeper can provide its
service normally.

HBase saves its active master node, root region server location, and other important running
data in ZooKeeper. Therefore, we can just start two or more HMaster daemons on separate
servers and the one started first will be the active master server of the HBase cluster.

But, NameNode of HDFS is the SPOF of the cluster. NameNode keeps the entire HDFS's
filesystem image in its local memory. HDFS cannot function anymore if NameNode is
down, as HBase is down too. As you may notice, there is a Secondary NameNode of HDFS.
Note that Secondary NameNode is not a standby of NameNode, it just provides a checkpoint
function to NameNode. So, the challenge of a highly available cluster is to make NameNode
highly available.

In this recipe, we will describe the setup of two highly available master nodes, which will
use Heartbeat to monitor each other. Heartbeat is a widely used HA solution to provide
communication and membership for a Linux cluster. Heartbeat needs to be combined with a
Cluster Resource Manager (CRM) to start/stop services for that cluster. Pacemaker is the
preferred cluster resource manager for Heartbeat. We will set up a Virtual IP (VIP) address
using Heartbeat and Pacemaker, and then associate it with the active master node. Because
EC2 does not support static IP addresses, we cannot demonstrate it on EC2, but we will
discuss an alternative way of using Elastic IP (EIP) to achieve our purpose.

We will focus on setting up NameNode and HBase; you can simply use a similar method to set
up two JobTracker nodes as well.

Getting ready
You should already have HDFS and HBase installed. We will set up a standby master node
(master2), as you need another server ready to use. Make sure all the dependencies have
been configured properly. Sync your Hadoop and HBase root directory from the active master
(master1) to the standby master.

We will need NFS in this recipe as well. Set up your NFS server, and mount the same
NFS directory from both master1 and master2. Make sure the hadoop user has write
permission to the NFS directory. Create a directory on NFS to store Hadoop's metadata. We
assume the directory is /mnt/nfs/hadoop/dfs/name.

We will set up VIP for the two masters, and assume you have the following IP addresses and
DNS mapping:

ff master1: This has its IP address as 10.174.14.11.

ff master2: This has its IP address as 10.174.14.12.

ff master: This has its IP address as 10.174.14.10. It is the VIP that will be set up later.

Chapter 1

35

How to do it...
The following instructions describe how to set up two highly available master nodes.

Install and configure Heartbeat and Pacemaker
First, we will install Heartbeat and Pacemaker, and make some basic configurations:

1.	 Install Heartbeat and Pacemaker on master1 and master2:
root# apt-get install heartbeat cluster-glue cluster-agents
pacemaker

2.	 To configure Heartbeat, make the following changes to both master1 and master2:
root# vi /etc/ha.d/ha.cf

enable pacemaker, without stonith
crm yes
log where ?
logfacility local0
warning of soon be dead
warntime 10
declare a host (the other node) dead after:
deadtime 20
dead time on boot (could take some time until net is up)
initdead 120
time between heartbeats
keepalive 2
the nodes
node master1
node master2
heartbeats, over dedicated replication interface!
ucast eth0 master1 # ignored by master1 (owner of ip)
ucast eth0 master2 # ignored by master2 (owner of ip)
ping the name server to assure we are online
ping ns

3.	 Create an authkeys file. Execute the following script as a root user on master1
and master2:
root# (echo -ne "auth 1\n1 sha1 "; \

 dd if=/dev/urandom bs=512 count=1 | openssl md5) \

 > /etc/ha.d/authkeys

root# chmod 0600 /etc/ha.d/authkeys

Setting Up HBase Cluster

36

Create and install a NameNode resource agent
Pacemaker depends on a resource agent to manager the cluster. A resource agent is an
executable that manages a cluster resource. In our case, the VIP address and the HDFS
NameNode service is the cluster resource we want to manage, using Pacemaker. Pacemaker
ships with an IPaddr resource agent to manage VIP, so we only need to create our own
namenode resource agent:

1.	 Add environment variables to the .bashrc file of the root user on master1 and
master2. Don't forget to apply the changes:
root# vi /root/.bashrc

export JAVA_HOME=/usr/local/jdk1.6
export HADOOP_HOME=/usr/local/hadoop/current
export OCF_ROOT=/usr/lib/ocf

Invoke the following command to apply the previous changes:
root# source /root/.bashrc

2.	 Create a standard Open Clustering Framework (OCF) resource agent file called
namenode, with the following content.

The namenode resource agent starts with including standard OCF functions such as
the following:
root# vi namenode

#!/bin/sh
: ${OCF_FUNCTIONS_DIR=${OCF_ROOT}/resource.d/heartbeat}
. ${OCF_FUNCTIONS_DIR}/.ocf-shellfuncs
usage() {
 echo "Usage: $0 {start|stop|status|monitor|meta-data|validate-
all}"
}

3.	 Add a meta_data() function as shown in the following code. The meta_data()
function dumps the resource agent metadata to standard output. Every resource
agent must have a set of XML metadata describing its own purpose and
supported parameters:
root# vi namenode

meta_data() {cat <<END
<?xml version="1.0"?>
<!DOCTYPE resource-agent SYSTEM "ra-api-1.dtd">
<resource-agent name="namenode">
<version>0.1</version>
<longdesc lang="en">
This is a resource agent for NameNode. It manages HDFS namenode
daemon.

Chapter 1

37

</longdesc>
<shortdesc lang="en">Manage namenode daemon.</shortdesc>
<parameters></parameters>
<actions>
<action name="start" timeout="120" />
<action name="stop" timeout="120" />
<action name="status" depth="0" timeout="120" interval="120" />
<action name="monitor" depth="0" timeout="120" interval="120" />
<action name="meta-data" timeout="10" />
<action name="validate-all" timeout="5" />
</actions>
</resource-agent>
END
}

4.	 Add a namenode_start() function. This function is used by Pacemaker to actually
start the NameNode daemon on the server. In the namenode_start() function, we
firstly check whether NameNode is already started on the server; if it is not started,
we invoke hadoop-daemon.sh from the hadoop user to start it:
root# vi namenode

namenode_start() {
 # if namenode is already started on this server, bail out early
 namenode_status
 if [$? -eq 0]; then
 ocf_log info "namenode is already running on this server,
skip"
 return $OCF_SUCCESS
 fi

 # start namenode on this server
 ocf_log info "Starting namenode daemon..."
 su - hadoop -c "${HADOOP_HOME}/bin/hadoop-daemon.sh start name
 node"
 if [$? -ne 0]; then
 ocf_log err "Can not start namenode daemon."
 return $OCF_ERR_GENERIC;
 fi
 sleep 1
 return $OCF_SUCCESS
}

Setting Up HBase Cluster

38

5.	 Add a namenode_stop() function. This function is used by Pacemaker to actually
stop the NameNode daemon on the server. In the namenode_stop() function, we
first check whether NameNode is already stopped on the server; if it is running, we
invoke hadoop-daemon.sh from the hadoop user to stop it:
root# vi namenode

namenode_stop () {
 # if namenode is not started on this server, bail out early
 namenode_status
 if [$? -ne 0]; then
 ocf_log info "namenode is not running on this server, skip"
 return $OCF_SUCCESS
 fi

 # stop namenode on this server
 ocf_log info "Stopping namenode daemon..."
 su - hadoop -c "${HADOOP_HOME}/bin/hadoop-daemon.sh stop name
 node"
 if [$? -ne 0]; then
 ocf_log err "Can not stop namenode daemon."
 return $OCF_ERR_GENERIC;
 fi
 sleep 1
 return $OCF_SUCCESS
}

6.	 Add a namenode_status() function. This function is used by Pacemaker to monitor
the status of the NameNode daemon on the server. In the namenode_status()
function, we use the jps command to show all running Java processes owned by the
hadoop user, and the grep name of the NameNode daemon to see whether it has
started:
root# vi namenode

namenode_status () {
 ocf_log info "monitor namenode"
 su - hadoop -c "${JAVA_HOME}/bin/jps" | egrep -q "NameNode"
 rc=$?
 # grep will return true if namenode is running on this machine
 if [$rc -eq 0]; then
 ocf_log info "Namenode is running"
 return $OCF_SUCCESS else
 ocf_log info "Namenode is not running" return $OCF_NOT_
RUNNING

 fi
}

Chapter 1

39

7.	 Add a namenode_validateAll() function to make sure the environment variables
are set properly before we run other functions:
root# vi namenode

namenode_validateAll () {
 if [-z "$JAVA_HOME"]; then
 ocf_log err "JAVA_HOME not set."
 exit $OCF_ERR_INSTALLED
 fi
 if [-z "$HADOOP_HOME"]; then
 ocf_log err "HADOOP_HOME not set."
 exit $OCF_ERR_INSTALLED
 fi
 # Any subject is OK
 return $OCF_SUCCESS
}

8.	 Add the following main routine. Here, we will simply call the previous functions to
implement the required standard OCF resource agent actions:
root# vi namenode

See how we were called.
if [$# -ne 1]; then
 usage
 exit $OCF_ERR_GENERIC
fi

namenode_validateAll

case $1 in
 meta-data) meta_data
 exit $OCF_SUCCESS;;
 usage) usage
 exit $OCF_SUCCESS;;
 *);;
 esac

case $1 in
 status|monitor) namenode_status;;
 start) namenode_start;;
 stop) namenode_stop;;
 validate-all);;
 *)usage
 exit $OCF_ERR_UNIMPLEMENTED;;
 esac
exit $?

Setting Up HBase Cluster

40

9.	 Change the namenode file permission and test it on master1 and master2:
root# chmod 0755 namenode

root# ocf-tester -v -n namenode-test /full/path/of/namenode

10.	 Make sure all the tests are passed before proceeding to the next step, or the HA
cluster will behave unexpectedly.

11.	 Install the namenode resource agent under the hac provider on master1
and master2:
root# mkdir ${OCF_ROOT}/resource.d/hac

root# cp namenode ${OCF_ROOT}/resource.d/hac

root# chmod 0755 ${OCF_ROOT}/resource.d/hac/namenode

Configure highly available NameNode
We are ready to configure highly available NameNode using Heartbeat and Pacemaker. We
will set up a VIP address and configure Hadoop and HBase to use this VIP address as their
master node. NameNode will be started on the active master where VIP is assigned. If active
master has crashed, Heartbeat and Pacemaker will detect it and assign the VIP address to the
standby master node, and then start NameNode there.

1.	 Start Heartbeat on master1 and master2:
root# /etc/init.d/heartbeat start

2.	 Change the default crm configuration. All resource-related commands are only
executed once, from master1 or master2:
root# crm configure property stonith-enabled=false

root# crm configure property default-resource-stickiness=1

3.	 Add a VIP resource using our VIP address:
root# crm configure primitive VIP ocf:heartbeat:IPaddr params
ip="10.174.14.10" op monitor interval="10s"

4.	 Make the following changes to configure Hadoop to use our VIP address. Sync to all
masters, clients, and slaves after you've made the changes:
hadoop$ vi $HADOOP_HOME/conf/core-site.xml

 <property>
 <name>fs.default.name</name>
 <value>hdfs://master:8020</value>
 </property>

5.	 Make the following changes to configure HBase to use our VIP address. Sync to all
masters, clients, and slaves after you've made the changes:
hadoop$ vi $HBASE_HOME/conf/hbase-site.xml

Chapter 1

41

 <property>
 <name>hbase.rootdir</name>
 <value>hdfs://master:8020/hbase</value>
 </property>

6.	 To configure Hadoop to write its metadata to a local disk and NFS, make the following
changes and sync to all masters, clients, and slaves:
hadoop$ vi $HADOOP_HOME/conf/hdfs-site.xml

 <property>
 <name>dfs.name.dir</name>
 <value>/usr/local/hadoop/var/dfs/name,/mnt/nfs/hadoop
 /dfs/name</value>
 </property>

7.	 Add the namenode resource agent we created in step 5 to Pacemaker. We will use
NAMENODE as its resource name:
root# crm configure primitive NAMENODE ocf:hac:namenode op monitor
interval="120s" timeout="120s" op start timeout="120s" op stop
timeout="120s" meta resource-stickiness="1"

8.	 Configure the VIP resource and the NAMENODE resource as a resource group:
root# crm configure group VIP-AND-NAMENODE VIP NAMENODE

9.	 Configure colocation of a VIP resource and the NAMENODE resource:
root# crm configure colocation VIP-WITH-NAMENODE inf: VIP NAMENODE

10.	 Configure the resource order of the VIP resource and the NAMENODE resource:
root# crm configure order IP-BEFORE-NAMENODE inf: VIP NAMENODE

11.	 Verify the previous Heartbeat and resource configurations by using the
crm_mon command. If everything is configured properly, you should see
an output like the following :
root@master1 hac$ crm_mon -1r

============

Last updated: Tue Nov 22 22:39:11 2011

Stack: Heartbeat

Current DC: master2 (7fd92a93-e071-4fcb-993f-9a84e6c7846f) -
partition with quorum

Version: 1.0.9-74392a28b7f31d7ddc86689598bd23114f58978b

2 Nodes configured, 1 expected votes

1 Resources configured.

============

Setting Up HBase Cluster

42

Online: [master1 master2]

Full list of resources:

Resource Group: VIP-AND-NAMENODE

 VIP (ocf::heartbeat:IPaddr): Started master1

 NAMENODE (ocf::hac:namenode): Started master1

12.	 Make sure that the VIP and NAMENODE resources are started on the same server.

13.	 Now stop Heartbeat from master1; VIP-AND-NAMENODE should be started at
master2 after several seconds.

14.	 Restart Heartbeat from master1; VIP-AND-NAMENODE should remain started at
master2. Resources should NOT failback to master1.

Start DataNode, HBase cluster, and backup HBase master
We have confirmed that our HA configuration works as expected, so we can start HDFS and
HBase now. Note that NameNode has already been started by Pacemaker, so we need only
start DataNode here:

1.	 If everything works well, we can start DataNode now:
hadoop@master$ for i in 1 2 3

do

 ssh slave$i "$HADOOP_HOME/bin/hadoop-daemon.sh start datanode"

 sleep 1

done

2.	 Start your HBase cluster from master, which is the active master server where the
VIP address is associated:
hadoop@master$ $HBASE_HOME/bin/start-hbase.sh

3.	 Start standby HMaster from the standby master server, master2 in this case:
hadoop@master2$ $HBASE_HOME/bin/hbase-daemon.sh start master

Chapter 1

43

How it works...
The previous steps finally leave us with a cluster structure like the following diagram:

HDFS/Zookeeper

/Hbase

(client1)

NFS Server

(ns1)

DNS Server

(ns1)

NTP Server

HBase Cluster

DataNode

HRegionServer

(slave1)

DataNode

HRegionServer

(slave2)

DataNode

HRegionServer

(slave3)

NameNode

HMaster

Zookeeper

(master1)

NameNode

HMaster

(cold standby)

(master2)

Heartbeat

At first, we installed Heartbeat and Pacemaker on the two masters and then configured
Heartbeat to enable Pacemaker.

In step 2 of the Create and install a NameNode resource agent section, we created the
namenode script, which is implemented as a standard OCF resource agent. The most important
function of the namenode script is namenode_status, which monitors the status of the
NameNode daemon. Here we use the jps command to show all running Java processes owned
by the hadoop user, and the grep name of the NameNode daemon to see if it has started. The
namenode resource agent is used by Pacemaker to start/stop/monitor the NameNode daemon.
In the namenode script, as you can see in the namenode_start and namenode_stop
methods, we actually start/stop NameNode by using hadoop-daemon.sh, which is used to
start/stop the Hadoop daemon on a single server. You can find a full list of the code from the
source shipped with this book.

We started Heartbeat after our namenode resource agent was tested and installed. Then,
we made some changes to the default crm configurations. The default-resource-
stickiness=1 setting is very important as it turns off the automatic failback of a resource.

We added a VIP resource to Pacemaker and configured Hadoop and HBase to use it in
steps 3 to 5 of the Configure highly available NameNode section. By using VIP in their
configuration, Hadoop and HBase can switch to communicate with the standby master
if the active one is down.

Setting Up HBase Cluster

44

In step 6 of the same section, we configured Hadoop (HDFS NameNode) to write its metadata
to both the local disk and NFS. If an active master is down, NameNode will be started from the
standby master. Because they were mounted on the same NFS directory, NameNode started
from the standby master can apply the latest metadata from NFS, and restore HDFS to the
status before the original active master is down.

In steps 7 to 10, we added the NAMENODE resource using the namenode resource agent
we created in step 2 of the Create and install a NameNode resource agent section, then we
set up VIP and NAMENODE resources as a group (step 8), and made sure they always run on
the same server (step 9), with the right start-up order (step 10). We did this because we didn't
want VIP running on master1, while NameNode was running on master2.

Because Pacemaker will start NameNode for us via the namenode resource agent, we need
to start DataNode separately, which is what we did in step 1 of the Start DataNode, HBase
cluster, and backup HBase master section.

After starting HBase normally, we started our standby HBase master (HMaster) on the standby
master server. If you check your HBase master log, you will find output like the following, which
shows itself as a standby HMaster:

2011-11-21 23:38:55,168 INFO org.apache.hadoop.hbase.master.
ActiveMasterManager: Another master is the active master, ip-10-174-
14-15.us-west-1.compute.internal:60000; waiting to become the next
active master

Finally, we got NameNode and HMaster running on two servers with an active-standby
configuration. The single point of failure of the cluster was avoided.

However, it leaves us with lots of works to do in production. You need to test your HA cluster
in all rare cases, such as a server power off, unplug of a network cable, shut down of network
switch, or anything else you can think of.

On the other hand, SPOF of the cluster may not be as critical as you think. Based on our
experience, almost all of the downtime of the cluster is due to an operational miss or software
upgrade. It's better to make your cluster simple.

Chapter 1

45

There's more...
It is more complex to set up a highly available HBase cluster on Amazon EC2 because EC2
does not support static IP addresses, and so we can't use VIP on EC2. An alternative way is
to use an Elastic IP address. An Elastic IP address is the role of a static IP address on EC2
while it is associated with your account, not a particular instance. We can use Heartbeat
to associate EIP to the standby master automatically, if the active one is down. Then, we
configure Hadoop and HBase to use an instance's public DNS associated with EIP, to find
an active master. Also, in the namenode resource agent, we have to start/stop not only
NameNode, but also all DataNodes. This is because the IP address of an active master
has changed, but DataNode cannot find the new active master unless it is restarted.

We will skip the details because it's out of the scope of this book. We created an
elastic-ip resource agent to achieve this purpose. You can find it in the source
shipped with this book.

2
Data Migration

In this chapter, we will cover:

ff Importing data from MySQL using a single client

ff Importing data from TSV files using the bulk load tool

ff Writing your own MapReduce job to import data

ff Precreating regions before moving data into HBase

Introduction
There are several ways to move data into HBase:

ff Using the HBase Put API

ff Using the HBase bulk load tool

ff Using a customized MapReduce job

The HBase Put API is the most straightforward method. Its usage is not difficult to learn. For
most situations however, it is not always the most efficient method. This is especially true
when a large amount of data needs to be transferred into HBase within a limited time period.
The volume of data to be taken care of is usually huge, and that's probably why you will be
using HBase rather than another database. You have to think about how to move all that data
into HBase carefully at the beginning of your HBase project; otherwise you might run into
serious performance problems.

Data Migration

48

HBase has the bulk load feature to support loading of huge volumes of data efficiently into
HBase. The bulk load feature uses a MapReduce job to load data into a specific HBase table
by generating HBase's internal HFile data format files and then loading the data files directly
into a running cluster. The easiest way to use this bulk load feature is to use the importtsv
tool. importtsv is a built-in tool to load data from TSV files into HBase. It will run MapReduce
jobs to read data from TSV files and will then write output directly into either HBase tables or
HBase internal data format files.

Although the importtsv tool can be very useful if you are going to load textual data into
HBase, there are cases, such as importing data from other formats, where you might want
to generate data programmatically. MapReduce is the most efficient way to process a huge
amount of data. It might be the only practical way to load a large amount of data into HBase.
We can, of course, use MapReduce to import data into HBase. However, the MapReduce
job might be very heavy, as the data set is huge. If you don't treat it properly, the heavy
MapReduce job might run with poor throughput.

Data migration is a write-heavy task over HBase, unless we generate the internal data files
and load them directly into HBase. Even though HBase writes are always fast, writes can be
blocked often during the migration process if it is not configured properly. Another issue with
write-heavy tasks is that all writes may go to the same region server, this is especially true
when loading a large amount of data into a new HBase installation. As all loads go to the
same server, the cluster is unbalanced and writing speed will slow down significantly.

We are going to address these issues in this chapter. We will start with the simple task of
importing data from MySQL to HBase, using its Put API. We will then describe how to use
the importtsv and bulk load tools to load TSV data files into HBase. We will also have a
MapReduce sample to import data from other file formats. This includes putting data directly
into an HBase table and writing to HFile format files on Hadoop Distributed File System
(HDFS). The last recipe in this chapter explains how to precreate regions before loading data
into HBase.

This chapter ships with several sample sources written in Java. We assume you have basic
Java knowledge, so we will skip explaining how to compile and package the sample Java
source in the recipes, but we will put an introduction in the sample source.

Importing data from MySQL via single client
The most usual case of data migration might be importing data from an existing RDBMS into
HBase. For this kind of task, the most simple and straightforward way could be to fetch the
data from a single client and then put it into HBase, using the HBase Put API. It works well if
there is not too much data to transfer.

Chapter 2

49

This recipe describes importing data from MySQL into HBase using its Put API. All the
operations will be executed on a single client. MapReduce is not included in this recipe. This
recipe leads you through creating an HBase table via HBase Shell, connecting to the cluster
from Java, and then putting data into HBase.

Getting ready
Public data sets are an ideal data source to practice HBase data migration. There are many
public data sets available on the internet. We will use the NOAA'S 1981-2010 CLIMATE
NORMALS public data set in this book. You can access it at http://www1.ncdc.noaa.
gov/pub/data/normals/1981-2010/.

This is climate statistics data generated by the National Oceanic and Atmospheric
Administration (NOAA).

In this recipe, we will use its hourly temperature data under
products | hourly, which you will find at the aforementioned link.
Download hly-temp-normal.txt from the directory.

A running MySQL installation is required for this recipe. Create an hly_temp_normal table in
your MySQL database, using the following SQL statements:

create table hly_temp_normal (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 stnid CHAR(11),
 month TINYINT,
 day TINYINT,
 value1 VARCHAR(5),
 value2 VARCHAR(5),
 value3 VARCHAR(5),
 value4 VARCHAR(5),
 value5 VARCHAR(5),
 value6 VARCHAR(5),
 value7 VARCHAR(5),
 value8 VARCHAR(5),
 value9 VARCHAR(5),
 value10 VARCHAR(5),
 value11 VARCHAR(5),
 value12 VARCHAR(5),
 value13 VARCHAR(5),
 value14 VARCHAR(5),
 value15 VARCHAR(5),
 value16 VARCHAR(5),
 value17 VARCHAR(5),

Data Migration

50

 value18 VARCHAR(5),
 value19 VARCHAR(5),
 value20 VARCHAR(5),
 value21 VARCHAR(5),
 value22 VARCHAR(5),
 value23 VARCHAR(5),
 value24 VARCHAR(5)
);

This book ships with some scripts to help you load data into your MySQL table. You can
use insert_hly.py to load hourly NOAA data. You will need to change your host, user,
password, and database name, in the script. After you have changed these, insert the data
from the downloaded hly-temp-normal.txt file into the hly_temp_normal table, using:

$ python insert_hly.py -f hly-temp-normal.txt -t hly_temp_normal

To compile the Java source that will be mentioned in the following section, you will need
the following libraries:

ff hadoop-core-1.0.2.jar

ff hbase-0.92.1.jar

ff mysql-connector-java-5.1.18.jar

You can add them to your classpath manually, or you can use the sample source available
with this book.

Before starting to import data, make sure your HDFS, ZooKeeper, and HBase clusters are
running properly. Log in to your HBase's client node.

How to do it...
To import data from MySQL to HBase via a single client:

1.	 Connect to your HBase cluster through HBase Shell, from your HBase client server:
hadoop$ $HBASE_HOME/bin/hbase shell

2.	 Create an hly_temp table in HBase:
hbase> create 'hly_temp', {NAME => 'n', VERSIONS => 1}

Chapter 2

51

3.	 Write a Java source to import data from MySQL into HBase. Package it as a JAR file.
The following steps are to import data using Java source:

i.	 Create a connectHBase() method to connect to a specific HBase table
from Java:
$ vi Recipe1.java

 private static HTable connectHBase(String tablename) \
 throws IOException {
 HTable table = null;
 Configuration conf = HBaseConfiguration.create();
 table = new HTable(conf, tablename);
 return table;
 }

ii.	 Create a connectDB() method to connect to MySQL from Java:
$ vi Recipe1.java

 private static Connection connectDB() \
 throws Exception {
 String userName = "db_user";
 String password = "db_password";
 String url = "jdbc:mysql://db_host/database";
 Class.forName("com.mysql.jdbc.Driver").newInstance();
 Connection conn = DriverManager.getConnection(url,
 userName, password);
 return conn;
 }

Here is the main() method of the Java class. In this method, we get data from
MySQL and put this data into HBase:
$ vi Recipe1.java

public class Recipe1 {
 public static void main(String[] args) {
 Connection dbConn = null;
 HTable htable = null;
 Statement stmt = null;
 String query = "select * from hly_temp_normal";
 try {
 dbConn = connectDB();
 htable = connectHBase("hly_temp");
 byte[] family = Bytes.toBytes("n");
 stmt = dbConn.createStatement();
 ResultSet rs = stmt.executeQuery(query);
 // time stamp for all inserted rows
 long ts = System.currentTimeMillis();

Data Migration

52

 while (rs.next()) {
 String stationid = rs.getString("stnid");
 int month = rs.getInt("month");
 int day = rs.getInt("day");
 String rowkey = stationid + Common.lpad(String.
 valueOf(month), 2,
 '0') + Common.lpad(String.valueOf(day), 2, '0');
 Put p = new Put(Bytes.toBytes(rowkey));
 // get hourly data from MySQL and put into hbase
 for (int i = 5; i < 29; i++) {
 String columnI = "v" + Common.lpad
 (String.valueOf(i - 4), 2, '0');
 String valueI = rs.getString(i);
 p.add(family, Bytes.toBytes(columnI), ts,
 Bytes.toBytes(valueI));
 }
 htable.put(p);
 }
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 try {
 if (stmt != null) {
 stmt.close();
 }
 if (dbConn != null) {
 dbConn.close();
 }
 if (htable != null) {
 htable.close();
 }
 } catch (Exception e) {
 // ignore
 }
 }
 }
}

4.	 Run the import job. The script to run the JAR file looks as follows:
#/bin/bash
bin=`dirname $0`
bin=`cd $bin;pwd`
cp=$HBASE_HOME/conf:$HBASE_HOME/hbase-0.92.1.jar:$bin/build/hac-
chapter2.jar
for jar in $bin/lib/*.jar

Chapter 2

53

do
 cp=$cp:$jar
done
for jar in $HBASE_HOME/lib/*.jar
do
 cp=$cp:$jar
done

$JAVA_HOME/bin/java -classpath $cp "hac.chapter2.Recipe1"

5.	 To verify the data imported in HBase, connect to the running HBase instance via
HBase Shell:
hadoop$ $HBASE_HOME/bin/hbase shell

6.	 Verify if the data has been imported to the target table in HBase:
hbase> count 'hly_temp'

95630 row(s) in 8.9850 seconds

hbase> scan 'hly_temp', {LIMIT => 10}

...

 AQW000617050110 column=n:v23,
timestamp=1322958813521, value=814S

 AQW000617050110 column=n:v24,
timestamp=1322958813521, value=811C

10 row(s) in 0.6730 seconds

How it works...
In steps 1 and 2, we created the target table in HBase to insert data into. The table name is
hly_temp, and it has a single column family n. The reason we gave it a name one character
long is that the column family name will be stored in every Key/Value in HBase. Using a very
short name makes storing and caching of data efficient. We only need one version of our data,
which is specified by the VERSION property for the column family.

In the Java source, to connect to HBase, we first create a Configuration object and
then use it with the table name to create an HTable instance. The HTable object will
handle all client API calls. As you can see, we don't set any ZooKeeper or HBase connection
configurations in the source. So how does it find the proper running HBase cluster? This
is possible because we added the $HBase/conf directory to the classpath, in step 4. By
doing this, the HBase client API will load configurations from the file hbase-site.xml from
classpath. The connection setting is specified in the hbase-site.xml file.

Data Migration

54

After fetching data from MySQL using JDBC, we looped through the result set and mapped one
row in MySQL to one row in the HBase table. Here, we use stationid, month, and day, to
compose the row key of the HBase data. We also added a left padding of 0 to the month and
day data. This is important because the HBase row key sorts in lexicographical order, which
means 12 stands before 2; this is of course not our expected result.

We created one Put object for one row using the row key. Hourly data is set by calling Put.
add(), which takes column family, qualifier, timestamp, and value, as parameters. Again, we
took a very short column name here to make the stored data efficient. After all data has been
set, calling HTable.put() will put the data into the table.

Finally, all opened resources need to be closed manually. We closed the MySQL and HBase
connections in the final block of the source to make sure it will be called even if an exception
occurs during the importing.

You can verify the importing by comparing the row counts of MySQL and HBase tables. As you
can see in the scan result, data was accurately imported into HBase.

Importing data from TSV files using the bulk
load tool

HBase has an importtsv tool to support importing data from TSV files into HBase. Using this
tool to load text data into HBase is very efficient, because it runs a MapReduce job to perform
the importing. Even if you are going to load data from an existing RDBMS, you can dump data
into a text file somehow and then use importtsv to import dumped data into HBase. This
approach works well when importing a huge amount of data, as dumping data is much faster
than executing SQL on RDBMS.

The importtsv tool does not only load data directly into an HBase table, it also supports
generating HBase internal format (HFile) files, so that you can use the HBase bulk load tool to
load generated files directly into a running HBase cluster. This way, you reduce network traffic
that was generated from the data transfers and your HBase load, during the migration.

This recipe describes usage of the importtsv and bulk load tools. We first demonstrate
loading data from TSV files into the HBase table, using the importtsv tool. We will also
cover how to generate HBase internal format files and how to load generated files into
HBase directly.

Getting ready
We will use the NOAA CLIMATE NORMALS data in this recipe. The data is available at the
following link:

http://www1.ncdc.noaa.gov/pub/data/normals/1981-2010/

http://www1.ncdc.noaa.gov/pub/data/normals/1981-2010/
http://www1.ncdc.noaa.gov/pub/data/normals/1981-2010/
http://www1.ncdc.noaa.gov/pub/data/normals/1981-2010/

Chapter 2

55

Download the hly-temp-10pctl.txt file, which can be
found under the products | hourly directory.

The downloaded data cannot be loaded directly from the importtsv tool, as its format is not
supported. We provide scripts to help you convert the data into TSV files. Besides the actual
data, the TSV file to be loaded must contain a field representing the row key of the HBase
table row. The to_tsv_hly.py script shipped with this book reads data from an hourly NOAA
data file and generates the row key and output data to a TSV file on the local file system:

$ python to_tsv_hly.py -f hly-temp-10pctl.txt -t hly-temp-10pctl.tsv

As the importtsv tool runs a MapReduce job to perform the importing, we need to get
MapReduce running on our cluster. Start the MapReduce daemons by executing the following
command from your master node:

hadoop$ $HADOOP_HOME/bin/start-mapred.sh

We will add a hac user on the client server to run the job; this is desirable for production. To
run the MapReduce job from a client, you need to give write permission for the ${hadoop.
tmp.dir} directory to the hac user on the client. We assume that the ${hadoop.tmp.dir}
directory is set as /usr/local/hadoop/var:

root@client1# usermod -a -G hadoop hac

root@client1# chmod -R 775 /usr/local/hadoop/var

On HDFS, create the home directory for the hac user:

hadoop@client1$ $HADOOP_HOME/bin/hadoop fs -mkdir /user/hac

hadoop@client1$ $HADOOP_HOME/bin/hadoop fs -chown hac /user/hac

Also make sure the hac user has write permission to the MapReduce temporary directory
on HDFS:

hadoop@client1$ $HADOOP_HOME/bin/hadoop fs -chmod -R 775 /usr/local/
hadoop/var/mapred

How to do it...
To load data from the TSV file into the HBase table using MapReduce, carry out the
following steps:

1.	 Create a directory on HDFS and copy the TSV file from the local file system to HDFS:
hac@client1$ $HADOOP_HOME/bin/hadoop fs -mkdir /user/hac/input/2-1

hac@client1$ $HADOOP_HOME/bin/hadoop fs -copyFromLocal hly-temp-
10pctl.tsv /user/hac/input/2-1

Data Migration

56

2.	 Add the target table in HBase. Connect to HBase and add the hly_temp table to it:
hac@client1$ $HBASE_HOME/bin/hbase shell

hbase> create 'hly_temp', {NAME => 't', VERSIONS => 1}

3.	 If the table exists (we created it in the first recipe of this chapter), add a new column
family to it:
hbase> disable 'hly_temp'

hbase> alter 'hly_temp', {NAME => 't', VERSIONS => 1}

hbase> enable 'hly_temp'

4.	 Add the hbase-site.xml file to the Hadoop classpath by linking it under the
Hadoop configuration directory:
hac@client1$ ln -s $HBASE_HOME/conf/hbase-site.xml $HADOOP_HOME/
conf/hbase-site.xml

5.	 Add HBase dependency JARs to the Hadoop classpath by editing the hadoop-env.
sh file under the $HADOOP_HOME/conf directory on the client server:
hadoop@client1$ vi $HADOOP_HOME/conf/hadoop-env.sh

export HADOOP_CLASSPATH=/usr/local/zookeeper/current/zookeeper-
3.4.3.jar:/usr/local/hbase/current/lib/guava-r09.jar

6.	 Run the importtsv tool by running the following script by the hac user:
hac@client1$ $HADOOP_HOME/bin/hadoop jar $HBASE_HOME/hbase-
0.92.1.jar importtsv \

 -Dimporttsv.columns=HBASE_ROW_KEY,t:v01,t:v02,t:v03,t:v04,t:v0
5,t:v06,t:v07,t:v08,t:v09,t:v10,t:v11,t:v12,t:v13,t:v14,t:v15,t:v1
6,t:v17,t:v18,t:v19,t:v20,t:v21,t:v22,t:v23,t:v24 \

 hly_temp \

 /user/hac/input/2-1

7.	 Check the job status via the MapReduce admin page—http://master1:50030/
jobtracker.jsp:

Chapter 2

57

8.	 Verify the data imported in the target table in HBase. Here, we get row count in the
hly_temp table and we also scan some sample data in the table. The row count
should be equal to the number of lines in the TSV file. The row key in the table should
be equal to the first field in the file. There will be t:v01, t:v02, …, t:v24 cells in
each row, and the value of each cell should be equal to the relative field in the TSV file:

hbase> count 'hly_temp'

95630 row(s) in 12.2020 seconds

hbase> scan 'hly_temp', {COLUMNS => 't:', LIMIT => 10}

AQW000617050110 column=t:v23,
timestamp=1322959962261, value=781S
AQW000617050110 column=t:v24,
timestamp=1322959962261, value=774C

10 row(s) in 0.1850 seconds

How it works...
The importtsv tool will only read data from HDFS, so we started by copying the TSV files
from the local file system to HDFS, using the hadoop fs -copyFromLocal command.

In step 2, we create the target table (hly_temp) and column family (t) in HBase. If the table
already exists, we can alter it to just add our column family to it. All data will be loaded into the
newly added column family; data in the existing column family will not be touched.

In order to run the MapReduce job, the JAR file containing the class files needs to be
executed by the hadoop jar command. In order to pass our HBase configuration to the
command, we link hbase-site.xml under the $HADOOP_HOME/conf directory; all files
under this directory will be added to the classpath of the Java processes that are kicked by
the hadoop command.

In step 5, runtime dependencies are added by setting HADOOP_CLASSPATH in hadoop-env.
sh. Besides the ZooKeeper library, the guava-r09.jar file is required by the importtsv
tool. It is a library to parse the TSV files.

The importtsv tool itself is a Java class included in the HBase JAR file. In step 6, we run
the tool by executing the hadoop jar command. This command will start the Java process
for us and add all dependencies to it. The JAR to run is specified by the first parameter of the
hadoop jar command; here it is hbase-0.92.1.jar.

Data Migration

58

The following parameters are passed to the main class of hbase-0.92.1.jar:

ff The mapping information for a field index of the TSV file to an HBase table column
is set by the -Dimporttsv.columns parameter. In our case, the TSV file format is
(rowkey, value1, value2, …, value24). We put the data in the HBase t
column family, using v01 as value1, v02 as value2, and so on. HBASE_ROW_KEY
is a constant word specifying the row key field.

ff Following the -Dimporttsv.columns parameter, we specified the table name
(hly_temp) and input the TSV file path (/user/hac/input/2-1) for the command.

There are several other options that may be specified. Running importtsv with no
arguments prints brief usage information:

hac@client1$ $HADOOP_HOME/bin/hadoop jar $HBASE_HOME/hbase-0.92.1.jar
importtsv

Usage: importtsv -Dimporttsv.columns=a,b,c <tablename> <inputdir>

Imports the given input directory of TSV data into the specified table.

…

Other options that may be specified with -D include:

 -Dimporttsv.skip.bad.lines=false - fail if encountering an invalid line

 '-Dimporttsv.separator=|' - eg separate on pipes instead of tabs

 -Dimporttsv.timestamp=currentTimeAsLong - use the specified timestamp
for the import

 -Dimporttsv.mapper.class=my.Mapper - A user-defined Mapper to use
instead of org.apache.hadoop.hbase.mapreduce.TsvImporterMapper

The tool starts the MapReduce job for us. In the map phase of the job, it reads and parses
rows from TSV files under the specified input directory, and puts rows into the HBase table
using the column mapping information. The Read and Put operations are executed in parallel
on multiple servers, so it is much faster than loading data from a single client. There is no
reduce phase in the job, by default. We can check the job progress, counters, and other
MapReduce information on the Admin page of MapReduce.

To view data inserted in the table, we can use the scan command of HBase Shell. We
specified COLUMNS => 't:' to only scan the t column family in the table.

Chapter 2

59

There's more...
The importtsv tool, by default, uses the HBase Put API to insert data into the HBase
table using TableOutputFormat in its map phase. But when the -Dimporttsv.bulk.
output option is specified, it instead generates HBase internal format (HFile) files on HDFS,
by using HFileOutputFormat. Therefore, we can then use the completebulkload tool to
load the generated files into a running cluster. The following steps are to use the bulk output
and load tools:

1.	 Create a directory on HDFS to put the generated files in:
hac@client1$ $HADOOP_HOME/bin/hadoop fs -mkdir /user/hac/output

2.	 Run importtsv with the bulk output option:
hac@client1$ $HADOOP_HOME/bin/hadoop jar $HBASE_HOME/hbase-
0.92.1.jar importtsv \

 -Dimporttsv.bulk.output=/user/hac/output/2-1 \

 -Dimporttsv.columns=HBASE_ROW_KEY,t:v01,t:v02,t:v03,t:v04,
 t:v05,t:v06,t:v07,t:v08,t:v09,t:v10,t:v11,t:v12,t:v13,t:v14,
 t:v15,t:v16,t:v17,t:v18,t:v19,t:v20,t:v21,t:v22,t:v23,t:v24 \

 hly_temp \

 /user/hac/input/2-1

3.	 Complete the bulk load:

hac@client1$ $HADOOP_HOME/bin/hadoop jar $HBASE_HOME/hbase-
0.92.1.jar completebulkload \

 /user/hac/output/2-1 \

 hly_temp

The completebulkload tool looks through the generated files, determines the regions in
which they belong, and then contacts the appropriate region server. The region server will
move the adopted HFile into its storage directories and create the data online for clients.

Writing your own MapReduce job to import
data

Although the importtsv tool is very useful for loading text files into HBase, in many cases,
for full control of the loading process you may want to write your own MapReduce job to import
data into HBase. For example, the importtsv tool does not work if you are going to load files
of other formats.

Data Migration

60

HBase provides TableOutputFormat for writing data into an HBase table from a
MapReduce job. You can also generate its internal HFile format files in your MapReduce job
by using the HFileOutputFormat class, and then load the generated files into a running
HBase cluster, using the completebulkload tool we described in the previous recipe.

In this recipe, we will explain the steps for loading data using your own MapReduce job. We
will first describe how to use TableOutputFormat. In the There's more... section, we will
explain how to generate HFile format files in a MapReduce job.

Getting ready
We will use the raw NOAA hly-temp-normal.txt file in this recipe. You don't need
to do any formatting to the downloaded data file. We will load the raw data from
MapReduce directly.

We assume your environment is already prepared for running MapReduce on HBase. If it still
isn't, you can refer to the Importing from TSV files using the bulk load tool recipe for details.

How to do it...
Follow these instructions to load data into HBase using your own MapReduce job:

1.	 Copy the raw data file from the local file system to HDFS:
hac@client1$ $HADOOP_HOME/bin/hadoop fs -mkdir /user/hac/input/2-3

hac@client1$ $HADOOP_HOME/bin/hadoop fs -copyFromLocal hly-temp-
normal.tsv /user/hac/input/2-3

2.	 Edit hadoop-env.sh on the client server, and add the HBase JAR file to the
Hadoop classpath:
hadoop@client1$ vi $HADOOP_HOME/conf/hadoop-env.sh

export HADOOP_CLASSPATH=/usr/local/hbase/current/hbase-0.92.1.jar

3.	 Write your MapReduce Java source and then package it as a JAR file. The Java source
should look as follows:
$ vi Recipe3.java
public class Recipe3 {
 public static Job createSubmittableJob
 (Configuration conf, String[] args)
 throws IOException {
 String tableName = args[0];
 Path inputDir = new Path(args[1]);
 Job job = new Job (conf, "hac_chapter2_recipe3");
 job.setJarByClass(HourlyImporter.class);
 FileInputFormat.setInputPaths(job, inputDir);

Chapter 2

61

 job.setInputFormatClass(TextInputFormat.class);
 job.setMapperClass(HourlyImporter.class);

// ++++ insert into table directly using TableOutputFormat ++++
 TableMapReduceUtil.initTableReducerJob(tableName, null, job);
 job.setNumReduceTasks(0);
 TableMapReduceUtil.addDependencyJars(job);
 return job;
 }

 public static void main(String[] args)
 throws Exception {
 Configuration conf =
 HBaseConfiguration.create();
 Job job = createSubmittableJob(conf, args);
 System.exit (job.waitForCompletion(true) ? 0 : 1);
 }
}

4.	 Add an inner class (HourlyImporter) in Recipe3.java. This class is the mapper
class of the MapReduce job:
$ vi Recipe3.java

 static class HourlyImporter extends
 Mapper<LongWritable, Text, ImmutableBytesWritable, Put> {

 private long ts;
 static byte[] family = Bytes.toBytes("n");

 @Override
 protected void setup(Context context) {
 ts = System.currentTimeMillis();
 }

 @Override
 public void map(LongWritable offset, Text value, Context
context)throws IOException {
 try {
 String line = value.toString();
 String stationID = line.substring(0, 11);
 String month = line.substring(12, 14);
 String day = line.substring(15, 17);
 String rowkey = stationID + month + day;
 byte[] bRowKey = Bytes.toBytes(rowkey);
 ImmutableBytesWritable rowKey =

Data Migration

62

 new ImmutableBytesWritable(bRowKey);
 Put p = new Put(bRowKey);
 for (int i = 1; i < 25 ; i++) {
 String columnI =
 "v" + Common.lpad(String.valueOf(i), 2, '0');
 int beginIndex = i * 7 + 11;
 String valueI =
 line.substring(beginIndex, beginIndex + 6).trim();
 p.add(family, Bytes.toBytes(columnI),
 ts, Bytes.toBytes(valueI));
 }
 context.write(rowKey, p);
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
}

5.	 In order to run the MapReduce job, package the Java source into a JAR file, and run it
from the client by using the hadoop jar command:

hac@client1$ $HADOOP_HOME/bin/hadoop jar hac-chapter2.jar hac.
chapter2.Recipe3 \

 hly_temp \

 /user/hac/input/2-3

Check the result. The output of the MapReduce job should be as shown in the
following screenshot:

Map input records should be equal to the total lines of files under
your input path; the Map output records value is supposed to be
equal to the input record count. You can also check the result using
the HBase count/scan command.

Chapter 2

63

How it works...
To run a MapReduce job, we first create a Job instance in createSubmittableJob().
After the instance is created, we set an input path, input format, and mapper class to the
job. After that, we call TableMapReduceUtil.initTableReducerJob() to set up
the job appropriately for us. The setup includes adding HBase configurations, setting up
TableOutputFormat, and adding dependencies to the job. TableMapReduceUtil is a
useful utility class for writing a MapReduce program over HBase.

The job.waitForCompletion() call in the main method submits the job to the
MapReduce framework and waits for it to be completed before exiting. The running job will
read all files under the input path and pass the data line by line to the specified mapper class
(HourlyImporter).

In the map method of the class, we parse the line, compose a row key, create the Put object,
and then add parsed data to the corresponding column by calling Put.add(). Finally, we
write the data into the HBase table by calling context.write(). There is no reduce phase
needed in this case.

As you can see, writing a customized MapReduce job to insert data into HBase is very simple.
The program is similar to the one using HBase API from a single client, which we described in
the Importing data from MySQL using a single client recipe. For a large amount of data, we
recommend that you use MapReduce to load the data into HBase.

There's more...
Using a customized MapReduce job to load data into HBase makes sense for many situations.
However, if your data is voluminous, this approach might be not efficient enough. There are
ways to make the data migration more efficient.

Generating HFile files in MapReduce
Instead of writing data directly into an HBase table, we can also generate the internal
HFile format files in our MapReduce job and then load them into our cluster using the
completebulkload tool that we described in the second recipe. This approach will use less
CPU and network resources than simply using the TableOutputFormat API:

1.	 Change the job configuration. To generate HFile files, find the following two lines of
the createSubmittableJob() method:
TableMapReduceUtil.initTableReducerJob
 (tableName, null, job);
job.setNumReduceTasks(0);

Data Migration

64

2.	 Replace them with the following code:
HTable table = new HTable(conf, tableName);
job.setReducerClass(PutSortReducer.class);
Path outputDir = new Path(args[2]);
FileOutputFormat.setOutputPath
 (job, outputDir);
job.setMapOutputKeyClass
 (ImmutableBytesWritable.class);
job.setMapOutputValueClass(Put.class);
HFileOutputFormat.configureIncrementalLoad (job, table);

3.	 Add the output path to the command-line argument. Compile and package the
source, and then add the output path to the command of running the job:
hac@client1$ $HADOOP_HOME/bin/hadoop jar hac-chapter2.jar hac.
chapter2.Recipe3 \

 hly_temp \

 /user/hac/input/2-3 \

 /user/hac/output/2-3

4.	 Complete the bulk load:
hac@client1$ $HADOOP_HOME/bin/hadoop jar $HBASE_HOME/hbase-
0.92.1.jar completebulkload \

 /user/hac/output/2-3 \

 hly_temp

In step 1, we changed the source of the job configuration. We set the job to use the
PutSortReducer reducer class, which is provided by HBase. This class will sort columns of a
row before writing them out. The HFileOutputFormat.configureIncrementalLoad()
method will take care of setting the appropriate configurations for the job to generate
HFile files.

After the job completes running in step 2, the internal HFile format files are generated under
the output path we specified. Files under 2-3/n, which is the column family directory, will be
loaded by the completebulkload tool into our HBase cluster.

Chapter 2

65

During the MapReduce job execution, if you open the HBase admin page from your browser,
you will find that no request comes to HBase. This indicates that data is not written into the
HBase table directly.

Important configurations affecting data migration
If you write data directly into the HBase table using TableOutputFormat from your
MapReduce job, it could be a very write-heavy job on HBase. Although HBase is designed to
be able to handle writes quickly, there are some important configurations you might want to
tune, such as the following:

ff JVM heap and GC setting

ff Region server handler count

ff Maximum region file size

ff MemStore size

ff Update block setting

You will need basic knowledge of HBase architecture to understand how these configurations
affect the write performance of HBase. We will cover these in more detail in Chapter 8, Basic
Performance Tuning, and Chapter 9, Advanced Configurations and Tuning.

There are several types of logs generated by the Hadoop and HBase clusters. Checking the
logs gives you hints to find out the bottleneck of your cluster during the MapReduce data
loading job. Important logs include the following:

ff GC logs for the Hadoop/HBase/ZooKeeper daemon

ff The HMaster daemon log

We will describe the details in Chapter 8, Basic Performance Tuning.

Data Migration

66

See also
ff Chapter 8, Basic Performance Tuning

ff Chapter 9, Advanced Configurations and Tuning

Precreating regions before moving data into
HBase

Each HBase row belongs to a particular region. A region holds a range of sorted HBase rows.
Regions are deployed and managed by a region server.

When we create a table in HBase, the table starts with a single region. All data inserted into
the table goes to the single region, first. Data keeps being inserted, and when it reaches a
threshold, the region will be split into two halves. This is called region splitting. Split regions will
be distributed to other region servers, so that the load can be balanced among the clusters.

As you can imagine, if we can initialize the table with precreated regions, using an appropriate
algorithm, the load of the data migration will be balanced over the entire cluster, which
increases data load speed significantly.

We will describe how to create a table with precreated regions in this recipe.

Getting ready
Log in to your HBase client node.

How to do it...
Execute the following command on the client node:

$ $HBASE_HOME/bin/hbase org.apache.hadoop.hbase.util.RegionSplitter -c 10
-f n hly_temp2

12/04/06 23:16:32 DEBUG util.RegionSplitter: Creating table hly_temp2
with 1 column families. Presplitting to 10 regions

…

12/04/06 23:16:44 DEBUG util.RegionSplitter: Table created! Waiting for
regions to show online in META...

12/04/06 23:16:44 DEBUG util.RegionSplitter: Finished creating table with
10 regions

Chapter 2

67

How it works...
This command calls the RegionSplitter class with the following parameters:

ff -c 10—creates the table with 10 presplit regions

ff -f n—creates a single column family named n

ff hly_temp2— the name of the table

Open the HBase admin page from your browser, and click hly_temp2 in the User Tables
section. You will that find 10 regions were precreated:

RegionSplitter is a utility class provided by HBase. By using RegionSplitter you can:

ff Create a table with a specified number of precreated regions

ff Execute a rolling split of all regions on an existing table

ff Split regions using your custom algorithm

Data Migration

68

If you run the data load job discussed in the Writing your own MapReduce job to import data
recipe, you may expect data writes to be distributed to all region servers in the cluster, but the
result is different. From the admin page, you will find that all requests go to the same server
during the MapReduce job execution time.

This is because the default splitting algorithm (MD5StringSplit) does not fit our case. All of
our rows drop into the same region, thus all the API requests go to the region server that holds
the region. We need to provide our custom algorithm to split regions properly.

Presplitting regions also changes the behaviour of the MapReduce job that generates the
internal HFile format files. Run the job in the Writing your own MapReduce job to import data
recipe, with the option for generating HFile files turned on in the hly_temp2 table. As shown
in the following image, you will find that the reduce count of the MapReduce job jumped from
the original of 1 to 10, which is the number of precreated regions:

Chapter 2

69

This is because the reducer count of the job is based on the region count of the target table.
If the reducer count increases, it normally means that the load was distributed to multiple
servers, and thus the job will be much faster.

See also
ff The Precreating regions using your own algorithm recipe, in this Chapter 9

3
Using Administration

Tools

In this chapter, we will focus on:

ff HBase Master Web UI

ff Using HBase Shell to manage tables

ff Using HBase Shell to access data in HBase

ff Using HBase Shell to manage the cluster

ff Executing Java methods from HBase Shell

ff Row counter

ff WAL tool—manually splitting and dumping WALs

ff HFile tool—viewing textualized HFile content

ff HBase hbck—checking the health of an HBase cluster

ff Hive on HBase—querying HBase using a SQL-like language

Introduction
Everyone expects their HBase administrator to keep the cluster running smoothly, storing a
huge amount of data in it, handling maybe millions of requests simultaneously, quickly, and
reliably. Keeping a large amount of data in HBase accessible, manageable, and easy to query,
is a critical task for an administrator.

Using Administration Tools

72

Besides a solid knowledge of the cluster you are operating, just as important are the tools you
use. HBase ships with several administration tools to make life easier. There is a web-based
administration page; on this page you can view the status of the cluster and execute simple
administration tasks such as region splitting. However, more powerful than HBase web UI is the
HBase Shell tool. This command-line tool has features to create and manage HBase tables, to
insert and view data in the tables, and also has methods to manage the cluster itself.

