
M A N N I N G

Christian Horsdal Gammelgaard

with examples in Nancy

www.allitebooks.com

http://www.allitebooks.org


What is a microservice?

In short, a microservice is a very narrowly focused service
that has the following characteristics:

 A microservice is responsible for a single piece of func-
tionality.

 A microservice is individually deployable.
 A microservice consists of one or more processes.
 A microservice owns its own data store.
 A small team can maintain a handful of microservices.
 A microservice is replaceable.

You can use these characteristics in two ways: to guide the
design and implementation of microservices, and to recog-
nize microservices when you see them.

 www.allitebooks.com

http://www.allitebooks.org


Microservices in .NET Core

 www.allitebooks.com

http://www.allitebooks.org


 www.allitebooks.com

http://www.allitebooks.org


 Microservices in .NET Core
WITH EXAMPLES IN NANCY

 CHRISTIAN HORSDAL GAMMELGAARD

M A N N I N G
SHELTER ISLAND

 www.allitebooks.com

http://www.allitebooks.org


For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity. 
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2017 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in 
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written 
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are 
claimed as trademarks. Where those designations appear in the book, and Manning 
Publications was aware of a trademark claim, the designations have been printed in initial caps 
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have 
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are 
printed on paper that is at least 15 percent recycled and processed without the use of elemental 
chlorine.

Manning Publications Co. Development editor: Dan Maharry
20 Baldwin Road Technical Development Editor: Michael Lund
PO Box 761 Project editors: Tiffany Taylor
Shelter Island, NY 11964 and Janet Vail

Copyeditor: Tiffany Taylor
Proofreaders: Katie Tennant

and Melody Dolab
Technical proofreader: Karsten Strøbaek

Typesetter: Gordan Salinovic
Cover designer: Marija Tudor

ISBN 9781617293375
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 22 21 20 19 18 17

 



v

brief contents
PART 1 GETTING STARTED WITH MICROSERVICES .......................1

1 ■ Microservices at a glance 3

2 ■ A basic shopping cart microservice 30

PART 2 BUILDING MICROSERVICES...........................................55

3 ■ Identifying and scoping microservices 57

4 ■ Microservice collaboration 79

5 ■ Data ownership and data storage 109

6 ■ Designing for robustness 134

7 ■ Writing tests for microservices 155

PART 3 HANDLING CROSS-CUTTING CONCERNS: BUILDING 
                 A REUSABLE MICROSERVICE PLATFORM ......................183

8 ■ Introducing OWIN: writing and testing OWIN 
middleware 185

9 ■ Cross-cutting concerns: monitoring and logging 199

 



BRIEF CONTENTSvi

10 ■ Securing microservice-to-microservice 
communication 223

11 ■ Building a reusable microservice platform 248

PART 4 BUILDING APPLICATIONS ...........................................271

12 ■ Creating applications over microservices 273

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



vii

contents
preface xiii
acknowledgments xiv
about this book xv
about the cover illustration xix

PART 1 GETTING STARTED WITH MICROSERVICES ..............1

1 Microservices at a glance 3
1.1 What is a microservice? 3

What is a microservices architecture? 5 ■ Microservice characteristics 5

1.2 Why microservices? 10
Enabling continuous delivery 11 ■ High level of 
maintainability 12 ■ Robust and scalable 13

1.3 Costs and downsides of microservices 13

1.4 Greenfield vs. brownfield 14

1.5 Code reuse 15

1.6 Serving a user request: an example of how microservices work 
in concert 16

Main handling of the user request 17 ■ Side effects of the user 
request 18 ■ The complete picture 19

 



CONTENTSviii

1.7 A .NET microservices technology stack 20
Nancy 20 ■ OWIN 21 ■ Setting up a development 
environment 22

1.8 A simple microservices example 23
Creating an empty ASP.NET Core application 24 ■ Adding 
Nancy to the project 24 ■ Adding a Nancy module with an 
implementation of the endpoint 25 ■ Adding OWIN 
middleware 27

1.9 Summary 28

2 A basic shopping cart microservice 30
2.1 Overview of the Shopping Cart microservice 31

Components of the Shopping Cart microservice 33

2.2 Implementing the Shopping Cart microservice 34
Creating an empty project 34 ■ The Shopping Cart microservice’s 
API for other services 35 ■ Fetching product information 42
Parsing the product response 44 ■ Adding a failure-handling 
policy 46 ■ Implementing a basic event feed 48

2.3 Running the code 52

2.4 Summary 52

PART 2 BUILDING MICROSERVICES..................................55

3 Identifying and scoping microservices 57
3.1 The primary driver for scoping microservices: 

business capabilities 58
What is a business capability? 58 ■ Identifying business 
capabilities 59 ■ Example: point-of-sale system 60

3.2 The secondary driver for scoping microservices: supporting 
technical capabilities 65

What is a technical capability? 65 ■ Examples of supporting 
technical capabilities 65 ■ Identifying technical capabilities 69

3.3 What to do when the correct scope isn’t clear 69
Starting a bit bigger 70 ■ Carving out new microservices from 
existing microservices 73 ■ Planning to carve out new 
microservices later 75

 



CONTENTS ix

3.4 Well-scoped microservices adhere to the microservice 
characteristics 75

Primarily scoping to business capabilities leads to good 
microservices 76 ■ Secondarily scoping to supporting technical 
capabilities leads to good microservices 76

3.5 Summary 77

4 Microservice collaboration 79
4.1 Types of collaboration: commands, queries, and events 80

Commands and queries: synchronous collaboration 82 ■ Events: 
asynchronous collaboration 85 ■ Data formats 87

4.2 Implementing collaboration 88
Setting up a project for Loyalty Program 89 ■ Implementing 
commands and queries 91 ■ Implementing commands with HTTP 
POST or PUT 91 ■ Implementing queries with HTTP GET 95
Data formats 96 ■ Implementing an event-based collaboration 98

4.3 Summary 107

5 Data ownership and data storage 109
5.1 Each microservice has a data store 110

5.2 Partitioning data between microservices 110
Rule 1: Ownership of data follows business capabilities 110 ■ Rule 
2: Replicate for speed and robustness 113 ■ Where does a 
microservice store its data? 116

5.3 Implementing data storage in a microservice 118
Storing data owned by a microservice 119 ■ Storing events raised 
by a microservice 122 ■ Setting cache headers in Nancy 
responses 129 ■ Reading and using cache headers 130

5.4 Summary 132

6 Designing for robustness 134
6.1 Expect failures 135

Keeping good logs 136 ■ Using correlation tokens 138 ■ Rolling 
forward vs. rolling back 138 ■ Don’t propagate failures 139

6.2 The client side’s responsibility for robustness 140
Robustness pattern: retry 142 ■ Robustness pattern: circuit 
breaker 144

 



CONTENTSx

6.3 Implementing robustness patterns 146
Implementing a fast-paced retry strategy with Polly 148 ■ Implementing 
a circuit breaker with Polly 149 ■ Implementing a slow-paced retry 
strategy 150 ■ Logging all unhandled exceptions 153

6.4 Summary 154

7 Writing tests for microservices 155
7.1 What and how to test 156

The test pyramid: what to test in a microservices system 156
System-level tests: testing a complete microservice system end-to-
end 157 ■ Service-level tests: testing a microservice from outside its 
process 158 ■ Unit-level tests: testing endpoints from within the 
process 161

7.2 Testing libraries: Nancy.Testing and xUnit 162
Meet Nancy.Testing 162 ■ Meet xUnit 163
xUnit and Nancy.Testing working together 163

7.3 Writing unit tests using Nancy.Testing 164
Setting up a unit-test project 165 ■ Using the Browser object to 
unit-test endpoints 167 ■ Using a configurable bootstrapper to 
inject mocks into endpoints 170

7.4 Writing service-level tests 173
Creating a service-level test project 175 ■ Creating mocked 
endpoints 175 ■ Starting all the processes of the microservice under 
test 177 ■ Executing the test scenario against the microservice 
under test 179

7.5 Summary 180

PART 3 HANDLING CROSS-CUTTING CONCERNS: BUILDING

A REUSABLE MICROSERVICE PLATFORM ..............183

8 Introducing OWIN: writing and testing OWIN middleware 185
8.1 Handling cross-cutting concerns 186

8.2 The OWIN pipeline 188
What belongs in OWIN, and what belongs in Nancy? 191

8.3 Writing middleware 192
Middleware as lambdas 193 ■ Middleware classes 194

8.4 Testing middleware and pipelines 195

8.5 Summary 198

 



CONTENTS xi

9 Cross-cutting concerns: monitoring and logging 199
9.1 Monitoring needs in microservices 200

9.2 Logging needs in microservices 203
Structured logging with Serilog 205

9.3 Implementing the monitoring middleware 206
Implementing the shallow monitoring endpoint 207 ■ Implementing 
the deep monitoring endpoint 208 ■ Adding the monitoring 
middleware to the OWIN pipeline 210

9.4 Implementing the logging middleware 212
Adding correlation tokens to all log messages 214 ■ Adding a 
correlation token to all outgoing HTTP requests 215 ■ Logging 
requests and request performance 219 ■ Configuring an OWIN 
pipeline with a correlation token and logging middleware 220

9.5 Summary 222

10 Securing microservice-to-microservice communication 223
10.1 Microservice security concerns 224

Authenticating users at the edge 225 ■ Authorizing users in 
microservices 226 ■ How much should microservices trust each 
other? 227

10.2 Implementing secure microservice-to-microservice 
communication 229

Meet IdentityServer 231 ■ Implementing authentication with 
IdentityServer middleware 237 ■ Implementing microservice-to-
microservice authorization with IdentityServer and middleware 239
Implementing user authorization in Nancy modules 242

10.3 Summary 246

11 Building a reusable microservice platform 248
11.1 Creating a new microservice should be quick and easy 249

11.2 Creating a reusable microservice platform 249

11.3 Packaging and sharing middleware with NuGet 251
Creating a package with logging and monitoring middleware 252
Creating a package with authorization middleware 259
Creating a package with rest client factory 262 ■ Automatically 
registering an HTTP client factory in Nancy’s container 265
Using the microservice platform 267

11.4 Summary 270

 



CONTENTSxii

PART 4 BUILDING APPLICATIONS ..................................271

12 Creating applications over microservices 273
12.1 End user applications for microservice systems: one or many 

applications? 274
General-purpose applications 274 ■ Specialized 
applications 275

12.2 Patterns for building applications over microservices 276
Composite applications: integrating at the frontend 276 ■ API 
gateway 279 ■ Backend for frontend (BFF) pattern 281 ■ When 
to use each pattern 282 ■ Client-side or server-side 
rendering? 283

12.3 Example: a shopping cart and product list 284
Creating an API gateway 287 ■ Creating the product list 
GUI 289 ■ Creating the shopping cart GUI 294 ■ Letting users 
add products to the shopping cart 297 ■ Letting users remove 
products from the shopping cart 299

12.4 Summary 300

appendix A Development environment setup 303
appendix B Deploying to production 308

Further reading 312

index 315
 

 



xiii

preface
When I first talked to Manning about writing a book, we discussed a book about Nancy.
Part of me was excited to write about Nancy again, because it’s an awesome web frame-
work, but my first book was about Nancy, and a different part of me wanted this book
to be something more. I felt that Nancy deserves not only to be explained and shown
off, but also to be put into a context that shows why Nancy is such a nice web framework
to work with. For me, the thing that makes Nancy so nice is that it’s so easy to work with.
It’s a framework that gets out of your way and lets you just write the stuff that you set out
to write. At the same time, it’s a powerful framework that grows along with your needs.
After some contemplation and some back-and-forth with Manning, it became clear that
the context I wanted to put Nancy into was microservices. Microservices allow for the
lightweight, fast way of working that I’ve come to appreciate over the years. They also
accentuate the need for lightweight, yet powerful technologies—just like Nancy. At this
point, the different ideas for what this book should be started to fall into place: I wanted
to write a book that was more about designing and implementing microservices than
about any specific technology, while at the same time showcasing some great, light-
weight .NET technologies. That’s the book you’re about to read, and I hope that you’ll
not only learn how to be successful with microservices, but also learn the value of care-
fully choosing libraries and frameworks that value simplicity, that get out of your way,
and that are a pleasure to work with.

 



xiv

acknowledgments
Writing a book takes time—a lot of time. So the first thank you is to my wife, Jane
Horsdal Gammelgaard, for supporting me all the way through. You’re awesome, Jane.

 I would like to thank my editor, Dan Maharry, who, through great suggestions, gen-
tle nudges, the occasional shove, and a relentless focus on creating a high-quality
product, pushed me to write a much better book than I would have otherwise. A big
thank you also goes to my technical editor, Michael Lund, for his thorough code
reviews and suggestions for improvements, and for ripping my line of reasoning apart
whenever it wasn’t clear. A special thanks to Karsten Strøbæk for his in-depth techni-
cal proofreading.

 I can’t thank enough the amazing group of technical peer reviewers: Andy Kirsch,
Brian Rasmussen, Cemre Mengu, Guy Matthew LaCrosse, James McGinn, Jeff Smith,
Jim McGinn, Matt R. Cole, Morten Herman Langkjær, Nestor Narvaez, Nick McGin-
ness, Ronnie Hegelund, Samuel Bosch, and Shahid Iqbal. They suggested topics and
other ways of presenting topics and caught typos and mistakes in code and terminol-
ogy. Each pass through the review process and each piece of feedback provided
through the forum discussions helped shape the book.

 Finally, I want to thank the people at Manning who made this book possible: pub-
lisher Marjan Bace, acquisitions editor Greg Wild, and everyone on the editorial and
production teams, including Tiffany Taylor, Katie Tennant, Melody Dolab, and Gor-
dan Salinovic.

 



xv

about this book
Microservices in .NET Core is a practical introduction to writing microservices in .NET
using lightweight and easy-to-use technologies, like the awesome Nancy web frame-
work and the powerful OWIN (Open Web Interface for .NET) middleware. I’ve tried
to present the material in a way that will enable you to use what you learn right away.
To that end, I’ve tried to tell you why I build things the way I do, as well as show you
exactly how to build them.

 The Nancy web framework, used throughout this book, was started by Andreas
Håkansson, who still leads the project. Andreas was soon joined by Steven Robbins,
and the two of them made Nancy great. Today Nancy is carried forward by Andreas,
Steven, the Nancy Minions (Kristian Hellang, Jonathan Channon, Damian Hickey,
Phillip Haydon, and myself), and the broader community. The full list of Nancy con-
tributors can be found at http://nancyfx.org/contribs.html.

 OWIN is an open standard for the interface between web servers and web applica-
tions. The work on OWIN was started in late 2010 by Ryan Riley, Benjamin van der
Veen, Mauricio Scheffer, and Scott Koon. Since then, a broad community has contrib-
uted to the OWIN standard specification—through a Google group in the early days,
and now through the OWIN GitHub repository (https://github.com/owin/owin)—
and to implementing OWIN.

Who should read this book
Microservices in .NET Core is a developers’ book first, but architects and others can ben-
efit from it, too. I wrote it keeping in mind .NET developers who want to get started

 

http://nancyfx.org/contribs.html
https://github.com/owin/owin


ABOUT THIS BOOKxvi

writing distributed server-side systems in general and microservices in particular,
which means that the focus is on what a developer needs to know and do to write the
code for a system of microservices. Working knowledge of C# and a bit of HTTP knowl-
edge is assumed.

How this book is organized
Microservices in .NET Core has 12 chapters spread across four parts:
Part 1 gives a quick introduction to microservices, answering what they are and why
they’re interesting. This part also introduces Nancy and OWIN, the main technologies
used throughout the book.

■ Chapter 1 introduces microservices—what they are and why they matter. It
introduces the six characteristics of microservices that I use to guide the design
and implementation of microservices. At the end of the chapter, we say hello to
Nancy and OWIN.

■ Chapter 2 is a comprehensive example of coding a microservice using Nancy
and OWIN, along with the Polly library and .NET Core. At the end of the chap-
ter, we have a complete, albeit simple, microservice.

Part 2 covers how to split a system into microservices and how to implement function-
ality in a system of microservices.

■ Chapter 3 covers how to identify microservices and decide what to put into each
microservice. This chapter is about the design of a system of microservices as a
whole.

■ Chapter 4 shows how to design and implement the collaboration between
microservices. This chapter discusses the different ways microservices can col-
laborate and shows how to implement those collaborations.

■ Chapter 5 discusses where data should be stored in a system of microservices
and how some of the data may be replicated across several microservices.

■ Chapter 6 explains and demonstrates the implementation of some important
techniques for making microservice systems robust.

■ Chapter 7 takes a thorough look at testing a microservice system, including test-
ing the complete system, testing each microservice, and testing the code inside
the microservices.

Part 3 shows how to speed up development of new microservices by building a solid
microservice platform tailored to the needs of your particular system. Such a platform
provides implementations of a bunch of important concerns that cut across the entire
system of microservices, such as logging, monitoring, and security. In this part you’ll
build such a platform and see how it’s used to create new microservices quickly.

■ Chapter 8 gives an in-depth introduction to OWIN, walks through building
OWIN middleware, and shows how OWIN middleware is well suited for han-
dling many crosscutting concerns.

 



ABOUT THIS BOOK xvii

■ Chapter 9 explains the importance of monitoring and logging in a microservice
system. Building on the OWIN knowledge from chapter 8, you’ll build OWIN
middleware implementing monitoring support and middleware that aids good
logging from your microservices.

■ Chapter 10 discusses security in a microservice system. The highly distributed
nature of a microservice system poses some security concerns that we discuss in
this chapter. I’ll also walk you through using OWIN middleware to implement
security features in your microservices.

■ Chapter 11 builds on top of chapters 9 and 10 to create a microservice plat-
form. The platform is built by taking the OWIN middleware from the previous
chapters and packaging it in NuGet packages ready to be shared across micros-
ervices. The chapter includes an example of creating a new microservice using
the platform.

Part 4 consists of chapter 12, which rounds off the book with some approaches to cre-
ating end-user applications for a microservices system. The chapter also shows how to
build a small application on top of some of the microservices from earlier chapters.

 Together, the 12 chapters will teach you how to design and code microservices
using a lightweight, no-nonsense, .NET-based technology stack.

Code conventions and downloads
Most chapters in this book have sample code. All of this can be found in the download
for this book on Manning’s site at https://www.manning.com/books/microservices-
in-net-core, or in the Git repository on GitHub found at https://github.com/hors-
dal/microservices-in-dotnetcore.

 The code is based on .NET Core, so to run it, you need to install .NET Core,
the dotnet command-line tool, and a suitable IDE. You can find information on how
to set these up in appendix A.

 Throughout the book, I use a number of third-party open source libraries, particu-
larly the Nancy web framework. .NET Core is a big shift from “traditional” .NET, so
existing libraries need to be ported and thoroughly tested before they can claim full
.NET Core support. At the time of writing .NET Core has just reached the 1.0.0 release,
so not all libraries have been tested on .NET Core. For this reason, the book uses pre-
release versions of libraries—Nancy, for instance, is used in a pre-release version of
Nancy 2.0. If, when you read the book, there are stable releases for .NET core of the
different libraries (for example, if the stable Nancy 2.0 is out), I recommend using
those as you code along with the examples.

 In the GitHub repository, at https://github.com/horsdal/microservices-in-dotnet-
core, the master branch contains the code as it appears in the book. As stable releases
of libraries for .NET Core come out, I plan to create a current branch and keep a copy
of the code there that I will keep mostly up-to-date with the latest versions of libraries
for a few years after publication of this book.

 

https://www.manning.com/books/microservices-in-net-core
https://www.manning.com/books/microservices-in-net-core
https://github.com/horsdal/microservices-in-dotnetcore
https://github.com/horsdal/microservices-in-dotnetcore
https://github.com/horsdal/microservices-in-dotnetcore
https://github.com/horsdal/microservices-in-dotnetcore


ABOUT THIS BOOKxviii

 This book contains many examples of source code, both in numbered listings and
inline with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; I’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

Author Online
Purchase of Microservices in .NET Core includes free access to a private web forum run
by Manning Publications where you can make comments about the book, ask techni-
cal questions, and receive help from the author and from other users. To access the
forum and subscribe to it, point your web browser to https://www.manning.com/
books/microservices-in-net-core. This page provides information on how to get on
the forum once you are registered, what kind of help is available, and the rules of con-
duct on the forum. It also provides links to the source code for the examples in the
book, errata, and other downloads.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the forum remains voluntary (and unpaid). We
suggest you try asking the author challenging questions lest his interest strays!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the author
Christian is an independent consultant with many years of experience building web
and distributed systems on .NET as well as other platforms. He is part of the Nancy
maintainer team and is a Microsoft MVP for .NET.

 

https://www.manning.com/books/microservices-in-net-core
https://www.manning.com/books/microservices-in-net-core


xix

about the cover illustration
The figure on the cover of Microservices in .NET Core is captioned “Emperor of China in
his Robes, in 1700.” The illustration is taken from publisher Thomas Jefferys’ A Collec-
tion of the Dresses of Different Nations, Ancient and Modern (four volumes), London, pub-
lished between 1757 and 1772. The title page states that these are hand-colored
copperplate engravings, heightened with gum arabic. Thomas Jefferys (1719–1771)
was called “Geographer to King George III.” He was an English cartographer who was
the leading map supplier of his day. He engraved and printed maps for government
and other official bodies and produced a wide range of commercial maps and atlases,
especially of North America. His work as a mapmaker sparked an interest in local
dress customs of the lands he surveyed and mapped, which are brilliantly displayed in
this collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenom-
ena in the late 18th century and collections such as this one were popular, introduc-
ing both the tourist as well as the armchair traveler to the inhabitants of other
countries. The diversity of the drawings in Jefferys’ volumes speaks vividly of the
uniqueness and individuality of the world’s nations some 200 years ago. Dress codes
have changed since then and the diversity by region and country, so rich at the time,
has faded away. It is now often hard to tell the inhabitant of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life. Or a more varied and interesting intellectual
and technical life.

 



ABOUT THE COVER ILLUSTRATIONxx

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Jeffreys’ pictures.

 



Part 1

Getting started
 with microservices

This first part explains what microservices are and why you should care. I’ll
begin by discussing six characteristics you can use to recognize and guide your
design of microservices. Along the way, we’ll look at the benefits and costs of
microservices.

 Toward the end of chapter 1, I’ll give you a whirlwind tour of the technology
stack used throughout the book; the stack consists of .NET Core, the Nancy web
framework, and OWIN. Chapter 2 moves on to an example of building your first
microservice. You’ll also see more of Nancy’s strengths.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



3

Microservices at a glance

In this chapter, I’ll explain what microservices are and demonstrate why they’re
interesting. We’ll also look at the six characteristics of a microservice. Finally, I’ll
introduce you to the two most important technologies we’ll use in this book: the
.NET-based Nancy web framework and the OWIN middleware pipeline.

1.1 What is a microservice?
A microservice is a service with one, and only one, very narrowly focused capability
that a remote API exposes to the rest of the system. For example, think of a system
for managing a warehouse. If you broke down its capabilities, you might come up
with the following list:

This chapter covers
 Understanding microservices and their core 

characteristics

 Examining the benefits and drawbacks of microservices

 An example of microservices working in concert to 
serve a user request

 Using the Nancy web framework for a simple application

 



4 CHAPTER 1 Microservices at a glance

 Receive stock arriving at the warehouse
 Determine where new stock should be stored
 Calculate placement routes inside the warehouse for putting stock into the

right storage units
 Assign placement routes to warehouse employees
 Receive orders
 Calculate pick routes in the warehouse for a set of orders
 Assign pick routes to warehouse employees

Let’s consider how the first of these capabilities—receive stock arriving at the ware-
house—would be implemented as a microservice. We’ll call it the Receive Stock microservice:

1 A request to receive and log new stock arrives over HTTP. This might come from
another microservice or perhaps from a web page that a foreman uses to regis-
ter stock arrivals. The Receive Stock microservice has to register the new stock
in its own data store.

2 A response is sent back from the Receive Stock microservice to acknowledge
that the stock has been received.

Figure 1.1 shows the Receive Stock microservice receiving a request from another col-
laborating microservice.

Each little capability in the system is implemented as an individual microservice. Every
microservice in a system

 Runs in its own separate process
 Can be deployed on its own, independently of the other microservices
 Has its own dedicated data store
 Collaborates with other microservices to complete its own action

It’s also important to note that microservices don’t need to be written in the same pro-
gramming language (C#, Java, Erlang, and so on) or for the same platform (IIS, Node,
NGINX, and so on) as ones they collaborate with. They just need to know how to com-
municate with each other. Some may communicate via a service bus or a binary proto-
col like Thrift, depending on system requirements; but by far the most common
scenario is for microservices to communicate over HTTP.

NOTE This book focuses on implementing microservices in .NET using C#
and the Nancy web framework. The microservices I’ll show you are small,
tightly focused Nancy applications that collaborate over HTTP.

Receive Stock
microservice

Another
microservice

Receive
stock

Store information
about stock in

data store
Stock data

store

Figure 1.1 The Receive Stock microservice exposes an API to be used when new stock arrives. 
Other microservices can call that API.

 



5What is a microservice?

1.1.1 What is a microservices architecture?

This book focuses on designing and implementing individual microservices, but it’s
worth noting that the term microservices can also be used to describe an architectural
style for an entire system consisting of many microservices. Microservices as an architec-
tural style is a lightweight form of service-oriented architecture (SOA) where the ser-
vices are tightly focused on doing one thing each and doing it well. A system with a
microservices architecture is a distributed system with a (probably large) number of
collaborating microservices.

 The microservices architectural style is quickly gaining in popularity for building
and maintaining complex server-side software systems, and understandably so: micro-
services offer a number of potential benefits over both more traditional, service-
oriented approaches and monolithic architectures. Microservices, when done well,
are malleable, scalable, and resilient, and they allow for a short lead time from the
start of implementation to deployment in production. This combination often proves
elusive for complex software systems. 

1.1.2 Microservice characteristics

I’ve said that a microservice is a service with a very narrowly focused capability, but what
exactly does that mean? Well, because the microservices technique is still emerging
(as of early 2016), there’s still no accepted definition in the industry of precisely what
a microservice is.1 We can, however, look at what generally characterizes a microser-
vice. I’ve found there to be six core microservice characteristics:

 A microservice is responsible for a single capability.
 A microservice is individually deployable.
 A microservice consists of one or more processes.
 A microservice owns its own data store.
 A small team can maintain a handful of microservices.
 A microservice is replaceable.

This list of characteristics should help you recognize a well-formed microservice when
you see one, and it will also help you scope and implement your own microservices. By
incorporating these characteristics, you’ll be on your way to getting the best from your
microservices and producing a malleable, scalable, and resilient system as a result.
Throughout this book, I’ll show how these characteristics should drive the design of
your microservices and how to write the code that a microservice needs to fulfill them.
Now, let’s look briefly at each characteristic in turn.

1 For further discussion of what characterizes microservices, I recommend this article on the subject: Martin
Fowler and James Lewis, “Microservices: A Definition of This New Architectural Term,” March 25, 2014,
http://martinfowler.com/articles/microservices.html.

 

http://martinfowler.com/articles/microservices.html


6 CHAPTER 1 Microservices at a glance

RESPONSIBLE FOR A SINGLE CAPABILITY

A microservice is responsible for one and only one capability in the overall system. We can
break this statement into two parts:

 A microservice has a single responsibility.
 That responsibility is for a capability.

The Single Responsibility Principle has been stated in several ways. One traditional
form is “A class should have only one reason to change.”2 Although this way of putting
it specifically mentions a class, the principle turns out to apply beyond the context of a
class in an object-oriented language. With microservices, we apply the Single Respon-
sibility Principle at the service level.

 A more current way of stating the Single Responsibility Principle, also from Uncle
Bob, is as follows: “Gather together the things that change for the same reasons. Sepa-
rate those things that change for different reasons.”3 This way of stating the principle
applies to microservices: a microservice should implement exactly one capability. That
way, the microservice will have to change only when there’s a change to that capability.
Furthermore, you should strive to have the microservice fully implement the capabil-
ity, so that only one microservice has to change when the capability is changed.

 There are two types of capabilities in a microservice system:

 A business capability is something the system does that contributes to the purpose
of the system, like keeping track of users’ shopping carts or calculating prices. A
good way to tease apart a system’s separate business capabilities is to use
domain-driven design.

 A technical capability is one that several other microservices need to use—inte-
gration to some third-party system, for instance. Technical capabilities aren’t
the main drivers for breaking down a system to microservices; they’re only iden-
tified when you find several business-capability microservices that need the
same technical capability.

NOTE Defining the scope and responsibility of a microservice is covered in
chapter 3. 

INDIVIDUALLY DEPLOYABLE

A microservice should be individually deployable. When you a change a microservice, you
should be able to deploy that changed microservice to the production environment
without deploying (or touching) any other part of your system. The other microservices
in the system should continue running and working during the deployment of the
changed microservice, and continue running once the new version is deployed.

 Consider an e-commerce site. When a change is made to the Shopping Cart micro-
service, you should be able to deploy just that microservice, as illustrated in figure 1.2.

2 Robert C. Martin, “SRP: The Single Responsibility Principle,” http://mng.bz/zQyz.
3 Robert C. Martin, “The Single Responsibility Principle,” May 8, 2014, http://mng.bz/RZgU.

 

http://mng.bz/zQyz
http://mng.bz/RZgU


7What is a microservice?

Meanwhile, the Price Calculation microservice, the Recommendation microservice,
the Product Catalog microservice, and others should continue working and serving
user requests.

 Being able to deploy each microservice individually is important because in a
microservice system, there are many microservices, and each one may collaborate with
several others. At the same time, development work is done on some or all of the
microservices in parallel. If you had to deploy all or groups of them in lockstep, man-
aging the deployments would quickly become unwieldy, typically resulting in infre-
quent and big, risky deployments. This is something you should definitely avoid.
Instead, you want to be able to deploy small changes to each microservice frequently,
resulting in small, low-risk deployments.

 To be able to deploy a single microservice while the rest of the system continues to
function, the build process must be set up with the following in mind:

 Each microservice must be built into separate artifacts or packages.
 The deployment process must also be set up to support deploying microservices

individually while other microservices continue running. For instance, you
might use a rolling deployment process where the microservice is deployed to
one server at a time, in order to reduce downtime.

The fact that you want to deploy microservices individually affects the way they inter-
act. Changes to a microservice’s interface usually must be backward compatible so
that other existing microservices can continue to collaborate with the new version the
same way they did with the old. Furthermore, the way microservices interact must be
robust in the sense that each microservice must expect other services to fail once in a
while and must continue working as best it can. One microservice failing—for
instance, due to downtime during deployment—must not result in other microser-
vices failing, only in reduced functionality or slightly longer processing time.

NOTE Microservice collaboration and robustness are covered in chapters 4, 5,
and 7. 

CONSISTS OF ONE OR MORE PROCESSES

A microservice must run in a separate process, or in separate processes, if it’s to
remain as independent as possible of other microservices in the same system. The
same is true if a microservice is to remain individually deployable. Breaking that
down, we have two points:

Price Calculation
microservice

Recommendations
microservice

Running

Product Catalog
microservice

Shopping Cart
microservice

RunningRunningDeploy

Figure 1.2 Other microservices continue to run while the Shopping Cart microservice is being deployed.

 



8 CHAPTER 1 Microservices at a glance

 Each microservice must run in separate processes from other microservices.
 Each microservice can have more than one process.

Consider a Shopping Cart microservice again. If it ran in the same process as a Prod-
uct Catalog microservice, as shown in figure 1.3, the Shopping Cart code might cause
a side effect in the Product Catalog. That would mean a tight, undesirable coupling
between the Shopping Cart microservice and the Product Catalog microservice; one
might cause downtime or bugs in the other.

Now consider deploying a new version of the Shopping Cart microservice. You’d
either have to redeploy the Product Catalog microservice too, or you’d need some
sort of dynamic code-loading capable of switching out the Shopping Cart code in the
running process. The first option goes directly against microservices being individu-
ally deployable. The second option is complex and at a minimum puts the Product
Catalog microservice at risk of going down due to a deployment to the Shopping Cart
microservice.

 Speaking of complexity, why should a microservice consist of more than one pro-
cess? You are, after all, trying make each microservice as simple as possible to handle.

 Let’s consider a Recommendation microservice. It implements and runs the algo-
rithms that drive recommendations for your e-commerce site. It also has a database
that stores the data needed to provide recommendations. The algorithms run in one
process, and the database runs in another. Often, a microservice needs two or more
processes so it can implement everything (such as data storage and background pro-
cessing) it needs in order to provide a capability to the system. 

OWNS ITS OWN DATA STORE

A microservice owns the data store where it stores the data it needs. This is another con-
sequence of a microservice’s scope being a complete capability. Most business capabil-
ities require some data storage. For instance, a Product Catalog microservice needs

Shopping Cart
microservice

Product Catalog
microservice

Process
boundary

Problematic process boundary.
Microservices should run in separate
processes to avoid coupling.

X

Shopping
Cart store

Product
Catalog store

Figure 1.3 Running more than one microservice within a process leads to high coupling.

 



9What is a microservice?

some information about each product to be stored. To keep Product Catalog loosely
coupled with other microservices, the data store containing the product information is
completely owned by the microservice. The Product Catalog microservice decides how
and when the product information is stored. As illustrated in figure 1.4, other micro-
services, such as Shopping Cart, can only access product information through the inter-
face to Product Catalog and never directly from the Product Catalog data store.

 The fact that each microservice owns its own data store makes it possible to use
different database technologies for different microservices depending on the needs
of each microservice. The Product Catalog microservice, for example, might use SQL
Server to store product information; the Shopping Cart microservice might store
each user’s shopping cart in Redis; and the Recommendations microservice might
use an Elasticsearch index to provide recommendations. The database technology
chosen for a microservice is part of the implementation and is hidden from the view
of other microservices.

 This approach allows each microservice to use whichever database is best suited for
the job, which can also lead to benefits in terms of development time, performance,
and scalability. The obvious downside is the need to administer, maintain, and work
with more than one database, if that’s how you choose to architect your system. Data-
bases tend to be complicated pieces of technology, and learning to use and run one
reliably in production isn’t free. When choosing a database for a microservice, you
need to consider this trade-off. But one benefit of a microservice owning its own data
store is that you can swap out one database for another later.

NOTE Data ownership, access, and storage are covered in chapter 5. 

Shopping Cart
microservice

Product Catalog
microservice

All communication with
the Product Catalog
microservice must go
through the public API.

Direct access to the Product
Catalog store is not allowed.
The Product Catalog microservice
owns the Product Catalog store.

X

Process
boundary

Process
boundary

Shopping
Cart store

Product
Catalog store

Figure 1.4 One microservice can’t access another’s data store.

 



10 CHAPTER 1 Microservices at a glance

MAINTAINABLE BY A SMALL TEAM

So far, I haven’t talked much about the size of a microservice, even though the micro
part of the term indicates that microservices are small. I don’t think it makes sense to
discuss the number of lines of code that a microservice should have, or the number of
requirements, use cases, or function points it should implement. All that depends on
the complexity of the capability provided by the microservice.