HBase also provides a bunch of Java utilities with its installation. You can import and use
these utilities directly from your HBase Shell prompt, which makes administration tasks much
more efficient.

We have HBase tools to deal with its internal Write Ahead Log (WAL) and HFile files, too.
These tools are useful for advanced users, who need to dig deeper into how data is stored
in HBase.

HBase hbck is the tool that can be used to check the health of the cluster. In production, you
might want to run hbck frequently, so that you can find out problems quickly.

Hive is a data warehouse software built for Hadoop. Hive has a Hive Query Language (HQL)
to manage data in Hadoop. HQL is a powerful, easy-to-use, SQL-like query language. Although
HBase has its own commands to access its data, the functionality is very limited. We can map
HBase tables and columns to a Hive table so that it is possible to perform complex queries
over HBase data using HQL.

In this chapter, we will describe the usage of these tools. We will explain what the tools are for,
and how to use them to resolve a particular task.

HBase Master web UI
The HBase Master web UI is a simple but useful tool, to get an overview of the current
status of the cluster. From its page, you can get the version of the running HBase, its basic
configuration, including the root HDFS path and ZooKeeper quorum, load average of the
cluster, and a table, region, and region server list.

Furthermore, you can manually split a region using a particular boundary row key. This is
useful when you turn off the automatic region splitting of your cluster.

Getting ready
Make sure the port for your master page, which has a default value of 60010, is opened to
your client computer from your network firewall. If you are running your cluster on Amazon
EC2, you can open the port from AWS Management Console | Amazon EC2 | NETWORK &
SECURITY | Security Groups | Inbound.

Chapter 3

73

How to do it...
Access the following URL from your web browser:

http://hbase_master_server:60010/master.jsp

You need to change hbase_master_server to the
hostname of your HBase master server.

How it works...
The HBase Master web UI looks as follows:

Using Administration Tools

74

As you can see, the Attributes section shows information about the HBase and Hadoop
version, the HBase root directory on HDFS, load average of the cluster, and the ZooKeeper
quorum. The HBase root directory and ZooKeeper quorum data are the values set in your
HBase configuration file hbase-site.xml. The load average is the average number of
regions per region server. A single region server's load is shown in the Region Server section.

There are two tables shown in the Catalog Table section, -ROOT- and .META.. These are the
system tables of HBase. The -ROOT- table holds references of the region servers, where all the
.META. tables are deployed, while the .META. table holds references of all user-table regions.

The User Table section displays a list of all user tables and their column families' properties.
Clicking the link of the table name from the list will bring you to the table's details page. You
will see a list of regions of that table, displayed on this page. You can also compact or split
regions manually on the table's details page. The region key is optional for the compaction
and splitting of regions. If specified, HBase will only take action on the region where the key
drops in. If it is not specified, all the regions are targeted by this action.

The Region Server section shows all online region servers and their load. If you are sending
lots of requests to the cluster, you can see which server the requests went to, from this
section. Clicking the link of the region server address will show the details page of the clicked
server. On the details page, you can see the metrics data of the server and all the regions
deployed on that server, in detail.

Chapter 3

75

The region server's details page is a simple, but very important interface for knowing the
insight information of a region server.

As shown in the previous screenshot, it displays very important metrics of the region server.
For example, the Compaction Queue size (compactionQueueSize), the Block Cache hit ratio
(blockCacheHitRatio), and so on.

Using HBase Shell to manage tables
HBase Shell is a command-line tool shipped with HBase. It provides basic functions to
manage tables, access data in HBase, and manage the cluster. HBase Shell has several
groups of commands. The group for managing tables is called Data Definition Language
(DDL). Using DDL group commands, you can create, drop, and change HBase tables. You can
also disable/enable tables from HBase Shell.

Getting ready
Start your HBase cluster.

How to do it...
The following steps will show you how to use DDL commands to manage HBase tables:

1.	 Execute the following command from the client node, to start an HBase Shell prompt:
hac@client1$ $HBASE_HOME/bin/hbase shell

2.	 Create a table(t1) with a single column family(f1) from HBase Shell, using the
create command:
hbase> create 't1', 'f1'

Using Administration Tools

76

3.	 Show the table list by using the list command:
hbase> list

TABLE

hly_temp

t1

4.	 Show the table properties using the describe command:
hbase> describe 't1'

DESCRIPTION ENABLED

 {NAME => 't1', FAMILIES => [{NAME => 'f1', BLOOMFILTER => 'NONE',
REPLICATION_SCOPE => '0', COMPRESSION => 'NONE' true, VERSIONS
=> '3', TTL => '2147483647', BLOCKSIZE => '65536', IN_MEMORY =>
'false', BLOCKCACHE => 'true'}]}

5.	 Disable the table by using the disable command:
hbase> disable 't1'

hbase> is_enabled 't1'

false

6.	 Change the table's properties by using the alter command. In the following
code snippet, we change f1 to have only one version, and we also add a new
column family, f2:
hbase> alter 't1', {NAME => 'f1', VERSIONS => '1'}, {NAME => 'f2'}

7.	 Enable the table by using the enable command:
hbase> enable 't1'

hbase> is_enabled 't1'

true

8.	 Enter the following commands to disable the table again and drop it:
hbase> disable 't1'

hbase> drop 't1'

How it works...
HBase Shell is started by using the hbase shell command. This command uses the
HBase configuration file (hbase-site.xml) for the client to find the cluster to connect to.
After connecting to the cluster, it starts a prompt, waiting for commands. As shown in the
following code, you can also use the --config option, which allows you to pass a different
configuration for HBase Shell to use:

$ hbase --config <configuration_directory> shell

Chapter 3

77

From steps 2 to 8, we created a table, showed its properties, disabled it, changed some of the
table's properties, enabled it again, and finally dropped it.

By using the create command, we created a table t1 with a single column family f1 and
all the default table properties. The list command is used to show all tables in the cluster.
After the table is created, we can show its properties by using the describe command. The
describe command also displays whether the table is enabled.

In order to disable a table, use the disable command. We can only change a table's
properties after it is disabled. In step 5, we changed the f1 column family to save only one
version of its data. We also added a new column family, f2. All properties shown by the
describe command can be changed using the alter command. We can use the enable
command to enable a table in HBase. To drop a table in HBase, first disable it and then use
the drop command to drop the disabled table.

There's more...
The most useful command might be the help command:

hbase> help

HBase Shell, version 0.92.1, r1298924, Fri Mar 9 16:58:34 UTC 2012

Type 'help "COMMAND"', (e.g. 'help "get"' -- the quotes are necessary)
for help on a specific command.

Commands are grouped. Type 'help "COMMAND_GROUP"', (e.g. 'help
"general"') for help on a command group.

COMMAND GROUPS:

 Group name: general

 Commands: status, version

A single help command prints all the available commands and general usage of HBase Shell.
To show the detailed description of a command, pass its name to the help command. For
example, help 'create' displays the detailed use of the create command:

hbase> help 'create'

Create table; pass table name, a dictionary of specifications per

column family, and optionally a dictionary of table configuration.

Dictionaries are described below in the GENERAL NOTES section.

Examples:

 hbase> create 't1', {NAME => 'f1', VERSIONS => 5}

 hbase> create 't1', {NAME => 'f1'}, {NAME => 'f2'}, {NAME => 'f3'}

Using Administration Tools

78

 hbase> # The above in shorthand would be the following:

 hbase> create 't1', 'f1', 'f2', 'f3'

 hbase> create 't1', {NAME => 'f1', VERSIONS => 1, TTL => 2592000,
 BLOCKCACHE => true}

 hbase> create 't1', 'f1', {SPLITS => ['10', '20', '30', '40']}

 hbase> create 't1', 'f1', {SPLITS_FILE => 'splits.txt'}

Using HBase Shell to access data in HBase
HBase Shell provides Data Manipulation Language (DML) group commands to manipulate
data in HBase. The DML group includes the commands count, delete, deleteall,
get, get_counter, incr, put, scan, and truncate. Just as their names express, these
commands provide basic access and update operations on data in HBase.

HBase has a feature called counter, which is useful to build a metrics
gathering system on HBase. Get_counter and incr are commands
for counter operations.
The count, scan, and truncate commands may take time to finish
when running them on a huge amount of data in HBase.
To count a big table, you should use the rowcounter MapReduce
job, which is shipped with HBase. We will describe it in the Row counter
recipe, later in this chapter.

Getting ready
Start your HBase cluster, connect to the cluster from your client, and create a table called t1,
if it does not exist.

How to do it...
The following steps are demonstrations of how to use DML commands for accessing
data in HBase:

1.	 Insert the following data into the table by using the put command:
hbase> put 't1', 'row1', 'f1:c1', 'value1'

hbase> put 't1', 'row1', 'f1:c2', 'value2'

hbase> put 't1', 'row2', 'f1:c1', 'value3'

2.	 Get a row count of the table by running the count command:
hbase> count 't1'

2 row(s) in 0.0160 seconds

Chapter 3

79

3.	 Scan the data using the scan command. Don't forget to specify the LIMIT property
when invoking scan on a table with a huge amount of rows:
hbase> scan 't1', {LIMIT => 10}

ROW COLUMN+CELL

 row1 column=f1:c1, timestamp=1324100932695, value=value1

 row1 column=f1:c2, timestamp=1324101005928, value=value2

 row2 column=f1:c1, timestamp=1324101012054, value=value3

2 row(s) in 0.0800 seconds

4.	 Get a specified row by using the get command:
hbase> get 't1', 'row1'

COLUMN CELL

 f1:c1 timestamp=1324100932695, value=value1

 f1:c2 timestamp=1324101005928, value=value2

2 row(s) in 0.0100 seconds

5.	 Delete a specified cell by using the delete command:
hbase> delete 't1', 'row1', 'f1:c1'

6.	 Execute the get command again; you will see that the f1:c1 cell has been deleted
from the row:
hbase> get 't1', 'row1'

COLUMN CELL

 f1:c2 timestamp=1324101005928, value=value2

1 row(s) in 0.0150 seconds

7.	 Delete all the cells in a given row using the deleteall command:
hbase> deleteall 't1', 'row1'

8.	 Execute the get command again; you will see that the entire row1 row has been
deleted from the table:
hbase> get 't1', 'row1'

COLUMN CELL

0 row(s) in 0.0090 seconds

9.	 Increase a counter's (row1:f1:c1) value by 1 using the incr command:
hbase> incr 't1', 'row1', 'f1:c1', 1

COUNTER VALUE = 1

Using Administration Tools

80

10.	 Increase the counter again, by 10:
hbase> incr 't1', 'row1', 'f1:c1', 10

COUNTER VALUE = 11

11.	 Get the new counter value by using the get_counter command:
hbase> get_counter 't1', 'row1', 'f1:c1'

COUNTER VALUE = 11

12.	 Truncate the table by running the truncate command:
hbase> truncate 't1'

Truncating 't1' table (it may take a while):

 - Disabling table...

 - Dropping table...

 - Creating table...

0 row(s) in 4.5700 seconds

How it works...
The put command takes the table name (t1), row key (row1), column family and qualifier
(f1:c1), value to put (value1), and optionally, the timestamp as its arguments. The : in f1:c1
works as a delimiter between column family (f1) and qualifier (c1). Use single quotes around
the value if you want HBase Shell to treat it as a string value; otherwise, HBase Shell will try to
guess the data type of the value you put. For example, if you type the following command:

hbase> put 't1', 'r1', 'f1:c1', 0000

You will have a numeric value of 0 put in the table:

hbase> get 't1', 'r1'

COLUMN CELL

 f1:c1 timestamp=1324103322181, value=0

But when you enter the following command:

hbase> put 't1', 'r1', 'f1:c1', '0000'

You will get a string of 0000 in the table:

hbase> get 't1', 'r1'

COLUMN CELL

 f1:c1 timestamp=1324103492444, value=0000

Chapter 3

81

The count command counts the number of rows in a table. It counts an HBase table on row
basis and shows the row number on its output. That's why it returned two rows in step 2, even
though we put three cells into the table in step 1. This command may take a while to finish,
when counting a large amount of data in HBase. In this case, a better option is to use the Row
Counter utility provided by HBase, which will run a MapReduce job on HBase for counting it.

The scan command scans a table. You can specify the row range, columns to include, time
range, and filter for the scanning. There is also an additional option—CACHE_BLOCKS—for
advanced users, which specifies whether block caching of the scanner is on or off. The help
command has a very detailed explanation of the usage of this command; type help 'scan'
for more information. An alternative way of scanning an HBase table is to use Hive over
HBase; it is the easier option, for scanning a table with complex conditions.

The get command is very straightforward; you must give the exact row key you want, to get to
the command. While you can optionally specify the range of columns, timestamp, or versions
you want to include in the result, you can also restrict the output length by specifying the
MAXLENGTH parameter.

The delete command marks a cell as deleted, while the deleteall command deletes all
the cells in a given row.

HBase counters are distributed, atomic counters, which are stored as the value of a specified
cell. At specified table/row/column coordinates, use the incr command to increase a
counter, and use the get_counter command to get the counter value.

The truncate command acts as a sequence for disabling, dropping, and recreating a table.

See also
In this chapter:

ff Row counter

ff Hive on HBase—querying HBase using a SQL-like language

Using HBase Shell to manage the cluster
There are a bunch of HBase Shell commands for managing the cluster. These commands
belong to the tool's group.

Warning
Many of these commands are for advanced users only, as their misuse
can cause unexpected damages to an HBase installation.

Using Administration Tools

82

The tool's group commands provide an interface to manage HBase regions manually. Their
features include:

ff Region deployment

ff Region splitting

ff Cluster balancing

ff Region flushing and compaction

Although HBase does all these operations automatically, by default, there are situations
wherein you may want to balance your region server's load manually. This is especially true
when the default, balancing algorithm does not work well for your data access pattern.

In this recipe, we will describe how to manually flush, compact, split, balance, and move
HBase regions.

Getting ready
Start your HBase cluster, create a table, and put some data into it. We will use the hly_temp
table we created in Chapter 2, Data Migration, for demonstration purposes. We assume that
the table you are using already has several regions in it. As shown in the following screenshot,
you can view the table's region list by clicking the table's link shown on your HBase web UI:

How to do it...
We will start by manually flushing and compacting regions, and then split the regions
manually. Finally, we will rebalance these regions to make them well-balanced within
the cluster.

1.	 Flush all regions in the table using the flush command:
hbase> flush 'hly_temp'

Chapter 3

83

2.	 You can also flush an individual region by passing the region name to the
flush command:
hbase> flush 'hly_temp,,1324174482248.
e3d9b9952973964f3d8e61e191924698.'

You can find the region's name under the Table Regions section of the table's
administration page:

3.	 Compact all the regions in a table by running the compact command:
hbase> compact 'hly_temp'

4.	 Run a major compaction on a table by running the major_compact command:
hbase> major_compact 'hly_temp'

5.	 Split a region in a table by running the split command:
hbase> split 'hly_temp,,1324174482248.
e3d9b9952973964f3d8e61e191924698.'

In the table's administration page, you will find that the region has been split into two
regions, so the total region count becomes four:

6.	 Use the balance_switch command to enable the balancer:
hbase> balance_switch true

false

The output (false) is the previous balancer state.

Using Administration Tools

84

7.	 Balance the load of the cluster by using the balancer command:
hbase> balancer

true

The output true indicates that a balancing call has been triggered successfully. It
will run in the background on the master server.

8.	 Move a region to a specific region server by using the move command:
hbase> move 'e3d9b9952973964f3d8e61e191924698', 'ip-10-168-75-28.
us-west-1.compute.internal:60030:1324190304563'

How it works...
An HBase data edit will first be written to the Write Ahead Log (WAL) and then to the
MemStore of a region server. The edits will not be flushed to disk until the size of MemStore
has reached a threshold. The threshold, by default, is 128 MB, which is configured by the
hbase.hregion.memstore.flush.size property in hbase-site.xml. The flush
command flushes these pending records to disk synchronously. It takes either a table name,
or a region name as its parameter. A region name consists of its table name, region start row
key, region server start code, and a hash-encoded value of itself. You can find region names
under the Table Regions section of the table's administration page.

Just like the flush command, if instead of a table name, a region name is passed to both
compact and major_compact commands, the compaction will be performed on the
specified region only. The compact and major_compact commands are asynchronous.
Executing these commands queues the tables or regions for compaction, which will be
executed in the background by the server hosting the specified region, or all regions of the
table. You might want to execute major compaction manually, only at a low load time. This is
because lots of disk IO and network traffic might happen during the compaction, and it might
take a long time to complete.

The split command allows you to split a specific region or all regions in a table, if the table
name is given to the command. When running HBase with very high write load, we recommend
you turn off HBase's automatic region split feature, precreate regions using your own algorithm,
and use the split command to split a specific region if it becomes too large. We will cover how
to presplit tables in Chapter 9, Advanced Configurations and Tuning.

Our cluster might become unbalanced if data keeps growing. In order to balance the cluster,
HBase runs its balancing functionality periodically in the background. On the other hand, you
can also explicitly enable the balancer by running the balance_switch command, and then
trigger a balancing operation by using the balancer command. It is also useful to stop the
balancer when you need to stop a region server for maintenance.

Chapter 3

85

The following screenshot shows the administration page of our cluster, before balancing was
run in step 7. As you can see, the second region server holds almost all the regions (five of all
the six regions) in the cluster, which means most of the cluster load will go to that server:

After the balancing operation was executed, our cluster became much more balanced as
regions were distributed to all the region servers in the cluster:

The default, load-balancing algorithm just simply causes each region server to take a large
number of regions deployed on it. If this algorithm does not fit your data access pattern, you
can manually move a region to a specific server by using the move command. The move
command takes an encoded region name and the target server name as its parameters. An
encoded region name is the hash code suffix of a region name. The format of a target server
name is hostname:port:start-code. A move call will close the region from its originally
deployed server, open it on the target server, and then finally update the record of the region
in the .META. system table.

See also
ff Precreating regions using your own algorithm recipe, in Chapter 9, Advanced

Configurations and Tuning

Using Administration Tools

86

Executing Java methods from HBase Shell
HBase Shell is written in JRuby. As JRuby runs within Java Virtual Machine (JVM), it is very
easy to execute Java methods from HBase Shell. HBase ships with many Java utility classes;
the ability to execute Java methods from HBase Shell makes it possible to import and use
these utilities directly from HBase Shell.

We will demonstrate two examples of how to call Java method from HBase Shell, in this recipe.
The first one converts the timestamp of the HBase Shell output into a readable date format.
The second one imports an HBase filter class, and performs the filtering on the scanner of the
scan command.

Getting ready
Start your HBase cluster, create a table, and put some data into it. We will use the hly_temp
table we created in Chapter 2, for demonstration purposes.

Connect to your cluster via HBase Shell, before you start.

How to do it...
To convert the timestamp of an HBase Shell output into a readable date format:

1.	 Enter the following command to get a row from HBase:
hbase> get 'hly_temp', 'AQW000617050101', 'n:'

COLUMN CELL n:v01
timestamp=1323026325955, value=808C n:v02
timestamp=1323026325955, value=806C n:v03
timestamp=1323026325955, value=803C

…

2.	 Import the Java Date class to convert the output of timestamp, and then create an
instance of the Date class using the timestamp of the get command:
hbase> import java.util.Date

=> Java::JavaUtil::Date

hbase> Date.new(1323026325955).toString()

=> "Mon Dec 05 04:18:45 JST 2011"

3.	 To use the HBase filter on a scan, import the following classes into HBase Shell:
hbase> import org.apache.hadoop.hbase.util.Bytes

=> Java::OrgApacheHadoopHbaseUtil::Bytes

hbase> import org.apache.hadoop.hbase.filter.PrefixFilter

=> Java::OrgApacheHadoopHbaseFilter::PrefixFilter

Chapter 3

87

4.	 Execute the scan command with the imported PrefixFilter class:
hbase> scan 'hly_temp', {FILTER => PrefixFilter.new
 (Bytes.toBytes('AQW00061705010')), COLUMN => 'n:'}

ROW COLUMN+CELLAQW000617050101
column=n:v01,
 timestamp=1323026325955, value=808CAQW000617050101
column=n:v02,
 timestamp=1323026325955, value=806CAQW000617050101
column=n:v03,
 timestamp=1323026325955, value=803C

…

AQW000617050109 column=n:v24,
 timestamp=1323026325955, value=811C

9 row(s) in 0.1570 seconds

How it works...
As you can see from the output of step 1, the displayed timestamp is not human-friendly to
read. We want to convert it to a normal date format.

The conversion can be easily done by using the java.util.Date class. In step 2, we import
it into our shell session by using the import command. The import command is a basic
JRuby feature, and it is not HBase-specific. After the Date class is imported, we create an
instance of the class using the timestamp we want to convert. Finally, we call its toString()
method to convert and print the timestamp to a normal date format.

Steps 3 and 4 show us how to import and use HBase utilities in HBase Shell. First, we
import the org.apache.hadoop.hbase.util.Bytes class, which is a utility class, to
convert other data types from/into byte array. This class is very useful, because all data
in HBase is stored as byte arrays. We also imported the org.apache.hadoop.hbase.
filter.PrefixFilter class in step 3. This class is a filtering class. Using this class
with the scan command makes it only pass the data that has a specific row key prefix to
the client. The prefix is specified by passing its byte array representation to the constructor
of the PrefixFilter class. That's exactly what we did in step 4. We specified the prefix
AQW00061705010, converted it to a byte array using the Bytes class, created an instance
of the PrefixFilter class using the converted byte array, and then set it as the filter of the
scan command. As you can see from the output, the filter works well for the scan command,
as just nine rows (AQW000617050101 to AQW000617050109) were returned to the client.

Using Administration Tools

88

There's more...
There are many other useful Java classes shipped with HBase. The following link lists the Java
APIs of HBase:

http://hbase.apache.org/apidocs/index.html

Have a glance at the following packages of HBase API:

ff org.apache.hadoop.hbase.util

ff org.apache.hadoop.hbase.client

ff org.apache.hadoop.hbase.filter

ff org.apache.hadoop.hbase.mapreduce

Row counter
The count command in HBase Shell is a straightforward way to count the row numbers on an
HBase table. However, running the count command on a table with a huge amount of data
might take a long time to complete. A better approach for this case is to use the RowCounter
class. This class will kick a MapReduce job to count the row number on a table, which is much
more efficient than the count command.

We will describe the usage of RowCounter in this recipe.

Getting ready
Make sure your Hadoop and HBase clusters are running. MapReduce is also required; if it is
not running, start it by using the following command on your JobTracker server:

hadoop@master1$ $HADOOP_HOME/bin/start-mapred.sh

Log in to your HBase client node.

How to do it...
To run a row counter MapReduce job on the hly_temp table, follow these steps:

1.	 Add a ZooKeeper JAR file to the Hadoop class path on your client node:
hadoop@client1$ vi $HADOOP_HOME/conf/hadoop-env.sh

HBASE_HOME=/usr/local/hbase/current
export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:
 $HBASE_HOME/lib/zookeeper-3.4.3.jar:
 $HBASE_HOME/lib/guava-r09.jar

Chapter 3

89

2.	 Execute the rowcounter command from your client:
hac@client1$ $HADOOP_HOME/bin/hadoop jar
 $HBASE_HOME/hbase-0.92.1.jar rowcounter hly_temp

You will get the following output:

3.	 As you can see from one of the counters of the output, we have 95,630 rows in the
hly_temp table:
11/12/22 07:14:30 INFO mapred.JobClient:
 org.apache.hadoop.hbase.mapreduce.RowCounter
 $RowCounterMapper$Counters

11/12/22 07:14:30 INFO mapred.JobClient: ROWS=95630

How it works...
When we run a JAR file by using the hadoop jar command, the dependencies of the JAR file
must be included in Hadoop's class path. That's exactly what we did in step 1.

Using Administration Tools

90

In step 2, we run hbase-0.92.1.jar using the hadoop jar command. Parameters after
the name of the JAR file are passed to the main class of the JAR file. To run a row counter
on the hly_temp table, we pass a fix string of rowcounter and the table name to the
command. Specifying rowcounter will make Hadoop execute the RowCounter class from
hbase-0.92.1.jar. The RowCounter class will take hly_temp as its parameter and
finally kick the MapReduce job for us. You can also specify which column or column family to
count, by passing the space separated column (family) names after the table name.

Besides row counter, there are other MapReduce jobs you can execute from the command
line. Type the following for details:

$HADOOP_HOME/bin/hadoop jar $HBASE_HOME/hbase-0.92.1.jar

An example program must be given as the first argument.

Valid program names are:

 CellCounter: Count cells in HBase table

 completebulkload: Complete a bulk data load.

 copytable: Export a table from local cluster to peer cluster

 export: Write table data to HDFS.

 import: Import data written by Export.

 importtsv: Import data in TSV format.

 rowcounter: Count rows in HBase table

 verifyrep: Compare the data from tables in two different clusters.
WARNING: It doesn't work for incrementColumnValues'd cells since the
timestamp is changed after being appended to the log.

There's more...
When running RowCounter against large datasets, we recommend you to tune the scanner's
caching setting on your client, as shown in the following snippet:

hac@client1$ vi $HBASE_HOME/conf/hbase-site.xml

<property>
 <name>hbase.client.scanner.caching</name>
 <value>1000</value>
</property>

This makes HBase fetch 1000 rows for each next call on the scanner. By default, HBase
fetches 1 row per next call. Setting it to a higher value increases the scanner's speed, but
consumes more memory.

Chapter 3

91

WAL tool—manually splitting and dumping
WALs

An HBase edit will first be written to a region server's Write Ahead Log (WAL). After the log is
written successfully, MemStore of the region server will be updated. As WAL is a sequence file
on HDFS, it will be automatically replicated to the two other DataNode servers by default, so
that a single region server crash will not cause a loss of the data stored on it.

As WAL is shared by all regions deployed on the region server, the WAL needs to first be split
so that it can be replayed on each relative region, in order to recover from a region server
crash. HBase handles region server failover automatically by using this algorithm.

HBase has a WAL tool providing manual WAL splitting and dumping facilities. We will describe
how to use this tool in this recipe.

Getting ready
We will need to put some data into an HBase table to have HBase generate WAL files for our
demonstration. Again, we will use the hly_temp table in this recipe. We will put the following
data into the hly_temp table using the HBase Shell Put command:

hbase> put 'hly_temp', 'AQW000617050101', 't:v25', 'wal tool demo'

hbase> put 'hly_temp', 'AQW000617050101', 't:v26', 'wal tool demo2'

hbase> put 'hly_temp', 'AQW000617050101', 't:v27', 'wal tool demo3'

hbase> delete 'hly_temp', 'AQW000617050101', 't:v27'

These commands will have HBase add four entries to its WAL on HDFS. Also, you will need
to find out which region holds the row we put in the previous commands, and which region
server holds that region. To do it, open your table's administration page. In the Table Regions
section, you will find a Start Key and an End Key for each region. As the data in HBase is
sorted by row key, in lexicographical order, a row belongs to the region that has the closest
start/end key of the row key.

The following table is transferred from the Table Regions section of our HBase web UI. As you
can see, the row key we put in the previous code (AQW000617050101) is smaller than the
end key (USW000128350706) of the first region in the lexicographical order; the first region is
the one which holds the row we put in the previous command:

Region Name Region Server Start Key End Key
hly_temp,,1324196693. slave1:60030 USW000128350706
hly_temp,USW000128. slave2:60030 USW000128350706 USW000138830523
hly_temp,USW000138. slave1:60030 USW000138830523 USW000149221223
hly_temp,USW000149. slave1:60030 USW000149221223

Using Administration Tools

92

How to do it...
Follow these instructions to manually dump and split WAL logs:

1.	 Use either hadoop fs or the HDFS administration page to locate the full path of the
WAL file. The WAL file of our previous put operations will be generated under the
following directory on HDFS:
${hbase.rootdir}/.logs/target_region_server,port,start_code

2.	 Execute the WAL tool with the dump option to dump the WAL file:
$ $HBASE_HOME/bin/hbase org.apache.hadoop.hbase.regionserver.wal.
HLog
 --dump /hbase/.logs/
 ip-10-168-151-193.us-west-1.compute.
 internal,60020,1324689025404/
 ip-10-168-151-193.us-west-1.compute.
 internal%3A60020.1324689026748
 -p -w 'AQW000617050101'

Sequence 96649 from region 9e6dd810550443bb488c871728d5dee0 in
table hly_temp

 Action:

 row: AQW000617050101

 column: t:v25

 at time: Sat Dec 24 10:21:59 JST 2011

 value: wal tool demo

Sequence 96650 from region 9e6dd810550443bb488c871728d5dee0 in
table hly_temp

 Action:

 row: AQW000617050101

 column: t:v26

 at time: Sat Dec 24 10:22:09 JST 2011

 value: wal tool demo2

Sequence 96651 from region 9e6dd810550443bb488c871728d5dee0 in
table hly_temp

 Action:

 row: AQW000617050101

 column: t:v27

 at time: Sat Dec 24 10:22:18 JST 2011

 value: wal tool demo3

Sequence 96652 from region 9e6dd810550443bb488c871728d5dee0 in
table hly_temp

Chapter 3

93

 Action:

 row: AQW000617050101

 column: t:v27

 at time: Sat Dec 24 10:22:27 JST 2011

 value:

3.	 To manually split the WAL files, switch to the user who started Hadoop and HBase; in
our case it is the hadoop user:
hac@client1$ sudo su hadoop

4.	 Execute the WAL tool with the split option to split the WAL files:
hadoop@client1$ $HBASE_HOME/bin/hbase org.apache.hadoop.hbase.
regionserver.wal.HLog
 --split hdfs://master1:8020/hbase/.logs/ip-10-160-51-22.us-
 west-1.compute.internal,60020,1324601160791

…

11/12/24 10:35:43 INFO wal.HLogSplitter: hlog file splitting
completed in 1700 ms for hdfs://master1:8020/hbase/.logs/ip-10-
168-151-193.us-west-1.compute.internal,60020,1324689025404

Do not manually split WAL if the hosting region server is
online, as splitting WAL is only for closing a region server, or for
recovery from a region server crash.

How it works...
HBase edits are represented by the org.apache.hadoop.hbase.KeyValue class
internally. When a region server receives an edit, it will append it (a KeyValue instance)
to its WAL files before actually updating its MemStore data. If the size of MemStore reaches
the threshold (128MB by default), edits will be persisted onto HDFS by flushing them to the
HFile files.

The WAL files are stored under the ${hbase.rootdir}/.logs/region_server,
port,start_code directory on HDFS. After locating the full path of the WAL file in step 1,
we execute the org.apache.hadoop.hbase.regionserver.wal.HLog class from the
hbase command in step 2. This class provides two functions—manually dumping and splitting
WAL files. To dump a WAL file, pass the --dump option along with the full path of the file to be
dumped to HLog. The third parameter –p, tells HLog to also print the value of the edit. The
last parameter, -w 'AQW000617050101', is a filter to only output the associate entries of
row AQW000617050101.

Using Administration Tools

94

You can also dump the JSON format WAL file by passing -j to the command. Here is a sample
JSON output of a WAL dump:

[{"region":"9e6dd810550443bb488c871728d5dee0",
 "sequence":96649,"table":"hly_temp",
 "actions":[{"timestamp":1324689719111,"family":"t",
 "qualifier":"v25","row":"AQW000617050101"}]},
 {"region":"9e6dd810550443bb488c871728d5dee0",
 "sequence":96650,"table":"hly_temp",
 "actions":[{"timestamp":1324689729381,"family":"t","
 qualifier":"v26","row":"AQW000617050101"}]},

…]

When passing the --dump option to the HLog class, it internally invokes the
HLogPrettyPrinter class to dump the WAL file. There are also options to filter by region or
sequence number. Pass -h to the HLogPrettyPrinter class for help:

$hbase org.apache.hadoop.hbase.regionserver.wal.HLogPrettyPrinter
 -h

usage: HLog <filename...> [-h] [-j]
 [-p] [-r <arg>] [-s <arg>] [-w <arg>]

 -h,--help Output help message

 -j,--json Output JSON

 -p,--printvals Print values

 -r,--region <arg> Region to filter by. Pass region name;
 e.g. '.META.,,1'

 -s,--sequence <arg> Sequence to filter by. Pass sequence number.

 -w,--row <arg> Row to filter by. Pass row name.

The dump output has information about the table name, region, row, column, timestamp, and
value of the edit. A delete operation has a value of Null. There's also a sequence number for
each entry of WAL, which is used to keep a sequential order of edits. The highest sequence
number of edits, which have been persisted, are written to a meta field of each HBase storage
file (HFile).

As write permission under the HBase installation directory is required to manually split WAL
files, we switched to the user who started HBase in step 3. Passing --split to HLog makes
it kick a splitting task over a specific WAL directory. We must pass the directory of WAL
files to the split command, as all WAL files have to be split and replayed, to recovery from a
region server crash. Different from the dump command, you need to specify the HDFS name
(hdfs://master1:8020 in our case) for the target WAL directory too.

Chapter 3

95

All the edits that have been recorded in the WAL files but not yet been persisted, will be
replayed during the splitting. HFile files containing the edits will be generated at proper
directories after the splitting. The following is the HFile file generated by our WAL splitting:

You can use the HFile tool to view the content of the generated file:

$ $HBASE_HOME/bin/hbase org.apache.hadoop.hbase.io.hfile.HFile -p -f /
hbase/hly_temp/9e6dd810550443bb488c871728d5dee0/t/5229337595615563418

K: AQW000617050101/t:v25/1324689719111/Put/vlen=13 V: wal tool demo

K: AQW000617050101/t:v26/1324689729381/Put/vlen=14 V: wal tool demo2

K: AQW000617050101/t:v27/1324689747967/DeleteColumn/vlen=0 V:

K: AQW000617050101/t:v27/1324689738230/Put/vlen=14 V: wal tool demo3

Scanned kv count -> 4

The content is exactly the same as what was put in the Getting ready section of this recipe. All
edits are replayed successfully; no data is lost during the splitting.

WAL splitting is used when shutting down a region server, or to recover log edits after a
region server goes down uncleanly. For almost all situations, you won't need to split WAL
manually, as the master server will automatically start the splitting if a region server crashes.
For a case where you have many nodes going down uncleanly, you could use this manually
splitting option in parallel on many machines, to speed up the recovery. As of HBase 0.92,
there is a new feature called Distributed Log Splitting, with which this WAL splitting is
automatically distributed.

See also
ff The HFile tool—viewing textualized HFile content recipe, in this chapter.

Using Administration Tools

96

HFile tool—viewing textualized HFile
content

HFile is the internal file format for HBase to store its data. These are the first two lines of the
description of HFile from its source code:

File format for hbase.

A file of sorted key/value pairs. Both keys and values are byte arrays.

We don't need to know the details of HFile for our administration tasks. However, by using the
HFile tool, we can get some useful information from HFile.

The HFile tool provides the facility to view a textualized version of HFile content.

We can also get the metadata of an HFile file by using this tool. Some metadata, such as entry
count and average Key/Value size, are important indicators of performance tuning.

We will describe how to use an HFile tool to show textualized content and metadata of
HFile files.

Getting ready
Log in to your HBase client node.

Pick a region name or HFile file path to be viewed. A region name can be found in the Table
Regions section of your HBase web UI. HFile files are stored under the ${hbase.rootdir}/
table_name/region_name/column_family directory on HDFS.

We will use the hly_temp table in this recipe, for demonstration purposes.

How to do it...
Follow these instructions to view textualized content or metadata of HFile files:

1.	 Type the following to show the textualized Key/Value content of an HFile file:
$ $HBASE_HOME/bin/hbase org.apache.hadoop.hbase.io.hfile.
HFile -p -f /hbase/hly_temp/0d1604971684462a2860d43e2715558d
/n/1742023046455748097

K: USW000128350706/n:v01/1323026325955/Put/vlen=4 V: 773S

K: USW000128350706/n:v02/1323026325955/Put/vlen=4 V: 769S

K: USW000128350706/n:v03/1323026325955/Put/vlen=4 V: 764S

...

Chapter 3

97

2.	 To show the metadata of an HFile file, use the -m option in the HFile tool:
$ $HBASE_HOME/bin/hbase org.apache.hadoop.hbase.io.hfile.
HFile -m -f /hbase/hly_temp/0d1604971684462a2860d43e2715558d
/n/1742023046455748097

Block index size as per heapsize: 12240

reader=/hbase/hly_temp/0d1604971684462a2860d43e2715558d
/n/1742023046455748097, compression=lzo, inMemory=false,
firstKey=USW000128350706/n:v01/1323026325955/Put,
lastKey=USW000138830522/n:v24/1323026325955/Put, avgKeyLen=31,
avgValueLen=4, entries=288024, length=2379789

fileinfoOffset=2371102, dataIndexOffset=2371361,
dataIndexCount=190, metaIndexOffset=0, metaIndexCount=0,
totalBytes=12387203, entryCount=288024, version=1

Fileinfo:

MAJOR_COMPACTION_KEY = \x00

MAX_SEQ_ID_KEY = 96573

TIMERANGE = 1323026325955....1323026325955

hfile.AVG_KEY_LEN = 31

hfile.AVG_VALUE_LEN = 4

hfile.COMPARATOR = org.apache.hadoop.hbase.KeyValue$KeyComparator

hfile.LASTKEY = \x00\x0FUSW000138830522\x01nv24\x00\x00\x014\x0A\
x83\xA1\xC3\x04

Could not get bloom data from meta block

3.	 Get the total entry count of a specific region, with the following command:
hbase org.apache.hadoop.hbase.io.hfile.HFile -m -r hly_temp,,13241
96693253.9e6dd810550443bb488c871728d5dee0. | grep entries

You will get the following output:

The total entry count of the region is the sum of entries from the output.

Using Administration Tools

98

How it works...
The HFile format is implemented with org.apache.hadoop.hbase.io.hfile.HFile. We
can also use this class as a tool for the HFile files.

In step 1, we simply show the textualized content of an HFile file. The file path is specified by
the -f option. The -p flag tells the command to include the content of the Key/Value pair to
its output as well. The HFile tool simply scans all the blocks of the specific HFile file, and prints
all Key/Value entries to its output.

Note that the deleted cell also has an entry in the HFile file until a
major compaction is executed on that region.

In step 2, we pass the -m flag to the HFile tool to display the metadata of a specified HFile file.
As you can see from the output, metadata has very useful information about the HFile file.
This information includes the block index size, average Key/Value length, entry count,
and so on.

A typical use case is to get the total entry count of each region in a table, so that we are able
to know whether our data is well-balanced among all regions in the table. Step 3 shows how
to achieve this purpose. Passing a region name with the -r option to the HFile tool makes
it perform tasks on each HFile file belonging to the region. Collaborated with the -m flag, it
displays the metadata for each HFile file in the region. Having displayed the metadata for each
HFile file, we can simply sum the output entry count to get a total Key/Value entry count for
that region.

There's more...
There are other useful options of the HFile tool. Type the following command to see its usage:

$ ${HBASE_HOME}/bin/hbase org.apache.hadoop.hbase.io.hfile.HFile

HBase hbck—checking the consistency of
an HBase cluster

HBase provides the hbck command to check for various inconsistencies. The name hbck
comes from the HDFS fsck command, which is the tool to check HDFS for inconsistencies.
The following is a very easy-to-understand description from the source of hbck:

Check consistency among the in-memory states of the master and the region
server(s) and the state of data in HDFS.

Chapter 3

99

HBase hbck not only has the facility to check inconsistencies, but also the functionality to fix
an inconsistency.

In production, we recommend you run hbck frequently so that inconsistencies can be found
earlier and fixed easily.

In this recipe, we will describe how to use hbck to check inconsistencies. We will also make
some inconsistencies to the cluster and then demonstrate how to use hbck to fix it.

Getting ready
Start up your HBase cluster, and log in to your HBase client node.

How to do it...
The instructions to check and fix the inconsistencies of an HBase cluster using hbck
are as follows:

1.	 Check the health of the cluster with the default hbck command option:
$ $HBASE_HOME/bin/hbase hbck

You will get the following output:

At the end of the command's output it prints Status: OK, which indicates the cluster
is in consistent status.

Using Administration Tools

100

To demonstrate the fixing feature of hbck, make some inconsistencies by typing the following
in HBase Shell:

1.	 Enter HBase Shell by typing the following command:
$ $HBASE_HOME/bin/hbase shell

2.	 Manually close a region using the close_region command:
hbase> close_region 'hly_temp,,1324196693253.9e6dd810550443bb488c8
71728d5dee0.'

Replace the last parameter with your region name, which can be found on the HBase
web UI.

3.	 Run hbck again; you will find that, at the end of its output it reports the status of the
cluster as inconsistent:
$ $HBASE_HOME/bin/hbase hbck

ERROR: Region hly_temp,,1324196693253.9e6dd810550443bb488c871728d5
dee0. not deployed on any region server.

ERROR: (region hly_temp,USW000128350706,1324196693253.0d16049716
84462a2860d43e2715558d.) First region should start with an empty
key.

ERROR: Found inconsistency in table hly_temp

…

2 inconsistencies detected.

Status: INCONSISTENT

4.	 Use hbck with the -fix option, to fix the inconsistencies:
$ $HBASE_HOME/bin/hbase hbck -fix

ERROR: Region hly_temp,,1324196693253.9e6dd810550443bb488c871728d5
dee0. not deployed on any region server.

Trying to fix unassigned region...

…

11/12/25 08:26:31 INFO util.HBaseFsck: Sleeping 10000ms before re-
checking after fix...

Version: 0.90.4

…

0 inconsistencies detected.

Status: OK

Chapter 3

101

In this code, we skipped some output of the command to
make it easy to understand.

How it works...
In step 1, we run the hbck command without any parameter. This will simply have hbck check
the inconsistencies of the cluster. If no inconsistency is found, it will report Status: OK at the
end of its output; otherwise, inconsistencies will be reported.

To demonstrate the fixing feature of hbck, we close a region from HBase Shell in step 2. The
close_region command logs in via SSH into the region server that holds the specific region,
and closes it directly. The master server will not be notified in this case. That's why, our cluster
became inconsistent by the execution of the close_region command.

When we run hbck again in step 3, the command will find the inconsistent status of our
cluster. As you can see from the output of the command, the region we closed in step 2
was reported as not being deployed on any region server—this is the result we expected.
If you run a get command to get a row in that region, HBase will report an error to you,
as the region is offline.

In step 4, we execute hbck with the -fix option. As you can see from the output of step 4,
specifying the -fix option caused hbck to first check the inconsistencies of the cluster; if
inconsistencies are found, it will try to fix it automatically. After that, a check is performed
again to ensure the fixing works properly. Now, you can get data from the fixed region again.

There are other options of the hbck command, such as displaying a full report of all regions,
checking ROOT and META tables only, and so on. Type the following command for help:

$ $HBASE_HOME/bin/hbase hbck -h

See also
ff Simple scripts to report status of the cluster recipe, in Chapter 5, Monitoring

and Diagnosis

Hive on HBase—querying HBase using a
SQL-like language

HBase supports several interfaces to access data in its tables, such as the following:

ff HBase Shell
ff Java Client API
ff REST, Thrift, and Avro

Using Administration Tools

102

HBase Shell is straightforward, but a little too simple to perform complex queries on. Other
interfaces need programming, which is not suitable for ad hoc queries.

As data keeps growing, people might want an easy way to analyze the large amount of
data stored in HBase. The analysis should be efficient, ad hoc, and it should not require
programming. Hive is currently the best approach for this purpose.

Hive is a data warehouse infrastructure built for Hadoop. Hive is used for ad hoc querying,
and analyzing a large data set without having to write a MapReduce program. Hive supports a
SQL-like query language called HiveQL (HQL) to access data in its table.

We can integrate HBase and Hive, so that we can use HQL statements to access HBase
tables, both to read and write.

In this recipe, we will describe how to install and run Hive over HBase tables. We will show
simple demonstrations of reading/writing data from/into HBase tables using Hive.

Getting ready
Hive stores its metadata in RDBMS such as MySQL or PostgreSQL. We will use MySQL in this
recipe, so a running MySQL installation is required. Here is the online MySQL 5.5 Reference
Manual to help you install MySQL:

http://dev.mysql.com/doc/refman/5.5/en/index.html.

Hive only needs to be installed on your client node. We assume you have installed Hive on the
same node of an HBase client (client1 in our case).

We will use the user hadoop as the owner of all Hive files. All Hive files and data will be stored
under /usr/local/hive. Create a /usr/local/hive directory on your client node in
advance; change the owner of the directory to the hadoop user.

HQL is translated into a MapReduce job by Hive, internally. Besides a running HBase
installation, you will need to start MapReduce to use Hive to query the HBase data.
You can start MapReduce by using the following command:

hadoop@master1$ $HADOOP_HOME/bin/start-mapred.sh

We will load data from a TSV file into Hive, and then write the data from Hive to the
HBase table. Just as a demonstration, our TSV file (hly_temp.tsv) will only contain
the following data:

AQW000617050101	 808C	 806C	 803C
AQW000617050102	 808C	 805C	 803C
AQW000617050103	 807C	 805C	 802C

Put the hly_temp.tsv file under /home/hac; we will load it into Hive later.

Chapter 3

103

How to do it...
To install Hive and run it over HBase, follow these instructions:

1.	 Download the latest version of Hive from http://www.apache.org/dyn/
closer.cgi/hive/.

While this book was being written, the latest release was 0.8.0.

2.	 Download the tarball and decompress it to our root directory for Hive. Add a symbolic
link and environment variable:
hadoop@client1$ ln -s hive-0.8.0 current

hadoop@client1$ export HIVE_HOME=/usr/local/hive/current

3.	 Create the following directories on HDFS:
hadoop@client1$ $HADOOP_HOME/bin/hadoop fs -mkdir /tmp

hadoop@client1$ $HADOOP_HOME/bin/hadoop fs -mkdir /user/hive/
warehouse

4.	 Change the owner and permission of the created directories:
hadoop@client1$ $HADOOP_HOME/bin/hadoop fs -chmod 777 /tmp

hadoop@client1$ $HADOOP_HOME/bin/hadoop fs -chown -R hac:hac /
user/hive/warehouse

i.	 Add dependencies to the Hive library: Download the JDBC driver for MySQL
from http://www.mysql.com/downloads/connector/j/.

ii.	 Move the downloaded JAR file to $HIVE_HOME/lib:
hadoop@client1$ mv mysql-connector-java-5.1.18.jar $HIVE_
HOME/lib/

iv.	 Replace the HBase and ZooKeeper JAR files with the versions we are using:
hadoop@client1$ rm $HIVE_HOME/lib/hbase-0.89.0-SNAPSHOT*.jar

hadoop@client1$ rm $HIVE_HOME/lib/zookeeper-3.3.1.jar

hadoop@client1$ cp $HBASE_HOME/hbase-0.92.1.jar $HIVE_HOME/
lib

hadoop@client1$ cp $HBASE_HOME/lib/zookeeper-3.4.3.jar
$HIVE_HOME/lib

5.	 Add dependencies to Hive for running the MapReduce job:
hadoop@client1$ mkdir $HIVE_HOME/auxlib

hadoop@client1$ cp $HBASE_HOME/hbase-0.92.1.jar $HIVE_HOME/auxlib

hadoop@client1$ cp $HBASE_HOME/lib/zookeeper-3.4.3.jar $HIVE_HOME/
auxlib

hadoop@client1$ cp $HIVE_HOME/lib/hive-hbase-handler-0.8.0.jar
$HIVE_HOME/auxlib

http://www.apache.org/dyn/closer.cgi/hive/

Using Administration Tools

104

6.	 Connect to your MySQL server:
$ mysql -h<mysql_server_host> -uroot -p

i.	 Create a database and tables for Hive in MySQL:
mysql> create database metastore;

mysql> use metastore;

mysql> source /usr/local/hive/current/scripts/metastore/
upgrade/mysql/hive-schema-0.8.0.mysql.sql

7.	 Create a MySQL user for Hive:
mysql> create user 'hive'@'%' identified by 'your_password';

mysql> grant select,insert,update,delete on metastore.* to
'hive'@'%';

mysql> revoke alter,create on metastore.* from 'hive'@'%';

8.	 Set HADOOP_HOME in Hive's environment setting file (hive-env.sh):
hadoop@client1$ cp $HIVE_HOME/conf/hive-env.sh.template $HIVE_
HOME/conf/hive-env.sh

hadoop@client1$ vi $HIVE_HOME/conf/hive-env.sh

HADOOP_HOME=/usr/local/hadoop/current

9.	 Add the following to Hive's configuration file (hive-site.xml). You will need
to adjust the MySQL server, password, and the ZooKeeper quorum setting to
your environment:
hadoop@client1$ vi $HIVE_HOME/conf/hive-site.xml

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
 <property>
 <name>javax.jdo.option.ConnectionURL</name>
 <value>jdbc:mysql://mysql_server_host/metastore</value>
 </property>
 <property>
 <name>javax.jdo.option.ConnectionDriverName</name>
 <value>com.mysql.jdbc.Driver</value>
 </property>
 <property>
 <name>javax.jdo.option.ConnectionUserName</name>
 <value>hive</value>
 </property>
 <property>
 <name>javax.jdo.option.ConnectionPassword</name>
 <value>your_password</value>

Chapter 3

105

 </property>
 <property>
 <name>datanucleus.autoCreateSchema</name>
 <value>false</value>
 </property>
 <property>
 <name>datanucleus.fixedDatastore</name>
 <value>true</value>
 </property>
 <property>
 <name>hbase.zookeeper.quorum</name>
 <value>zoo1,zoo2,zoo3</value>
 </property>
</configuration>

10.	 We will use the hac user to run the Hive job in this recipe. Switch to the user and
test the Hive installation from the Hive Command Line Interface (CLI). Here we just
create, show, and drop a Hive table to confirm our Hive installation:
hac@client1$ $HIVE_HOME/bin/hive

hive> create table pokes (foo int, bar string);

hive> show tables;

OK

pokes

hive> drop table pokes;

11.	 Map an existing HBase table (hly_temp) to a Hive table (hbase_hly_temp) by
using the following command:
hive> create external table hbase_hly_temp
 (key string, v01 string, v02 string, v03 string)
 stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
 with serdeproperties ("hbase.columns.mapping" =
 ":key,n:v01,n:v02,n:v03")
 tblproperties("hbase.table.name" = "hly_temp");

12.	 Query HBase data from the table we mapped in Hive:
hive> select * from hbase_hly_temp where v01='808C';

Total MapReduce jobs = 1

Launching Job 1 out of 1

…

2011-12-25 15:25:58,134 Stage-1 map = 100%, reduce = 100%,
Cumulative CPU 27.51 sec

MapReduce Total cumulative CPU time: 27 seconds 510 msec

Ended Job = job_201112251140_0001

Using Administration Tools

106

MapReduce Jobs Launched:

Job 0: Map: 4 Accumulative CPU: 27.51 sec HDFS Read: 1204 HDFS
Write: 2345 SUCESS

Total MapReduce CPU Time Spent: 27 seconds 510 msec

OK

AQW000617050101	 808C	 806C	 803C

AQW000617050102	 808C	 805C	 803C

AQW000617050104	 808C	 805S	 803C

...

13.	 Create a Hive table (hive_hly_temp2) to store data from the TSV file:
hive> create table hive_hly_temp2
(key string, v01 string, v02 string, v03 string)
 row format delimited fields
 terminated by '\t' lines terminated by '\n';

14.	 Load the TSV file into the Hive table:
hive> load data local inpath '/home/hac/hly_temp.tsv' overwrite
into table hive_hly_temp2;

Copying data from file:/home/hac/hly_temp.tsv

Copying file: file:/home/hac/hly_temp.tsv

Loading data to table default.hive_hly_temp2

Deleted hdfs://master1/user/hive/warehouse/hive_hly_temp2

OK

15.	 Create a Hive-managed HBase table and map it with a Hive table:
hive> create table hbase_hly_temp2
(key string, v01 string, v02 string, v03 string)
 stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
 with serdeproperties ("hbase.columns.mapping" =
 ":key,n:v01,n:v02,n:v03")
 tblproperties ("hbase.table.name" = "hly_temp2");

Here, we created one table in HBase called hly_temp2; this table is managed by
Hive, with the table name hbase_hly_temp2.

16.	 Write data from the Hive table (hive_hly_temp2) into the HBase table (hbase_
hly_temp2) via HQL:
hive> insert overwrite table hbase_hly_temp2 select * from hive_
hly_temp2;

Chapter 3

107

17.	 Confirm the data in HBase, which we inserted via HQL in the previous step:
hac@client1$ $HBASE_HOME/bin/hbase shell

hbase> scan 'hly_temp2'

You will get the following output:

How it works...
Hive's table data is stored on HDFS; the default path is /user/hive/warehouse. That's why
we create this directory and change its owner to the hac user in steps 3 and 4. We also need
to create a /tmp directory on HDFS, so that Hive can save its temporary files under it.

In step 5, we add the JDBC driver for MySQL to the Hive library folder. We need to do this
because we will configure Hive to store its metadata in MySQL. The JDBC driver is required
to access MySQL from Hive. As HBase and ZooKeeper JAR files, shipped with Hive, are out of
date, we replace them with the files from our HBase installation.

In step 6, we create a directory called auxlib under $HIVE_HOME. This is a special directory.
When Hive starts a MapReduce job, all JAR files under this directory will be shipped to
TaskTrackers via Hadoop Distributed Cache, and added to the job task's class path. The JAR
files we put under $HIVE_HOME/auxlib are dependencies of all Hive MapReduce jobs.

We create the database and tables for Hive in MySQL in step 7. As all Hive schemas are
defined in $HIVE_HOME/scripts/metastore/upgrade/mysql/hive-schema-
0.8.0.mysql.sql, we can simply execute this SQL script to create Hive tables in MySQL.
The MySQL user for Hive is created in step 8. We recommend you to limit this user's privileges
to prevent it from creating or altering tables in the metastore database schema.

We need to set up HADOOP_HOME in Hive's environment setting file (hive-env.sh) to notify
to Hive the location where Hadoop is installed. Metastore database and ZooKeeper quorum
settings are set in Hive's configuration file (hive-site.xml). Hive will use these settings to
connect to the Metastore database and HBase cluster. If everything is set up properly, you
should be able to connect to Hive using its Command Line Interface (CLI).

Using Administration Tools

108

In step 12, we create an external Hive table to map an existing HBase table. An external Hive
table is defined by the create external table statement. When dropping an external
table, the data is not deleted from HBase. To create a Hive table over HBase, use org.
apache.hadoop.hive.hbase.HBaseStorageHandler as its storage handler. For each
Hive column, it must be mapped to a corresponding HBase column or column family in the
comma-delimited hbase.columns.mapping string. Be careful not to include whitespace
between entries. There must be exactly one :key entry for mapping HBase row keys. It is not
necessary to map every HBase column, but only mapped columns are accessible from Hive.
The hbase.table.name property is optional. If not specified, then the table will have the
same name in Hive and in HBase.

For most of the cases, a Hive query will be translated into a MapReduce job. If you open your
MapReduce Administration Page, you will find the MapReduce job translated from the query
we executed in step 12.

Steps 14 to 18 show how to insert data from Hive into an HBase table. In step 14, we create a
regular Hive table as the data source, then we load our TSV file into this table in step 15.

The target HBase table was created in step 16. Note that this table is not an external table as
we have not specified the external keyword in the creator. Dropping this table from Hive will
drop the table from HBase, too. After executing the command in step 15, you should be able
to see the new (empty) table in HBase Shell.

As the table was created, we can insert data into it using the insert overwrite HQL
statement. Data inserted into hbase_hly_temp2 was actually stored in the hly_temp2
HBase table by HbaseStorageHandler. That's exactly the result we saw in step 18.

As you can see, integrating Hive with HBase provides a powerful data access interface on
top of HBase. While the drawback is that some HBase features, such as timestamp/version
support, composite row key mapping, and updating on a single HBase row from Hive, are not
supported.

Although it is not meant for latency-sensitive systems, as it is still a MapReduce job each time,
Hive integrating is a good add-on to HBase, for ad hoc querying capabilities.

4
Backing Up and

Restoring HBase Data

In this chapter, we will cover:

ff Full shutdown backup using distcp

ff Using CopyTable to copy data from one table to another

ff Exporting an HBase table to dump files on HDFS

ff Restoring HBase data by importing dump files from HDFS

ff Backing up NameNode metadata

ff Backing up region starting keys

ff Cluster replication

Introduction
If you are thinking about using HBase in production, you will probably want to understand the
backup options and practices of HBase. The challenge is that the dataset you need to back up
might be huge, so the backup solution must be efficient. It is expected to be able to scale to
hundreds of terabytes of storage, and finish restoring the data in a reasonable time frame.

There are two strategies for backing up HBase:

ff Backing it up with a full cluster shutdown

ff Backing it up on a live cluster

Backing Up and Restoring HBase Data

110

A full shutdown backup has to stop HBase (or disable all tables) at first, then use Hadoop's
distcp command to copy the contents of an HBase directory to either another directory on
the same HDFS, or to a different HDFS. To restore from a full shutdown backup, just copy the
backed up files, back to the HBase directory using distcp.

There are several approaches for a live cluster backup:

ff Using the CopyTable utility to copy data from one table to another

ff Exporting an HBase table to HDFS files, and importing the files back to HBase

ff HBase cluster replication

The CopyTable utility could be used to copy data from one table to either another one on the
same cluster, or to a different cluster. The Export utility dumps the data of a table to HDFS,
which is on the same cluster. As a set of Export, the Import utility is used to restore the
data of the dump files.

Each aforementioned approach has its pros and cons. The benefit of a full shutdown backup
is that there is no chance of writing data into the cluster during the backup process, so it is
possible to ensure a consistent status of the backup. The downside is obvious—the cluster is
down. As for the live cluster backup approach, since the cluster is up, there is a risk that edits
could be missed during the backup process. Furthermore, as HBase edits are atomic only at the
row level, if your tables depend on each other, your backup might end up with inconsistencies
if the tables are being modified while Export or CopyTable is being performed. Making a
snapshot of HBase tables is not supported in the current Apache Release.

HBase supports cluster replication. It is a way to copy data between the different HBase
deployments. Cluster replication can be considered as a disaster recovery solution at the
HBase level.

Besides the tables, what you will likely want to back up are your HDFS metadata and HBase
region starting keys. HDFS metadata contains the filesystem image and commit logs of HDFS.
A metadata corruption might damage the entire HDFS metadata; it is suggested to back up the
metadata frequently. Region starting keys represent the data distribution in HBase. Backing
up the region starting keys makes it possible to restore not only the data, but also the data
distribution. If we split the tables in advance, using well-distributed region starting keys, the
speed of restoring data by using the CopyTable/Import utility could be increased dramatically.

In this chapter, we will describe how to back up HBase data using the aforementioned
approaches, their pros and cons, and which approach to choose, depending on your dataset
size, resources, and requirements.

Chapter 4

111

Full shutdown backup using distcp
distcp (distributed copy) is a tool provided by Hadoop for copying a large dataset on the
same, or different HDFS cluster. It uses MapReduce to copy files in parallel, handle error and
recovery, and report the job status.

As HBase stores all its files, including system files on HDFS, we can simply use distcp to
copy the HBase directory to either another directory on the same HDFS, or to a different
HDFS, for backing up the source HBase cluster.

Note that this is a full shutdown backup solution. The distcp tool works because the
HBase cluster is shut down (or all tables are disabled) and there are no edits to files during
the process. Do not use distcp on a live HBase cluster. Therefore, this solution is for the
environment that can tolerate a periodic full shutdown of their HBase cluster. For example, a
cluster that is used for backend batch processing and not serving frontend requests.

We will describe how to use distcp to back up a fully shut down HBase cluster to a different
HDFS cluster. Backing up on a different cluster can serve as a disaster recovery solution and
can contribute to higher availability of data. In production, it is recommended to back up a
fully shut down HBase cluster to a different HDFS cluster.

We will also demonstrate how to restore data from the backup, later in this chapter.

Getting ready
You will need a secondary cluster if you are going to use distcp to back up your HBase data
to a different cluster. You could also back up HBase data to the same cluster as your source
HBase cluster. For this situation, another cluster is not required.

In this recipe we will use a different cluster for backup. The backup cluster runs on different
EC2 instances. We will assume that the HDFS running on the backup cluster is hdfs://l-
master1:8020; l-master1 indicates that this cluster runs on EC2 large instances. This is
because we will use this cluster for our performance tuning recipes later, while small instance
specification is too low for that usage.

Start HDFS on the source and backup clusters, respectively.

The distcp tool uses MapReduce to copy files in parallel, so you will need to start
MapReduce on the source cluster as well. MapReduce can be started from the JobTracker
node, using the following command:

hadoop@master1$ $HADOOP_HOME/bin/start-mapred.sh

Backing Up and Restoring HBase Data

112

We will back up the HBase directory under the /backup directory, on the backup cluster.
Create this directory in advance, from the Hadoop client (l-client1) of the backup cluster,
using the following command:

hadoop@l-client1$ $HADOOP_HOME/bin/hadoop fs -mkdir /backup

How to do it...
Follow these instructions to back up/restore HBase data using distcp:

1.	 Shut down the source and backup HBase clusters, if they are running:
hadoop@master1$ $HBASE_HOME/bin/stop-hbase.sh

2.	 Make sure HBase has shut down on the source cluster by checking if the HMaster
daemon has started:
hadoop@master1$ $JAVA_HOME/bin/jps

1567 JobTracker

1416 NameNode

1705 Jps

1690 QuorumPeerMain

Make sure the HMaster daemon is not listed in the output.

3.	 Also, make sure mapred.map.tasks.speculative.execution is not set to
final and true on the client of the source cluster.

This property is set in the MapReduce configuration file (mapred-site.xml) under
the $HADOOP_HOME/conf directory. If it is set to final and true, remove the
setting. This is a client-side change; it will only affect the MapReduce jobs submitted
from that client.

4.	 Use distcp to copy the HBase root directory from the source cluster to the
backup cluster. The HBase root directory is set by the hbase.rootdir property
in the HBase configuration file (hbase-site.xml). We will assume it is hdfs://
master1:8020/hbase, in this recipe:
hadoop@client1$ $HADOOP_HOME/bin/hadoop distcp hdfs://
master1:8020/hbase hdfs://l-master1:8020/backup

12/01/03 12:27:53 INFO tools.DistCp: srcPaths=[hdfs://
master1:8020/hbase]

12/01/03 12:27:53 INFO tools.DistCp: destPath=hdfs://l-
master1:8020/backup

12/01/03 12:27:54 INFO tools.DistCp: sourcePathsCount=76

12/01/03 12:27:54 INFO tools.DistCp: filesToCopyCount=34

12/01/03 12:27:54 INFO tools.DistCp: bytesToCopyCount=102.0m

Chapter 4

113

12/01/03 12:27:55 INFO mapred.JobClient: Running job:
job_201201031153_0002

12/01/03 12:27:56 INFO mapred.JobClient: map 0% reduce 0%

…

You will find a running MapReduce job of the source cluster from the admin page of
your JobTracker:

After the distcp job is completed, you should be able to find the copied HBase directory
under the /backup directory on the backup cluster:

hadoop@l-client1$ $HADOOP_HOME/bin/hadoop fs -lsr /backup/hbase

drwxr-xr-x - hadoop hadoop 0 2012-01-03 12:28 /backup/hbase/-
ROOT-

…

The steps for restoring data from the previous backup are as follows:

1.	 Start MapReduce on the backup cluster by using the following command:
hadoop@l-master1$ $HADOOP_HOME/bin/start-mapred.sh

2.	 Make sure mapred.map.tasks.speculative.execution is not set to final
and true on your client of the backup cluster.

3.	 Make sure HBase is not running on the source and backup clusters. If HBase is
running, stop it first:
hadoop@l-master1$ $HBASE_HOME/bin/stop-hbase.sh

4.	 Make sure there are no files under the hbase.rootdir directory on the source
cluster. If files are present, move them to another path:
hadoop@client1$ $HADOOP_HOME/bin/hadoop fs -mv /hbase /tmp

You may remove the files if you are sure they are not required.

Backing Up and Restoring HBase Data

114

5.	 Copy the HBase directory from the backup cluster to the source cluster:
hadoop@l-client1$ $HADOOP_HOME/bin/hadoop distcp hdfs:
 //l-master1:8020/backup/hbase hdfs://master1:8020/

6.	 Start HBase on the source cluster; you should be able to access the restored data via
HBase Shell:
hadoop@master1$ $HBASE_HOME/bin/start-hbase.sh

How it works...
As we mentioned, distcp is a full shutdown backup option; therefore, we stop HBase in step
1 and confirm the stopping in step 2. jps is a convenient command shipped with Java SDK.
It shows all the Java processes owned by the executed user. As all HBase-related daemons
are started by the hadoop user in our case, we can use the jps command to see whether
HBase's master daemon (HMaster) is running.

distcp uses MapReduce to copy files in parallel. If the property mapred.map.tasks.
speculative.execution is set to true, multiple instances of some map tasks may
be executed in parallel, performing the same tasks. This is a client-side property for each
job. distcp will set this property to false for its MapReduce job, as HDFS does not
handle multiple writers to the same file. But a final property cannot be changed in a single
MapReduce job. If mapred.map.tasks.speculative.execution is set to final and
true, the result of the copy is undefined. In step 3, we remove the final setting to enable
distcp to configure this property in its MapReduce job.

All we need to copy is the hbase.rootdir directory. We execute distcp to copy it from
the source cluster to our backup cluster in step 4. The parameters include the full path of
the source directory, including its HDFS schema, and the HDFS schema and path of the
destination directory on the backup cluster. As you can see from its output, distcp starts
a MapReduce job to copy data in parallel.

The MapReduce job started by distcp copies data only in its Map phase. The maximum
number of maps is specified by the -m option. Note that this is just a hint to the MapReduce
job; more maps may not always increase the number of simultaneous copies or the overall
throughput.

In order to restore from the backup, we copy the data back from the backup cluster to the
source cluster and then start HBase on the source cluster.

For a full list of the distcp options, type the following command:

$HADOOP_HOME/bin/hadoop distcp

Chapter 4

115

Using CopyTable to copy data from one
table to another
CopyTable is a utility to copy the data of one table to another table, either on the same
cluster, or on a different HBase cluster. You can copy to a table that is on the same cluster;
however, if you have another cluster that you want to treat as a backup, you might want to use
CopyTable as a live backup option to copy the data of a table to the backup cluster.

CopyTable is configurable with a start and an end timestamp. If specified, only the data
with a timestamp in the specific time frame will be copied. This feature makes it possible for
incremental backup of an HBase table in some situations.

"Incremental backup" is a method to only back up the data
that has been changed during the last backup.

Note: Since the cluster keeps running, there is a risk that
edits could be missed during the copy process.

In this recipe, we will describe how to use CopyTable to copy the data of a table to another
one, on a different HBase cluster. We will demonstrate copying data from the hly_temp table
into the hly_temp2 table; we will only copy data in column family n.

Getting ready
On the client node, you will need to add the HBase configuration file (hbase-site.xml) to
Hadoop's class path, so that a MapReduce job can access the HBase cluster. You can do it by
linking hbase-site.xml under the Hadoop configuration directory, as follows:

hadoop@client1$ ln -s $HBASE_HOME/conf/hbase-site.xml $HADOOP_HOME/conf/
hbase-site.xml

Also, add HBase dependency JARs to Hadoop's class path, by editing hadoop-env.sh:

hadoop@client1$ vi $HADOOP_HOME/conf/hadoop-env.sh

export HADOOP_CLASSPATH=
 /usr/local/zookeeper/current/zookeeper-3.4.3.jar

The aforementioned steps are the minimum requirements to run
MapReduce over HBase. And since this is a common process,
we will skip its details henceforth, in this book.

Backing Up and Restoring HBase Data

116

Start HBase on both the source and backup clusters. If you do not have another cluster, you
could also copy a table to another table on the local cluster. However, it is not recommended
for backup purposes in production. We will assume that the ZooKeeper quorum of the backup
cluster is l-master1:2181, and the HBase root directory is /hbase.

CopyTable uses MapReduce to copy data in parallel; you will need to start MapReduce on
the source cluster, using the following command:

hadoop@master1$ $HADOOP_HOME/bin/start-mapred.sh

How to do it...
The following are instructions to copy data in column family n, from the hly_temp table into
the hly_temp2 table on the backup cluster:

1.	 Connect to the backup HBase cluster via HBase Shell and create the destination
table if it does not exist:
hbase> create 'hly_temp2', {NAME => 'n'}

2.	 Run the following command from your client node of the source cluster to copy data
from the hly_temp table to hly_temp2 on the backup cluster:
hac@client1$ $HADOOP_HOME/bin/hadoop jar $HBASE_HOME/hbase-
0.92.1.jar copytable --families=n --peer.adr=l-master1:2181:/hbase
--new.name=hly_temp2 hly_temp

2/01/09 15:24:34 INFO zookeeper.ZooKeeper: Initiating client
connection, connectString=l-master1:2181 sessionTimeout=10000
watcher=hconnection

12/01/09 15:24:34 INFO zookeeper.ClientCnxn: Opening socket
connection to server l-master1/10.170.114.96:2181

12/01/09 15:24:34 INFO zookeeper.ClientCnxn: Socket connection
established to l-master1/10.170.114.96:2181, initiating session

12/01/09 15:24:34 INFO zookeeper.ClientCnxn: Session establishment
complete on server l-master1/10.170.114.96:2181, sessionid =
0x134c11bb47c000a, negotiated timeout = 10000

12/01/09 15:24:34 INFO mapreduce.TableOutputFormat: Created table
instance for hly_temp2

12/01/09 15:24:34 INFO zookeeper.ZooKeeper: Initiating client
connection, connectString=master1:2181 sessionTimeout=10000
watcher=hconnection

12/01/09 15:24:34 INFO zookeeper.ClientCnxn: Opening socket
connection to server master1/10.166.105.212:2181

12/01/09 15:24:34 INFO zookeeper.ClientCnxn: Socket connection
established to master1/10.166.105.212:2181, initiating session

Chapter 4

117

12/01/09 15:24:34 INFO zookeeper.ClientCnxn: Session establishment
complete on server master1/10.166.105.212:2181, sessionid =
0x134c11d62a20019, negotiated timeout = 10000

12/01/09 15:24:34 INFO mapred.JobClient: Running job:
job_201201091517_0001

12/01/09 15:24:35 INFO mapred.JobClient: map 0% reduce 0%

12/01/09 15:25:49 INFO mapred.JobClient: map 50% reduce 0%

…

You will find a running MapReduce job of the source cluster from the admin page of
your JobTracker:

3.	 You should be able to access the data in hly_temp2 on the backup cluster via
HBase Shell:
hbase> scan 'hly_temp2', { LIMIT => 1 }

ROW COLUMN+CELL

 AQW000617050101 column=n:v01, timestamp=1323026325955, valu
e=808C

 AQW000617050101 column=n:v02, timestamp=1323026325955, valu
e=806C

 AQW000617050101 column=n:v03, timestamp=1323026325955,
value=803C

hbase> count 'hly_temp2'

95630 row(s) in 22.4740 seconds

4.	 Type the following command to only copy the data that has a specific timestamp range:

hac@client1$ $HADOOP_HOME/bin/hadoop jar $HBASE_HOME/hbase-
0.92.1.jar copytable --families=n --peer.adr=l-master1:2181:/
hbase --new.name=hly_temp2 --starttime=1324173586754
--endtime=1324189940000 hly_temp

Backing Up and Restoring HBase Data

118

How it works...
In step 1, we create the destination table (hly_temp2) on the backup cluster with the column
family (n) we want to copy.

In step 2, we copy data in the column family n from the hly_temp table to the hly_temp2
table on the backup cluster. The backup cluster is specified by the --peer.adr option,
by specifying the ZooKeeper quorum address, whose format is hbase.zookeeper.
quorum:hbase.zookeeper.client.port:zookeeper.znode.parent, such as
server,server2,server3:2181:/hbase.

The --families option is used to specify a comma-separated list of families to be copied.
The destination table is specified by the --new.name option; skip this option if the two tables
have the same names.

As you can see from the output, data is copied in a MapReduce job. The hadoop jar
command is used to run a JAR file in MapReduce. The MapReduce job scans the source table,
reads data entries belonging to the target families, and then writes them into the destination
table on the backup cluster using its normal client API.

From the output of step 3, you will find that the hly_temp table's data in the column family
n, including the timestamp of each entry, has been copied into the hly_temp2 table on the
backup cluster. HBase uses timestamps to order edits; edits with a bigger timestamp have the
newer version for the cell. By default, timestamp is set automatically by HBase using a long
value, representing the difference in milliseconds between the current time and midnight—
January 1, 1970 UTC.

We add timestamp range parameters to the CopyTable command in step 4. Data out of
the specific time frame will be skipped in the scanning phase of the copy job. The minimum
timestamp value, which is specified by the --starttime option, is inclusive. The maximum
timestamp value, which is specified by the --endtime option, is exclusive.

Step 2 can be used for a full backup, while step 3 can be used for an incremental backup
in some situations. Using CopyTable with a specific timestamp range is not identical to an
incremental backup. This is because, when putting data into HBase, the timestamp can be
specified explicitly by the client, and there is no insurance that the newly inserted data has a
larger timestamp. Another reason is that CopyTable will not handle deletes. There is no way
to know if data was deleted. We recommend you to implement your own incremental backup
solution at the application level.

For a full description of CopyTable usage, type the following command:

$HADOOP_HOME/bin/hadoop jar $HBASE_HOME/hbase-0.92.1.jar copytable

Chapter 4

119

Exporting an HBase table to dump files on
HDFS

The HBase export utility dumps the contents of a table to the same HDFS cluster. The
dump file is in a Hadoop sequence file format. Exporting data to Hadoop sequence files
has merits for data backup, because the Hadoop sequence file format supports several
compression types and algorithms. With it we can choose the best compression options to fit
our environment.

Like the copytable utility we mentioned in the previous recipe, export is configurable
with a start and an end timestamp, so that only the data within a specific time frame will be
dumped. This feature enables export to incrementally export an HBase table to HDFS.

HBase export is also a live backup option. As the cluster is running, there is a risk that edits
could be missed during the export process. In this recipe, we will describe how to use the
export utility to export a table to HDFS on the same cluster. We will introduce the import
utility in the next recipe, which is used to restore the data from an export dump.

Getting ready
First, start your HDFS and HBase cluster.

We will export our hly_temp table to /backup/hly_temp on our HDFS cluster. You will
need to create a /backup directory in advance.

The export utility uses MapReduce to export data. Add HBase's configurable file
(hbase-site.xml) and dependency JAR files to Hadoop's class path on your client node.

How to do it...
Follow these instructions to export an HBase table to HDFS using the export utility:

1.	 Run the following command from your client node to export all the data in the hly_
temp table:
hadoop@client1$ $HADOOP_HOME/bin/hadoop jar $HBASE_HOME/hbase-
0.92.1.jar export -D mapred.output.compress=true -D mapred.output.
compression.codec=org.apache.hadoop.io.compress.BZip2Codec -D
mapred.output.compression.type=BLOCK hly_temp /backup/hly_temp
2147483647

12/01/08 07:39:35 INFO mapreduce.Export: verisons=2147483647,
starttime=0, endtime=9223372036854775807

…

Backing Up and Restoring HBase Data

120

12/01/08 07:39:37 INFO zookeeper.ClientCnxn: Session establishment
complete on server master1/10.160.229.77:2181, sessionid =
0x134ba4a09070013, negotiated timeout = 10000

12/01/08 07:39:38 INFO mapred.JobClient: Running job:
job_201201080737_0001

12/01/08 07:39:39 INFO mapred.JobClient: map 0% reduce 0%

12/01/08 07:42:56 INFO mapred.JobClient: map 25% reduce 0%

You will find the export MapReduce job from the admin page of your JobTracker:

After the MapReduce job has finished, you will find the dump files (part-m-000x)
generated under the /backup/hly_temp directory on HDFS:

Chapter 4

121

2.	 Execute the following command to only export the data that has a specific
timestamp range:
hadoop@client1$ $HADOOP_HOME/bin/hadoop jar $HBASE_HOME/hbase-
0.92.1.jar export -D mapred.output.compress=true -D mapred.output.
compression.codec=org.apache.hadoop.io.compress.BZip2Codec -D
mapred.output.compression.type=BLOCK hly_temp /backup/hly_temp_2
2147483647 1324601918502 1324693970000

How it works...
Running an HBase JAR file with the export argument will execute the export utility to dump
the contents of an HBase table. In step 1, we dumped the hly_temp table to the /backup/
hly_temp directory on HDFS. The last parameter specifies the maximum version of the
data to export. HBase supports storing multiple versions of data within a cell. The maximum
version a cell can store is determined by its column family's VERSIONS property, which is
specified at the time of creating a table. To dump a table with multi-version column families,
we must pass the maximum version we want to export to the export command, otherwise
only the latest version will be exported. In our case, we just specify Integer.MAX_VALUE
(2147483647) to export all versions of the data.

Many -D properties have been passed to the export command. These are set to the export
MapReduce job controlling its runtime properties. The mapred.output.compress property
is set to true to cause MapReduce to compress its output (the sequence files). The mapred.
output.compression.codec property controls which compression algorithm to use for the
export. We have set it to use the BZip2 codec, which has the highest compression ratio.

When this book was being written, these were the widely used codecs for Hadoop. Which
codec to choose, depends on your requirement; all of them have a space/time trade-off:

Compression
format

Hadoop CompressionCodec Compression
ratio

(De-)
Compression
speed

gzip org.apache.hadoop.io.compress.
GzipCodec

Medium Medium

BZip2 org.apache.hadoop.io.compress.
BZip2Codec

High Slow

LZO com.hadoop.compression.lzo.LzoCodec Low Fast

LZO is not contained in the Hadoop package because of license issues; refer to the Using
compression recipe for the installation of LZO, in Chapter 8, Basic Performance Tuning.

The mapred.output.compression.type property is used to specify the compression type
for a Hadoop sequence file.The available values are NONE, RECORD, and BLOCK. For most
cases, you should choose BLOCK as it compresses sequences of records together in blocks,
which is the most efficient way for compression.

Backing Up and Restoring HBase Data

122

As you can see from the output, data is exported via MapReduce. This is done by the hadoop
jar command, which runs a JAR file in MapReduce. The MapReduce job scans the table,
reads all the data entries, and then writes them to the Hadoop sequence files under the
output path on the same HDFS cluster.

We have added the timestamp range parameters to the export command in step 2. Data
out of the specific time frame will be skipped in the scanning phase of the export job. The
minimum timestamp value (1324601918502) is inclusive, whereas the maximum timestamp
value (1324693970000) is exclusive.

Just like the CopyTable utility we have mentioned in the previous recipe, step 1 (without a
specific start/end time) can be used for a full backup, while step 2 (with a specific start/end
time) is for incremental backups in some situations.

There's more...
As data is exported to HDFS on the same cluster, there is a risk that backups will not be
available if the HDFS crashes. We recommend you to copy the exported files to a different
HDFS cluster, using the Hadoop distcp tool. If your data size is not very large, an even
better option is to copy the dumped files to tapes, for offline backup.

See also
ff Restoring HBase data by importing dump files from HDFS recipe, in this chapter

ff Using compression recipe, in Chapter 8, Basic Performance Tuning

Restoring HBase data by importing dump
files from HDFS

The HBase Import utility is used to load data that has been exported by the Export
utility into an existing HBase table. It is the process to restore data from the Export
utility backup solution.

We will look at the usage of the Import utility in this recipe.

Getting ready
First, start your HDFS and HBase cluster.

We will import the files that we exported in the previous recipe into our hly_temp table.
If you do not have those dump files, refer to the Exporting HBase table to dump files on
HDFS recipe, to generate the dump files in advance. We assume the dump files are saved
in the /backup/hly_temp directory.

Chapter 4

123

The Import utility uses MapReduce to import data. Add the HBase configurable file
(hbase-site.xml) and dependency JAR files to Hadoop class path on your client node.

How to do it...
To import dump files into the hly_temp table:

1.	 Connect to your HBase cluster via HBase Shell and create the target table if it does
not exist:
hbase> create 'hly_temp', {NAME => 'n'}

2.	 Run the following command from your client node to import data into the
hly_temp table:
hadoop@client1$ $HADOOP_HOME/bin/hadoop jar $HBASE_HOME/hbase-
0.92.1.jar import hly_temp /backup/hly_temp

12/01/08 08:52:42 INFO mapreduce.TableOutputFormat: Created table
instance for hly_temp

12/01/08 08:52:42 INFO input.FileInputFormat: Total input paths to
process : 4

12/01/08 08:52:42 INFO mapred.JobClient: Running job:
job_201201080737_0004

12/01/08 08:52:43 INFO mapred.JobClient: map 0% reduce 0%

12/01/08 08:53:09 INFO mapred.JobClient: map 1% reduce 0%

…

You will find the import MapReduce job from the admin page of your JobTracker:

Backing Up and Restoring HBase Data

124

3.	 You should be able to access data in the hly_temp table via HBase Shell after the
MapReduce job has finished:
hbase> scan 'hly_temp', {LIMIT => 1}

ROW COLUMN+CELL

 AQW000617050101 column=n:v01, timestamp=1323026325955, valu
e=808C

 AQW000617050101 column=n:v02, timestamp=1323026325955, valu
e=806C

 AQW000617050101 column=n:v03, timestamp=1323026325955,
value=803C

…

How it works...
We create the target table in step 1. The table must have all the column families that exist in
the dump files; without that, the import job will fail with a NoSuchColumnFamilyException
error message.

As you can see from the output of step 2, data is imported via MapReduce. This was done
with the hadoop jar command, which executes the MapReduce code that is packaged in
a JAR file. The import MapReduce job reads data entries from dump files under the input
directory (/backup/hly_temp), and then writes them into the target table (hly_temp)
using HBase's client API.

Data in the dump files, including the timestamp of each entry, will be restored by the Import
utility. After that, we recommend you to run a major compaction on the table and perform
cluster balancing manually, to cause the cluster to run in the best status. This can be done
via HBase Shell by using the following command:

hbase> major_compact 'hly_temp'

hbase> balancer

There's more...
If you are importing data into a newly created table, you may find that the importing speed
is not as fast as you had expected. This is because the table starts with only one region, and
all the edits will go to that region. This makes the hosting region server busy to handle those
requests. At the same time, other region servers are free of load. The cluster keeps running
on this unbalanced status until the data in the first region reaches a threshold and the region
is split into two regions. It will take a long time before a new table becomes well balanced by
this automatic region splitting.

Chapter 4

125

The solution is to precreate enough regions at the time of creating the table. The regions need
to be created with proper boundaries so that edits can be distributed well to all these precreated
regions. In order to determine proper boundaries, you might also want to back up your region
starting keys, which can also be used to restore the region distribution of an HBase table.

Since HBase 0.94, the Import utility can generate the HBase internal files (HFiles) for
bulk load. With this feature, we are able to restore the dump files in a shorter time frame.
Refer to HBASE-5440 for more details (https://issues.apache.org/jira/browse/
HBASE-5440).

See also
In this chapter:

ff Exporting HBase table to dump files on HDFS

ff Backing up region starting keys

In Chapter 9, Advanced Configurations and Tuning:

ff Precreating regions using your own algorithm

In Chapter 3, Using Administration Tools:

ff Using HBase Shell to manage the cluster

Backing up NameNode metadata
As HBase runs within HDFS, in addition to taking care of the HBase cluster, it is also important
to keep your HDFS running on a healthy status. NameNode is the most important component in
an HDFS cluster. A NameNode crash makes the entire HDFS cluster inaccessible. The metadata
of an HDFS cluster, including the filesystem image and edit log, is managed by NameNode.

We need to protect our NameNode metadata for two situations:

ff Metadata lost in the event of a crash

ff Metadata corruption by any reason

For the first situation, we can set up NameNode to write its metadata to its local disk, along
with an NFS mount. As described in the Setting up multiple, highly available (HA) masters
recipe, in Chapter 1, Setting Up HBase Cluster, we can even set up multiple NameNode nodes
to achieve high availability.

Our solution for the second situation, is to back up the metadata frequently so that we can
restore the NameNode state in case of metadata corruption.

We will describe how to back up and restore NameNode metadata in this recipe.

Backing Up and Restoring HBase Data

126

Getting ready
Start your HDFS and log in to your client node. We assume that NameNode is running on the
master1 server using the default web UI port 50070. Make sure the port is opened for your
client node.

The dfs.name.dir property specifies where the NameNode metadata has been saved. Grep
the HDFS configuration file (hdfs-site.xml) to find out the value of this property, which is
required to perform the restoration task. We assume the value is /usr/local/hadoop/
var/dfs/name, in the demonstration.

We will save the backup under /backup/namenode on the client node and use /restore/
namenode on the NameNode server as a working directory for the restoring. Create these
directories and make sure that the user running the backup task has write permission on them.

How to do it...
In order to back up the NameNode metadata:

1.	 Set an environment variable:
hadoop@client1$ export BACKUP_DIR=/backup/namenode

2.	 Get HDFS's filesystem image from the NameNode web UI:
hadoop@client1$ curl http://master1:50070/getimage?getimage=1 >
$BACKUP_DIR/fsimage

3.	 Get HDFS's edit log from the NameNode web UI:
hadoop@client1$ curl http://master1:50070/getimage?getedit=1 >
$BACKUP_DIR/edits

4.	 Make a tarball for the fetched metadata by using the following command:
hadoop@client1$ tar cfvj $BACKUP_DIR/metadata.`date +%Y%m%d`.tar.
bz2 -C $BACKUP_DIR fsimage edits

In order to restore the NameNode state from a metadata backup:

1.	 Stop the NameNode daemon if it is running from your NameNode server:
hadoop@master1$ $HADOOP_HOME/bin/hadoop-daemon.sh stop namenode

If the previous command does not work for any reason, just kill the Java process of
NameNode.

Chapter 4

127

2.	 Copy metadata from the backup to the dfs.name.dir directory on the
NameNode server:
hadoop@master1$ cd /usr/local/hadoop/var/dfs/name/current

hadoop@master1$ tar cfvj /restore/namenode/metadata-org.tar.bz2
fsimage edits

hadoop@master1$ scp client1:/backup/namenode/metadata.`date
+%Y%m%d`.tar.bz2 ./

hadoop@master1$ tar xfvj metadata.`date +%Y%m%d`.tar.bz2

hadoop@master1$ rm metadata.`date +%Y%m%d`.tar.bz2

3.	 Start the NameNode daemon again:
hadoop@master1$ $HADOOP_HOME/bin/hadoop-daemon.sh start namenode

4.	 Run hadoop fsck to check inconsistencies after the NameNode server has
been restarted:
hadoop@master1$ $HADOOP_HOME/bin/hadoop fsck / -files | grep
CORRUPT

If many files have been corrupted, as you can see from the web UI, NameNode might
continue in safe mode until you explicitly turn it off:

Backing Up and Restoring HBase Data

128

5.	 Turn off safe mode by explicitly using the following command:
hadoop@master1$ $HADOOP_HOME/bin/hadoop dfsadmin -safemode leave

Safe mode is OFF

The web UI will not state that safe mode is turned off; instead, it may show a warning
message on the page:

6.	 Run hadoop fsck -move to move the corrupt files, if any, to /lost+found:
hadoop@master1$ $HADOOP_HOME/bin/hadoop fsck / -move

The filesystem under path '/' is CORRUPT

7.	 Run hadoop fsck again, after the delete, to confirm that no inconsistency exists:
hadoop@master1$ $HADOOP_HOME/bin/hadoop fsck /

The filesystem under path '/' is HEALTHY

How it works...
NameNode supports getting its filesystem image and edit log from its web UI. From step 1 to
4, we use this feature to fetch the NameNode metadata to the local disk on the client node,
and then make a tarball of the fetched metadata as a backup.

In order to restore the metadata from a backup, we first stop the NameNode daemon in step
5, and then in step 6, move the original metadata to our working directory, just in case you
want to cancel the restoration for any reason. After that, we copy the backup to the $dfs.
name.dir/current directory, where the NameNode metadata is stored, and then start the
NameNode daemon again.

Chapter 4

129

If there are edits that happened after our latest backup, the metadata we restored will not
match the actual data on DataNodes, in which case our HDFS becomes inconsistent. We run
the hadoop fsck command to check the HDFS inconsistencies in step 8. If the path and the
-files option are provided, fsck will check the inconsistencies under the specified path
and print the file it is checking.

If corrupt files are detected, we need to delete them to make HDFS consistent. If many files
have been corrupted, NameNode will not be able to reach the threshold of the reported blocks
ratio that it will keep in safe mode. Before we can delete the corrupt files, we need to turn off
the NameNode safe mode explicitly. This is done by the hadoop dfsadmin command in step
9. Dfsadmin is an HDFS command for administration tasks. Running it with the -safemode
leave option turns off the NameNode safe mode explicitly.

As the safe mode is turned off, we can use the fsck command with the -move option to
move the corrupt files to /lost+found. After that, fsck should report the filesystem as
healthy, and you should be able to access the HDFS.

There's more...
Restoring the NameNode state from a metadata backup can take a long time to complete.
This is because the restart of a NameNode daemon will at first load the filesystem image from
disk, and then replay the edit log to reconstruct the final system state. The edit log can be
huge and the replaying can take a long time.

HDFS has a SecondaryNameNode component for this issue. Note that SecondaryNameNode
is not a backup daemon for the NameNode. It periodically (default 1 hour) compacts the edit
log into a checkpoint, so that a restart of NameNode then loads the latest checkpoint, and a
much smaller edit log that contains only the edits since the checkpoint. With this compaction
capability, SecondaryNameNode makes the backup and restoring of NameNode metadata
much more efficient.

SecondaryNameNode, by default, runs on the same node as NameNode. We recommend you
to run it on a separate server from the NameNode server, for scalability and durability. It is
configured in the masters file under Hadoop's configuration directory:

hadoop@master1$ vi $HADOOP_HOME/conf/masters

secondary_namenode_host

In order to start SecondaryNameNode in this file, add the hostname you want, and restart
HDFS to apply the change.

Backing Up and Restoring HBase Data

130

Backing up region starting keys
Besides the tables in HBase, we should back up the region starting keys for each table. Region
starting keys determine the data distribution in a table, as regions are split by region starting
keys. A region is the basic unit for load balancing and metrics gathering in HBase.

There is no need to back up the region starting keys if you are performing full shutdown backups
using distcp, because distcp also copies region boundaries to the backup cluster.

But for the live backup options, backing up region starting keys is as important as the table
data, which is especially true if your data distribution is difficult to calculate in advance
or your regions are manually split. It is important because live backup options, including
the CopyTable and Export utilities use the normal HBase client API to restore data in a
MapReduce job. The restoring speed can be improved dramatically if we precreate well-split
regions before running the restore MapReduce job.

We will describe how to back up an HBase table's region starting keys in this recipe. We will
create a script to get the region starting keys from an HBase table.

Getting ready
Start your HBase cluster, create a table, and put some data in it. The table needs to have
several regions in it so that we can verify whether our script works well or not. If your table has
only one region, manually split it into several regions from the table page of the HBase web UI.
We will use the hly_temp table in this recipe; its web UI page looks like the web page shown
in the following screenshot:

Chapter 4

131

We will back up the hly_temp table's region starting keys under the /backup/hly_temp
directory on our client node. Create this directory and grant write privilege to the user who will
run the backup script.

How to do it...
Follow these instructions to back up the hly_temp table's region starting keys:

1.	 Create a region-start-keys.rb script file:
include Java
import org.apache.hadoop.hbase.util.Bytes
import org.apache.hadoop.hbase.client.HTable

table_name = ARGV[0]
output_file = ARGV[1]

table = HTable.new(table_name)
starting_keys = table.getStartKeys()
f = File.open(output_file, 'w')
for starting_key in starting_keys
 str_starting_key = Bytes.toString(starting_key)
 f.puts str_starting_key
end

f.close()
table.close()

2.	 Run the script on the client node:
hac@client1 $HBASE_HOME/bin/hbase org.jruby.Main region-starting-
keys.rb hly_temp /backup/hly_temp/regions

3.	 A file (/backup/hly_temp/regions) containing the region starting keys will be
created by the script. The file looks like as follows:
hac@client1$ cat /backup/hly_temp/regions

USW000128350706

USW000138830523

USW000149221223

Backing Up and Restoring HBase Data

132

How it works...
To get the region starting keys of an HBase table, we need to access the HBase Java client API
from the script. There are several JVM-based scripting languages, such as Jython, Scala, and
JRuby. Our script created in step 1 was written in JRuby. We chose JRuby because, as HBase
Shell is written in JRuby, there is no need to introduce another language and its dependencies.

In the script, we create an HTable instance to access our hly_temp table. The HTable class
is used to communicate with a single HBase table. We only pass the table name (hly_temp)
to the constructor of the HTable class. The ZooKeeper quorum connection string for the
HBase cluster is set to the default value, which is achieved from HBase's configuration file
(hbase-site.xml) on the client, by using the hbase command. If the HTable instance was
created successfully, a connection session to the ZooKeeper quorum will be established. After
that, we can communicate to our hly_temp table via the HTable instance.

Next, we call the getStartKeys() method of the HTable instance, which returns an array
of region starting keys for the table. A region starting key is a row key represented by a byte
array in HBase.

In the next step of the script, we convert the keys to strings using the Bytes class. The Bytes
class is a utility class converting other objects from/to a byte array. This class is useful because
all Key/Values are stored as byte array in HBase, regardless of their original data type.

In the last step of the script, we write the converted strings to the output file, and finally close
the connection to the cluster.

In step 2, we execute the script by running the hbase command. The hbase command
is used to run a Java class in the current HBase context. To run a JRuby script, we pass
org.jruby.Main—the main class of JRuby, to the hbase command. Our script is passed
to the org.jruby.Main class and run in the HBase context. The table name and output
file's path are also passed to the script via the command line.

As you can see from the output of step 3, the region starting keys we wrote to the output file
are the same as what we have seen on the table's administration web page.

See also
ff Precreating regions using your own algorithm recipe, in Chapter 9, Advanced

Configurations and Tuning

Cluster replication
HBase supports cluster replication, which is a way to copy data between the HBase clusters.
For example, it can be used as a way to easily ship edits from a real-time frontend cluster to a
batch purpose cluster on the backend.

Chapter 4

133

The basic architecture of an HBase replication is very practical. The master cluster captures
write ahead log (WAL), and puts replicable Key/Values (edits of the column family with
replication support) from the log into the replication queue. The replication message is then
sent to the peer cluster, and then replayed on that cluster using its normal HBase client API.
The master cluster also keeps the current position of the WAL being replicated in ZooKeeper
for failure recovery.

Because the HBase replication is done asynchronously, the clusters participating in the
replication can be geographically distant. It is not a problem if the connections between them
are offline for some time, as the master cluster will track the replication, and recover it after
connections are online again. This means that the HBase replication can serve as a disaster
recovery solution at the HBase layer.

We will look at how to enable the replication of a table between two clusters, in this recipe.

Getting ready
You will need two HBase clusters—one is the master, and the other is the replication peer
(slave) cluster. Here, let's say the master is master1:2181/hbase, and the peer is
l-master1:2181/hbase; the two clusters do not need to be of the same size.

ZooKeeper should be handled independently, and not by HBase. Check the HBASE_MANAGES_ZK
setting in your hbase-env.sh file, and make sure it is set to false.

All machines, including the ZooKeeper clusters and HBase clusters, need to be able to reach
other machines. Make sure both clusters have the same HBase and Hadoop major version.
For example, having 0.92.1 on the master and 0.92.0 on the peer is correct, but 0.90 is not.

How to do it...
Follow these instructions to replicate data between HBase clusters:

1.	 Add the following code to HBase's configuration file (hbase-site.xml) to enable
replication on the master cluster:
hadoop@master1$ vi $HBASE_HOME/conf/hbase-site.xml

<property>
 <name>hbase.replication</name>
 <value>true</value>
</property>

2.	 Sync the change to all the servers, including the client nodes in the cluster, and
restart HBase.

Backing Up and Restoring HBase Data

134

3.	 Connect to HBase Shell on the master cluster and enable replication on the table you
want to replicate:
hac@client1$ $HBASE_HOME/bin/hbase shell

hbase> create 'reptable1', { NAME => 'cf1', REPLICATION_SCOPE =>
1}

If you are using an existing table, alter it to support replication:
hbase> disable 'reptable1'

hbase> alter 'reptable1', NAME => 'cf1', REPLICATION_SCOPE => '1'

hbase> enable 'reptable1'

4.	 Execute steps 1 to 3 on the peer (slave) cluster as well. This includes enabling
replication, restarting HBase, and creating an identical copy of the table.

5.	 Add a peer replication cluster via HBase Shell from the master cluster:
hbase> add_peer '1', 'l-master1:2181:/hbase'

6.	 Start replication on the master cluster by running the following command:
hbase> start_replication

7.	 Add some data into the master cluster:
hbase> put 'reptable1', 'row1', 'cf1:v1', 'foo'

hbase> put 'reptable1', 'row1', 'cf1:v2', 'bar'

hbase> put 'reptable1', 'row2', 'cf1:v1', 'foobar'

You should be able to see the data appear in the peer cluster table in a short while.

8.	 Connect to HBase Shell on the peer cluster and do a scan on the table to see if the
data has been replicated:
hac@l-client1$ $HBASE_HOME/bin/hbase shell

hbase> scan ' reptable1'

ROW COLUMN+CELL

 row1 column=cf1:v1, timestamp=1326095294209, value=foo

 row1 column=cf1:v2, timestamp=1326095300633, value=bar

 row2 column=cf1:v1, timestamp=1326095307619, value=foobar

2 row(s) in 0.0280 seconds

9.	 Verify the replicated data on the two clusters by invoking the verifyrep command
on the master cluster:
hac@client1$ $HADOOP_HOME/bin/hadoop jar $HBASE_HOME/hbase-
0.92.1.jar verifyrep 1 reptable1

12/01/09 16:50:22 INFO replication.ReplicationZookeeper:
Replication is now started

Chapter 4

135

…

12/01/09 16:50:24 INFO mapred.JobClient: Running job:
job_201201091517_0005

12/01/09 16:50:25 INFO mapred.JobClient: map 0% reduce 0%

12/01/09 16:50:46 INFO mapred.JobClient: map 100% reduce 0%

12/01/09 16:50:51 INFO mapred.JobClient: Job complete:
job_201201091517_0005

12/01/09 16:50:51 INFO mapred.JobClient: Counters: 19

…

12/01/09 16:50:51 INFO mapred.JobClient: File Output Format
Counters

12/01/09 16:50:51 INFO mapred.JobClient: Bytes Written=0

12/01/09 16:50:51 INFO mapred.JobClient: org.apache.hadoop.
hbase.mapreduce.replication.VerifyReplication$Verifier$Counters

12/01/09 16:50:51 INFO mapred.JobClient: GOODROWS=2

…

We skipped some output of the verifyrep command to make it clearer.

10.	 Stop the replication on the master cluster by running the following command:
hbase> stop_replication

11.	 Remove the replication peer from the master cluster by using the following command:
hbase> remove_peer '1'

How it works...
Replication is still considered an experimental feature, and it is disabled by default. In order
to enable it, we added the hbase.replication property into HBase's configuration file
(hbase-site.xml) and set it to true. In order to apply the change, we sync it to all nodes,
including the client node in the cluster, and then restart HBase in step 2. Data replication is
configured at column family level. Setting a column family with the REPLICATION_SCOPE =>
'1' property enables that column family to support replication. We did this in step 3, by either
altering an existing table, or creating a new one with the replication scope set to 1.

For the peer cluster, we did the same procedure in step 4—enabling replication support and
creating an identical table with the exact same name— for those replicated families.

Backing Up and Restoring HBase Data

136

With the preparation done between steps 1 and 4, we add the replication peer cluster to
the master cluster in step 5, so that edits can be shipped to it subsequently. A replication
peer is identified by an ID (1 in our case) and a full description of the cluster's ZooKeeper
quorum, whose format is hbase.zookeeper.quorum:hbase.zookeeper.client.
port:zookeeper.znode.parent, such as server,server2,server3:2181:/hbase.
After that, we start the actual shipping of edit records to the peer cluster.

To test our replication setting, we put some data into the table, and after a while, as you can
see from the output of the scan command on the peer cluster, data has been shipped to the
peer cluster correctly. While this is easy to do when looking at only a few rows, the better way
is to use the verifyrep command to do a comparison between the two tables. The following
is the help description of the verifyrep command:

hac@client1$ $HADOOP_HOME/bin/hadoop jar $HBASE_HOME/hbase-0.92.1.jar
verifyrep

Usage: verifyrep [--starttime=X] [--stoptime=Y] [--families=A] <peerid>
<tablename>

Options:

 starttime beginning of the time range

 without endtime means from starttime to forever

 stoptime end of the time range

 families comma-separated list of families to copy

Args:

 peerid Id of the peer used for verification, must match the one
given for replication

 tablename Name of the table to verify

Examples:

 To verify the data replicated from TestTable for a 1 hour window with
peer #5

 $ bin/hbase org.apache.hadoop.hbase.mapreduce.replication.
VerifyReplication --starttime=1265875194289 --stoptime=1265878794289 5
TestTable

Chapter 4

137

Running verifyrep from the hadoop jar command, with parameters of the peer ID
(the one used to establish a replication stream in step 5) and the table name, will start a
MapReduce job to compare each cell in the original and replicated tables. Two counters
are provided by using the verifyrep command—Verifier.Counters.GOODROWS and
Verifier.Counters.BADROWS. Good rows means that the rows between the two tables
were an exact match, while the bad rows are the rows that did not match. As our data was
replicated successfully, we got the following output:

12/01/09 16:50:51 INFO mapred.JobClient: GOODROWS=2

If you got some bad rows, check the MapReduce job's map log to see the reason.

Finally, we stop the replication and remove the peer from the master cluster. Stopping
the replication will still complete shipping all the queued edits to the peer, but not accept
further processing.

There's more...
In order to dig deeper into the architecture used for HBase cluster replication, refer to the
following document—http://hbase.apache.org/replication.html.

5
Monitoring and

Diagnosis

In this chapter, we will focus on:

ff Showing the disk utilization of HBase tables

ff Setting up Ganglia to monitor an HBase cluster

ff OpenTSDB—using HBase to monitor an HBase cluster

ff Setting up Nagios to monitor HBase processes

ff Using Nagios to check Hadoop/HBase logs

ff Simple scripts to report the status of the cluster

ff Hot region—write diagnosis

Introduction
It is vital to monitor the status of an HBase cluster to ensure that it is operating as expected.
The challenge of monitoring a distributed system, besides taking the case of each server
separately, is that you will also need to look at the overall status of the cluster.

HBase inherits its monitoring APIs from Hadoop's metrics framework. It exposes a
large amount of metrics, giving the insight information of the cluster. These metrics are
subsequently configured to expose other monitoring systems, such as Ganglia or OpenTSDB,
to gather and make them visible through graphs. Ganglia/OpenTSDB graphs help us
understand the insight of the cluster, both for a single server and the entire cluster.

Monitoring and Diagnosis

140

Graphs are good for getting an overview of the historical status, but we also need a
mechanism to check the current state of the cluster, and send us notifications or take some
automatic actions if the cluster has some problem. A good solution for this kind of monitoring
task is Nagios. Nagios sits at the center of a monitoring system to watch cluster resources and
alert users.

We will describe how to monitor and diagnose an HBase cluster with Ganglia, OpenTSDB,
Nagios, and other tools. We will start with a simple task to show the disk utilization of HBase
tables. We will install and configure Ganglia to monitor HBase metrics and show an example
using Ganglia graphs. We will also set up OpenTSDB, which is similar to Ganglia but more
scalable, as it is built on top of HBase.

We will set up Nagios to check everything we want to check, including HBase-related daemon
health, Hadoop/HBase logs, HBase inconsistencies, HDFS health, and space utilization.

In the last recipe, we will describe an approach to diagnose and fix the frequently asked hot
spot region issue.

Showing the disk utilization of HBase tables
In this recipe, we will show the answer to the following simple question:

How much space is HBase or a single HBase table using on HDFS?

It is a really simple task, but you might need to answer this question frequently. We will give
you a tip to make it a bit easier.

Getting ready
Start your HBase cluster and log in to your HBase client node. We assume your HBase root
directory on HDFS is /hbase.

How to do it...
The instructions to show the disk utilization of HBase tables are as follows:

1.	 Show the disk utilization for all HBase objects by executing the following command:
$ $HADOOP_HOME/bin/hadoop fs -dus /hbase

hdfs://master1:8020/hbase 1016842660

2.	 Show the disk utilization of a particular HBase table (hly_temp) by executing the
following command:
$ $HADOOP_HOME/bin/hadoop fs -dus /hbase/hly_temp

hdfs://master1:8020/hbase/hly_temp 54738763

Chapter 5

141

3.	 Show a list of the regions of an HBase table and their disk utilization, by executing
the following command:
$ $HADOOP_HOME/bin/hadoop fs -du /hbase/hly_temp

Found 3 items

27709729 hdfs://master1:8020/hbase/hly_temp/

0b593d9dc044f1fe011ec0c902f68fc5

13545245 hdfs://master1:8020/hbase/hly_temp/

5740a39d9eaa59c4175487c14e0a272a

13483789 hdfs://master1:8020/hbase/hly_temp/

5ef67f6d2a792fb0bd737863dc00b6a7

How it works...
All HBase objects are stored under the HBase root directory on HDFS. The HBase root
directory is configured by the hbase.rootdir property in the HBase configuration file
(hbase-site.xml). By default, the root directory is /hbase. Thus the disk utilization of all
HBase objects equals the HDFS usage under the HBase root directory.