 What does make sense, though, is considering the amount of work involved in
maintaining a microservice. The following rule of thumb can guide you regarding the
size of microservices: a small team of people—five, perhaps—should be able to maintain at
least a handful of microservices. Here, maintaining a microservice means dealing with all
aspects of keeping it healthy and fit for use: developing new functionality, factoring
out new microservices from ones that have grown too big, running it in production,
monitoring it, testing it, fixing bugs, and everything else required. 

REPLACEABLE

For a microservice to be replaceable, it must be able to be rewritten from scratch within
a reasonable time frame. In other words, the team maintaining the microservice should be
able to replace the current implementation with a completely new implementation and do so
within the normal pace of their work. This characteristic is another constraint on the size
of a microservice: if a microservice grows too large, it will be expensive to replace; but
if it’s kept small, rewriting it is realistic.

 Why would a team decide to rewrite a microservice? Perhaps the code is a big jum-
ble and no longer easily maintainable. Perhaps it doesn’t perform well enough in pro-
duction. Neither is a desirable situation, but changes in requirements over time can
result in a codebase that it makes sense to replace rather than maintain. If the micro-
service is small enough to be rewritten within a reasonable time frame, it’s OK to end
up with one of these situations from time to time. The team does the rewrite based on
all the knowledge obtained from writing the existing implementation, keeping any
new requirements in mind.

 Now that you know the characteristics of microservices, let’s look at their benefits,
costs, and other considerations. 

1.2 Why microservices?
Building a system from microservices that adhere to the characteristics outlined in the
previous section has some appealing benefits: they’re malleable, scalable, and resil-
ient, and they allow a short lead time from start of implementation to deployment to
production. These benefits are realized because, when done well, microservices

 Enable continuous delivery
 Allow for an efficient developer workflow because they’re highly maintainable
 Are robust by design
 Can scale up or down independently of each other

Let’s talk more about these points.

 



11Why microservices?

1.2.1 Enabling continuous delivery

The microservices architectural style takes continuous delivery into account. It does so
by focusing on services that

 Can be developed and modified quickly
 Can be comprehensively tested by automated tests
 Can be deployed independently
 Can be operated efficiently

These properties enable continuous delivery, but this doesn’t mean continuous deliv-
ery follows from adopting a microservices architecture. The relationship is more com-
plex: practicing continuous delivery becomes easier with microservices than it
typically is with more traditional SOA. On the other hand, fully adopting microservices
is possible only if you’re able to deploy services efficiently and reliably. Continuous
delivery and microservices complement each other.

 The benefits of continuous delivery are well known. They include increased agility
on the business level, reliable releases, risk reduction, and improved product quality.

Continuous delivery goes hand in hand with microservices. Without the ability to
deploy individual microservices quickly and cheaply, implementing a system of
microservices will quickly become expensive. If microservice deployment isn’t auto-
mated, the amount of manual work involved in deploying a full system of microser-
vices will be overwhelming.

What is continuous delivery?
Continuous delivery is a development practice where the team ensures that the soft-
ware can always be deployed to production quickly at any time. Deploying to produc-
tion remains a business decision, but teams that practice continuous delivery prefer
to deploy to production often and to deploy newly developed software shortly after it
hits source control.

There are two main requirements for continuous delivery. First, the software must
always be in a fully functional state. To achieve that, the team needs a keen focus
on quality. This leads to a high degree of test automation and to developing in very
small increments. Second, the deployment process must be repeatable, reliable, and
fast in order to enable frequent production deployments. This part is achieved
through full automation of the deployment process and a high degree of insight into
the health of the production environment.

Although continuous delivery takes a good deal of technical skill, it’s much more a
question of process and culture. This level of quality, automation, and insight
requires a culture of close collaboration among all parties involved in developing and
operating the software, including businesspeople, developers, information security
experts, and system administrators. In other words, it requires a DevOps culture
where development and operations collaborate and learn from each other.

 



12 CHAPTER 1 Microservices at a glance

 Along with continuous delivery comes a DevOps culture, which is also a prerequi-
site for microservices. To succeed with microservices, everybody must be invested in
making the services run smoothly in production and in creating a high level of trans-
parency into the health of the production system. This requires the collaboration of
people with operations skills, people with development skills, people with security
skills, and people with insight into the business domain, among others.

 This book doesn’t focus on continuous delivery or DevOps, but it does take for
granted that the environment in which you develop microservices uses continuous
delivery. The services built in this book can be deployed to on-premises data centers
or to the cloud using any number of deployment-automation technologies capable of
handling .NET. This book covers the implications of continuous delivery and DevOps
for individual microservices. In part 3, we’ll go into detail about how to build a plat-
form that handles a number of the operational concerns that all microservices must
address. In addition, in appendix B, we’ll explore the primary options for running the
microservices developed throughout the book in a production environment. 

1.2.2 High level of maintainability

Well-factored and well-implemented microservices are highly maintainable from a
couple of perspectives. From a developer perspective, several factors play a part in making
microservices maintainable:

 Each well-factored microservice provides a single capability. Not two—just one.
 A microservice owns its data store. No other services can interfere with a

microservice’s data store. This, combined with the typical size of the codebase
for a microservice, means you can understand a complete service all at once.

 Well-written microservices can (and should) be comprehensibly covered by
automated tests.

From an operations perspective, a couple of factors play a role in the maintainability of
microservices:

 A small team can maintain a handful of microservices. Microservices must be
built to be operated efficiently, which implies that you should be able to easily
determine the current health of any microservice.

 Each microservice is individually deployable.

It should follow that issues in production can be discovered in a timely manner and be
addressed quickly, such as by scaling out the microservice in question or deploying a
new version of the microservice. The characteristic that a microservice owns its own
data store also adds to its operational maintainability, because the scope of mainte-
nance on the data store is limited to the owning microservice.

 
 
 

 



13Costs and downsides of microservices

1.2.3 Robust and scalable

A microservices-based distributed architecture allows you to scale out each service
individually based on where bottlenecks occur. Furthermore, microservices favor asyn-
chronous event-based collaboration and stress the importance of fault tolerance wher-
ever synchronous communication is needed. When implemented well, these
properties result in highly available, highly scalable systems. 

1.3 Costs and downsides of microservices
Significant costs are associated with choosing a microservices architecture, and these
costs shouldn’t be ignored:

 Microservice systems are distributed systems. The costs associated with distrib-
uted systems are well known. They can be harder to reason about and harder to
test than monolithic systems, and communication across process boundaries or
across networks is orders of magnitude slower than in-process method calls.

 Microservice systems are made up of many microservices, each of which has to
be developed, deployed, and managed in production. This means you’ll have
many deployments and a complex production setup.

 Each microservice is a separate codebase. Consequently, refactorings that move
code from one microservice to another are painful. You need to invest in get-
ting the scope of each microservice just right.

Before jumping head first into building a system of microservices, you should con-
sider whether the system you’re implementing is sufficiently complex to justify the
associated overhead.

 
 
 
 

Favor lightweight
Because every microservice handles a single capability, microservices are by nature
fairly small both in their scope and in the size of their codebase. The simplicity that
follows from this limited scope is a major benefit of microservices.

When developing microservices, it’s important to avoid complicating their codebase
by using large, complicated frameworks, libraries, or products because you think you
may need their functionality in the future. Chances are, this won’t be the case, so
you should prefer smaller, lightweight technologies that do what the microservice
needs right now. Remember, a microservice is replaceable; you can completely
rewrite a microservice within a reasonable budget if at some point the technologies
you used originally no longer meet your needs. 

 



14 CHAPTER 1 Microservices at a glance

1.4 Greenfield vs. brownfield
Should you introduce microservices from the get-go on a new project, or are they only
relevant for large, existing systems? This question tends to come up in discussions
about microservices.

 The microservices architectural style has grown out of the fact that many organiza-
tions’ systems started out small but have grown big over time. Many of these systems
consist of a single large application—a monolith that often exposes the well-known
disadvantages of big, monolithic systems:

 Coupling is high throughout the codebase.
 There’s hidden coupling between subcomponents—coupling the compiler

can’t see because it’s the result of implicit knowledge about how certain strings
are formatted, how certain columns in a databases are used, and so on.

 Deploying the application is a lengthy process that may involve several people
and system downtime.

 The system has a one-size-fits-all architecture intended to handle the most com-
plex components. If you insist on architectural consistency across the monolith,
the least complex parts of the system will be overengineered. This is true of lay-
ering, technology choices, chosen patterns, and so on.

Do microservices perform?
One question that always seems to pop up in discussions of whether to use micro-
services is whether a system built with microservices will be as performant as a system
that’s not. The argument against is that if the system is built from many collaborating
microservices, every user request will involve several microservices, and the collab-
oration between these microservices will involve remote calls between them. What
happens when a user request comes in? Do you chain together a long series of remote
calls going from one microservice to the next? Considering that remote calls are orders
of magnitude slower than calls inside a process, this sounds slow.

The problem with this argument is the idea that you’d be making roughly the same
calls between different parts of the system as you would if everything were in one
process. First, the interaction between microservices should be much less fine-grained
than calls within a process tend to be. Second, as we’ll discuss in chapters 4 and 5,
you’ll prefer event-based asynchronous collaboration over making synchronous remote
calls, and you’ll store copies of the same data in several microservices to make sure
it’s available where it’s needed. All in all, these techniques drastically reduce the
need to make remote calls while a user is waiting. Moreover, the fine-grained nature
of microservices enables you to scale out the specific parts of the system that
get congested.

There isn’t a simple yes or no answer as to whether microservices perform well. What
I can say is that a well-designed microservice system can easily meet the perfor-
mance requirements of many, if not most, systems. 

 



15Code reuse

The microservices architecture arose as a result of solving these problems in existing
monolithic systems. If you repeatedly split subcomponents of a monolith into ever-
smaller and more-manageable parts, microservices are eventually created.4

 On the other hand, new projects are started all the time. Are microservices irrele-
vant for these greenfield projects? That depends. Here are some questions you need
to ask yourself:

 Would this system benefit from the ability to deploy subsystems separately?
 Can you build sufficient deployment automation?
 Are you sufficiently knowledgeable about the domain to properly identify and

separate the system’s various independent business capabilities?
 Is the system’s scope large enough to justify the complexity of a distributed

architecture?
 Is the system’s scope large enough to justify the cost of building the deployment

automation?
 Will the project survive long enough to recover the up-front investment in auto-

mation and distribution?

Some greenfield projects meet these criteria and may benefit from adopting a micro-
services architecture from the outset. 

1.5 Code reuse
Adopting a microservices architecture leads to having many services, each of which
has a separate codebase that you’ll have to maintain. It’s tempting to look for code
reuse across services in the hope that you can reduce the maintenance effort; but
although there’s an obvious potential benefit to code reuse, pulling code out of a ser-
vice and into a reusable library incurs a number of hidden costs:

 The service now has one more dependency that you must understand in order
to understand the complete service. This isn’t to say that there’s more code to
comprehend; but by moving code out of the service and into a library, you
move the code further away, making simple code navigation slower and refac-
toring more difficult.

 The code in the new library must be developed and maintained with multiple
use cases in mind. This tends to take more effort than developing for just one
use case.

 The shared library introduces a form of coupling between the services using it.
Updates to the library driven by the needs of service A may not be needed in
service B. Should service B update to the new version of the library even though
it’s not strictly necessary? If you upgrade B, it will have code it doesn’t need;

4 Some microservice advocates argue that the correct way to arrive at microservices is to apply the Strangler pattern
repeatedly to different subcomponents of the monolith. See Martin Fowler, “MonolithFirst,” June 3, 2015,
http://martinfowler.com/bliki/MonolithFirst.html.

 

http://martinfowler.com/bliki/MonolithFirst.html


16 CHAPTER 1 Microservices at a glance

and, worse, B will run the risk of errors caused by that code. If you don’t
upgrade, you’ll have several versions of the library in production, further com-
plicating maintenance of the library. Both cases incur some complexity, either
in service B or in the combined service landscape.

These points apply particularly to business code. Business code should almost never
be reused across microservices. That type of reuse leads to harmful coupling between
microservices.

 With these points in mind, you should be wary of code reuse and only judiciously
attempt it. There is, however, a case to be made for reusing infrastructure code that
implements technical concerns.

 To keep a service small and focused on providing one capability well, you’ll often
prefer to write a new service from scratch rather than add functionality to an existing
service. It’s important to do this quickly and painlessly, and this is where code reuse
across services is relevant. As we’ll explore in detail in part 3 of this book, there are a
number of technical concerns that all services need to implement in order to fit well
into the overall service landscape. You don’t need to write this code for every single
service; you can reuse it across services to gain consistency in how these technical
aspects are handled and to reduce the effort needed to create a new service. 

1.6 Serving a user request: an example of how 
microservices work in concert
To get a feel for how a microservices architecture works, let’s look at an example: a
user of an e-commerce website adding an item to their shopping cart. From the view-
point of the client-side code, an AJAX request is fired to the backend system via an API
gateway, and an updated shopping cart along with some price information is
returned. This is as simple as the interaction shown in figure 1.5. We’ll return to the
topic of API gateways in chapter 12.

 This is neither surprising nor exciting. The interesting part is the interactions
taking place behind the API Gateway microservice to fulfill the request. To add the
new item to the user’s shopping cart, API Gateway uses a few other microservices.
Each microservice is a separate process, and in this example they communicate via
HTTP requests.

API gateway

1. Request: add
    item to cart

2. Response: updated
    cart and price 

Other
microservices

Figure 1.5 When front-end code makes a request to add an item to the shopping cart, it only 
communicates with the API Gateway microservice. What goes on behind the gateway isn’t visible.

 



17Serving a user request: an example of how microservices work in concert

1.6.1 Main handling of the user request

All the microservices and their interactions for fulfilling a user request to add an item to
their shopping cart are shown in figure 1.6. The request to add an item to the shopping
cart is divided into smaller tasks, each of which is handled by a separate microservice:

 The API Gateway microservice is responsible only for a cursory validation of the
incoming request. Once it’s validated, the work is delegated first to the Shop-
ping Cart microservice and then to the Price Calculation microservice.

 The Shopping Cart microservice uses another microservice—Product Cata-
log—to look up the necessary information about the item being added to the
cart. Shopping Cart then stores the user’s shopping cart information in its own
data store and returns a representation of the updated shopping cart to API
Gateway. For performance and robustness reasons, Shopping Cart will likely
cache the responses from Product Catalog.

 The Price Calculation microservice uses the current business rules of the e-
commerce website to calculate the total price of the items in the user’s shop-
ping cart, taking into account any applicable discounts.

API gateway

1. Request: add
    item to cart

2. Add item
    to cart

7. JSON representation
    of cart

11. Response:
      updated cart
      and price 

Shopping Cart
microservice

Price Calculation
microservice

3. Look up
    product

5. JSON representation
    of product

4. Look up
    product

8. Get updated
    price

10. JSON representation
      of price information

Product Catalog
microservice

6. Update
    user’s cart

9. Read price
    information

Price Calculation
store

Shopping Cart
store

Product
Catalog store

Figure 1.6 The API Gateway microservice is all the client sees, but it’s a thin layer in front of 
a system of microservices. The arrows indicate calls between different parts of the system, and 
the numbers on the arrows show the sequence of calls.

 



18 CHAPTER 1 Microservices at a glance

Each of the microservices collaborating to fulfill the user’s request has a single, nar-
rowly focused purpose and knows as little as possible about the other microservices.
For example, the Shopping Cart microservice knows nothing about pricing or the
Price Calculation microservice, and it knows nothing about how products are stored
in the Product Catalog microservice. This is at the core of microservices: each one has
a single responsibility. 

1.6.2 Side effects of the user request

At this e-commerce website, when a user adds an item to their shopping cart, a couple
of actions happen in addition to adding the item to the cart:

1 The recommendation engine updates its internal model to reflect the fact that
the user has shown a high degree of interest in that particular product.

2 The tracking service records that the user added the item to their cart in the
tracking database. This information may be used later for reporting or other
business intelligence purposes.

Neither of these actions needs to happen in the context of the user’s request; they
may as well happen after the request has ended, when the user has received a
response and is no longer waiting for the backend system.

 You can think of these types of actions as side effects of the user’s request. They
aren’t direct effects of the request to update the user’s shopping cart; they’re second-
ary effects that happen because the item was added to the cart. Figure 1.7 zooms in on
the side effects of adding an item to the cart.

 The trigger for these side effects is an ItemAddedToShoppingCart event published
by the Shopping Cart microservice. Two other microservices subscribe to events from
Shopping Cart and take the necessary actions as events (such as ItemAddedToShop-
pingCart events) occur. These two subscribers react to the events asynchronously—

6a. Publish ItemAddedtoCart event

6. Update user’s cartShopping Cart
microservice Shopping

Cart store

Recommendations
store

Recommendations
microservice

Shopper
Tracking store

Shopper Tracking
microservice

12. Asynchronously read 
      ItemAddedToCart event

Figure 1.7 The Shopping Cart microservice publishes events, and other subscribing microservices react.

 



19Serving a user request: an example of how microservices work in concert

outside the context of the original request—so the side effects may happen in parallel
with the main handling of the request or after the main handling has completed.

NOTE Implementing this type of event-feed-based collaboration is covered in
chapter 4. 

1.6.3 The complete picture

In total, six different microservices are involved in handling the request to add an item
to a shopping cart, as shown in figure 1.8. None of these microservices know anything
about the internals of the others. Five have their own private data stores dedicated to

6a. Publish ItemAddedtoCart event

Recommendations
store

Recommendations
microservice

Shopper
Tracking store

Shopper Tracking
microservice

6. Update user’s cart

4. Look up product

2. Add item
    to cart

7. JSON representation
    of cart

Price Calculation
microservice

8. Get updated
    price

9. Read price information
Price Calculation

store

12. Asynchronously read 
      ItemAddedToCart event

API gateway

1. Request: add
    item to cart

11. Response:
      updated cart
      and price 

Shopping Cart
microservice

3. Look up
    product

5. JSON representation
    of product

Product Catalog
microservice

Shopping Cart
store

Product
Catalog store

10. JSON representation
      of price information

Figure 1.8 When a user adds an item to their shopping cart, the front end makes a request to the API Gateway 
microservice, which collaborates with other microservices to fulfill the request. During processing, microservices 
may raise events that other microservices can subscribe to and handle asynchronously.

 



20 CHAPTER 1 Microservices at a glance

serving only their purposes. Some of the handling happens synchronously in the con-
text of the user request, and some happens asynchronously.

 This is a typical microservice system. Requests are handled through the collabora-
tion of several microservices, each with a single responsibility and each as indepen-
dent of the others as possible.

 Now that we’ve taken a high-level look at a concrete example of how a microser-
vices system can handle a user request, it’s time to take a brief look at a .NET-based
technology stack for microservices. 

1.7 A .NET microservices technology stack
It’s time to say hello to the two technologies used most in this book: Nancy and OWIN.

1.7.1 Nancy

Nancy (http://nancyfx.org/) is an open source, .NET-based web framework built with
the explicit goal of giving developers a Super Duper Happy Path to developing web
applications and services. The term Super Duper Happy Path describes the core values
behind Nancy:

 Nancy just works. There are sensible defaults for everything, so no (or next to
no) configuration or ceremony is required to get started. Applications similarly
expand to take advantage of different parts of Nancy. Out of the box, every-
thing works in a logical way.

 Nancy is easy to customize. If you hit a bump in the road where Nancy’s defaults aren’t
exactly right for your application, it’s easy to customize Nancy to your needs. If the
regular customization isn’t enough, everything in Nancy—down to the core—is
componentized and can be swapped out for your own implementations.

 Nancy is low ceremony and low friction. When you’re building a Nancy application,
the framework gets out of your way. The APIs are designed to be flexible and to
let you write your code the way you want. In other words, with Nancy you get to
concentrate on your application code rather than on dealing with Nancy.

 Nancy applications are testable. Nancy itself is built in a test-driven fashion. Like-
wise, Nancy allows an easy test-driven-development flow for writing Nancy appli-
cations. Not only are Nancy’s APIs designed with testability in mind, but Nancy
also comes with a companion library (Nancy.Testing) specifically aimed at mak-
ing it easy to write tests for Nancy applications.

Because of these core values and the Super Duper Happy Path they support, Nancy
is my preferred web framework for building microservices on .NET. You’ll use Nancy
throughout the book, and as I walk you through the complexities of implementing
microservices, I’ll also show you many features of Nancy. The last section of this
chapter will show you a bit of Nancy application code. First, though, I want to intro-
duce OWIN. 

 

http://nancyfx.org/


21A .NET microservices technology stack

1.7.2 OWIN

The Open Web Interface for .NET (OWIN,
http://owin.org) is an open standard that defines
an interface between .NET web servers and .NET
web applications. OWIN decouples the web server
and the web application from each other. An
OWIN-compliant web server receiving HTTP
requests from the network delegates the handling
of those requests to the web application through
the standardized OWIN interface. The web server
has no knowledge of the specifics of the web appli-
cation. All it knows, and all it cares about, is that the
web application can receive requests through the
OWIN interface. Likewise, the web application has
no knowledge of the web server. It only knows that
requests come in through the OWIN interface.

 As illustrated in figure 1.9, this is achieved using
an adapter that implements the OWIN interface on
top of the web server, and using an OWIN-compliant
web framework to implement the web application.
All incoming requests are sent through the OWIN
adapter by the web server. The OWIN adapter and
the web framework then communicate through the
OWIN interface. The result is that the web applica-
tion is decoupled from the web server, lending
some portability to web applications.

 Because web servers and web applications only
know about the OWIN interface, you can insert
components between the web server and the web application without making any
changes to either one. These components are called OWIN middleware. Figure 1.10
shows an OWIN web server with request-logging OWIN middleware and an OWIN web
application on top. The web server can’t know that it isn’t communicating directly
with the web application; the OWIN middleware uses the exact same interface, so it
looks like an application to the web server and like a web server to the application.

 In figure 1.10, the stack includes only one piece of middleware, but there’s no rea-
son you couldn’t have more. One piece of middleware can delegate to another piece
of middleware as well as to an application. As long as all the pieces use the OWIN inter-
face, you can compose the stack with as many pieces of middleware as you like.

 Nancy is OWIN-compliant, so the microservices you build with Nancy work as OWIN
applications in the OWIN pipeline. In this book, you’ll use middleware to take care of
a number of cross-cutting technical concerns that don’t fit nicely with application
code. In part 3, we’ll dive into implementing support for monitoring, performance

OWIN web application

Web server (e.g., IIS or HttpListener)

OWIN-compliant web framework
(e.g., Nancy)

OWIN adapter

Standard
OWIN interface

Figure 1.9 A web application 
implemented on top of OWIN 
communicates with the web server 
through the standardized OWIN 
interface. The server can implement 
the OWIN interface directly or can 
come with an adapter that translates 
between the OWIN interface and the 
web server’s native interface.

 

http://owin.org


22 CHAPTER 1 Microservices at a glance

logging, request logging, and security as pieces of middleware that can be reused
across all your microservices.

 You can gain two primary benefits from using middleware: cross-cutting technical
concerns are separated nicely from the application logic, and the middleware can be
reused so you can easily build new microservices without having to spend time
rebuilding the same monitoring, logging, and security code. 

1.7.3 Setting up a development environment

Before you can start coding your first microservice, you need to have the right tools. To
follow along with the examples in this book, you’ll need a development environment for

OWIN web application

OWIN-compliant web framework
(e.g., Nancy)

Request-logging OWIN middleware

Web server (e.g., IIS or HttpListener)

OWIN adapter

Standard
OWIN interface

Standard
OWIN interface

Requests are delegated to
the application through
the OWIN interface.

Requests are delegated to
the middleware through
the OWIN interface.

Figure 1.10 An OWIN web server with OWIN middleware and an OWIN web application on top. The web 
server delegates incoming requests to the layers above: in this case, the request-logging middleware, 
which writes a log message about the request and then delegates to the web application. To the web 
server, the middleware looks like an OWIN-compliant application; and to the application, the middleware 
looks like an OWIN-compliant web server.

 



23A simple microservices example

creating ASP.NET Core applications. Developing ASP.NET applications used to be syn-
onymous with using Visual Studio, but with the cross-platform Core version of ASP.NET,
other options are available:

 If you’re on Windows, the most common IDE to use is probably still Visual Stu-
dio 2015 with the Web Tools Extension for ASP.NET Core plug-in.

 If you’re on Linux, OS X, or Windows, you can use Visual Studio Code, the
ATOM editor with the OmniSharp plug-in, or JetBrains Rider.

All of these—Visual Studio 2015, Visual Studio Code, ATOM with the OmniSharp
plug-in, and JetBrains Rider—support developing and running ASP.NET Core applica-
tions. They all give you a nice C# editor with IntelliSense and refactoring support.
They’re all aware of ASP.NET Core, and they can all launch ASP.NET Core applications.
They’re also all free—even Visual Studio in its Community Edition.

TIP At the time of writing, only Visual Studio and Visual Studio Code allow
you to debug ASP.NET Core applications.

Once you have an IDE installed, you need to get a version of the ASP.NET Core command-
line tool. To do so, follow the instructions for installing .NET Core at http://dot.net.
This gives you a command-line tool called dotnet that you’ll use to perform a number
of different tasks involved with microservices, including restoring NuGet packages,
building, creating NuGet packages, and running microservices.

 In addition to an IDE and dotnet, you’ll also need a tool for making HTTP
requests. I recommend Postman, but Fiddler and curl are also good and popular
tools. You can use any of these to follow along with the examples in this book.

NOTE In appendix A, you’ll find download, installation, and quick usage
information for Visual Studio, Visual Code, Atom with OmniSharp, JetBrains
Rider, and Postman. Now is the time to set up the tools of your choice—you’ll
need them throughout the book. 

1.8 A simple microservices example
Once you have a development environment up and running, it’s time for a Hello
World–style microservices example. You’ll use Nancy to create a microservice that has
only a single API endpoint. Typically, a microservice has more than one endpoint, but
one is enough for this example. The endpoint responds with the current UTC date
and time in either JSON or XML format, depending on the request headers. This is
illustrated in figure 1.11. You’ll also add a piece of OWIN middleware that logs every
incoming request to the console.

Hello microservices

Request to API endpoint

Response with current
 date and time

Figure 1.11 A Hello World–style 
microservice that responds with 
the current date and time

 

http://dot.net


24 CHAPTER 1 Microservices at a glance

NOTE When I talk about an API endpoint, an HTTP endpoint, or just an end-
point, I mean a URL where one of your microservices reacts to HTTP requests.

To implement this example, you’ll follow these four steps:

1 Create an empty ASP.NET Core application.
2 Add Nancy to the application.
3 Add a Nancy module with an implementation of the endpoint.
4 Add OWIN middleware that logs every request to the console.

The following sections will go through each step in detail.

1.8.1 Creating an empty ASP.NET Core application

The first thing you need to do is create an empty ASP.NET Core application called
HelloMicroservices. If you chose to install Visual Studio, you can create the project by
selecting File > New > Project from the menu. In the New Project dialog box, choose
ASP.NET Web Application, and then choose Empty under ASP.NET Core Templates.

 If you chose to install either Visual Studio Code or ATOM and followed the instruc-
tions in appendix A, you also installed the Yeoman scaffolding tool. You can use Yeo-
man to create an empty ASP.NET Core application by using the command yo aspnet in
a shell and then choosing Empty Application from the menu.

 Once you’ve created your empty ASP.NET Core application and named it Hello-
Microservices, you should have a project that contains these files:

 Hellomicroservices\Program.cs
 Hellomicroservices\Startup.cs
 Hellomicroservices\project.json

There are other files in the project, but these are the one you’ll be concerned with.
 This is a complete application, ready to run. It will respond to any HTTP request with

the string "Hello World". You can start the application from the command line by going
to the folder containing the project.json file and typing the command dotnet run.

 The application runs on localhost port 5000 (note that if you choose to run it from
inside Visual Studio, you may get another port). If you go to http://localhost:5000 in
a browser, you’ll get the Hello World response. 

1.8.2 Adding Nancy to the project

You can add Nancy to the project as a NuGet package by adding Nancy to the depen-
dencies section in the project.json file that’s part of your empty application. You’ll
also need the Microsoft.AspNetCore.Owin package, so go ahead and add that too.
The dependencies section of project.json should look similar to the following listing.

"dependencies": {
"Microsoft.NETCore.App": {

"version": "1.0.0",

Listing 1.1 dependencies section of project.json

 



25A simple microservices example

"type": "platform"
},
"Microsoft.AspNetCore.Server.IISIntegration": "1.0.0",
"Microsoft.AspNetCore.Server.Kestrel": "1.0.0",
"Microsoft.AspNetCore.Owin": "1.0.0",
"Nancy": "2.0.0-barneyrubble"

},

When you save the project.json file in Visual Studio, Visual Studio Code, or ATOM
with OmniSharp, the IDE will perform a package restore, which means it will down-
load any new NuGet packages specified in dependencies. Once the package restore is
done, Nancy will be part of the project.

 Now that you’ve added the Nancy NuGet package, you need to tell ASP.NET Core
to use Nancy. You do so in the Startup.cs file, which is already part of the project.
There’s already some code in Startup.cs; replace it with the code in the next listing,
which first tells ASP.NET Core to use OWIN and then adds Nancy to the OWIN pipeline.

namespace Hellomicroservices
{

using Microsoft.AspNetCore.Builder;
using Nancy.Owin;

public class Startup
{
public void Configure(IApplicationBuilder app)
{

app.UseOwin(buildFunc =>
buildFunc.UseNancy()

);
}

}
}

At this point, you have an ASP.NET Core application with Nancy added; but the appli-
cation can’t handle any requests yet, because you haven’t set up any routes in Nancy. If
you restart the application and again go to http://localhost:5000 in a browser, you’ll
get a 404 Not Found response. Let’s fix that. 

1.8.3 Adding a Nancy module with an implementation of the endpoint

Now you’ll add a Nancy module with an implementation of the single API endpoint. A
Nancy module is a class that inherits from NancyModule; it’s used to declare which end-
points the application can handle and to implement the behavior for each endpoint.
Nancy automatically discovers all classes that inherit from NancyModule on startup and
registers all routes declared in the Nancy modules. Declaring routes in a Nancy mod-
ule is done using Nancy’s internal DSL for dealing with HTTP. You can add a Nancy

Listing 1.2 Configuring ASP.NET Core in Startup.cs

ASP.NET Core calls this method
during application startup.

Configures ASP.NET Core 
to use OWIN. buildFunc 
can be used to set up 
the OWIN pipeline.

Adds Nancy to the OWIN pipeline. 
This allows Nancy to handle 
incoming HTTP requests.

 



26 CHAPTER 1 Microservices at a glance

module by creating a file called CurrentDateTimeModule.cs and adding the following
code to it.

namespace Hellomicroservices
{

using System;
using Nancy;

public class CurrentDateTimeModule
: NancyModule

{
public CurrentDateTimeModule()
{

Get("/", _ => DateTime.UtcNow);
}

}
}

In this module, you declare a route for the path / with the expression Get("/", …?). You
also tell Nancy that any HTTP GET request to / should be handled by the lambda _ ?
DateTime.UtcNow;. Every time a request to / comes in, the response is the current UTC
date and time.

NOTE By convention, I use _ as the name of lambda parameters that aren’t
used on the right side of the lambda arrow.

You can now rerun the application and again point your browser to http://local-
host:5000. Your browser will hit the route on your Nancy module and show an error
page. Why? Because Nancy can’t find a view for the / route. This is OK. The intention
of this little application isn’t to serve HTML to a browser, but to serve JSON or XML
data. To test that your application can do that, use Postman or a similar tool to make
an HTTP GET request to the root of your application with an Accept header with the
value application/json. The test in Postman is shown in figure 1.12.

 On the wire, this is the request:

GET / HTTP/1.1
Host: localhost:5000
Accept: application/json

The response from this request is the current UTC data and time, serialized as JSON:

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8

"2016-06-06T19:50:09.2556094Z"

Listing 1.3 Nancy module

Declares a Nancy 
module

Declares a route and route handler. Sets 
requests to / to return the current date 
and time as JSON or XML.

HTTP method (GET), path (/), and
protocol (HTTP/1.1) used in the request

Host to which the
request is made

List of request headers. In 
this case, there’s only an 
Accept header with the 
value application/json.

 



27A simple microservices example

If you change the Accept header in the preceding request to application/xml, the
response will be serialized as XML. Nancy supports both JSON and XML serialization
and takes the Accept header into account when serializing the response. You’ve now
implemented your first API endpoint with Nancy. 

1.8.4 Adding OWIN middleware

Now that you have a minimal Nancy application up and running, you can use a piece
of OWIN middleware to add some simple request logging. Your application already
has an OWIN pipeline, albeit a short one. It contains only one component: Nancy. The
code in listing 1.4, which goes in the Startup class, adds to the pipeline a component
that writes “Got request” to the console every time a request comes in. It then passes
the request to the next component in the pipeline: Nancy.

app.UseOwin(buildFunc =>
{

buildFunc(next => env =>
{
System.Console.WriteLine("Got request");

Listing 1.4 OWIN middleware that writes a string

Choose HTTP
method from the
drop-down menu.

The request
URL

The response body

Add request
headers here.

Figure 1.12 Postman makes it easy to send HTTP requests and control the request details, such 
as the headers and HTTP method.

Adds a piece of middleware
(a lambda expression) to

the OWIN pipeline The middleware writes 
a string to standard out 
once for each incoming 
request.

 



28 CHAPTER 1 Microservices at a glance

return next(env);
});
buildFunc.UseNancy();

});

If this code seems a little odd to you, don’t worry; I’ll return to OWIN in chapters 9, 10,
and 11 and explain how it works and how to use its strengths in microservices. For
now, it’s enough to understand that you can build up an OWIN pipeline in the
Startup class and that the middleware is the lambda:

next => env =>
{
System.Console.WriteLine("Got request");
return next(env);

}

With the request-logging OWIN middleware in place, the console output of your little
microservice looks like this, if you run the application and then make a few requests to
http://localhost:5000:

PS> dotnet run
Application started. Press Ctrl+C to shut down.
Got request
Got request
Got request
Got request
Got request
Got request

NOTE Throughout the book, you’ll use OWIN middleware to take care of
cross-cutting concerns like request logging and monitoring.

This completes the example. With only a little code, you’ve created your first, simple
microservice with a single endpoint that can provide the current UTC date and time as
either JSON or XML. Furthermore, the microservice has rudimentary request logging
in the form of writing out text to the console every time a request comes in. 

1.9 Summary
 Microservices is an overloaded term used both for the microservices architectural

style and for individual microservices in a system of microservices.
 The microservices architectural style is a special form of SOA, where each ser-

vice is small and provides one and only one business capability.
 A microservice is a service with a single, tightly focused capability.
 I’ll refer to six characteristics of a microservice in this book. A microservice

– Is responsible for providing a single capability.
– Is individually deployable. You must be able to deploy every microservice on

its own without touching any other part of the system.

Calls the next middleware in 
the OWIN pipeline and passes 
all the request data to it

 



29Summary

– Runs in one or more processes, separate from other microservices.
– Owns and stores the data belonging to the capability it provides in a data

store that the microservice itself has access to.
– Is small enough that a small team of around five people can develop and

maintain a handful or more of them.
– Is replaceable. The team should be able to rewrite a microservice from scratch

in a short period of time if, for instance, the codebase has become a mess.
 Microservices go hand in hand with continuous delivery:

 Having small, individually deployable microservices makes continuous delivery
easier.

 Being able to deploy automatically, quickly, and reliably simplifies deploying
and maintaining a system of microservices.

 A system built with microservices allows for scalability and resilience.
 A system built with microservices is malleable: it can be easily changed accord-

ing to your business needs. Each microservice by itself is highly maintainable,
and even creating new microservices to provide new capabilities can be done
quickly.

 Microservices collaborate to provide functionality to the end user.
 A microservice exposes a remote public API that other microservices may use.
 A microservice can expose a feed of events that other microservices can sub-

scribe to. Events are handled asynchronously in the subscribers but still allow
subscribers to react to events quickly.

 Nancy is a lightweight .NET web framework that’s easy to get started with.
 Nancy modules are used to set up endpoints in Nancy applications.
 OWIN allows you to build a pipeline of middleware that runs on each request

and is well situated for handling cross-cutting concerns.
 Most microservices don’t serve HTML from their endpoints, but rather data in

the form of JSON or XML. Applications like Postman and Fiddler are good for
testing such endpoints.

 



30

A basic shopping
 cart microservice

In chapter 1, we looked at how microservices work and how they can be character-
ized. You also set up a simple technology stack—C#/Nancy/OWIN—that lets you
create microservices easily, and you saw a basic Shopping Cart microservice. In this
chapter, you’ll implement four main parts of this microservice using Nancy:

 A basic HTTP-based API allowing clients to retrieve a cart, delete it, and add
items to it. Each of these methods will be visible as an HTTP endpoint, such
as http://myservice/add/{item_number}.

This chapter covers
 A nearly complete implementation of the Shopping Cart 

microservice

 Creating HTTP endpoints with Nancy

 Implementing a request from one microservice to 
another

 Implementing a simple event feed for a microservice 
with Nancy

 



31Overview of the Shopping Cart microservice

 A call from one service to another for more information. In this case, the Shop-
ping Cart microservice will ask the Product Catalog microservice for pricing
information based on the item_number of the item being added to the cart.

 An event feed that the service will use to publish events to the rest of the system.
By creating an event feed for the shopping cart, you’ll make it possible for other
services (such as the recommendation engine) to update their own data and
improve their capabilities.

 The domain logic for implementing the behavior of the shopping cart.

To keep things simple, you won’t do a complete implementation of this microservice
in this chapter. We’ll look at the following topics and complete the microservice dur-
ing the course of the book:

 The Shopping Cart microservice should have its own data store, but you won’t
implement it or the data access code to get data in and out of it. Chapter 5 cov-
ers this in full.

 Any production-ready microservice should include support for monitoring and
logging. If a microservice doesn’t provide regular insight into its health, it
becomes difficult to keep the overall system running steadily. But these func-
tions don’t directly provide a business capability, so I’ve left logging and moni-
toring capabilities to be discussed in chapter 9.

Let’s get to it.

NOTE Be sure you’ve set up your development environment. In appendix A,
you’ll find download, installation, and quick usage information about IDEs
you can use to follow along with the code throughout this book. This chapter
has lots of code, so if you haven’t already set up a development environment,
now is the time to do it.

2.1 Overview of the Shopping Cart microservice
In chapter 1, we looked at how an e-commerce site built with microservices might han-
dle a user’s request to add an item to their shopping cart. The complete overview of
how the request is handled is repeated in figure 2.1.

 The Shopping Cart microservice plays a central role when a user wants to add an item
to their shopping cart. But it’s not the only process in which Shopping Cart plays a role.
It’s equally important to let the user see their shopping cart and delete an item from it.
The Shopping Cart microservice must support those processes through its HTTP API,
just as it supports adding an item to a shopping cart. Figure 2.2 shows the interactions
between the Shopping Cart microservice and the other microservices in the system.

 The Shopping Cart microservice supports three types of synchronous requests:

 Getting a shopping cart
 Adding an item to a shopping cart
 Deleting an item from a shopping cart

 



32 CHAPTER 2 A basic shopping cart microservice

6a. Publish ItemAddedtoCart event

Recommendations
store

Recommendations
microservice

Shopper
Tracking store

Shopper Tracking
microservice

6. Update user’s cart

4. Look up product

2. Add item
    to cart

7. JSON representation
    of cart

Price Calculation
microservice

8. Get updated
    price

9. Read price information
Price Calculation

store

12. Asynchronously read 
      ItemAddedToCart event

API gateway

1. Request: add
    item to cart

11. Response:
      updated cart
      and price 

Shopping Cart
microservice

3. Look up
    product

5. JSON representation
    of product

Product Catalog
microservice

Shopping Cart
store

Product
Catalog store

10. JSON representation
      of price information

Figure 2.1 The Shopping Cart microservice allows other microservices to get a shopping cart, add items to and 
delete items from a shopping cart, and subscribe to events from Shopping Cart.

Other
microservices

Access and update
shopping carts

Add item to
shopping cart

Delete item from
shopping cart

Subscribe
to events

Shopping Cart
microservice Shopping

Cart store

Get shopping cart

Figure 2.2 Overview of how an e-commerce 
site built with microservices can handle 
adding an item to a user’s shopping cart

 



33Overview of the Shopping Cart microservice

On top of that, it exposes an event feed that other microservices can subscribe to. Now
that you’ve seen an overview of the Shopping Cart microservice’s complete functional-
ity, you can start drilling into its implementation.

2.1.1 Components of the Shopping Cart microservice

Let’s zoom in and see what this microservice looks like at closer range. As shown in fig-
ure 2.3, the Shopping Cart microservice consists of these components:

 A small Shopping Cart domain model that’s responsible for implementing any
business rules related to shopping carts.

 An HTTP API component that’s responsible for handling all incoming HTTP requests.
The HTTP API component is divided into two modules: one handles requests from
other microservices to do something, and the other exposes an event feed.

 Two data store components: EventStore and ShoppingCartStore. These data store
components are responsible for talking to the data store (ShoppingCartStore):
– EventStore handles saving events to and reading them from the data store.
– ShoppingCartStore handles reading and updating shopping carts in the

data store. Note that shopping carts and events may be stored in different
databases; we’ll return to this in chapter 5.

 A ProductCatalogClient component that’s responsible for communicating
with the Product Catalog microservice shown in figure 2.1. Placing that commu-
nication in ProductCatalogClient serves several purposes:

– It encapsulates knowledge of the other microservice’s API in one place.
– It encapsulates the details of making an HTTP request.
– It encapsulates caching results from the other microservice.
– It encapsulates handling errors from the other microservice.

EventStore
Shopping Cart 
domain model

HTTP API: accessible from
other microservices

HTTP API module

Event feed module

• Endpoint to get a shopping cart
• Endpoint to add items to a shopping cart
• Endpoint to delete an item from a shopping cart

ShoppingCartStore

ProductCatalogClient

Shopping Cart microservice

Shopping
Cart store

Figure 2.3 The Shopping Cart microservice is a small codebase with a few components that provide one focused 
business capability.

 



34 CHAPTER 2 A basic shopping cart microservice

This chapter includes the code for the domain model, the HTTP API, and a basic
implementation of ProductCatalogClient, but skips EventStore and ShoppingCart-
Store and the data store. In addition, for the sake of brevity, this chapter omits error-
handling code. Chapters 4 and 5 go into further detail about how to implement
microservice APIs easily with Nancy; chapter 5 also returns to the subject of storing
data in a microservice. Chapter 6 dives deeper into how to design robustness into cli-
ents such as ProductCatalogClient. 

2.2 Implementing the Shopping Cart microservice
Now that you understand the Shopping Cart microservice’s components, it’s time to
get into the code.

2.2.1 Creating an empty project

The first thing you need to do is set up a Nancy project, just as in chapter 1. Create an
empty ASP.NET Core application called ShoppingCart, and add the Nancy NuGet
package to the new project. Then, add Nancy to the application in the Startup class.

namespace ShoppingCart
{

using Microsoft.AspNet.Builder;
using Nancy.Owin;

public class Startup
{
public void Configure(IApplicationBuilder app)
{

app.UseOwin(buildFunc => buildFunc.UseNancy());
}

}
}

You now have an empty Nancy application that’s ready to go. 

Listing 2.1 Startup class that starts up Nancy

New technologies used in this chapter
In this chapter, you’ll begin using two new technologies:

 HttpClient is a .NET Core type for making HTTP requests. It provides an API
for creating and sending HTTP requests as well as reading the responses that
come back.

 Polly is a library that makes it easy to implement one of the more common pol-
icies for handling remote-call failures. Out of the box, Polly has support for var-
ious retry and circuit breaker policies. I’ll discuss circuit breakers in chapter 6.

This is the only line 
you need to add to 
the Startup.cs file.

 



35Implementing the Shopping Cart microservice

2.2.2 The Shopping Cart microservice’s API for other services

In this section, you’ll implement the Shopping Cart microservice’s HTTP API, which is
highlighted in figure 2.4. This API has three parts, each of which is implemented as an
HTTP endpoint:

 An HTTP GET endpoint where other microservices can fetch a user’s shopping
cart by providing a user ID. The response is a shopping cart serialized as either
JSON or XML.

 An HTTP POST endpoint where other microservices can add items to a user’s shop-
ping cart. The items to be added are passed to the endpoint as an array of product
IDs. The array can be in XML or JSON, and it must be the body of the request.

 An HTTP DELETE endpoint where other microservices can remove items from a
user’s shopping cart. The items to be deleted are passed in the body of the
request as an XML or JSON array of product IDs.

The following three sections each implement one of the endpoints.

GETTING A SHOPPING CART

The first part of the HTTP API that you’ll implement is the endpoint that lets other
microservices fetch a user’s shopping cart. Figure 2.5 shows how other microservices
can use an endpoint to get a shopping cart.

EventStore
Shopping Cart 
domain model

HTTP API: accessible from
other microservices

HTTP API module

Event feed module

• Endpoint to get a shopping cart
• Endpoint to add items to a shopping cart
• Endpoint to delete an item from a shopping cart

ShoppingCartStore

ProductCatalogClient

Shopping Cart microservice

Shopping
Cart store

Figure 2.4 Implementing the HTTP API component

Other
microservices

Fetch the
shopping cart
with ID 123

Request: HTTP GET
/shoppingcart/123

Response: The
shopping cart with ID
123 as XML or JSON

Shopping Cart
microservice Shopping

Cart store

Figure 2.5 Other microservices can use an endpoint on Shopping Cart to get a shopping cart 
in XML or JSON format.

 



36 CHAPTER 2 A basic shopping cart microservice

The endpoint accepts HTTP GET requests. Its URL includes the ID of the user whose
shopping cart the other microservice wants, and the body of the response is an XML
or JSON serialization of that shopping cart. The request should include an Accept
header indicating whether the response body should be XML or JSON.

 For example, the API gateway in figure 2.1 may need the shopping cart for a user
with ID 123. To get that, it sends this HTTP request:

HTTP GET /shoppingcart/123 HTTP/1.1
Host: shoppingcart.my.company.com
Accept: application/json

This is a request to shoppingcart/123 on the Shopping Cart microservice, and the 123
part of the URL is the user ID.

 To handle such requests, you need to add to the ShoppingCart project a new Nancy
module called ShoppingCartModule. As mentioned in chapter 1, a Nancy module is a
class that inherits from NancyModule and is used to implement endpoints in a Nancy
application. Put the following code in a new file called ShoppingCartModule.cs.

namespace ShoppingCart.ShoppingCart
{

using Nancy;
using Nancy.ModelBinding;

public class ShoppingCartModule : NancyModule
{

public ShoppingCartModule(IShoppingCartStore shoppingCartStore)
: base("/shoppingcart")

{
Get("/{userid:int}", parameters =>
{

var userId = (int) parameters.userid;
return shoppingCartStore.Get(userId);

});
}

}
}

You can already see some important parts of Nancy in action here. Let’s break down
this code.

 The expression Get("/{userid:int}", …?) is a route declaration and is how you
declare that you want to handle HTTP GET requests to endpoints matching the pattern
inside the brackets. The pattern can be a literal string, like "/shoppingcart"; or it can
contain segments that match and capture parts of the request URL, like {use-
rid:int}. The {userid:int} segment is called userid and is constrained to only
match integer values.

Listing 2.2 Endpoint to access a shopping cart by user ID

Declares 
ShoppingCartModule 
as a NancyModule. 
Nancy automatically 
discovers all Nancy 
modules at startup.Tells Nancy that

all routes in this
module start with

/shoppingcart
Declares the endpoint 
for handling requests to 
/shoppingcart/{userid}, 
such as /shoppingcart/123

Sets the user ID to
the userid segment
of the request URL Returns the user’s shopping cart.

Nancy serializes it to XML or JSON
before sending it to the client.

 



37Implementing the Shopping Cart microservice

 After the route declaration comes a lambda expression:

parameters =>
{

var userId = (int) parameters.userid;
return shoppingCartStore.Get(userId);

};

This is the route handler, and it’s the piece of code that’s executed every time the
Shopping Cart microservice receives a request to a URL that matches the route decla-
ration. For instance, when the API gateway requests a shopping cart via the URL
/shoppingcart/123, this is the code that handles the request.

 The route handler takes a single argument, parameters, which gives access to all
the captured segments of the request URL. The parameters object is dynamic and
allows you to get the captured segments as if they were properties on the parameters
object. That’s how parameters.userid works: the parameters.userid type is
dynamic, so you have to cast to an int before you can use it as an int.

 The route handler uses a shoppingCartStore object that the ShoppingCartModule
constructor takes as an argument:

public ShoppingCartModule(IShoppingCartStore shoppingCartStore)

Because the route handle is in the ShoppingCartModule constructor, shoppingCart-
Store is in scope in the route handler.

 The constructor argument has the type IShoppingCartStore, which is an inter-
face. Nancy will automatically find an implementation of IShoppingCartStore; and,
as long there’s no ambiguity, it will provide an instance of ShoppingCartModule. I’m
leaving out the data-storage code in this chapter, but the code in the code download
accompanying this book contains the IShoppingCart interface and a dummy imple-
mentation of it.

 The route handler returns a ShoppingCart object that it gets back from shopping-
CartStore:

return shoppingCartStore.Get(userId);

The ShoppingCart type is specific to the Shopping Cart microservice, so Nancy has no
way of knowing about this particular type. But Nancy is liberal in what you can return
from a route handler. You can return any object you want, and Nancy will handle it
sensibly. In this case, you want to serialize the ShoppingCart object and return the
data to the caller, and this is exactly what Nancy does.

 The following listing shows an example of the response to a request to /shopping-
cart/123.

 
 
 

 



38 CHAPTER 2 A basic shopping cart microservice

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8

539
{

"userId": 42,
"items": [

{
"productcatalogId": 1,
"productName": "Basic t-shirt",
"description": "a quiet t-shirt",
"price": {

"currency": "eur",
"amount": 40

}
},
{

"productcatalogId": 2,
"productName": "Fancy shirt",
"description": "a loud t-shirt",
"price": {

"currency": "eur",
"amount": 50

}
}

]
}

As you can see, you can get a lot of functionality up and running with a small amount
of code by relying on Nancy. 

ADDING ITEMS TO A SHOPPING CART

The second endpoint you need to add to the Shopping Cart microservice lets you add
items to a user’s shopping cart. Figure 2.6 shows how other microservices can use this
endpoint.

Listing 2.3 Example response from the Shopping Cart microservice

The response body is in JSON.

Length of the response body

Shopping cart serialized as JSON

Other
microservices

Access and
update shopping

cart

Request: HTTP POST
to /shoppingcart/123

with an array of product
IDs in the body

Response: The
updated shopping cart

Shopping Cart
microservice Shopping

Cart store

Figure 2.6 Other microservices can add items to a shopping cart with an HTTP POST request that 
includes an array of product IDs in the request body.

 



39Implementing the Shopping Cart microservice

Like the HTTP GET endpoint in the previous section, this new endpoint receives a user
ID in the URL. This time, the endpoint accepts HTTP POST requests instead of HTTP
GET, and the request should provide a list of items in the body of the request. For
example, the following request adds two items to user 123’s shopping cart.

  POST /shoppingcart/123/items HTTP/1.1
Host: shoppingcart.my.company.com
Accept: application/json
Content-Type: application/json

[1, 2]

To handle such requests, you need to add another route declaration to Shopping-
CartModule. The new route handler reads the items from the body of the request,
looks up the product information for each one, adds them to the correct shopping
cart, and returns the updated shopping cart.

 The new route declaration is shown in the next listing. Add it to the Shopping-
CartModule constructor.

public class ShoppingCartModule : NancyModule
{

public ShoppingCartModule(
IShoppingCartStore shoppingCartStore,
IProductcatalogClient productcatalog,
IEventStore eventStore)
: base("/shoppingcart")

{
Get("/{userid:int}"], parameters => { ... });

Post("/{userid:int}/items",
async (parameters, _) =>

{
var productcatalogIds = this.Bind<int[]>();
var userId = (int) parameters.userid;

var shoppingCart = shoppingCartStore.Get(userId);
var shoppingCartItems = await

productcatalog
.GetShoppingCartItems(productcatalogIds)
.ConfigureAwait(false);

shoppingCart.AddItems(shoppingCartItems, eventStore);

Listing 2.4 Adding two items to a shopping cart

Listing 2.5 Handler for a route to add items to a shopping cart

The URL includes the ID of
the shopping cart: 123.

The response should 
be in JSON format.

The data in
the request

body is in
JSON.

The request body is a JSON 
array of product IDs.

Declares an 
HTTP POST endpoint for 
/shoppingcart/{userid}/item

Reads and deserializes 
the array of product IDs 
in the HTTP request body

Fetches the product 
information from the 
Product Catalog 
microservice

Adds items to the cart

 



40 CHAPTER 2 A basic shopping cart microservice

shoppingCartStore.Save(shoppingCart);

return shoppingCart;
});

}
}

Two new Nancy capabilities are at play here. First, the new route handler is asynchro-
nous. You can see this in the async lambda declaration:

Post("/{userid:int}/items",
async (parameters, _) =>

This handler is declared asynchronous because it makes a remote call to the Product
Catalog microservice. Performing that external call asynchronously saves resources in
Shopping Cart. Nancy can run fully asynchronously, which allows application code to
make good use of C#’s async/awaitfeature.

 Second, the body of the request contains a JSON array of product IDs. These are
the items that should be added to the shopping cart. The route handler uses Nancy’s
model binding to read these into a C# array:

var productcatalogIds = this.Bind<int[]>();

Nancy’s model binding supports any serializable C# object. You’d often use a more
structured object than a flat JSON array to send data into an endpoint, and reading
that would be just as easy as in this case. The type parameter in this.Bind<int[]>()
would just need to be changed to a type other than int[]. Out of the box, Nancy sup-
ports binding to JSON and XML data; but as you’ll see in chapter 4, adding other for-
mats is straightforward.

 The new route handler uses two objects that aren’t already present in Shopping-
CartModule. You once again rely on Nancy to provide them through constructor argu-
ments. Nancy’s dependency injection automatically provides the dependencies when
instantiating the modules.

public ShoppingCartModule(
IShoppingCartStore shoppingCartStore,
IProductcatalogClient productCatalog,
IEventStore eventStore)

Other microservices can now add items to shopping carts. They should similarly be
allowed to remove items from shopping carts.  

 
 

Listing 2.6 Adding module dependencies as constructor arguments

Saves the updated cart 
to the data store

Returns the updated cart

Only used to pass into the 
AddItems call, where it 
will be used later

 



41Implementing the Shopping Cart microservice

REMOVING ITEMS FROM A SHOPPING CART

The third and last endpoint is an HTTP DELETE endpoint that, as shown in figure 2.7,
lets other microservices remove items from shopping carts. You should now have the
hang of adding endpoints to Nancy modules. You need to implement an HTTP DELETE
endpoint that takes an array of product IDs and removes those products from the cart.
Add the following code to the ShoppingCartModule constructor.  

 
  

async/await at a glance
C# 5 introduced two new keywords, async and await, to allow methods to run asyn-
chronously easily. A basic async method looks like this:

public async Task<int> WaitForANumber()
{

await Task.Delay(1000)
.ConfigureAwait(false);

return 10;
}

When you call this method, the thread of execution continues as usual until await.
The await keyword works in conjunction with awaitables—the most common await-
able is System.Threading.Tasks.Task<T>—and asynchronously waits until the
awaitable completes. This means two things happen when execution reaches await:

 The remainder of the method is queued up for execution when the await-
able—in this case, the Task returned from Task.Delay(1000)—completes.
When the awaitable completes, the rest of the method is executed, possibly
on a new thread but with same state as before the await reestablished.

 The current thread of execution returns from the async method and contin-
ues in the caller.

The ConfigureAwait(false) call in the preceding code snippet tells the Task not
to save the current thread context. As a consequence, the thread context isn’t rees-
tablished when method execution resumes. Because the code doesn’t rely on the
thread context, it can skip that saving and reestablishing.

In server-side code, like microservices, many requests require some I/O, such as
calling a data store or another microservice. If you can execute the I/O asynchro-
nously instead of blocking a thread while waiting for the I/O to complete, you save
resources on your servers. In some situations, you may also gain some performance,
but that isn’t the general case. I use async/await and Tasks a lot in this book to
save resources on the server and gain scalability.

Declares method as async

Yields the current 
thread until the 
task completes

Allows execution to be resumed 
with a different thread context

Because the method is async, the return
value is automatically wrapped in a Task.

 



42 CHAPTER 2 A basic shopping cart microservice

public class ShoppingCartModule : NancyModule
{

public ShoppingCartModule(
IShoppingCartStore shoppingCartStore,
IProductCatalogClient productCatalog,
IEventStore eventStore)
: base("/shoppingcart")

{
Get("/{userid:int}"], parameters => { ... });

Post("/{userid:int}/items",
async (parameters, _) => { ... });

Delete("/{userid:int}/items", parameters =>
{

var productCatalogIds = this.Bind<int[]>();
var userId = (int)parameters.userid;

var shoppingCart = shoppingCartStore.Get(userId);
shoppingCart.RemoveItems(productCatalogIds, eventStore);
shoppingCartStore.Save(shoppingCart);

return shoppingCart;
});

}
}

This completes ShoppingCartModule, which ends up at less than 50 lines of code.
That’s why I consider Nancy a lightweight framework. 

2.2.3 Fetching product information

Now that the API exposed by the Shopping Cart microservice is implemented, let’s
switch gears and look at how the product information is fetched from the Product Cat-
alog microservice. Figure 2.8 highlights ProductCatalogClient, which you’ll imple-
ment in this section.

 The Product Catalog microservice and the Shopping Cart microservice are
separate microservices running in separate processes, perhaps even on separate
servers. Product Catalog exposes an HTTP API that Shopping Cart uses. Product

Listing 2.7 Endpoint for removing items from a shopping cart

Other
microservices

Access and
update shopping

cart

Request: Delete item
from shopping cart

Response: The
updated shopping cart

Shopping Cart
microservice Shopping

Cart store

Figure 2.7 Other microservices can remove items from a shopping cart with an HTTP DELETE 
request by providing an array of product IDs in the request body.

Using the same route 
template for two route 
declarations is fine if they 
use different HTTP methods.

The eventStore will be used later
in the RemoveItems method.

 



43Implementing the Shopping Cart microservice

catalog information is fetched in HTTP GET requests to an endpoint on the Product
Catalog microservice.

 You need to follow these three steps to implement the HTTP request to the Prod-
uct Catalog microservice:

1 Implement the HTTP GET request.
2 Parse the response from the endpoint at the Product Catalog microservice, and

translate it to the domain of the Shopping Cart microservice.
3 Implement a policy for handling failed requests to the Product Catalog

microservice.

The subsequent sections walk you through these steps.

IMPLEMENTING THE HTTP GET
The Product Catalog microservice exposes an endpoint at the path /products. The
endpoint accepts an array of product IDs as a query string parameter and returns the
product information for each of those products. For example, the following request
fetches the information for product IDs 1 and 2:

HTTP GET /products?productIds=[1,2] HTTP/1.1
Host: productcatalog.my.company.com
Accept: application/json

You’ll use the HttpClient type to perform the HTTP request. Instead of a real Product
Catalog microservice, the implementation uses a microservice made with Apiary
(https://apiary.io). Apiary is an online service that, among other things, lets you eas-
ily create endpoints that return hardcoded responses. In this case, I created an end-
point that returns hardcoded product information. Using that fake endpoint, the
following code makes the HTTP GET request to the Product Catalog microservice.

EventStore
Shopping Cart 
domain model

HTTP API: accessible from
other microservices

HTTP API module

Event feed module

• Endpoint to get a shopping cart
• Endpoint to add items to a shopping cart
• Endpoint to delete an item from a shopping cart

ShoppingCartStore

ProductCatalogClient

Shopping Cart microservice

Shopping
Cart store

Figure 2.8 ProductCatalogClient

 

https://apiary.io


44 CHAPTER 2 A basic shopping cart microservice

private static string productCatalogBaseUrl =
@"http://private-05cc8-chapter2productcatalogmicroservice

          ➥ .apiary-mock.com";
private static string getProductPathTemplate =

"/products?productIds=[{0}]";

private static async Task<HttpResponseMessage>
RequestProductFromProductCatalogue(int[] productCatalogueIds)

{
var productsResource = string.Format(

getProductPathTemplate, string.Join(",", productCatalogueIds));
using (var httpClient = new HttpClient())
{

httpClient.BaseAddress = new Uri(productCatalogueBaseUrl);
return await

httpClient.GetAsync(productsResource).ConfigureAwait(false);
}

}

This is pretty straightforward. The only thing to note is that by executing the HTTP
GET request asynchronously, the current thread is freed up to handle other things in
Shopping Cart while the request is processed in Product Catalog. This is good prac-
tice because it preserves resources in the Shopping Cart microservice, making it a bit
less resource intensive and more scalable. 

2.2.4 Parsing the product response

The Product Catalog microservice returns product information as a JSON array. The
array includes an entry for each requested product, as shown next.

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8

543
[

{
"productId": "1",
"productName": "Basic t-shirt",
"productDescription": "a quiet t-shirt",
"price": { "amount" : 40, "currency": "eur" },
"attributes" : [
{

Listing 2.8 HTTP GET request to the Product Catalog microservice

Listing 2.9 Returning a JSON list of products

URL of the fake Product
Catalog microservice

Adds the product IDs as a
query string parameter to the

path of the /products endpoint

Creates a client for making
the HTTP GET request

Tells HttpClient to perform the 
HTTP GET asynchronously

 



45Implementing the Shopping Cart microservice

"sizes": [ "s", "m", "l"],
"colors": ["red", "blue", "green"]

}]
},
{
"productId": "2",
"productName": "Fancy shirt",
"productDescription": "a loud t-shirt",
"price": { "amount" : 50, "currency": "eur" },
"attributes" : [
{

"sizes": [ "s", "m", "l", "xl"],
"colors": ["ALL", "Batique"]

}]
}

]

This JSON must be deserialized, and the information required to create a list of Shop-
pingCart items needs to be read from it. The array returned from Product Catalog is
formatted by the microservice’s API. To avoid tight coupling between microservices,
only the ProductCatalogClient class knows anything about the API of the Product
Catalog microservice. That means ProductCatalogClient is responsible for translat-
ing the data received from the microservice into types for the ShoppingCart project.
In this case, you need a list of ShoppingCartItem objects. The following listing shows
the code for deserializing and translating the response data.

private static async Task<IEnumerable<ShoppingCartItem>>
ConvertToShoppingCartItems(HttpResponseMessage response)

{
response.EnsureSuccessStatusCode();
var products =

JsonConvert.DeserializeObject<List<ProductCatalogueProduct>>(
await response.Content.ReadAsStringAsync().ConfigureAwait(false));

return
products

.Select(p => new ShoppingCartItem(
int.Parse(p.ProductId),
p.ProductName,
p.ProductDescription,
p.Price

));
}

private class ProductCatalogProduct
{

public string ProductId { get; set; }
public string ProductName { get; set; }
public string ProductDescription { get; set; }
public Money Price { get; set; }

}

Listing 2.10 Extracting data from the response

Uses Json.NET to deserialize
the JSON from the Product

Catalog microservice

Creates a ShoppingCartItem for 
each product in the response

Uses a private 
class to represent 
the product data

 



46 CHAPTER 2 A basic shopping cart microservice

If you compare listings 2.9 and 2.10, you may notice that there are more properties in
the response than in the ProductCatalogProduct class. This is because the Shopping
Cart microservice doesn’t need all the information, so there’s no reason to read the
remaining properties. Doing so would only introduce unnecessary coupling. I’ll
return to this topic in chapters 4, 5, and 7.

 The following listing combines the code that requests the product information
and the code that parses the response. This method makes the HTTP GET request and
translates the response to the domain of Shopping Cart.

private async Task<IEnumerable<ShoppingCartItem>>
GetItemsFromCatalogueService(int[] productCatalogueIds)

{
var response = await
RequestProductFromProductCatalogue(productCatalogueIds)
.ConfigureAwait(false);

return await ConvertToShoppingCartItems(response)
.ConfigureAwait(false);

}

The ProductCatalogClient is almost finished. The only part missing is the code that
handles an HTTP request failure. 

2.2.5 Adding a failure-handling policy

Remote calls can fail. Not only can they fail, but when running a distributed system at
scale, remote calls often do fail. You may not expect the call from Shopping Cart to
Product Catalog to fail often, but in an entire system of microservices, there will often
be a failing remote call somewhere in the system.

 Remote calls fail for many reasons: the network can fail, the call could be mal-
formed, the remote microservice might have a bug, the server where the call is han-
dled may fail during processing, or the remote microservice might be in the middle of
a redeploy. In a system of microservices, you must expect failures and design a level of
resilience around every place remote calls are made. This is an important topic, and
I’ll go into more detail in chapter 6.

 The level of resilience needed around a particular remote call depends on the
business requirements for the microservice making the call. The call to the Product
Catalog microservice from the Shopping Cart microservice is important; without the
product information, the user can’t add items to their shopping cart, which means the
e-commerce site can’t sell the items to the user. On the other hand, product informa-
tion doesn’t change often, so you could cache it in Shopping Cart and only request it
from Product Catalog when the cache doesn’t already contain the information. Cach-
ing is a good strategy:

Listing 2.11 Fetching products and converting them to shopping cart items

 



47Implementing the Shopping Cart microservice

 It makes Shopping Cart more resilient to failures in Product Catalog.
 The Shopping Cart microservice will perform better when the product informa-

tion is present in the cache.
 Fewer calls made from the Shopping Cart microservice mean less stress is put

on the Product Catalog microservice.

For now, you won’t implement caching; we’ll return to the subject of caching for the
sake of robustness in chapter 6.

 Even with caching in place, some calls from Shopping Cart to Product Catalog are
still made. For these calls, you may decide that the best strategy for handling failed
calls is to retry the call a couple of times and then give up and fail to add any items to
the shopping cart. For this chapter, you’ll implement a simple retry policy for han-
dling failing requests. You’ll use the Polly library, which you’ll install in the Shopping-
Cart project as a NuGet Package.

NOTE Polly and failure-handling strategies are described in much more detail
in chapter 6.

Using a Polly policy involves these two steps:

1 Declare the policy.
2 Use the policy to execute the remote call.

As you can see in the following listing, Polly’s API makes both these steps easy.

private static Policy exponentialRetryPolicy =
Policy
.Handle<Exception>()
.WaitAndRetryAsync(

3,
attempt => TimeSpan.FromMilliseconds(100 * Math.Pow(2, attempt)));

public async Task<IEnumerable<ShoppingCartItem>>
GetShoppingCartItems(int[] productCatalogIds) =>
exponentialRetryPolicy

.ExecuteAsync(async () =>
await GetItemsFromcatalogService(productCatalogIds)

.ConfigureAwait(false));

This policy around the call to the Product Catalog microservice is simple: in case of
failure, retry the call at most three times. And for each failure, double the amount of
waiting time before making the next attempt.

Listing 2.12 Microservice error-handling policy

Uses Polly’s fluent API to 
set up a retry policy with 
an exponential back-off

Wraps calls to the Product
Catalog microservice in

the retry policy

 



48 CHAPTER 2 A basic shopping cart microservice

 This completes the implementation of ProductCatalogClient. Even though in
has fewer than 100 lines of code, it does a lot: it builds up the HTTP GET request and
executes it. It parses the response from Product Catalog and translates it into the
shopping cart domain. And it contains the retry policy used for these calls. Next, let’s
tackle the event feed. 

2.2.6 Implementing a basic event feed

The Shopping Cart microservice can now store shopping carts and add items to them.
The items include product information from the Product Catalog microservice. Shop-
ping Cart also has an API for other microservices that allows them to add items to or
delete items from shopping carts and read the contents of a shopping cart.

 The piece missing is the event feed. Shopping Cart needs to publish events about
changes to shopping carts, and other microservices can subscribe to these events and
react to them as required. In the case of items being added to a shopping cart, fig-
ure 2.9 (repeated from chapter 1) illustrates how the Recommendations microser-
vice and the Shopper Tracking microservice base part of their functionality on
events from the Shopping Cart microservice.

In this section, you’ll implement the EventFeed and Shopping Cart domain model
components highlighted in figure 2.10. (Chapter 4 returns to the implementation of
event feeds and event subscribers.) The domain model is responsible for raising
events, and EventFeed allows other microservices to read the events that the Shopping
Cart microservice has published.

 
 
 

6a. Publish ItemAddedtoCart event

6. Update user’s cartShopping Cart
microservice Shopping

Cart store

Recommendations
store

Recommendations
microservice

Shopper
Tracking store

Shopper Tracking
microservice

12. Asynchronously read 
      ItemAddedToCart event

Figure 2.9 The Shopping Cart microservice publishes events about changes to shopping carts to an 
event feed. The Recommendations and Shopper Tracking microservices subscribe to these events and 
react as events arrive.

 



49Implementing the Shopping Cart microservice

Implementing the event feed involves these steps:

 Raise events. The code in the Shopping Cart domain model raises events when
something significant (according to the business rules) happens. Significant
events are when items are added to or removed from a shopping cart.

 Store events. The events raised by the Shopping Cart domain model are stored in
the microservice’s data store.

 Publish events. Implementing an event feed allows other microservices to sub-
scribe by polling.

We’ll work through each of these in turn.

RAISING AN EVENT

In order to be published, events must first be raised. It’s usually the domain code in a
microservice that raises events, and that’s the case in the Shopping Cart microservice.
When items are added to a shopping cart, the ShoppingCart domain object raises an
event by calling the Raise method on IEventStore and providing the data for the event.

public void AddItems(
IEnumerable<ShoppingCartItem> shoppingCartItems,
IEventStore eventStore)

{
foreach (var item in shoppingCartItems)
if (this.items.Add(item))

eventStore.Raise(
"ShoppingCartItemAdded",
new { UserId, item });

}

Listing 2.13 Raising events

EventStore
Shopping Cart 
domain model

HTTP API: accessible from
other microservices

HTTP API module

Event feed module

• Endpoint to get a shopping cart
• Endpoint to add items to a shopping cart
• Endpoint to delete an item from a shopping cart

ShoppingCartStore

ProductCatalogClient

Shopping Cart microservice

Shopping
Cart store

Figure 2.10 The Shopping Cart microservice event feed publishes events to the rest of the e-commerce system.