In step 1, to show the HDFS usage, we ran the hadoop fs -dus command passing our HBase
root directory (/hbase) to it. The amount of space under the /hbase directory is shown in the
output in bytes.

In step 2, to show the hly_temp table's disk utilization, we just passed /hbase/hly_temp
to the hadoop fs -dus command. This is possible because a particular HBase table's
objects are stored under the ${hbase.rootdir}/<table_name> directory on HDFS.

Step 3 is a little different. We ran the hadoop fs -du command to show a list of the regions
of the hly_temp table and their disk utilization. The hadoop fs -du command is similar
to the hadoop fs -dus command, but displays the amount of space for each directory/file
under a specific path.

There's more...
As you can see from the output, the disk utilization is displayed in bytes, which is not human-
friendly, especially when it is a large number. The following is a simple JRuby script, used to
convert the output to a humanly readable format:

1.	 Create a dus.rb file with the following content:
$ vi dus.rb

include Java
import org.apache.hadoop.util.StringUtils

path = ARGV[0]

Monitoring and Diagnosis

142

dus = %x[$HADOOP_HOME/bin/hadoop fs -dus #{path}]
splited = dus.split
byteDesc = StringUtils.byteDesc(splited[1].to_i)
puts splited[0] + "\t" + byteDesc

2.	 Run dus.rb to show HBase's disk utilization with a humanly readable output:
$ $HBASE_HOME/bin/hbase org.jruby.Main dus.rb /hbase

hdfs://master1:8020/hbase 969.74 MB

In dus.rb, we simply execute the same hadoop fs -dus command to determine the amount
of space HBase is using. After that, we use the org.apache.hadoop.util.StringUtils
class to convert the value to a human-friendly format, and then display the converted value
to output.

Setting up Ganglia to monitor an HBase
cluster

One of the most important parts of HBase operation tasks is to monitor the cluster and make
sure it is running as expected. HBase inherits its monitoring APIs from Hadoop. It exposes
a lot of metrics, which gives the insight information of the cluster's current status, including
region-based statistics, RPC details, and the Java Virtual Machine (JVM) memory and
garbage collection data.

These metrics are then subsequently configured to expose to JMX and Ganglia, which makes
the metrics visible through graphs. Ganglia is the recommended tool for monitoring large-
scale clusters. Ganglia itself is a scalable, distributed system; it is said to be able to handle
clusters with 2000 nodes.

We will describe how to use Ganglia to monitor an HBase cluster in this recipe. We will
install Ganglia Monitoring Daemon (Gmond) on each node in the cluster, which will gather
the server and HBase metrics of that node. These metrics are then subsequently polled to
Ganglia Meta Daemon (Gmetad) servers, where the metrics are computed and saved in
round-robin, time-series databases using round-robin database tool (RRDtool). We will set up
only one Gmetad node here, but it is possible to scale out to multiple Gmetad nodes, where at
each Gmetad node it aggregates its assigned Gmond nodes' results.

We will also install a PHP web frontend on the same Gmetad server, so that we can access
Ganglia from web browsers. Finally, we will describe how to configure HBase to expose its
metrics to Ganglia.

Chapter 5

143

Getting ready
Besides the servers in the cluster, you will need a Gmetad server to run the Gmetad daemon
on it. In our demonstration, we will use master2 as the Gmetad server.

Add a ganglia user as the owner of the Ganglia daemons:

adduser --disabled-login --no-create-home ganglia

On all nodes you want to monitor, download Ganglia-3.0.7 from: http://downloads.
sourceforge.net/project/ganglia/ganglia%20monitoring%20core/3.0.7%20
%28Fossett%29/ganglia-3.0.7.tar.gz.

Extract the downloaded tarball. You will need root privileges on all the servers to install Ganglia.

How to do it...
The instructions to set up Gmond are as follows; they need to be performed on all the nodes
you want to monitor:

1.	 Install the dependencies:
apt-get install build-essential libapr1-dev libconfuse-dev
libexpat1-dev python-dev

2.	 Build and install Ganglia:
cd ganglia-3.0.7

./configure

make

make install

3.	 Generate a default configuration file:
gmond --default_config > /etc/gmond.conf

4.	 Make the following changes to the generated configuration file:
vi /etc/gmond.conf

globals {
user = ganglia
}
cluster {
name = "hbase-cookbook"
}
udp_send_channel {
mcast_join = 239.2.11.71
host = master2

Monitoring and Diagnosis

144

port = 8649
ttl = 1
}
udp_recv_channel {
mcast_join = 239.2.11.71
port = 8649
bind = 239.2.11.71
}

5.	 Start Gmond:
gmond

Set up Gmetad by using the following instructions. Only execute them on the
Gmetad nodes.

6.	 Install the dependencies:
apt-get install build-essential libapr1-dev libconfuse-dev
libexpat1-dev python-dev librrd2-dev

7.	 Build and install Gmetad:
cd ganglia-3.0.7

./configure --with-gmetad

make

make install

8.	 Copy the sample configuration file (gmetad.conf) to its default location:
cp ganglia-3.0.7/gmetad/gmetad.conf /etc/gmetad.conf

9.	 Find the following settings and change them, as shown in the next snippet:
vi /etc/gmetad.conf

data_source "hbase-cookbook" master2
gridname "hbase-cookbook"
setuid_username "ganglia"

10.	 Create a directory for the round-robin databases, to store collected data:
mkdir -p /var/lib/ganglia/rrds

chown -R ganglia:ganglia /var/lib/ganglia

11.	 Start Gmetad:
gmetad

The following are instructions to set up the Ganglia web frontend. Perform these
steps on your web frontend node only. It is usually the same as the Gmetad node.

Chapter 5

145

12.	 Install the dependencies:
apt-get install rrdtool apache2 php5-mysql
libapache2-mod-php5 php5-gd

13.	 Copy the PHP files of the Ganglia web frontend to the location where Apache's web
files are stored:
cp -r ganglia-3.0.7/web /var/www/ganglia

14.	 Restart the Apache web server:
/etc/init.d/apache2 restart

You should be able to access your Ganglia web frontend page at:
http://master2/ganglia/.

The Ganglia frontend page has all the graphs of metrics that Ganglia has collected,
as shown in the following screenshot:

Lastly, the following instructions are for HBase to export its metrics to Ganglia:

Monitoring and Diagnosis

146

15.	 Edit the HBase metrics configuration file (hadoop-metrics.properties)
as follows:
hadoop@master1$ vi $HBASE_HOME/conf/hadoop-metrics.properties

hbase.extendedperiod = 3600

hbase.class=org.apache.hadoop.metrics.ganglia.GangliaContext
hbase.period=10
hbase.servers=master2:8649

jvm.class=org.apache.hadoop.metrics.ganglia.GangliaContext
jvm.period=10
jvm.servers=master2:8649

rpc.class=org.apache.hadoop.metrics.ganglia.GangliaContext
rpc.period=10
rpc.servers=master2:8649

16.	 Sync hadoop-metrics.properties to the slave nodes and restart HBase. You will
find that HBase metrics are now collected by Ganglia automatically, as shown in the
following screenshot:

Chapter 5

147

How it works...
When this book was being written, HBase only supported Ganglia 3.0.x versions. This is
because the network protocol changed in the newer 3.1.x releases. That's why we have to
install Ganglia from the source rather than using a package management system.

We generated a default configuration file by executing the gmond --default_config
command in step 3. The file is created at /etc/gmond.conf, which is the default
configuration file the Gmond daemon will read.

In step 4, we set the owner of the Gmond daemon as the ganglia user and the name of the
cluster to hbase-cookbook. Instead of the default UDP multicast communication method
we use between Gmonds, we have configured it to use unicast messages. This is done by
commenting out the multicast address and time to live (TTL) settings, and adding a dedicated
master Gmond node (master2) in the gmond.conf file. We chose unicast because multicast
is not supported in the Amazon EC2 environment. Another reason is that using unicast is good
for a large cluster, say a cluster with more than a hundred nodes.

Gmond needs to be installed and started on all the nodes you want to monitor. Gmond, by
default, monitors some basic server metrics on that node, such as load averages and CPU/
memory/disk usage.

To install Gmetad, we added the --with-gmetad option to compile Gmetad from the source.
In steps 8 and 9, we copied the sample configuration file (gmetad.conf) to the default
location /etc/gmetad.conf, and added some changes, including setting the data source,
grid name, and owner user of the Gmetad daemon. Note that when using unicast, you need to
set data_source to the dedicated Gmond server configured in the Gmond setup.

In step 10, we created the default directory (/var/lib/ganglia/rrds), where Gmetad
stores the collected data in round-robin databases. After that, we started the Gmetad daemon
on the Gmetad server (master2).

The last part of the Ganglia setup is the PHP web frontend. It is usually set up on the same
Gmetad node, so that it can access the round-robin databases created by the Gmetad
daemon. This was shown in steps 12 through 14 of the preceding instructions. You should
now be able to access the Ganglia web page at http://master2/ganglia/, where
master2 is the host running Gmetad. You will only see the basic graphs of the Gmond nodes,
because HBase is not yet configured to expose its metrics to Ganglia.

It is set up in the hadoop-metrics.properties configuration file to integrate HBase and
Ganglia. Do not change the filename, as HBase inherits its monitoring APIs from Hadoop.
In this file, we directed HBase to use the org.apache.hadoop.metrics.ganglia.
GangliaContext class to send its metrics collected by the server process to the Gmond
daemon running on master2:8649, which is the dedicated Gmond node we specified earlier.

Sync hadoop-metrics.properties to the slave nodes and then restart HBase; you will
find HBase metric graphs on the Ganglia web page now.

Monitoring and Diagnosis

148

There are some graphs you should pay more attention to, such as the following:

ff CPU and memory usage

ff JVM GC count and time

ff HBase RegionServer compaction queue size

ff HBase RegionServer flush queue size

For example, the compaction queue size indicates how many Stores have been queued
for compaction in a region server. Usually this should be quite low (up to several tens
of a RegionServer). When the server is overloaded, or has I/O issues, you will see a
spike on the graph.

The following screenshot shows the CPU usage, JVM GC time, and HBase compaction
queue size of a region server, after several rounds of heavy writes rush. As you can see, the
CPU usage and long garbage collection time indicates that the server is overloaded. This
significantly increased the compaction queue size.

Chapter 5

149

There's more...
Ganglia can be used to monitor Hadoop too. The setup is similar to what we described in this
recipe. The following Hadoop metrics can be monitored by Ganglia:

ff HDFS metrics

ff MapReduce metrics

ff JVM metrics

ff Hadoop RPC metrics

See also
In this chapter:

ff OpenTSDB—using HBase to monitor an HBase cluster

OpenTSDB—using HBase to monitor an
HBase cluster

OpenTSDB is an extremely scalable Time Series Database (TSDB) built on top of HBase.
Like Ganglia, OpenTSDB can be used to monitor various systems including HBase. As
compared to Ganglia, which stores its data in RRDtool, OpenTSDB leverages HBase's
scalability to monitor it at a larger scale. The following is an introduction from the
OpenTSDB homepage (http://opentsdb.net/):

Thanks to HBase's scalability, OpenTSDB allows you to collect many thousands
of metrics from thousands of hosts and applications, at a high rate (every few
seconds). OpenTSDB will never delete or downsample data and can easily store
billions of data points.

To use OpenTSDB, we need to write little scripts to collect data from our systems, and push
them into OpenTSDB every few seconds. Tcollector is a framework for collecting metrics from
Linux, MySQL, Hadoop, HBase, and so on for OpenTSDB. It is interesting that OpenTSDB uses
HBase (to store metrics) to monitor HBase itself.

In this recipe, we will describe how to set up OpenTSDB and Tcollector and use them
to monitor our HBase cluster. We will only start one Time Series Daemon (TSD) in the
demonstration. However, it is possible to run more TSDs on multiple servers as they are
independent from each other.

Monitoring and Diagnosis

150

Getting ready
You will need a server to run TSD on. In our demonstration, we will use master2 as the
TSD server.

On the TSD server (master2), add a tsdb user as the owner of the TSD daemon. We will
have all OpenTSDB files and data stored under /usr/local/opentsdb:

root# adduser --disabled-login --no-create-home tsdb

root# mkdir /usr/local/opentsdb

root# chown tsdb:tsdb /usr/local/opentsdb

We will install Tcollector under the /usr/local/tcollector directory.

You need root privileges on the TSD server and on all the nodes you want to monitor, such as
Hadoop DataNodes and HBase RegionServers.

Finally, make sure your HBase cluster is running. We assume your HBASE_HOME environment
variable is /usr/local/hbase/current and your ZooKeeper quorum runs at
master1:2181.

How to do it...
The instructions for setting up OpenTSDB and Tcollector are as follows:

ff Set up OpenTSDB on the TSD server: First we will install and configure OpenTSDB on
the TSD server (master2) as follows:

1.	 Install the dependencies:
hac@master2$ sudo apt-get install gnuplot

hac@master2$ sudo apt-get install autoconf

2.	 Download the latest version of OpenTSDB from https://github.com/
stumbleupon/opentsdb. We assume the downloaded directory is $TSDB_
INSTALL. To build and install OpenTSDB, execute the following commands:
hac@master2$ cd $TSDB_INSTALL

hac@master2$ PATH=$PATH:$JAVA_HOME/bin

hac@master2$./build.sh

hac@master2$ cd build

hac@master2$ sudo make install

Chapter 5

151

3.	 Create OpenTSDB tables in HBase:
hac@master2$ export COMPRESSION=LZO

hac@master2$ export HBASE_HOME=/usr/local/hbase/current

hac@master2$ sh $TSDB_INSTALL/src/create_table.sh

This step requires the HBase cluster to support LZO compression. If your
cluster does not support LZO, don't invoke the first command. Refer to the
Using compression recipe in Chapter 8, Basic Performance Tuning, on how
to add LZO support to HBase.

4.	 Create directories where OpenTSDB stores its files and then start the
TSD daemon:
hac@master2$ sudo su tsdb

tsdb@master2$ cd /usr/local/opentsdb

tsdb@master2$ PATH=$PATH:$JAVA_HOME/bin

tsdb@master2$ tsdtmp=/usr/local/opentsdb/var

tsdb@master2$ mkdir -p "$tsdtmp"

tsdb@master2$ tsdstatic=/usr/local/share/opentsdb/static

tsdb@master2$ nohup tsdb tsd --port=4242
--staticroot="$tsdstatic"

--cachedir="$tsdtmp" --zkquorum=master1:2181 &

5.	 To verify our installation, create OpenTSDB's own metrics, by executing the
following command:
tsdb@master2$ echo stats | nc -w 1 localhost 4242 \

 | awk '{ print $1 }' | sort -u \

 | xargs tsdb mkmetric

metrics tsd.compaction.count: [0, 0, 2]

metrics tsd.connectionmgr.connections: [0, 0, 3]

metrics tsd.connectionmgr.exceptions: [0, 0, 4]

metrics tsd.hbase.latency_50pct: [0, 0, 5]

metrics tsd.hbase.latency_75pct: [0, 0, 6]

metrics tsd.hbase.latency_90pct: [0, 0, 7]

metrics tsd.hbase.latency_95pct: [0, 0, 8]

metrics tsd.hbase.meta_lookups: [0, 0, 9]

metrics tsd.hbase.root_lookups: [0, 0, 10]

metrics tsd.http.graph.requests: [0, 0, 11]

Monitoring and Diagnosis

152

metrics tsd.http.latency_50pct: [0, 0, 12]

metrics tsd.http.latency_75pct: [0, 0, 13]

metrics tsd.http.latency_90pct: [0, 0, 14]

metrics tsd.http.latency_95pct: [0, 0, 15]

metrics tsd.jvm.ramfree: [0, 0, 1]

metrics tsd.jvm.ramused: [0, 0, 16]

metrics tsd.rpc.errors: [0, 0, 17]

metrics tsd.rpc.exceptions: [0, 0, 18]

metrics tsd.rpc.received: [0, 0, 19]

metrics tsd.uid.cache-hit: [0, 0, 20]

metrics tsd.uid.cache-miss: [0, 0, 21]

metrics tsd.uid.cache-size: [0, 0, 22]

6.	 Create a simple script to collect stats, which OpenTSDB exposes, and use
OpenTSDB to monitor itself:
tsdb@master2$ vi tsdb-status.sh

#!/bin/bash

INTERVAL=15

while :; do

echo stats || exit

sleep $INTERVAL

done | nc -w 30 localhost 4242 \

| sed 's/^/put /' \

| nc -w 30 localhost 4242
tsdb@master2$ chmod 755 tsdb-status.sh

tsdb@master2$ nohup ./tsdb-status.sh &

Chapter 5

153

7.	 By opening your browser and accessing http://master2:4242/, you will
get the OpenTSDB web UI (make sure the 4242 port is open to your client).
Enter a time period of the graph to show in the From and To fields, and
metric name in the Metric (type tsd., and metrics that start with tsd. will
pop up) field, you should get a graph, as shown in the following screenshot:

Monitoring and Diagnosis

154

ff Set up Tcollector: For all nodes you want to monitor, for example Hadoop DataNodes
and HBase RegionServers, we need to set up Tcollector on them. The following steps
need to be executed on every node you want to monitor:

8.	 Download the latest version of Tcollector from http://github.com/
stumbleupon/tcollector, and execute the following commands:
$ sudo mv tcollector /usr/local

$ cd /urs/local/tcollector

9.	 There is a collector, which comes with Tcollector, to collect metrics from the
HBase RegionServer. Grep the following lines in hbase_regionserver_
jmx.py and modify them to fit your environment:
$ sudo vi collectors/0/hbase_regionserver_jmx.py

#USER = "hadoop"
USER = "your_running_user"

CLASSPATH = [

"/usr/lib/jvm/java-6-sun/lib/tools.jar",
 "/your/java_home/lib/tools.jar",
]

jmx = subprocess.Popen(
["java", "-enableassertions", …
 ["/your/java_home/bin/java", "-enableassertions", …

10.	 In Tcollector's startup script, add the DNS name of the server where the TSD
daemon is running:
$ sudo vi startstop

TSD_HOST=master2

11.	 On your TSD server, restart the TSD daemon with the --auto-metric option:
tsdb@master2$ nohup tsdb tsd --port=4242
--staticroot="$tsdstatic" --cachedir="$tsdtmp"
--zkquorum=master1:2181 --auto-metric &

Chapter 5

155

12.	 Start Tcollector to collect metrics and send them to TSD:
$ sudo /usr/local/tcollector/startstop start

After a while, you should be able to view the metrics collected by Tcollector
on the OpenTSDB web UI. The following screenshot shows our HBase
cluster's metrics collected by Tcollector:

Monitoring and Diagnosis

156

How it works...
In steps 1 and 2 of the previous instructions, we installed OpenTSDB and its dependencies.
As OpenTSDB is built on top of HBase, we need to create OpenTSDB's tables in HBase first.
In step 3, we configured OpenTSDB to create its tables with LZO compression support.
This requires the HBase cluster to support LZO. You can also use other HBase-supported
compressions such as Snappy and Gzip, but just make sure that compression is available on
your HBase cluster.

After that, we specify where HBase is installed by setting the HBASE_HOME environment
variable. Then we invoke create_table.sh to actually create the tables in HBase. This
script comes with OpenTSDB; it creates two tables—tsdb and tsdb-uid. You will find these
tables on your HBase master UI.

In step 4, we created the necessary directories and started OpenTSDB with options to use
those directories. We also passed the --zkquorum=master1:2181 option to specify where
our ZooKeeper quorum is placed.

To verify our installation, we set up OpenTSDB to collect its own metrics in steps 5 and 6. By
default, we need to make a metric with the tsdb mkmetric command before we can store
that metric in OpenTSDB. This is a design to prevent making too many metrics, which makes
the metric namespace a mess. As we have shown in step 11, starting the TSD daemon with
the --auto-metric option configures OpenTSDB to automatically make the metrics that it
received.

The TSD daemon accepts the stats command to expose its own metrics. We used this to
make metrics in step 5.

In step 6, we created a simple script to periodically get the TSD daemon's metrics with the
stats command, and then put them into OpenTSDB by using the put command. As shown in
step 7, the collected OpenTSDB's own metrics are displayed as graphs on its web UI.

In steps 8 to 12, we set up Tcollector on each server we want to monitor. Tcollector collects
metrics from Hadoop, HBase, and so on and sends them to the TSD daemons. In Tcollector's
startup script (startstop), we have set TSD_HOST to the DNS name of the TSD server to
specify which server we should send the metrics to.

In step 11, we restarted our TSD daemon with the --auto-metric option, so that metrics
received from Tcollector will automatically be created in OpenTSDB. As we mentioned earlier,
the automatic creation of metrics is not considered a good practice. You should be aware of
what metrics the system is collecting, and create those metrics manually to assure that the
metric namespace is clean.

Finally, we started Tcollector to start collecting metrics and sending them to the TSD daemon.
Metrics will be stored in HBase and shown as graphs on the OpenTSDB's web UI.

Chapter 5

157

There's more...
TSDash is an alternative web UI/dashboard for OpenTSDB. TSDash provides the same
features as the OpenTSDB web UI, but the user interface is a little different. The following
screenshot shows TSDash's UI and an example graph:

TSDash is available at https://github.com/facebook/tsdash/.

Setting up Nagios to monitor HBase
processes

Monitoring HBase-related processes in the cluster is an important part of operating HBase.
A basic monitoring is done by running health checks on the HBase processes and notifying the
administrators if any process is down.

Nagios is a popular, open source monitoring software used to watch hosts, services, and
resources, and alert users when something goes wrong and when it gets recovered again.
Nagios can be easily extended by custom-modules, which are called plugins. The check_tcp
plugin is shipped with the Nagios installation. We can use this plugin to send a ping to a
Hadoop/HBase daemon's RPC port, to check whether the daemon is alive.

Monitoring and Diagnosis

158

In this recipe, we will set up a monitor server running Nagios to watch all the HBase-related
processes in the entire cluster. We will configure Nagios to send us e-mail notifications if any
Hadoop/HBase/ZooKeeper process is down.

Getting ready
You will need a monitor server to run Nagios on. We assume that you are using a Debian machine
with minimal setup. The monitor server needs to be able to communicate with all machines in the
cluster via proper TCP ports. In our demonstration, we will use master2 as the monitor server.

Start the HBase cluster you want to monitor, and then log in to the monitor server. Make sure
you have root privileges on the monitor server.

How to do it...
The instructions to install and configure Nagios to monitor your HBase cluster are as follows:

1.	 Install Nagios on the monitor server using your Linux distribution's package
management tool:
root@master2# apt-get install nagios3 nagios-plugins

During the installation process, you are asked for a nagiosadmin password and
Samba workgroup settings; enter your password and let the Samba workgroup
settings be set as default.

2.	 You should be able to access the Nagios admin page from your web browser using
the URL http://<monitor_host>/nagios3/.

You will be asked for an account and a password; use nagiosadmin and the
password you set in the installation to log in to the Nagios admin page. The Nagios
admin page looks like the following screenshot:

Chapter 5

159

3.	 Add all hosts in the HBase cluster to the Nagios hosts configuration file:
root@master2# vi /etc/nagios3/conf.d/hosts_nagios2.cfg

#master1
define host{
 use generic-host
 host_name master1
 alias master1
 address 10.160.41.205
 hostgroups masters
}

#slave1
define host{
 use generic-host
 host_name slave1
 alias slave1
 address 10.168.71.224
 hostgroups slaves
}

#slave2
define host{
 use generic-host
 host_name slave2
 alias slave2
 address 10.168.107.28
 hostgroups slaves
}

#slave3
define host{
 use generic-host
 host_name slave3
 alias slave3
 address 10.160.39.197
 hostgroups slaves
}

4.	 Add the masters and slaves host groups to Nagios by executing the
following command:
root@master2# vi /etc/nagios3/conf.d/hostgroups_nagios2.cfg

A list of your master servers
define hostgroup {

Monitoring and Diagnosis

160

 hostgroup_name masters
 alias Master servers
 members master1
}

A list of your slave servers
define hostgroup {
 hostgroup_name slaves
 alias Slave servers
 members slave1,slave2,slave3
}

5.	 Configure Nagios to monitor master daemons on the master node. We assume that
the NameNode, ZooKeeper, and HMaster daemons are running on the same master
node (master1).
root@master2# vi /etc/nagios3/conf.d/services_nagios2.cfg

check that NameNode is running
define service{
 use generic-service
 host_name master1
 normal_check_interval 1
 service_description NameNode health
 check_command check_tcp!8020!
}

check that ZooKeeper is running
define service{
 use generic-service
 host_name master1
 normal_check_interval 1
 service_description Zookeeper health
 check_command check_tcp!2181!
}

check that HMaster is running
define service{
 use generic-service
 host_name master1
 normal_check_interval 1
 service_description HMaster health
 check_command check_tcp!60000!
}

Chapter 5

161

6.	 Configure Nagios to monitor slave daemons on all the slave nodes:
root@master2# vi /etc/nagios3/conf.d/services_nagios2.cfg

check that DataNodes are running
define service{
 use generic-service
 hostgroup_name slaves
 normal_check_interval 1
 service_description DataNode health
 check_command check_tcp!50010!
}

check that HRegionServers are running
define service{
 use generic-service
 hostgroup_name slaves
 normal_check_interval 1
 service_description HRegionServer health
 check_command check_tcp!60020!
}

7.	 Change the notification e-mail address; set it to your own:
root@master2# vi /etc/nagios3/conf.d/contacts_nagios2.cfg

define contact{
 contact_name root
 alias Root
 service_notification_period 24x7
 host_notification_period 24x7
 service_notification_options w,u,c,r
 host_notification_options d,r
 service_notification_commands notify-service-by-email
 host_notification_commands notify-host-by-email
 email address@example.com
}

8.	 Install the Postfix e-mail server to let Nagios send out e-mails:
root@master2# apt-get install postfix

During the installation, configure Postfix as Internet Site and set a domain from
where the Nagios mails will be received.

9.	 Verify the configuration changes by executing the following command:
root@master2# /usr/sbin/nagios3 -v /etc/nagios3/nagios.cfg

Total Warnings: 0

Total Errors: 0

Monitoring and Diagnosis

162

10.	 If everything is fine, restart Nagios to apply the configuration changes:
root@master2# /etc/init.d/nagios3 restart

As shown in the following screenshot of the Nagios admin page, Nagios starts checking
the HBase-related processes we just configured. All the hosts, the Hadoop/HBase/
ZooKeeper daemons, and their statuses are now shown on the Nagios admin page:

11.	 To test our Nagios settings, we stop the HRegionServer daemon from one of the
slave nodes:
hadoop@slave1$ hbase-daemon.sh stop regionserver

After a while, the region server that is down will be detected by Nagios and a CRITICAL
status will be shown on the Nagios admin page, as shown in the following screenshot:

Chapter 5

163

You will also receive an alert e-mail from Nagios reporting that a region server is
down, as shown in the following screenshot:

12.	 Now restart the HRegionServer daemon again, to test Nagios' recovery notification:
hadoop@slave1$ hbase-daemon.sh start regionserver

You will find that the status has changed to OK again. You will also receive a recovery
e-mail notification.

How it works...
Nagios is available for many Linux distributions. It is easy to install Nagios using your
distribution's package management system.

Nagios has an admin web page, from where you will see the current status of the cluster you
are monitoring. You can see the status as per host, host group, service, and service group
basis. You can also generate very detailed availability and trend reports on the admin page.
The admin page's URL is http://<monitor_host>/nagios3/, where monitor_host is
the hostname of your monitor server.

In step 3, we added the host definitions of our cluster to the Nagios host configuration file
(hosts_nagios2.cfg), so that Nagios can monitor these remote nodes. We also set up
two host groups in step 4, the masters and slaves host groups. This setting allows us to
monitor servers on a host group basis.

In step 5, we added several service definitions to the services_nagios2.cfg file, to
configure Nagios to monitor the master daemons running on the master node (master1).
A service is monitored by check_command, where we use the predefined check_tcp
command, passing the RPC port of the NameNode/ZooKeeper/HMaster daemons to it.

Monitoring and Diagnosis

164

In a similar way, we defined services to monitor the slave daemons running on the
slave nodes. Note that we used the host group (slaves) we added previously in these
service definitions.

In step 7, we configured Nagios to send notifications to a specific e-mail address by editing the
contacts_nagios2.cfg file. After that, we installed the Postfix e-mail server to let Nagios
send out e-mails. Finally, we restarted Nagios to apply our changes.

Nagios periodically sends a ping to the RPC port of the daemon, which it is monitoring to
check if the daemon is alive. If Nagios cannot get a response from the daemon, it will mark
the status of the daemon as CRITICAL on its admin page, and send an alert e-mail to the
address we specified. This e-mail contains details about the hostname, state of the daemon,
when it detected the CRITICAL status, and other additional information.

There's more...
Using proper ports, you can also configure Nagios to monitor other Hadoop/HBase/ZooKeeper
daemons, such as MapReduce's JobTracker and TaskTracker daemon. The following table
shows a quick reference of the Hadoop daemons you might want to monitor and their default
RPC/HTTP ports:

Daemon Default
port

Configuration
file

Configuration parameter

NameNode 8020 core-site.
xml

fs.default.name

SecondaryNameNode 50090 hdfs-site.
xml

dfs.secondary.http.address

JobTracker 50030 mapred-site.
xml

mapred.job.tracker.http.
address

HMaster 60000 hbase-site.
xml

hbase.master.port

ZooKeeper Quorum 2181 zoo.cfg clientPort

DataNode 50010 hdfs-site.
xml

dfs.datanode.address

TaskTracker 50060 mapred-site.
xml

mapred.task.tracker.http.
address

HRegionServer 60020 hbase-site.
xml

hbase.regionserver.port

Chapter 5

165

Using Nagios to check Hadoop/HBase logs
Hadoop, ZooKeeper, and HBase, all produce logs. These logs include information about
normal operations, as well as warning/error output, and internal diagnostic data. It is ideal to
have a system gathering and processing all these logs to extract useful insight information of
the cluster. A most basic task is to check these logs and get notified if anything abnormal is
shown in them. The NRPE and check_log Nagios plugins can be used to achieve this simple
goal, with a few simple steps.

The description from NRPE plugin's homepage (http://exchange.nagios.org/
directory/Addons/Monitoring-Agents/NRPE--2D-Nagios-Remote-Plugin-
Executor/details) is as follows:

NRPE allows you to remotely execute Nagios plugins on other Linux/Unix machines.
This allows you to monitor remote machine metrics (disk usage, CPU load, etc.).

Using NRPE, we can remotely execute the check_log Nagios plugin on a cluster node to
check the Hadoop/HBase logs generated by that node.

The check_log plugin greps a particular query word incrementally in a specified logfile. If any
line in the logfile matches the query word, check_log reports a critical status to the NRPE
server running on the same node. NRPE then reports it to the Nagios server.

As the scope of the book is limited, we will only demonstrate setting up Nagios to check
HBase's master daemon log in this recipe. You can easily copy it and make a few changes to
set up Nagios to monitor other logs as well.

Getting ready
We assume that you have set up a Nagios monitor server properly, as described in the
previous recipe.

The check_log plugin will save the previously checked logs so that it only needs to check
the newly appended ones. Create a directory on the master node for the check_log plugin to
save its previously checked logs:

root@master1# mkdir -p /var/nagios/oldlog

Check your HBase log4j configuration file (log4j.properties), and find out where your
HBase generates its logfile. We assume that it is /usr/local/hbase/logs/hbase-
hadoop-master-master1.log in this recipe.

Monitoring and Diagnosis

166

How to do it...
To use Nagios to check Hadoop/HBase logs, perform the following steps:

1.	 Install the NRPE plugin on the monitor server (master2):
root@master2# apt-get install nagios-nrpe-plugin

2.	 Install the NRPE server and plugin on the master node of the HBase cluster:
root@master1# apt-get install nagios-nrpe-server nagios-plugins

3.	 Set NRPE on the master node to allow the monitor server to talk to the NRPE daemon
running on it. Change the allowed_hosts setting for the monitor server in the nrpe.
cfg file, and then restart the NRPE daemon. This step is implemented as follows:
root@master1# vi /etc/nagios/nrpe.cfg

#allowed_hosts=127.0.0.1
allowed_hosts=master2
root@master1# /etc/init.d/nagios-nrpe-server restart

4.	 Check the NRPE service before we continue to change the configuration. Do this from
the monitor server.
root@master2# /usr/lib/nagios/plugins/check_nrpe -H master1
-c check_users

The output should be something as follows:
USERS OK - 2 users currently logged in |users=2;5;10;0

5.	 Configure the check_log command on the master node to check the HBase's
master daemon log. Add the following command to the nrpe.cfg file on the master
node. You will need to change the logfile path of the command definition to fit your
environment.
root@master1# vi /etc/nagios/nrpe.cfg

command[check_log_hmaster]=/usr/lib/nagios/plugins/
check_log -F /usr/local/hbase/logs/hbase-hadoop-
master-master1.log -O/var/nagios/oldlog/hbase-hadoop-
master-master1.log -q "ERROR|FATAL"

6.	 Restart the NRPE daemon on the master node to apply our changes:
root@master1# /etc/init.d/nagios-nrpe-server restart

7.	 Add the following service definitions on the monitor server to check the master logs:
root@master2# vi /etc/nagios3/conf.d/services_nagios2.cfg

check HMaster log
define service{
 use generic-service

Chapter 5

167

 host_name master1
 normal_check_interval 1
 service_description HMaster log check
 max_check_attempts 1
 notification_options w,u,c
 check_command check_nrpe_1arg!check_log_hmaster
}

8.	 Restart Nagios on the monitor server to apply the service definitions:
root@master2# /etc/init.d/nagios3 restart

You will find that the added services are shown on your Nagios admin page. Nagios
starts checking the HMaster daemon's log on the master node.

9.	 Test the setup by adding a FATAL entry to the master daemon log:

hadoop@master1$ echo "FATAL ..." >> /usr/local/hbase/logs/hbase-
 hadoop-master-master1.log

After a while, this will be detected by Nagios and a CRITICAL status will be shown on
the Nagios admin page, as shown in the following screenshot:

You will also receive an alert e-mail from Nagios reporting that something is wrong in
the HBase's master daemon log, as shown in the following screenshot:

Monitoring and Diagnosis

168

How it works...
First of all, we need to install the NRPE plugin on the monitor server, and the NRPE server and
Nagios plugins on all nodes in the HBase cluster.

In step 3, in order to allow the monitor server to talk to the NRPE daemon on a remote node,
we edited the nrpe.cfg file on that node, changed the allowed_hosts setting to the
monitor server (master2), and then restarted the NRPE daemon.

After testing the NRPE setting in step 4, we added a check_log_hmaster command
definition in step 5. This is added to the NRPE configuration file (nrpe.cfg) on the node we
want to check (the HBase master node). The check_log_hmaster command executes the
check_log plugin in order to check the HBase's master daemon log.

The following syntax shows the usage of the check_log plugin:

check_log <log_file> <old_log_file> <pattern>

We passed the full path of the HBase master logfile, a temporary old logfile name, and the
regular expression for matching the abnormal status log. We only searched for ERROR or
FATAL in the logfile, which are the keywords when log4j logs errors or fatal information.

In step 7, we defined a service in the services_nagios2.cfg file on the monitor server.
Note that in the service definition:

ff The max_check_attempts option should be 1

ff Do not add the r option to notification_options

These are necessary because of the way the check_log plugin operates.

The check_command option of the service is check_nrpe_1arg!check_log_hmaster,
which means it uses NRPE to execute the check_log_hmaster command on the
remote server.

Restart the NRPE server on the HBase master node and the Nagios daemon on the
monitor server. You will find that Nagios starts monitoring the HBase master log and sends
notifications to us if ERROR or FATAL appears in the logfile.

There's more...
The following are some other logs that you might want monitored by Nagios:

ff The NameNode log on the master node

ff The SecondaryNameNode log on the master node

ff The JobTracker log on the master node

ff The ZooKeeper log on all of the ZooKeeper nodes

Chapter 5

169

ff The RegionServer log on all of the region servers

ff The DataNode log on all of the slave nodes

ff The TaskTracker log on all of the slave nodes

You can simply copy the settings we made in this recipe and change the logfile path to
configure Nagios to monitor these logs. Your Nagios admin page should look like the following
screenshot, if all these logs are monitored by Nagios:

See also
In this chapter:

ff Setting up Nagios to monitor HBase processes

Monitoring and Diagnosis

170

Simple scripts to report the status of the
cluster

Besides the health of the HBase-related daemons and their logs, what you might want to
monitor is the overview of the current status of the cluster. This status basically includes:

ff The HBase hbck result showing whether the HBase tables are consistent

ff The Hadoop fsck result showing whether HDFS is healthy

ff The remaining HDFS space

In this recipe, we will create a check_hbase Nagios plugin to perform the task of monitoring.
We will install our check_hbase plugin on the master node of the cluster, and remotely
execute it with Nagios from the monitor server using the NRPE Nagios plugin.

Getting ready
We assume that you have installed and configured the Nagios NRPE plugin on your monitor
and master server. If you have not installed it yet, refer to the previous recipe for detailed
installation instructions.

How to do it...
The following are instructions to get the status of the HBase cluster and monitor it by Nagios:

1.	 Create a check_hbase script shown as follows:
$ vi check_hbase

#/bin/bash
bin=`dirname $0`
bin=`cd $bin;pwd`
. $bin/utils.sh
HADOOP_HOME=/usr/local/hadoop/current
HBASE_HOME=/usr/local/hbase/current

DFS_REMAINING_WARNING=15
DFS_REMAINING_CRITICAL=5
ABNORMAL_QUERY="INCONSISTENT|CORRUPT|FAILED|Exception"

hbck and fsck report
output=/tmp/cluster-status
$HBASE_HOME/bin/hbase hbck >> $output
$HADOOP_HOME/bin/hadoop fsck /hbase >> $output

Chapter 5

171

check report
count=`egrep -c "$ABNORMAL_QUERY" $output`
if [$count -eq 0]; then
 echo "[OK] Cluster is healthy." >> $output
else
 echo "[ABNORMAL] Cluster is abnormal!" >> $output
 # Get the last matching entry in the report file
 last_entry=`egrep "$ABNORMAL_QUERY" $output | tail -1`
 echo "($count) $last_entry"
 exit $STATE_CRITICAL
fi

HDFS usage
dfs_remaining=`curl -s http://master1:50070/dfshealth.jsp |egrep -
o "DFS Remaining%.*%" | egrep -o "[0-9]*\.[0-9]*"`
dfs_remaining_word="DFS Remaining%: ${dfs_remaining}%"
echo "$dfs_remaining_word" >> $output

check HDFS usage
dfs_remaining=`echo $dfs_remaining | awk -F '.' '{print $1}'`
if [$dfs_remaining -lt $DFS_REMAINING_CRITICAL]; then
 echo "Low DFS space. $dfs_remaining_word"
 exit_status=$STATE_CRITICAL
elif [$dfs_remaining -lt $DFS_REMAINING_WARNING]; then
 echo "Low DFS space. $dfs_remaining_word"
 exit_status=$STATE_WARNING
else
 echo "HBase check OK - DFS and HBase healthy.
 $dfs_remaining_word"
 exit_status=$STATE_OK
fi
exit $exit_status

2.	 Copy the script to the Nagios plugin folder on your master node and change its
execution permission:
root@master1# cp check_hbase /usr/lib/nagios/plugins

root@master1# chmod 755 /usr/lib/nagios/plugins/check_hbase

3.	 Add the check_hbase command to the NRPE configuration on the master node, by
editing the nrpe.cfg file:
root@master1# vi /etc/nagios/nrpe.cfg

command[check_hbase]=/usr/lib/nagios/plugins/check_hbase

Monitoring and Diagnosis

172

4.	 Restart the NRPE daemon on the master node to apply the changes:
root@master1# /etc/init.d/nagios-nrpe-server restart

5.	 Add the check_hbase service definition on the monitor server:
root@master2# vi /etc/nagios3/conf.d/services_nagios2.cfg

check hbck, fsck, and HDFS usage
define service{
 use generic-service
 host_name master1
 normal_check_interval 5
 service_description hbck/fsck report and DFS usage
 check
 check_command check_nrpe_1arg!check_hbase
}

6.	 Restart Nagios to apply the changes:
root@master2# /etc/init.d/nagios3 restart

You will find that this service has been added to your Nagios admin page, as shown in
the following screenshot:

7.	 Change the warning/critical threshold or abnormal query words to test the plugin.
For example, if you change DFS_REMAINING_CRITICAL in the plugin to a very high
value, you will get an alert notification from Nagios after a while. This is implemented
as follows:

$ vi check_hbase

#DFS_REMAINING_CRITICAL=10
DFS_REMAINING_CRITICAL=40

Nagios will detect this CRITICAL status if your remaining HDFS space is lower than
40 percent, as shown in the following screenshot:

Chapter 5

173

How it works...
In the check_hbase script, we firstly execute the hbase hbck command to get a report
of the current status of the HBase deployment. We also run the hadoop fsck /hbase
command to check the HDFS health under the /hbase directory, which is the default root
directory for HBase. The output of these commands is redirected to a temporary file.

We subsequently grep the temporary file, if any ABNORMAL_QUERY was found, and
show the matched count and last matched entry to standard out and then exit with
the STATE_CRITICAL status.

The remaining HDFS space is obtained from the HDFS admin web URL. We access the URL
and extract the remaining space value from the HTML output using regular expression. Lastly,
we compare this value to the warning/critical threshold and generate the proper output
and exit status of the script. The output and exit status will subsequently be used as the
monitoring result of Nagios.

In step 2, we just copied the script to the Nagios plugin directory and made it executable
enough to install as a Nagios plugin. Then in steps 3 and 4, we added the NRPE command
definition and restarted our NRPE server on the master node.

On the monitor server, we defined a Nagios service in the services_nagios2.cfg file, and
then restarted the Nagios daemon to apply the change.

As you can see, Nagios starts monitoring the cluster's status using our check_hbase plugin,
sending out notifications if either the hbck result, fsck result, or the HDFS usage has
anything abnormal.

There's more...
You might also want to monitor the following statuses of the cluster:

ff Available free space in the directory where NameNode stores the filesystem image
(dfs.name.dir in hdfs-site.xml)

ff Available free space in the directory where NameNode stores the transaction (edit) file
(dfs.name.edits.dir in hdfs-site.xml, same as dfs.name.dir by default)

ff The number of regions hosted by a region server; the upper limit should be
about 100

These can be done in a similar way to what we have just discussed.

Monitoring and Diagnosis

174

See also
ff Setting up Nagios to monitor HBase processes in this chapter

ff Using Nagios to check Hadoop/HBase logs in this chapter

ff HBase hbck—checking the health of anHBase cluster in Chapter 3, Using
Administration Tools

Hot region—write diagnosis
As the data keeps growing, the HBase cluster may become unbalanced due to poorly designed
table schema or row keys, or for some other reasons. Many requests may go to a small part of
the regions of a table. This is usually called the hot spot region issue.

There are two types of hot spot region issues—hot write and hot read issues. Hot write is
generally more important for us, because hot read would benefit greatly from the HBase
internal cache mechanism. A solution for the hot write region issue is to find out the hot
regions, split them manually, and then distribute the split regions to other region servers.

An HBase edit will firstly be written to the region server's Write-ahead-Log (WAL). The actual
update to the table data occurs once the WAL is successfully appended. This architecture
makes it possible to get an approximate write diagnosis easily.

We will create a WriteDiagnosis.java Java source to get write diagnostic information from
WAL, in this recipe. This information can be used to find out the hot spot write regions in an
HBase cluster for some situations.

Getting ready
Start your HBase cluster and log in to your HBase client node.

How to do it...
To diagnose your HBase hot region issues:

1.	 Create a WriteDiagnosis.java file, which has a printWriteDiagnosis()
method shown as follows:
private static void printWriteDiagnosis(String logPath) throws
 IOException {
 Configuration conf = HBaseConfiguration.create();
 FileSystem fs = FileSystem.get(conf);
 FileStatus[] regionServers = fs.listStatus(new Path(logPath));

Chapter 5

175

 HLog.Reader reader = new SequenceFileLogReader();
 Map<String, Long> result = new HashMap<String, Long>();

 for (FileStatus regionServer : regionServers) {
 Path regionServerPath = regionServer.getPath();
 FileStatus[] logs = fs.listStatus(regionServerPath);
 Map<String, Long> parsed = new HashMap<String, Long>();

 for (FileStatus log : logs) {
 System.out.println("Processing: " +
 log.getPath().toString());

 reader.init(fs, log.getPath(), conf);
 try {
 HLog.Entry entry;
 while ((entry = reader.next()) != null) {
 String tableName =
 Bytes.toString(entry.getKey().getTablename());
 String encodedRegionName =
 Bytes.toString(entry.getKey().getEncodedRegionName());
 String mapkey = tableName + "/" + encodedRegionName;
 Long editNum = parsed.get(mapkey);
 if (editNum == null) {
 editNum = 0L;
 }
 editNum += entry.getEdit().size();
 parsed.put(mapkey, editNum);
 }
 } finally {
 reader.close();
 }
 }

 for (String key : parsed.keySet()) {
 result.put(key, parsed.get(key));
 }
 }

 System.out.println();
 System.out.println("==== HBase Write Diagnosis ====");
 for (String region : result.keySet()) {
 long editNum = result.get(region);
 System.out.println(String.format("Region: %s Edits #: %d",
 region, editNum));
 }
}

Monitoring and Diagnosis

176

2.	 The main() method entry of the previous Java source is shown as follows:
public static void main(String[] args) {

 try {
 if (args.length < 1) {
 usage();
 System.exit(-1);
 }
 String logPath = args[0];
 printWriteDiagnosis(logPath);

 } catch (Exception e) {
 e.printStackTrace();
 System.exit(-1);
 }
}

private static void usage() {
 System.err.println("Usage: WriteDiagnosis <HLOG_PATH>");
 System.err.println("HLOG_PATH:");
 System.err
 .println(" Path on HDFS where HLogs are stored. For example:
 /hbase/.logs");
}

3.	 Package it as a JAR file (hac-chapter5.jar) and run it using the hadoop
jar command:
$HADOOP_HOME/bin/hadoop jar hac-chapter5.jar
hac.chapter5.WriteDiagnosis /hbase/.logs

4.	 You will get an output as shown in the following screenshot:

Chapter 5

177

How it works...
HBase WALs are stored under the ${hbase.rootdir}/.logs/<region_server>/
directories on HDFS. WALs are stored and rotated on a region server basis, which means a
single WAL file only contains entries to the regions of the same hosting region server and to
no other region server. A WAL entry has information about the table and region name of the
edits, and the amount of edits.

Our WriteDiagnosis.java file simply goes through all the WALs under a specific path,
extracts the table name, region name, and edits count from the WALs, and then prints the
total edits count for each region.

The main logic is done in the printWriteDiagnosis() method. We first create an HLog.
Reader instance. For each WAL file, we call the init() method of the instance to read data
from the WAL file. An entry of the WAL file is represented by the HLog.Entry class. For each
entry, we get the table name and region name the entry belongs to, from its key. We also get
the number of edits from the entry using the getEdit().size() method of the HLog.Entry
class. With all this information, we can aggregate the total number of edits on a region basis.

The main() method of WriteDiagnosis.java only checks the log path parameter from
the command line, and passes it to the printWriteDiagnosis() method.

Package the Java source as a JAR file and run it with the hadoop jar command. As you
can see from the output, there are many write requests for the hly_temp table, while one
region in the table handles twice the requests of the other two regions. This is a typical case
of non-uniform data distribution. You will want to take action on the hot spot region we just
found, such as manually splitting it into two.

Note that the number of edits shown in the output is an approximate value. This is because
WAL may get deleted by a background thread, if all the edits in WAL have been persisted;
there is no way of knowing the number of edits in that deleted WAL.

However, an approximate write diagnosis is a good enough solution for many situations. You
can use WriteDiagnosis.java to help find out the hot spot write regions. It's especially
useful when you turn off the automatic region splitting of your cluster.

Monitoring and Diagnosis

178

There's more...
A more convenient way to compile and execute our WriteDiagnosis.java is through the
following commands:

$ $HBASE_HOME/bin/hbase com.sun.tools.javac.Main WriteDiagno
sis.java

$ $HBASE_HOME/bin/hbase WriteDiagnosis /hbase/.logs

See also
ff Using HBase Shell to manage the cluster in Chapter 3, Using Administration Tools

6
Maintenance and

Security

In this chapter, we will focus on:

ff Enabling HBase RPC DEBUG-level logging

ff Graceful node decommissioning

ff Adding nodes to the cluster

ff Rolling restart

ff Simple script for managing HBase processes

ff Simple script for making deployment easier

ff Kerberos authentication for Hadoop and HBase

ff Configuring HDFS security with Kerberos

ff HBase security configuration

Introduction
After a cluster is delivered for operation, maintenance will be a necessary ongoing task while
the cluster is in use. Typical maintenance tasks include finding out and correcting faults,
changing cluster size, making configuration changes, and so on.

One of the most important HBase features is that it is extremely easy to scale in and out. As
your service and data keeps growing, you might need to add nodes to the cluster.

Maintenance and Security

180

Graceful node decommissioning and rolling restart will also become necessary. Minimizing
the offline time during the decommission and restart is an important task. What is important
is to keep the data distribution the same as what it was before the restart, to retain
data locality.

Another maintenance task is to manage HBase deployment. There are many ways to deploy
your HBase to the cluster. The simplest way is to use a script-based approach to sync HBase
installations and configurations across the cluster.

We will cover these topics in the first six recipes of this chapter.

What we will also look at in this chapter is security. As HBase becomes more and more
popular, different users and groups may store more data in a shared HBase cluster. You may
not like all the users to have full permissions to every HBase table. This has risks to your
data; for example, security risks or missing data operations. You might want to verify users'
identities and have access control for the HBase tables based on their identities.

Before the release of Hadoop 0.20.203, there were no mechanisms to verify a user identity
in Hadoop. Hadoop uses the user's current login as their Hadoop username (that is, the
equivalent of whoami). HDFS itself does not verify whether this username is genuine and
belongs to the actual operator.

Newer releases of Hadoop (0.20.203 and above) support the optional Kerberos
authentication of clients. With this security support, it is allowed to store sensitive data such
as financial data on a shared HDFS cluster.

HBase leverages HDFS security to provide its client with secure access. HBase added security
support from its 0.92 release. Only authenticated users are allowed to access a secured
HBase. It is also possible to add a table basis or column family basis access control in HBase.

In the last three recipes of this chapter, we will install Kerberos and then set up HDFS security
with Kerberos, and finally set up secure HBase client access.

Enabling HBase RPC DEBUG-level logging
Hadoop and HBase use the log4j library to write their logs. Logging level is set in the log4j.
properties file. In production, the logging level is usually set to the INFO level, which is
good for many situations. However, there will be cases where you might want to see the debug
information of a particular Hadoop/HBase daemon.

HBase inherits its online logging level change capability from Hadoop. It is possible to change
an HBase daemon's logging level from its web UI without restarting the daemon.

This feature is useful when you need to know the debug information of an HBase daemon but
cannot restart it. A typical situation is to troubleshoot a production HBase cluster.

We will describe how to enable HBase RPC DEBUG-level logging in this recipe.

Chapter 6

181

Getting ready
Start the HBase cluster and open the HBase web UI from the following URL:

http://<master_host>:60010/master.jsp

How to do it...
The instructions to enable HBase RPC DEBUG-level logging without restarting an HBase
daemon are as follows:

1.	 Show the region server web UI from the HBase web UI by clicking on the region
server link.

2.	 Click on the Log Level link at the top left of the region server web UI.

3.	 Get the current logging level of the specific package or class.

4.	 Enter a package name (for example, org.apache.hadoop.ipc) in the Log
textbox and click on the Get Log Level button. You will get an output as shown
in the following screenshot:

5.	 Enter the package name and logging level, and then click on the Set Log Level button
to set the package's logging level (for example, DEBUG).

Maintenance and Security

182

6.	 You will get an output page, as shown in the following screenshot, that shows
Effective level: DEBUG, which means that the package's logging level has been
changed to DEBUG:

7.	 Now you should be able to check the debug log in the region server's logfile,
as follows:
2012-02-10 22:14:42,878 DEBUG org.apache.hadoop.ipc.HBaseClient:
IPC Client (47) connection to ip-10-176-201-128.us-west-
1.compute.internal/10.176.201.128:60000 from hadoop sendi
2012-02-10 22:14:42,879 DEBUG org.apache.hadoop.ipc.HBaseClient:
IPC Client (47) connection to ip-10-176-201-128.us-west-1.compute.
internal/10.176.201.128:60000 from hadoop got v
2012-02-10 22:14:42,880 DEBUG org.apache.hadoop.ipc.RPCEngine:
Call: regionServerReport 2

How it works...
Hadoop has its own online logging change facility. It is possible to get or set a Hadoop
daemon's logging level from its web UI. This is useful to debug a production cluster that does
not allow restarting.

HBase simply inherits this facility from Hadoop. To enable the DEBUG-level logging of a
specific HBase daemon on a particular region server, we locate the region server's web UI
and then show its log level page. On this page, we can get or set a particular Java package's
logging level.

Chapter 6

183

In our demonstration, we have set the HBase IPC (org.apache.hadoop.ipc) package's
logging level to DEBUG. As a result, the HRegionServer daemon starts writing its IPC debug
information to its logfile.

A Hadoop/HBase daemon may generate a huge amount of debug logs in a short time. Do not
forget to set it back to the INFO level, soon after you have got enough debug information.

There's more...
We can also get/set the logging level with the hadoop daemonlog command. The following
command gets the IPC log level of the HMaster daemon running on localhost:

$ $HADOOP_HOME/bin/hadoop daemonlog -getlevel localhost:60010
org.apache.hadoop.ipc

Connecting to
http://localhost:60010/logLevel?log=org.apache.hadoop.ipc

Submitted Log Name: org.apache.hadoop.ipc

Log Class: org.apache.commons.logging.impl.Log4JLogger

Effective level: INFO

Executing hadoop daemonlog without an argument prints the command's usage.

$ $HADOOP_HOME/bin/hadoop daemonlog

USAGES:

java org.apache.hadoop.log.LogLevel -getlevel <host:port><name>

java org.apache.hadoop.log.LogLevel -setlevel
<host:port><name><level>

Graceful node decommissioning
We will describe how to stop a region server gracefully in this recipe.

It is possible to simply invoke the following command to stop the RegionServer daemon on a
region server:

hadoop@slave1$ $HBASE_HOME/bin/hbase-daemon.sh stop regionserver

However, this approach has the disadvantage that regions deployed on the stopped region
server will go offline for a while during the stopping process. In production, especially for
clusters handling online requests, it is expected to gracefully stop a region server to
minimize the region's offline time.

We will describe how HBase supports its graceful node decommissioning feature in this recipe.

Maintenance and Security

184

Getting ready
Start your HBase cluster and log into the master node as the user (the hadoop user in our
demonstration) who starts the cluster.

How to do it...
The instructions to gracefully decommission a region server are as follows:

1.	 Gracefully stop a region server by invoking the following command:
hadoop@master1$ $HBASE_HOME/bin/graceful_stop.sh ip-10-160-226-
84.us-west-1.compute.internal

Disabling balancer!

HBase Shell; enter 'help<RETURN>' for list of supported commands.

Type "exit<RETURN>" to leave the HBase Shell

Version 0.92.0, r1231986, Tue Jan 17 02:30:24 UTC 2012

balance_switch false

true

0 row(s) in 1.3370 seconds

Unloading ip-10-160-226-84.us-west-1.compute.internal region(s)

12/01/31 23:32:16 INFO region_mover: Moving 2 region(s) from ip-
10-160-226-84.us-west-1.compute.internal,60020,1328020203720
during this cycle

12/01/31 23:32:16 INFO region_mover: Moving region
5740a39d9eaa59c4175487c14e0a272a (0 of 2) to server=ip-10-161-83-
13.us-west-1.compute.internal,60020,1328013827479

12/01/31 23:32:17 INFO region_mover: Moving region
f6a1084fc7534c15696f4baa4abf61ce (1 of 2) to server=ip-10-161-83-
13.us-west-1.compute.internal,60020,1328013827479

12/01/31 23:32:18 INFO region_mover: Wrote list of moved regions
to /tmp/ip-10-160-226-84.us-west-1.compute.internal

Unloaded ip-10-160-226-84.us-west-1.compute.internal region(s)

ip-10-160-226-84.us-west-1.compute.internal: stopping
regionserver...

Chapter 6

185

2.	 As the graceful_stop.sh script will turn off HBase's load balancing before it
actually stops the region server daemon, explicitly enable it again if needed:
hadoop@master1$ echo 'balance_switch true' | $HBASE_HOME/bin/hbase
shell

HBase Shell; enter 'help<RETURN>' for list of supported commands.

Type "exit<RETURN>" to leave the HBase Shell

Version 0.92.0, r1231986, Tue Jan 17 02:30:24 UTC 2012

balance_switch true

false

0 row(s) in 1.4450 seconds

How it works...
Stopping a region server is a region server-centric operation. It closes the regions deployed on
the region server and stops itself. The master only learns of the region server's disappearance
via the removal of the region server's znode in ZooKeeper, which is invoked by the region
server as the last thing it does on its way out. There is a large window of unavailability while
the closes are going on and until the master learns of the region server's removal. So to
minimize this window, we use a graceful shutdown. It moves the regions off the region server
one at a time (gracefully).

The graceful_stop.sh script moves regions off a region server and then stops it. As
regions are firstly moved to other region servers, the region offline time is avoided during the
stopping process.

Before moving the regions deployed on the specific region server, the script will turn off the
cluster's load balancer first. This is important because the balancer might balance regions
in the cluster at the same time the graceful_stop.sh script is moving regions. We must
avoid this situation by turning off the balancer.

As you can see from the output of step 1, after the load balancer is turned off, the script
moved two regions from the specified server to other region servers, then stopped the region
server at last.

As the graceful_stop.sh script turned off the load balancer, you might want to turn it on
again after the node decommission. That's what we did in step 2.

Make sure to pass the exact hostname shown on the HBase web UI to graceful_stop.sh,
or it will not actually move the regions gracefully to other region servers.

Maintenance and Security

186

The full usage of the graceful_stop.sh script is shown as follows:

./graceful_stop.sh

Usage: graceful_stop.sh [--config <conf-dir>] [--restart] [--
 reload] [--thrift] [--rest] <hostname>

 thrift If we should stop/start thrift before/after the hbase
 stop/start

 rest If we should stop/start rest before/after the hbase
 stop/start

 restart If we should restart after graceful stop

 reload Move offloaded regions back on to the stopped server

 debug Display extra debug logging

 hostname Hostname of server we are to stop

There's more...
You may have noticed that the graceful_stop.sh script has the restart and reload
options. These options are used to rolling restart an HBase cluster. We will describe it in the
Rolling restart recipe later.

See also
In this chapter:

ff Rolling restart

Adding nodes to the cluster
One of the most important HBase features is that it is extremely scalable. HBase lineally
scales out by adding nodes to the cluster. It is easy to start at a small cluster and scale it out
when your service and data grows. Adding a region server to an HBase cluster would be an
important maintenance task for administrators.

An HBase cluster can only have one active master node. However, we can add a backup
master node to the cluster to make the HBase master highly available (HA).

In this recipe, we will describe how to add a backup master node to an HBase cluster. We will
also describe adding region servers to a cluster after that.

Chapter 6

187

Getting ready
Download and install HBase on the new master or region server first. Make sure the HBase
configuration on that node is synced with other nodes in the cluster.

A region server usually runs on the same DataNode/TaskTracker of Hadoop. You might want
to install Hadoop and start DataNode and TaskTracker on that node too.

We assume that you have got all Hadoop/HBase directories, configurations, and OS/user
settings ready on that new node. Refer to Chapter 1, Setting Up HBase Cluster for details of
these initial setups.

How to do it...
The instructions to add a backup master node to the cluster are as follows:

1.	 Start the HBase master daemon on the backup master node:
hadoop@master2$ $HBASE_HOME/bin/hbase-daemon.sh start master

From the master log, you will find that the newly started master is waiting to become
the next active master:
org.apache.hadoop.hbase.master.ActiveMasterManager: Another master
is the active master, ip-10-176-201-128.us-west-
1.compute.internal,60000,1328878644330; waiting to become the next
active master

2.	 Add the new region server's hostname into the regionservers file, under the
$HBASE_HOME/conf directory. For example, to add "slave4" to the cluster, we
invoke the following command:
hadoop@master1$ echo "slave4" >> $HBASE_HOME/conf/regionservers

3.	 Sync the modified regionservers file across the cluster.

4.	 Log in to the new server and start the region server daemon there:
hadoop@slave4$ $HBASE_HOME/bin/hbase-daemon.sh start regionserver

5.	 Optionally, trigger a load balancer manually from HBase Shell to move some regions
to the new region server. You can also wait for the next run of the balancer, which
runs every five minutes by default.
hbase> balance_switch true

hbase> balancer

Maintenance and Security

188

How it works...
In step 1, we simply started the HBase master daemon on the backup master node. HBase
uses ZooKeeper to coordinate master election. All master nodes compete for creating a /
hbase/master znode in ZooKeeper. The node which won the election (created the znode
successfully) becomes the active master for the cluster. As now there is already a master
present, the new master node goes into idle mode and waits to become the next active
master if the current one is down.

To add a region server, first we added its hostname to the regionservers file in step 2. Next
time we start the cluster, the region server daemon will be started automatically on that node.

As we do not restart the cluster, we manually started the region server daemon on the new
node in step 4. The region server will query ZooKeeper to find and join the cluster.

Step 5 is optional. As the new region server has fewer regions deployed on it, we can trigger a
load balancing explicitly to move some regions to it. The balancer runs every five minutes by
default, so we can also just wait for the next run of the balancer.

There's more...
We can also start backup masters at the cluster's start time through the following steps:

1.	 Add backup master nodes to the conf/backup-masters file:
hadoop@master1$ echo "master2" >> $HBASE_HOME/conf/backup-masters

2.	 Sync the backup-masters file across the cluster.

3.	 Start HBase normally; you will find that a backup HBase master will be started at the
backup master node:
hadoop@master1$ $HBASE_HOME/bin/start-hbase.sh

starting master, logging to /usr/local/hbase/logs/hbase-hadoop-
master-master1.out

slave2: starting regionserver, logging to
/usr/local/hbase/logs/hbase-hadoop-regionserver-slave2.out

slave1: starting regionserver, logging to
/usr/local/hbase/logs/hbase-hadoop-regionserver-slave1.out

slave3: starting regionserver, logging to
/usr/local/hbase/logs/hbase-hadoop-regionserver-slave3.out

master2: starting master, logging to /usr/local/hbase/logs/hbase-
hadoop-master-master2.out

Chapter 6

189

�� The master log on the backup master indicates that it is a backup master:
hadoop@master2$ tail /usr/local/hbase/logs/hbase-hadoop-
master-master2.log

2012-02-10 23:12:07,016 INFO
org.apache.hadoop.hbase.master.ActiveMasterManager: Another
master is the active master, ip-10-176-201-128.us-west-
1.compute.internal,60000,1328883123244; waiting to become
the next active master

Rolling restart
You might want to invoke a rolling restart when upgrading to a new HBase version, or
when you want to apply some configuration changes. As described in the Graceful node
decommissioning recipe, a rolling restart minimizes downtime because we only take a
single region offline at a time rather than a whole cluster. A rolling restart keeps the region
distribution the same as what it was before the restart. This is important to retain data locality.

New HBase versions are not always backward compatible. You can invoke
a rolling restart to upgrade minor releases (for example, from 0.92.1 to
0.92.2), but not across major versions (for example, from 0.92.x to 0.94.x)
because the protocol has changed between these versions. This will
change in HBase 0.96 when you will be able to have old clients talk to new
servers and vice versa.
Please check the following link for details about upgrading from one
version to another:
http://hbase.apache.org/book.html#upgrading

A rolling restart contains steps involving restarting the master, gracefully restarting region
servers, and finally checking the data consistency after the restart. We will describe these
steps in this recipe.

Getting ready
Start your HBase cluster. Log into the master node as the user who started the cluster.

Maintenance and Security

190

How to do it...
The instructions to rolling restart an HBase cluster are as follows:

1.	 Run hbck to ensure that the cluster is consistent:
hadoop@master1$ $HBASE_HOME/bin/hbase hbck

0 inconsistencies detected.

Status: OK

2.	 Restart the master daemon:
hadoop@master1$ $HBASE_HOME/bin/hbase-daemon.sh stop master

hadoop@master1$ $HBASE_HOME/bin/hbase-daemon.sh start master

3.	 Disable the load balancer:
hadoop@master1$ echo 'balance_switch false' |
$HBASE_HOME/bin/hbase shell

balance_switch false

true

0 row(s) in 1.1680 seconds

4.	 Create a rolling-restart-rs.sh script, shown as follows:
$ vi rolling-restart-rs.sh

#!/bin/bash
HBASE_HOME=/usr/local/hbase/current

zparent=`$HBASE_HOME/bin/hbase org.apache.hadoop.hbase.util.
HBaseConfTool zookeeper.znode.parent`
if ["$zparent" == "null"]; then
 zparent="/hbase"
fi

online_regionservers=`$HBASE_HOME/bin/hbase zkcli ls $zparent/rs
2>&1 | tail -1 | sed "s/\[//" | sed "s/\]//"`
for rs in $online_regionservers
do
 rs_parts=(${rs//,/ })
 hostname=${rs_parts[0]}
 echo "Gracefully restarting: $hostname"
 $HBASE_HOME/bin/graceful_stop.sh --restart --reload --debug
 $hostname
 sleep 1
done

Chapter 6

191

5.	 Make the script executable, and then execute it to gracefully restart each region
server daemon in the cluster. You will get the following output:
hadoop@master1$ chmod +x rolling-restart-rs.sh

hadoop@master1$./rolling-restart-rs.sh

Gracefully restarting: ip-10-160-41-210.us-west-1.compute.internal

Disabling balancer!

HBase Shell; enter 'help<RETURN>' for list of supported commands.

Type "exit<RETURN>" to leave the HBase Shell

Version 0.92.0, r1231986, Tue Jan 17 02:30:24 UTC 2012

balance_switch false

false

0 row(s) in 1.2060 seconds

Unloading ip-10-160-41-210.us-west-1.compute.internal region(s)

Unloaded ip-10-160-41-210.us-west-1.compute.internal region(s)

ip-10-160-41-210.us-west-1.compute.internal: stopping
regionserver...

ip-10-160-41-210.us-west-1.compute.internal: starting
regionserver, logging to /usr/local/hbase/logs/hbase-hadoop-
regionserver-slave1.out

Reloading ip-10-160-41-210.us-west-1.compute.internal region(s)

Reloaded ip-10-160-41-210.us-west-1.compute.internal region(s)

Gracefully restarting: ip-10-166-109-91.us-west-1.compute.internal

…

Gracefully restarting: ip-10-176-79-57.us-west-1.compute.internal

…

Reloaded ip-10-176-79-57.us-west-1.compute.internal region(s)

6.	 Enable the load balancer again:
hadoop@master1$ echo 'balance_switch true' | $HBASE_HOME/bin/hbase
shell

balance_switch true

false

0 row(s) in 1.1730 seconds

7.	 Run hbck again to ensure that the cluster is consistent:
hadoop@master1$ $HBASE_HOME/bin/hbase hbck

Maintenance and Security

192

How it works...
In step 1, we ran the hbck command to ensure that the cluster is consistent before the
restart. After that we restarted the master daemon in step 2.

In step 3, before restarting the region servers, we turned off the balancer to avoid the
situation in which balancing happens during the restart process.

The rolling-restart-rs.sh script we created in step 4 gets the root znode in ZooKeeper
(zparent), first by invoking the org.apache.hadoop.hbase.util.HBaseConfTool
class from the hbase command. HBaseConfTool is a Java class used to get the runtime
HBase configurations. Passing zookeeper.znode.parent to it returns the zparent
setting if set. If zparent is not set, we use the default /hbase value.

Each online region server has its znode under $zparent/rs in ZooKeeper. We use this
to get the list of online region servers by invoking the hbase zkcli ls command. The
return value is a string that contains space separated online region servers, such as
[region_server1,port,startcode region_server2,port,startcode region_
server3,port,startcode]. We did not fetch the region server list from the conf/
regionservers file. This is because, in some environments such as a cluster using its own
DNS service in Amazon EC2, the hostname in the file may be different from what is was given
by HBase. The graceful_stop.sh script only accepts the hostname used in HBase, which
is shown on the HBase web UI.

For each region server in the list, we invoke the graceful_stop.sh command passing the
--restart --reload --debug options, and the server's hostname to gracefully restart the
region server on that node.

As you can see from the output of step 5, for each online region server, the rolling-
restart-rs.sh script moves regions off the region server one at a time, restarts them,
and then reloads the moved regions back to the region server.

After all the region servers have been gracefully restarted, we enable the load balancer to its
state again before restarting in step 6.

Finally in step 7, we executed hbck again to ensure that the cluster is running consistently.

There's more...
Notice that there is a rolling-restart.sh script in the $HBASE_HOME/bin directory. We
did not use this script because we wanted to gracefully restart our region servers, which was
not implemented in the script.

Chapter 6

193

There is a patch that makes rolling-restart.sh behave in the same
manner as previously described in this recipe. The patch is scheduled for
version 0.96. You can check it at https://issues.apache.org/
jira/browse/HBASE-5314 for details.

Simple script for managing HBase processes
When the nodes in the cluster keep growing, you might want to find tools to show and manage
the HBase-related processes running in the cluster. As the hadoop user is configured to be
able to SSH from the master node to each slave node in the cluster without a password, it
is easy for us to write a simple script to achieve this task with SSH login for every node and
show/manage the running HBase processes on that node.

As Hadoop/HBase processes run in a Java Virtual Machine (JVM), our task is to manage
these Java processes in the cluster.

In this recipe, we will create a simple script to show all the running Java processes owned by
the hadoop user in an HBase cluster.

Getting ready
Start your HBase cluster. Log in to the master node as the user who started the cluster.

We assume that you are running HDFS and HBase as the same user (the hadoop user here).

How to do it...
The instructions to create a simple script to manage HBase processes are as follows:

1.	 Create a cluster-jps.sh script, shown as follows:
$ vi cluster-jps.sh

#!/bin/bash
Show all running Java processes on region servers. Must run on
master using HBase owner user.

JAVA_HOME=/usr/local/jdk1.6
HBASE_HOME=/usr/local/hbase/current
IFS=$'\n'

printf "+------------------------------+----------+---------------
-----+\n"
printf "|%-30s|%-10s|%-20s|\n" " HOST" " PID" " PROCESS"

Maintenance and Security

194

printf "+------------------------------+----------+---------------
-----+\n"
process_count=0
rs_count=0
for rs in `cat $HBASE_HOME/conf/regionservers`
do
 i=1
 for process in `ssh $rs "$JAVA_HOME/bin/jps" | grep -v Jps`
 do
 process_parts=(${process/ /$'\n'})
 pid=${process_parts[0]}
 pname=${process_parts[1]}
 if [$i -eq 1]; then
 host="$rs"
 else
 host=" "
 fi
 printf "|%-30s|%-10s|%-20s|\n" " $host" " $pid" " $pname"

 i=`expr $i + 1`
 process_count=`expr $process_count + 1`
 done
 rs_count=`expr $rs_count + 1`
 printf "+------------------------------+----------+-----------
---------+\n"
done
echo -e "$process_count running Java processes on $rs_count region
 servers.\n"

2.	 Run the script as the user who started Hadoop/HBase on the master node:
hadoop@master1$ chmod +x cluster-jps.sh

hadoop@master1$./cluster-jps.sh

3.	 You will get an output as shown in the following screenshot:

Chapter 6

195

4.	 To show the master processes on the master node, invoke the following command:
hadoop@master1$ $JAVA_HOME/bin/jps

3005 Jps

1680 QuorumPeerMain

1781 HMaster

1538 NameNode

How it works...
In this script, we will get the region server list from the conf/regionservers file. Then
for each region server, SSH log into the server and run the jps command on it. Jps is a
command shipped along with the JDK installation to show running Java processes owned by
the user. The most basic information we need, the process ID (PID) and name of each Java
process, is contained in the output of the jps command.

The rest of the script just gathers the jps command output from each node and shows the
result in a human-friendly format.

As we did in step 4, we can also use the jps command to show Java processes running on
the master node. We skipped the logic that shows the master's Java processes, in this script.

As described in the Setting up Nagios to monitor HBase processes recipe of Chapter 5, Monitoring
and Diagnosis, you will need to make sure these Java processes are monitored carefully.

Simple script for making deployment easier
There are many ways to deploy your HBase to the cluster. As Hadoop and HBase are written in
Java, most of the deployment is done by simply copying all the files to the nodes in the cluster.

The simplest way is to use a script-based approach to sync HBase installation and
configurations across the cluster. It may not be as cool compared to other modern deployment
management tools, but it works well for small or even medium-sized clusters.

In this recipe, we will create a simple script to sync an HBase installation from its master node
to all region servers in the cluster. This approach can be used to deploy Hadoop as well.

Getting ready
Log in to the master node as the user who starts the cluster. We assume that you have set up
a non-password SSH from the master node to the region servers, for the user.

Maintenance and Security

196

How to do it...
The instructions to create a simple script to make HBase deployment easier are as follows:

1.	 Create a cluster-deploy.sh script, shown as follows:
$ vi cluster-deploy.sh

#!/bin/bash
Sync HBASE_HOME across the cluster. Must run on master using
HBase owner user.

HBASE_HOME=/usr/local/hbase/current

for rs in `cat $HBASE_HOME/conf/regionservers`
do
 echo "Deploying HBase to $rs:"
 rsync -avz --delete --exclude=logs $HBASE_HOME/
 $rs:$HBASE_HOME/
 echo
 sleep 1
done

echo "Done"

2.	 Run the script as the user who starts Hadoop/HBase on the master node:
hadoop@master1$ chmod +x cluster-deploy.sh

hadoop@master1$./cluster-deploy.sh

Deploying HBase to slave1:

sending incremental file list

./

conf/

conf/hbase-site.xml

sent 40023 bytes received 259 bytes 80564.00 bytes/sec

total size is 55576486 speedup is 1379.69

Deploying HBase to slave2:

…

Deploying HBase to slave3:

…

Done

Chapter 6

197

How it works...
The script uses the fact that all region servers are listed in the conf/regionservers file.
It reads every region server's hostname from the file, and then invokes the rsync command
to sync the HBase installation directory from master node to that region server. We add the
--delete option to the rsync command because we want to remove unnecessary files from
the region server.

To use this script, make some HBase configuration changes on the master node, and then run
the script with the HBase owner user.

There's more...
When the cluster becomes larger, you might want to automate the deployment as much as
possible, such as OS and user settings for a new node, fetching and deploying the package,
and setting files from a central version managed configuration center.

You might want to try Puppet or Chef for these kinds of deployment tasks. There are some
examples of Puppet and Chef configurations for HBase available on the Internet, the URLs of
which are as follows:

ff Puppet recipe: http://hstack.org/hstack-automated-deployment-using-
puppet/

ff Chef cookbook: https://github.com/ueshin/chef-cookbooks

Another tool you might want to give a try is Apache Bigtop, which can be found at the
following location:

http://incubator.apache.org/bigtop/

Bigtop is a project for the development of packaging and tests of the Hadoop ecosystem.
It is not yet ready for prime time, but it is a great tool for easily building and deploying Hadoop
and HBase.

Kerberos authentication for Hadoop and
HBase

Security support has been added to the recently released Hadoop 1.0 and HBase 0.92.
With security enabled, only authenticated users can access a Hadoop and HBase cluster.
The authentication is provided by a separate authentication service managed by trusted
administrators. This makes HBase a considerable option to store sensitive, big data such
as financial data.

http://hstack.org/hstack-automated-deployment-using-puppet/
http://hstack.org/hstack-automated-deployment-using-puppet/

Maintenance and Security

198

Hadoop relies on the Kerberos authentication service for its security support. A secure HBase
must run on HDFS with security support, so HBase also relies on Kerberos to provide it with
security support.

The following is the description of Kerberos on Wikipedia:

Kerberos is a computer network authentication protocol which works on the basis
of "tickets" to allow nodes communicating over a non-secure network to prove their
identity to one another in a secure manner.

The most widely used Kerberos implementation is MIT Kerberos. We will describe how to
install and set up MIT Kerberos in this recipe. The installation includes setting up a Kerberos
admin server and a Key Distribution Center (KDC).

Getting ready
You will need a Linux server to install MIT Kerberos. Make sure you have root privileges on that
server. We assume that the hostname of the server is master2 in this recipe.

Create the Kerberos logging directory on the server in advance, using the following command:

$ sudo mkdir /var/log/kerberos

How to do it...
The instructions to install MIT Kerberos are as follows:

1.	 Install the Kerberos admin server and KDC:
hac@master2$ sudo apt-get install krb5-{admin-server,kdc}

During the installation, you will be asked to enter your default realm name. The
standard name for a Kerberos realm is your domain name in uppercase. As we use
hbase-admin-cookbook.com as our domain in this book, we will choose HBASE-
ADMIN-COOKBOOK.COM for the realm name, as shown in the following screenshot:

Chapter 6

199

The installation will also ask you to enter the Kerberos server and administrative
server. Enter the fully qualified domain name of your server here. In our
demonstration, it is master2.hbase-admin-cookbook.com.

2.	 Create a realm using the following command:
hac@master2$ sudo krb5_newrealm

The command will ask for the master password. Enter your
password and do not forget it.

3.	 Configure Kerberos by editing the krb5.conf file, shown as follows:
hac@master2$ sudo vi /etc/krb5.conf

[realms]
 HBASE-ADMIN-COOKBOOK.COM = {
 kdc = master2.hbase-admin-cookbook.com
 admin_server = master2.hbase-admin-cookbook.com
 default_domain = hbase-admin-cookbook.com
 }

[domain_realm]
.hbase-admin-cookbook.com = HBASE-ADMIN-COOKBOOK.COM
hbase-admin-cookbook.com = HBASE-ADMIN-COOKBOOK.COM

Maintenance and Security

200

[logging]
 kdc = FILE:/var/log/kerberos/krb5kdc.log
 admin_server = FILE:/var/log/kerberos/kadmin.log
 default = FILE:/var/log/kerberos/krb5lib.log

4.	 Grant full privileges to admin users by uncommenting the following line in the
kadm5.acl file:
hac@master2$ sudo vi /etc/krb5kdc/kadm5.acl

*/admin *

5.	 Restart the Kerberos admin server and KDC to apply the changes:
hac@master2$ sudo invoke-rc.d krb5-admin-server restart

hac@master2$ sudo invoke-rc.d krb5-kdc restart

6.	 Test the installation and configuration in the kadmin.local console:
hac@master2$ sudo kadmin.local

Authenticating as principal root/admin@HBASE-ADMIN-COOKBOOK.COM
with password.

kadmin.local: listprincs

K/M@HBASE-ADMIN-COOKBOOK.COM

kadmin/admin@HBASE-ADMIN-COOKBOOK.COM

kadmin/changepw@HBASE-ADMIN-COOKBOOK.COM

kadmin/history@HBASE-ADMIN-COOKBOOK.COM

kadmin/ip-10-174-14-251.us-west-1.compute.internal@HBASE-ADMIN-
COOKBOOK.COM

krbtgt/HBASE-ADMIN-COOKBOOK.COM@HBASE-ADMIN-COOKBOOK.COM

7.	 Create a principal with administrative privileges:
kadmin.local: addprinc root/admin

WARNING: no policy specified for root/admin@HBASE-ADMIN-
COOKBOOK.COM; defaulting to no policy

Enter password for principal "root/admin@HBASE-ADMIN-
COOKBOOK.COM":

Re-enter password for principal "root/admin@HBASE-ADMIN-
COOKBOOK.COM":

Principal "root/admin@HBASE-ADMIN-COOKBOOK.COM" created.

8.	 Add a test user account (a "principal") to Kerberos:
kadmin.local: addprinc hac

Chapter 6

201

9.	 Quit the kadmin.local console and test the authentication for the test user by
obtaining a Kerberos ticket:
kadmin.local: quit

hac@master2$ klist -5

klist: No credentials cache found (ticket cache
FILE:/tmp/krb5cc_1002)

hac@master2$ kinit

Password for hac@HBASE-ADMIN-COOKBOOK.COM:

hac@master2$ klist -5

Ticket cache: FILE:/tmp/krb5cc_1002

Default principal: hac@HBASE-ADMIN-COOKBOOK.COM

Valid starting Expires Service principal

02/05/12 11:48:49 02/05/12 21:48:49 krbtgt/HBASE-ADMIN-
COOKBOOK.COM@HBASE-ADMIN-COOKBOOK.COM

renew until 02/06/12 11:48:46

10.	 Terminate the cached ticket using the following commands:
hac@master2$ kdestroy

hac@master2$ klist -5

klist: No credentials cache found (ticket cache
FILE:/tmp/krb5cc_1002)

11.	 Delete the test user account using the following commands:
hac@master2$ sudo kadmin.local

kadmin.local: delprinc hac

How it works...
We installed our Kerberos admin server and KDC on the same master2 server. We set
HBASE-ADMIN-COOKBOOK.COM as our default realm during the installation. The realm was
actually created in step 2, using the krb5_newrealm command.

In step 3, we configured Kerberos's realm, domain, and log settings in the /etc/krb5.conf
file. We granted full privileges to admin users in step 4. After that, we restarted Kerberos to
apply the changes.

To test the installation and configuration, we entered Kerberos' kadmin.local console in
step 6. kadmin.local is a prompt console for operating Kerberos. Only a root user on the
Kerberos admin server can enter the kadmin.local console and execute Kerberos admin
commands there.

Maintenance and Security

202

We also ran the listprincs command to show the initial principals for Kerberos in step 6.
A unique identity (user, host, and so on) in Kerberos is called a principal. A principal has a
format of primary/instance@REALM.

In step 7, we added an admin user (the root user) to Kerberos. By entering its Kerberos
password (not the OS password), the root user from a Kerberos client will be able to execute
Kerberos's admin commands via the kadmin console. The kadmin console is similar to
kadmin.local, but can be entered from other Kerberos clients using an admin user. It is
useful when you need to grant admin users, but do not want them to have root access to the
Kerberos admin server.

We also added a test principal for our hac user in step 8 and tested its authentication from
step 9 to step 11.

Kerberos users need a ticket to access Kerberos's authenticated services. A ticket is issued
with a Ticket Granting Ticket (TGT), which is issued by the KDC. To gain a TGT, users are
asked to provide their Kerberos password to prove their identity. A Kerberos TGT can be
cached and will get expired after the configured time.

In step 9, we have shown the hac user's cached TGTs using the klist command. The result
is empty, which is what we expected. Then we requested a TGT using the kinit command.
After that, the klist command shows the cached TGT and its expiration date. The cached
TGT was removed with the kdestroy command in step 10.

There's more...
We did a basic Kerberos setup in this recipe. We will configure HDFS and HBase to use this
Kerberos installation to provide security support in the following two recipes. The details of
Kerberos are out of the scope of this book. Refer to the following URL for further information:

ff Kerberos: The Network Authentication Protocol at http://web.mit.edu/
Kerberos/

See also
In this chapter:

ff Configuring HDFS security with Kerberos

ff HBase security configuration

Chapter 6

203

Configuring HDFS security with Kerberos
Newer releases of Hadoop (0.20.203 and above) support an optional Kerberos authentication
of clients. This security support includes secure HDFS and secure MapReduce configurations.

The motivation for Hadoop security is not to defend against hackers, as all large Hadoop
clusters are behind firewalls that only allow employees to access them. Its purpose is simply
to allow storing sensitive data such as financial data on a shared cluster.

Prior releases of Hadoop already had file ownership and permissions in HDFS; the limitation
was that they had no mechanisms for verifying user identity. With this Kerberos security
support, user identities are verified by Kerberos, and only authenticated users are allowed to
access the HDFS cluster.

As a secure HBase access is expected to be running on top of a secured HDFS cluster, setting
up HDFS security is a prerequisite for HBase security configuration. In this recipe, we will focus
on how to configure HDFS security with Kerberos.

Getting ready
We assume that you have a working Kerberos Key Distribution Center (KDC) and have realm
set up. For more information about installing and configuring Kerberos, see the Kerberos
authentication for Hadoop and HBase recipe in this chapter.

We assume that the root user on every node has administrative privileges in Kerberos. With
this assumption, we will use the kadmin console to execute the Kerberos admin commands.
If this assumption is not true, you will need to operate Kerberos via the kadmin.local
console on the Kerberos admin server.

On every node of the cluster, create a directory to store the Kerberos keytab file, using the
following command:

$sudo mkdir /etc/hadoop

Shut down your cluster before executing the steps discussed in this recipe.

How to do it...
To configure HDFS security with Kerberos, execute the following steps on every node
of the cluster:

1.	 Install the Kerberos client software:
$ sudo apt-get install krb5-{config,user} libpam-krb5

Maintenance and Security

204

2.	 Enter the kadmin console using the following command:
$ sudo kadmin

3.	 Add the hadoop user principal to Kerberos. Replace the hostname part (ip-10-
168-46-11.us-west-1.compute.internal) of the principal with your host's
fully qualified domain name (FQDN):
kadmin: addprinc -randkey hadoop/ip-10-168-46-11.us-west-
1.compute.internal

4.	 Add the host principal to Kerberos. Replace the hostname part of the principal with
your host's FQDN:
kadmin: addprinc -randkey host/ip-10-168-46-11.us-west-
1.compute.internal

5.	 Create a keytab file using the following command:
kadmin: ktadd -k /etc/hadoop/hadoop.keytab -norandkey hadoop/ip-
10-168-46-11.us-west-1.compute.internal host/ip-10-168-46-11.us-
west-1.compute.internal

6.	 Quit from the kadmin console, and confirm if the keytab file has been created correctly:
kadmin: quit

$ klist -e -k -t /etc/hadoop/hadoop.keytab

Keytab name: WRFILE:/etc/hadoop/hadoop.keytab

KVNO Timestamp Principal

---- ----------------- ---

5 02/05/12 16:03:34 hadoop/ip-10-168-46-11.us-west-
1.compute.internal@HBASE-ADMIN-COOKBOOK.COM (AES-256 CTS mode with
96-bit SHA-1 HMAC)

5 02/05/12 16:03:34 hadoop/ip-10-168-46-11.us-west-
1.compute.internal@HBASE-ADMIN-COOKBOOK.COM (ArcFour with
HMAC/md5)

5 02/05/12 16:03:34 hadoop/ip-10-168-46-11.us-west-
1.compute.internal@HBASE-ADMIN-COOKBOOK.COM (Triple DES cbc mode
with HMAC/sha1)

5 02/05/12 16:03:34 hadoop/ip-10-168-46-11.us-west-
1.compute.internal@HBASE-ADMIN-COOKBOOK.COM (DES cbc mode with
CRC-32)

5 02/05/12 16:03:34 host/ip-10-168-46-11.us-west-
1.compute.internal@HBASE-ADMIN-COOKBOOK.COM (AES-256 CTS mode
with 96-bit SHA-1 HMAC)

Chapter 6

205

5 02/05/12 16:03:34 host/ip-10-168-46-11.us-west-
1.compute.internal@HBASE-ADMIN-COOKBOOK.COM (ArcFour with
HMAC/md5)

5 02/05/12 16:03:34 host/ip-10-168-46-11.us-west-
1.compute.internal@HBASE-ADMIN-COOKBOOK.COM (Triple DES cbc mode
with HMAC/sha1)

5 02/05/12 16:03:34 host/ip-10-168-46-11.us-west-
1.compute.internal@HBASE-ADMIN-COOKBOOK.COM (DES cbc mode with
CRC-32)

7.	 Make sure the keytab file is only readable by the hadoop user:
$ sudo chown hadoop:hadoop /etc/hadoop/hadoop.keytab

$ sudo chmod 400 /etc/hadoop/hadoop.keytab

8.	 Download the "Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction
Policy Files 6" from the following URL:
http://www.oracle.com/technetwork/java/javase/downloads/index.
html

Install it by following the README file present in the downloaded file.

9.	 Enable Hadoop security by adding the following configurations to the core-site.
xml file:
$ vi $HADOOP_HOME/conf/core-site.xml

<property>
 <name>hadoop.security.authentication</name>
 <value>kerberos</value>
</property>

<property>
 <name>hadoop.security.authorization</name>
 <value>true</value>
</property>

10.	 Enable HDFS security by adding the following configuration to the hdfs-site.xml
file:
$ vi $HADOOP_HOME/conf/hdfs-site.xml

<property>
 <name>dfs.block.access.token.enable</name>
 <value>true</value>
</property>

Maintenance and Security

206

11.	 Add the NameNode security configurations to the hdfs-site.xml file:
$ vi $HADOOP_HOME/conf/hdfs-site.xml

<property>
 <name>dfs.https.address</name>
 <value>${your_namenode_host}:50470</value>
</property>
<property>
 <name>dfs.https.port</name>
 <value>50470</value>
</property>
<property>
 <name>dfs.namenode.keytab.file</name>
 <value>/etc/hadoop/hadoop.keytab</value>
</property>
<property>
 <name>dfs.namenode.kerberos.principal</name>
 <value>hadoop/_HOST@HBASE-ADMIN-COOKBOOK.COM</value>
</property>
<property>
 <name>dfs.namenode.kerberos.https.principal</name>
 <value>host/_HOST@HBASE-ADMIN-COOKBOOK.COM</value>
</property>

12.	 Add the DataNode security configurations to the hdfs-site.xml file:
$ vi $HADOOP_HOME/conf/hdfs-site.xml

<property>
 <name>dfs.datanode.data.dir.perm</name>
 <value>700</value>
</property>
<!-- secure setup requires privileged ports -->
<property>
 <name>dfs.datanode.address</name>
 <value>0.0.0.0:1004</value>
</property>
<property>
 <name>dfs.datanode.http.address</name>
 <value>0.0.0.0:1006</value>
</property>
<property>
 <name>dfs.datanode.keytab.file</name>
 <value>/etc/hadoop/hadoop.keytab</value>
</property>
<property>

Chapter 6

207

 <name>dfs.datanode.kerberos.principal</name>
 <value>hadoop/_HOST@HBASE-ADMIN-COOKBOOK.COM</value>
</property>
<property>
 <name>dfs.datanode.kerberos.https.principal</name>
 <value>host/_HOST@HBASE-ADMIN-COOKBOOK.COM</value>
</property>

13.	 Start the NameNode daemon on the master node:
hadoop@master1$ $HADOOP_HOME/bin/hadoop-daemon.sh start namenode

You will find logs like the following in the NameNode logfile:
2012-02-05 20:26:48,642 INFO org.apache.hadoop.security.
UserGroupInformation: Login successful for user hadoop/ip-10-168-
46-11.us-west-1.compute.internal@HBASE-ADMIN-COOKBOOK.COM

2012-02-05 20:37:19,397 INFO org.apache.hadoop.security.
UserGroupInformation: Login successful for user host/ip-10-168-46-
11.us-west-1.compute.internal@HBASE-ADMIN-COOKBOOK.COM
2012-02-05 20:37:19,694 INFO org.apache.hadoop.http.HttpServer:
Added global filtersafety (class=org.apache.hadoop.http.
HttpServer$QuotingInputFilter)
2012-02-05 20:37:19,705 INFO org.apache.hadoop.http.HttpServer:
dfs.webhdfs.enabled = false
2012-02-05 20:37:19,714 INFO org.apache.hadoop.http.HttpServer:
Adding Kerberos filter to getDelegationToken
2012-02-05 20:37:19,714 INFO org.apache.hadoop.http.HttpServer:
Adding Kerberos filter to renewDelegationToken
2012-02-05 20:37:19,716 INFO org.apache.hadoop.http.HttpServer:
Adding Kerberos filter to cancelDelegationToken
2012-02-05 20:37:19,717 INFO org.apache.hadoop.http.HttpServer:
Adding Kerberos filter to fsck
2012-02-05 20:37:19,718 INFO org.apache.hadoop.http.HttpServer:
Adding Kerberos filter to getimage

The following steps are for DataNode nodes only:

14.	 Change the data store directory permission to only readable by its owner:
$ chmod -R 700 /usr/local/hadoop/var/dfs/data

15.	 Change the log directory owner to the hadoop user:
$ chown -R hadoop:hadoop $HADOOP_HOME/logs

16.	 Configure the Hadoop secure DataNode user by adding the following command to the
hadoop-env.sh file:
$ vi conf/hadoop-env.sh

HADOOP_SECURE_DN_USER=hadoop

Maintenance and Security

208

17.	 For 32-bit systems only, build jsvc from source, and then replace the commons-
daemon JAR file in the Hadoop lib directory, as described in the following steps:

i.	 From Apache Commons Daemon download URL (http://commons.
apache.org/daemon/download_daemon.cgi), download the jsvc
source (commons-daemon-1.x.y-native-src.tar.gz), and build jsvc
following the README file present in the tarball. Then, copy the built jsvc
binary file to the $HADOOP_HOME/libexec/jsvc.i386 file.

ii.	 Also, download the Commons Daemon JAR file (commons-daemon-1.x.y-
bin.tar.gz) with the same version of jsvc. Decompress it and replace
$HADOOP_HOME/lib/commons-daemon-1.0.1.jar with the downloaded
JAR file.

18.	 Start DataNode with the root user:
$ sudo $HADOOP_HOME/bin/hadoop-daemon.sh start datanode

You should be able to find logs if everything is configured well, which are shown
as follows:
2012-02-05 21:46:02,925 INFO org.apache.hadoop.security.
UserGroupInformation: Login successful for user hadoop/ip-10-168-
106-166.us-west-1.compute.internal@HBASE-ADMIN-COOKBOOK.COM using
keytab file /etc/hadoop/hadoop.keytab

After all DataNodes in the cluster have been started, test our secure HDFS using the
following instructions:

19.	 Test the secure HDFS from its admin web page. Click on the Browse the filesystem
link; an error will show on the screen, as seen in the following screenshot:

Chapter 6

209

20.	 Test the secure HDFS from the command line on your client node:
hac@client1$ $HADOOP_HOME/bin/hadoop fs -ls /

12/02/05 23:00:50 ERROR security.UserGroupInformation:
PriviledgedActionException as:hac
cause:javax.security.sasl.SaslException: GSS initiate failed
[Caused by GSSException: No valid credentials provided (Mechanism
level: Failed to find any Kerberos tgt)]

12/02/05 23:00:50 WARN ipc.Client: Exception encountered while
connecting to the server : javax.security.sasl.SaslException: GSS
initiate failed [Caused by GSSException: No valid credentials
provided (Mechanism level: Failed to find any Kerberos tgt)]

12/02/05 23:00:50 ERROR security.UserGroupInformation:
PriviledgedActionException as:hac cause:java.io.IOException:
javax.security.sasl.SaslException: GSS initiate failed [Caused by
GSSException: No valid credentials provided (Mechanism level:
Failed to find any Kerberos tgt)]

Bad connection to FS. command aborted. exception: Call to ip-10-
168-46-11.us-west-1.compute.internal/10.168.46.11:8020 failed on
local exception: java.io.IOException:
javax.security.sasl.SaslException: GSS initiate failed [Caused by
GSSException: No valid credentials provided (Mechanism level:
Failed to find any Kerberos tgt)]

21.	 Authenticate a user to access the secure HDFS from the kadmin console:
hac@client1$ sudo kadmin

kadmin: addprinc hac/ip-10-160-34-143.us-west-1.compute.internal

kadmin: quit

22.	 Obtain a Kerberos ticket for the user with the following command:
hac@client1$ kinit hac/ip-10-160-34-143.us-west-1.compute.internal

Password for hac/ip-10-160-34-143.us-west-
1.compute.internal@HBASE-ADMIN-COOKBOOK.COM:

23.	 Test the authentication from the command line on your client node again:
hac@client1$ $HADOOP_HOME/bin/hadoop fs -ls /

Found 6 items

drwxr-xr-x - hadoop supergroup 0 2012-01-08 08:09
/backup

drwxr-xr-x - hadoop supergroup 0 2012-02-04 21:29
/hbase

Maintenance and Security

210

drwxr-xr-x - hadoop supergroup 0 2011-11-24 17:13
/hbase-b

drwxrwxrwx - hadoop supergroup 0 2012-01-08 22:47 /tmp

drwxr-xr-x - hadoop supergroup 0 2012-01-03 22:12 /user

drwxr-xr-x - hadoop supergroup 0 2012-01-25 11:08 /usr

How it works...
First of all, we installed the Kerberos client software on each HDFS node. After that, we
entered the kadmin console to add Kerberos principals for the hadoop user of that node,
and for the node itself. As we will only use these principals from their keytab files, we added
the -randkey option to the addprinc command.

As we will only set up HDFS security in this recipe, we are using the hadoop user here. If you
will also enable secure MapReduce, we recommend you use different users for HDFS and
MapReduce, for example the hdfs and mapreduce users respectively.

Another point here is to add different principals for the hadoop user on each node. Although
it is possible to add a single principal in Kerberos for the hadoop user on all nodes, this is not
recommended. Because in this case, as the cluster will send many authentication requests
to the same principal (hadoop@YOUR_REALM.COM), Kerberos might handle this as an attack
and fail to authenticate.

In step 5, we created the keytab file (/etc/hadoop/hadoop.keytab) for the principals we
added in the previous steps. A keytab is a file containing pairs of Kerberos principals and
encrypted keys. Using this file, Hadoop can log in to Kerberos without being prompted for a
password.

After confirming the keytab file in step 6, we made it only readable by the hadoop user
in step 7.

Tickets are encrypted by default, using the AES-256 encryption. This requires "Java
Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files 6" to be installed on
all HDFS nodes and clients. That's what we did in step 8.

After enabling Hadoop and HDFS security in steps 9 and 10, we configured Kerberos security
on NameNode in step 11. We set the keytab file path and principals in this step. The _HOST
setting value will be replaced with the hostname of the node, at runtime.

DataNode security settings were added in step 12. For the dfs.datanode.address and
dfs.datanode.http.address settings, note that a secure setup requires privileged ports
(ports below 1024).

As you can see from the output of step 13, if everything was configured well, the hadoop user
and the master node will get authenticated by Kerberos during the NameNode starting process.

Chapter 6

211

For the DataNode node, we firstly changed the data store directory to only readable by the
hadoop user in step 14.

A secure DataNode must be started by the root user and run by the hadoop user. This is
configured in step 16 by adding the HADOOP_SECURE_DN_USER=hadoop setting to the
hadoop-env.sh file.

Step 17 is necessary for 32-bit systems only. This is simply because the 32-bit jsvc binary
file was not included in the current Hadoop release's tarball.

After all the DataNodes in the cluster have been started by the root user, we are now able to
test the secured HDFS from its web UI and from the command-line interface as well.

As you can see from steps 19 and 20, non-authenticated users could not access the secured
HDFS neither from the web UI nor the command line. This was what we had expected.
Identities including components of HDFS itself, and clients, must be authenticated by
Kerberos before they are able to communicate with other identities in the realm.

In step 21, we added a test principal for the hac user on our HDFS client node. After
obtaining a Kerberos ticket (authenticated) in step 22, the user was able to access the
secured HDFS successfully.

There's more...
We just discussed the most basic HDFS security configuration. As the scope of the book is
limited, we have omitted some steps here, including:

ff SecondaryNameNode security
ff MapReduce security
ff WebHDFS security if WebHDFS is enabled
ff User accounts and groups
ff Directories ownership on HDFS and the local filesystem
ff The verification of DataNodes' identities to clients (HDFS-1150)

HBase security configuration
As HBase becomes more and more popular, different users and groups may store more data
in a shared HBase cluster. You might not like all users having full permission to every HBase
table. This adds risks to your data, for example, security risks or missed data operation.

Newer HBase releases (0.92 and above) have Kerberos-based security support. With this,
user identities are verified by Kerberos, and only authenticated users are allowed to access
data in a secured HBase cluster.

We will describe how to configure secure client access to HBase in this recipe.

Maintenance and Security

212

Getting ready
Make sure you are using the security-enabled HBase release. If you are downloading from the
official HBase site, the filename should look like hbase-0.92.1-security.tar.gz.

We assume that you have a working Kerberos Key Distribution Center (KDC) and have realm
set up. For more information about installing and configuring Kerberos, see the Kerberos
authentication for Hadoop and HBase recipe in this chapter.

As a secure HBase access is expected to be running on top of a secured HDFS cluster, you
will also need to set up HDFS security in advance. Refer to the Configuring HDFS security with
Kerberos recipe in this chapter, for details.

As we have used the same user (the hadoop user) to run HDFS and HBase in this book, we
are able to share the keytab files. Generate the HBase owner's own keytab file if you are using
a different user for HDFS and HBase.

How to do it...
The instructions to configure HBase security are as follows:

1.	 On every node in the cluster, add the following, most basic configuration to the
hbase-site.xml file:
$ vi $HBASE_HOME/conf/hbase-site.xml

<property>
 <name>hbase.regionserver.kerberos.principal</name>
 <value>hadoop/_HOST@HBASE-ADMIN-COOKBOOK.COM</value>
</property>
<property>
 <name>hbase.regionserver.keytab.file</name>
 <value>/etc/hadoop/hadoop.keytab</value>
</property>
<property>
 <name>hbase.master.kerberos.principal</name>
 <value>hadoop/_HOST@HBASE-ADMIN-COOKBOOK.COM</value></property>
<property>
 <name>hbase.master.keytab.file</name>
 <value>/etc/hadoop/hadoop.keytab</value>
</property>

2.	 On every server node in the cluster, add the following configuration to the hbase-
site.xml file:
$ vi $HBASE_HOME/conf/hbase-site.xml

<property>

Chapter 6

213

 <name>hbase.security.authentication</name>
 <value>kerberos</value>
</property>
<property>
 <name>hbase.security.authorization</name>
 <value>true</value>
</property>
<property>
 <name>hbase.rpc.engine</name>
 <value>org.apache.hadoop.hbase.ipc.SecureRpcEngine</value>
</property>
<property>
 <name>hbase.coprocessor.region.classes</name>
 <value>org.apache.hadoop.hbase.security.token.TokenProvider
 </value>
</property>

3.	 On every HBase client node, add the following configuration to the hbase-site.xml
file:
$ vi $HBASE_HOME/conf/hbase-site.xml

<property>
 <name>hbase.security.authentication</name>
 <value>kerberos</value>
</property>
<property>
 <name>hbase.rpc.engine</name>
 <value>org.apache.hadoop.hbase.ipc.SecureRpcEngine</value>
</property>

4.	 Start the master daemon on the master node:
hadoop@master1$ $HBASE_HOME/bin/hbase-daemon.sh start master

If everything is configured well, you will find logs in the HBase logfile on the master
node, as follows:
2012-02-06 00:06:57,524 INFO org.apache.hadoop.security.
UserGroupInformation: Login successful for user hadoop/ip-10-168-
46-11.us-west-1.compute.internal@HBASE-ADMIN-COOKBOOK.COM

5.	 Start the region server daemon on every region server node:
hadoop@master1$ $HBASE_HOME/bin/hbase-daemons.sh start
regionserver

Maintenance and Security

214

You should be able to find logs in the HBase logfile on the master node,
shown as follows:
2012-02-06 00:13:10,206 INFO SecurityLogger.org.apache.hadoop.
security.authorize.ServiceAuthorizationManager: Authorization
successfull for hadoop/ip-10-168-62-63.us-west-1.compute.internal@
HBASE-ADMIN-COOKBOOK.COM for protocol=interface org.apache.hadoop.
hbase.ipc.HMasterRegionInterface

And logs on region server, as follows:
2012-02-06 00:14:29,276 INFO SecurityLogger.org.apache.hadoop.
security.authorize.ServiceAuthorizationManager: Authorization
successfull for hadoop/ip-10-168-46-11.us-west-1.compute.internal@
HBASE-ADMIN-COOKBOOK.COM for protocol=interface org.apache.hadoop.
hbase.ipc.HMasterRegionInterface

6.	 Clear the Kerberos cache and test the secure HBase configuration on your client node.
hac@client1$ kdestory

hac@client1$ $HBASE_HOME/bin/hbase shell

hbase> count 'hly_temp'

12/02/06 00:21:37 ERROR security.UserGroupInformation:
PriviledgedActionException as:hac
cause:javax.security.sasl.SaslException: GSS initiate failed
[Caused by GSSException: No valid credentials provided (Mechanism
level: Failed to find any Kerberos tgt)]

7.	 Obtain a Kerberos ticket and test again:
hac@client1$ kinit hac/ip-10-160-34-143.us-west-1.compute.internal

hac@client1$ $HBASE_HOME/bin/hbase shell

hbase> count 'hly_temp'

…

Current count: 94000, row: USW000948470714
Current count: 95000, row: USW000949080410
95630 row(s) in 22.1700 seconds

How it works...
In step 1, we configured the Kerberos principal and its keytab file for the HBase master and
region servers in the hbase-site.xlm file. It is the common configuration for both the
server nodes and client nodes. Like the Hadoop security configuration, the _HOST setting
value will be replaced with the hostname of the node at runtime.