Raises an event through the 
eventStore for each item.

 



50 CHAPTER 2 A basic shopping cart microservice

From the point of view of the domain code, raising an event is just a matter of calling
the Raise method on an object that implements the IEventStore interface. The
ShoppingCart domain object also raises an event when an item is deleted. The code
for raising that event is almost identical, and I’ll leave it to you to implement it. 

STORING AN EVENT

The events raised by the domain code aren’t published to other microservices directly.
Instead, they’re stored and then published asynchronously. In other words, all Event-
Store does when an event is raised is store the event in a database, as shown in listing 2.14.
As with other database code in this chapter, I’ll leave it to your imagination. The important
thing to understand is that every event is stored as a separate entry in the event store data-
base, and each event gets a monotonically increasing sequence number.

public void Raise(string eventName, object content)
{

var seqNumber = database.NextSequenceNumber();
database.Add(
new Event(

seqNumber,
DateTimeOffset.UtcNow,
eventName,
content));

}

EventStore stores every incoming event and keeps track of the order in which they
arrive. We’ll return to the subject of event stores in chapter 5, where we’ll look more
at implementing them. 

A SIMPLE EVENT FEED

Once events are stored, they’re ready to be published—in a sense, they are published. Even
though one microservice subscribes to events from another microservice, an event feed
works by having subscribers ask for new events periodically. Because subscribers are
responsible for asking for new events, all you need to do in the Shopping Cart microservice
is add an HTTP endpoint that allows subscribers to request events. A subscriber can, for
example, issue the following request to get all events newer than event number 100:

GET /events?start=100 HTTP/1.1
Host: shoppingcart.my.company.com
Accept: application/json

Or, if the subscriber wants to limit the number of incoming events per call, it can add
an end argument to the request:

GET /events?start=100&end=200 HTTP/1.1
Host: shoppingcart.my.company.com
Accept: application/json

Listing 2.14 Storing event data in a database

Gets a sequence 
number for the event

 



51Implementing the Shopping Cart microservice

Place the implementation of this /events endpoint in a new Nancy module, as shown
in the following listing. The endpoint takes an optional starting point and an optional
ending point, allowing other microservices to request ranges of events.

namespace ShoppingCart.EventFeed
{

using Nancy;

public class EventsFeedModule : NancyModule
{
public EventsFeedModule(IEventStore eventStore) : base("/events")
{

Get("/", _ =>
{

long firstEventSequenceNumber, lastEventSequenceNumber;
if (!long.TryParse(this.Request.Query.start.Value,

out firstEventSequenceNumber))
firstEventSequenceNumber = 0;

if (!long.TryParse(this.Request.Query.end.Value,
out lastEventSequenceNumber))
lastEventSequenceNumber = long.MaxValue;

return
eventStore.GetEvents(

firstEventSequenceNumber,
lastEventSequenceNumber);

});
}

}
}

EventsModule mostly uses Nancy features that you’ve already encountered. The only
new bit is that the start and end values are read from query string parameters. As
with segments in the URL path, Nancy provides easy access to query string parameters
through a dynamic object: Request.Query.

 EventsFeedModule uses the event store to filter out events between the start and
end values from the client. Although filtering is probably best done at the database
level, the following simple implementation illustrates it well.

public IEnumerable<Event> GetEvents(
long firstEventSequenceNumber,
long lastEventSequenceNumber) =>
database

.Where(e =>
e.SequenceNumber >= firstEventSequenceNumber &&
e.SequenceNumber <= lastEventSequenceNumber)

.OrderBy(e => e.SequenceNumber);

Listing 2.15 Exposing events to other microservices

Listing 2.16 Filtering events based on the start and end points

Reads the start 
and end values 
from a query 
string parameter

Returns the raw list of events. 
Nancy takes care of serializing the 
events into the response body.

 



52 CHAPTER 2 A basic shopping cart microservice

With the /events endpoint in place, microservices that want to subscribe to events
from the Shopping Cart microservice can do so by polling the endpoint. Subscribers
can—and should—use the start and end query string parameters to make sure they
only get new events. If Shopping Cart is down when a subscriber polls, the subscriber
can ask for the same events again later. Likewise, if a subscriber goes down for a while,
it can catch up with events from Shopping Cart by asking for events starting from the
last event it saw. As mentioned, this isn’t a full-fledged implementation of an event
feed, but it gets you to the point that microservices can subscribe to events, and the
code is simple.

 You’ve now completed the version 1 implementation of your first microservice. As
you can see, a microservice is small and has a narrow focus: it provides just one busi-
ness capability. You can also see that microservice code tends to be simple and easy to
understand. This is why you can expect to create new microservices and replace exist-
ing ones quickly. 

2.3 Running the code
Now that all the code for the Shopping Cart microservice is in place, you can run it
the same way you ran the example in chapter 1: from within Visual Studio, or from the
command line with dotnet. You can test out all the endpoints with Postman or a simi-
lar tool. When you first try to fetch a shopping cart with an HTTP GET to /shopping-
cart/123, the cart will be empty. Try adding some items to it with an HTTP POST to
/shoppingcart/123/items and then fetching it again; the response should contain the
added items. You can also look at the event feed at /events, and you should see events
for each added item.

WARNING I haven’t shown implementations of EventStore or Shopping-
CartStore. If you haven’t created your own implementations of these, your
microservice won’t work. 

2.4 Summary
 Implementing a complete microservice doesn’t take much code. The Shopping

Cart microservice has only the following:
– Two short Nancy modules
– A simple ShoppingCart domain class
– A client class for calling the Product Catalog microservice
– Two straightforward data access classes: ShoppingCartDataStore and Event-

Store (not shown in this chapter)
 Nancy makes it simple to implement HTTP APIs. The route-definition API that

Nancy provides makes it easy to add endpoints to a microservice. Just add a
route definition and a handler—like Get("/hello", _ ? "world")—to the
constructor of a Nancy module, and Nancy will automatically discover it and
route requests to the handler.

 



53Summary

 Nancy automatically handles serializing response data and deserializing request
data. In the application code, you can return any serializable object from a han-
dler, or you can use model binding to have request data deserialized.

 Out of the box, Nancy supports XML and JSON for both request and response
data.

 You should always expect that other microservices may be down. To prevent
errors from propagating, each remote call should be wrapped in a policy for
handling failure.

 The Polly library is useful for implementing failure-handling policies and wrap-
ping them around remote calls.

 Implementing a basic event feed is simple and enables other microservices to
react to events. The poor man’s event feed implemented in this chapter is just a
short Nancy module.

 Domain model code is usually responsible for raising events, which are then
stored in an event store and published through an event feed.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Part 2

Building microservices

In this part of the book, you’ll learn how to design and code a microservice.
The assorted diverse topics all go into designing and coding good, maintainable,
reliable microservices:

 Chapter 3 explains how to slice and dice a system into a cohesive set of
microservices.

 Chapter 4 shows you how microservices can collaborate to provide func-
tionality for end users. You’ll also be introduced to three categories of col-
laboration and when to use each of them.

 Chapter 5 explores where the data goes in a microservice system and
which microservices should take responsibility for which data.

 Chapter 6 teaches you some simple techniques to make a microservice sys-
tem more robust than it would otherwise be. Using these techniques, you
can create a system that keeps running in the face of network failures and
individual microservice crashes.

 Chapter 7 turns to testing. You’ll learn how to create an effective auto-
mated test suite for a microservice system, all the way from broad system-
level tests to narrowly focused unit tests.

By the end of part 2, you’ll know how to design microservices and how to use
.NET Core and Nancy to code them.

 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



57

Identifying and
 scoping microservices

To succeed with microservices, it’s important to be good at scoping each microser-
vice appropriately. If your microservices are too big, the turnaround on creating new
features and implementing bug fixes becomes too long. If they’re too small, the cou-
pling between microservices tends to grow. If they’re the right size but have the
wrong boundaries, coupling also tends to grow, and higher coupling leads to longer
turnaround. In other words, if you aren’t able to scope your microservices correctly,
you’ll lose much of the benefit microservices offer. In this chapter, I’ll teach you how
to find a good scope for each microservice so they stay loosely coupled.

 The primary driver in identifying and scoping microservices is business capabil-
ities; the secondary driver is supporting technical capabilities. Following these two

This chapter covers
 Scoping microservices for business capability

 Scoping microservices to support technical capabilities

 Managing when scoping microservices is difficult

 Carving out new microservices from existing ones

 



58 CHAPTER 3 Identifying and scoping microservices

drivers leads to microservices that align nicely with the list of microservice characteris-
tics from chapter 1:

 A microservice is responsible for a single capability.
 A microservice is individually deployable.
 A microservice consists of one or more processes.
 A microservice owns its own data store.
 A small team can maintain a handful of microservices.
 A microservice is replaceable.

Of these characteristics, the first two and last two can only be realized if the microser-
vice’s scope is good. There are also implementation-level concerns that come into
play, but getting the scope wrong will prevent the service from adhering to those four
characteristics.

3.1 The primary driver for scoping microservices: 
business capabilities
Each microservice should implement exactly one capability. For example, a Shopping
Cart microservice should keep track of the items in the user’s shopping cart. The pri-
mary way to identify capabilities for microservices is to analyze the business problem
and determine the business capabilities. Each business capability should be imple-
mented by a separate microservice.

3.1.1 What is a business capability?

A business capability is something an organization does that contributes to business
goals. For instance, handling a shopping cart on an e-commerce website is a business
capability that contributes to the broader business goal of allowing users to purchase
items. A given business will have a number of business capabilities that together make
the overall business function.

 When mapping a business capability to a microservice, the microservice models
the business capability. In some cases, the microservice implements the entire busi-
ness capability and automates it completely. In other cases, the microservice imple-
ments only part of the business capability and thus only partly automates it. In both
cases, the scope of the microservice is the business capability. 

Business capabilities and bounded contexts
Domain-driven design is an approach to designing software systems that’s based on
modeling the business domain. An important step is identifying the language used by
domain experts to talk about the domain. It turns out that the language used by
domain experts isn’t consistent in all cases.

 



59The primary driver for scoping microservices: business capabilities

3.1.2 Identifying business capabilities

A good understanding of the domain will enable you to understand how the business
functions. Understanding how the business functions means you can identify the busi-
ness capabilities that make up the business and the processes involved in delivering the
capabilities. In other words, the way to identify business capabilities is to learn about the
business’s domain. You can gain this type of knowledge by talking with the people who
know the business domain best: business analysts, the end users of your software, and so
on—all the people directly involved in the day-to-day work that drives the business.

 A business’s organization usually reflects its domain. Different parts of the domain
are handled by different groups of people, and each group is responsible for delivering
certain business capabilities; so, this organization can give you hints about how the
microservices should be scoped. For one thing, a microservice’s responsibility should
probably lie within the purview of only one group. If it crosses the boundary between
two groups, it’s probably too widely scoped and will be difficult to keep cohesive, lead-
ing to low maintainability. These observations are in line with what is known as Con-
way’s Law:1

Any organization that designs a system (defined broadly) will produce a design whose
structure is a copy of the organization’s communication structure.

Sometimes you may uncover parts of the domain where the organization and the
domain are at odds. In such situations, there are two approaches you can take, both of
which respect Conway’s Law. You can accept that the system can’t fully reflect the
domain, and implement a few microservices that aren’t well aligned with the domain
but are well aligned with the organization; or you can change the organization to
reflect the domain. Both approaches can be problematic. The first risks building

1 Melvin Conway, “How Do Committees Invent?” Datamation Magazine (April 1968).

(continued)
In different parts of a domain, different things are in focus, so a given word like cus-
tomer may have different focuses in different parts of the domain. For instance, for
a company selling photocopiers, a customer in the sales department may be a com-
pany that buys a number of photocopiers and may be primarily represented by a pro-
curement officer. In the customer service department, a customer may be an end
user having trouble with a photocopier. When modeling the domain of the photocopier
company, the word customer means different things in different parts of the model.

A bounded context in domain-driven design is a part of a larger domain within which
words mean the same things. Bounded contexts are related to but different from busi-
ness capabilities. A bounded context defines an area of a domain within which the
language is consistent. Business capabilities, on the other hand, are about what the
business needs to get done. Within one bounded context, the business may need to
get several things done. Each of these things is likely a business capability. 

 



60 CHAPTER 3 Identifying and scoping microservices

microservices that are poorly scoped and that might become highly coupled. The sec-
ond involves moving people and responsibilities between groups. Those kinds of
changes can be difficult. Your choice should be a pragmatic one, based on an assess-
ment of which approach will be least troublesome.

 To get a better understanding of what business capabilities are, it’s time to look at
an example. 

3.1.3 Example: point-of-sale system

The example we’ll explore in this chapter is a point-of-sale system, illustrated in fig-
ure 3.1. I’ll briefly introduce the domain, and then we’ll look at how to identify busi-
ness capabilities within it. Finally, we’ll consider in more detail the scope of one of
the microservices in the system.

 This point-of-sale system is used in all the stores of a large chain. Cashiers at the
stores interact with the system through a thin GUI client—it could be a tablet applica-
tion, a web application, or a purpose-built till (or register, if you prefer). The GUI cli-
ent is just a thin layer in front of the backend. The backend is where all the business
logic (the business capabilities) is implemented, and it will be our focus.

iPad
client

Web
client Till

iPad
client

Web
client Till

iPad
client

Web
client Till

Point-of-sales system backend

GUI clients used in stores

Price catalog
Coupons

Sales records Special offers

Invoices

iPad
client

Web
client Till

Figure 3.1 A point-of-sale system for a large chain of stores, consisting of a backend that 
implements all the business capabilities in the system and thin GUI clients used by cashiers 
in the stores. Microservices in the backend implement the business capabilities.

 



61The primary driver for scoping microservices: business capabilities

The system offers cashiers a variety of functions:

 Scan products and add them to the invoice
 Prepare an invoice
 Charge a credit card via a card reader attached to the client
 Register a cash payment
 Accept coupons
 Print a receipt
 Send an electronic receipt to the customer
 Search in the product catalog
 Scan one or more products to show prices and special offers related to the

products

These functions are things the system does for the cashier, but they don’t directly
match the business capabilities that drive the point-of-sale system.

IDENTIFYING BUSINESS CAPABILITIES IN THE POINT-OF-SALE DOMAIN

To identify the business capabilities that drive the point-of-sale system, you need to
look beyond the list of functions. You must determine what needs to go on behind the
scenes to support the functionality.

 Starting with the “Search in the product catalog” function, an obvious business
capability is maintaining a product catalog. This is the first candidate for a business
capability that could be the scope of a microservice. Such a Product Catalog microser-
vice would be responsible for providing access to the current product catalog. The
product catalog needs to be updated every so often, but the chain of stores uses
another system to handle that functionality. The Product Catalog microservice would
need to reflect the changes made in that other system, so the scope of the Product
Catalog microservice would include receiving updates to the product catalog.

 The next business capability you might identify is applying special offers to
invoices. Special offers give the customer a discounted price when they buy a bundle
of products. A bundle may consist of a certain number of the same product at a
discounted price (for example, three for the price of two) or may be a combination
of different products (say, buy A and get 10% off B). In either case, the invoice
the cashier gets from the point-of-sale GUI client must take any applicable special
offers into account automatically. This business capability is the second candidate to
be the scope for a microservice. A Special Offers microservice would be responsible
for deciding when a special offer applies and what the discount for the customer
should be.

 Looking over the list of functionality again, notice that the system should allow
cashiers to “Scan one or more products to show prices and special offers related to the
products.” This indicates that there’s more to the Special Offers business capability
than just applying special offers to invoices: it also includes the ability to look up spe-
cial offers based on products.

 



62 CHAPTER 3 Identifying and scoping microservices

 If you continued the hunt for business capabilities in the point-of-sale system, you
might end up with this list:

 Product Catalog
 Price Catalog
 Price Calculation
 Special Offers
 Coupons
 Sales Records
 Invoice
 Payment

Figure 3.2 shows a map from functionalities to business capabilities. The map is a logi-
cal one, in the sense that it shows which business capabilities are needed to implement
each function, but it doesn’t indicate any direct technical dependencies. For instance,
the arrow from Prepare Invoice to Coupons doesn’t indicate a direct call from some
Prepare Invoice code in a client to a Coupons microservice. Rather, the arrow indi-
cates that in order to prepare an invoice, coupons need to be taken into account, so
the Prepare Invoice function depends on the Coupons business capability.

 I find creating this kind of map to be enlightening, because it forces me to think
explicitly about how each function is attained and also what each business capability

Price catalog

Product catalog

Coupons

Price calculation

Sales records

Special offers

Invoice

Payment

Scan goods and add to invoice

Search in product catalog

Prepare invoice

Scan goods to show price

Register cash payment

Charge credit card

Print receipt

Send electronic receipt

Accept coupons

Figure 3.2 The functions on the left depend on the business capabilities on the right. Each arrow 
indicates a dependency between a function and a capability.

 



63The primary driver for scoping microservices: business capabilities

must do. Finding the business capabilities in real domains can be hard work and often
requires a good deal of iterating. The list of business capabilities isn’t a static list made
at the start of development; rather, it’s an emergent list that grows and changes over
time as your understanding of the domain and the business grows and deepens.

 Now that we’ve gone through the first iteration of identifying business capabilities,
let’s take a closer look at one of these capabilities and how it defines the scope of a
microservice. 

THE SPECIAL OFFERS MICROSERVICE

The Special Offers microservice is based on the Special Offers business capability. To
narrow the scope of this microservice, we’ll dive deeper into this business capability
and identify the processes involved, illustrated in figure 3.3. Each process delivers part
of the business capability.

The Special Offers business capability is broken down into five processes. Four of
these are oriented toward the point-of-sale GUI clients. The fifth—tracking the use of
special offers—is oriented toward the business itself, which has an interest in which
special offers customers are taking advantage of.

 Implementing the business capability as a microservice means you need to do the
following:

 Expose the four client-oriented processes as API endpoints that other microser-
vices can call.

 Implement the usage-tracking process through an event feed. The business-
intelligence parts of the point-of-sale system can subscribe to these events and
use them to track which special offers are used by customers.

The components of the Special Offers microservice are shown in figure 3.4.

Find special
offers that apply to
a list of products

Apply special
offers to invoice

Recommend
special offers based on

a list of products

Track usage
of special offers

Find special
offers that a product

is part of

The Special Offers business capability

Prepare invoice

Figure 3.3 The Special Offers business capability includes a number of different processes.

 



64 CHAPTER 3 Identifying and scoping microservices

The components of the Special Offers microservice are similar to the components of
the Shopping Cart microservice in chapter 2, which is shown again in figure 3.5. This
is no coincidence. These are the components microservices typically consist of: an
HTTP API that exposes the business capability implemented by the microservice, an
event feed, a domain model implementing the business logic involved in the business
capability, a data store component, and a database. 

EventStore
Special Offers 
domain model

HTTP API: accessible from
other microservices

HTTP API module

Event feed module: used for tracking

• GetApplicableSpecialOffers (list of products)
• ApplySpecialOffers (invoice, special offers)
• GetPotentialOffers (product)
• GetRecommendedSpecialOffers
   (list of products)

SpecialOffersStore

Special Offers microservice

Special
Offers store

Figure 3.4 The processes in the Special Offers business capability are reflected in the implementation of the Special 
Offers microservice. The processes are exposed to other microservices through the microservice’s HTTP API.

EventStore
Shopping Cart 
domain model

HTTP API: accessible from
other microservices

HTTP API module

Event feed module

• Endpoint to get a shopping cart
• Endpoint to add items to a shopping cart
• Endpoint to delete an item from a shopping cart

ShoppingCartStore

ProductCatalogClient

Shopping Cart microservice

Shopping
Cart store

Figure 3.5 The components of the Shopping Cart microservice from chapter 2 are similar to the components of 
the Special Offers microservice.

 



65The secondary driver for scoping microservices: supporting technical capabilities

3.2 The secondary driver for scoping microservices: 
supporting technical capabilities
The secondary way to identify scopes for microservices is to look at supporting techni-
cal capabilities. A supporting technical capability is something that doesn’t directly con-
tribute to a business goal but supports other microservices, such as integrating with
another system or scheduling an event to happen some time in the future.

3.2.1 What is a technical capability?

Supporting technical capabilities are a secondary driver in scoping microservices
because they don’t directly contribute to the system’s business goals. They exist to sim-
plify and support the other microservices that implement business capabilities.

 Remember, one characteristic of a good microservice is that it’s replaceable; but if
a microservice that implements a business capability also implements a complex tech-
nical capability, it may grow too large and too complex to be replaceable. In such
cases, you should consider implementing the technical capability in a separate micros-
ervice that supports the original one. Before discussing how and when to identify sup-
porting technical capabilities, a couple of examples would probably be helpful. 

3.2.2 Examples of supporting technical capabilities

To give you a feel for what I mean by supporting technical capabilities, let’s consider
two examples: an integration with another system, and the ability to send notifications
to customers.

INTEGRATING WITH AN EXTERNAL PRODUCT CATALOG SYSTEM

In the example point-of-sale system, you identified the product catalog as a business
capability. I also mentioned that product information is maintained in another sys-
tem, external to the microservice-based point-of-sale system. That other system is an
Enterprise Resource Planning (ERP) system. This implies that the Product Catalog
microservice must integrate with the ERP system, as illustrated in figure 3.6. The inte-
gration can be handled in a separate microservice.

Other
microservices

SOAP request: 
Get all products in
“shirts” category

SOAP response:
XML array of 

“shirt” products

Query product
catalog Product Catalog

microservice
Enterprise resource

planning (ERP) system

Product data is pulled 
from the ERP system.

Figure 3.6 Product data flows from the ERP system to the Product Catalog microservice. The protocol used 
to get product information from the ERP system is defined by the ERP system. It could expose a SOAP web 
service for fetching the information, or it might export product information to a proprietary file format.

 



66 CHAPTER 3 Identifying and scoping microservices

Let’s assume that you aren’t in a position to make changes to the ERP system, so the
integration must be implemented using whatever interface the ERP system has. It
might use a SOAP web service to fetch product information, or it might export all the
product information to a proprietary file format. In either case, the integration must
happen on the ERP system’s terms. Depending on the interface the ERP system
exposes, this may be a smaller or larger task. In any case, it’s a task primarily con-
cerned with the technicalities of integrating with some other system, and it has the
potential to be at least somewhat complex. The purpose of this integration is to sup-
port the Product Catalog microservice.

 You’ll take the integration out of the Product Catalog microservice and implement
it in a separate ERP Integration microservice that’s responsible solely for that one inte-
gration, as illustrated in figure 3.7. You’ll do this for two reasons:

 By moving the technical complexities of the integration to a separate microser-
vice, you keep the scope of the Product Catalog microservice narrow and
focused.

 By using a separate microservice to deal with how the ERP data is formatted and
organized, you keep the ERP system’s view of what a product is separate from
the point-of-sale system. Remember that in different parts of a large domain,
there are different views of what terms mean. It’s unlikely that the Product Cat-
alog microservice and the ERP system agree on how the product entity is mod-
eled. A translation between the two views is needed and is best done by the new
microservice. In domain-driven-design terms, the new microservice acts as an
anti-corruption layer.

NOTE The anti-corruption layer is a concept borrowed from domain-driven
design. It can be used when two systems interact; it protects the domain
model in one system from being polluted with language or concepts from the
model in the other system.

SOAP request: 
Get all products in
“shirts” category

SOAP response:
XML array of 

“shirt” products

Product
data

Query
product
catalog

Product data flows to the
Product Catalog microservice
in a format that’s easy for the
Product Catalog microservice
to consume.

Product Catalog
microservice

ERP Integration
microservice

Enterprise resource
planning (ERP) system

Product data is pulled 
from the ERP system.

Other
microservices

Figure 3.7 The ERP Integration microservice supports the Product Catalog microservice by handling the 
integration with the ERP system. It translates between the way the ERP system exposes product data and 
the way the Product Catalog microservice consumes it.

 



67The secondary driver for scoping microservices: supporting technical capabilities

An added benefit of placing the integration in a separate microservice is that it’s a
good place to address any reliability issues related to integration. If the ERP system is
unreliable, the place to handle that is in the ERP Integration microservice. If the ERP
system is slow, the ERP Integration microservice can deal with that. Over time, you can
tweak the policies used in the ERP Integration microservice to address any reliability
issues with the ERP system without touching the Product Catalog microservice at all.
This integration with the ERP system is an example of a supporting technical capabil-
ity, and the ERP Integration microservice is an example of a microservice implement-
ing that capability. 

SENDING NOTIFICATIONS TO CUSTOMERS

Now let’s consider extending the point-of-sale system with the ability to send notifica-
tions about new special offers to registered customers via email, SMS, or push notifica-
tion to a mobile app. You can put this capability into one or more separate
microservices.

 At the moment, the point-of-sale system doesn’t know who the customers are. To
drive better customer engagement and customer loyalty, the company decides to start
a small loyalty program where customers can sign up to be notified about special
offers. The customer loyalty program is a new business capability and will be the
responsibility of a new Loyalty Program microservice. Figure 3.8 shows this microser-
vice, which is responsible for notifying registered customers every time a new special
offer is available.

As part of the registration process, customers can choose to be notified by email, SMS,
or, if they have the company’s mobile app, push notification. This introduces some
complexity in the Loyalty Program microservice in that it must not only choose which
type of notification to use but also deal with how each one works. As a first step, you’ll
introduce a supporting technical microservice for each notification type. This is
shown in figure 3.9.

 This is better. The Loyalty Program microservice doesn’t have to implement all
the details of dealing with each type of notification, which keeps the microservice’s

Notify registered customers
about special offers

Subscribe to events

Special Offers
microservice

Loyalty Program
microservice

Figure 3.8 The Loyalty Program microservice subscribes to events from the Special 
Offers microservice and notifies registered customers when new offers are available.

 



68 CHAPTER 3 Identifying and scoping microservices

scope narrow and focused. The situation isn’t perfect, though: the microservice still
has to decide which of the supporting technical microservices to call for each regis-
tered customer.

 This leads you to introducing one more microservice, which acts as a front for the
three microservices handling the three types of notifications. This new Notifications
microservice is depicted in figure 3.10 and is responsible for choosing which type of
notification to use each time a customer needs to be notified. This isn’t really a busi-
ness capability, although it’s less technical than dealing with sending SMSs. I consider
the Notifications microservice a supporting technical microservice rather than one
implementing a business capability.

 This example of a supporting technical capability differs from the previous exam-
ple of the ERP integration in that other microservices may also need to send notifica-
tions to specific customers. For instance, one of the functionalities of the point-of-
sales system is to send the customer an electronic receipt. The microservice in charge

Subscribe to events

Send SMS
to customer

Request to
send SMS

Send email
to customer

Request to
send email

Send push
notification to

customer

Request
to send push
notification

Special Offers
microservice

Loyalty Program
microservice

Email Notification
microservice

SMS Notification
microservice

Push Notification
microservice

Figure 3.9 To avoid bogging down the Loyalty Program microservice in technical details for handling each type 
of notification, you’ll introduce three supporting technical microservices, one for each type of notification.

Send SMS
to customer

Request to
send SMS

Request
to send

notification

Send email
to customerRequest to

send email

Send push
notification to

customer

Request
to send push
notification

Notifications
microservice

Email Notification
microservice

SMS Notification
microservice

Push Notification
microservice

Subscribe to events

Special Offers
microservice

Loyalty Program
microservice

Figure 3.10 To remove more complexity from the Loyalty Program microservice, you’ll introduce a Notifications 
microservice that’s responsible for choosing a type of notification based on customer preferences. Introducing this 
microservice has the added benefit of making notifications easier to use from other microservices.

 



69What to do when the correct scope isn’t clear

of that business capability can also take advantage of the Notifications microservice.
Part of the motivation for moving this supporting technical capability to separate
microservices is that you can reuse the implementation. 

3.2.3 Identifying technical capabilities

When you introduce supporting technical microservices, your goal is to simplify the
microservices that implement business capabilities. Sometimes—such as with sending
notifications—you identify a technical capability that several microservices need, and
you turn that into a microservice of its own, so other microservices can share the
implementation. Other times—as with the ERP integration—you identify a technical
capability that unduly complicates a microservice and turn that capability into a
microservice of its own. In both cases, the microservices implementing business capa-
bilities are left with one less technical concern to take care of.

 When deciding to implement a technical capability in a separate microservice, be
careful that you don’t violate the microservice characteristic of being individually
deployable. It makes sense to implement a technical capability in a separate microser-
vice only if that microservice can be deployed and redeployed independently of any
other microservices. Likewise, deploying the microservices that are supported by the
microservice providing the technical capability must not force you to redeploy the
microservice implementing the technical capability.

 Identifying business capabilities and microservices based on business capabilities is
a strategic exercise, but identifying technical supporting capabilities that could be
implemented by separate microservices is an opportunistic exercise. The question of
whether a supporting technical capability should be implemented in its own microser-
vice is about what will be easiest in the long run. You should ask these questions:

 If the supporting technical capability stays in a microservice scoped to a busi-
ness capability, is there a risk that the microservice will no longer be replaceable
with reasonable effort?

 Is the supporting technical capability implemented in several microservices
scoped to business capabilities?

 Will a microservice implementing the supporting capability be individually
deployable?

 Will all microservices scoped to business capabilities still be individually deployable
if the supporting technical capability is implemented in a separate microservice?

If your answer is “Yes” to the last two questions and to at least one of the others, you
have a good candidate for a microservice scope. 

3.3 What to do when the correct scope isn’t clear
At this point, you may be thinking that scoping microservices correctly is difficult: you
need to get the business capabilities just right, which requires a deep understanding of
the business domain, and you also have to judge the complexity of supporting technical

 



70 CHAPTER 3 Identifying and scoping microservices

capabilities correctly. And you’re right: it is difficult, and you will find yourself in situa-
tions where the right scoping for your microservices isn’t clear.

 This lack of clarity can have several causes, including the following:

 Insufficient understanding of the business domain—Analyzing a business domain
and building up a deep knowledge of that domain is difficult and time consum-
ing. You’ll sometimes need to make decisions about the scope of microservices
before you’ve been able to develop sufficient understanding of the business to
be certain you’re making the correct decisions.

 Confusion in the business domain—It’s not only the development side that can be
unclear about the business domain. Sometimes the business side is also unclear
about how the business domain should be approached. Maybe the business is
moving into new markets and must learn a new domain along the way. Other
times, the existing business market is changing because of what competitors are
doing or what the business itself is doing. Either way, on both the business side
and the development side, the business domain is ever-changing, and your
understanding of it is emergent.

 Incomplete knowledge of the details of a technical capability—You may not have access
to all the information about what it takes to implement a technical capability. For
instance, you may need to integrate with a badly documented system, in which
case you’ll only know how to implement the integration once you’re finished.

 Inability to estimate the complexity of a technical capability—If you haven’t previously
implemented a similar technical capability, it can be difficult to estimate how
complex the implementation of that capability will be.

None of these problems means you’ve failed. They’re all situations that occur time
and again. The trick is to know how to move forward in spite of the lack of clarity. In
this section, I’ll discuss what to do when you’re in doubt.

3.3.1 Starting a bit bigger

When in doubt about the scope of a microservice, it’s best to err on the side of making
the microservice’s scope bigger than it would be ideally. This may sound weird—I’ve
talked a lot about creating small, narrowly focused microservices and about the bene-
fits that come from keeping microservices small. And it’s true that significant benefits
can be gained from keeping microservices small and narrowly focused. But you must
also look at what happens if you err on the side of too narrow a scope.

 Consider the Special Offers microservice discussed earlier in this chapter. It imple-
ments the Special Offers business capability in a point-of-sale system and includes five
different business processes, as illustrated in figure 3.3 and reproduced on the left
side of figure 3.11. If you were uncertain about the boundaries of the Special Offers
business capability and chose to err on the side of too small a scope, you might split
the business capability as shown on the right side of figure 3.11.

 



71What to do when the correct scope isn’t clear

If you base the scope of your microservices on only part of the Special Offers business
capability, you’ll incur some significant costs:

 Data and data-model duplication between the two microservices—Both parts of the
implementation need to store all the special offers in their data stores.

 Unclear factoring of responsibility—One part of the divided business capability can
answer whether a given product is part of any special offers, whereas the other
part can recommend special offers to customers based on past purchases.
These two functions are closely related, and you’ll quickly get into a situation
where it’s unclear in which microservice a piece of code belongs.

Find special
offers that apply to
a list of products

Apply special
offers to invoice

Recommend
special offers based on

a list of products

Track usage
of special offers

Find special
offers that a product

is part of

The Special Offers business capability

The Special Offers business capability
wrongly split over two microservices

Apply special
offers to invoice

Recommend
special offers based on

a list of products
Track usage

of special offers

Unclear factoring of responsibility: two processes
with related functionality that need the same data
and the same search logic

Find special
offers that apply to
a list of products

Find special
offers that a product

is part of

Figure 3.11 If you make the scope of a microservice too small, you’ll find that a single business 
capability becomes split over several highly coupled parts.

 



72 CHAPTER 3 Identifying and scoping microservices

 Obstacles to refactoring the code for the business capability—This can occur because
the code is spread across the code bases for the two microservices. Such cross-
code base refactorings are difficult because it’s hard to get a complete picture
of the consequences of the refactoring and because tooling support is poor.

 Difficulty deploying the two microservices independently—After refactoring or imple-
menting a feature that involves both microservices, the two microservices may
need to be deployed at the same time or in a particular order. Either way, cou-
pling between versions of the two microservices violates the characteristic of
microservices being individually deployable. This makes testing, deployment,
and production monitoring more complicated.

These costs are incurred from the time the microservices are first created until you’ve
gained enough experience and knowledge to more correctly identify the business capa-
bility and a better scope for a microservice (the entire Special Offers business capability,
in this case). Added to those costs is the fact that difficulty refactoring and implementing
changes to the business capability will result in you doing less of both, so it will take you
longer to learn about the business capability. In the meantime, you pay the cost of the
duplicated data and data model and the cost of the lack of individual deployability.

 We’ve established that preferring to err on the side of too narrow a scope easily
leads to scoping microservices in a way that creates costly coupling between the
microservices. To see if this is better or worse than erring on the side of too big a
scope, we need to look at the costs of that approach.

 If you err on the side of bigger scopes, you might decide on a scope for the Special
Offers microservice that also includes handling coupons. The scope of this bigger
Special Offers microservice is shown in figure 3.12.

Apply special
offers to invoice

Recommend
special offers based on

a list of products

Track usage
of special offers

Issue coupon
code

Apply coupon
to invoice

Check if coupon
code is valid

The Special Offers and Coupons business capabilities
both included in the Special Offers microservice

No data and no logic are
shared across this line.

Find special
offers that apply to
a list of products

Find special
offers that a product

is part of

Figure 3.12 If you choose to err on the side of bigger scopes, you might decide to include the handling of 
coupons in the Special Offers business capability.

 



73What to do when the correct scope isn’t clear

There are costs associated with including too much in the scope of a microservice:

 The code base becomes bigger and more complex, which can lead to changes
being more expensive.

 The microservice is harder to replace.