Chapter 6

215

Step 2 is for the server nodes only. We have enabled the HBase authentication and
authorization in the configuration. We have set HBase to use the Kerberos authentication, and
HBase coprocessors-based authorization. HBase coprocessors is a new feature in the 0.92
release, based on Google's BigTable coprocessors. It is an arbitrary code that runs at each
region in the region server. An example usage of HBase Coprocessors is to implement access
control for HBase tables.

On the client side in step 3, we only need to configure Kerberos's authentication.

As you can see from the logs of steps 4 and 5, the HBase master and region servers will get
authenticated by Kerberos during the starting up process.

As shown in steps 6 and 7, non-authenticated users could not access the secured HBase.
This was what we had expected. Identities, including server-side components and clients,
must be authenticated by Kerberos before they are able to communicate with other identities
in the realm.

There's more...
We have set up secure client access to HBase in this recipe. Besides that, you might also want
to configure access control for the HBase tables. Using the previous setup, implement the
following configurations to enable access control:

ff Configure ZooKeeper security

ff Enable the AccessController coprocessor

ff Edit user permissions in HBase Shell

As the scope of the book is limited, we have omitted these configurations. Refer to the
following URL for a detailed description:

https://issues.apache.org/jira/browse/HBASE-4990

7
Troubleshooting

In this chapter, we will cover:

ff Troubleshooting tools

ff Handling the XceiverCount error

ff Handling the "too many open files" error

ff Handling the "unable to create new native thread" error

ff Handling the "HBase ignores HDFS client configuration" issue

ff Handling the ZooKeeper client connection error

ff Handling the ZooKeeper session expired error

ff Handling the HBase startup error on EC2

Introduction
Everyone expects their HBase cluster to run smoothly and steadily, but the cluster does
not work as expected sometimes, especially when a cluster has not been well configured.
This chapter describes things you can do to troubleshoot a cluster that is running in an
unexpected status.

Before you start troubleshooting a cluster, it is better to get familiar with the tools that will
help us restore the cluster. Useful tools are as important as a deep knowledge of HBase and
the cluster you are operating. We will introduce several recommended tools and their sample
usage, in the first recipe.

Troubleshooting

218

Problems usually occur on a cluster that is missing the basic setup. If you encounter problems
with your cluster, the first thing you should do is analyze the master log file, as the master acts
as the coordinator service of the cluster. Hopefully, you will be able to identify the root cause of
the error once you have found the WARN or ERROR level logs in the log file. The region server log
file is another source you need to check. The region server log file usually contains load-related
error logs, as region servers handle the actual data storing and accessing for the cluster.

HBase runs on the top of HDFS, and it relies on ZooKeeper as its coordination service.
Sometimes, it is necessary to investigate the HDFS, MapReduce, and ZooKeeper logs, as well.
All these log files are, by default, stored under the logs directory of the installation folder. Of
course, it is configurable in the log4j property file.

If you find an error message, search the online resource at http://search-hadoop.
com/; it is quite possible that this has been reported and discussed before. There is a great
HBase community that you can always ask for help. However, before you ask, do not forget to
subscribe first—http://hbase.apache.org/mail-lists.html.

In this chapter, we will look through several of the most confronted issues. We will describe
the error messages of these issues, why they happened, and how to fix them with the
troubleshooting tools.

Troubleshooting tools
In order to troubleshoot an HBase cluster, besides a solid knowledge of the cluster you are
operating, the tools you use are also important. We would like to recommend the following
troubleshooting tools:

ff ps: This can be used to find the top process that used the most memory and CPU

ff ClusterSSH tool: This tool is used to control multiple SSH sessions simultaneously

ff jps: This tool shows the Java processes for the current user

ff jmap: This tool prints the Java heap summary

ff jstat: This is the Java Virtual Machine statistics monitoring tool

ff hbase hbck: This tool is used for checking and repairing region consistency and
table integrity

ff hadoop fsck: This tool is used for checking HDFS consistency

We will describe sample usage of these tools, in this recipe.

Chapter 7

219

Getting ready
Start your HBase cluster.

How to do it...
The following are the troubleshooting tools we will describe:

ff ps: This tool is used to find the top processes that occupied large amounts
of memory. The following command sorts the processes by memory usage, in
descending order:
$ ps auxk -rss | less

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME
COMMAND

hadoop 1346 1.2 6.6 1222680 115096 ? Sl 11:01 0:10
/usr/local/jdk1.6/bin/java -XX:OnOutOfMemoryError=kill -9 %p
-Xmx1000m -ea -XX:+UseConcMarkSweepGC -XX:+CMSIncrementalMode
-Dhbase.log.dir=/usr/local/hbase/logs

…

org.apache.hadoop.hbase.regionserver.HRegionServer start

ff ClusterSSH tool: This tool is used to control multiple SSH sessions, simultaneously. In
order to install ClusterSSH (cssh) on a Ubuntu desktop, run the following command:
$ sudo apt-get install clusterssh

There is also a ClusterSSH tool for Mac OS X called csshx. You can download csshx
from http://code.google.com/p/csshx/. Start the ClusterSSH tool to monitor
a small HBase cluster. For example, on Mac OS X, run the following command to start
multiple SSH sessions on each node of the HBase cluster:
$ csshX --login hac master1 slave1 slave2 slave3

A master window (the second one in the following screenshot) will also be created. In
the red master window, type the following to run the top command on every node:
$ top

http://code.google.com/p/csshx/
http://code.google.com/p/csshx/

Troubleshooting

220

You will get a screen similar to the following screenshot:

ff jps: This tool shows the Java processes for the current user. To show the Java
processes on a slave node for the hadoop user, run the following command:
hadoop@slave1$ $JAVA_HOME/bin/jps

1254 DataNode

2445 Child

1970 TaskTracker

2481 Jps

1812 HRegionServer

ff jmap: This tool prints the Java heap summary. In order to print the aforementioned
HRegionServer process' Java heap summary, use the following command:
hadoop@slave1$ $JAVA_HOME/bin/jmap -heap 1812

Attaching to process ID 1812, please wait...

Debugger attached successfully.

Client compiler detected.

JVM version is 20.4-b02

using thread-local object allocation.

Concurrent Mark-Sweep GC

Chapter 7

221

Heap Configuration:

 MinHeapFreeRatio = 40

 MaxHeapFreeRatio = 70

 MaxHeapSize = 1048576000 (1000.0MB)

 NewSize = 16777216 (16.0MB)

 MaxNewSize = 16777216 (16.0MB)

 OldSize = 50331648 (48.0MB)

 NewRatio = 7

 SurvivorRatio = 8

 PermSize = 12582912 (12.0MB)

 MaxPermSize = 67108864 (64.0MB)

Heap Usage:

New Generation (Eden + 1 Survivor Space):

 capacity = 15138816 (14.4375MB)

 used = 6533712 (6.2310333251953125MB)

 free = 8605104 (8.206466674804688MB)

 43.1586723823052% used

Eden Space:

 capacity = 13500416 (12.875MB)

 used = 6514736 (6.2129364013671875MB)

 free = 6985680 (6.6620635986328125MB)

 48.25581670964806% used

From Space:

 capacity = 1638400 (1.5625MB)

 used = 18976 (0.018096923828125MB)

 free = 1619424 (1.544403076171875MB)

 1.158203125% used

To Space:

 capacity = 1638400 (1.5625MB)

 used = 0 (0.0MB)

 free = 1638400 (1.5625MB)

 0.0% used

concurrent mark-sweep generation:

 capacity = 274624512 (261.90234375MB)

 used = 68805464 (65.61800384521484MB)

Troubleshooting

222

 free = 205819048 (196.28433990478516MB)

 25.05437824865393% used

Perm Generation:

 capacity = 26222592 (25.0078125MB)

 used = 15656912 (14.931594848632812MB)

 free = 10565680 (10.076217651367188MB)

 59.70772073180256% used

ff jstat: This is the Java Virtual Machine statistics monitoring tool. Run the
following command to show the summary of the garbage collection statistics of a
HRegionServer process:
hadoop@slave1$ jstat -gcutil 1812 1000

The output looks as shown in the following screenshot:

How it works...
The ps command has a k option, which we can use to specify the sorting order. We pass the
-rss format specifier to this option. This causes the ps command to sort processes by their
resident set size, in descending order. We use this method to find the top process that used
the most memory.

The Cluster SSH tool is convenient for managing small clusters. You can use it to invoke the
same commands simultaneously on multiple servers. Just as we have earlier, we open one
session to the master and every slave node in the cluster. Then, we invoke the top command
on each server, via the master window. This acts as a simple monitoring system for the cluster.

jps is a small, hands-on tool to manage Java processes. It shows the Java processes for the
current user.

Chapter 7

223

Step 4 shows the output of the jps command on a slave node running the DataNode,
RegionServer, and TaskTracker daemons. Hadoop and HBase are written in Java; this makes
jps a useful tool for us.

jmap is a tool to print the Java heap summary. As shown in step 5, we use the jmap -heap
<PID> command to show the HRegionServer daemon's heap summary. jmap will print the
heap configuration and usage of the HRegionServer daemon.

jstat is a tool to show the Java Virtual Machine (JVM) statistics monitoring data. In the
example, jstat attaches to the HRegionServer (PID 1812)'s JVM, takes samples at 1000
millisecond intervals, and displays the output, as specified by the -gcutil option. The output
shows that the young generation collection keeps occurring. For example, between the 4th
and 5th samples, the collection took 0.216 (8.134 to 7.918 in the YGCT column) seconds and
promoted objects from the Eden space (E) to the old space (O), resulting in an increase of old
space utilization from 55.99% to 58.73%. Before the collection, the survivor space (S0) was
100% utilized, but after this collection it is only 25.85% utilized.

See also
ff HBase hbck—checking the consistency of an HBase cluster recipe, in Chapter 3,

Using Administration Tools

ff Simple scripts to report status of the cluster recipe, in Chapter 5, Monitoring
and Diagnosis

Handling the XceiverCount error
In this recipe, we will describe how to troubleshoot the following XceiverCount error shown in
the DataNode logs:

2012-02-18 17:08:10,695 ERROR org.apache.hadoop.hdfs.server.datanode.
DataNode: DatanodeRegistration(10.166.111.191:50010, storageID=
DS-2072496811-10.168.130.82-50010-1321345166369, infoPort=50075,
ipcPort=50020):DataXceiver
java.io.IOException: xceiverCount 257 exceeds the limit of concurrent
xcievers 256
 at org.apache.hadoop.hdfs.server.datanode.DataXceiver.run
 (DataXceiver.java:92)
 at java.lang.Thread.run(Thread.java:662)

Getting ready
Log in to your master node.

Troubleshooting

224

How to do it...
The following are the steps to fix the XceiverCount error:

1.	 Add the following snippet to the HDFS setting file (hdfs-site.xml):
hadoop@master1$ vi $HADOOP_HOME/conf/hdfs-site.xml

<property>
 <name>dfs.datanode.max.xcievers</name>
 <value>4096</value>
</property>

2.	 Sync the hdfs-site.xml file across the cluster:
hadoop@master1$ for slave in `cat $HADOOP_HOME/conf/slaves`

do

 rsync -avz $HADOOP_HOME/conf/ $slave:$HADOOP_HOME/conf/

done

3.	 Restart HDFS and HBase from the master node:
hadoop@master1$ $HBASE_HOME/bin/stop-hbase.sh

hadoop@master1$ $HADOOP_HOME/bin/stop-dfs.sh

hadoop@master1$ $HADOOP_HOME/bin/start-dfs.sh

hadoop@master1$ $HBASE_HOME/bin/start-hbase.sh

How it works...
The dfs.datanode.max.xcievers (yes, this is misspelled) setting defines an HDFS
DataNode's upper bound on the number of files that it will serve at any given time. Its default
value is 256, which is too small to run HBase on HDFS. If your DataNode reaches this upper
bound, you will see an error log in the DataNode logs notifying you that the Xciever count has
been exceeded.

We recommend setting it to a much higher value, 4096 for example, on modern machines.
After changing this setting, you will need to sync the modified hdfs-site.xml file across the
cluster and then restart HDFS to apply the changes.

Chapter 7

225

Handling the "too many open files" error
In this recipe, we will describe how to troubleshoot the error shown in the following
DataNode logs:

2012-02-18 17:43:18,009 ERROR org.apache.hadoop.hdfs.server.datanode.
DataNode: DatanodeRegistration(10.166.111.191:50010, storageID=
DS-2072496811-10.168.130.82-50010-1321345166369, infoPort=50075,
ipcPort=50020):DataXceiver
java.io.FileNotFoundException: /usr/local/hadoop/var/dfs/data/current/
subdir6/blk_-8839555124496884481 (Too many open files)
 at java.io.RandomAccessFile.open(Native Method)
 at java.io.RandomAccessFile.<init>(RandomAccessFile.java:216)
 at org.apache.hadoop.hdfs.server.datanode.FSDataset.
getBlockInputStream(FSDataset.java:1068)

Getting ready
To fix this issue, you will need root privileges on every node of the cluster. We assume you use
the hadoop user to start your HDFS cluster.

How to do it...
To fix the "too many open files" error, execute the following steps on every node of the cluster:

1.	 Increase the open file number of the hadoop user by adding the following properties
to the /etc/security/limits.conf file:
$ vi /etc/security/limits.conf

hadoop soft nofile 65535
hadoop hard nofile 65535

2.	 Add the following line to the /etc/pam.d/login file:
$ vi /etc/pam.d/login

session required pam_limits.so

3.	 Log out and then log in again as the hadoop user.

4.	 Confirm that the open file limit has been increased, by running the following command:
$ ulimit -n

65535

Troubleshooting

226

5.	 Restart HDFS and HBase from the master node:
hadoop@master1$ $HBASE_HOME/bin/stop-hbase.sh

hadoop@master1$ $HADOOP_HOME/bin/stop-dfs.sh

hadoop@master1$ $HADOOP_HOME/bin/start-dfs.sh

hadoop@master1$ $HBASE_HOME/bin/start-hbase.sh

How it works...
HBase is a database running on Hadoop, and just like the other databases, it keeps lots of
files open at the same time. On the other hand, Linux limits the number of file descriptors
that a process may open. The default limitation is 1024, which is too small for HBase. If
the hadoop user's open file number exceeds this upper bound, you will see an error in the
DataNode logs indicating that too many files are open.

To run HBase smoothly, you will need to increase the maximum number of open file
descriptors for the user running HDFS and HBase; in our case, that is the hadoop user.

We set the hadoop user's open file limit in the /etc/security/limits.conf file, in step 1,
and then modify the /etc/pam.d/login file in step 2, so that the change works next time the
user logs in to the system. The soft limit (soft nofile) is the value that the OS kernel enforces
for the number of open file descriptors. The hard limit (hard nofile) acts as a ceiling for the
soft limit. ulimit is a program to set and show the limit of the use of system-wide resources for
the current user. As you can see in step 4, the ulimit -n command shows the open file limit
for the hadoop user.

Do not forget to restart the HDFS cluster to apply the changes.

There's more...
You may also want to know the current open file number of the hadoop user. In order to get
this information, use the lsof command:

$ lsof -uhadoop | wc -l

See also
ff Changing the kernel settings recipe, in Chapter 1, Setting Up HBase Cluster

ff Handling the "unable to create new native thread" error, in this chapter

Chapter 7

227

Handling the "unable to create new native
thread" error

In this recipe, we will describe how to troubleshoot the error shown in the following
RegionServer logs:

2012-02-18 18:46:04,907 WARN org.apache.hadoop.hdfs.DFSClient:
DataStreamer Exception: java.lang.OutOfMemoryError: unable to create
new native thread
 at java.lang.Thread.start0(Native Method)
 at java.lang.Thread.start(Thread.java:640)
 at org.apache.hadoop.hdfs.DFSClient$DFSOutputStream$DataStreamer.
run(DFSClient.java:2830)

Getting ready
To fix this error, you will need root privileges on every node of the cluster. We assume you use
the hadoop user to start your HDFS and HBase clusters.

How to do it...
To fix the "unable to create new native thread" error, execute the following steps on every node
of the cluster:

1.	 Increase the maximum number of processes of the hadoop user by adding the
following properties to the /etc/security/limits.conf file:
$ vi /etc/security/limits.conf

hadoop soft nproc 32000
hadoop hard nproc 32000

2.	 Add the following line to the /etc/pam.d/login file:
$ vi /etc/pam.d/login

session required pam_limits.so

3.	 Log out and then log in again as the hadoop user.

4.	 Make sure the open process limit has been increased, by running the following
command:
$ ulimit -u

32000

Troubleshooting

228

5.	 Restart HDFS and HBase from the master node:
hadoop@master1$ $HBASE_HOME/bin/stop-hbase.sh

hadoop@master1$ $HADOOP_HOME/bin/stop-dfs.sh

hadoop@master1$ $HADOOP_HOME/bin/start-dfs.sh

hadoop@master1$ $HBASE_HOME/bin/start-hbase.sh

How it works...
Linux limits the number of processes that a user may execute simultaneously. In a high load
HBase cluster, a low nproc setting could manifest as an OutOfMemoryError exception, as
shown earlier. If the running process numbers of the hadoop user exceed the nproc limit, you
will see an error in the RegionServer logs to the tune of "unable to create new native thread".

To run HBase smoothly, you will need to increase the nproc limit for the user who runs HDFS
and HBase.

We set the hadoop user's nproc limit in the /etc/security/limits.conf file in step 1
and then modify the /etc/pam.d/login file in step 2, so that the change works the next
time the user logs in to the system. The soft limit (soft nproc) is the value that the OS kernel
enforces for the number of processes. The hard limit (hard nproc) acts as a ceiling for the
soft limit.

After logging out, we log back in again and run the ulimit -u program, to show the limit of
the current user's process number.

Finally, we restart HDFS and HBase to apply the changes.

There's more...
In order to view the current thread number of the hadoop user, type the following command:

$ ps -o pid,comm,user,thcount -u hadoop

 PID COMMAND USER THCNT

 1349 su hadoop 1

 1350 bash hadoop 1

 1429 java hadoop 32

 1580 java hadoop 14

 1690 java hadoop 48

 1819 ps hadoop 1

The THCNT column of the output is the thread number of each process by the hadoop user.

Chapter 7

229

See also
ff Changing the kernel settings, Chapter 1, Setting Up HBase Cluster

ff Handling the "too many open files" error, in this chapter

Handling the "HBase ignores HDFS client
configuration" issue

You may have noticed that HBase ignores your HDFS client configuration, for example the
dfs.replication setting. In the following example, we have set a replication factor of 2 for
our HDFS client:

$ grep -A 1 "dfs.replication" $HADOOP_HOME/conf/hdfs-site.xml

 <name>dfs.replication</name>

 <value>2</value>

However, the HBase files on HDFS show a factor of 3, which is the default replication factor
of HDFS:

This is not what we expected—the replication factor was expected to be 2, but the actual
value is 3.

We will describe why this happens and how to fix it, in this recipe.

Getting ready
Log in to your master node as the user who starts HDFS and HBase. We assume you are using
the hadoop user for HDFS and HBase.

Troubleshooting

230

How to do it...
The following are the steps to apply your HDFS client configurations to HBase:

1.	 Add a symbolic link of the HDFS setting file (hdfs-site.xml) under the HBase
configuration directory:
$ hadoop@master1$ ln -s $HADOOP_HOME/conf/hdfs-site.xml $HBASE_
HOME/conf/hdfs-site.xml

2.	 Sync this change across the cluster:
hadoop@master1$ for slave in `cat $HBASE_HOME/conf/regionservers`

do

 rsync -avz $HBASE_HOME/conf/ $slave:$HBASE_HOME/conf/

done

3.	 Restart HBase. Now, the newly created HBase files will have the HDFS client
configurations. The actual replication factor value will be 2, as we expected:
hadoop@master1$ $HBASE_HOME/bin/stop-hbase.sh

hadoop@master1$ $HBASE_HOME/bin/start-hbase.sh

How it works...
HDFS client configuration is set in the hdfs-site.xml file. To apply the HDFS client
configuration to HBase, we need to add the settings in this file, and add the hdfs-site.xml
file to the HBase's classpath.. The easiest way to do this is to create a symbolic link of the
hdfs-site.xml file under the HBase configuration directory and then sync it across the cluster.

Once HBase has been restarted, you will notice that the HDFS client configurations
will be applied.

Handling the ZooKeeper client connection
error

In this recipe, we will describe how to troubleshoot the ZooKeeper client connection error
shown in the following RegionServer logs:

2012-02-19 15:17:06,199 WARN org.apache.zookeeper.ClientCnxn:
Session 0x0 for server ip-10-168-47-220.us-west-1.compute.internal
/10.168.47.220:2181, unexpected error, closing socket connection and
attempting reconnect

Chapter 7

231

java.io.IOException: Connection reset by peer
 at sun.nio.ch.FileDispatcher.read0(Native Method)
 at sun.nio.ch.SocketDispatcher.read(SocketDispatcher.java:21)
 at sun.nio.ch.IOUtil.readIntoNativeBuffer(IOUtil.java:198)
 at sun.nio.ch.IOUtil.read(IOUtil.java:166)
 at sun.nio.ch.SocketChannelImpl.read(SocketChannelImpl.java:243)
 at org.apache.zookeeper.ClientCnxnSocketNIO.
doIO(ClientCnxnSocketNIO.java:66)

Getting ready
Log in to your ZooKeeper quorum nodes.

How to do it...
The following are the steps to fix the ZooKeeper client connection error:

1.	 Add the following to the ZooKeeper configuration file (zoo.cfg) on every ZooKeeper
quorum node:
$ vi $ZOOKEEPER_HOME/conf/zoo.cfg

maxClientCnxns=60

2.	 Restart ZooKeeper to apply the changes:
$ $ZOOKEEPER_HOME/bin/zkServer.sh stop

$ $ZOOKEEPER_HOME/bin/zkServer.sh start

How it works...
This error usually occurs when running a MapReduce job over an HBase cluster. ZooKeeper
has a maxClientCnxns setting to limit the number of concurrent connections that a single
client may make to a single member of the ZooKeeper ensemble. Every region server is a
ZooKeeper client; if a region server's concurrent connection number exceeds this maximum
client connection limit, it will be not able to create a new connection to the ZooKeeper
ensemble. That's why the aforementioned error occured.

To fix this error, we need to set a higher value to the maxClientCnxns setting and restart
ZooKeeper for the changes to be applied.

There's more...
The default value for maxClientCnxns has been changed to 60, since ZooKeeper 3.4.0. It
should work well for many applications.

Troubleshooting

232

To view the current number of connections from a client to a specific ZooKeeper quorum
node, run the following command:

$ echo "cons" | nc localhost 2181 | grep "your.client.ip.address" | wc –l

Replace localhost with the hostname of your ZooKeeper quorum node, and the "your.
client.ip.address" with your client's IP address.

Handling the ZooKeeper session expired
error

In this recipe, we will describe how to troubleshoot the following ZooKeeper session expired
error shown in the RegionServer logs:

2012-02-19 16:49:15,405 WARN org.apache.hadoop.hbase.regionserver.
HRegionServer: Failed deleting my ephemeral node
org.apache.zookeeper.KeeperException$SessionExpiredException:
KeeperErrorCode = Session expired for /hbase/rs/ip-10-168-37-91.us-
west-1.compute.internal,60020,1329635463251
 at org.apache.zookeeper.KeeperException.create(KeeperException.
java:127)
 at org.apache.zookeeper.KeeperException.create(KeeperException.
java:51)
 at org.apache.zookeeper.ZooKeeper.delete(ZooKeeper.java:868)
 at org.apache.hadoop.hbase.zookeeper.RecoverableZooKeeper.
delete(RecoverableZooKeeper.java:107)

This issue is critical, because master or region servers will shut themselves down if they lose
connection to the ZooKeeper quorum.

Getting ready
Log in to the server where this error occurred.

How to do it...
The following are the steps to fix the ZooKeeper session expired issue:

1.	 Check hbase-env.sh; make sure you give plenty of RAM to the HBase daemons.
The default of 1 GB won't be enough for heavy clusters:
$ vi $HBASE_HOME/conf/hbase-env.sh

export HBASE_HEAPSIZE=8000

Chapter 7

233

2.	 Run the vmstat command to show the virtual memory statistics:
$ vmstat 1

Check the swap columns called si (swap in) and so (swap out), and make sure you
don't swap.

3.	 Use the jstat command to show the Java Garbage Collection (GC) statistics:
$ jstat -gcutil <java_process_pid> 1000

Check the FGCT column, and make sure RegionServer doesn't run into a long
GC pause.

4.	 Use the top command to show CPU statistics. Make sure the RegionServer thread
has plenty of CPU resources. MapReduce may use a lot of CPU power, causing the
RegionServer to starve and run into a long GC pause.

5.	 Consider reducing the map/reduce slots number on the region server, if MapReduce
consumes too much CPU resource. Adjust the following value:
$ vi $HADOOP_HOME/conf/mapred-site.xml

 <property>
 <name>mapred.tasktracker.map.tasks.maximum</name>
 <value>2</value>
 </property>
 <property>
 <name>mapred.tasktracker.reduce.tasks.maximum</name>
 <value>1</value>
 </property>

Troubleshooting

234

6.	 Consider increasing the ZooKeeper session timeout by editing the
hbase-site.xml file:
$ vi $HBASE_HOME/conf/hbase-site.xml

<property>
 <name>zookeeper.session.timeout</name>
 <value>120000</value>
</property>

7.	 Increase the ZooKeeper maximum session timeout on every ZooKeeper quorum
node. Modify the zoo.cfg file to increase the maxSessionTimeout value:
$ vi $ZOOKEEPER_HOME/conf/zoo.cfg

maxSessionTimeout= 120000

8.	 Restart ZooKeeper on every ZooKeeper quorum node, if you made changes to the
zoo.cfg file:
$ $ZOOKEEPER_HOME/bin/zkServer.sh stop

$ $ZOOKEEPER_HOME/bin/zkServer.sh start

9.	 Sync the files you modified across the cluster, and then restart your
Hadoop/HBase cluster.

How it works...
This error often occurs on an overloaded HBase cluster. An HBase Master and RegionServer
daemon acts as a ZooKeeper client; if the client cannot communicate with the ZooKeeper
quorum in a configured time, the connection will time out and this error will occur.

The two most likely reasons why a ZooKeeper connection gets timed out are as follows:

ff A long JVM GC pause

ff The configured timeout time is too short

From steps 1 to 5, we try to find out whether a long GC caused the error or not. HBase
needs plenty of RAM to run smoothly. The default size of 1 GB won't be enough for heavy
clusters. So, change the value of HBASE_HEAPSIZE in the hbase-env.sh file to a higher
one (for example, 8 GB), but lower than 16 GB. The reason we recommend setting the HBase
heap size lower than 16 GB is, if we use a very big heap size here, the GC will take a very long
time to complete, which is what we must avoid.

Make sure your RegionServer doesn't swap. The vmstat command can be used to see
whether a swap happened or not. In step 2, we use the vmstat command to show virtual
memory statistics in a 1-second interval. There is a vm.swappiness kernel setting you
should change, to avoid swap. We will describe it in the Setting vm.swappiness to 0 to avoid
swap recipe, in Chapter 8, Basic Performance Tuning.

Chapter 7

235

jstat is a Java Virtual Machine statistics monitoring tool. We use the -gcutil option in step
3 to show the Java GC statistics for a specific Java process, in a 1-second interval. The FGCT
column of the output is the total, full GC time; check this column to see whether a long GC
pause happened or not.

Another reason for a long GC pause is that the RegionServer process may not have enough CPU
resources. This is especially true when running heavy MapReduce jobs on an HBase cluster. In
this case, if you are running heavy MapReduce jobs, use the MapReduce configurations mapred.
tasktracker.map.tasks.maximum and mapred.tasktracker.reduce.tasks.
maximum, to control the number of maps/reduces spawned simultaneously on a TaskTracker.

If you wish to increase the ZooKeeper session timeout, set zookeeper.session.timeout
in the hbase-site.xml file, and maxSessionTimeout in the ZooKeeper configuration
file (zoo.cfg). The maxSessionTimeout option is a ZooKeeper server-side configuration.
It is an upper bound of a client session timeout, so its value must be bigger than the HBase
zookeeper.session.timeout value.

Note that setting a higher timeout means that the cluster will take at
least that much time to failover a failed RegionServer. You will need to
think about whether it is acceptable to your system or not.

See also
ff Troubleshooting tools, in this chapter

ff Setting vm.swappiness to 0 to avoid swap recipe, in Chapter 8,
Basic Performance Tuning

Handling the HBase startup error on EC2
In this recipe, we will describe how to troubleshoot the HBase startup error shown in the
following Master logs:

2011-12-10 14:04:57,422 ERROR org.apache.hadoop.hbase.HServerAddress:
Could not resolve the DNS name of ip-10-166-219-206.us-west-1.compute.
internal
2011-12-10 14:04:57,423 FATAL org.apache.hadoop.hbase.master.HMaster:
Unhandled exception. Starting shutdown.

java.lang.IllegalArgumentException: hostname can't be null
 at java.net.InetSocketAddress.<init>(InetSocketAddress.java:121)
 at org.apache.hadoop.hbase.HServerAddress.getResolvedAddress(HServ
erAddress.java:108)
 at org.apache.hadoop.hbase.HServerAddress.<init>(HServerAddress.
java:64)

Troubleshooting

236

This error usually happens after stopping and restarting EC2 instances. The reason is
that HBase stores region locations in its "system" -ROOT- and .META. tables. The location
information contains the internal EC2 DNS name in it. Stopping an EC2 instance will change
this DNS name. Due to the DNS name change, HBase will not be able to resolve the old DNS
name in its system table to the new one, thus causing the aforementioned error message.

In this recipe, we will describe how to fix this issue, so that you can feel free to stop/start your
EC2 instances for HBase (if your HDFS saves data on the EC2 instance storage, you will need
to save your data on other storages such as Amazon S3 before restarting an EC2 instance).

Getting ready
Make sure you have already set up your Amazon EC2 environment for HBase. If you haven't
already, refer to the Getting ready on Amazon EC2 recipe in Chapter 1, Setting Up HBase
Cluster, for how to get ready on EC2 to run HBase on it.

You will need an account that has root privileges on every node of the cluster, to run the
scripts we will create later.

How to do it...
The following are the steps to fix the HBase startup error on EC2:

1.	 Create a ec2-running-hosts.sh script, as shown in the following snippet:
$ vi ec2-running-hosts.sh

#!/bin/bash

ec2-describe-instances > /tmp/all-instances
ip_type=$1
if ["$ip_type" == "private"]; then
 addresses=`grep ^INSTANCE /tmp/all-instances | cut -f18`
elif ["$ip_type" == "public"]; then
 addresses=`grep ^INSTANCE /tmp/all-instances | cut -f17`
else
 echo "Usage: `basename $0` private|public"
 exit -1
fi
for address in $addresses
do
 instance_id=`grep $address /tmp/all-instances | cut -f2`
 dns=`grep $address /tmp/all-instances | cut -f5`
 host=`grep ^TAG /tmp/all-instances | grep $instance_id | cut
-f5`

Chapter 7

237

 echo -e "${address}\t${dns}\t${host}"

done

2.	 Create an update-ec2-hosts.sh script as shown in the following snippet. Replace
YOUR_PASSWORD in the script with the password of the account you are using to run
the script:
$ vi update-ec2-hosts.sh

#!/bin/bash

if [$# -lt 2]; then
 echo "Usage: `basename $0` host-file target-host"
 exit 1
fi
host_file=$1
target_host=$2

bin=`dirname $0`
bin=`cd $bin;pwd`

echo "updating hosts file on $target_host using $host_file"
backup
ssh -f $target_host "cp /etc/hosts /tmp/hosts.org"

cp $bin/hosts.template /tmp/hosts.update
cat $host_file >> /tmp/hosts.update
scp /tmp/hosts.update $target_host:/tmp

chmod 700 this file as we write password here
ssh -f -t -t -t $target_host "sudo -S cp /tmp/hosts.update /etc/
hosts <<EOF
YOUR_PASSWORD
EOF
"
echo "[done] update hosts file on $target_host"

3.	 Make sure the update-ec2-hosts.sh script is only readable by you:
$ chmod 700 update-ec2-hosts.sh

4.	 Copy your /etc/hosts file from your EC2 instance to the same directory as the
update-ec2-hosts.sh script and rename it to hosts.template:
$ cp /etc/hosts hosts.template

Troubleshooting

238

5.	 Create an update-ec2-private-hosts.sh script with the following content.
Replace the value of NS_HOSTNAME with the hostname of your name server:
$ vi update-ec2-private-hosts.sh

#!/bin/bash

bin=`dirname $0`
bin=`cd $bin;pwd`
NS_HOSTNAME="ns1"

$bin/ec2-running-hosts.sh private | tee /tmp/ec2-running-host

cp $bin/hosts.template /tmp/hosts.update
cat /tmp/ec2-running-host >> /tmp/hosts.update

while read line
do
 host=`echo "$line" | cut -f3`
 if ["$host" == "$NS_HOSTNAME"]; then
 # do not update name server
 continue
 fi
 echo
 echo "Updating $host"

 bash $bin/update-ec2-hosts.sh "/tmp/ec2-running-host" "$host"
 sleep 1
done < /tmp/ec2-running-host

6.	 Create an update-ec2-hmaster-hosts.sh script, as shown in the following
snippet. Replace the value of HMASTER_HOSTNAME and RS_HOSTNAMES with the
hostname of the Master and RegionServer nodes, respectively:
$ vi update-ec2-hmaster-hosts.sh

#!/bin/bash
bin=`dirname $0`
bin=`cd $bin;pwd`

IFS_BAK=$IFS
IFS="
"
HMASTER_HOSTNAME="master1"
RS_HOSTNAMES="slave[123]"

scp $HMASTER_HOSTNAME:/tmp/hosts.org /tmp

Chapter 7

239

scp $HMASTER_HOSTNAME:/etc/hosts /tmp

rm -f /tmp/hosts.done
while read line
do
 echo "$line" | egrep -q "$RS_HOSTNAMES"
 if [$? -ne 0]; then
 echo -e "${line}" >> /tmp/hosts.done
 else
 slave=`echo "$line" | cut -f3`
 original_private_dns=`grep "$slave" /tmp/hosts.org | cut
-f2`
 echo -e "${line}\t${original_private_dns}" >> /tmp/hosts.
done
 fi
done < /tmp/hosts

bash $bin/update-ec2-hosts.sh "/tmp/hosts.done" "$HMASTER_
HOSTNAME"

7.	 Take the scripts created in the previous steps to your name server on EC2, and run
the update-ec2-private-hosts.sh file from there:
hac@ns1$./update-ec2-private-hosts.sh

10.176.202.34	ip-10-176-202-34.us-west-1.compute.internal	
master1

10.160.49.250	ip-10-160-49-250.us-west-1.compute.internal	 ns1

10.160.47.194	ip-10-160-47-194.us-west-1.compute.internal	 slave1

10.176.23.117	ip-10-176-23-117.us-west-1.compute.internal	
client1

10.160.39.197	ip-10-160-39-197.us-west-1.compute.internal	 slave2

10.168.41.175	ip-10-168-41-175.us-west-1.compute.internal	 slave3

Updating master1

updating hosts file on master1 using /tmp/ec2-running-host

hosts.update
100% 657 0.6KB/s 00:00

[done] update hosts file on master1

[sudo] password for hac:

Updating slave1

…

The /etc/hosts file on every node has been updated by the script, using EC2 API.

Troubleshooting

240

8.	 Run update-ec2-hmaster-hosts.sh, if update-ec2-private-hosts.sh has
finished successfully:
hac@ns1$./update-ec2-hmaster-hosts.sh

hosts.org
100% 1457 1.4KB/s 00:00

hosts
100% 657 0.6KB/s 00:00

updating hosts file on master1 using /tmp/hosts.done

hosts.update
100% 1058 1.0KB/s 00:00

[done] update hosts file on master1

The old DNS entry of each slave node will be appended to the /etc/hosts file on
the master node.

9.	 Run the following command to check the hosts file:
hac@master1$ grep "slave" /etc/hosts

The following screenshot shows the command's output:

Log in to your master node as the hadoop user and start HBase on this node:

hadoop@master1$ $HADOOP_HOME/bin/start-dfs.sh

starting namenode, logging to /usr/local/hadoop/logs/hadoop-hadoop-
namenode-master1.out

slave1: Warning: Permanently added the RSA host key for IP address
'10.160.47.194' to the list of known hosts.

slave2: Warning: Permanently added the RSA host key for IP address
'10.160.39.197' to the list of known hosts.

slave3: Warning: Permanently added the RSA host key for IP address
'10.168.41.175' to the list of known hosts.

slave1: starting datanode, logging to /usr/local/hadoop/logs/hadoop-
hadoop-datanode-slave1.out

slave3: starting datanode, logging to /usr/local/hadoop/logs/hadoop-
hadoop-datanode-slave3.out

slave2: starting datanode, logging to /usr/local/hadoop/logs/hadoop-
hadoop-datanode-slave2.out

hadoop@master1$ $ZOOKEEPER_HOME/bin/zkServer.sh start

JMX enabled by default

Chapter 7

241

Using config: /usr/local/zookeeper/current/bin/../conf/zoo.cfg

Starting zookeeper ... STARTED

hadoop@master1$ $HBASE_HOME/bin/start-hbase.sh

starting master, logging to /usr/local/hbase/logs/hbase-hadoop-master-
master1.out

slave3: starting regionserver, logging to /usr/local/hbase/logs/hbase-
hadoop-regionserver-slave3.out

slave1: starting regionserver, logging to /usr/local/hbase/logs/hbase-
hadoop-regionserver-slave1.out

slave2: starting regionserver, logging to /usr/local/hbase/logs/hbase-
hadoop-regionserver-slave2.out

How it works...
As a simple solution, every time we stop and restart the instances before starting HBase, we
update the /etc/hosts file on every node in the cluster and then append the old DNS entry
of each slave node to the master node's /etc/hosts file. With this, HBase Master is able to
resolve the old DNS entries in its system tables to the updated, new IP address and update
them with the new DNS entries in the system tables, too.

In order to implement this idea, we create the ec2-running-hosts.sh script in step 1, and
invoke the ec2-describe-instances EC2 API, to get information about all our running
EC2 instances, and grep the IP address, DNS name, and user data (hostname) of each
running instance. These are the new DNS entries we need to update to the /etc/hosts file
of each node.

The update-ec2-hosts.sh script we have created in step 2, is a utility script to SSH into a
particular server and overwrite the /etc/hosts file in that server, without human interaction.
The script also backs up the original /etc/hosts file before overwriting it. We write the
account's password in the script so that we don't need to enter it on every node. That's why it
was noted in step 3, that the script should only readable to yourself.

The update-ec2-private-hosts.sh script created in step 5 makes the two scripts
we created in the previous steps work together to get new DNS entries, appends them to a
hosts.template file, and then uses the hosts.template file to overwrite the /etc/
hosts file on every running EC2 instance, except the DNS name server.

The update-ec2-hmaster-hosts.sh script created in step 6 does the simple work of
appending a new IP address to an old DNS name mapping for each slave node to the new /
etc/hosts file, so that HBase Master can resolve old DNS entries stored in its system tables
to the new IP addresses. After that, the script invokes update-ec2-hosts.sh to overwrite
the /etc/hosts file on the master node, using the newly appended file.

After executing the update-ec2-private-hosts.sh and update-ec2-hmaster-
hosts.sh scripts in order, we will now be able to start HDFS and HBase normally.

Troubleshooting

242

As you can see, these scripts are simple but useful, if you want to start your HBase EC2
instances only when you need to run HBase on them.

There's more...
You may also like to update the public DNS name of your EC2 instances to the /etc/hosts
file on your local PC, so that you can access the HBase web UI from your web browser. The
following are the steps to do this:

1.	 Create an update-ec2-public-hosts.sh script, as shown in the following
snippet, and put it under the same directory as the scripts we created in the
previous section:
$ vi update-ec2-public-hosts.sh

#!/bin/bash

bin=`dirname $0`
bin=`cd $bin;pwd`

$bin/ec2-running-hosts.sh public | tee /tmp/ec2-running-host

backup
cp /etc/hosts /tmp/hosts.org

update
cp $bin/hosts.local /tmp/hosts.update
cat /tmp/ec2-running-host >> /tmp/hosts.update

sudo cp /tmp/hosts.update /etc/hosts
echo "[done] update EC2 public hostname in hosts file"

2.	 Copy your /etc/hosts file to the same directory as the update-ec2-public-
hosts.sh script, and rename it to hosts.local:
$ cp /etc/hosts hosts.local

3.	 Run the update-ec2-public-hosts.sh script on your local PC. The script will ask
you to enter the password of your account, because it needs root privileges to update
the /etc/hosts file:
184.72.22.179	ip-10-176-202-34.us-west-1.compute.internal	
master1

…

184.169.243.211	 ip-10-168-41-175.us-west-1.compute.internal	
slave3

Password:

[done] update EC2 public hostname in hosts file

Chapter 7

243

4.	 Now, open your web browser and enter the URL http://master1:60010/
master.jsp. You will get the HBase web UI. Replace master1 with your master
node's hostname.

Note that you will need a Mac OS X or Linux PC
to use this script.

See also
ff Getting ready on Amazon EC2, in Chapter 1, Setting Up HBase Cluster

http://master1:60010/master.jsp
http://master1:60010/master.jsp

8
Basic Performance

Tuning

In this chapter, we will cover:

ff Setting up Hadoop to spread disk I/O

ff Using a network topology script to make the Hadoop rack-aware

ff Mounting disks with noatime and nodiratime

ff Setting vm.swappiness to 0 to avoid swap

ff Java GC and HBase heap settings

ff Using compression

ff Managing compactions

ff Managing a region split

Introduction
Performance is one of the most interesting characteristics of an HBase cluster's behavior.
It is a challenging operation for administrators, because performance tuning requires
deep understanding of not only HBase but also of Hadoop, Java Virtual Machine Garbage
Collection (JVM GC), and important tuning parameters of an operating system.

Basic Performance Tuning

246

The structure of a typical HBase cluster is shown in the following diagram:

Client HMaster

Hadoop Distributed File System(HDFS)

ZooKeeper Cluster

ZooKeeperZooKeeper ZooKeeper

Region Servers

Region Server Region Server Region ServerRegion Server ...

There are several components in the cluster—the ZooKeeper cluster, the HBase master node,
region servers, the Hadoop Distributed File System (HDFS) and the HBase client.

The ZooKeeper cluster acts as a coordination service for the entire HBase cluster, handling
master selection, root region server lookup, node registration, and so on. The master node
does not do heavy tasks. Its job includes region allocation and failover, log splitting, and load
balancing. Region servers hold the actual regions; they handle I/O requests to the hosting
regions, flush the in-memory data store (MemStore) to HDFS, and split and compact regions.
HDFS is the place where HBase stores its data files (StoreFile) and write ahead logs (WAL). We
usually have an HBase region server running on the same machine as the HDFS DataNode,
but it is not mandatory.

The HBase client provides APIs to access the HBase cluster. To communicate with the cluster,
clients need to find the region server holding a specific row key range; this is called region
lookups. HBase has two system tables to support region lookups—the -ROOT- table and the
.META. table.

The -ROOT- table is used to refer to regions in the .META. table, while the .META. table
holds references to all user regions. First, the clients query ZooKeeper to find the -ROOT-
table location (the region server where it is deployed); they then query the -ROOT- table, and
subsequently the .META. table, to find the region server holding a specific region. Clients also
cache region locations to avoid querying ZooKeeper, -ROOT-, and .META. tables every time.

Chapter 8

247

With this background knowledge, we will describe how to tune HBase to gain better
performance, in this chapter.

Besides HBase itself, other tuning points include Hadoop configurations, the JVM garbage
collection settings, and the OS kernel parameters. These are as important as tuning HBase
itself. We will also include recipes to tune these configurations, in this chapter.

Setting up Hadoop to spread disk I/O
Modern servers usually have multiple disk devices to provide large storage capacities. These
disks are usually configured as RAID arrays, as their factory settings. This is good for many
cases but not for Hadoop.

The Hadoop slave node stores HDFS data blocks and MapReduce temporary files on its local
disks. These local disk operations benefit from using multiple independent disks to spread
disk I/O.

In this recipe, we will describe how to set up Hadoop to use multiple disks to spread its
disk I/O.

Getting ready
We assume you have multiple disks for each DataNode node. These disks are in a JBOD
(Just a Bunch Of Disks) or RAID0 configuration. Assume that the disks are mounted at
/mnt/d0, /mnt/d1, …, /mnt/dn, and the user who starts HDFS has write permission
on each mount point.

How to do it...
In order to set up Hadoop to spread disk I/O, follow these instructions:

1.	 On each DataNode node, create directories on each disk for HDFS to store its
data blocks:
hadoop$ mkdir -p /mnt/d0/dfs/data

hadoop$ mkdir -p /mnt/d1/dfs/data

…

hadoop$ mkdir -p /mnt/dn/dfs/data

2.	 Add the following code to the HDFS configuration file (hdfs-site.xml):
hadoop@master1$ vi $HADOOP_HOME/conf/hdfs-site.xml

<property>
 <name>dfs.data.dir</name>

Basic Performance Tuning

248

 <value>/mnt/d0/dfs/data,/mnt/d1/dfs/data,...,/mnt/dn/dfs/data
 </value>
</property>

3.	 Sync the modified hdfs-site.xml file across the cluster:
hadoop@master1$ for slave in `cat $HADOOP_HOME/conf/slaves`

do

 rsync -avz $HADOOP_HOME/conf/ $slave:$HADOOP_HOME/conf/

done

4.	 Restart HDFS:
hadoop@master1$ $HADOOP_HOME/bin/stop-dfs.sh

hadoop@master1$ $HADOOP_HOME/bin/start-dfs.sh

How it works...
We recommend JBOD or RAID0 for the DataNode disks, because you don't need the
redundancy of RAID, as HDFS ensures its data redundancy using replication between nodes.
So, there is no data loss when a single disk fails.

Which one to choose, JBOD or RAID0? You will theoretically get better performance from a
JBOD configuration than from a RAID configuration. This is because, in a RAID configuration,
you have to wait for the slowest disk in the array to complete before the entire write operation
can complete, which makes the average I/O time equivalent to the slowest disk's I/O time. In
a JBOD configuration, operations on a faster disk will complete independently of the slower
ones, which makes the average I/O time faster than the slowest one. However, enterprise-
class RAID cards might make big differences. You might want to benchmark your JBOD and
RAID0 configurations before deciding which one to go with.

For both JBOD and RAID0 configurations, you will have the disks mounted at different paths.
The key point here is to set the dfs.data.dir property to all the directories created on
each disk. The dfs.data.dir property specifies where the DataNode should store its local
blocks. By setting it to comma-separated multiple directories, DataNode stores its blocks
across all the disks in round robin fashion. This causes Hadoop to efficiently spread disk I/O
to all the disks.

Warning
Do not leave blanks between the directory paths in the dfs.data.dir
property value, or it won't work as expected.

You will need to sync the changes across the cluster and restart HDFS to apply them.

Chapter 8

249

There's more...
If you run MapReduce, as MapReduce stores its temporary files on TaskTracker's local file
system, you might also like to set up MapReduce to spread its disk I/O:

1.	 On each TaskTracker node, create directories on each disk for MapReduce to store its
intermediate data files:
hadoop$ mkdir -p /mnt/d0/mapred/local

hadoop$ mkdir -p /mnt/d1/mapred/local

…

hadoop$ mkdir -p /mnt/dn/mapred/local

2.	 Add the following to MapReduce's configuration file (mapred-site.xml):
hadoop@master1$ vi $HADOOP_HOME/conf/mapred-site.xml

<property>
 <name>mapred.local.dir</name>
 <value>/mnt/d0/mapred/local,/mnt/d1/mapred/local,...,/mnt/dn/
mapred/local
 </value>
</property>

3.	 Sync the modified mapred-site.xml file across the cluster and restart MapReduce.

MapReduce generates a lot of temporary files on TaskTrackers' local disks during its
execution. Like HDFS, setting up multiple directories on different disks helps spread
MapReduce disk I/O significantly.

Using network topology script to make
Hadoop rack-aware

Hadoop has the concept of "Rack Awareness". Administrators are able to define the rack of
each DataNode in the cluster. Making Hadoop rack-aware is extremely important because:

ff Rack awareness prevents data loss

ff Rack awareness improves network performance

In this recipe, we will describe how to make Hadoop rack-aware and why it is important.

Getting ready
You will need to know the rack to which each of your slave nodes belongs. Log in to the master
node as the user who started Hadoop.

Basic Performance Tuning

250

How to do it...
The following steps describe how to make Hadoop rack-aware:

1.	 Create a topology.sh script and store it under the Hadoop configuration directory.
Change the path for topology.data, in line 3, to fit your environment:
hadoop@master1$ vi $HADOOP_HOME/conf/topology.sh

while [$# -gt 0] ; do
 nodeArg=$1
 exec< /usr/local/hadoop/current/conf/topology.data
 result=""
 while read line ; do
 ar=($line)
 if ["${ar[0]}" = "$nodeArg"] ; then
 result="${ar[1]}"
 fi
 done
 shift
 if [-z "$result"] ; then
 echo -n "/default/rack "
 else
 echo -n "$result "
 fi
done

Don't forget to set the execute permission on the script file:
hadoop@master1$ chmod +x $HADOOP_HOME/conf/topology.sh

2.	 Create a topology.data file, as shown in the following snippet; change the IP
addresses and racks to fit your environment:
hadoop@master1$ vi $HADOOP_HOME/conf/topology.data

10.161.30.108 /dc1/rack1
10.166.221.198 /dc1/rack2
10.160.19.149 /dc1/rack3

3.	 Add the following to the Hadoop core configuration file (core-site.xml):
hadoop@master1$ vi $HADOOP_HOME/conf/core-site.xml

<property>
 <name>topology.script.file.name</name>
 <value>/usr/local/hadoop/current/conf/topology.sh</value>
</property>

4.	 Sync the modified files across the cluster and restart HDFS and MapReduce.

Chapter 8

251

5.	 Make sure HDFS is now rack-aware. If everything works well, you should be able to
find something like the following snippet in your NameNode log file:
2012-03-10 13:43:17,284 INFO org.apache.hadoop.net.
NetworkTopology: Adding a new node: /dc1/rack3/10.160.19.149:50010

2012-03-10 13:43:17,297 INFO org.apache.hadoop.net.
NetworkTopology: Adding a new node: /dc1/rack1/10.161.30.108:50010

2012-03-10 13:43:17,429 INFO org.apache.hadoop.
net.NetworkTopology: Adding a new node: /dc1/
rack2/10.166.221.198:50010

6.	 Make sure MapReduce is now rack-aware. If everything works well, you should be
able to find something like the following snippet in your JobTracker log file:
2012-03-10 13:50:38,341 INFO org.apache.hadoop.net.
NetworkTopology: Adding a new node: /dc1/rack3/ip-10-160-19-149.
us-west-1.compute.internal

2012-03-10 13:50:38,485 INFO org.apache.hadoop.net.
NetworkTopology: Adding a new node: /dc1/rack1/ip-10-161-30-108.
us-west-1.compute.internal

2012-03-10 13:50:38,569 INFO org.apache.hadoop.net.
NetworkTopology: Adding a new node: /dc1/rack2/ip-10-166-221-198.
us-west-1.compute.internal

How it works...
The following diagram shows the concept of Hadoop rack awareness:

Switch

Switch

DataNode 4

DataNode 6

...

A

DataNode 5
B

Rack 2

B

Switch

DataNode 7

DataNode 9

...

B

DataNode 8
C

Rack 3

C

Switch

DataNode 1

DataNode 3

...

A

DataNode 2
c A

Rack 1

Basic Performance Tuning

252

Each block of the HDFS files will be replicated to multiple DataNodes, to prevent loss of all
the data copies due to failure of one machine. However, if all copies of data happen to be
replicated on DataNodes in the same rack, and that rack fails, all the data copies will be
lost. So to avoid this, the NameNode needs to know the network topology in order to use that
information to make intelligent data replication.

As shown in the previous diagram, with the default replication factor of three, two data copies
will be placed on the machines in the same rack, and another one will be put on a machine in
a different rack. This ensures that a single rack failure won't result in the loss of all data copies.

Normally, two machines in the same rack have more bandwidth and lower latency between
them than two machines in different racks. With the network topology information, Hadoop
is able to maximize network performance by reading data from proper DataNodes. If data is
available on the local machine, Hadoop will read data from it. If not, Hadoop will try reading
data from a machine in the same rack, and if it is available on neither, data will be read from
machines in different racks.

In step 1, we create a topology.sh script. The script takes DNS names as arguments
and returns network topology (rack) names as the output. The mapping of DNS names to
network topology is provided by the topology.data file, which was created in step 2. If
an entry is not found in the topology.data file, the script returns /default/rack as a
default rack name.

Note that we use IP addresses, and not hostnames in the topology.
data file. There is a known bug that Hadoop does not correctly process
hostnames that start with letters "a" to "f". Check HADOOP-6682 for
more details: https://issues.apache.org/jira/browse/
HADOOP-6682.

In step 3, we set the topology.script.file.name property in core-site.xml, telling
Hadoop to invoke topology.sh to resolve DNS names to network topology names.

After restarting Hadoop, as shown in the logs of steps 5 and 6, HDFS and MapReduce add the
correct rack name as a prefix to the DNS name of slave nodes. This indicates that the HDFS
and MapReduce rack awareness work well with the aforementioned settings.

Mounting disks with noatime and nodiratime
If you are mounting disks purely for Hadoop and you use ext3 or ext4, or the XFS file system,
we recommend that you mount the disks with the noatime and nodiratime attributes.

If you mount the disks as noatime, the access timestamps are not updated when a file is
read on the filesystem. In the case of the nodiratime attribute, mounting disks does not
update the directory inode access times on the filesystem. As there is no more disk I/O for
updating the access timestamps, this speeds up filesystem reads.

Chapter 8

253

In this recipe, we will describe why the noatime and nodiratime options are recommended
for Hadoop, and how to mount disks with noatime and nodiratime.

Getting ready
You will need root privileges on your slave nodes. We assume you have two disks for only
Hadoop—/dev/xvdc and /dev/xvdd. The two disks are mounted at /mnt/is1 and /mnt/
is2, respectively. Also, we assume you are using the ext3 filesystem.

How to do it...
To mount disks with noatime and nodiratime, execute the following instructions on every
slave node in the cluster:

1.	 Add the following to the /etc/fstab file:
$ sudo vi /etc/fstab

/dev/xvdc /mnt/is1 ext3 defaults,noatime,nodiratime 0 0
/dev/xvdd /mnt/is2 ext3 defaults,noatime,nodiratime 0 0

2.	 Unmount the disks and mount them again to apply the changes:
$ sudo umount /dev/xvdc

$ sudo umount /dev/xvdd

$ sudo mount /dev/xvdc

$ sudo mount /dev/xvdd

3.	 Check that the mount options have been applied:
$ mount

/dev/xvdc on /mnt/is1 type ext3 (rw,noatime,nodiratime)

/dev/xvdd on /mnt/is2 type ext3 (rw,noatime,nodiratime)

How it works...
As Hadoop (HDFS) manages the metadata (inode) of its filesystem with NameNode, any
access time information kept by Hadoop is independent of the atime attribute of individual
blocks. So, the access timestamps in DataNode's local filesystem makes no sense here.
That's why we recommend that you mount disks with noatime and nodiratime, if the disks
are used purely for Hadoop. Mounting disks with noatime and nodiratime saves the write
I/O every time a local file is accessed.

These options are set in the /etc/fstab file. Do not forget to unmount and mount the disks
again, for the changes to be applied.

Basic Performance Tuning

254

With these options enabled, an improvement in the performance of the HDFS read is
expected. As HBase stores its data on HDFS, the HBase read performance is also
expected to improve.

There's more...
Another method for optimization is to reduce the percentage of reserved blocks of the ext3 or
ext4 filesystems. By default, some of the filesystem blocks are reserved for use by privileged
processes. This is to avoid situations wherein user processes fill up the disk spaces that are
required by the system daemons, in order to keep working. This is very important for the disks
hosting the operating system but less useful for the disks only used by Hadoop.

Usually these Hadoop-only disks have a very large storage space. Reducing the percentage of
the reserved blocks can add quite a few storage capacities to the HDFS cluster. Normally, the
default percentage of reserved blocks is 5%. It can be reduced to 1%.

Warning:
Do not reduce the reserved blocks on the disks hosting the
operating system.

To achieve this, run the following command on each disk of each slave node in the cluster:

$ sudo tune2fs -m 1 /dev/xvdc

tune2fs 1.41.12 (17-May-2010)

Setting reserved blocks percentage to 1% (1100915 blocks)

Setting vm.swappiness to 0 to avoid swap
Linux moves the memory pages that have not been accessed for some time to the swap
space, even if there is enough free memory available. This is called swap out. On the other
hand, reading swapped out data from the swap space to memory is called swap in. Swapping
is necessary in many situations, but as Java Virtual Machine (JVM) does not behave well
under swapping, HBase may run into trouble if swapped. The ZooKeeper session expiring is a
typical problem that may be introduced by a swap.

In this recipe, we will describe how to tune the Linux vm.swappiness parameter to
avoid swap.

Chapter 8

255

Getting ready
Make sure you have root privileges on your nodes in the cluster.

How to do it...
To tune the Linux parameter to avoid swapping, invoke the following on each node in
the cluster:

1.	 Execute the following command to set vm.swappiness to 0:
root# sysctl -w vm.swappiness=0

vm.swappiness = 0

This change will persist until the next reboot of the server.

2.	 Add the following to the /etc/sysctl.conf file, so that the setting will be enabled
whenever the system boots:
root# echo "vm.swappiness = 0" >> /etc/sysctl.conf

How it works...
The vm.swappiness parameter can be used to define how aggressively memory pages are
swapped to disk. It accepts any value from 0 to 100—a low value means that the kernel will be
less likely to swap, whereas a higher value will make the kernel swap out applications more
often. The default value is 60.

We set vm.swappiness to 0 in step 1, which will cause the kernel to avoid swapping
processes out of physical memory for as long as possible. This is good for HBase, because
HBase processes consume a large amount of memory. A higher vm.swappiness value will
make HBase swap a lot and encounter very slow garbage collection. This is likely to result in the
RegionServer process being killed off, as the ZooKeeper session times out. We recommend that
you set it to 0 or any other low number (for example, 10) and observe the state of swapping.

Note that the value set by the sysctl command only persists until the next reboot of the
server. You need to set vm.swappiness in the /etc/sysctl.conf file, so that the setting
is enabled whenever the system reboots.

See also
ff Changing the kernel settings recipe, Chapter 1, Setting Up HBase Cluster

Basic Performance Tuning

256

Java GC and HBase heap settings
As HBase runs within JVM, the JVM Garbage Collection (GC) settings are very important
for HBase to run smoothly, with high performance. In addition to the general guideline for
configuring HBase heap settings, it's also important to have the HBase processes output their
GC logs and then tune the JVM settings based on the GC logs' output.

We will describe the most important HBase JVM heap settings as well as how to enable and
understand GC logging, in this recipe. We will also cover some general guidelines to tune Java
GC settings for HBase.

Getting ready
Log in to your HBase region server.

How to do it...
The following are the recommended Java GC and HBase heap settings:

1.	 Give HBase enough heap size by editing the hbase-env.sh file. For example, the
following snippet configures a 8000-MB heap size for HBase:
$ vi $HBASE_HOME/conf/hbase-env.sh

export HBASE_HEAPSIZE=8000

2.	 Enable GC logging by using the following command:
$ vi $HBASE_HOME/conf/hbase-env.sh

export HBASE_OPTS="$HBASE_OPTS -verbose:gc -XX:+PrintGCDetails
-XX:+PrintGCTimeStamps -Xloggc:/usr/local/hbase/logs/gc-hbase.log"

3.	 Add the following code to start the Concurrent-Mark-Sweep GC (CMS) earlier
than the default:
$ vi $HBASE_HOME/conf/hbase-env.sh

export HBASE_OPTS=
 "$HBASE_OPTS -XX:CMSInitiatingOccupancyFraction=60"

4.	 Sync the changes across the cluster and restart HBase.

Chapter 8

257

5.	 Check that the GC logs were output to the specified log file (/usr/local/hbase/
logs/gc-hbase.log).

The GC log looks like the following screenshot:

How it works...
In step 1, we configure the HBase heap memory size. By default, HBase uses a heap size of
1GB, which is too low for modern machines. A heap size of more than 4GB is good for HBase,
while our recommendation is 8GB or larger, but under 16GB.

In step 2, we enable the JVM logging. With that setting, you will get a region server's JVM logs,
similar to what we have shown in step 5. Basic knowledge about JVM memory allocation and
garbage collection is required to understand the log output. The following is a diagram of the
JVM generational garbage collection system:

Eden S0 S1 Old Generation Perm

Young Generation

There are three heap generations: the Perm (or Permanent) generation, the Old Generation
(or Tenured) generation, and the Young Generation. The young generation section consists of
three separate spaces: the Eden space and two survivor spaces, S0 and S1.

Usually, objects are allocated in the Eden space of the young generation. If an allocation fails
(the Eden is full), all Java threads are halted and a young generation GC (Minor GC) is invoked.
All surviving objects in the young generation (Eden and S0 space) are copied to the S1 space.
If the S1 space is full, objects are copied (promoted) to the old generation. The old generation
is collected (Major/Full GC) when a promotion fails. The permanent and old generations
are usually collected together. The permanent generation is used to hold class and method
definitions for objects.

Basic Performance Tuning

258

Back to our sample in step 5, the minor GC output for the aformentioned options is produced
in the following form:

<timestamp>: [GC [<collector>: <starting occupancy1> -> <ending
occupancy1>, <pause time1> secs] <starting occupancy3> -> <ending
occupancy3>, <pause time3> secs] [Times: <user time> <system time>, <real
time>]

In this output:

ff <timestamp> is the times at which the GCs happen, relative to the start of
the application.

ff <collector> is an internal name for the collector used in the minor collection.

ff <starting occupancy1> is the occupancy of the young generation before
the collection.

ff <ending occupancy1> is the occupancy of the young generation after
the collection.

ff <pause time1> is the pause time in seconds for the minor collection.

ff <starting occupancy3> is the occupancy of the entire heap before the collection.

ff <ending occupancy3> is the occupancy of the entire heap after the collection.

ff <pause time3> is the pause time for the entire garbage collection. This would
include the time for a major collection.

ff [Time:] explains the time spend in GC collection, user time, system time,
and real time.

The first line of our output in step 5 indicates a minor GC, which pauses the JVM for 0.0764200
seconds. It has reduced the young generation space from about 14.8MB to 1.6MB.

Following that, we see the CMS GC logs. HBase uses CMS GC as its default garbage collector
for the old generation.

CMS GC performs the following steps:

1.	 Initial mark

2.	 Concurrent marking

3.	 Remark

4.	 Concurrent sweeping

CMS halts the application's threads only during the initial mark and remark phases.
During the concurrent marking and sweeping phases, the CMS thread runs along with the
application's threads.

Chapter 8

259

The second line in the example indicates that the CMS initial mark took 0.0100050 seconds
and the concurrent marking has taken 6.496 seconds. Note that it is a concurrent marking;
Java was not paused.

There is a pause at the line that starts with 1441.435: [GC[YG occupancy: …] in the
earlier screenshot of the GC log. The pause here is 0.0413960 seconds to remark the heap.
After that, you can see the sweep starts. The CMS sweep took 3.446 seconds, but the heap
size didn't change that much (it kept on occupying about 150MB) here.

The tuning point here is to keep all these pauses low. To keep the pauses low, you may need
to adjust the young generation space's size via the -XX:NewSize and -XX:MaxNewSize
JVM flags, to set them to relative small values (for example, up to several hundred MB). If the
server has more CPU power, we recommend using the Parallel New Collector by setting the
-XX:+UseParNewGC option. You may also want to tune the parallel GC thread number for the
young generation, via the -XX:ParallelGCThreads JVM flag.

We recommend adding the aforementioned settings to the HBASE_REGIONSERVER_OPTS
variable, instead of the HBASE_OPTS variable in the hbase-env.sh file. The HBASE_
REGIONSERVER_OPTS variable only affects the region server processes, which is good,
because the HBase master neither handles heavy tasks nor participates in the data process.

For the old generation, the concurrent collection (CMS) generally cannot be sped up, but it
can be started earlier. CMS starts running when the percentage of allocated space in the old
generation crosses a threshold. This threshold is automatically calculated by the collector. For
some situations, especially during loading, if the CMS starts too late, HBase may run into full
garbage collection. To avoid this, we recommend setting the -XX:CMSInitiatingOccupan
cyFraction JVM flag to explicitly specify at what percentage the CMS should be started, as
what we did in step 3. Starting at 60 or 70 percent is a good practice. When using CMS for an
old generation, the default young generation GC will be set to the Parallel New Collector.

There's more...
If you are using an HBase version prior to 0.92, consider enabling the MemStore-Local
Allocation Buffer to prevent old generation heap fragmentation under heavy write loads:

$ vi $HBASE_HOME/conf/hbase-site.xml

<property>
 <name>hbase.hregion.memstore.mslab.enabled</name>
 <value>true</value>
</property>

This feature is enabled by default in HBase 0.92.

Basic Performance Tuning

260

See also
ff Setting up Ganglia to monitor an HBase cluster recipe, in Chapter 5,

Monitoring and Diagnosis

Using compression
One of the most important features of HBase is the use of data compression.
It's important because:

ff Compression reduces the number of bytes written to/read from HDFS

ff Saves disk usage

ff Improves the efficiency of network bandwidth when getting data from a remote server

HBase supports the GZip and LZO codec. Our suggestion is to use the LZO compression
algorithm because of its fast data decompression and low CPU usage. As a better
compression ratio is preferred for the system, you should consider GZip.

Unfortunately, HBase cannot ship with LZO because of a license issue. HBase is
Apache-licensed, whereas LZO is GPL-licensed. Therefore, we need to install LZO ourselves.
We will use the hadoop-lzo library, which brings splittable LZO compression to Hadoop.

In this recipe, we will describe how to install LZO and how to configure HBase to use
LZO compression.

Getting ready
Make sure Java is installed on the machine on which hadoop-lzo is to be built.

Apache Ant is required to build hadoop-lzo from source. Install Ant by running the
following command:

$ sudo apt-get -y install ant

All nodes in the cluster need to have native LZO library installed. You can install it by using the
following command:

$ sudo apt-get -y install liblzo2-dev

How to do it...
We will use the hadoop-lzo library to add LZO compression support to HBase:

1.	 Get the latest hadoop-lzo source from https://github.com/toddlipcon/
hadoop-lzo.

https://github.com/toddlipcon/hadoop-lzo
https://github.com/toddlipcon/hadoop-lzo

Chapter 8

261

2.	 Build the native and Java hadoop-lzo libraries from source. Depending on your OS,
you should either choose to build 32-bit or 64-bit binaries. For example, to build 32-
bit binaries, run the following commands:
$ export JAVA_HOME="/usr/local/jdk1.6"

$ export CFLAGS="-m32"

$ export CXXFLAGS="-m32"

$ cd hadoop-lzo

$ ant compile-native

$ ant jar

These commands will create the hadoop-lzo/build/native directory and
the hadoop-lzo/build/hadoop-lzo-x.y.z.jar file. In order to build 64-bit
binaries, just change the value of CFLAGS and CXXFLAGS to -m64.

3.	 Copy the built libraries to the $HBASE_HOME/lib and $HBASE_HOME/lib/native
directories on your master node:
hadoop@master1$ cp hadoop-lzo/build/hadoop-lzo-x.y.z.jar $HBASE_
HOME/lib

hadoop@master1$ mkdir $HBASE_HOME/lib/native/Linux-i386-32

hadoop@master1$ cp hadoop-lzo/build/native/Linux-i386-32/lib/*
$HBASE_HOME/lib/native/Linux-i386-32/

For a 64-bit OS, change Linux-i386-32 (in the previous step) to Linux-
amd64-64.

4.	 Add the configuration of hbase.regionserver.codecs to your hbase-site.xml
file:
hadoop@master1$ vi $HBASE_HOME/conf/hbase-site.xml

<property>
 <name>hbase.regionserver.codecs</name>
 <value>lzo,gz</value>
</property>

5.	 Sync the $HBASE_HOME/conf and $HBASE_HOME/lib directories across
the cluster.

6.	 HBase ships with a tool to test whether compression is set up properly. Use this
tool to test the LZO setup on each node of the cluster. If everything is configured
accurately, you will get the SUCCESS output:
hadoop@client1$ $HBASE_HOME/bin/hbase org.apache.hadoop.hbase.
util.CompressionTest /tmp/lzotest lzo

12/03/11 11:01:08 INFO hfile.CacheConfig: Allocating LruBlockCache
with maximum size 249.6m

Basic Performance Tuning

262

12/03/11 11:01:08 INFO lzo.GPLNativeCodeLoader: Loaded native gpl
library

12/03/11 11:01:08 INFO lzo.LzoCodec: Successfully loaded &
initialized native-lzo library [hadoop-lzo rev Unknown build
revision]

12/03/11 11:01:08 INFO compress.CodecPool: Got brand-new
compressor

12/03/11 11:01:18 INFO compress.CodecPool: Got brand-new
decompressor

SUCCESS

7.	 Test the configuration by creating a table with LZO compression, and verify it in
HBase Shell:
$ hbase> create 't1', {NAME => 'cf1', COMPRESSION => 'LZO'}

$ hbase> describe 't1'

DESCRIPTION
ENABLED

 {NAME => 't1', FAMILIES => [{NAME => 'cf1', BLOOMFILTER =>
'NONE', true

 REPLICATION_SCOPE => '0', VERSIONS => '3', COMPRESSION => 'LZO',

 MIN_VERSIONS => '0', TTL => '2147483647', BLOCKSIZE => '65536',
IN

 _MEMORY => 'false', BLOCKCACHE => 'true'}]}

1 row(s) in 0.0790 seconds

How it works...
We built the hadoop-lzo Java and native libraries and installed them under the $HBASE_
HOME/lib and $HBASE_HOME/lib/native directories, respectively. By adding LZO
compression support, HBase StoreFiles (HFiles) will use LZO compression on blocks as they
are written. HBase uses the native LZO library to perform the compression, while the native
library is loaded by HBase via the hadoop-lzo Java library that we built.

In order to avoid starting a node with any codec missing or misinstalled, we add LZO to the
hbase.regionserver.codecs setting in the hbase-site.xml file. This setting will cause
a failed startup of a region server if LZO is not installed properly. If you see logs such as
"Could not load native gpl library", there is an issue with the LZO installation. In order to fix it,
make sure that the native LZO libraries are installed and the path is configured properly.

A compression algorithm is specified on a per-column family basis. As shown in step 7, we
create a table, t1, with a single column family, cf1, which uses LZO compression on it.

Chapter 8

263

Although it adds a read-time penalty as the data blocks probably is decompressed when
reading, LZO is fast enough as a real-time compression library. We recommend using LZO as
the default compression algorithm in production HBase.

There's more...
Another compression option is to use the recently released Snappy compression library and
Hadoop Snappy integration. As the setup is basically the same as what we did before, we will
skip the details. Check the following URL to know how to add Snappy compression to HBase:

http://hbase.apache.org/book.html#snappy.compression

Managing compactions
An HBase table has the following physical storage structure:

Table

Region

Region

... Store File

Store File

Store File

MemStore

Store

Store File

MemStore

Store

Cf1 Cf2

...

Region

Region

It consists of multiple regions. While a region may have several Stores, each holds a single
column family. An edit first writes to the hosting region store's in-memory space, which is
called MemStore. When the size of MemStore reaches a threshold, it is flushed to StoreFiles
on HDFS.

As data increases, there may be many StoreFiles on HDFS, which is not good for its
performance. Thus, HBase will automatically pick up a couple of the smaller StoreFiles and
rewrite them into a bigger one. This process is called minor compaction. For certain situations,
or when triggered by a configured interval (once a day by default), major compaction runs
automatically. Major compaction will drop the deleted or expired cells and rewrite all the
StoreFiles in the Store into a single StoreFile; this usually improves the performance.

Basic Performance Tuning

264

However, as major compaction rewrites all of the Stores' data, lots of disk I/O and network
traffic might occur during the process. This is not acceptable on a heavy load system. You
might want to run it at a lower load time of your system.

In this recipe, we will describe how to turn off this automatic major compaction feature, and
run it manually.

Getting ready
Log in to your HBase master server as the user who starts the cluster.

How to do it...
The following steps describe how to disable automatic major compaction:

1.	 Add the following to hbase-site.xml file:
$ vi $HBASE_HOME/conf/hbase-site.xml

<property>
 <name>hbase.hregion.majorcompaction</name>
 <value>0</value>
</property>

2.	 Sync the changes across the cluster and restart HBase.

3.	 With the aforementioned setting, automatic major compaction will be disabled; you
will now need to run it explicitly.

4.	 In order to manually run a major compaction on a particular region through HBase
Shell, run the following command:
$ echo "major_compact 'hly_temp,,1327118470453.5ef67f6d2a792fb0bd7
37863dc00b6a7.'" | $HBASE_HOME/bin/hbase shell

HBase Shell; enter 'help<RETURN>' for list of supported commands.

Type "exit<RETURN>" to leave the HBase Shell

Version 0.92.0, r1231986, Tue Jan 17 02:30:24 UTC 2012

major_compact 'hly_temp,,1327118470453.5ef67f6d2a792fb0bd737863dc0
0b6a7.'

0 row(s) in 1.7070 seconds

Chapter 8

265

How it works...
The hbase.hregion.majorcompaction property specifies the time (in milliseconds)
between major compactions of all the StoreFiles in a region. The default value is 86400000,
which means once a day. We set it to 0 in step 1 to disable the automatic major compaction.
This will prevent a major compaction from running during a heavy load time, for example when
the MapReduce jobs are running over the HBase cluster.

On the other hand, major compaction is required to help performance. In step 4, we've shown
an example of how to manually trigger a major compaction on a particular region, via HBase
Shell. In this example, we have passed a region name to the major_compact command to
invoke the major compaction only on a single region. It is also possible to run major compaction
on all regions of a table, by passing the table name to the command. The major_compact
command queues the specified tables or regions for major compaction; this will be executed in
the background by the region server hosting them.

As we mentioned earlier, you might want to execute major compaction manually only during
a low load time. This can be done easily by invoking the major_compact command from a
cron job.

There's more...
Another approach to invoke major compaction is to use the majorCompact API provided by
the org.apache.hadoop.hbase.client.HBaseAdmin class. It is easy to call this API in
Java, thus you can manage complex major compaction scheduling from Java.

Managing a region split
Usually an HBase table starts with a single region. However, as data keeps growing and the
region reaches its configured maximum size, it is automatically split into two halves, so that
they can handle more data. The following diagram shows an HBase region splitting:

Table

Region

Region

Region

...

Table

Region

Region

Region

Region

...

Basic Performance Tuning

266

This is the default behavior of HBase region splitting. This mechanism works well for many
cases, however there are situations wherein it encounters problems, such as the split/
compaction storms issue.

With a roughly uniform data distribution and growth, eventually all the regions in the table will
need to be split at the same time. Immediately following a split, compactions will run on the
daughter regions to rewrite their data into separate files. This causes a large amount of disk
I/O and network traffic.

In order to avoid this situation, you can turn off automatic splitting and manually invoke it.
As you can control at what time to invoke the splitting, it helps spread the I/O load. Another
advantage is that, manually splitting lets you have better control of the regions, which helps
you trace and fix region-related issues.

In this recipe, we will describe how to turn off automatic region splitting and invoke it manually.

Getting ready
Log in to your HBase master server as the user who starts the cluster.

How to do it...
To turn off automatic region splitting and invoke it manually, follow these steps:

1.	 Add the following to the hbase-site.xml file:
$ vi $HBASE_HOME/conf/hbase-site.xml

<property>
 <name>hbase.hregion.max.filesize</name>
 <value>107374182400</value>
</property>

2.	 Sync the changes across the cluster and restart HBase.

3.	 With the aforementioned setting, region splitting will not happen until a region's
size reaches the configured 100GB threshold. You will need to explicitly trigger it on
selected regions.

4.	 To run a region split through HBase Shell, use the following command:
$ echo "split 'hly_temp,,1327118470453.5ef67f6d2a792fb0bd737863dc0
0b6a7.'" | $HBASE_HOME/bin/hbase shell

HBase Shell; enter 'help<RETURN>' for list of supported commands.

Type "exit<RETURN>" to leave the HBase Shell

Version 0.92.0, r1231986, Tue Jan 17 02:30:24 UTC 2012

split 'hly_temp,,1327118470453.5ef67f6d2a792fb0bd737863dc00b6a7.'

0 row(s) in 1.6810 seconds

Chapter 8

267

How it works...
The hbase.hregion.max.filesize property specifies the maximum region size in bytes.
By default, the value is 1GB (256MB for versions prior to HBase 0.92), which means that
when a region exceeds this size, it is split into two. We set this maximum region size to 100GB
in step 1, which is a very high number.

As splitting won't happen until regions reach the 100GB upper boundary, we need to invoke
it explicitly. In step 4, we invoke splitting on a specified region via HBase Shell, using the
split command.

Do not forget to split large regions. A region is the basic unit of data distribution and balancing
in HBase. Regions should be split into proper size and at low load time.

On the other hand, too much splitting is not good. Having too many regions on a region server
lowers its performance.

You might also want to trigger major compaction and balancing, after manually splitting regions.

There's more...
The setting that we set previously causes the entire cluster to have a default maximum
region size of 100GB. Besides changing the entire cluster, it is also possible to specify
the MAX_FILESIZE property on a column family basis, when creating a table:

$ hbase> create 't1', {NAME => 'cf1', MAX_FILESIZE => '107374182400'}

Like major compaction, you can also use the split API provided by the org.apache.
hadoop.hbase.client.HBaseAdmin Java class.

See also
ff Precreating regions using your own algorithm recipe, Chapter 9, Advanced

Configurations and Tuning

9
Advanced

Configurations and
Tuning

In this chapter, we will cover:

ff Benchmarking HBase cluster with YCSB

ff Increasing region server handler count

ff Precreating regions using your own algorithm

ff Avoiding update blocking on write-heavy clusters

ff Tuning memory size for MemStores

ff Client side tuning for low latency systems

ff Configuring block cache for column families

ff Increasing block cache size on read-heavy clusters

ff Client side scanner setting

ff Tuning block size to improve seek performance

ff Enabling Bloom Filter to improve the overall throughput

Advanced Configurations and Tuning

270

Introduction
This is another chapter about performance tuning. In Chapter 8, Basic Performance Tuning,
we described some recipes to tune Hadoop, OS settings, Java, and HBase itself to improve
the overall performance of the HBase cluster. Those are general improvements for many
use cases. In this chapter, we will describe more "specific" recipes; some of them are for
write-heavy clusters, while some are aimed to improve read performance of the cluster.

Before tuning a HBase cluster, you will need to know how its performance is. Therefore, we
will start by introducing how to use Yahoo! Cloud Serving Benchmark (YCSB) to measure
(benchmark) performance of a HBase cluster.

In the recipe Precreating regions before moving data into HBase in Chapter 2, we introduced
how to use HBase's RegionSplitter utility to create a table with precreated regions to
improve data loading speed. While RegionSplitter by default precreate regions with MD5
number boundaries, for situations where row keys cannot be represented as an MD5 number,
we need to use other splitting algorithm. We will describe an approach to precreate regions
with any boundaries you would like to specify.

There are basically two load type HBase clusters, the write-heavy cluster and the read-heavy
cluster. Each type has different tuning options. Many tuning options are trade-off between
write performance and read performance. We will have several recipes describing how to
tune HBase cluster to gain better write performance; meanwhile, we will also introduce
recipes to tune read-heavy HBase cluster. These recipes include server-side configuration
tuning, client-side setting, and table schema selection.

There are no tuning that works for all situations. You need to think carefully about the
performance requirements of your system, and tune your cluster to gain the best balance
between write and read performance.

We assume you have basic knowledge about HBase architecture and have done general
tunings for your cluster. You can refer to Chapter 8, Basic Performance Tuning for HBase
architecture and basic HBase tuning.

Benchmarking HBase cluster with YCSB
Measuring the performance of a HBase cluster, or benchmarking the cluster, is as important
as tuning the cluster itself. The performance characteristics of a HBase cluster that we should
measure include at least the following:

ff Overall throughput (operations per second) of the cluster

ff Average latency (average time per operation) of the cluster

Chapter 9

271

ff Minimum latency

ff Maximum latency

ff Distribution of operation latencies

YCSB is a great tool to benchmark performance of HBase clusters. YCSB supports running
variable load tests in parallel, to evaluate the insert, update, delete, and read performance of
the system. Therefore, you can use YCSB to benchmark for both write-heavy and read-heavy
HBase clusters. The record count to load, operations to perform, proportion of read and write,
and many other properties are configurable for each test, so it is easy to use YCSB to test
different load scenarios of the cluster.

YCSB can also be used to evaluate the performance of many other different key-value stores.
A common use of YCSB is to benchmark multiple systems and compare their performance.

In this recipe, we will describe how to install YCSB and use it to test write-heavy and read-
heavy HBase clusters.

Getting ready
Start your HBase cluster and log in to your HBase client node.

How to do it...
The following steps need to be followed to benchmark your HBase cluster with YCSB:

1.	 Download YCSB on your HBase client node and decompress it:
$ wget https://github.com/downloads/brianfrankcooper/YCSB/ycsb-
0.1.4.tar.gz

$ tar xfvz ycsb-0.1.4.tar.gz

$ cd ycsb-0.1.4

2.	 Add the HBase configuration file (hbase-site.xml) to YCSB HBase
binding's classpath:
$ rm hbase-binding/conf/hbase-site.xml

$ ln -s $HBASE_HOME/conf/hbase-site.xml hbase-binding/conf/hbase-
site.xml

Only for HBase 0.92, add the HBase JAR file to YCSB HBase binding's classpath:

$ cp $HBASE_HOME/hbase-0.92.0.jar hbase-binding/lib

Only for HBase 0.92, add the ZooKeeper JAR file to YCSB HBase binding's classpath:

$ cp $ZOOKEEPER_HOME/zookeeper-3.4.2.jar hbase-binding/lib

Advanced Configurations and Tuning

272

3.	 Create a test table in HBase:
$ $HBASE_HOME/bin/hbase shell

hbase> create 'usertable', {NAME => 'f1', VERSIONS => '1',
COMPRESSION => 'LZO'}

4.	 Invoke a write-heavy benchmark:
$ bin/ycsb load hbase -P workloads/workloada -p columnfamily=f1 -p
recordcount=1000000 -p threadcount=4 -s | tee -a workloada.dat

YCSB Client 0.1

Command line: -db com.yahoo.ycsb.db.HBaseClient -P workloads/
workloada -p columnfamily=f1 -p recordcount=1000000 -p
threadcount=4 -s -load

Loading workload...

Starting test.

 0 sec: 0 operations;

 10 sec: 49028 operations; 4902.8 current ops/sec; [INSERT
AverageLatency(us)=759.91]

 20 sec: 98060 operations; 4899.28 current ops/sec; [INSERT
AverageLatency(us)=777.67]

 ...

 160 sec: 641498 operations; 0 current ops/sec;

 170 sec: 641498 operations; 0 current ops/sec;

 180 sec: 682358 operations; 4086 current ops/sec; [INSERT
AverageLatency(us)=2850.51]

 ...

 240 sec: 1000000 operations; 4721.1 current ops/sec; [INSERT
AverageLatency(us)=525.48]

 240 sec: 1000000 operations; 0 current ops/sec;

[OVERALL], RunTime(ms), 240132.0

[OVERALL], Throughput(ops/sec), 4164.376259723818

[INSERT], Operations, 1000000

[INSERT], AverageLatency(us), 935.844141

[INSERT], MinLatency(us), 10

[INSERT], MaxLatency(us), 26530269

[INSERT], 95thPercentileLatency(ms), 0

[INSERT], 99thPercentileLatency(ms), 0

[INSERT], Return=0, 1000000

[INSERT], 0, 999296

[INSERT], 1, 42

Chapter 9

273

...

[INSERT], 999, 0

[INSERT], >1000, 240

5.	 Invoke a read-heavy benchmark:
bin/ycsb run hbase -P workloads/workloadb -p columnfamily=f1 -p
recordcount=1000000 -p operationcount=100000 -p threadcount=4 -s |
tee -a workloadb.dat

YCSB Client 0.1

Command line: -db com.yahoo.ycsb.db.HBaseClient -P workloads/
workloadb -p columnfamily=f1 -p recordcount=1000000 -p
threadcount=4 -s -t

Loading workload...

Starting test.

 0 sec: 0 operations;

 10 sec: 11651 operations; 1165.1 current ops/sec; [UPDATE
AverageLatency(us)=95.15] [READ AverageLatency(us)=3576.62]

 20 sec: 26265 operations; 1461.25 current ops/sec; [UPDATE
AverageLatency(us)=43.71] [READ AverageLatency(us)=2877.47]

…

 60 sec: 100000 operations; 544.22 current ops/sec; [UPDATE
AverageLatency(us)=25.15] [READ AverageLatency(us)=3139.45]

[OVERALL], RunTime(ms), 60740.0

[OVERALL], Throughput(ops/sec), 1646.3615409944023

[UPDATE], Operations, 5082

[UPDATE], AverageLatency(us), 45.35615899252263

[UPDATE], MinLatency(us), 12

[UPDATE], MaxLatency(us), 6155

[UPDATE], 95thPercentileLatency(ms), 0

[UPDATE], 99thPercentileLatency(ms), 0

[UPDATE], Return=0, 5082

[UPDATE], 0, 5080

[UPDATE], 1, 1

[UPDATE], 2, 0

[UPDATE], 3, 0

...

[UPDATE], >1000, 0

[READ], Operations, 94918

Advanced Configurations and Tuning

274

[READ], AverageLatency(us), 2529.312764702164

[READ], MinLatency(us), 369

[READ], MaxLatency(us), 484754

[READ], 95thPercentileLatency(ms), 8

[READ], 99thPercentileLatency(ms), 13

[READ], Return=0, 94918

[READ], 0, 31180

[READ], 1, 21938

[READ], 2, 18331

[READ], 3, 10227

...

How it works...
The latest YCSB version at the time of writing is 0.1.4. This version has the precompiled HBase
binding. To use YCSB HBase binding, we added a link of our HBase cluster's configuration file
(hbase-site.xml) to the hbase-binding/conf folder under YCSB installation. This tells
YCSB the connection information of our HBase cluster.

As the YCSB 0.1.4 tarball is built with HBase 0.90.5, if you are using HBase 0.92 for your
cluster, you need to update YCSB's HBase and ZooKeeper JAR files to the version your cluster
is running, or you may get an error complaining Not a host:port pair in the output. To
achieve this, just copy the HBase and ZooKeeper JAR files to the hbase-binding/lib folder
under the YCSB installation.

Before running the load test, we need to create the test table in HBase at first. The test table's
name is fixed: it must be usertable. We also need to create a column family for the table. In
step 3, we created the usertable with a column family called f1, which has one version and
LZO compression support.

After creating the test table, we can run a YCSB load test using the ycsb command. Executing
the ycsb command without parameters will show the command usage.

$ bin/ycsb

Usage: bin/ycsb command database [options]

Commands:

 load Execute the load phase

 run Execute the transaction phase

 shell Interactive mode

Chapter 9

275

Databases:

 basic https://github.com/brianfrankcooper/YCSB/tree/master/
basic

 cassandra-10 https://github.com/brianfrankcooper/YCSB/tree/master/
cassandra

 cassandra-7 https://github.com/brianfrankcooper/YCSB/tree/master/
cassandra

 cassandra-8 https://github.com/brianfrankcooper/YCSB/tree/master/
cassandra

 gemfire https://github.com/brianfrankcooper/YCSB/tree/master/
gemfire

 hbase https://github.com/brianfrankcooper/YCSB/tree/master/
hbase

 infinispan https://github.com/brianfrankcooper/YCSB/tree/master/
infinispan

 jdbc https://github.com/brianfrankcooper/YCSB/tree/master/
jdbc

 mapkeeper https://github.com/brianfrankcooper/YCSB/tree/master/
mapkeeper

 mongodb https://github.com/brianfrankcooper/YCSB/tree/master/
mongodb

 nosqldb https://github.com/brianfrankcooper/YCSB/tree/master/
nosqldb

 redis https://github.com/brianfrankcooper/YCSB/tree/master/
redis

 voldemort https://github.com/brianfrankcooper/YCSB/tree/master/
voldemort

Options:

 -P file Specify workload file

 -p key=value Override workload property

 -s Print status to stderr

 -target n Target ops/sec (default: unthrottled)

 -threads n Number of client threads (default: 1)

Workload Files:

 There are various predefined workloads under workloads/ directory.

 See https://github.com/brianfrankcooper/YCSB/wiki/Core-Properties

 for the list of workload properties.

Advanced Configurations and Tuning

276

In step 4, we invoked a write-heavy test to load 1 million records into our test table in HBase.
The test behavior is defined by Workload Files. The workloads specify the data that will be
loaded into the table, and the operations that will be executed against the data. There are
predefined workloads under YCSB's workloads directory. Here we chose workloads/
workloada as our workload file. This is an update-heavy workload. We also overwrote the
default record count of the workload by specifying -p recordcount=1000000 on the
command line. We invoked four client threads to run the test by passing -p threadcount=4
to the command. The -s option makes YCSB report the status periodically to the output.

As you can see from the HBase web UI, YCSB started loading test data into the table we
created previously in step 3:

The load test took 240132.0 milliseconds to complete, with an average throughput of 4164
operations per second. The output also reports the insert operation number, overall latency,
and detailed latency. All the inserts were successfully completed (Return=0). Almost all of
the inserts (999296) were completed in less than 1 ms, while 42 inserts were completed
between 1 and 2 ms. There are also 240 inserts that took more than 1000 ms to complete.
These inserts were probably being blocked for a while by the region servers due to high load.

We also invoked a read-heavy test in step 5. We performed 100,000 operations (-p
operationcount=100000) over the test data, while 95% of the operations were reads
(defined in workloads/workloadb). The test completed in 60740.0 ms; throughput was
1646 operations per second. As you can see, HBase writes are much faster than reads.

YCSB supports other useful properties such as reporting time series latencies. See the
following for the list of workload properties:

https://github.com/brianfrankcooper/YCSB/wiki/Core-Properties

Chapter 9

277

There's more...
HBase is shipped with its own performance evaluation (PE) tool which can be used to
benchmark HBase, too. The following is the usage of the HBase PE tool:

$ $HBASE_HOME/bin/hbase org.apache.hadoop.hbase.PerformanceEvaluation

Usage: java org.apache.hadoop.hbase.PerformanceEvaluation \

 [--miniCluster] [--nomapred] [--rows=ROWS] <command> <nclients>

Options:

 miniCluster Run the test on an HBaseMiniCluster

 nomapred Run multiple clients using threads (rather than use
mapreduce)

 rows Rows each client runs. Default: One million

 flushCommits Used to determine if the test should flush the table.
Default: false

 writeToWAL Set writeToWAL on puts. Default: True

Command:

 filterScan Run scan test using a filter to find a specific row
based on its value (make sure to use --rows=20)

 randomRead Run random read test

 randomSeekScan Run random seek and scan 100 test

 randomWrite Run random write test

 scan Run scan test (read every row)

 scanRange10 Run random seek scan with both start and stop row (max
10 rows)

 scanRange100 Run random seek scan with both start and stop row (max
100 rows)

 scanRange1000 Run random seek scan with both start and stop row (max
1000 rows)

 scanRange10000 Run random seek scan with both start and stop row (max
10000 rows)

 sequentialRead Run sequential read test

 sequentialWrite Run sequential write test

Args:

 nclients Integer. Required. Total number of clients (and
HRegionServers)

Advanced Configurations and Tuning

278

 running: 1 <= value <= 500

Examples:

 To run a single evaluation client:

 $ bin/hbase org.apache.hadoop.hbase.PerformanceEvaluation
sequentialWrite 1

This is an example of using HBase PE to test sequential write performance:

$ $HBASE_HOME/bin/hbase org.apache.hadoop.hbase.PerformanceEvaluation
sequentialWrite 1

12/03/20 16:34:42 INFO hbase.PerformanceEvaluation: Start class org.
apache.hadoop.hbase.PerformanceEvaluation$SequentialWriteTest at offset 0
for 1048576 rows

12/03/20 16:34:50 INFO hbase.PerformanceEvaluation: 0/104857/1048576

12/03/20 16:34:57 INFO hbase.PerformanceEvaluation: 0/209714/1048576

…

12/03/20 16:36:11 INFO hbase.PerformanceEvaluation: Finished class org.
apache.hadoop.hbase.PerformanceEvaluation$SequentialWriteTest in 88730ms
at offset 0 for 1048576 rows

We use one client to sequentially write about 1 million rows (100 bytes per row) into our test
table in the HBase cluster. The test took 88 seconds to finish. There is no need to specify a
table and column family name, as the HBase PE tool will create a table called TestTable
with a column family called info in its code.

Note that you will need to execute the write tests before
using PE to run read tests, as read tests use the data
inserted by the write tests.

Increasing region server handler count
Region server keeps a number of running threads to answer incoming requests to user tables.
To prevent region server running out of memory, this number is set to very low by default. For
many situations, especially when you have lots of concurrent clients, you will need to increase
this number to handle more requests.

We will describe how to tune the region server handler count in this recipe.

Getting ready
Log in to the master node as the user who starts HBase.

Chapter 9

279

How to do it...
The following steps need to be followed to increase region server handler count:

1.	 On the master node, add the following to your hbase-site.xml file:
hadoop@master1$ vi $HBASE_HOME/conf/hbase-site.xml

 <property>
 <name>hbase.regionserver.handler.count</name>
 <value>40</value>
 </property>

2.	 Sync the changes across the cluster:
hadoop@master1$ for slave in `cat $HBASE_HOME/conf/regionservers`

do

 rsync -avz $HBASE_HOME/conf/ $slave:$HBASE_HOME/conf/

done

3.	 Restart HBase to have the changes applied.

How it works...
The hbase.regionserver.handler.count property controls the count of RPC listener
threads. By default, the property is set to 10. This is a rather low value to prevent the region
server running out of memory in some situations.

You should set it to a low value if your region server has low memory available. A low value is
also good for handling requests which require lots of memory, such as putting a big value into
HBase or scanning data with a large cache configuration. Setting hbase.regionserver.
handler.count to high means more concurrent clients, which may consume too much
memory in a region server, or even use up all the memory.

If your request requires only a litter memory, but needs high transactions per second (TPS),
consider setting it to a bigger value so that a region server can handle more concurrent requests.

When tuning this value, we recommend you enable RPC-level logging, and monitor the
memory usage of each RPC request and GC status.

You will need to sync the changes across the cluster and restart HBase to apply it.

See also
ff Enabling HBase RPC DEBUG-level logging recipe, in Chapter 6, Maintenance

and Security

Advanced Configurations and Tuning

280

Precreating regions using your own
algorithm

When we create a table in HBase, the table starts with a single region. All data inserted
into that table goes to the single region. As data keeps growing, when the size of the region
reaches a threshold, Region Splitting happens. The single region is split into two halves so
that the table can handle more data.

In a write-heavy HBase cluster, this approach has several issues that need to be fixed:

ff The split/compaction storm issue.

As data grows uniformly, most of the regions are split at the same time, which causes
huge disk I/O and network traffics.

ff Load is not well balanced until enough regions have been split.

Especially right after the table is created, all requests go to the same region server
where the first region is deployed.

The split/compaction issue has been discussed in the Managing region split recipe in Chapter
8, Basic Performance Tuning. by using a manually splitting approach. For the second issue,
we introduced how to avoid it by previously creating regions at the table creation time, in the
Precreating regions before moving data into HBase recipe in Chapter 2. We described how to
use HBase RegionSplitter utility to precreate regions.

By default, the RegionSplitter utility uses MD5 algorithm to generate region starting keys
of an MD5 checksum. Keys are in the range "00000000" to "7FFFFFFF". This works well for
many cases; but there are situations where you might want to generate the keys using your
own algorithm, so that the load is spread well among your cluster.

As HBase row key is fully controlled by applications which put data into HBase, for many
situations, the range and distribution of row keys are predictable somehow. Thus it is possible
to calculate the region splitting keys and use them to create presplit regions.

We will describe how to achieve this goal in this recipe. We will create a table with predefined
regions, using regions' starting keys specified in a text file.

Chapter 9

281

Getting ready
Log in to your HBase client node and create a split-keys file there. Put your region
splitting keys into the file, one key per line. As an example, we assume the file contains
the following keys:

$ cat split-keys

a0000

affff

b0000

bffff

How to do it...
Follow these instructions to precreate regions using your own algorithm:

1.	 Create a FileSplitAlgorithm Java class which implements the org.apache.
hadoop.hbase.util.RegionSplitter.SplitAlgorithm interface:
$ vi FileSplitAlgorithm.java

import org.apache.hadoop.hbase.util.RegionSplitter.SplitAlgorithm;

public class FileSplitAlgorithm implements SplitAlgorithm {
 public static final String SPLIT_KEY_FILE = "split-keys";
}

2.	 Implement the split() method of the interface as follows:
$ vi FileSplitAlgorithm.java

@Override
public byte[][] split(int numberOfSplits) {
 BufferedReader br = null;
 try {
 File keyFile = new File(SPLIT_KEY_FILE);
 if (!keyFile.exists()) {
 throw new FileNotFoundException("Splitting key file
not found: " + SPLIT_KEY_FILE);
 }

 List<byte[]> regions = new ArrayList<byte[]> ();
 br = new BufferedReader(new FileReader(keyFile));
 String line;
 while ((line = br.readLine()) != null) {
 if (line.trim().length() > 0) {
 regions.add(Bytes.toBytes(line));

Advanced Configurations and Tuning

282

 }
 }
 return regions.toArray(new byte[0][]);

 } catch (IOException e) {
 throw new RuntimeException("Error reading splitting keys
from " + SPLIT_KEY_FILE, e);
 } finally {
 if (br != null) {
 try {
 br.close();
 } catch (IOException e) {
 // ignore
 }
 }
 }
}

3.	 There are several other methods of the interface we need to implement to compile
the Java class. As we don't actually use them, just make an empty implementation to
each of those methods, shown as follows (we skipped some methods here):
$ vi FileSplitAlgorithm.java

@Override
public byte[] firstRow() {
 return null;
}

@Override
public byte[] lastRow() {
 return null;
}

4.	 Compile the Java file:
$ javac -classpath $HBASE_HOME/hbase-0.92.0.jar
FileSplitAlgorithm.java

5.	 Copy the split-keys file which contains your splitting keys to the directory where
FileSplitAlgorithm was compiled.

6.	 Run the following script to precreate regions at the table creation time:
$ export HBASE_CLASSPATH=$HBASE_CLASSPATH:./

$ $HBASE_HOME/bin/hbase org.apache.hadoop.hbase.util.
RegionSplitter -D split.algorithm=FileSplitAlgorithm -c 2 -f f1
test_table

Chapter 9

283

12/03/25 08:09:42 DEBUG util.RegionSplitter: -D configuration
override: split.algorithm=FileSplitAlgorithm

12/03/25 08:09:42 DEBUG util.RegionSplitter: Creating table test_
table with 1 column families. Presplitting to 2 regions

12/03/25 08:09:49 DEBUG util.RegionSplitter: Table created!
Waiting for regions to show online in META...

12/03/25 08:09:49 DEBUG util.RegionSplitter: Finished creating
table with 2 regions

7.	 Confirm that the table and predefined regions has been created correctly via the
HBase web UI:

How it works...
HBase ships with a RegionSplitter utility class, which is used to:

ff Create HBase tables with presplit regions

ff Execute rolling split on all regions in an existing table

ff Use customized algorithms to split regions

Our instructions are based on this utility class.

Advanced Configurations and Tuning

284

First, we created a FileSplitAlgorithm Java class implementing the SplitAlgorithm
interface. SplitAlgorithm is a Java interface declared in the RegionSplitter class, used
to define how RegionSplitter functions. We also defined a SPLIT_KEY_FILE constant in
the FileSplitAlgorithm class to refer to the file which contains our region starting keys.

The SplitAlgorithm interface defines several methods that the implementation class
needs to implement. To split regions at the time of table creation, we only need to implement
the split() method like we did in step 2. This method is called by the RegionSplitter
class to split an entire table. In our implementation, it reads split keys from the file we
prepared, one key per line. Then, convert them to an array of byte[] representing the
split keys for the initial regions of the table.

Other SplitAlgorithm interface methods are not necessary for our usage, so we just put
empty implementation for those methods in step 3.

In step 4, we added the HBase jar to our classpath and then run the javac command to
compile the Java code.

To use the class to split regions, we added our FileSplitAlgorithm class to HBASE_
CLASSPATH, and then invoked the RegionSplitter utility with the following parameters:

ff -D split.algorithm=FileSplitAlgorithm: The splitting algorithm.

ff -c 2: Number of regions to split the table into; not used in our implementation.

ff -f f1: Create a single column family named "f1".

ff test_table: The name of the table to be created.

As you can see in step 7, the test_table is split into five regions separated by four split
keys. The split keys are exactly what we put in the split-keys file.

Other table attributes are all with default values; you might want to change some of them by
using the alter command via HBase Shell.

Note that even when regions are split previously, you will also need to design your row key
at the application layer, to avoid writing too many sequential row keys to a single region. You
need to choose your split algorithm carefully to fit your data access pattern.

There's more...
Another useful scenario of this approach is to speed up importing data into HBase from
exported backup HBase tables.

As mentioned in the recipe Backing up region starting keys in Chapter 4, Backing Up and
Restoring HBase data, you can backup your region starting keys via a simple script. With
the FileSplitAlgorithm class, we can use those keys to previously restore the region
boundaries of an HBase table, and then restore the data by importing from exported data files.

Chapter 9

285

Compared to importing data from a single region, as regions are restored and balanced to
many region servers firstly, the data restoring speed will be improved significantly.

See also
ff Managing region split in Chapter 8

ff Precreating regions before moving data into HBase in Chapter 2

ff Backing up region starting keys in Chapter 4

Avoiding update blocking on write-heavy
clusters

On a write-heavy HBase cluster, you may observe an unstable write speed. Most of the writes
are very fast, while some are slow. For an online system, this unstable write speed is not
acceptable even when average speed is very fast.

This situation is probably caused by the following two reasons:

ff Split/compaction makes the cluster very high load

ff Updates are blocked by region server

As we described in Chapter 8, Basic Performance Tuning you can avoid the split/compaction
issues by disabling the automatic split/compaction and invoking them at low load time.

Grep your region server logs, if you find many messages saying "Blocking updates
for ...", it is possible that many updates were blocked, and those updates might have
poor response time.

To fix this issue, we need to tune both server side and client side configurations to gain a
stable write speed. We will describe the most important server side tuning to avoid update
blocking in this recipe.

Getting ready
Log in to your master node by the user who starts HBase.

Advanced Configurations and Tuning

286

How to do it...
To avoid update blocking, follow these steps:

1.	 Increase the hbase.hregion.memstore.block.multiplier property value in
the hbase-site.xml file.
$ vi $HBASE_HOME/conf/hbase-site.xml

<property>
 <name>hbase.hregion.memstore.block.multiplier</name>
 <value>8</value>
</property>

2.	 Increase the hbase.hstore.blockingStoreFiles property value in the
hbase-site.xml file.
$ vi $HBASE_HOME/conf/hbase-site.xml

<property>
 <name>hbase.hstore.blockingStoreFiles</name>
 <value>20</value>
</property>

3.	 Sync the changes across the cluster and restart HBase to apply the changes.

How it works...
This is the flow of HBase write operations:

CF1 CF2

Store

Mem
Store

MemStore

StoreFile

Region
KVsClient

Region

Server

HLog

Sync

HDFS

Flush

...

Add/Delete/...KVs

KVs

Region
KVs

StoreFile

Write

(Hfile)

Store Store

MemStore

StoreFile

Chapter 9

287

An edit first writes to RegionServer's HLog (Write Ahead Log), where the edit is persisted on
HDFS. After that, the edit goes to the hosting HRegion, and then its column family HStore's
in-memory space, which is called MemStore. When the size of MemStore reaches a threshold, it
is flushed to a StoreFile on HDFS. StoreFiles save the data using the HFile file format internally.

HBase is a kind of Multiversion Concurrency Control (MVCC) architecture. To update/delete
any old data, instead of overwriting it, HBase adds a newer version to the data. This makes
HBase write very fast because all writes are sequential operations.

When there are many small StoreFiles on HDFS, HBase starts compaction to rewrite them into
fewer but bigger ones. A region will be split into two halves if its size reaches a threshold.