These costs are real, but they aren’t overwhelming when the scope of the microservice
is still fairly small. Beware, though, because these costs grow quickly with the size of
each microservice’s scope and become overwhelming when the scope is so big that it
approaches a monolithic architecture.

 Nevertheless, refactoring within one code base is much easier than refactoring
across two code bases. This gives you a better chance to experiment and to learn
about the business capability through experiments. If you take advantage of this
opportunity, you can arrive at a good understanding of both the Special Offers busi-
ness capability and the Coupons business capability more quickly than if you scoped
your microservices too narrowly.

 This argument holds true when your microservices are a bit too big, but it falls
apart if they’re much too big, so don’t get lazy and lump several business capabilities
together in one microservice. You’ll quickly have a large, hard-to-manage code base
with many of the drawbacks of a full-on monolith.

 All in all, microservices that are slightly bigger than they should ideally be are both
less costly and allow for more agility than if they’re slightly smaller than they should
ideally be. Thus, the rule of thumb is to err on the side of slightly bigger scopes.

 Once you accept that you’ll sometimes—if not often—be in doubt about the best
scope for a microservice and that in such cases you should lean toward a slightly bigger
scope, you can also accept that you’ll sometimes—if not often—have microservices in
your system that are somewhat larger than they should ideally be. This means you should
expect to have to carve new microservices out of existing ones from time to time. 

3.3.2 Carving out new microservices from existing microservices

When you realize that one of your microservices is too big, you’ll need to look at how
to carve a new microservice out of it. First you need to identify a good scope for both
the existing microservice and the new microservice. To do this, you can use the drivers
described earlier in this chapter.

 Once you’ve identified the scopes, you must look at the code to see if the way it’s
organized aligns with the new scopes. If not, you should begin refactoring toward that
alignment. Figure 3.13 illustrates on a high level the refactorings needed to prepare
to carve out a new microservice from an existing one. First, everything that will even-
tually go into the new microservice is moved to its own class library. Then, all commu-
nication between code that will stay in the existing microservice and code that will be
moved to the new microservice is refactored to go through an interface. This inter-
face will become part of the public HTTP interface of the two microservices once
they’re split apart.

 



74 CHAPTER 3 Identifying and scoping microservices

When you’ve reached step 2 in figure 3.13, the new microservice can be split out from
the old one with a manageable effort. Create a new microservice, move the code that
needs to be carved out of the existing microservice over to the new microservice, and
change the communication between the two parts to go over HTTP. 

Step 0: Special Offers microservice
including Coupons capability

Step 1: Special Offers microservice
still includes Coupons capability, but
Coupons capability is refactored into
a separate project.

Step 2: Special Offers microservice
still includes Coupons capability, but
Coupons capability is refactored and
all communication is going through
a public API.

Public API

Figure 3.13 Preparing to carve out a new microservice by refactoring: first move everything belonging 
to the new microservice into its own project, and then make all communication go through a public API 
similar to the one the new microservice will end up having.

 



75Well-scoped microservices adhere to the microservice characteristics

3.3.3 Planning to carve out new microservices later

Because you consciously err on the side of making your microservices a bit too big
when you’re in doubt about the scope of a microservice, you have a chance to foresee
which microservices will have to be divided at some point. If you know a microservice
is likely to be split later, it would be nice if you could plan for that split in a way that
will save you one or two of the refactoring steps shown in figure 3.13. It turns out you
can often make that kind of plan.

 Often you’ll be unsure whether a particular function is a separate business capabil-
ity, so you’ll follow the rule of thumb and include it in a larger business capability,
implemented within a microservice scoped to that larger business capability. But you
can remain conscious of the fact that this area might be a separate business capability.

 Think about the definition of the Special Offers business capability that includes
processes for dealing with coupons. You may well have been in doubt about whether
handling coupons was a business capability on its own, so the Special Offers business
capability was modeled as including all the processes shown in figure 3.12.

 When you first implement a Special Offers microservice scoped to the understand-
ing of the Special Offers business capability illustrated in figure 3.12, you don’t know
whether the coupons functionality will eventually be moved to a Coupons microser-
vice. You do know, however, that the coupons functionality isn’t as closely related to
the rest of the microservice as some of the other areas. It’s therefore a good idea to
put a clear boundary around the coupons code in the form a well-defined public API
and to put the coupons code in a separate class library. This is sound software design,
and it will also pay off if one day you end up carving out the coupons code to create a
new Coupons microservice. 

3.4 Well-scoped microservices adhere to the microservice 
characteristics
I’ve talked about scoping microservices by identifying business capabilities first and
supporting technical capabilities second. In this section, I’ll discuss how this approach
to scoping aligns with these four characteristics of microservices mentioned at the
beginning of this chapter:

 A microservice is responsible for a single capability.
 A microservice is individually deployable.
 A small team can maintain a handful of microservices.
 A microservice is replaceable.

NOTE It’s important to note that the relationship between the drivers for
scoping microservices and the characteristics of microservices goes both ways.
The primary and secondary drivers lead toward adhering to the characteris-
tics, but the characteristics also tell you whether you’ve scoped your microser-
vices well or need to push the drivers further to find better scopes for your
microservices.

 



76 CHAPTER 3 Identifying and scoping microservices

3.4.1 Primarily scoping to business capabilities leads to good microservices

The primary driver for scoping microservices is identifying business capabilities. Let’s
see how that makes for microservices that adhere to the microservice characteristics.

RESPONSIBLE FOR A SINGLE CAPABILITY

A microservice scoped to a single business capability by definition adheres to the first
microservice characteristic: it’s responsible for a single capability. As you saw in the
examples of identifying supporting technical capabilities, you have to be careful: it’s
easy to let too much responsibility slip into a microservice scoped to a business capa-
bility. You have to be diligent in making sure that what a microservice implements is
just one business capability and not a mix of two or more. You also have to be careful
about putting supporting technical capabilities in their own microservices. As long as
you’re diligent, microservices scoped to a single business capability adhere to the first
characteristic of microservices. 

INDIVIDUALLY DEPLOYABLE

Business capabilities are those that can be performed by largely independent groups
within an organization, so the business capabilities themselves must be largely inde-
pendent. As a result, microservices scoped to business capabilities are largely inde-
pendent. This doesn’t mean there’s no interaction between such microservices—
there can be a lot of interaction, both through direct calls between services and
through events. The point is that the interaction happens through well-defined pub-
lic interfaces that can be kept backward compatible. If implemented well, the interac-
tion is such that other microservices continue to work even if one has a short outage.
This means well-implemented microservices scoped to business capabilities are indi-
vidually deployable. 

REPLACEABLE AND MAINTAINABLE BY A SMALL TEAM

A business capability is something a small group in an organization can handle. This
limits its scope and thus also limits the scope of microservices scoped to business capa-
bilities. Again, if you’re diligent about making sure a microservice handles only one
business capability and that supporting technical capabilities are implemented in
their own microservices, the microservices’ scope will be small enough that a small
team can maintain at least a handful of microservices and a microservice can be
replaced fairly quickly if need be. 

3.4.2 Secondarily scoping to supporting technical capabilities leads to 
good microservices

The secondary driver for scoping microservices is identifying supporting technical
capabilities. Let’s see how that makes for microservices that adhere to the microser-
vice characteristics.

 



77Summary

RESPONSIBLE FOR A SINGLE CAPABILITY

Just as with microservices scoped to business capabilities, scoping a microservice to a
single supporting technical capability by definition means it adheres to the first char-
acteristic of microservices: it’s responsible for a single capability. 

INDIVIDUALLY DEPLOYABLE

Before you decide to implement a technical capability as a separate supporting techni-
cal capability in a separate microservice, you need to ask whether that new microser-
vice will be individually deployable. If the answer is “No,” you shouldn’t implement it
in a separate microservice. Again, by definition, a microservice scoped to a supporting
technical capability adheres to the second microservice characteristic. 

REPLACEABLE AND MAINTAINABLE BY A SMALL TEAM

Microservices scoped to a supporting technical capability tend to be narrowly and
clearly scoped. On the other hand, part of the point of implementing such capabilities
in separate microservices is that they can be complex. In other words, microservices
scoped to a supporting technical capability tend to be small, which points toward adher-
ing to the microservice characteristics of replaceability and maintainability; but the
code inside them may be complex, which makes them harder to maintain and replace.

 This is an area where there’s a certain back and forth between using supporting
technical capabilities to scope microservices on one hand, and the characteristics of
microservices on the other. If a supporting technical microservice is becoming so
complex that it will be hard to replace, this is a sign that you should probably look
closely at the capability and try to find a way to break it down further. As in the exam-
ple about notification (see section 3.2.2), it’s fine to have one supporting technical
microservice use others behind the scenes. 

3.5 Summary
 The primary driver in scoping microservices is identifying business capabilities.

Business capabilities are the things an organization does that contribute to ful-
filling business goals.

 You can use techniques from domain-driven design to identify business capabil-
ities. Domain-driven design is a powerful tool for gaining better and deeper
understanding of a domain. That kind of understanding enables you to identify
business capabilities.

 The secondary driver in scoping microservices is identifying supporting techni-
cal capabilities. A supporting technical capability is a technical function needed
by one or more microservices scoped to business capabilities.

 Supporting technical capabilities should be moved to their own microservices
only if they’re sufficiently complex to be a problem in the microservices they
would otherwise be part of, and if they can be individually deployed.

 



78 CHAPTER 3 Identifying and scoping microservices

 Identifying supporting technical capabilities is an opportunistic form of design.
You should only pull a supporting technical capability into a separate microser-
vice if it will be an overall simplification.

 When you’re in doubt about the scope of a microservice, lean toward making
the scope slightly bigger rather than slightly smaller.

 Because scoping microservices well is difficult, you’ll probably be in doubt some-
times. You’re also likely to get some of the scopes wrong in your first iteration.

 You must expect to have to carve new microservices out of existing ones from
time to time.

 You can use your doubt about scope to organize the code in your microservices
so that they lend themselves to carving out new microservices at a later stage.

 



79

Microservice collaboration

Each microservice implements a single capability; but to deliver end user function-
ality, microservices need to collaborate. Microservices can use three main commu-
nication styles for collaboration: commands, queries, and events. Each style has its
strengths and weaknesses, and understanding the trade-offs between them allows
you to pick the appropriate one for each microservice collaboration. When you get
the collaboration style right, you can implement loosely coupled microservices with
clear boundaries. In this chapter, I’ll show you how to implement all three collabo-
ration styles in code.

This chapter covers
 Understanding how microservices collaborate through 

commands, queries, and events

 Comparing event-based collaboration with collaboration 
based on commands and queries

 Implementing an event feed

 Implementing command-, query-, and event-based 
collaboration

 



80 CHAPTER 4 Microservice collaboration

4.1 Types of collaboration: commands, queries, and events
Microservices are fine grained and narrowly scoped. To deliver functionality to an end
user, microservices need to collaborate.

 As an example, consider the Loyalty Program microservice from the point-of-sale
system in chapter 3. The Loyalty Program microservice is responsible for the Loyalty
Program business capability. The program is simple: customers can register as users
with the loyalty program; once registered, they receive notifications about new special
offers and earn loyalty points when they purchase something. Still, the Loyalty Pro-
gram business capability depends on other business capabilities, and other business
capabilities depend on it. As illustrated in figure 4.1, the Loyalty Program microser-
vice needs to collaborate with a number of other microservices.

As stated in the list of microservice characteristics in chapter 1, a microservice is
responsible for a single capability; and as discussed in chapter 3, that single capability
is typically a business capability. End user functionalities—or use cases—often involve
several business capabilities, so the microservices implementing these capabilities
must collaborate to deliver functionality to the end user.

 When two microservices collaborate, there are three main styles:

 Commands—Commands are used when one microservice needs another micro-
service to perform an action. For example, the Loyalty Program microservice
sends a command to the Notifications microservice when it needs a notification
to be sent to a registered user.

 Queries—Queries are used when one microservice needs information from
another microservice. Because customers with many loyalty points receive a

Special Offers
microservice

Loyalty Program
microservice

API Gateway
microservice

Get loyalty
points by user

Get settings for
registered user

Register user

Update user
settings

Notifications
microservice

Invoice
microservice

Subscribe
to events

Get loyalty
points by user

Send special
offer notification

Figure 4.1 The Loyalty Program microservice collaborates with several other microservices. In some 
cases, the Loyalty Program microservice receives requests from other microservices; at other times, 
it sends requests to other microservices.

 



81Types of collaboration: commands, queries, and events

discount, the Invoice microservice queries the Loyalty Program microservice for
the number of loyalty points a user has.

 Events—Events are used when a microservice needs to react to something that
happened in another microservice. The Loyalty Program microservice sub-
scribes to events from the Special Offers microservice so that when a new spe-
cial offer is made available, it can have notifications sent to registered users.

The collaboration between two microservices can use one, two, or all three of these
collaboration styles. Each time two microservices need to collaborate, you must decide
which style to use. Figure 4.2 shows the collaborations of Loyalty Program again, but
this time identifying the collaboration style I chose for each one.

 Collaboration based on commands and queries should use relatively coarse-
grained commands and queries. The calls made between microservices are remote
calls, meaning they cross at least a process boundary and usually also a network. This
means calls between microservices are relatively slow. Even though the microservices
are fine grained, you must not fall into the trap of thinking of calls from one microser-
vice to another as being like function calls in a microservice.

 Furthermore, you should prefer collaboration based on events over collaboration
based on commands or queries. Event-based collaboration is more loosely coupled
than the other two forms of collaboration because events are handled asynchronously.
That means two microservices collaborating through events aren’t temporally cou-
pled: the handling of an event doesn’t have to happen immediately after the event is
raised. Rather, handling can happen when the subscriber is ready to do so. In con-
trast, commands and queries are synchronous and therefore need to be handled
immediately after they’re sent.

Special Offers
microservice

Loyalty Program
microservice

API Gateway
microservice

Query: Get loyalty
points by user

Query: Get settings
for registered user

Command: Register
user

Command: Update
user settings

Notifications
microservice

Invoice
microservice

Events: Subscribe
to events

Query: Get loyalty
points by user

Command:
Send special offer

notification

Figure 4.2 The Loyalty Program microservice uses all three collaboration styles: commands, queries, 
and events.

 



82 CHAPTER 4 Microservice collaboration

4.1.1 Commands and queries: synchronous collaboration

Commands and queries are both synchronous forms of collaboration. Both are imple-
mented as HTTP requests from one microservice to another. Queries are implemented
with HTTP GET requests, whereas commands are implemented with HTTP POST or PUT
requests.

 The Loyalty Program microservice can answer queries about registered users and
can handle commands to create or update registered users. Figure 4.3 shows the
command- and query-based collaborations that Loyalty Program takes part in.

 Figure 4.3 includes two different queries: “Get loyalty points for registered user”
and “Get settings for registered user.” You’ll handle both of these with the same end-
point that returns a representation of the registered user. The representation includes
both the number of loyalty points and the settings. You do this for two reasons: it’s
simpler than having two endpoints, and it’s also cleaner because the Loyalty Program
microservice gets to expose just one representation of the registered user instead of
having to come up with specialized formats for specialized queries.

 Two commands are sent to Loyalty Program in figure 4.3: one to register a new user,
and one to update an existing registered user. You’ll implement the first with an HTTP
POST and the second with an HTTP PUT. This is standard usage of POST and PUT HTTP
methods. POST is often used to create a new resource, and PUT is defined in the
HTTP specification to update a resource.

Loyalty Program
microservice

API Gateway
microservice

Query: Get loyalty
points by user

HTTP GET /users/123

Query: Get settings
for registered user

HTTP GET /users/123

Command: Register user
HTTP POST /users Command: Update

user settings
HTTP PUT /users/123

Notifications
microservice

Invoice
microserviceQuery: Get loyalty

points by user
HTTP GET /users/123

Command: Send special
offer notification

HTTP POST /notifications

Figure 4.3 The Loyalty Program microservice collaborates with three other microservices using 
commands and queries. The queries are implemented as HTTP GET requests, and the commands are 
implemented as HTTP POST or PUT requests. The command collaboration with the Notifications 
microservice is grayed out because I’m not going to show its implementation—it’s done exactly the 
same way as the other collaborations.

 



83Types of collaboration: commands, queries, and events

All in all, the Loyalty Program microservice needs to expose three endpoints:

 An HTTP GET endpoint at URLs of the form /users/{userId} that responds with a
representation of the user. This endpoint implements both queries in figure 4.3.

 An HTTP POST endpoint at /users/ that expects a representation of a user in
the body of the request and then registers that user in the loyalty program.

 An HTTP PUT endpoint at URLs of the form /users/{userId} that expects a rep-
resentation of a user in the body of the request and then updates an already-
registered user.

The Loyalty Program microservice is made up of the same set of standard components
you’ve seen before, as shown in figure 4.4. The endpoints are implemented in the
HTTP API component.

The other sides of these collaborations are microservices that most likely follow the
same standard structure, with the addition of a LoyaltyProgramClient component.
For instance, the Invoice microservice might be structured as shown in figure 4.5.

Loyalty Program
 domain model

HTTP API: accessible from
other microservices

HTTP API module

Event feed module
LoyaltyProgramStore

Loyalty Program microservice

Loyalty
Program

store
EventStore

Figure 4.4 The endpoints exposed by the Loyalty Program microservice are implemented in the HTTP 
API component.

Invoice
storeEventStoreInvoice

 domain model

HTTP API: accessible from
other microservices

HTTP API module

Event feed module
InvoiceStore

Invoice microservice

LoyaltyProgramClient

Figure 4.5 The Invoice microservice has a LoyaltyProgramClient component responsible 
for calling the Loyalty Program microservice.

 



84 CHAPTER 4 Microservice collaboration

The representation of a registered user that Loyalty Program will expect to receive in
the commands and with which it will respond to queries is a serialization of the follow-
ing LoyaltyProgramUser class.

public class LoyaltyProgramUser
{

public int Id { get; set; }
public string Name { get; set; }
public int LoyaltyPoints { get; set; }
public LoyaltyProgramSettings Settings { get; set; }

}

public class LoyaltyProgramSettings
{

public string[] Interests { get; set; }
}

The definitions of the endpoints and the two classes in this code effectively form the con-
tract that the Loyalty Program microservice publishes. The LoyaltyProgramClient
component in the Invoice microservice adheres to this contract when it makes calls to
the Loyalty Program microservice, as illustrated in figure 4.6.

 Commands and queries are powerful forms of collaboration, but they both suffer
from being synchronous by nature. As mentioned earlier, that creates coupling
between the microservices that expose the endpoints and the microservices that
call the endpoints. Next, we’ll turn our attention to asynchronous collaboration
through events. 

Listing 4.1 The Loyalty Program microservice’s user representation

Invoice
 domain model

Invoice microservice

HTTP GET
/users/123

HTTP API: accessible from
other microservices

HTTP API module

Event feed module

Loyalty Program microservice

LoyaltyProgramClient

Figure 4.6 The LoyaltyProgramClient component in the Invoice microservice is responsible for making 
calls to the Loyalty Program microservice. It translates between the contract published by Loyalty Program and 
the domain model of Invoice.

 



85Types of collaboration: commands, queries, and events

4.1.2 Events: asynchronous collaboration

Collaboration based on events is asynchronous. That is, the microservice that publishes
the events doesn’t call the microservices that subscribe to the events. Rather, the sub-
scribers poll the microservice that publishes events for new events when they’re ready
to process them. That polling is what I’ll call subscribing to an event feed. Although the
polling is made out of synchronous requests, the collaboration is asynchronous because
publishing events is independent of any subscriber polling for events.

 In figure 4.7, you can see the Loyalty Program microservice subscribing to events from
the Special Offers microservice. Special Offers can publish events whenever something
happens in its domain, such as every time a new special offer becomes active. Publishing
an event, in this context, means storing the event in Special Offers. Loyalty Program won’t
see the event until it makes a call to the
event feed on Special Offers. When that
happens is entirely up to Loyalty Pro-
gram. It can happen right after the event
is published or at any later point in time.

 As with the other types of collabora-
tion, there are two sides to event-based
collaboration. One side is the microser-
vice that publishes events through an
event feed, and the other is the micro-
services that subscribe to those events.

EXPOSING AN EVENT FEED

A microservice can publish events to other microservices via an event feed, which is just
an HTTP endpoint—at /events, for instance—to which that other microservice can
make requests and from which it can get event data. Figure 4.8 shows the components
in the Special Offers microservice. Once again, the microservice has the same stan-
dard set of components that you’ve seen several times already. In figure 4.8, the com-
ponents involved in implementing the event feed are highlighted.

Special
Offers store

Special Offers 
domain model

HTTP API: accessible from
other microservices

HTTP API module

Event feed module
SpecialOffersStore

Special Offers microservice

EventStore

Figure 4.8 The event feed in the Special Offers microservice is exposed to other microservices 
over HTTP and is based on the event store.

Special Offers
microservice

Loyalty Program
microservice

Events: Subscribe
to events

Figure 4.7 The Loyalty Program microservice 
processes events from the Special Offers 
microservice when it’s convenient for Loyalty 
Program.

 



86 CHAPTER 4 Microservice collaboration

The events published by the Special Offers microservice are stored in its database.
The EventStore component has the code that reads events from and writes them to
the database. The domain model code can use EventStore to store the events it needs
to publish. The Event Feed component is the implementation of the HTTP endpoint
that exposes the event to other microservices: that is, the /events endpoint.

 The Event Feed component uses EventStore to read events from the database
and then returns the events in the body of an HTTP response. Subscribers can use
query parameters to control which and how many events are returned. 

SUBSCRIBING TO EVENTS

Subscribing to an event feed essentially means you poll the events endpoint of the
microservice that you subscribe to. At intervals, you send an HTTP GET request to the
/events endpoint to check whether there are any events you haven’t processed yet.

 Figure 4.9 is an overview of the Loyalty Program microservice, which shows that it
consists of two processes. We’ve already talked about the web process, but the event-
subscriber process is new.

Web process

Event-subscriber process

Loyalty Program microservice

Loyalty Program
domain model

LoyaltyProgramStore

Loyalty Program
 domain model

LoyaltyProgramStore

HTTP API: accessible from other microservices

Notifications client

Special Offer
event subscriber

Loyalty Program
data store

Figure 4.9 The event subscription in the Loyalty Program microservice is handled in a 
event-subscriber process.

 



87Types of collaboration: commands, queries, and events

The event-subscriber process is a background process that periodically makes requests
to the event feed on the Special Offers microservice to get new events. When it gets back
new events, it processes them by sending commands to the Notifications microservice
to notify registered users about new special offers. The SpecialOffersSubscriber com-
ponent is where the polling of the event feed is implemented, and the Notifications-
Client component is responsible for sending the command to Notifications.

 This is the way you implement event subscriptions: microservices that need to sub-
scribe to events have a subscriber process with a component that polls the event feed.
When new events are returned from the event feed, the subscriber process handles
the events based on business rules.

4.1.3 Data formats

So far, we’ve focused on exchanging data in JSON format. I’ve mentioned in passing
that XML is supported equally by all the endpoints you’ve implemented with Nancy.
(Nancy comes with JSON and XML serialization and deserialization out of the box.)
These two options cover most situations, but there are reasons you might want some-
thing else:

 If you need to exchange a lot of data, a more compact format may be needed.
Text-based formats such as JSON and XML are a lot more verbose than binary
formats like protocol buffers.

 If you need a more structured format than JSON that’s still human readable,
you may want to use YAML.

 If your company uses proprietary data formatting, you may need to support that
format.

In all these cases, you need endpoints capable of receiving data in another format
than XML or JSON, and they also need to be able to respond in that other format. As
an example, a request to register a user with the Loyalty Program microservice using
YAML in the request body looks like this:

Events over queues
An alternative to publishing events over an event feed is to use a queue technology,
like RabbitMQ or Service Bus for Windows Server. In this approach, microservices
that publish events push them to a queue, and subscribers read them from the
queue. Events must be routed from the publisher to the subscribers, and how that’s
done depends on the choice of queue technology. As with the event-feed approach,
the microservice subscribing to events has an event-subscriber process that reads
events from the queue and processes them.

This is a perfectly viable approach to implementing event-based collaboration
between microservices. But this book uses HTTP-based event feeds for event-based
collaboration because it’s a simple yet robust and scalable solution. 

 



88 CHAPTER 4 Microservice collaboration

POST /users HTTP/1.1
Host: localhost:5000
Accept: application/yaml
Content-Type: application/vyaml

Name: Christian
Settings:

Interests:
- whisky
- cycling
- software design

The response to this request also uses YAML:

HTTP/1.1 201 Created
Content-Type: application/yaml
Location: http://localhost:5000/users/1

Id: 1
Name: Christian
Settings:

Interests:
- whisky
- cycling

Both the preceding request and response have YAML-formatted bodies, and both spec-
ify that the body is YAML in the Content-Type header. The request uses the Accept
header to ask for the response in YAML. This example shows how microservices can
communicate using different data formats and how they can use HTTP headers to tell
which formats are used. 

4.2 Implementing collaboration
This section will show you how to code the collaborations you saw earlier in figure 4.2.
I’ll use the Loyalty Program microservice as a starting point, but I’ll also go into some
of its collaborators—the API Gateway microservice, the Invoice microservice, and the
Special Offers microservice—in order to show both ends of the collaborations.

 Three steps are involved in implementing the collaboration:

1 Set up a project for Loyalty Program. Just as you’ve done before, you’ll create
an empty ASP.NET 5 application and add Nancy to it. The only difference this
time is that you’ll add a little Nancy configuration code.

2 Implement the command- and query-based collaborations shown in figure 4.2.
You’ll implement all the commands and queries that Loyalty Program can han-
dle, as well as the code in collaborating microservices that use them.

3 Implement the event-based collaboration shown in figure 4.2. You’ll start with
the event feed in Special Offers and then move on to implement the subscrip-
tion in Loyalty Program. In the process, you’ll add an extra project—and an
extra process—to Loyalty Program. After these steps, you’ll have implemented
all the collaborations of Loyalty Program.

Asks for the response 
in YAML format

Specifies that the
request body is
in YAML format

Provides a YAML-
formatted request body

Specifies that the 
response body is 
in YAML format

Provides a YAML-formatted 
response body

 



89Implementing collaboration

The Loyalty Program microservice consists of a web process that has the same struc-
ture you’ve seen before. This is illustrated at the bottom of figure 4.10. Later, when
you implement the event-based collaboration, you’ll add another process that I call
the event-subscriber process. This process is shown at the top of figure 4.10.

 In the interest of focusing on the collaboration, I won’t show all the code in the
Loyalty Program microservice. Rather, I’ll include the code for the HTTP API in the
web process, and the special offer event subscriber in the event-subscriber process.

4.2.1 Setting up a project for Loyalty Program

The first thing to do in implementing the Loyalty Program microservice is to create an
empty ASP.NET 5 application and add Nancy to it as a NuGet package. You’ve already
done this a couple of times—in chapters 1 and 2—so I won’t go over the details again
here.

Web process

Event subscriber process

Loyalty Program microservice

Loyalty Program
domain model

LoyaltyProgramStore

Loyalty Program
 domain model

LoyaltyProgramStore

HTTP API: accessible from other microservices

Notifications client

Loyalty Program
data store

Special Offers
event subscriber

Figure 4.10 The Loyalty Program microservice has a web process that follows the structure you’ve seen 
before and an event-subscriber process that handles the subscription to events from the Special Offers 
microservice. I’ll only show the code for the highlighted components in this chapter.

 



90 CHAPTER 4 Microservice collaboration

 This time around, there’s one more piece of setup to do: you’ll override how Nancy
handles responses with a 404 Not Found status code. By default, Nancy puts the HTML
for an error page in the body of a 404 Not Found response; but because the clients of
the Loyalty Program microservice aren’t web browsers but other microservices, you
don’t need an error page. I’d rather have a response with a 404 Not Found status code
and an empty body. Toward this end, add a file to the project called Bootstrapper.cs. In
this file, put the following class that inherits from DefaultNancyBootstrapper.

namespace LoyaltyProgram
{

using System;
using Nancy;
using Nancy.Bootstrapper;

public class Bootstrapper : DefaultNancyBootstrapper
{
protected override

Func<ITypeCatalog, NancyInternalConfiguration> InternalConfiguration =>
NancyInternalConfiguration

.WithOverrides(builder => builder.StatusCodeHandlers.Clear());
}

}

Nancy will automatically discover this class at startup, call the InternalConfiguration
getter, and use the configuration returned from that. You reuse the default configura-
tion except that you clear all StatusCodeHandlers, which means you’re removing
everything that might alter a response because of its status code.  

Listing 4.2 Nancy bootstrapper

Remove all default status-code handlers
so they don’t alter the responses.

The Nancy bootstrapper
Nancy uses the bootstrapper during application startup to configure both the frame-
work itself and the application. Nancy allows applications to reconfigure the entire
framework, and you can swap any part of Nancy for your own implementation in your
bootstrapper. In this regard, Nancy is open and flexible. In many cases, you don’t
need to configure the framework—Nancy has sensible defaults—and when you do,
you rarely need to swap out entire pieces of Nancy.

To create a bootstrapper, all you have to do is create a class that implements the
INancyBootstrapper interface, and Nancy will discover it and use it. You won’t usu-
ally implement that interface directly, because although the interface itself is simple,
a fully functional implementation of it isn’t. Instead of implementing INancyBoot-
strapper directly, you can take advantage of the default bootstrapper that Nancy
comes with out of the box (DefaultNancyBootstrapper) and extend it. That class
has a number of virtual methods that you can override to hook into different parts of
Nancy. There are, for instance, methods to configure the dependency injection con-
tainer that Nancy uses, methods to set up specialized serialization and deserializa-
tion, methods to add error handlers, and more.

 



91Implementing collaboration

4.2.2 Implementing commands and queries

You now have a web project ready to host the implementations of the endpoints
exposed by the Loyalty Program microservice. As listed earlier, these are the endpoints:

 An HTTP GET endpoint at URLs of the form /users/{userId} that responds with a
representation of the user. This endpoint implements both queries in figure 4.3.

 An HTTP POST endpoint at /users/ that expects a representation of a user in
the body of the request and then registers that user in the loyalty program

 An HTTP PUT endpoint at URLs of the form /users/{userId} that expects a rep-
resentation of a user in the body of the request and then updates an already-
registered user. 

You’ll implement the command endpoints first and then the query endpoint. 

4.2.3 Implementing commands with HTTP POST or PUT

The code needed in the Loyalty Program microservice to implement the handling of
the two commands—the HTTP POST to register a new user and the HTTP PUT to
update one—is similar to the code you saw in chapter 2. You’ll start by implementing
a handler for the command to register a user. A request to Loyalty Program to register
a new user is shown in the following listing.

POST /users HTTP/1.1
Host: localhost:5000
Content-Type: application/json
Accept: application/json

{
"id":0,
"name":"Christian",
"loyaltyPoints":0,
"settings":{ "interests" : ["whisky", "cycling"] }

}

To handle the command for registering a new user, you need to add a Nancy module
to Loyalty Program by adding a file called UserModule.cs and putting the following
code in it.

 

Listing 4.3 Request to register a user named Christian

(continued)
You’ll use the Nancy bootstrapper several times throughout the book, but for the
most part you’ll rely happily on Nancy’s defaults. If an application doesn’t have a
Nancy bootstrapper, Nancy uses the default one: DefaultNancyBootstrapper. 

JSON representation of the 
user being registered

 



92 CHAPTER 4 Microservice collaboration

  using System.Collections.Generic;
using Nancy;
using Nancy.ModelBinding;

public class UsersModule : NancyModule
{

public UsersModule() : base("/users")
{
Post("/", _ =>
{

var newUser = this.Bind<LoyaltyProgramUser>();
this.AddRegisteredUser(newUser);
return this.CreatedResponse(newUser);

});
}

private dynamic CreatedResponse(LoyaltyProgramUser newUser)
{
return

this.Negotiate
.WithStatusCode(HttpStatusCode.Created)
.WithHeader(

"Location",
this.Request.Url.SiteBase + "/users/" + newUser.Id)

.WithModel(newUser);
}

private void AddRegisteredUser(LoyaltyProgramUser newUser)
{
// store the newUser to a data store

}
}

The response to the preceding request looks like this:

HTTP/1.1 201 Created
Content-Type: application/json; charset=utf-8
Location: http://localhost:5000/users/4

{
"id": 4,
"name": "Christian",
"loyaltyPoints": 0,
"settings": { "interests": ["whisky", "cycling"]
}

}

Listing 4.4 POST endpoint for registering users

The request must include
a LoyaltyProgramUser in

the body. If it doesn’t, the
request is malformed.

Negotiate is an entry
point to Nancy’s

fluent API for
creating responses.

Uses the 201 Created status
code for the response

Adds a location header to
the response because this

is expected by HTTP for
201 Created responses

Returns the
user in the

response for
convenience

The status code is
201 Created. Nancy’s content 

negotiation sets 
the Content-Type.

The Location header points to 
the newly created resource.

 



93Implementing collaboration

The main new thing to notice in listing 4.4 is the use of Negotiate to create the response
to the command. Negotiate is a property on the NancyModule class that you use as a base
class for UserModule. Here, it mainly works as an entry point to Nancy’s nice, fluent API
for creating responses. In the handler, you use that API to set the status code, add a Loca-
tion header, and add the user object to the response. The API will also allow you to do
more things to the response, such as setting other headers and specifying a view that will
be used when responding to requests that ask for HTML in the Accept header.

 Negotiate also triggers Nancy’s content-negotiation functionality. Content negoti-
ation is how HTTP specifies that the format of data in responses should be decided. It
essentially means reading the Accept header in the request and serializing to a format
indicated there. In listing 4.3, the accept header is Accept: application/json, mean-
ing the response should serialize data to JSON.

 With the handler for the register-user command in place, let’s turn our attention
to implementing a handler for the update-user command. That handler is added to
UserModule.

public class UsersModule : NancyModule
{

public UsersModule() : base("/users")
{
Post("/", _ => ...);

Put("/{userId:int}", parameters =>
{

int userId = parameters.userId;
var updatedUser = this.Bind<LoyaltyProgramUser>();
// store the updatedUser to a data store
return updatedUser;

});
}
...

}

There’s nothing in this code you haven’t seen before.
 The handlers for the commands are only one side of the collaboration. The other

side is the code that sends the commands. Figure 4.2 shows that the API Gateway micros-
ervice sends commands to the Loyalty Program microservice. You won’t build a com-
plete API Gateway microservice here, but in the code download for this chapter, you’ll
find a console application that acts as API Gateway would with regard to collaborating
with Loyalty Program. Here, we’ll focus only on the code that sends the commands.

 In the API Gateway microservice, you’ll create a class called LoyaltyProgramClient
that’s responsible for dealing with communication with the Loyalty Program microser-
vice. That class encapsulates everything involved in building HTTP requests, serializing
data for requests, understanding HTTP responses, and deserializing response data.

Listing 4.5 PUT endpoint for registering users

Nancy turns the user object 
into a complete response.

 



94 CHAPTER 4 Microservice collaboration

 The code for sending the registered-user command takes a LoyaltyProgramUser
as input and creates an HTTP POST with the LoyaltyProgramUser object in the body,
and it sends that to the Loyalty Program microservice. After it checks the response sta-
tus code and confirms that it’s 201 Created, it deserializes the body of the response to
a LoyaltyProgramUser and returns it. If the status code is anything else, the method
returns null. The following listing shows the implementation.

using System;
using System.Text;
using System.Threading.Tasks;
using System.Net;
using System.Net.Http;
using Newtonsoft.Json;

public class LoyaltyProgramClient
{

public async Task<LoyaltyProgramUser>
  ➥ RegisterUser(LoyaltyProgramUser newUser)

{
using(var httpClient = new HttpClient())
{

httpClient.BaseAddress = new Uri($"http://{this.hostName}");
var response = await

httpClient.PostAsync(
"/users/",
new StringContent(

JsonConvert.SerializeObject(newUser),
Encoding.UTF8,
"application/json"));

ThrowOnTransientFailure(response);
return JsonConvert.DeserializeObject<LoyaltyProgramUser>(

await response.Content.ReadAsStringAsync());
}

}
}

Similarly, LoyaltyProgramClient has a method for sending the update-user com-
mand. This method also encapsulates the HTTP communication involved in sending
the command.

public async Task<LoyaltyProgramUser> UpdateUser(LoyaltyProgramUser user)
{

using(var httpClient = new HttpClient())
{
httpClient.BaseAddress = new Uri($"http://{this.hostName}");
var response = await

Listing 4.6 The API Gateway microservice registering new users

Listing 4.7 The API Gateway microservice updating users

Sends the command to Loyalty Program

Serializes newUser as JSON

Sets the Content-Type header

Deserializes the response if the
command was handled successfully

 



95Implementing collaboration

httpClient.PutAsync(
$"/users/{user.Id}",
new StringContent(

JsonConvert.SerializeObject(user),
Encoding.UTF8,
"application/json"));

ThrowOnTransientFailure(response);
return JsonConvert.DeserializeObject<LoyaltyProgramUser>(

await response.Content.ReadAsStringAsync());
}

}

This code is similar to the code for the register-user command, except this HTTP
request uses the PUT method. With the command handlers implemented in the Loy-
alty Program microservice and a LoyaltyProgramClient implemented in the API
Gateway microservice, the command-based collaboration is implemented. API Gate-
way can register and update users, but it can’t yet query users. 

4.2.4 Implementing queries with HTTP GET

The Loyalty Program microservice can handle the commands it needs to handle, but
it can’t answers queries about registered users. Remember that Loyalty Program only
needs one endpoint to handle queries. As mentioned previously, the endpoint han-
dling queries is an HTTP GET endpoint at URLs of the form /users/{userId}, and it
responds with a representation of the user. This endpoint implements both queries in
figure 4.4.

public class UsersModule : NancyModule
{

private static IDictionary<int, LoyaltyProgramUser> registeredUsers =
new Dictionary<int, LoyaltyProgramUser>();

public UsersModule() : base("/users")
{
Post("/", _ => ...);

Put("/{userId:int}", parameters => ...);

Get("/{userId:int}", parameters =>
{

int userId = parameters.userId;
if (registerUsers.ContainsKey(userId))

return registerUsers[userId];
else

return HttpStatusCode.NotFound;
});

}
...

}

Listing 4.8 GET endpoint to query a user by ID

Sends the update-user 
command as a PUT request

 



96 CHAPTER 4 Microservice collaboration

There’s nothing about this code that you haven’t already seen several times. Likewise,
the code needed in the API Gateway microservice to query this endpoint shouldn’t
come as a surprise:

public class LoyaltyProgramClient
{

...

public async Task<LoyaltyProgramUser> QueryUser(int userId)
{
var userResource = $"/users/{userId}";
using(var httpClient = new HttpClient())
{

httpClient.BaseAddress = new Uri($"http://{this.hostName}");
var response = await httpClient.GetAsync(userResource);
ThrowOnTransientFailure(response);
return JsonConvert.DeserializeObject<LoyaltyProgramUser>(

await response.Content.ReadAsStringAsync());
}

}
}

This is all that’s needed for the query-based collaboration. You’ve now implemented
the command- and query-based collaborations of the Loyalty Program microservice. 

4.2.5 Data formats

Suppose you want the endpoints you just implemented to support YAML. You
shouldn’t implement support for a third data format in the endpoint handlers—it’s
not a concern of the application logic, it’s a technical concern.

 Nancy lets you support deserialization of another format by implementing the
IBodyDeserializer interface. In typical Nancy style, any implementation of that
interface is picked up at application startup and is hooked into Nancy’s model bind-
ing. Likewise, to support serialization of response bodies in a third format, you can
implement IResponseProcessor, which also is automatically discovered by Nancy and
gets hooked into Nancy’s content negotiation.

 To implement YAML support in the Loyalty Program microservice, you’ll first
install the YamlDotNet NuGet package in the project. Then, you’ll add a file called
YamlSerializerDeserializer.cs. You’ll use this file to implement both the deserialization
and the serialization. The deserialization looks like this.

namespace LoyaltyProgram
{

using System.IO;
using Nancy.ModelBinding;
using Nancy.Responses.Negotiation;
using YamlDotNet.Serialization;

Listing 4.9 Deserializing from YAML

 



97Implementing collaboration

public class YamlBodyDeserializer : IBodyDeserializer
{
public bool CanDeserialize(

MediaRange mediaRange, BindingContext context)
=> mediaRange.Subtype.ToString().EndsWith("yaml");

public object Deserialize(
MediaRange mediaRange, Stream bodyStream, BindingContext context)

{
var yamlDeserializer = new Deserializer();
var reader = new StreamReader(bodyStream);
return yamlDeserializer.Deserialize(

reader, context.DestinationType);
}

}
}

This code mainly uses the YamlDotNet library to deserialize the data from the body of
the request.

 The implementation of the serialization support isn’t as simple, but it’s still only a
matter of implementing two methods and a property.

namespace LoyaltyProgram
{

using System;
using System.Collections.Generic;
using System.IO;
using Nancy;
using Nancy.Responses.Negotiation;
using YamlDotNet.Serialization;
...

public class YamlBodySerializer : IResponseProcessor
{
public IEnumerable<Tuple<string, MediaRange>> ExtensionMappings
{

get
{

yield return new Tuple<string, MediaRange>(
"yaml", new MediaRange("application/yaml"));

}
}

public ProcessorMatch CanProcess(
MediaRange requestedMediaRange, dynamic model, NancyContext context)
=>

requestedMediaRange.Subtype.ToString().EndsWith("yaml")
? new ProcessorMatch

{
ModelResult = MatchResult.DontCare,

Listing 4.10 Serializing to YAML

Tells Nancy which 
content types this 
deserializer can 
handle

Tries to deserialize the request 
body to the type needed by the 
application code

Tells Nancy which file
extensions can be handled by
this response processor. You

don’t use this feature.

Tells Nancy that this processor can handle
accept header values that end with “yaml”

 



98 CHAPTER 4 Microservice collaboration

RequestedContentTypeResult = MatchResult.NonExactMatch
}

: ProcessorMatch.None;

public Response Process(
MediaRange requestedMediaRange, dynamic model, NancyContext context)
=>

new Response
{

Contents = stream =>
{

var yamlSerializer = new Serializer();
var streamWriter = new StreamWriter(stream);
yamlSerializer.Serialize(streamWriter, model);
streamWriter.Flush();

},
ContentType = "application/yaml"

};
}

}

The serialization is also handled by the YamlDotNet library. The code in Extension-
Mappings and CanProcess in YamlBodySerializer tells Nancy which responses it
applies to. The code in Process creates a response with a YAML-serialized body. This
response may be processed more if the code in the handler customizes the response
further. For instance, the response to the register-user command is created like this:

return
this.Negotiate
.WithStatusCode(HttpStatusCode.Created)
.WithHeader(

"Location",
this.Request.Url.SiteBase + "/users/" + newUser.Id)

.WithModel(newUser);

This code customizes the response through the .With* extension methods. After
YamlBodySerializer has created the response, including the YAML-formatted body,
the WithStatusCode and WithHeader methods further customize the response. As
you’ve seen, all it takes to make your Nancy-based microservices support another data
format is an implementation of IBodyDeserializer and an implementation of
IResponseProcessor. 

4.2.6 Implementing an event-based collaboration

Now that you know how to implement command- and query-based collaborations
between microservices, it’s time to turn our attention to the event-based collabora-
tion. Figure 4.11 repeats the collaborations that the Loyalty Program microservice is
involved in. Loyalty Program subscribes to events from Special Offers, and it uses the
events to decide when to notify registered users about new special offers.

Creates a new response object to
use in the rest of Nancy’s pipeline

Sets up a function that writes 
the response body to a stream

Writes the YAML 
serialized object to the 
stream Nancy uses for 
the response body

 



99Implementing collaboration

We’ll first look at how Special Offers exposes its events in a feed. Then, you’ll return
to Loyalty Program and add a second process to that service, which will be responsible
for subscribing to events and handling events.

IMPLEMENTING AN EVENT FEED

You saw a simple event feed in chapter 2. The Special Offers microservice implements
its event feed the same way: it exposes an endpoint—/events—that returns a list of
sequentially numbered events. The endpoint can take two query parameters—start

and end—that specify a range of events. For example, a request to the event feed can
look like this:

GET /events?start=10&end=110 HTTP/1.1

Host: specialoffers.mycompany.com
Accept: application/json

The response to this request might be the following, except that I’ve cut off the response
after two events:

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8

[
{
"sequenceNumber": 10,
"occuredAt": "2015-10-02T18:37:00.7070659+00:00",
"name": "NewSpecialOffer",
"content": {

"offerId": 123,
"offer": {

"productCatalogueId": 1,

Special Offers
microservice

Loyalty Program
microservice

API Gateway
microservice

Query: Get loyalty
points by user

Query: Get settings
for registered user

Command: Register
user

Command: Update
user settings

Notifications
microservice

Invoice
microservice

Events: Subscribe
to events

Query: Get loyalty
points by user

Command:
Send special offer

notification

Figure 4.11 The event-based collaboration in the Loyalty Program microservice is the subscription 
to the event feed in the Special Offers microservice.

 



100 CHAPTER 4 Microservice collaboration

"productName": "Basic t-shirt",
"description": "Get an awesome t-shirt at half price!",

}
}

},
{
"sequenceNumber": 11,
"occuredAt": "2015-10-02T20:01:00.3050629+00:00",
"name": "UpdatedSpecialOffer",
"content": {

"offerId": 124,
"offer": {

"productCatalogueId": 10,
"productName": "Hot teacup",
"description": "Get a Cup<T>. Because you know you want to.",
"update": "Now with 10% more inference"

}
}

}
}

Notice that the events have different names (NewSpecialOffer and UpdatedSpecial-
Offer) and the two types of events don’t have the same data fields. This is normal: dif-
ferent events carry different information. It’s also something you need to be aware of
when you implement the subscriber in the Loyalty Program microservice. You can’t
expect all events to have the exact same shape.

 The implementation of the /events endpoint in the Special Offers microservice is
a simple Nancy module, just like the one in chapter 2.

namespace SpecialOffers.EventFeed
{

using Nancy;

public class EventsFeedModule : NancyModule
{
public EventsFeedModule(IEventStore eventStore) : base("/events")
{

Get("/", _ =>
{

long firstEventSequenceNumber, lastEventSequenceNumber;
if (!long.TryParse(this.Request.Query.start.Value,

out firstEventSequenceNumber))
firstEventSequenceNumber = 0;

if (!long.TryParse(this.Request.Query.end.Value,
out lastEventSequenceNumber))
lastEventSequenceNumber = long.MaxValue;

return
eventStore.GetEvents(

firstEventSequenceNumber,

Listing 4.11 Endpoint that reads and returns events

 



101Implementing collaboration

lastEventSequenceNumber);
});

}
}

}

This module only uses Nancy features that we’ve already discussed. You may notice,
however, that it returns the result of eventStore.GetEvents directly, which is an
IEnumerable<Event>; Nancy serializes it as an array. The Event is a struct that carries a
little metadata and a Content field that’s meant to hold the event data.

public struct Event
{

public long SequenceNumber { get; }
public DateTimeOffset OccuredAt { get; }
public string Name { get; }
public object Content { get; }

public Event(
long sequenceNumber,
DateTimeOffset occuredAt,
string name,
object content)

{
this.SequenceNumber = sequenceNumber;
this.OccuredAt = occuredAt;
this.Name = name;
this.Content = content;

}
}

The Content property is used for event-specific data and is where the difference
between a NewSpecialOffer event and an UpdatedSpecialOffer event appears. The
former has one type of object in Content, and the latter has another.

 This is all it takes to expose an event feed. This simplicity is the great advantage of
using an HTTP-based event feed to publish events. Event-based collaboration can be
implemented over a queue system, but that introduces another complex piece of tech-
nology that you have to learn to use and administer in production. That complexity is
warranted in some situations, but certainly not always. 

CREATING AND RUNNING AN EVENT-SUBSCRIBER PROCESS

The first step in implementing an event-subscriber process is to create a console
application. You’re using ASP.NET Core, which is based on .NET Core, for the web
processes in the example microservices, so you’ll create a console application that’s
.NET Core–based and call it LoyaltyProgramEventConsumer. You can create a .NET
Core–based console application in Visual Studio 2015 by selecting the Console
Application (Package) project type in the New Project dialog box. Alternatively, you

Listing 4.12 Event class that represents events

 



102 CHAPTER 4 Microservice collaboration

can go to a PowerShell prompt, run the Yeoman ASP.NET generator,1 and select the
option to generate a Console Application.

PS> yo aspnet

_-----_
| | .--------------------------.
|--(o)--| | Welcome to the |
`---------´ | marvellous ASP.NET Core |
( _´U`_ ) | 1.0 generator! |
/___A___\ '--------------------------'
| ~ |

__'.___.'__
´ ` |° ´ Y `

? What type of application do you want to create?
Empty Web Application

> Console Application
Web Application
Web Application Basic [without Membership and Authorization]
Web API Application
Nancy ASP.NET Application
Class Library
Unit test project (xUnit.net)

Whether you create the LoyaltyProgramEventConsumer with Visual Studio or Yeo-
man, you can run it by going to the project folder—the folder where the project.json
file is—in PowerShell and using dotnet:

PS> dotnet run

The application is empty, so nothing interesting happens yet. Running LoyaltyPro-
gramEventConsumer like that from PowerShell is something you’ll only do for testing.
In production, you might run LoyaltyProgramEventConsumer as a Windows service. If
the production environment is based on Windows Servers that you (or your organiza-
tion) run, a Windows service may well be the right choice; but if your production envi-
ronment is in a cloud, in may not be.

WARNING I’m implementing LoyaltyProgramEventConsumer as a Windows
service, which only works on Windows. If you want to run on Linux, you can
create a similar LoyaltyProgramEventConsumer as a Linux daemon.

Creating a Windows service is straightforward and is no different with a .NET Core–
based console application than it was before .NET Core. The project already has a Pro-
gram.cs file containing a Program class. The Program class has a Main method, which is

1 See appendix A for instructions on installing Yeoman and the Yeoman ASP.NET generator.

Listing 4.13 Generating a console app with the Yeoman ASP.NET generator

Move the cursor 
here, and press 
Enter to generate 
a console app.

 



103Implementing collaboration

the entry point to the application. To turn it into a Windows service, the Program class
just has to inherit from ServiceBase and override the OnStart and OnStop methods,
as in the following listing.

using System.ServiceProcess;

public class Program : ServiceBase
{

private EventSubscriber subscriber;

public void Main(string[] args)
{
// more to come
Run(this);

}

protected override void OnStart(string[] args)
{
// more to come

}

protected override void OnStop()
{
// more to come

}
}

If you’re coding along with this example, you’ll get compile errors from the preceding
code: the type ServiceBase isn’t known. To load the assembly that contains the Ser-
viceBase class, you have to add a line to the dependencies section of your project.json
file and edit the frameworks section to indicate that this application uses the full .NET
framework. The frameworks section should look like this:

"dependencies": {
"Newtonsoft.Json": "8.0.3",
"System.ServiceProcess.ServiceController": "4.1.0",
"System.Net.Http": "4.1.0"

},

"frameworks": {
"net461": { }

},

That should make the application compile again. To run it, you need to install it as a
Windows service. And toward that end you need a binary version, so you need to
explicitly compile the project. You do that with the dotnet command-line tool:

PS> dotnet build

Listing 4.14 Making Program run as a Windows service

Starts running as a 
Windows service

Called when the 
Windows service 
is started

Called when the Windows 
service is stopped

 



104 CHAPTER 4 Microservice collaboration

This compiles the project into a bin folder under the project. You can run the com-
piled output by calling the compiled executable:

PS> .\bin\Debug\net452\LoyaltyProgramEventConsumer

Now you have a binary version, and you can install it as a Windows service using the
sc.exe Windows utility. You must tell sc.exe the name of the Windows service and
the command to execute as a Windows service. In this case, the command is the Loy-
altyProgramEventConsumer executable. You end up with this command:

PS> sc.exe create loyalty-program-event-consumer binPath="<path-to-
project>\bin\Debug\net452\LoyaltyProgramEventConsumer"

Once LoyaltyProgramEventConsumer is installed as a Windows service, you can start
and stop it like any other Windows service. 

SUBSCRIBING TO AN EVENT FEED

You now have a LoyaltyProgramEventConsumer console application that you can run
as a Windows service. Its job is to subscribe to events from the Special Offers microser-
vice and use the Notifications microservice to notify registered users of special offers.
Figure 4.12 shows the collaboration of Loyalty Program, with the ones you’ve already
implemented grayed out.

Subscribing to an event feed essentially means you’ll poll the events endpoint of the
microservice you subscribe to. At intervals, you’ll send an HTTP GET request to the
/events endpoint to check whether there are any events you haven’t processed yet.

 You’ll start the implementation from the top down. The first thing to do is intro-
duce a class called EventSubscriber and have it set up a timer that elapses after 10
seconds.

Special Offers
microservice

Loyalty Program
microservice

API Gateway
microservice

Query: Get loyalty
points by user

Query: Get settings
for registered user

Command: Register
user

Command: Update
user settings

Notifications
microservice

Invoice
microservice

Events: Subscribe
to events

Query: Get loyalty
points by user

Command:
Send special offer

notification

Figure 4.12 The event-based collaboration in the Loyalty Program microservice is the subscription 
to the event feed in the Special Offers microservice.

 



105Implementing collaboration

public class EventSubscriber
{

private readonly string loyaltyProgramHost;
private long start = 0;
private int chunkSize = 100;
private readonly Timer timer;

public EventSubscriber(string loyaltyProgramHost)
{
this.loyaltyProgramHost = loyaltyProgramHost;
this.timer = new Timer(10 * 1000);
this.timer.AutoReset = false;
this.timer.Elapsed += (_, __) => SubscriptionCycleCallback().Wait();

}
}

After 10 seconds, you check for new events, handle any new events, and then sleep 10
seconds again before checking for new events. Every time the timer elapses, listing 4.15
calls SubscriptionCycleCallback, which tries to read new events from the event feed
and then handles new events. Both these tasks are delegated to other methods that we’ll
get to in a moment. For now, here’s the code for SubscriptionCycleCallback.

private async Task SubscriptionCycleCallback()
{

var response = await ReadEvents().ConfigureAwait(false);
if (response.StatusCode == HttpStatusCode.OK)
HandleEvents(response.Content);

this.timer.Start();
}

The ReadEvents method makes the HTTP GET request to the event feed. It uses Http-
Client, which you’ve seen several times already.

private async Task<HttpResponseMessage> ReadEvents()
{

using (var httpClient = new HttpClient())
{
httpClient.BaseAddress =

new Uri($"http://{this.loyaltyProgramHost}");
var response = await httpClient.GetAsync(

$"/events/?start={this.start}&end={this.start + this.chunkSize}")
.ConfigureAwait(false);

return response;
}

}

Listing 4.15 Starting a timer and setting up a callback function

Listing 4.16 Reading and handling events

Listing 4.17 Reading the next batch of events

Sets up the timer 
to elapse after 10 
seconds

Called every time the timer elapses

Awaits the HTTP GET
to the event feed

Awaits getting 
new events

Uses query parameters to limit
the number of events read

 



106 CHAPTER 4 Microservice collaboration

This method reads the events from the event feed and returns them to the Subscrip-
tionCycleCallback method. If the request succeeded, the HandleEvents method is
called. The events are first deserialized, and then each event is handled in turn.

private void HandleEvents(string content)
{

var events = JsonConvert
.DeserializeObject<IEnumerable<SpecialOfferEvent>>(content);

foreach (var ev in events)
{
dynamic eventData = ev.Content;
// handle 'ev' using the eventData.
this.start = Math.Max(this.start, ev.SequenceNumber + 1);

}
}

There are a few things to notice here:

 This method keeps track of which events have been handled C. This makes
sure you don’t request events from the feed that you’ve already processed.

 You treat the Content property on the events as dynamic B. As you saw earlier,
not all events carry the same data in the Content property, so treating it as
dynamic allows you to access the properties you need on .Content and not care
about the rest. This is a sound approach because you want to be liberal in
accepting incoming data—it shouldn’t cause problems if the Special Offers
microservice decides to add an extra field to the event JSON. As long as the data
you need is there, the rest can be ignored.

 The events are deserialized into the type SpecialOfferEvent. This is a different
type than the Event type uses to serialize the events in Special Offers. This is
intentional and is done because the two microservices don’t need to have the
exact same view of the events. As long as Loyalty Program doesn’t depend on
data that isn’t there, all is well.

The SpecialOfferEvent type used here is simple and contains only the fields used in
Loyalty Program:

public struct SpecialOfferEvent
{

public long SequenceNumber { get; set; }
public string Name { get; set; }
public object Content { get; set; }

}

To tie the EventSubscriber code back into the Windows service you set up in listing 4.14
at the beginning of implementing the event-subscriber process, you’ll add two more

Listing 4.18 Deserializing and then handling events

Treats the content property
as a dynamic object

B

Keeps track of the highest
event number handled C

 



107Summary

methods to the EventSubscriber: one that starts the timer and one that stops it. These
two methods effectively start and stop the event subscription:

public void Start()
{

this.timer.Start();
}

public void Stop()
{

this.timer.Stop();
}

The Windows service can now create an EventSubscriber at startup and then call the
Start and Stop methods when the Windows service is started or stopped. Filling in
the missing pieces from listing 4.14, the Windows service becomes as follows.

public class Program : ServiceBase
{

private EventSubscriber subscriber;

public void Main(string[] args)
{

this.subscriber = new EventSubscriber("localhost:5000");
Run(this);

}

protected override void OnStart(string[] args)
{

this.subscriber.Start();
}

protected override void OnStop()
{

this.subscriber.Stop();
}

}

This concludes your implementation of event subscriptions. As you’ve seen, subscrib-
ing to an event feed means polling it for new events at intervals and then handling any
new events. 

4.3 Summary
 There are three types of microservice collaboration:

– Command-based collaboration, where one microservice uses an HTTP POST
or PUT to make another microservice perform an action

Listing 4.19 Windows service to start and stop the subscription

 



108 CHAPTER 4 Microservice collaboration

– Query-based collaboration, where one microservice uses an HTTP GET to
query the state of another microservice

– Event-based collaboration, where one microservice exposes an event feed
that other microservices can subscribe to by polling the feed for new events

 Event-based collaboration is more loosely coupled than command- and query-
based collaboration.

 You can hook into Nancy’s model binding and content negotiation to support
data formats other than XML and JSON.

 The Nancy bootstrapper is used to configure Nancy itself and Nancy applications.
 You can use HttpClient to send commands to other microservices and to query

other microservices.
 You can use Nancy to expose the endpoints for receiving and handling com-

mands and queries.
 Nancy can expose a simple event feed.
 You can create a process that subscribes to events by

– Creating a .NET Core console application
– Implementing and installing a console application as a Windows service
– Using a timer to make the console application poll an event feed
– Using HttpClient to read events from an event feed

 



109

Data ownership
 and data storage

Software systems create, use, and transform data. Without the data, most software
systems wouldn’t be worth much, and that’s true for microservice systems. In this
chapter, you’ll learn where a piece of data should be stored and which microser-
vice should be responsible for keeping it up to date. Furthermore, you’ll learn how
you can use data replication to make your microservice system both more robust
and faster.

This chapter covers
 Exploring microservices and their data stores

 Understanding how data ownership follows business 
capabilities

 Using data replication for speed and robustness

 Building read models from event feeds with event 
subscribers

 Understanding how microservices store data

 



110 CHAPTER 5 Data ownership and data storage

5.1 Each microservice has a data store
One of the characteristics of microservices identified in chapter 1 is that each micro-
service should own its data store. The data in that data store is solely under the control
of the microservice, and it’s exactly the data the microservice needs. It’s primarily data
belonging to the capability the microservice implements, but it also includes support-
ing data, like cached data and read models created from event feeds.

 The fact that each microservice owns a data store means you don’t need to use the
same database technology for all microservices. You can choose a database technology
that’s suited to the data that each microservice needs to store.

 A microservice typically needs to store three types of data:

 Data belonging to the capability the microservice implements. This is data that
the microservice is responsible for and must keep safe and up to date.

 Events raised by the microservice. During command processing, the microser-
vice may need to raise events to inform the rest of the system about updates to
the data the microservice is responsible for.

 Read models based on queries to other microservices or on events from other
microservices.

These three types of data may be stored in different databases and even in different
types of databases. 

5.2 Partitioning data between microservices
When you’re deciding where to store data in a microservice system, competing forces
are at play. The two main forces are data ownership and locality:

 Ownership of data means being responsible for keeping the data up to date.
 Locality of data refers to where the data a microservice needs is stored. Often,

the data should be stored nearby—preferably in the microservice itself.

These two forces may be at odds, and in order to satisfy both, you’ll often have to store
data in several places. That’s OK, but it’s important that only one of those places be
considered the authoritative source. Figure 5.1 illustrates that whereas one microser-
vice stores the authoritative copy of a piece of data, other microservices can mirror
that data in their own data stores.

5.2.1 Rule 1: Ownership of data follows business capabilities

The first rule when deciding where a piece of data belongs in a microservices system is
that ownership of data follows business capabilities. As discussed in chapter 3, the pri-
mary driver in deciding on the responsibility of a microservice is that it should handle
a business capability. The business capability defines the boundaries of the microser-
vice—everything belonging to the capability should be implemented in the microser-
vice. This includes storing the data that falls under the business capability.

 



111Partitioning data between microservices

Domain-driven design teaches that some concepts can appear in several business
capabilities and that the meaning of the concepts may differ slightly. Several microser-
vices may have the concept of a customer, and they will work on and store customer
entities. There may be some overlap between the data stored in different microser-
vices, but it’s important to be clear about which microservice is in charge of what.

 For instance, only one microservice should own the home address of a customer.
Another microservice could own the customer’s purchase history, and a third the cus-
tomer’s notification preferences. The way to decide which microservice is responsible
for a given piece of data—the customer’s home address, for instance—is to figure out
which business process keeps that data up to date. The microservice responsible for
the business capability is responsible for storing the data and keeping it up to date.

 Let’s consider again the e-commerce site from chapters 1 and 2. Figure 5.2 shows
an overview of how that system handles user requests for adding an item to a shopping
cart. Most of the microservices in figure 5.2 are dimmed, to put the focus on three
microservices: Shopping Cart, Product Catalog, and Recommendations.

 Each of the highlighted microservices in figure 5.2 handles a business capability: the
Shopping Cart microservice is responsible for keeping track of users’ shopping carts;
the Product Catalog microservice is responsible for giving the rest of the system access
to information from the product catalog; and the Recommendations microservice is
responsible for calculating and giving product recommendations to users of the
e-commerce site. Data is associated with each of these business capabilities, and each
microservice owns and is responsible for the data associated with its capability. Fig-
ure 5.3 shows the data each of the three microservices owns. Saying that a microservice
owns a piece of data means it must store that data and be the authoritative source for
that piece of data. 

Stores a mirror of
the data owned by
microservice B

Stores the authoritative 
version of the data owned
by microservice B

Stores a mirror of
the data owned by
microservice B

Microservice A

Microservice B

Microservice C

Data store A

Data store B

Data store C

Figure 5.1 Microservices A and C collaborate with microservice B. Microservices A and C 
can store mirrors of the data owned by microservice B, but the authoritative copy is stored 
in microservice B’s own data store.

 



112 CHAPTER 5 Data ownership and data storage

6a. Publish ItemAddedtoCart event

Recommendations
store

Recommendations
microservice

Shopper
Tracking store

Shopper Tracking
microservice

6. Update user’s cart

4. Look up product

2. Add item
    to cart

7. JSON representation
    of cart

Price Calculation
microservice

8. Get updated
    price

9. Read price information
Price Calculation

store

12. Asynchronously read 
      ItemAddedToCart event

API gateway

1. Request: add
    item to cart

11. Response:
      updated cart
      and price 

Shopping Cart
microservice

3. Look up
    product

5. JSON representation
    of product

Product Catalog
microservice

Shopping Cart
store

Product
Catalog store

10. JSON representation
      of price information

Product Catalog store
• Product IDs
• Product descriptions
• Product details
• Product prices

Shopping Cart store
• Shopping cart
  per user
• List of items for
  shopping cart

Product Catalog
microservice

Recommendations store
• Lists of recommended
  products by user
  segments
• Lists of recommended
  products by products

Shopping Cart
microservice

Recommendations
microservice

Figure 5.2 In this e-commerce example (from chapters 1 and 2), we’ll focus on partitioning data between the 
Shopping Cart microservice, the Product Catalog microservice, and the Recommendations microservice.

Figure 5.3 Each microservice owns the data belonging to the business capability it implements.

 



113Partitioning data between microservices

5.2.2 Rule 2: Replicate for speed and robustness

The second force at play when deciding where a piece of data should be stored in a
microservices system is locality. There’s a big difference between a microservice query-
ing its own database for data and a microservice querying another microservice for
that same data. Querying its own database is generally both faster and more reliable
than querying another microservice.

 Once you’ve decided on the ownership of data, you’ll likely discover that your
microservices need to ask each other for data. This type of collaboration creates a cer-
tain coupling: one microservice querying another means the first is coupled to the
other. If the second microservice is down or slow, the first microservice will suffer.

 To loosen this coupling, you can cache query responses. Sometimes you’ll cache the
responses as they are, but other times you can store a read model based on query
responses. In both cases, you must decide when and how a cached piece of data
becomes invalid. The microservice that owns the data is in the best position to decide
when a piece of data is still valid and when it has become invalid. Therefore, endpoints
responding to queries about data owned by the microservice should include cache
headers in the response telling the caller how long it should cache the response data.

USING HTTP CACHE HEADERS TO CONTROL CACHING

HTTP defines a number of headers that can be used to control how HTTP responses
can be cached. The purpose of the HTTP caching mechanisms is twofold:

 To eliminate the need, in many cases, to request information the caller already has
 To eliminate the need, in many other situations, to send full HTTP responses

To eliminate the need to make requests for information the caller already has, the server can
add a cache-control header to responses. The HTTP specification defines a range of con-
trols that can be set in the cache-control header. The most common are the private|pub-
lic and the max-age directives. The first indicates whether only the caller—private—may
cache the response or if intermediaries—proxy servers, for instance—may cache the
response, too. The max-age directive indicates the number of seconds the response may be
cached. For example, the following cache-control header indicates that the caller, and
only the caller, can cache the response for 3,600 seconds:

cache-control: private, max-age:3600

That is, the caller, may reuse the response any time it wants to make an HTTP request
to the same URL with the same method—GET, POST, PUT, DELETE—and the same body
within 3,600 seconds. It’s worth noting that the query string is part of the URL, so
caching takes query strings into account.

 To eliminate the need to send a full response in cases where the caller has a
cached but stale response, the server can add an etag header to responses. This is an
identifier for the response. When the caller makes a later request to the same URL
using the same method and the same body, it can include the etag in a request
header. The server can read the etag and, through it, know which response the caller

 



114 CHAPTER 5 Data ownership and data storage

already has cached. If the server decides the response is still valid, it can return a
response with the 304 Not Modified status code to tell the client to use the already-
cached response. Furthermore, the server can add a cache-control header to the 304
response to prolong the period the response may be cached. Note that the etag is set
by the server and later read again by the same server.

 Let’s consider the microservices in figure 5.3 again. The Shopping Cart microser-
vice uses product information that it gets by querying the Product Catalog microser-
vice. How long the product catalog information for any given product is likely to be
correct is best decided by Product Catalog, which owns the data. Therefore, Product
Catalog should add cache headers to its responses, and Shopping Cart should use
them to decide how long it can cache a response. Figure 5.4 shows a sequence of
requests to Product Catalog that Shopping Cart wants to make.

Product Catalog
microservice

Shopping Cart
microservice

Less than 3,600
seconds after
first request

HTTP GET /products?productIds=[1,42]
Accept: Application/json

HTTP/1.1 200 OK 
Content-Type: application/json; charset=utf-8 
cache-control: private, max-age:3600
etag: 1v3-42v1

{
....
} 

HTTP GET /products?productIds=[1,42]
Accept: Application/json

Use cached response

HTTP/1.1 304 Not Modified
cache-control: private, max-age:1800
vary: accept
etag: 1v3-42v1

More than 3,600
seconds after
first request

HTTP GET /products?productIds=[1,42]
Accept: Application/json
etag:1v3-42v1

The server uses
the etag to see
that the resource
hasn’t changed.

Figure 5.4 The Product Catalog microservice can allow its collaborators to cache responses by including 
cache headers in its HTTP responses. In this example, it sets max-age to indicate how long responses 
may be cached, and it also includes an etag built from the product IDs and versions.

 



115Partitioning data between microservices

In figure 5.4, the cache headers on the response to the first request tell the Shopping
Cart microservice that it can cache the response for 3,600 seconds. The second time
Shopping Cart wants to make the same request, the cached response is reused
because fewer than 3,600 seconds have passed. The third time, the request to the
Product Catalog microservice is made because more than 3,600 seconds have passed.
That request includes the etag from the first response. Product Catalog uses the etag
to decide that the response would still be the same, so it sends back the shorter 304
Not Modified response instead of a full response. The 304 response includes a new set
of cache headers that allows Shopping Cart to cache the already-cached response for
an additional 1,800 seconds.

 In sections 5.3.3 and 5.3.4, we’ll discuss how to include cache headers in responses
from Nancy route handlers. We’ll also look at reading them on the client side from
the response. 

USING READ MODELS TO MIRROR DATA OWNED BY OTHER MICROSERVICES

It’s normal for a microservice to query its own database for data it owns, but querying
its database for data it doesn’t own may not seem as natural. The natural way to get
data owned by another microservice is to query that microservice. But it’s often possi-
ble to replace a query to another microservice with a query to the microservice’s own
database by creating a read model: a data model that can be queried easily and effi-
ciently. This is in contrast to the model used to store the data owned by the microser-
vice, where the purpose is to store an authoritative copy of the data and to be able to
easily update it when necessary.

 Data is, of course, also written to read models—otherwise they’d be empty—but
the data is written as a consequence of changes somewhere else. You trade some addi-
tional complexity at write time for less complexity at read time.

 Read models are often based on events from other microservices. One microser-
vice subscribes to events from another microservice and updates its own model of the
event data as events arrive.