To prevent long time compact/split and out of memory error, HBase blocks updates if a
region's MemStore size reaches a threshold, which is defined by:

hbase.hregion.memstore.flush.size multiplied
hbase.hregion.memstore.block.multiplier

The hbase.hregion.memstore.flush.size property specifies the size at which
MemStore will be flushed to disk. Its default value is 128MB (64MB in 0.90 release).

The hbase.hregion.memstore.block.multiplier property has a default value of 2,
which means that if MemStore has 256MB (128 x 2) in size, updates will be blocked on that
region. This value is too small in write-heavy clusters during spikes in update traffic, so we
need to increase the blocking threshold.

We usually leave the hbase.hregion.memstore.flush.size property at its default value,
and tune the hbase.hregion.memstore.block.multiplier property to a much bigger
value like 8, to increase the MemStore blocking size, thus reducing the updates blocking count.

Note that increasing hbase.hregion.memstore.block.multiplier makes triggering a
compact/split when flushing more likely, so tune it carefully.

Step 2 is for another blocking scenario. If any one Store has more than the hbase.hstore.
blockingStoreFiles (7 by default) number of StoreFiles (one StoreFile per MemStore
flushed), then updates are blocked for this region until a compaction is completed, or until
hbase.hstore.blockingWaitTime (90 second by default) has been exceeded. We
increased it to 20, which is a reasonably big value for write-heavy clusters. The side effects
are that there will be more files to compact.

This tuning normally reduces the chances that updates blocking happens. While, as we just
mentioned, it has side effects, too. We recommend you to tune these settings carefully, and
watch writes throughputs and latencies during the tuning to find the best configuration values.

See also
ff Tuning memory size for MemStores

Advanced Configurations and Tuning

288

Tuning memory size for MemStores
As we described in recipe Avoiding update blocking on write-heavy clusters, HBase write
operations are applied in the hosting region's MemStore at first, and then flushed to HDFS
to save memory space when MemStore size reaches a threshold. MemStore flush runs on
background threads using a snapshot of the MemStore. Thus HBase keeps handling writes
even when the MemStores are being flushed. This makes HBase writes very fast. If the write
spike is so high that the MemStore flush cannot catch up, the speed writes fill MemStores and
memory used by MemStores will keep growing. If the size of all MemStores in a region server
reaches a configurable threshold, updates are blocked and flushes are forced.

We will describe how to tune this total MemStore memory size to avoid update blocking
in this recipe.

Getting ready
Log in to your master node as the user who starts HBase.

How to do it...
The following steps need to be carried out to tune memory size for MemStores:

1.	 Increase the hbase.regionserver.global.memstore.upperLimit property
value in the hbase-site.xml file:
$ vi $HBASE_HOME/conf/hbase-site.xml

<property>
 <name>hbase.regionserver.global.memstore.upperLimit</name>
 <value>0.45</value>
</property>

2.	 Increase the hbase.regionserver.global.memstore.lowerLimit property
value in the hbase-site.xml file:
vi $HBASE_HOME/conf/hbase-site.xml

<property>
 <name>hbase.regionserver.global.memstore.lowerLimit</name>
 <value>0.4</value>
</property>

3.	 Sync the changes across the cluster and restart HBase to apply the changes.

Chapter 9

289

How it works...
The hbase.regionserver.global.memstore.upperLimit property controls the
maximum size of all MemStores in a region server, before new updates are blocked and
flushes are forced. This is a configuration to prevent HBase from running out of memory by
write spikes. By default, it is set to 0.4, which means 40% of region server heap size.

The default value works well for many cases. But, if you detected many log entries saying
Flush of region xxxx due to global heap pressure in your region server logs,
then you may need to tune this property to handle the high write rate.

The hbase.regionserver.global.memstore.lowerLimit property we tuned in step
2, specifies when MemStores are forced to flush, they keep flushing until the memory size
occupied by MemStores is decreased to this mark. The default value is 35% of the region
server heap size.

On write-heavy clusters, increasing these two values helps reduce the chances that updates
are blocked due to MemStore size limiting. On the other hand, you will need to tune it carefully
to avoid the situation of full garbage collection or out of memory error.

There's more...
Normally, read performance is not so important as writes on write-heavy clusters. Thus we
can tune the cluster to optimize for writes. One of the optimizations is to reduce the memory
space allocated to HBase block cache, and make the room for MemStores. See the recipe
Increasing block cache size on read-heavy clusters for how to tune block cache size.

See also
ff Avoiding update blocking on write-heavy clusters

ff Configuring block cache for column families

ff Increasing block cache size on read-heavy clusters

Client-side tuning for low latency systems
We have introduced several recipes to avoid server side blocking. Those recipes should help
the cluster run stably and with high performance. Cluster throughput and average latency will
be improved significantly by server-side tuning.

However, in low latency and real-time systems, just server-side tuning is not enough. Even if it
only occurs slightly, long time pause is not acceptable in low latency systems.

There are client-side configurations we can tune to avoid long time pause. In this recipe,
we will describe how to tune those configurations and how they work.

Advanced Configurations and Tuning

290

Getting ready
Log in to your HBase client node as the user who accesses HBase.

How to do it...
Follow these instructions to perform client side tuning for write-heavy clusters:

1.	 Reduce the hbase.client.pause property value in the hbase-site.xml file:
$ vi $HBASE_HOME/conf/hbase-site.xml

<property>
 <name>hbase.client.pause</name>
 <value>20</value>
</property>

2.	 Tune the hbase.client.retries.number property value in the
hbase-site.xml file:
$ vi $HBASE_HOME/conf/hbase-site.xml

<property>
 <name>hbase.client.retries.number</name>
 <value>11</value>
</property>

3.	 Set hbase.ipc.client.tcpnodelay to true in the hbase-site.xml file:
$ vi $HBASE_HOME/conf/hbase-site.xml

<property>
 <name>hbase.ipc.client.tcpnodelay</name>
 <value>true</value>
</property>

4.	 Reduce the ipc.ping.interval value in the hbase-site.xml file:
$ vi $HBASE_HOME/conf/hbase-site.xml

<property>
 <name>ipc.ping.interval</name>
 <value>4000</value>
</property>

How it works...
The purpose of tuning the hbase.client.pause and hbase.client.retries.number
properties in step 1 and 2, is to let clients retry quickly in a short time period if they failed to
connect to the cluster.

Chapter 9

291

The hbase.client.pause property controls how long the client should sleep between
retries. Its default value is 1000 milliseconds (1 second). The hbase.client.retries.
number property is used to specify the maximum number of retries. By default, its value is 10.

The sleep time between each retry is calculated with the following command:

pause_time = hbase.client.pause * RETRY_BACKOFF[retries]

Where RETRY_BACKOFF is a retry back off multiplier table, which has the following definition:

public static int RETRY_BACKOFF[] = { 1, 1, 1, 2, 2, 4, 4, 8, 16, 32
};

After retrying more than 10 times, HBase will always use the last multiplier (32) to calculate
pause time.

As we configured 20ms as our pause time and maximum retry number of 11, we will have the
following pause time between retries of connection to the cluster:

{ 20, 20, 20, 40, 40, 80, 80, 160, 320, 640, 640 }

This means the client will retry 11 times within 2060ms before it gives up connecting
to the cluster.

In step 3, we set hbase.ipc.client.tcpnodelay to true. This setting disables Nagle's
Algorithm for socket transmission between client and servers.

Nagle's Algorithm is a means to improve the efficiency of networks, by buffering a number
of small outgoing messages, and sending them all at once. Nagle's Algorithm is enabled
by default. Low latency systems should disable Nagle's Algorithm by setting hbase.ipc.
client.tcpnodelay to true.

In step 4, we set ipc.ping.interval to 4000 milliseconds (4 seconds) so that we don't
timeout during the socket transmission between client and servers. The default ipc.ping.
interval is 1 minute, which is a little too long for low latency systems.

There's more...
You can also use the org.apache.hadoop.hbase.HBaseConfiguration class on your
client code to overwrite the value of the preceding properties set in hbase-site.xml. The
following sample code has the same effect as the settings of the previous steps 1 and 2:

Configuration conf = HBaseConfiguration.create();
conf.setInt("hbase.client.pause", 20);
conf.setInt("hbase.client.retries.number", 11);
HTable table = new HTable(conf, "tableName");

Advanced Configurations and Tuning

292

Configuring block cache for column families
HBase supports block cache to improve read performance. When performing a scan, if block
cache is enabled and there is room remaining, data blocks read from StoreFiles on HDFS are
cached in region server's Java heap space, so that next time, accessing data in the same block
can be served by the cached block. Block cache helps in reducing disk I/O for retrieving data.

Block cache is configurable at table's column family level. Different column families can have
different cache priorities or even disable the block cache. Applications leverage this cache
mechanism to fit different data sizes and access patterns.

In this recipe, we will describe how to configure block cache for column families and tips to
leverage HBase block cache.

Getting ready
Log in to your HBase client node.

How to do it...
The following steps need to be carried out to configure block cache at column family level:

1.	 Start HBase Shell:
$ $HBASE_HOME/bin/hbase shell

HBase Shell; enter 'help<RETURN>' for list of supported commands.

Type "exit<RETURN>" to leave the HBase Shell

Version 0.92.0, r1231986, Tue Jan 17 02:30:24 UTC 2012

hbase(main):001:0>

2.	 Execute the following to create a table with three column families:
hbase> create 'table1', {NAME => 'f1'}, {NAME => 'f2', IN_MEMORY
=> 'true'}, {NAME => 'f3', BLOCKCACHE => 'false'}

0 row(s) in 1.0690 seconds

3.	 Show the properties of the table created previously:
hbase> describe 'table1'

DESCRIPTION
ENABLED
 {NAME => 'table1', FAMILIES => [{NAME => 'f1', BLOOMFILTER =>
'NONE', REPLICATION_SCOPE => '0', VERSIONS => '3', true
 COMPRESSION => 'NONE', MIN_VERSIONS => '0', TTL => '2147483647',
BLOCKSIZE => '65536', IN_MEMORY => 'false', BLOC

Chapter 9

293

 KCACHE => 'true'}, {NAME => 'f2', BLOOMFILTER => 'NONE', REPLICATION_
SCOPE => '0', VERSIONS => '3', COMPRESSION =
 > 'NONE', MIN_VERSIONS => '0', TTL => '2147483647', BLOCKSIZE
=> '65536', IN_MEMORY => 'true', BLOCKCACHE => 'true'}, {NAME => 'f3',
BLOOMFILTER => 'NONE', REPLICATION_SCOPE => '0', VERSIONS => '3',
COMPRESSION => 'NONE', MIN_
 VERSIONS => '0', TTL => '2147483647', BLOCKSIZE => '65536', IN_
MEMORY => 'false', BLOCKCACHE => 'false'}]}
1 row(s) in 0.0290 seconds

How it works...
We created a table (table1) with three column families, f1, f2, and f3. For family f1, we
didn't specify any properties, so all its properties were set to default. As shown in step 3, its
block cache is enabled (BLOCKCACHE => 'true') and in memory is off (IN_MEMORY =>
'false').

HBase block cache contains three levels of block priority: single, multiple, and in-memory
access. A block is added with an in-memory flag (this means HBase will try to keep that block
in memory more aggressively, but it is not guaranteed) if necessary, otherwise it becomes
a single access priority. Once a block is accessed again, it is marked as multiple access. As
shown in the following diagram, cache space for these three priorities is different; single and
in-memory are 25%, multiple access is 50% of total cache space, respectively:

25% 50% 25%

Single Access Multiple Access In-Memory

The column family f2 we created above, was marked as in-memory enabled. Thus blocks
belonging to that family are cached with in-memory priority. For family f3, block cache is
disabled, which means the column family's data blocks will not be cached. Disabling block
cache is not recommended.

As data is cached per-block basis, it is very efficient to access data in the same block. This is
especially true for small size rows. Therefore, putting data which will be accessed at the same
time in the same column family is a good practice for table schema design. For example,
when using HBase to store web pages crawled from the Internet, it is good to have a meta
column family with in-memory enabled to hold metadata of a web page, and a raw column
family to store the raw content of the page.

Advanced Configurations and Tuning

294

There's more...
You can also change the block cache property for an existing column family by using the
alter command via HBase Shell:

1.	 Disable the table you want to change:
hbase> disable 'table1'

0 row(s) in 7.0580 seconds

2.	 Change block size for the table using the alter command:
hbase> alter 'table1', {NAME => 'f1', IN_MEMORY => 'true'}

Updating all regions with the new schema...

1/1 regions updated.

Done.

0 row(s) in 6.0990 seconds

3.	 Confirm your changes with the describe command:
hbase> describe 'table1'

DESCRIPTION
ENABLED
 {NAME => 'table1', FAMILIES => [{NAME => 'f1', BLOOMFILTER =>
'NONE', REPLICATION_SCOPE => '0', VERSIONS => '3', false
 COMPRESSION => 'NONE', MIN_VERSIONS => '0', TTL => '2147483647',
BLOCKSIZE => '65536', IN_MEMORY => 'true', BLOCK
 CACHE => 'true'}, {NAME => 'f2'...

1 row(s) in 0.0300 seconds

4.	 Enable the table again:
hbase> enable 'table1'

0 row(s) in 2.0530 seconds

Here we just enabled in-memory for an existing column family f1 in the table table1.

See also
ff Increasing block cache size on read-heavy clusters

ff Client side scanner setting

Chapter 9

295

Increasing block cache size on read-heavy
clusters

As described in recipe Tuning memory size for MemStores and Configuring block cache for
column families, region server allocates a large amount of its Java heap space for MemStores
to increase write performance. It also uses lots of the heap space to cache StoreFile blocks to
improve read performance.

There is balance between write and read performance. While on read-heavy clusters, as read
performance is more important, you might want to allocate more memory to block cache.

In this recipe, we will describe how to increase block cache size. We will also include tips for
finding out whether block cache is enough or not.

Getting ready
Log in to your master node as the user who starts HBase.

How to do it...
The following steps need to be carried out to increase block cache size:

1.	 Increase the hfile.block.cache.size property value in the
hbase-site.xml file:
$ vi $HBASE_HOME/conf/hbase-site.xml

<property>
 <name>hfile.block.cache.size</name>
 <value>0.3</value>
</property>

2.	 Sync the changes across the cluster and restart HBase to apply the changes.

How it works...
The total block cache space of a region server is configured by the hfile.block.cache.
size property. This property specifies the percentage of maximum region server heap to
allocate for block cache. By default, it allocates 25% of the maximum heap size.

Advanced Configurations and Tuning

296

In step 1, we increased the total space for block cache to 30% of the maximum region server
heap size. On read-heavy clusters, it is recommended to reduce the space for MemStores
and allocate more memory to block cache. MemStores and block cache normally consume
approximately 60%~70% of the maximum region server heap size. This is a reasonable value.
The total value of MemStore upper limit and block cache should not be higher than this level
except when you are absolutely sure it will be fine.

Another indicator to determine how much memory we should allocate for block cache is
to check the region server metrics, either on Ganglia or the HBase web UI. For example,
click the region server link on the HBase web UI; you will find the most important metrics
of the region server:

Check the MemStore size, block cache size, hit ratio, and so forth on the page; you will find
this information useful to help you tune the cluster. If block cache hit ratio is very low, you may
need to review your table schema and data access pattern; put columns together if they are
always accessed at the same time. Using Bloom Filter is another solution to increase block
cache hit ratio. If you are encountering many block evictions, consider increasing the block
cache size to fit more blocks.

See also
ff Tuning memory size for MemStores

ff Configuring block cache for column families

ff Enabling Bloom Filter to improve the overall throughput

Chapter 9

297

Client side scanner setting
To achieve better read performance, besides server side tuning, what's important is the
scanner setting at client application side. Better client scanner setting makes the scan
process much more efficient. By contrast, a badly configured scanner will not only slow down
the scan itself, but also have a negative effect on the region server. So we need to configure
the client side scanner settings carefully.

The most important scanner settings include scan caching, scan attribute selection, and scan
block caching. We will describe how to configure these settings properly in this recipe.

Getting ready
Log in to your HBase client node by the user who accesses HBase.

How to do it...
The following steps need to be followed to change client side scanner settings:

1.	 To fetch more rows when calling the next() method on a scanner, increase the
hbase.client.scanner.caching property value in the hbase-site.xml file:
$ vi $HBASE_HOME/conf/hbase-site.xml

<property>
 <name>hbase.client.scanner.caching</name>
 <value>500</value>
</property>

2.	 Only fetch the columns you need by specifying the column families and qualifiers.
Sample code looks like the following:
Scan scan = new Scan();
// your scan filtering code
scan.addColumn(family1, qualifier1);
scan.addColumn(family1, qualifier2);

3.	 To disable block cache for a particular scan, add the following to your code. Note
that this does not disable block cache on the server side, but prevents the blocks
scanned by the scanner to be cached.
Scan scan = new Scan();
// your scan filtering code
scan.setCacheBlocks(false);

Advanced Configurations and Tuning

298

How it works...
In step 1, we changed scan caching to 500, which is much bigger than the default value of 1.
This means the region server will transfer 500 rows at a time to the client to be processed. For
some situations, such as running MapReduce to read data from HBase, setting this value to
a bigger one makes the scan process much more efficient than the default. However, a higher
caching value requires more memory to cache the rows for both the client and region server.

It also has the risk that the client may time out before it completes processing the date set
and calls next() on the scanner. If the client process is fast, set caching higher. Otherwise,
you will need to set it lower. We will introduce how to set per-scan basis caching in the There's
more... section.

Step 2 shows the idea that if only a small subset of a column family is to be processed, then
only the required data should be transferred to clients. This is especially important when large
amounts of rows are to be processed (for example, during MapReduce). The overhead of non-
need data transfer becomes a performance penalty over large datasets. Therefore, instead of
using scan.addFamily(), which will return all columns in the column family to clients, we
should call scan.addColumn() to specify only the columns we need.

A block will not be added to block cache if block cache is disabled on the scanner where the
block is scanned. As we did in step 3, disabling block cache for a particular scan is sometimes
very important. For example, when full scanning a table with MapReduce, you should disable
block cache for the scan because all blocks in the table will be scanned, which fills up the
block cache space with one time access blocks, and triggers a cache eviction process again
and again.

From the HBase web UI, you will find two block cache hit ratio metrics: blockCacheHitRatio
and blockCacheHitCachingRatio. Their difference is that, blockCacheHitRatio
is the percentage of block cache hit count on the total request count, while
blockCacheHitCachingRatio only includes the requests where cache was turned on.
We can increase blockCacheHitCachingRatio by disabling block cache for some scans.

There's more...
We changed the hbase.client.scanner.caching property to 500 in hbase-site.
xml in the previous section. All client sessions on that node will inherit this default caching
row number after the change. However, you can also specify a per-scan basis caching rows
by using the HBase client Scan API. The following code sets the scanner to fetch 1000 rows
when next() is called:

Scan scan = new Scan();
// your scan filtering code
scan.setCaching(1000);

Chapter 9

299

See also
ff Client-side tuning for low latency systems

Tuning block size to improve seek
performance

HBase data are stored as StoreFile in the HFile format. StoreFiles are composed of HFile
blocks. HFile block is the smallest unit of data that HBase reads from its StoreFiles. It is also
the basic element that region server caches in the block cache.

The size of the HFile block is an important tuning parameter. To achieve better performance,
we should select different block sizes, based on the average Key/Value size and disk I/O
speed. Like block cache and Bloom Filter, HFile block size is also configurable at the column
family level.

We will describe how to show the average Key/Value size and tune block size to improve seek
performance in this recipe.

Getting ready
Log in to your HBase client node.

How to do it...
The following steps need to be carried out to tune block size to improve seek performance:

1.	 Use the following command to show the average Key/Value size in a HFile. Change
the file path to fit your environment. HFiles for a particular column family are stored
under ${hbase.rootdir}/table_name/region_name/column_family_name
on HDFS.
$ $HBASE_HOME/bin/hbase org.apache.hadoop.hbase.io.hfile.
HFile -m -f /hbase/hly_temp/0d1604971684462a2860d43e2715558d
/n/1742023046455748097

Block index size as per heapsize: 12240
reader=/hbase/hly_temp/0d1604971684462a2860d43e2715558d
/n/1742023046455748097, compression=lzo, inMemory=false,
firstKey=USW000128350706/n:v01/1323026325955/Put,
lastKey=USW000138830522/n:v24/1323026325955/Put, avgKeyLen=31,
avgValueLen=4, entries=288024, length=2379789
fileinfoOffset=2371102, dataIndexOffset=2371361,
dataIndexCount=190, metaIndexOffset=0, metaIndexCount=0,
totalBytes=12387203, entryCount=288024, version=1
Fileinfo:

Advanced Configurations and Tuning

300

MAJOR_COMPACTION_KEY = \x00
MAX_SEQ_ID_KEY = 96573
TIMERANGE = 1323026325955....1323026325955
hfile.AVG_KEY_LEN = 31
hfile.AVG_VALUE_LEN = 4
hfile.COMPARATOR = org.apache.hadoop.hbase.KeyValue$KeyComparator
hfile.LASTKEY = \x00\x0FUSW000138830522\x01nv24\x00\x00\x014\x0A\
x83\xA1\xC3\x04
Could not get bloom data from meta block

2.	 Start HBase Shell:
$ $HBASE_HOME/bin/hbase shell

3.	 Set block size for a particular column family via HBase Shell:
hbase> create 'hly_temp', {NAME => 'n', BLOCKSIZE => '16384'}

0 row(s) in 1.0530 seconds

4.	 Show the properties of the table created previously:
hbase> describe 'hly_temp'

DESCRIPTION
ENABLED
 {NAME => 'hly_temp', FAMILIES => [{NAME => 'n', BLOOMFILTER =>
'NONE', REPLICATION_SCOPE => '0', VERSIONS => '3', true
 COMPRESSION => 'NONE', MIN_VERSIONS => '0', TTL => '2147483647',
BLOCKSIZE => '16384', IN_MEMORY => 'false', BLOC
 KCACHE => 'true'}]}

1 row(s) in 0.0330 seconds

How it works...
First of all, we want to know the average Key/Value size of a particular column family. We
invoked the HFile tool (org.apache.hadoop.hbase.io.hfile.HFile class) in step 1
to show the metadata of an HFile. As described in recipe HFile tool, view textualized HFile
content in Chapter 3, with -m option, we can get metadata, including average Key/Value size,
of an HFile file using this tool. In step 1, we passed the -f option and the file path to show
a single HFile's metadata. If your table has only one column family, you can also use the -r
option and a region name to show metadata of each HFile that belongs to that region. With this
information, we are able to get the approximate average Key/Value size of a column family.

Chapter 9

301

As you can see from the output of step 1, the average Key/Value size of the HFile is very small
(35 bytes). For this case the average Key/Value size is very small (for example, 100 bytes); we
should use small blocks (for example, 16KB) to avoid too many Key/Value pairs being stored
in each block, which will increase the latency of in-block seek because the seeking operation
always finds the key from the first Key/Value pair in sequence within a block.

We demonstrated how to configure a column family's block size via HBase Shell from step 2
to step 4. We created a hly_temp table, with a single column family 'n', and specified the
column family's block size to 16384 bytes (16KB) in step 3. This is much smaller than the
64KB default block size.

Here we chose smaller block sizes for faster random access at the expense of larger block
indices (more memory consumption). On the other hand, if average Key/Value is large, or slow
disks cause bottlenecks, we should select a larger block size, so that a single disk I/O can
fetch more data.

There's more...
You can also change block size for an existing column family by using the alter command
from HBase Shell. This will be applied when creating new StoreFiles.

See also
ff HFile tool, view textualized HFile content in Chapter 3

Enabling Bloom Filter to improve the overall
throughput

HBase supports Bloom Filter to improve the overall throughput of the cluster. A HBase Bloom
Filter is a space-efficient mechanism to test whether a StoreFile contains a specific row or
row-col cell. Here are the details of Bloom Filter: http://en.wikipedia.org/wiki/
Bloom_filter.

Without Bloom Filter, the only way to decide if a row key is contained in a StoreFile is to check
the StoreFile's block index, which stores the start row key of each block in the StoreFile. It is
very likely that the row key we are finding will drop in between two block start keys; if it does
then HBase has to load the block and scan from the block's start key to figure out if that row
key actually exists.

Advanced Configurations and Tuning

302

The problem here is that there will be a number of StoreFiles that exist before a major
compaction aggregates them into a single one. Thus several StoreFiles may have some cells
of the requested row key.

Think about the following example; it is an image showing how HBase stores data, block
indices, and Bloom Filters in StoreFile:

StoreFile 2

row-A

row-K

row-C

row-N

StoreFile 3

row-E

StoreFile 4

StoreFile 1

row-A

row-D

row-F

row-H

...
Leaf Block

Index

Bloom

row-Z

...
Leaf Block

Index

Bloom

Meta
Root Index

etc.

...

...

Meta
Root Index

etc.
Meta

Root Index
etc.

...

Leaf Block
Index

Bloom

...

row-F

Meta
Root Index

etc.

...

Leaf Block
Index

Bloom

...

row-F

row-P

Meta
Root Index

etc.

...

Leaf Block
Index

Bloom

...

row-F

HStore

Flush

MemStore

A single column family has four StoreFiles, which are created by MemStore flushes. The
StoreFiles have similar spreads in row keys. Some row keys (for example, row-D) are localized
to a few StoreFiles, while some (for example, row-F) are spread among many StoreFiles.
Although only StoreFile 1 actually contains row-D, HBase also needs to load the first data
block from StoreFiles 2 and 3 to figure out whether the block contains cells of row-D,
because row-D drops in between the first data block. It would be better if there was a
mechanism to tell HBase to skip loading StoreFiles 2 and 3.

This is a situation where Bloom Filter helps. Bloom Filter is used to reduce these unnecessary
disk I/O, and thus improve the overall throughput of the cluster.

In this recipe, we will describe how to enable Bloom Filter for a column family, and tips to
leverage HBase Bloom Filter to improve the overall throughput.

Chapter 9

303

Getting ready
Log in to your HBase client node.

How to do it...
The following steps need to be carried out to enable Bloom Filter for a column family:

1.	 Start HBase Shell:
$ $HBASE_HOME/bin/hbase shell

HBase Shell; enter 'help<RETURN>' for list of supported commands.

Type "exit<RETURN>" to leave the HBase Shell

Version 0.92.0, r1231986, Tue Jan 17 02:30:24 UTC 2012

hbase(main):001:0>

2.	 Execute the following to create a table with three column families:
hbase> create 'table2', {NAME => 'f1'}, {NAME => 'f2', BLOOMFILTER
=> 'ROW'}, {NAME => 'f3', BLOOMFILTER => 'ROWCOL'}

0 row(s) in 1.0690 seconds

3.	 Show the properties of the table created previously:
hbase> describe 'table2'

DESCRIPTION
ENABLED
 {NAME => 'table2', FAMILIES => [{NAME => 'f1', BLOOMFILTER => 'NONE',
REPLICATION_SCOPE => '0', VERSIONS => '3', true
 COMPRESSION => 'NONE', MIN_VERSIONS => '0', TTL => '2147483647',
BLOCKSIZE => '65536', IN_MEMORY => 'false', BLOC
 KCACHE => 'true'}, {NAME => 'f2', BLOOMFILTER => 'ROW', REPLICATION_
SCOPE => '0', VERSIONS => '3', COMPRESSION =>
 'NONE', MIN_VERSIONS => '0', TTL => '2147483647', BLOCKSIZE =>
'65536', IN_MEMORY => 'false', BLOCKCACHE => 'true'}, {NAME => 'f3',
BLOOMFILTER => 'ROWCOL', REPLICATION_SCOPE => '0', VERSIONS => '3',
COMPRESSION => 'NONE', MI
 N_VERSIONS => '0', TTL => '2147483647', BLOCKSIZE => '65536', IN_
MEMORY => 'false', BLOCKCACHE => 'true'}]}
1 row(s) in 0.0360 seconds

Advanced Configurations and Tuning

304

How it works...
We created a table (table2) with three column families, f1, f2, and f3. For family f1, we
didn't specify any properties, so all its properties were set to default. As shown in step 3, its
Bloom Filter is disabled (BLOOMFILTER => 'NONE'). We specified row level Bloom Filter for
f2 (BLOOMFILTER => 'ROW'), and row + column level Bloom Filter for f3 (BLOOMFILTER
=> 'ROWCOL').

If Bloom Filter is enabled, HBase will add Bloom Filter along with data blocks when creating a
StoreFile. Bloom Filter is used to let HBase efficiently figure out whether a StoreFile contains
a specific row or cell, without actually loading the file and scanning the block. Bloom Filter can
be False Positives, which means a query returns a row is contained in a file but it
is actually not. But False Negatives are not allowed for Bloom Filter, thus when a query returns
a row is not in a file, the row will be definitely not in the file.

Normally, the error rate is 0.01 (configured by the io.storefile.bloom.error.rate
setting), thus there is a 1% possibility that Bloom Filter will report that a StoreFile contains a
row, but it is not true. Reducing the error rate requires more space to store Bloom Filter.

By default, Bloom Filter is disabled, which means HBase will not store Bloom Filter when
creating StoreFiles. It is configurable at column family basis, to enable a row level or row
+ column level Bloom Filter. A row level Bloom Filter is used to test whether a row key is
contained in a StoreFile, while a row + column Bloom Filter can tell HBase whether a StoreFile
contains a specific cell. Row + column level Bloom Filter takes more disk space because cell
entries are much bigger than row entries.

Even when Bloom Filter is enabled, you may not gain immediate performance on individual
get operations, as HBase reads data in parallel, and the latency is bound by disk I/O
speed. However, as the number of blocks loaded is greatly reduced, it improves the overall
throughput significantly, especially in heavy load clusters.

Another advantage is that using Bloom Filter could improve block cache ratio. With Bloom
Filter enabled, HBase can load fewer blocks to fetch the data that clients requested. Because
unnecessary blocks are not loaded, blocks containing the data that clients actually request,
have more chance to remain in the block cache. This improves read performance for the
entire cluster.

The downside is, every entry in Bloom Filter uses about one byte storage. If you have small
cells (for example, 20 bytes including the overhead of Key/Value information), then the Bloom
Filter will be 1/20 of your file. On the other hand, if your average cell size is 1 KB, the Bloom
Filter is about 1/1000 of your file in size. Assuming the StoreFile is 1 GB, then the filter needs
only 1 MB on storage. Therefore, we would recommend you to disable Bloom Filter for small
cell column families, and always enable it for medium or large cell families.

Chapter 9

305

As we mentioned above, HBase supports row level and row + column level Bloom Filters.
Which one to use, depends on your data access pattern. Returning to our example HStore,
only a few StoreFiles hold row-D. This happens when cells of row-D are batch updated. If
most of your cells in a row are updated together, row level filter is better. By contrast, like
row-F in our example, if updates spread across many StoreFiles, and most StoreFiles contain
parts of the row, then a row + column filter is recommended, as it is able to identify which
StoreFile contains the exact parts of a row you requested.However, you also need to consider
your data read pattern. It is obvious that row + column filter makes no sense if you always
request the entire row. For example, to load the entire row-F, a region server will need to load
all four StoreFiles anyway. When your read pattern is to load only a few columns of a row, for
example, just the columns of row-F in StoreFile 4, then the row + column filter is useful, as
the region server will skip loading the other StoreFiles.

Note that HFile version 1, which is the default HFile format for releases
prior to HBase 0.92, has a maximum number of elements a Bloom
Filter can hold. This number is controlled by the io.storefile.
bloom.max.keys property, and the default is 128M keys. If you
have too many cells in your StoreFile, you might exceed this number.
You will need to use a row level filter in order to reduce the key number
in the Bloom Filter.

Bloom Filter is an efficient way to improve the overall performance of your cluster. The
row level Bloom Filter works well for many cases; you should try it as your first choice, and
consider the row + column Bloom Filter only when the row level filter does not fit your usage.

There's more...
You can also change the Bloom Filter property for existing tables' column families with the
alter command via HBase Shell. It will be applied to StoreFiles created after the change.

Index
Symbols
<collector> 258
-Dimporttsv.columns parameter 58
<ending occupancy1> 258
<ending occupancy3> 258
--endtime option 118
--families option 118
-gcutil option 223
.META. table 246
--new.name option 118
<pause time1> 258
<pause time3> 258
-randkey option 210
-ROOT- table 246
<starting occupancy1> 258
<starting occupancy3> 258
--starttime option 118
[Time:] 258
<timestamp> 258
-XX:CMSInitiatingOccupancyFraction JVM flag

259
-XX:MaxNewSize JVM flag 259
-XX:NewSize JVM flag 259
-XX:ParallelGCThreads JVM flag 259

A
Access 13
addprinc command 210
alter command 76
Amazon EC2

about 12
checklist 13
setting up 13-17
working 17

Amazon Elastic Compute Cloud. See Amazon
EC2

Amazon Machine Image (AMI) 9
Amazon Simple Storage Service (Amazon S3)

8
Amazon Web Service (AWS) 13
Apache ZooKeeper 8

B
balancer command 84
balance_switch command 83
Bigtop 197
block cache

configuring, for column families 292, 293
block cache size

increasing, on read-heavy clusters 295, 296
block size

tuning 299-301
Bloom Filter

enabling 301, 302
working 304, 305

bulk load tool
used, for importing data from TSV files 54-58

C
check_command option 168
check_hbase plugin

installing 170
check_hbase script

creating 170, 171
working 173

checklist, Amazon EC2
Access 13
EC2 key pairs 13

308

Environment variable settings 13
X.509 certificates 13

check_log_hmaster command 168
check_tcp plugin 157
Chef cookbook

URL 197
client side scanner setting

configuring 297, 298
client-side tuning, for low latency systems

289-291
close_region command 100
cluster-deploy.sh script 196
cluster-jps.sh script 193
cluster replication

about 110, 132
enabling 133-135
working 135, 137

Cluster Resource Manager (CRM) 34
ClusterSSH tool 218, 219
CMS GC

steps 258
compact command 83
compactions

managing 263-265
working 265

completebulkload tool 59
compression

using 260, 261
working 262

Concurrent-Mark-Sweep GC (CMS) 256
connectDB() method 51
connectHBase() method 51
CopyTable utility

about 110
used, for copying data of table to another one

115-117
working 118

count command 78, 88
create command 75
createSubmittableJob() 63
csshx 219
customized MapReduce job

running 63
used, for importing data 59-62
working 63

D
data

importing, from MySQL via single client 48-53
importing, from TSV files 54-56

Data Definition Language commands. See
DDL commands

data locality 27
Data Manipulation Language (DML) group 78
data migration

about 47
custom MapReduce job, writing for importing

data 59-62
data, importing from MySQL via single client

48-53
data, importing from TSV files using the bulk

load tool 54-58
regions, precreating 66-69

Date class 86
DDL commands

about 75
alter command 76
create command 75
describe command 76
disable command 76
enable command 76
help command 77
list command 76
used, for managing HBase tables 75, 76
working 76

Debian 6.0.1 9
Debian AMI 14
deleteall command 79
delete command 79
describe command 76
dfs.datanode.max.xcievers setting 33, 224
dfs.replication setting 229
dfs.support.append property 31
disable command 76
disks

mounting, with noatime and nodiratime 252-
254

disk utilization, HBase tables
displaying 140-142

distcp
about 111
used, for full shutdown backup 111

309

Distributed Log Splitting 95
DML commands

count command 78
deleteall command 79
delete command 79
get command 79
get_counter command 80
incr command 79
put command 78
scan command 79
truncate command 80
used, for accessing data 78-80
working 80, 81

E
EBS-backed AMI 14
EC2 key pairs 13
Elastic IP (EIP) 34
enable command 76
Environment variable settings 13
Export utility

about 110, 119
used, for exporting table to HDFS 119, 120
working 121, 122

F
FileSplitAlgorithm Java class 281
fixing feature, HBase hbck

demonstrating 100
fsck command 98
full shutdown backup, HBase

data, restoring 113
distcp, used 111
performing, distcp used 112, 113
working 114

Fully Qualified Domain Name (FQDN) 14, 204

G
Ganglia

about 149
setting up, for monitoring HBase cluster 142-

146
working 147

Ganglia Meta Daemon. See Gmetad

Ganglia Monitoring Daemon. See Gmond
get command 79
get_counter command 80
getEdit().size() method 177
Gmetad

about 142
setting up 144

Gmond
about 142
setting up 143

graceful node decommissioning feature
supporting 183
working 185, 186

graceful_stop.sh script 185
GZip 260

H
Hadoop

about 8
making rack-aware, network topology script

used 249-252
setting up 18-22
setting up, for spreading disk I/O 247, 248
working 22

Hadoop configurations 31, 32
Hadoop Distributed File System (HDFS) 8
hadoop fsck 218
hadoop fs -copyFromLocal command 57
Hadoop/HBase logs

checking, Nagios used 165-168
hadoop jar command 57, 118, 177
hadoop-lzo library 260
Hadoop MapReduce 18
Hadoop metrics

Hadoop RPC metrics 149
HDFS metrics 149
JVM metrics 149
MapReduce metrics 149

hadoop-metrics.properties configuration file
147

HBase
administration tools 71
backing up 109
block cache, configuring 292, 293
block cache size, increasing 295, 296

310

block size, tuning 299, 300
Bloom Filter, enabling 301-305
client side scanner setting, configuring 297,

298
client-side tuning 289-291
data migration 47
diagnosing 140
full shutdown backup 110
graceful node decommissioning feature 183
Hadoop, setting up 18-22
HBase hbck 98
HFile tool 96
Hive 101
kernel settings, changing 25
live cluster backup 110
maintenance 179
maintenance and security 179
memory size, tuning 288, 289
modes 9
monitoring 139
NameNode metadata, backing up 125
NameNode metadata, restoring 126-128
performance tuning 245
region server handler count, tuning 278, 279
regions, precreating 280-283
region starting keys, backing up 130, 131
region starting keys, restoring 132
row counter 88, 89
security 180
setting up 27, 29
troubleshooting 217, 218
update blocking, avoiding 285, 287
WAL tool 91
working 30, 31
ZooKeeper, setting up 22-24

HBase API packages 88
HBase client 246
HBase cluster

about 8
benchmarking, with YCSB 270-274
monitoring, Ganglia used 142-146
nodes, adding 186-188
rolling restart 190-192
status, reporting 170-172

HBase clusters
data, replicating 133, 134

HBase cluster structure
diagrammatic representation 8

HBase configurations 31, 32
HBase data

restoring, by importing dump files from HDFS
122, 123

hbase hbck 218
HBase hbck

about 98
fixing feature 100
used, for checking inconsistencies 99, 100
working 101

hbase.hregion.majorcompaction property
265

hbase.hregion.max.filesize property 267
hbase.hregion.memstore.block.multiplier

property 286
hbase.hstore.blockingStoreFiles property

286
HBase ignores HDFS client configuration

issue
troubleshooting 229

HBase JVM heap settings
tuning 256-259

HBase master node 246
HBase Master web UI

about 72
working 73-75

HBASE_OPTS variable 259
HBase processes

managing, simple script used 193-195
monitoring, Nagios used 157-162

HBase Put API
about 47
used, for importing data from MySQL 49-53

HBase Put APIHadoop Distributed File System
(HDFS) 48

hbase.regionserver.codecs setting 262
HBASE_REGIONSERVER_OPTS variable 259
HBase region splitting

diagrammatic representation 265
hbase.rootdir directory 114
HBase RPC DEBUG-level logging

enabling 180-183
HBase run modes

distributed mode 9
standalone mode 9

311

HBase security
configuring 212-214
working 214, 215

HBase security configuration 211
HBase Shell

about 75
Java methods, executing from 86
used, for accessing data 78, 79
used, for managing cluster 81-83
used, for managing tables 75, 76

hbase shell command 76
HBase startup error

troubleshooting 235-242
HBase table

disk utilization, showing 140, 141
exporting, to HDFS 119, 120

hbase.table.name property 108
hbck command 98
HDFS security

configuring, with Kerberos 203-209
working 210

Heartbeat 34
help command 77
HFile files

generating, in MapReduce 63-65
HFileOutputFormat class 59, 60
HFile tool

about 96
features 96
used, for viewing textualized content 96, 97
working 98

Hive
about 102
installing 103-106
running, over HBase 103-106
working 107, 108

Hive Command Line Interface (CLI) 105
HiveQL (HQL) 102
Hive Query Language (HQL) 72
HMaster 8
hot spot region issue

about 174
diagnosing 174-176
hot read 174
hot write 174

HRegionServer 18

I
import command 87
importtsv tool

about 54
working 57, 58

Import utility
about 110, 122
used, for restoring HBase data 122, 123
working 124

incr command 79
init() method 177
IPaddr resource agent 36

J
Java APIs, HBase

URL 88
Java Cryptography Extension (JCE) 205, 210
Java GC settings

tuning 256-259
Java methods, HBase Shell

executing 86
working 87

Java Virtual Machine Garbage Collection (JVM
GC) 245

Java Virtual Machine (JVM) 86, 142
JBOD (Just a Bunch Of Disks) 247
jmap 218, 220
jmap -heap <PID> command 223
JobTracker 18
job.waitForCompletion() 63
jps 218, 220
jps command 114
jstat 218, 222
JVM Garbage Collection (GC) settings 256

K
kadmin.local console 200
kdestroy command 202
Kerberos

about 198
used, for configuring HDFS security 203

Kerberos authentication service 197
Kerberos Key Distribution Center (KDC) 203,

212

312

kernel settings
changing 25, 26
working 26

Key Distribution Center (KDC) 198
keytab 210
klist command 202

L
list command 76
LZO 260
LZO compression

using 260

M
main() method 51, 177
maintenance and security, HBase

about 179
graceful node decommissioning 183
HBase RPC DEBUG-level logging, enabling

180-182
HBase security configuration 211
HDFS security, configuring with Kerberos 203-

208
Kerberos authentication service 198-200
nodes, adding to cluster 186, 187
rolling restart 189, 191
simple script, creating for deployment process

195, 196
simple script, creating for managing HBase

processes 193, 194
major_compact command 83, 265
mapred.output.compression.codec property

121
mapred.output.compression.type property

121
mapred.output.compress property 121
MapReduce

configurations 65
HFile files, generating 63, 65

maxClientCnxns setting 231
maxSessionTimeout option 235
memory size,for MemStores

tuning 288, 289
MemStores

memory size, tuning 288, 289
metadata corruption 110

meta_data() function 36
MIT Kerberos

about 198
configuring 199
installation, testing 200
installing 198, 199
restarting 200
working 201

move command 84
multiple High Availability (HA) masters

DataNode, starting 42
HBase cluster, starting 42
HBase master, backing up 42
Heartbeat and Pacemaker, configuring 35
Heartbeat and Pacemaker, installing 35
highly available NameNode, configuring 40,

42
NameNode resource agent, creating 36-40
NameNode resource agent, installing 36-40
setting up 33, 34
working 43

Multiversion Concurrency Control (MVCC)
architecture 287

MySQL
data, importing from via single client 48-53

N
Nagios

about 157
configuring 159-161
installing 158
settings, testing 162
setting up 157, 158
used, for checking Hadoop/HBase logs 165-

167
working 163

Nagios NRPE plugin
used 170

NameNode 18 8, 34
NameNode metadata

backing up 125, 126
protecting 125
restoring 126-128
working 128, 129

namenode_start() function 37
namenode_status() function 38

313

namenode_stop() function 38
namenode_validateAll() function 39
National Oceanic and Atmospheric

Administration (NOAA) 49
Network Time Protocol (NTP) 25
network topology script

used, for making Hadoop rack-aware 249-
252

next() method 297
noatime and nodiratime

disks, mounting with 252
nodes

adding, to cluster 186, 187
nproc setting 25

O
Old Generation (or Tenured) generation 257
Open Clustering Framework (OCF) resource

agent file 36
OpenTSDB

about 149
homepage 149
setting up 149-153
using 149
working 156

OutOfMemoryError error 25

P
performance 245
performance tuning, HBase

about 245
compactions, managing 263, 264
compression, used 260
disks, mounting with noatime and nodiratime

252-254
Hadoop, setting up to spread disk I/O 247-

249
HBase JVM heap settings, tuning 256-259
Java GC settings, tuning 256-259
Rack Awareness 249, 251, 252
region split, managing 265-267
vm.swappiness parameter, tuning 254, 255

Perm (or Permanent) generation 257
plugins 157
PrefixFilter class 87
principal 202

printWriteDiagnosis() method 177
process ID (PID) 195
ps 218, 219
Puppet recipe

URL 197
put command 78

R
Rack Awareness 249-252
Rackspace 13
regions

precreating 66-69
precreating, custom algorithm used 280-284

RegionServer 8
region server handler count

increasing 278, 279
region servers 246
region split

managing 265, 266
working 267

RegionSplitter class 67
RegionSplitter utility

about 280
parameters 284

region starting keys
backing up 130, 131
restoring 132
working 132

rolling restart 189
rolling-restart-rs.sh script 192
round-robin database tool. See RRDtool
RowCounter

using 88
working 89, 90

RRDtool 142
rsync command 197

S
scan command 79
SecondaryNameNode component 129
security and maintenance, HBase. See

maintenance and security, HBase
simple script

creating, for deployment process 195, 197
creating, for managing HBase processes 193-

195

314

Single Point Of Failure (SPOF) 8
SplitAlgorithm interface 284
split command 83, 267
split() method 281
standalone HBase

setting up 9-11
working 12

standalone mode, HBase 9
standalone ZooKeeper installation 23
status, HBase cluster

monitoring 170-173
StoreFiles 263

T
TableMapReduceUtil.initTableReducerJob()

63
TableOutputFormat 59, 60, 63
TaskTracker 18
Tcollector

about 149
setting up 154

Ticket Granting Ticket (TGT) 202
Time Series Daemon (TSD) 149
Time Series Database (TSDB) 149
time to live (TTL) settings 147
tools group commands

about 81
balancer command 84
balance_switch command 83
compact command 83
features 82
flush command 82
major_compact command 83
move command 84
split command 83
used, for managing cluster 82, 83
working 84, 85

too many open files error
troubleshooting 225, 226

toString() method 87
troubleshooting, HBase

about 217, 218
HBase ignores HDFS client configuration

issue, handling 229
HBase startup error, handling 235-242
too many open files error, handling 225, 226

troubleshooting tools 218
unable to create new native thread error,

handling 227
XceiverCount error, handling 223, 224
ZooKeeper client connection error, handling

230, 232
ZooKeeper session expired error, handling

232-235
troubleshooting tools

about 218
ClusterSSH tool 218
hadoop fsck 218
hbase hbck 218
jmap 218
jps 218
jstat 218
ps 218
working 222

truncate command 80
TSDash 157
TSD server

OpenTSDB, setting up 150, 151
TSV files

data, importing from 54-57

U
unable to create new native thread error

troubleshooting 227
update blocking

avoiding, on write-heavy clusters 285-287
update-ec2-hmaster-hosts.sh script 238, 241
update-ec2-hosts.sh script 237, 241

V
verifyrep command 136
Virtual IP (VIP) 34
vmstat command 234
vm.swappiness parameter

tuning 254, 255
working 255

W
WAL splitting 95
WAL tool

about 91

315

WAL logs, splitting and dumping manually 91,
92

working 93-95
Write-Ahead-Log (WAL) 32, 72, 174
WriteDiagnosis.java

creating 174-177
working 177

X
X.509 certificates 13
XceiverCount error

troubleshooting 223, 224

Y
YCSB

about 271
installing 271
working 274, 276

Young Generation 257

Z
Znode 24
ZooKeeper

about 133
setting up 22, 23
working 24

ZooKeeper client connection error
troubleshooting 230, 232

ZooKeeper cluster
about 246
several components 246
structure 246

ZooKeeper configurations 31, 32
ZooKeeper quorum nodes

logging into 231
ZooKeeper session expired error

troubleshooting 232-235

Thank you for buying

HBase Administration Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

PostgreSQL 9 Administration
Cookbook
ISBN: 978-1-849510-28-8 Paperback: 360 pages

Solve real-world PostgreSQL problems with over 100
simple yet incredibly effective recipes

1.	 Administer and maintain a healthy database

2.	 Monitor your database ensuring that it performs
as quickly as possible

3.	 Tips for backup and recovery of your database

MySQL Admin Cookbook
ISBN: 978-1-847197-96-2 Paperback: 376 pages

99 great recipes for mastering MySQL configuration and
administration

1.	 Set up MySQL to perform administrative tasks
such as efficiently managing data and database
schema, improving the performance of MySQL
servers, and managing user credentials

2.	 Deal with typical performance bottlenecks and
lock-contention problems

3.	 Restrict access sensibly and regain access to your
database in case of loss of administrative user
credentials

Please check www.PacktPub.com for information on our titles

PostgreSQL 9.0 High
Performance
ISBN: 978-1-849510-30-1 Paperback: 468 pages

Accelerate your PostgreSQL system and avoid the
common pitfals that can slow it down

1.	 Learn the right techniques to obtain optimal
PostgreSQL database performance, from initial
design to routine maintenance

2.	 Discover the techniques used to scale successful
database installations

3.	 Avoid the common pitfalls that can slow your
system down

Cassandra High Performance
Cookbook
ISBN: 978-1-849515-12-2 Paperback: 310 pages

Over 150 recipes to design and optimize large-scale
Apache Cassandra deployments

1.	 Get the best out of Cassandra using this efficient
recipe bank

2.	 Configure and tune Cassandra components to
enhance performance

3.	 Deploy Cassandra in various environments and
monitor its performance

4.	 Well illustrated, step-by-step recipes to make all
tasks look easy!

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
Setting Up
HBase Cluster
	Introduction
	Quick start
	Getting ready on Amazon EC2
	Setting up Hadoop
	Setting up ZooKeeper
	Changing the kernel settings
	Setting up HBase
	Basic Hadoop/ZooKeeper/HBase configurations
	Setting up multiple High Availability (HA) masters

	Chapter 2:
Data Migration
	Introduction
	Importing data from MySQL via single client
	Importing data from TSV files using the bulk load tool
	Writing your own MapReduce job to import data
	Precreating regions before moving data into HBase

	Chapter 3:
Using Administration Tools
	Introduction
	HBase Master web UI
	Using HBase Shell to manage tables
	Using HBase Shell to access data in HBase
	Using HBase Shell to manage the cluster
	Executing Java methods from HBase Shell
	Row counter
	WAL tool—manually splitting and dumping WALs
	HFile tool—viewing textualized HFile content
	HBase hbck—checking the consistency of an HBase cluster
	Hive on HBase—querying HBase using a SQL-like language

	Chapter 4:
Backing Up and Restoring HBase Data
	Introduction
	Full shutdown backup using distcp
	Using CopyTable to copy data from one table to another
	Exporting an HBase table to dump files on HDFS
	Restoring HBase data by importing dump files from HDFS
	Backing up NameNode metadata
	Backing up region starting keys
	Cluster replication

	Chapter 5:
Monitoring and Diagnosis
	Introduction
	Showing the disk utilization of HBase tables
	Setting up Ganglia to monitor an HBase cluster
	OpenTSDB—using HBase to monitor an HBase cluster
	Setting up Nagios to monitor HBase processes
	Using Nagios to check Hadoop/HBase logs
	Simple scripts to report the status of the cluster
	Hot region—write diagnosis

	Chapter 6:
Maintenance and Security
	Introduction
	Enabling HBase RPC DEBUG-level logging
	Graceful node decommissioning
	Adding nodes to the cluster
	Rolling restart
	Simple script for managing HBase processes
	Simple script for making deployment easier
	Kerberos authentication for Hadoop and HBase
	Configuring HDFS security with Kerberos
	HBase security configuration

	Chapter 7:
Troubleshooting
	Introduction
	Troubleshooting tools
	Handling the XceiverCount error
	Handling the "too many open files" error
	Handling the "unable to create new native thread" error
	Handling the "HBase ignores HDFS client configuration" issue
	Handling the ZooKeeper client connection error
	Handling the ZooKeeper session expired error
	Handling the HBase startup error on EC2

	Chapter 8:
Basic Performance Tuning
	Introduction
	Setting up Hadoop to spread disk I/O
	Using network topology script to make Hadoop rack-aware
	Mounting disks with noatime and nodiratime
	Setting vm.swappiness to 0 to avoid swap
	Java GC and HBase heap settings
	Using compression
	Managing compactions
	Managing a region split

	Chapter 9:
Advanced Configurations and Tuning
	Introduction
	Benchmarking HBase cluster with YCSB
	Increasing region server handler count
	Precreating regions using your own algorithm
	Avoiding update blocking on write-heavy clusters
	Tuning memory size for MemStores
	Client-side tuning for low latency systems
	Configuring block cache for column families
	Increasing block cache size on read-heavy clusters
	Client side scanner setting
	Tuning block size to improve seek performance
	Enabling Bloom Filter to improve the overall throughput

	Index