 Read models can also be built from responses to queries to other microservices. In
this case, the lifetime of the data in the read model is decided by the cache headers on
those responses, just as in a straight cache of the responses. The difference between a
straight cache and a read model is that to build a read model, the data in the
responses is transformed and possibly enriched to make later reads easy and efficient.
This means the shape of the data is determined by the scenarios in which it will be
read instead of the scenario in which it was written.

 Let’s consider an example. The Shopping Cart microservice publishes events every
time an item is added to or removed from a shopping cart. Figure 5.5 shows a Shop-
per Tracking microservice that subscribes to those events and updates a read model
based on the events. Shopper Tracking allows business users to query how many times
specific items are added to or removed from shopping carts.

 The events published from the Shopping Cart microservice aren’t in themselves an
efficient model to query when you want to find out how often a product has been

 



116 CHAPTER 5 Data ownership and data storage

added to or removed from shopping carts. But the events are a good source from
which to build such a model. The Shopper Tracking microservice keeps two counters
for every product: one for how many times the product has been added to a shopping
cart, and one for how many times it’s been removed. Every time an event is received
from Shopping Cart, one of the counters is updated; and every time a query is made
about a product, the two counters for that product are read. 

5.2.3 Where does a microservice store its data?

A microservice can use one, two, or more databases. Some of the data stored by the
microservice may fit well into one type of database, and other data may fit better into
another type. Many viable database technologies are available today, and I won’t get
into a comparison here. There are, however, some broad database categories that you
can consider when you’re making a choice, including relational databases, key/value
stores, document databases, column stores, and graph databases.

 The choice of database technology (or technologies) for a microservice can be
influenced by many factors, including these:

 What shape is your data? Does it fit well into a relational model, a document
model, or a key/value store, or is it a graph?

 What are the write scenarios? How much data is written? Do the writes come in
bursts, or are they evenly distributed over time?

 What are the read scenarios? How much data is read at a time? How much is
read altogether? Do the reads come in bursts?

Shopper Tracking
microservice

Poll for new events

Increment added counters
for products 42 and 100

New events:
Product 42 added
Product 100 added

Increment added counter for product
42 and increment removed counter

for product 102

Poll for new events

New events:
Product 42 added
Product 102 removed

Shopping Cart
microservice Shopper Tracking

store

Figure 5.5 The Shopper Tracking microservice subscribes to events from the Shopping Cart 
microservice and keeps track of how many times products are added to or removed from shopping carts.

 



117Partitioning data between microservices

 How much data is written compared to how much is read?
 Which databases do the team already know how to develop against and run in

production?

Asking yourself these questions—and finding the answers—will not only help you
decide on a suitable database but will also likely deepen your understanding of the
nonfunctional qualities expected from the microservice. You’ll learn how reliable the
microservice must be, how much load it must handle, what the load looks like, how
much latency is acceptable, and so on.

 Gaining that deeper understanding is valuable, but note that I’m not recommend-
ing that you undertake a major analysis of the pros and cons of different databases
each time you spin up a new microservice. You should be able to get a new microser-
vice going and deployed to production quickly. The goal isn’t to find a database tech-
nology that’s perfect for the job—you just want to find one that’s suitable given your
answers to the previous questions. You may be faced with a situation in which a docu-
ment base seems like a good choice and in which you’re confident that both Couch-
base and MongoDB would be well suited. In that case, choose one of them. It’s better
to get the microservice to production with one of them quickly and at a later stage
possibly replace the microservice with an implementation that uses the other, than it
is to delay getting the first version of the microservice to production because you’re
analyzing Couchbase and MongoDB in detail.

How many database technologies in the system?
The decision about which database you should use in a microservice isn’t solely a
matter of what fits well in that microservice. You need to take the broader landscape
into consideration. In a microservice system, you’ll have many microservices and
many data stores. It’s worth considering how many different database technologies
you want to have in the system. There’s a trade-off between standardizing on a few
database technologies and having a free-for-all.

On the side of standardizing are goals like these:

 Running the databases reliably in production and continuing to do so in the
long run.

 Developers being able to get into and work effectively in the codebase of a
microservice they haven’t touched before.

Favoring a free-for-all are these types of goals:

 Being able to choose the optimal database technology for each microservice
in terms of maintainability, performance, security, reliability, and so on.

 Keeping microservices replaceable. If new developers take over a microser-
vice and don’t agree with the choice of database, they should be able to
replace the database or even the microservice as a whole.

How these goals are weighed against each other changes from organization to orga-
nization, but it’s important to be aware that there are trade-offs. 

 



118 CHAPTER 5 Data ownership and data storage

5.3 Implementing data storage in a microservice
We’ve discussed where data should go in a microservice system, including which data
a microservice should own and which data it should mirror. It’s time to switch gears
and look at the code required to store the data.

 I’ll focus on how a microservice can store the data it owns, including how to store
the events it raises. I’ll first show you how to do this using SQL Server and the light-
weight Dapper data access library. Then I’ll show you how to store events in a database
specifically designed for storing events—the aptly named Event Store database.  

New technologies used in this chapter
In this chapter, you’ll begin using a couple of technologies that you haven’t used yet
in this book:

 SQL Server—Microsoft’s SQL database. You can find information about install-
ing SQL Server in appendix A.

 Dapper (https://github.com/StackExchange/dapper-dot-net)—A lightweight
object-relational mapper (ORM). I’ll introduce Dapper next.

 Event Store (https://geteventstore.com)—A database product specifically
designed to store events. I’ll introduce Event Store in a moment.

Dapper: a lightweight O/RM

Dapper is a simple library for working with data in a SQL database from C#. It’s part
of a family of libraries sometimes referred to as micro ORMs, which also includes
Simple.Data and Massive. These libraries focus on being simple to use and fast, and
they embrace SQL.

Whereas a more traditional ORM writes all the SQL required to read data from and
write it to the database, Dapper expects you to write your own SQL. I find this to be
liberating when dealing with a database with a simple schema.

In the spirit of choosing lightweight technologies for microservices, I choose to use Dapper
over a full-fledged ORM like Entity Framework or NHibernate. Often the database for a
microservice is simple, and in such cases I find it easiest to add a thin layer—like Dapper—
on top of it for a simpler solution overall. I could have chosen to use any of the other
micro ORMs, but I like Dapper. In this chapter, you’ll use Dapper to talk to SQL Server,
but Dapper also works with other SQL databases like PostgreSQL and MySQL.

Event Store: a dedicated event database

Event Store is an open source database server designed specifically for storing events.
Event Store stores events as JSON documents, but it differs from a document data-
base by assuming that the JSON documents are part of a stream of events. Although
Event Store is a niche product because it’s so narrowly focused on storing events,
it’s in widespread use and has proven itself in heavy-load production scenarios.

In addition to storing events, Event Store has facilities for reading and subscribing to
events. For instance, Event Store exposes its own event feeds—as ATOM feeds—
that clients can subscribe to. If you don’t mind depending on Event Store, using its
ATOM event feed to expose events to other microservices can be a viable alternative
to the way you’ll implement event feeds in this book.

 

https://github.com/StackExchange/dapper-dot-net
https://geteventstore.com


119Implementing data storage in a microservice

5.3.1 Storing data owned by a microservice

Once you’ve decided which data a microservice owns, storing that data is relatively
straightforward. The details of how it’s done depend on your choice of database. The
only difference specific to microservices is that the data store is solely owned and
accessed by the microservice itself.

 As an example, let’s go back to the Shopping Cart microservice. It owns the users’
shopping carts and therefore stores them. You’ll store the shopping carts in SQL
Server using Dapper.

 You implemented most of the Shopping Cart microservice in chapter 2. Here,
you’ll fill in the data store bits.

NOTE To code along with this example, you’ll need SQL Server. In appendix
A, you’ll find the information you need to install SQL Server. Alternatively,
you can use PostgreSQL, but doing so will require various small changes to the
code.

If you’re familiar with storing data in SQL Server, the implementation should be no
surprise, and that’s the point. Storing the data owned by a microservice doesn’t need
to involve anything fancy. These are the steps for storing the shopping cart:

1 Create a database.
2 Use Dapper to implement the code to read, write, and update shopping carts.

First, you’ll create a simple database for storing shopping carts. It will have two tables,
as shown in figure 5.6.

(continued)
Event Store works by exposing an HTTP API for storing, reading, and subscribing to
events. There are a number of Event Store client libraries in various languages—
including C#, F#, Java, Scala, Erlang, Haskell, and JavaScript—that make it easier to
work with the database.

Figure 5.6 ShoppingCart has only two tables: one has a row for each shopping cart, and the other 
has a row per item in a shopping cart.

 



120 CHAPTER 5 Data ownership and data storage

In the code download, you’ll find a SQL script for creating the ShoppingCart database
called create-shopping-cart-db.sql in the folder \code\Chapter05\ShoppingCart\src\data-
base-scripts\. You can execute the script in SQL Server Management Studio to create your
own ShoppingCart database.

 With the database in place, you can implement the code in the Shopping Cart
microservice that reads, writes, and updates the database. You’ll install the Dapper
NuGet package into the microservice. Remember that you do this by adding Dapper
to the project.json file and running the dotnet restore command from PowerShell.
The dependencies section of the project.json file should look like this:

"dependencies": {
"Microsoft.AspNetCore.Server.IISIntegration": "1.0.0",
"Microsoft.AspNetCore.Server.Kestrel": "1.0.0",
"Microsoft.AspNetCore.Owin": "1.0.0",
"Nancy": "2.0.0-barneyrubble",
"Polly": "4.2.1",
"Dapper": "1.50.0-rc2a"

},

In chapter 2, the Shopping Cart microservice was expecting an implementation of an
IShoppingCart interface. You’ll change that interface slightly to allow the implemen-
tation of it to make asynchronous calls to the database. This is the modified interface:

public interface IShoppingCartStore
{
Task<ShoppingCart> Get(int userId);
Task Save(ShoppingCart shoppingCart);

}

Now it’s time to look at the implementation of the IShoppingCartStore interface.
First, let’s consider the code for reading a shopping cart from the database.

namespace ShoppingCart.ShoppingCart
{

using System.Threading.Tasks;
using System.Data.SqlClient;
using Dapper;

public class ShoppingCartStore : IShoppingCartStore
{
private string connectionString =

@"Data Source=.\SQLEXPRESS;Initial Catalog=ShoppingCart;
Integrated Security=True";

private const string readItemsSql =
@"select * from ShoppingCart, ShoppingCartItems
where ShoppingCartItems.ShoppingCartId = ID
and ShoppingCart.UserId=@UserId";

Listing 5.1 Reading shopping carts with Dapper

Adds the Dapper 
library

Connection 
string to the 
ShoppingCart 
database

Dapper works with SQL, so you 
have SQL in the C# code.

 



121Implementing data storage in a microservice

public async Task<ShoppingCart> Get(int userId)
{

using (var conn = new SqlConnection(connectionString))
{

var items = await
conn.QueryAsync<ShoppingCartItem>(

readItemsSql,
new { UserId = userId });

return new ShoppingCart(userId, items);
}

}
}

}

Dapper is a simple tool that provides some convenient extension methods on IDbCon-
nection to make working with SQL in C# easier. It also provides some basic mapping
capabilities. For instance, in listing 5.1, Dapper maps the rows returned by the SQL
query to an IEnumerable<ShoppingCartItem> because the column names in the data-
base are equal to the property names in ShoppingCartItem.

 Dapper doesn’t try to hide the fact that you’re working with SQL, so you see SQL
strings in the code. This may feel like a throwback to the earliest days of .NET. I find
that as long as I’m working with a simple database schema—as I usually am in micro-
services—the SQL strings in C# code aren’t a problem.

 Writing a shopping cart to the database is also done through Dapper. The imple-
mentation is the following method in ShoppingCartStore.

private const string deleteAllForShoppingCartSql=
@"delete item from ShoppingCartItems item
inner join ShoppingCart cart on item.ShoppingCartId = cart.ID
and cart.UserId=@UserId";

private const string addAllForShoppingCartSql=
@"insert into ShoppingCartItems
(ShoppingCartId, ProductCatalogId, ProductName,
ProductDescription, Amount, Currency)
values
(@ShoppingCartId, @ProductCatalogId, @ProductName,v
@ProductDescription, @Amount, @Currency)";

public async Task Save(ShoppingCart shoppingCart)
{

using (var conn = new SqlConnection(connectionString))
using (var tx = conn.BeginTransaction())
{

await conn.ExecuteAsync(
deleteAllForShoppingCartSql,
new { UserId = shoppingCart.UserId },

Listing 5.2 Writing shopping carts to the database

Opens a connection
to the ShoppingCart

database

Uses a Dapper extension 
method to execute a SQL 
query and map the results 
back to an IEnumerable of 
ShoppingCartItem objects

Deletes all preexisting 
shopping cart items

 



122 CHAPTER 5 Data ownership and data storage

tx).ConfigureAwait(false);
await conn.ExecuteAsync(

addAllForShoppingCartSql,
shoppingCart.Items,
tx).ConfigureAwait(false);

}
}

That concludes the implementation that stores shopping cart information in the
Shopping Cart microservice. It’s similar to storing data in a more traditional setting—
like a monolith or traditional SOA service—except that the narrow scope of a micro-
service means the model is often so simple that little-to-no mapping between C# code
and a database schema is needed. 

5.3.2 Storing events raised by a microservice

This section looks at storing the events raised by a microservice. During command
processing, a microservice can decide to raise events. Figure 5.7 shows the standard
set of components in a microservice: the domain model raises the events. It typically
does so when there’s a change or a set of changes to the state of the data for which the
microservice is responsible. 

 The events should reflect a change to the state of the data owned by the microser-
vice. The events should also make sense in terms of the capability implemented by the
microservice. For example, in a Shopping Cart microservice, when a user has added an
item to their shopping cart, the event raised is ItemAddedToShoppingCart, not RowAd-
dedToShoppingCartTable. The difference is that the first signifies an event of signifi-
cance to the system—a user did something that’s interesting in terms of the business—
whereas the latter would report on a technical detail—a piece of software did some-
thing because a programmer decided to implement it that way. The events should be of

Adds the current 
shopping cart items

HTTP API: accessible from
other microservices

HTTP API module

Event feed module

• Endpoint to get a shopping cart
• Endpoint to add items to a shopping cart
• Endpoint to delete an item from a shopping cart

ShoppingCartStore

ProductCatalogClient

Shopping Cart microservice

Shopping
Cart store

Event Store

EventStore
Shopping Cart 
domain model

Figure 5.7 The components in the Shopping Cart microservice involved in raising and saving events are the 
Shopping Cart domain model, the EventStore component, and the Event Store database.

 



123Implementing data storage in a microservice

significance at the level of abstraction of the capability implemented by the microser-
vice, and they will often cover several updates to the underlying database. The events
should correspond to business-level transactions, not to database transactions.

 Whenever the domain logic in a microservice raises an event, it’s stored to the
event store in the microservice. In figure 5.8, this is done through the EventStore
component, which is responsible for talking to the database where the events are
stored.

 The following two sections show two implementations of an EventStore compo-
nent. The first stores the events by hand to a table in a SQL database, and the second
uses the open source Event Store database.

STORING EVENTS BY HAND

Here, you’ll build an implementation of the EventStore component in the Shopping
Cart microservice that stores events to a table in SQL Server. The EventStore compo-
nent is responsible for both writing events to and reading them from that database.

NOTE This by-hand implementation demonstrates exactly what it means to
store events. It demystifies the notion of an event store, but it isn’t a production-
ready implementation.

The following steps are involved in implementing the EventStore component:

1 Add an EventStore table to the ShoppingCart database. This table will contain
a row for every event raised by the domain model.

2 Use Dapper to implement the writing part of the EventStore component.
3 Use Dapper to implement the reading part of the EventStore component.

Before we dive into implementing the EventStore component, here’s a reminder of
what the Event type in Shopping Cart looks like:

public struct Event
{

public long SequenceNumber { get; }
public DateTimeOffset OccurredAt { get; }
public string Name { get; }
public object Content { get; }

Event StoreEventStore
Shopping Cart 
domain model

Raise event
Take event
and store it

Write the event
to a database

Figure 5.8 When the domain model raises an event, the EventStore component 
code must write it to the Event Store database.

 



124 CHAPTER 5 Data ownership and data storage

public Event(
long sequenceNumber,
DateTimeOffset occurredAt,
string name,
object content)

{
this.SequenceNumber = sequenceNumber;
this.OccurredAt = occurredAt;
this.Name = name;
this.Content = content;

}
}

It’s events of this type that you’ll store in the event store database. The first step is to
go into the ShoppingCart database and add a table like the one shown in figure 5.9.
The database script in Chapter05\ShoppingCart\src\database-scripts\create-shopping-
cart-db.sql in the code download creates this table, along with the other two tables in
the ShoppingCart database.

Next, add a file named EventStore.cs to Shopping Cart, and add to it the following
code for writing events.

namespace ShoppingCart.EventFeed
{

using System;
using System.Threading.Tasks;
using System.Collections.Generic;
using System.Data.SqlClient;
using System.Linq;
using Dapper;
using Newtonsoft.Json;

Listing 5.3 Raising an event, which amounts to storing it

Figure 5.9 The EventStore table has four columns for these categories: event ID, 
event name, the time the event occurred, and the contents of the event.

 



125Implementing data storage in a microservice

public interface IEventStore
{
Task<IEnumerable<Event>> GetEvents(long firstEventSequenceNumber,

long lastEventSequenceNumber);
Task Raise(string eventName, object content);

}

public class EventStore : IEventStore
{
private string connectionString =

@"Data Source=.\SQLEXPRESS;Initial Catalog=ShoppingCart;Integrated

         ➥ Security=True";

private const string writeEventSql =
@"insert into EventStore(Name, OccurredAt, Content) values

         ➥ (@Name, @OccurredAt, @Content)";
public Task Raise(string eventName, object content)
{

var jsonContent = JsonConvert.SerializeObject(content);
using (var conn = new SqlConnection(connectionString))
{

return
conn.ExecuteAsync(

writeEventSql,
new
{

Name = eventName,
OccurredAt = DateTimeOffset.Now,
Content = jsonContent

});
}

}
}

}

This code doesn’t compile yet, because the IEventStore interface has another
method: one for reading events. That side is implemented as shown next.

NOTE Storing events essentially amounts to storing a JSON serialization of the
content of the event in a row in EventTable along with the ID of the event,
the name of the event, and the time at which the event was raised. The con-
cept of storing events and publishing them through an event feed may be
new, but the implementation is pretty simple.

private const string readEventsSql =
@"select * from EventStore where ID >= @Start and ID <= @End";

public async Task<IEnumerable<Event>> GetEvents(
long firstEventSequenceNumber,

Listing 5.4 EventStore method for reading events

Uses Dapper to execute a 
simple SQL insert statement

 



126 CHAPTER 5 Data ownership and data storage

long lastEventSequenceNumber)
{

using (var conn = new SqlConnection(connectionString))
{
return (await conn.QueryAsync<dynamic>(

readEventsSql,
new
{

Start = firstEventSequenceNumber,
End = lastEventSequenceNumber

}).ConfigureAwait(false))
.Select(row =>
{

var content = JsonConvert.DeserializeObject(row.Content);
return new Event(row.ID, row.OccurredAt, row.Name, content);

});
}

}

That’s all you need to implement a basic event store. The Shopping Cart microservice
can now raise events in the domain model and rely on the EventStore component to
write them to the EventStore table in the ShoppingCart database. Furthermore,
Shopping Cart has an event feed that you implemented back in chapter 2, which now
uses the EventStore component to read events from the database. It will send them to
event subscribers when they poll the feed.

 As noted earlier, this event store implementation isn’t ready for production use.
For instance, it will run into lock-contention problems as soon as the microservice
starts raising events from several concurrent threads. These problems will only get
worse when you begin scaling the microservice out to several servers that potentially
have multiple threads raising events at the same time. This example does, however,
show what it means to store events. 

STORING EVENTS USING THE EVENT STORE DATABASE SYSTEM

You’ll now implement another version of the EventStore component in the Shopping
Cart microservice, this time using the open source Event Store database. The advan-
tage of using Event Store over storing events in SQL Server is that its API is geared spe-
cifically toward storing events, reading events, and subscribing to new events. Event
Store is an open source, mature, well-tested event store implementation that can scale
and run stably under load. Furthermore, it comes with some nice added features out
the box, such as a web interface for inspecting events and Atom event feeds. SQL
Server is, of course, also mature, well-tested, scalable, and stable, but it isn’t specifi-
cally geared toward storing events.

NOTE This implementation uses an existing, well-tested, scalable, reliable
implementation of an event store. It’s a production-ready implementation.

Reads EventStore table
rows between start and end

Maps EventStore table
rows to Event objects

 



127Implementing data storage in a microservice

WARNING At the time of writing, the C# client library for communicating
with Event Store hasn’t been ported to .NET Core. Therefore, code in this sec-
tion needs to run on the full .NET Framework and therefore on Windows.

You’ll implement this version with the following steps. When you’re finished, you’ll
have a fully working implementation of the EventStore component in the Shopping
Cart microservice based on the Event Store database:

1 Install the Event Store database.
2 Write events to Event Store via the EventStore component.
3 Read events from Event Store via the EventStore component.

You can download Event Store for various platforms from http://getevent-
store.com/downloads. The downloads are zip files containing the Event Store data-
base. Download and unzip the download for your platform, and you’ll have Event
Store on your machine.

 You can now open a shell and go to the folder where you unzipped the Event Store
download. Run this command to start Event Store:

PS> ./EventStore.ClusterNode --db ./db --log ./logs

You can check whether the Event Store database is running by going to
http://127.0.0.1:2113/. You should see a login prompt that lets you log in with the
user name admin and the password changeit.

 In order to use the Event Store database from the Shopping Cart microservice
code, you first need to add the EventStore.Client NuGet package to the project.
With that installed, you can implement the EventStore component against the Event
Store database. The following listing shows the code for writing events.

namespace ShoppingCart.EventFeed
{

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using global::EventStore.ClientAPI;
using Newtonsoft.Json;

public class EventStore : IEventStore
{
private const string connectionString =

"discover://http://127.0.0.1:2113/";
private IEventStoreConnection connection =

EventStoreConnection.Create(connectionString);

public async Task Raise(string eventName, object content)

Listing 5.5 Storing events to the Event Store database

Creates a connection 
to EventStore

 

http://geteventstore.com/downloads
http://geteventstore.com/downloads


128 CHAPTER 5 Data ownership and data storage

{
await connection.ConnectAsync().ConfigureAwait(false);
var contentJson = JsonConvert.SerializeObject(content);
var metaDataJson =

JsonConvert.SerializeObject(new EventMetadata
{

OccurredAt = DateTimeOffset.Now,
EventName = eventName

});

var eventData = new EventData(
Guid.NewGuid(),
"ShoppingCartEvent",
isJson: true,
data: Encoding.UTF8.GetBytes(contentJson),
metadata: Encoding.UTF8.GetBytes(metaDataJson)

);

await
connection.AppendToStreamAsync(

"ShoppingCart",
ExpectedVersion.Any,
eventData);

}

private class EventMetadata
{

public DateTimeOffset OccurredAt { get; set; }
public string EventName { get; set; }

}
}

}

This code maps the Shopping Cart microservice’s own Event type to the Event Store
database’s EventData type, and then stores that to the Event Store database. The
implementation for reading events back from the Event Store database is shown next.

public async Task<IEnumerable<Event>>
GetEvents(long firstEventSequenceNumber, long lastEventSequenceNumber)

{
await connection.ConnectAsync().ConfigureAwait(false);

var result = await connection.ReadStreamEventsForwardAsync(
"ShoppingCart",
start:(int) firstEventSequenceNumber,
count: (int) (lastEventSequenceNumber - firstEventSequenceNumber),
resolveLinkTos: false).ConfigureAwait(false);

return

Listing 5.6 Reading events from the Event Store database

Opens the 
connection to 
EventStore

Maps OccurredAt and
EventName to metadata to be

stored along with the event

EventData is EventStore’s 
representation of an event.

Writes the event 
to EventStore

Reads events from
the Event Store

 



129Implementing data storage in a microservice

result.Events
.Select(ev =>

new
{

Content = JsonConvert.DeserializeObject(
Encoding.UTF8.GetString(ev.Event.Data)),

Metadata = JsonConvert.DeserializeObject<EventMetadata>(
Encoding.UTF8.GetString(ev.Event.Data))

})
.Select((ev, i) =>

new Event(
i + firstEventSequenceNumber,
ev.Metadata.OccurredAt,
ev.Metadata.EventName,
ev.Content));

}

This code reads the events from Event Store, deserializes the content and metadata
parts of the events, and then maps them back to the Shopping Cart Microservice’s
own Event type.

 This completes the implementation of the EventStore component based on the
Event Store database. Let’s now look at using caching. 

5.3.3 Setting cache headers in Nancy responses

Let’s consider the microservices in figure 5.2 again. The Shopping Cart microservice
uses product information that it gets by querying the Product Catalog microservice;
you implemented the Shopping Catalog microservice part of that collaboration in
chapter 2. Here, you’ll first set cache headers in the code implementing the endpoint
in Product Catalog. Then, you’ll rewrite the code in Shopping Cart that calls Product
Catalog to read and use the cache header.

 Assume that the /products endpoint in the Product Catalog microservice is imple-
mented in a Nancy module called ProductsModule. You’ll take a comma-separated list
of product IDs as a query parameter. The endpoint returns the product information
for each of the products identified by that list of product IDs. The implementation is
similar to the Nancy modules you’ve already seen in this book. The new part is that
you’ll add a cache-control header to the response that allows clients to cache the
response for 24 hours.

namespace ProductCatalog
{

using System;
using System.Collections.Generic;
using System.Linq;
using Nancy;

public class ProductsModule : NancyModule

Listing 5.7 Adding cache headers to the product list

Accesses the events on the 
result from the Event Store

Deserializes
the content
part of each

event

Deserializes the metadata
part of each event

Maps to events from Event 
Store Event objects

 



130 CHAPTER 5 Data ownership and data storage

{
public ProductsModule(ProductStore productStore) : base("/products")
{

Get("", _ =>
{

string productIdsString = this.Request.Query.productIds;
var productIds = ParseProductIdsFromQueryString(productIdsString);
var products = productStore.GetProductsByIds(productIds);

return
this
.Negotiate
.WithModel(products)
.WithHeader("cache-control", "max-age:86400");

});
}

private IEnumerable<int>
ParseProductIdsFromQueryString(string productIdsString)

{
...

}
}

}

This implementation adds a cache-control header to the response that looks like this:

cache-control: max-age:86400

The header tells callers that the response may be cached for as long as indicated by max-
value, which is given in seconds. In this case, callers may cache the response for 86,400
seconds (24 hours). 

5.3.4 Reading and using cache headers

In chapter 2, you saw code make calls to the /products endpoint from the Shopping
Cart microservice. That code is as follows; it’s part of the ProductCatalogClient class.

private static async Task<HttpResponseMessage>
RequestProductFromProductCatalogue(int[] productCatalogueIds)

{
var productsResource = string.Format(
getProductPathTemplate, string.Join(",", productCatalogueIds));

using (var httpClient = new HttpClient())
{
httpClient.BaseAddress = new Uri(productCatalogueBaseUrl);
return await

httpClient.GetAsync(productsResource).ConfigureAwait(false);
}

}

Listing 5.8 Calling the Product Catalog microservice

Adds a cache-control 
header, with max-age 
in seconds

 



131Implementing data storage in a microservice

With this code, an HTTP request is made every time Shopping Cart needs product
information, regardless of any cache headers. This is inefficient in cases where Shop-
ping Cart needs information about the same products several times within 24 hours,
because that’s the max-age value set in the responses from the Product Catalog
microservice. Such cases will occur every time a user adds to their shopping cart an
item that another user has added to their shopping cart within the preceding 24
hours. That’s likely to happen often.

 Let’s extend the code making the call to the /products endpoint in Product Cata-
log to take cache headers into account. Add a dependency to ProductCatalogClient
on a cache that implements an ICache interface:

private ICache cache;

public ProductCatalogClient(ICache cache)
{

this.cache = cache;
}

As you’ll recall, Nancy handles dependency injection for you, so as long as there’s an
implementation of the ICache interface in the solution, Nancy will inject it. Here, I’ll
only show the interface, but in the code download, you can find a simple static cache
implementing the interface. The interface is straightforward and has two methods:

public interface ICache
{

void Add(string key, object value, TimeSpan ttl);
object Get(string key);

}

You’ll use the cache variable on ProductCatalogClient to check whether there’s a
valid object in the cache before making an HTTP request.

private async Task<HttpResponseMessage>

➥ RequestProductFromProductCatalogue(int[] productCatalogueIds)
{

var productsResource = string.Format(
getProductPathTemplate, string.Join(",", productCatalogueIds));

var response = this.cache.Get(productsResource) as HttpResponseMessage;
if (response == null)
{
using (var httpClient = new HttpClient())
{

httpClient.BaseAddress = new Uri(productCatalogueBaseUrl);
response = await

httpClient.GetAsync(productsResource).ConfigureAwait(false);

Listing 5.9 Making requests when there’s no valid response in the cache

“ttl” means 
time to live.

Tries to retrieve a valid
response from the cache

Only makes the HTTP
request if there’s no

response in the cache

 



132 CHAPTER 5 Data ownership and data storage

AddToCache(productsResource, response);
}

}
return response;

}

private void AddToCache(string resource, HttpResponseMessage response)
{

var cacheHeader = response
.Headers
.FirstOrDefault(h => h.Key == "cache-control");

if (string.IsNullOrEmpty(cacheHeader.Key))
return;

var maxAge =
CacheControlHeaderValue.Parse(cacheHeader.Value.ToString())

.MaxAge;
if (maxAge.HasValue)
this.cache.Add(key: resource, value: response, ttl: maxAge.Value);

}

With this code in place in the Shopping Cart microservice, the responses from the
Product Catalog microservice will be used for as long as the max-age value in the
cache-control header allows (24 hours, in this example). 

5.4 Summary
 A microservice stores and owns all the data that belongs to the capability the

microservice implements.
 A microservice is the authoritative source for the data it owns.
 A microservice stores its data in its own dedicated database.
 A microservice will often also cache data owned by other microservices for sev-

eral reasons:
– To reduce coupling to other microservices. This makes the overall system

more stable.
– To speed up processing by avoiding making remote calls.
– To build up its own custom representations—known as read models—of data

owned by another microservice to make its code simpler.
– To build read models based on events from other microservices to avoid que-

rying the other microservices, thus using an event-based collaboration style
instead of a query-based one. Remember from chapter 4 that event-based
collaboration is preferable because of the reduced coupling.

 Which database or databases a microservice uses is a design decision particular
to that microservice. Different microservices can use different databases.

 Storing the data owned by a microservice is similar to storing data in other
kinds of systems.

Reads the cache-control
header from the response

Parses the cache-control
value and extracts max-

age from it

Adds the response to the cache if
it has a max-age value

 



133Summary

 You can use Dapper to read data from and write data to a SQL database.
 Storing events is essentially a matter of storing a serialized event to a database.
 A simple version of an event store involves storing events to a table in a SQL

database.
 You can also implement an event store by storing events to the open source

Event Store database, which is specifically designed to store events.

 



134

Designing for robustness

This chapter introduces strategies for making a system of microservices robust in
the face of failures. In general, whenever one microservice communicates with
another microservice, the communication may fail. In this chapter, you’ll learn
about and implement some patterns for dealing with such failures. The strategies
are fairly simple, yet they’ll make the overall system much more robust.   

This chapter covers
 Communicating robustly between microservices

 Letting the calling side take responsibility for 
robustness in the face of failure

 Rolling back versus rolling forward

 Implementing robust communication

Failures and errors
I’ll distinguish between the terms failure and error. A failure happens when something
goes wrong in the system and the issue is caused by something outside the system.
Some typical sources of failures are as follows:

 Lost network packets cause communication to fail.
 Lost connections cause communication to fail.
 Hardware failures cause microservices to fail.

 



135Expect failures

6.1 Expect failures
When working with any nontrivial software system, you must expect failures to occur.
Hardware can fail. Software may fail due to, for instance, unforeseen usage or corrupt
data. A distinguishing factor of a microservice system is that there’s a lot of communi-
cation between microservices. Figure 6.1 repeats the diagram from chapter 1 that
shows the communication resulting from a user adding an item to a shopping cart.
You see that just one user action results in quite a bit of communication—and a real
system will likely have many concurrent users all performing many actions, and thus
lots of communication going on. You must expect communication to fail from time to
time. Communication between two microservices may not fail often, but looking at a
microservice system as a whole, communication failures are likely to occur often due
to the amount of communication.

 Because you have to expect that some of the communication in your microservice
system will fail, you should design your microservices to be able to cope with those fail-
ures. As discussed in chapter 4, you can divide the collaborations between microser-
vices into three categories: query-, command-, and event-based collaborations. When a
communication fails, the impact depends on the type of collaboration and the way the
microservices cope with it:

 Query-based collaboration—When a query fails, the caller doesn’t get the information
it needs. If the caller copes well with that, the system keeps working, but with
degraded functionality. If the caller doesn’t cope well, the result could be an error.

 Command-based collaboration—When sending a command fails, the sender can’t
know whether the receiver got the command. Again, depending on how the sender
copes, this could result in an error, or it could result in degraded functionality.

 Event-based collaboration—When a subscriber polls an event feed, but the call
fails, the impact is limited. The subscriber will poll the event feed again later
and, assuming the event feed is up again, receive the events at that time. In
other words, the subscriber will still get all events, but some of them will be
delayed. This shouldn’t be a problem for an event-based collaboration, because
it’s asynchronous anyway.

(continued)
An error happens when the system can’t serve its users properly. Some typical exam-
ples of errors are these:

 A user sees an error page.
 The system hangs and never responds to a user action.
 The system gives back the wrong response to a user action.

Errors often stem from failures. On the other hand, failures only become errors if the
software can’t cope properly with failures. It follows that a perfect system would see
failures, but no errors. Unfortunately, our systems aren’t perfect, and we may as well
accept that errors will occur.

 



136 CHAPTER 6 Designing for robustness

The following subsection discusses some important ways to prepare for handling fail-
ure well.

6.1.1 Keeping good logs

Once you accept that failures are bound to happen and that some of them may result
not just in a degraded end user experience but also in errors, you must make sure
you’re able to understand what went wrong when an error occurs. That means you
need good logs that allow you to trace what happened in the system and led to an
error situation. “What happened” will often span several microservices, which is why
you should consider introducing a central Log microservice, as shown in figure 6.2; all

6a. Publish ItemAddedtoCart event

Recommendations
store

Recommendations
microservice

Shopper
Tracking store

Shopper Tracking
microservice

6. Update user’s cart

4. Look up product

2. Add item
    to cart

7. JSON representation
    of cart

Price Calculation
microservice

8. Get updated
    price

9. Read price information
Price Calculation

store

12. Asynchronously read 
      ItemAddedToCart event

API gateway

1. Request: add
    item to cart

11. Response:
      updated cart
      and price 

Shopping Cart
microservice

3. Look up
    product

5. JSON representation
    of product

Product Catalog
microservice

Shopping Cart
store

Product
Catalog store

10. JSON representation
      of price information

Figure 6.1 In a system of microservices, there will be many communication paths.

 



137Expect failures

the other microservices send log messages to it, and you can inspect and search the
logs when you need to.

 The Log microservice is a central component that all other microservices use. You
need to make certain that a failure in Log doesn’t bring down the whole system by
causing all other microservice to fail if they can’t log messages. Therefore, sending log

6a. Publish
      ItemAddedtoCart
      event

Recommendations
store

Recommendations
microservice

Log
microservice

Log web
interface

Shopper
Tracking store

Shopper Tracking
microservice

6. Update
    user’s cart

4. Look up
    product

2. Add item
    to cart

7. JSON representation
    of cart

Price Calculation
microservice

8. Get updated
    price

9. Read price
    information

Price Calculation
store

12. Asynchronously read 
      ItemAddedToCart event

API gateway

1. Request: add
    item to cart

11. Response:
      updated cart
      and price 

Shopping Cart
microservice

3. Look up
    product

5. JSON representation
    of product

Product Catalog
microservice

Shopping Cart
store

Log store

Product
Catalog store

10. JSON representation
      of price information

Figure 6.2 A central Log microservice receives log messages from all other microservices and stores them in a 
database or a search engine. The log data is accessible through a web interface. The dotted arrows shows 
microservices sending log messages to the central Log microservice.

 



138 CHAPTER 6 Designing for robustness

messages to Log must be fire and forget—that is, the messages are sent and then forgot-
ten. The microservice sending the message shouldn’t wait for a response.

Later in this chapter, we’ll look at logging unhandled errors by adding handlers to
Nancy’s error pipeline. 

6.1.2 Using correlation tokens

To find all log messages related to a particular action in the system, you can use correlation
tokens. A correlation token is an identifier attached, for example, to a request from an
end user when it comes into the system. The correlation token is passed along from
microservice to microservice in any communication that stems from that end user
request. Any time one of the microservices sends a log message to the Log microservice,
the message should include the correlation token. The Log microservice should allow
searching for log messages by correlation token. In figure 6.2, the API gateway would cre-
ate and assign a correlation token to each incoming request; and the correlation token
would then be passed with every microservice-to-microservice communication, includ-
ing events and log messages.

NOTE Chapter 9 discusses how to implement request logging and how to
include correlation tokens in communications and log messages. 

6.1.3 Rolling forward vs. rolling back

When errors happen in production, you’re faced with the question of how to fix
them. In many traditional systems, if errors begin to occur shortly after deployment,
the default response is to roll back to the previous version of the system. In a microser-
vice system, the default can be different. As discussed in chapter 1, microservices lend
themselves to continuous delivery. With continuous delivery, microservices are
deployed frequently, and each deployment should be both fast and easy to perform.
Furthermore, microservices are sufficiently small and simple that many bug fixes are
also easy. This opens the possibility of rolling forward rather than rolling backward.

Using an off-the-shelf solution for the Log microservice
A central Log microservice doesn’t implement a business capability of a particular
system. It’s an implementation of generic technical capability. In other words, the
requirements for a Log microservice in system A aren’t that different from the require-
ments for a Log microservice in system B. Therefore, I recommend using an off-the-
shelf solution to implement your Log microservice.

For instance, logs can be stored in Elasticsearch (https://github.com/elastic/elas-
ticsearch) and made accessible with Kibana (https://github.com/elastic/kibana).
These are well-established, well-documented products, and I won’t dive into how to
set them up here. In chapter 9, I’ll assume that you have a Log microservice based
on Elasticsearch, and I’ll show you how to send log messages to it.

 

https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/elastic/kibana


139Expect failures

 Why would you want to default to rolling forward? In some situations, rolling back-
ward is complicated—in particular, when database changes are involved. When a new
version that changes the database is deployed, the microservice begins to produce
data that fits in the updated database. Once that data is in the database, it has to stay
there, which may not be compatible with rolling back to an earlier version. In such a
case, rolling forward may be easier. 

6.1.4 Don’t propagate failures

Sometimes, things happen around a microservice that may disturb its normal opera-
tion. We say that the microservice is under stress in such situations. There are many
sources of stress, including the following:

 One of the machines in the cluster on which the microservice’s data store runs
has crashed.

 The microservice has lost network connectivity to one of its collaborators.
 The microservice is receiving unusually high amounts of traffic.
 One of its collaborators is down.

In all these situations, the microservice under stress can’t continue to operate the way
it normally does. That doesn’t mean it’s down, but it must cope with the situation.

 When one microservice fails, its collaborators are put under stress. That means
the collaborators are also at risk of failing. While the microservice is failing, its col-
laborators can’t query, send commands, or poll events from the failing microservice.
As illustrated in figure 6.3, if the collaborators fail, even more microservices become
at risk of failing: the failure begins to propagate through the system of microser-
vices. Such a situation can quickly escalate from one microservice failing to many
microservices failing.

Potentially
under stress STRESSED

STRESSED

FAILED

Figure 6.3 If the microservice marked 
FAILED is failing, so is communication 
with it. That means the microservices 
at the other end of those 
communications are under stress. If the 
stressed microservices fail due to the 
stress, the microservices 
communicating with them are put under 
stress. In that situation, the failure in 
one failed microservice can propagate 
to several other microservices.

 



140 CHAPTER 6 Designing for robustness

Here are some examples of how you can stop failures from propagating:

 When one microservice tries to send a command to another microservice that
happens to be failing at the time, that request will fail. If the sender fails too,
you get the situation illustrated in figure 6.3, with failures propagating through-
out the system. To stop the propagation, the sender can act as if the command
succeeded, but actually store the command in a list of failed commands. The
sending microservice can periodically go through the list of failed commands
and try to send them again. This isn’t possible in all situations, because the com-
mand may need to be handled immediately; but when this approach is feasible,
it stops the failure in one microservice from propagating. This approach can be
combined with a circuit, which we’ll talk about later in the chapter.

 When one microservice queries another that’s failing, the caller can use a
cached response. In chapter 5, you saw how to cache query responses and how
to respect the cache header set by the microservice being queried. If the caller
has a stale response in the cache, but a query for a fresh response fails, it may
decide to use the stale response anyway. Again, this isn’t possible in all situa-
tions, but when it is, the failure won’t propagate.

 An API gateway that’s stressed because of high amounts of traffic from a certain
client can throttle that client by not responding to more than a certain number
of requests per second from the client. Note that the client may be sending an
unusually high number of requests because it’s failing internally. When throt-
tled, the client will get a degraded experience but will still receive some
responses. Without the throttling, the API gateway may become slow for all cli-
ents or fail completely. Moreover, because the API gateway collaborates with
other microservices, handling all the incoming requests would push the stress
of those requests onto other microservices, too. Again, throttling stops the fail-
ure in the client from propagating to other microservices.

As you can see from these examples, stopping failure propagation comes in many
shapes and sizes. The important takeaway is the idea of building into your systems
safeguards that are specifically designed to stop propagation of the kinds of failures
you anticipate. How that’s realized depends on the specifics of the systems you’re
building. Building in safeguards may take some effort, but it’s often well worth the
effort because of the robustness they give the system as a whole. 

6.2 The client side’s responsibility for robustness
When two microservices collaborate, there’s a client and server, as shown in figure 6.4.
The client is the microservice that sends out HTTP requests, and the server microser-
vice handles them. The request shown in figure 6.4 happens to fail; it may fail because
the server fails, or it may fail because it doesn’t reach the server. Once the request has
failed, the server can’t do anything about it. The server can’t send a response to a
failed request—the request is already gone at that point. Responsibility for handling

 



141The client side’s responsibility for robustness

requests therefore must fall on the client. In other words, the client is responsible
making the collaboration robust in the face of failing requests.

 When you look at an event-based collaboration, you see a degree of robustness in
the face of failing requests built into the collaboration itself. Figure 6.5 shows an event
subscriber in one microservice and an event feed in another microservice. As you saw
in chapter 3, an event subscriber polls the event feed at intervals for new events. That
way of collaborating means that if a request for new events fails, the event subscriber
will ask for the same events the next time it polls for events. The subscriber can catch
up to events in the event feed even though some requests fail, and thus the subscriber
is robust with regard to failing requests for events.

 You can see that with regard to command- and query-based collaboration, robust-
ness doesn’t come easily. The next two sections talk about patterns for building
robustness into command- and query-based collaborations.

Failing HTTP request

XClient Server

Server cannot respond
to a failed request

Figure 6.4 All collaborations between microservices have a client and a server. The client 
sends HTTP requests to the server. The client is responsible for handling failed requests.

Failing HTTP request
for events 100 to 200 X

Event subscriber Event feed

Request timeout or response
with an error status code

Repeat HTTP request
for events 100 to 200

Response with
events 100 to 200

Figure 6.5 If a request for events from an event feed fails, the subscriber 
will request the same events the next time it polls for events.

 



142 CHAPTER 6 Designing for robustness

6.2.1 Robustness pattern: retry

The client in a command- or query-based collaboration may choose to try again when a
request fails. If the reason for the failed request is transient, the next attempt may be suc-
cessful. Transient failures are common, and the reasons for them include the following:

 Network congestion.
 The server microservice being deployed. Depending on how the microservice is

deployed, there may be a short window when the microservice is unavailable or
slow—for example, while a load balancer is switched over to a new version. Even
if the server is slow only during deployment, requests may fail due to timeouts.

Retrying is a double-edged sword. If the reason for the failures isn’t transient, retrying
requests won’t help. On the contrary, retrying indiscriminately puts stress on the
server, because it’s getting not only its usual number of requests but also the retries
(see figure 6.6). This may not seem like a big deal, but imagine a system that’s already
under high load. During normal operation, the client sends many requests to the
server. If requests start failing and the client retries all of them, the client ends up
sending more and more requests to the server. If the reason for the failing requests is
that the server is already having trouble keeping up with the number of requests it
receives, sending even more requests certainly isn’t going to help.

 Does this mean retrying is a bad pattern? No; it means you shouldn’t continue
retrying or retry too aggressively. The first thing to consider is how many times it

Failing HTTP request A

Server may fail
due to stress

X

Client Server

Retry failing HTTP request A

X
Failing HTTP request B

X
Retry failing HTTP request A

X
Retry failing HTTP request B

X

Figure 6.6 If a client keeps retrying a request that continues to fail at the 
server, the stress on the server will grow, and it may eventually fail completely.

 



143The client side’s responsibility for robustness

makes sense to retry. If the request fails three times, is there any reason to believe it
will succeed the fourth time? Second, you can use an exponential backoff between
each retry. That is, instead of retrying after a constant amount of time (say, 100 ms),
wait two or three times longer between each retry: maybe 100 ms before the first retry,
200 ms between the first and the second, and 400 ms between the second and third.
These two simple additions mean the stress on the server builds up more slowly; you
should always use them when you retry command or query requests. Later in this
chapter, I’ll show how the Polly library makes it easy to set up such retry strategies.

 You may even want to consider making the interval between retries much longer.
Instead of waiting a fraction of a second before retrying, you could wait a few minutes
or even hours. Figure 6.7 shows a retry strategy in which the intervals are long and
become exponentially longer. This type of retry doesn’t place nearly as much stress on
the server as the fast retries used in many software systems.

 This approach clearly doesn’t work for all situations. If a user is waiting for a
response, it makes no sense to retry an hour later, because the user will have given up
long before, so the software should also give up and give a degraded response sooner.

Failing HTTP request
Time T X

Client Server

Time T + 15
Retry failing HTTP request

X

Time T + 45 minutes
Retry failing HTTP request

X

Time T + 105 minutes
Retry failing HTTP request

X

Time T + 225 minutes
Retry failing HTTP request

X

Figure 6.7 To avoid putting unnecessary stress on the server, the client can wait 
exponentially longer and longer between retries.

 



144 CHAPTER 6 Designing for robustness

On the other hand, if the request is initiated based on something the system does on
its own—for example, as part of handling an event—you can often wait a long time.

 Next, we’ll discuss another useful pattern for making collaborations robust: the cir-
cuit breaker pattern. Then we’ll move on to code and implement both the fast-paced
and slow-paced styles of retries. 

6.2.2 Robustness pattern: circuit breaker

The circuit breaker pattern is a different take on dealing with failing requests. As you
saw in the previous section, retrying failing requests can add to the problem by put-
ting the server under stress; therefore, you must limit the number of retries. The cir-
cuit breaker pattern takes this line of thinking a step further: it assumes that if a
number of different requests in a row fail, then the next request is also likely to fail.

 Figure 6.8 illustrates this situation. The client has already made HTTP requests A,
B, C, and D. Is it then likely that E will succeed? In many cases, no. The fact that a
number of requests failed indicates that the problem isn’t with the individual
requests. Rather, it has to do with the communication—the client can’t reach the
server, the server is failing, or the client is sending bad requests. The issue with com-
munication may be transient, but even so, request E often also fails.

 The circuit breaker pattern addresses this situation by not making request E at all,
but instead assuming it will fail. Not making requests that are likely to fail alleviates
stress on both the client and the server:

 The server receives fewer requests.
 The client doesn’t have to wait for requests to fail, but rather assumes they will,

meaning the client doesn’t spend resources on waiting and can get its own work
done more quickly.

Failing HTTP request A

X

Client Server

Failing HTTP request B

X
Failing HTTP request C

X
Failing HTTP request D

X
HTTP request E

Figure 6.8 If several requests in a row have failed, is the next one likely to fail? In many cases, yes.

 



145The client side’s responsibility for robustness

A circuit breaker wraps HTTP requests in a state machine like the one shown in fig-
ure 6.9. When the microservice needs to make an HTTP request, it does so through
the circuit breaker.

 The circuit breaker state machine starts in the closed state and works as follows:

 While the circuit breaker is in the closed state, it makes a real HTTP request when
asked to. If the HTTP request fails, the circuit breaker increments a counter. If
the request succeeds, the circuit breaker resets the counter to zero. When and
if that counter exceeds a preset limit—say, five failed requests in a row—the cir-
cuit breaker goes to the open state.

 While the circuit breaker is in the open state, it doesn’t make any HTTP requests.
Instead, it errors immediately. The circuit breaker stays in the open state for a
preset period—say, 30 seconds—and then goes to the half-open state.

 While the circuit breaker is in the half-open state, it makes an HTTP request the
first time it’s asked to. After that one HTTP request, it goes to the closed state if
the request succeeded, or the open state if it failed.

The result of these simple rules is a state machine that stops making HTTP requests
when they’re likely to fail anyway. Later in this chapter, I’ll show you how to use Polly
to create circuit breakers around HTTP requests.

TIP Circuit breakers not only are useful for HTTP requests, but also can be
used to add robustness around any operation that can fail.

For the remainder of the chapter, we’ll get down to the code level and see how to
implement retry strategies and circuit breakers using Polly and general error handling
using Nancy’s error pipelines. 

Counter exceeds limit:
Trip breaker

Call succeeds:
Reset

Call fails:
Trip breaker

Timeout:
Attempt reset

Call succeeds:
Reset counter

Call fails:
Increment counter

Closed Open

Half open

Figure 6.9 A circuit breaker is a state machine with three states. When the circuit breaker is closed, 
real HTTP requests are made. When the circuit breaker is open, no requests are made. A circuit breaker 
helps avoid making HTTP requests that are likely to fail.

 



146 CHAPTER 6 Designing for robustness

6.3 Implementing robustness patterns
To see how to implement the retry and circuit breaker patterns discussed in the previ-
ous sections, let’s turn our attention back to the point-of-sale system introduced in
chapter 3 and zoom in on the collaborations around the Loyalty Program microser-
vice. You identified these collaborations in chapter 4; figure 6.10 shows them again,
annotated with the robustness strategies you’ll implement in the following sections.
We won’t look at code for the robustness strategies of the Invoice and Log microser-
vices, so they’re grayed out.

In the following sections, you’ll do the following:

 Implement a fast-paced retry strategy in the API Gateway microservice for the
commands it sends to the Loyalty Program microservice. The implementation
is based on the Polly library.

 Implement a circuit breaker in the API Gateway microservice for the queries it
makes to the Loyalty Program microservice. This implementation is also based
on the Polly library.

 Implement a slow-paced retry strategy in the Loyalty Program microservice for
the commands it sends to the Notifications microservice, based on the way the
event subscription already works.

 Implement general exception handlers in the HTTP API in the Loyalty Program
microservice using the error pipeline built into Nancy. 

Special Offers
microservice

Loyalty Program
microservice Log microservice

API Gateway
microservice

Queries wrapped in 
a circuit breaker

Commands wrapped
in a fast-paced
retry strategy

Notifications
microservice

Invoice
microservice

Reading events
is retried 

Queries wrapped
in a circuit breaker

Commands wrapped
in a slow-paced

retry strategy

Fire and forget: 
logging

Figure 6.10 The Loyalty Program microservice collaborates with several other microservices. Each 
collaboration is annotated with a robustness strategy.

Polly
Polly is a convenient library for creating and using error-handling strategies. Creating
a strategy with Polly is done in a declarative way via a fluent API. Once created, a
strategy can be applied to any Func or Action—which essentially means you can apply
the strategy to any code you want.

 



147Implementing robustness patterns

The API Gateway microservice consists of the components shown in figure 6.11. In the
next two sections, we’ll zoom in on LoyaltyProgramClient.

(continued)
Polly is a convenient library for creating and using error-handling strategies. Creating
a strategy with Polly is done in a declarative way via a fluent API. Once created, a
strategy can be applied to any Func or Action—which essentially means you can apply
the strategy to any code you want.

The three steps to using Polly are as follows: 

1 Decide which exceptions to handle, such as HttpException.
2 Decide which policy to use, such as a retry policy.
3 Apply the policy to a function.

The entry point to working with Polly is the Policy class:

var retryStrategy =
Policy
.Handle<HttpException>()
.Retry();

retryStrategy.Execute(() => DoHttpRequest());

Polly comes with a number of built-in policies, including variations of retry strategies
and various circuit breaker strategies.

Step 1: Decide which 
exceptions to handle.

Step 2: Decide 
which policy to use.

Step 3: Use the strategy 
to wrap a function call.

Other client

HTTP API: used by clients

LoyaltyProgramClient

API Gateway microservice

Figure 6.11 The API Gateway microservice consists of the same standard set of 
components you’ve seen several times already.

 



148 CHAPTER 6 Designing for robustness

6.3.1 Implementing a fast-paced retry strategy with Polly

As shown in figure 6.10, the API Gateway microservice sends commands to the Loyalty
Program microservice. We’ll only look at adding a retry strategy to the register-user
command here, because the code for adding a retry strategy to the update-user com-
mand is essentially the same.

 First, you need to add the Polly NuGet package to the API Gateway microservice.
The code that sends the commands to the Loyalty Program microservice is in Loyalty-
ProgramClient. You use Polly to set up a retry policy that uses an exponential backoff.
Polly splits the setup of a policy from the execution of the policy: that is, Polly allows
you to set up different policies—a retry policy, for instance—and then later execute a
piece of code under the policy. In the case of a retry strategy, that means retrying the
piece of code if it fails. The retry policy for the register-user command is set up as
shown next.

using System;
using Polly;

public class LoyaltyProgramClient
{

private static Policy exponentialRetryPolicy =
Policy

.Handle<Exception>()

.WaitAndRetryAsync(
3,
attempt =>

TimeSpan.FromMilliseconds(100 * Math.Pow(2, attempt)),
);

}

With the retry strategy set up, you can use it to wrap the call to the Loyalty Program
microservice.

public async Task<HttpResponseMessage>
RegisterUser(LoyaltyProgramUser newUser)

{
return await exponentialRetryPolicy
.ExecuteAsync(() => DoRegisterUser(newUser));

}

private async Task<HttpResponseMessage>
DoRegisterUser(LoyaltyProgramUser newUser)

{
using (var httpClient = new HttpClient())

Listing 6.1 Polly retry policy

Listing 6.2 Using a Polly policy around an HTTP request

Handles all exceptions
Chooses an async policy 
because you’ll use it 
with async code laterNumber

of retries

Time span to wait
before the next retry

Executes an 
Action with the 
retry policy

 



149Implementing robustness patterns

{
httpClient.BaseAddress = new Uri($"http://{this.hostName}");
var response = await

httpClient.PostAsync("/users/",
new StringContent(JsonConvert.SerializeObject(newUser),
Encoding.UTF8,
"application/json"));

ThrowOnTransientFailure(response);
return response;

}
}

private static void ThrowOnTransientFailure(HttpResponseMessage response)
{

if (((int) response.StatusCode) < 200 || ((int) response.StatusCode) > 499)
throw new Exception(response.StatusCode.ToString());

}

That is how easy it is to set up retrying with Polly. Next, you’ll use Polly to create a cir-
cuit breaker. 

6.3.2 Implementing a circuit breaker with Polly

Now you’ll add a circuit breaker to the API Gateway microservice’s queries to the Loy-
alty Program microservice. This time, you’ll use Polly’s built-in support for circuit
breaker policies.

private static Policy circuitBreaker =
Policy
.Handle<Exception>()
.CircuitBreaker(5, TimeSpan.FromMinutes(3));

Even though the circuit breaker pattern may seem more complicated than retrying,
Polly makes it just as easy to set up a circuit breaker policy as a retry policy. Using a policy
is the same no matter what the policy is, so wrapping queries to the Loyalty Program
microservice in the circuit breaker policy is just like the code for wrapping register-user
commands in the retry policy.

public async Task<HttpResponseMessage> QueryUser(int userId)
{

return await circuitBreaker
.ExecuteAsync(() => DoUserQuery(userId));

}

private async Task<HttpResponseMessage> DoUserQuery(int userId)

Listing 6.3 Polly circuit breaker policy

Listing 6.4 Wrapping a query in a circuit breaker

Makes
the HTTP

request

Throwing an exception 
tells the policy to retry.

Sets the failure limit to 
5 and the time-in-open-
state limit to 3 minutes

Uses the circuit 
breaker policy

 



150 CHAPTER 6 Designing for robustness

{
var userResource = $"/users/{userId}";
using (var httpClient = new HttpClient())
{
httpClient.BaseAddress = new Uri($"http://{this.hostName}");
var response = await httpClient.GetAsync(userResource);
ThrowOnTransientFailure(response);
return response;

}
}

With these two policies in place, API Gateway takes responsibility for adding robust-
ness to the collaboration with Loyalty Program. Next, we’ll move on to the Loyalty
Program microservice. 

6.3.3 Implementing a slow-paced retry strategy

The Loyalty Program microservice subscribes to events from the Special Offers
microservice. Based on the events, Loyalty Program sends commands to the Notifica-
tions microservice, asking it to notify users about new special offers. If sending a com-
mand to Notifications fails, you want to retry. Because sending out notifications isn’t
particularly time critical, you’ll choose not to retry immediately; instead, you’ll retry
the next time the event subscriber would otherwise poll for new events. To do this, all
you have to do is keep track of what the last successful event was.

 Remember from chapter 4 that an event subscriber works by periodically waking
up and polling the event feed for new events. On each such cycle, the next batch of
events is read and handled. The next batch of events will begin one event after
the last successfully handled event. This means all failed events are retried. It also
means you may as well abort the rest of a batch as soon as one event fails—the rest
will be retried later anyway. The method from chapter 4 that handled each cycle
looked like this.

private async Task SubscriptionCycleCallback()
{

var response = await ReadEvents().ConfigureAwait(false);
if (response.StatusCode == HttpStatusCode.OK)
HandleEvents(

await response.Content.ReadAsStringAsync().ConfigureAwait(false));
this.timer.Start();

}

This method relies on other methods to read and handle events. Event reading in
chapter 4 was as shown next.

 
 

Listing 6.5 Single-event subscription cycle

Signals a failure to the circuit 
breaker by throwing an exception

 



151Implementing robustness patterns

private async Task<HttpResponseMessage> ReadEvents()
{

using (var httpClient = new HttpClient())
{
httpClient.BaseAddress =

new Uri($"http://{this.loyaltyProgramHost}");
var resource =

$"/events/?start={this.start}&end={this.start + this.chunkSize}";
var response = await

httpClient
.GetAsync(resource)
.ConfigureAwait(false);

PrettyPrintResponse(response);
return response;

}
}

And finally, the handling of events looked like this.

private async Task HandleEvents(string content)
{

var events = JsonConvert.DeserializeObject<IEnumerable<Event>>(content);
foreach (var ev in events)
{
dynamic eventData = ev.Content;
if (ShouldSendNotification(eventData))

await SendNoitifcation(eventData).ConfigureAwait(false);
this.start = ev.SequenceNumber + 1;

}
}

private bool ShouldSendNotification(dynamic eventData)
{

// decide if notification should be sent based on business rules
}

private Task SendNotification(dynamic eventData)
{

// use HttpClient to send command to notification microservice
}

To begin implementing the retry strategy, modify the reading of events to use a start
number read from the database.

 
 

Listing 6.6 Reading events from an event feed

Listing 6.7 Handling a batch of events

Holds the starting point
of a batch in memory

All events were assumed to be
successfully handled, and “start”

was updated for each one.

 



152 CHAPTER 6 Designing for robustness

private async Task<HttpResponseMessage> ReadEvents()
{

var startNumber = await ReadStartNumber().ConfigureAwait(false);
using (var httpClient = new HttpClient())
{
httpClient.BaseAddress = new Uri($"http://{this.loyaltyProgramHost}");
var resource =

$"/events/?start={startNumber}&end={this.start + this.chunkSize}";

var response = await httpClient.GetAsync(resource).ConfigureAwait(false);
PrettyPrintResponse(response);
return response;

}
}

private async Task<long> ReadStartNumber()
{

// Read start number from database
}

Next, modify the handling of events to abort when an event fails and to write the num-
ber of the last successfully handled event to the database.

private async Task HandleEvents(string content)
{

var lastSucceededEvent = 0L;
var events = JsonConvert.DeserializeObject<IEnumerable<Event>>(content);
foreach (var ev in events)
{
dynamic eventData = ev.Content;
if (ShouldSendNotification(eventData))
{

var notificationSucceeded = await
SendNoitifcation(eventData).ConfigureAwait(false);

if (!notificationSucceeded)
return;

}
lastSucceededEvent = ev.SequenceNumber + 1;

}
await WriteStartNumber(lastSucceededEvent).ConfigureAwait(false);

}

private bool ShouldSendNotification(dynamic eventData)
{

// decide if notification should be sent based on business rules
}

Listing 6.8 Reading events starting from the stored start number

Listing 6.9 Keeping track of which events have been handled

Reads the start number
from the database

Uses startNumber when
requesting an event from the feed

Keeps track of events 
successfully handled

Not all events
 are assumed to be

handled successfully.

Aborts when
handling one

event fails
Updates to the last 
successfully handled event

Updates where the
next batch starts

 



153Implementing robustness patterns

private Task<bool> SendNotification(dynamic eventData)
{

// use HttpClient to send command to notification microservice
// return true if the command succeeded, false otherwise

}

private async Task WriteStartNumber()
{

// Write start number to database
}

As you can see, the changes necessary to introduce the slow-paced retry strategy aren’t
significant. 

6.3.4 Logging all unhandled exceptions

Finally, we’ll turn our attention to the HTTP API of the Loyalty Program microservice.
As stated earlier, you want to keep good logs of everything that goes wrong in the system.
That means you should log any unhandled exceptions thrown in the handlers for the
endpoints in the microservices. You can uses Nancy’s application-level error pipeline for
this. The error pipeline allows you to add handlers that will be called every time a route
handler in the microservice throws an unhandled exception. You add the handler to the
error pipeline in the Nancy bootstrapper by overriding the ApplicationStartup method
and accessing the error pipeline through the IPipelines interface.

 You already wrote a Nancy bootstrapper for Loyalty Program in chapter 4. Now
you’ll extend it with the following code, which adds a handler to the error pipeline.

namespace LoyaltyProgram
{

using Nancy;
using Nancy.Bootstrapper;
using Nancy.TinyIoc;

public class Bootstrapper : DefaultNancyBootstrapper
{
...

protected override void ApplicationStartup(
TinyIoCContainer container,
IPipelines pipelines)

{
pipelines.OnError += (ctx, ex) =>
{

Log("Unhandled", ex);
return null;

};
}

Listing 6.10 Registering a global error handler with Nancy

Adds a handler to 
the error pipeline

Doesn’t override the 
default response

 



154 CHAPTER 6 Designing for robustness

private void Log(string message, Exception ex)
{

// send message and ex to central log store
// in chapter 9 we will see how to do this

}
}

}

The handler added to the error pipeline returns null. It could also have returned a
Nancy.Response object; Nancy would then have used that as the response to the client.
When you return null, as shown here, you choose not to override the response. There-
fore, the client gets a default 500 status code response.

 The IPipelines interface also provides access to the Before pipeline and the After
pipeline. You could add handlers to these pipelines in a similar fashion, and they
would be called before and after any route handler is invoked, respectively.

 Nancy also has Before, After, and OnError pipelines on NancyModule. These pipe-
lines work the same way, except that they only apply to handlers in the module where
they’re set up.

 This concludes the implementation of robustness measures in collaborations
around the Loyalty Program microservice. With these fairly simple measures in place,
the collaborations are likely to be a good deal more robust under production load. 

6.4 Summary
 Due to the amount of communication between microservices, you must expect

some communication to fail. It’s vital for the robustness of the system that your
microservices handle such failures gracefully.

 You should design robustness into your microservices such that failures don’t
propagate through the system and eventually become errors.

 The client side of a collaboration is responsible for making communication
robust in the face of failures.

 You should have good logs that are easy to access and search through when you
need to investigate production problems. A central Log microservice should
receive all log messages and provide access to them.

 The most important strategies for making communications robust are the retry
and circuit breaker patterns.

 Polly makes it easy to set up and use retry policies as well as circuit breakers.
 Nancy has application- and module-level error pipelines that allow you to react

to unhandled exceptions. At minimum, you should write them to the central log. 

 



155

Writing
 tests for microservices

Up to this point, you’ve written a few microservices and set up collaborations
between some of them. The implementations are fine, but you haven’t written any
tests for them. As you write more and more microservices, developing systems with-
out good automated tests becomes unmanageable. In the first half of this chapter,
I’ll discuss what you need to test for each individual microservice. Then we’ll dive
into code, looking first at testing endpoints using the Nancy.Testing library, and
then at testing a complete microservice as if you were sending it requests from
another microservice.

This chapter covers
 Writing good automated tests

 Understanding the test pyramid and how it applies to 
microservices

 Testing microservices from the outside

 Writing fast, in-process tests for endpoints

 Using Nancy.Testing for integration and unit tests

 



156 CHAPTER 7 Writing tests for microservices

7.1 What and how to test
In chapter 1, you saw three characteristics of a microservice that make it good for con-
tinuous delivery:

 Individually deployable—As soon as any small, safe change has been made to a
microservice, the microservice can be deployed to production. But how do you
know a change is safe? This is where testing and, particularly, test automation
come into the picture. Several other activities, like code reviews, static code
analysis, and designing public APIs for backward compatibility, also play into
determining that a change is safe, but testing is where much of your confidence
will come from.

 Replaceable—You should strive to be able to replace the implementation of a
microservice with another functionally equivalent implementation within the
normal pace of work. Again, tests play an important role, because a good set of
tests lets you assess whether the new implementation really is equivalent to the
old one.

 Maintainable by a small team—Microservices are sufficiently small and focused
that a team can maintain several of them. This has the advantage that you can
write tests that cover all parts of your microservices.

If you want to become confident about changes quickly and be able to replace a badly
implemented microservice, testing has to be fast and repeatable. To make testing fast
and repeatable, you must automate a significant part of it—and that’s the focus of this
chapter.

7.1.1 The test pyramid: what to test in a microservices system

The test pyramid shown in figure 7.1 is a tool you can use to guide which kinds of tests
you should write and how many you should have of each kind. You can find variations
of the test pyramid in different writings; all of them put tests on different levels, where
the levels at the top of the pyramid are broad in scope and the tests at the bottom are
narrow. The test pyramid illustrates that you should aim for having many narrowly
focused tests (the ones at the wide bottom of the pyramid) and only a few broadly
scoped tests (the ones at the narrow top).

System
tests

Broader scope

Faster

Service tests

Unit tests

Figure 7.1 The test pyramid 
illustrates that you should have 
a few system-level tests, many 
service-level tests, and even 
more unit-level tests.

 



157What and how to test

The version of the test pyramid that I use here has three levels:

 System tests (top level)—Tests that span the complete system of microservices and
are usually implemented through the GUI.

 Service tests (middle level)—Tests that work against one, but only one, complete
microservice.

 Unit tests (bottom level)—Tests that test one small piece of functionality in a
microservice. Unit tests call code in the microservice under test in-process and
usually involve only part of a microservice.

Note that when I use the term unit test, the word unit refers to a small piece of func-
tionality. I define the scope of a unit test not in terms of any particular code construct,
like a class or a method, but rather in terms of functionality. When we look at imple-
mentations of unit tests later, you’ll see that unit tests can easily span all layers of a
microservice: for example, from a Nancy module, through a domain object, down to a
data access class.

 Although the test pyramid tells you to have more tests as you move down the levels,
exactly how many tests you should have on each level is situational. It depends on such
factors as the size of the system, the complexity of the system, and the cost of failure. 

7.1.2 System-level tests: testing a complete microservice system end-to-end

The tests at the top of the pyramid have a very broad scope and therefore cover a lot
of code with just a few tests. Because they have such a broad scope, they’re also impre-
cise. When a system-level test breaks, it isn’t immediately clear where the problem lies.
The test can potentially use the entire system, so the issue could be anywhere.

 An example of a system-level test is one that uses the web UI of the point-of-sale
system we talked about in earlier chapters to add a number of items to an invoice,
apply a discount code, and pay using a test credit card. If that test passes, it gives you
confidence that invoices are created, that discounts can be applied, and that you can
receive credit card payments. During such a system test, you might assert that the
amount due on the invoice is as expected. If that assertion fails, any number of
things could have caused the problem: you might be using the wrong price for one
or more items, you might have applied the discount incorrectly, or you might have
misinterpreted the invoice data. In other words, such a failure could be caused by at
least a handful of different microservices. To figure out which one is the culprit, you
need to investigate.

 The specific way a system-level test fails can give some hints as to where the prob-
lem lies, but there’s usually a lot of code that could be at fault. From the system test
alone, it won’t even be clear which microservice caused the failure. On the other
hand, when system-level tests pass, they give you a good deal of confidence.

 The second downside to system-level tests is that they tend to be slow. This again is
the flip side of them involving the complete system: real HTTP requests are made,
things are written to real data stores, and real event feeds are polled.

 



158 CHAPTER 7 Writing tests for microservices

 Considering that system-level tests, when successful, can give you good confidence,
but that they’re both slow and imprecise, my advice is to write system-level tests for the suc-
cess path of the most important use cases. This should give you coverage for the success
paths of all the most important parts of the system. You can, optionally, supplement
this with some tests for the most common and important failure scenarios. Exactly
how many system tests this amounts to is, as mentioned earlier, entirely situational.
This advice applies equally to microservices, traditional SOA, and monoliths. There’s
nothing microservice-specific about system-level tests. For this reason, I won’t show
implementations of any system-level tests in this chapter. 

7.1.3 Service-level tests: testing a microservice from outside its process

The tests in the middle level of the test pyramid interact with one microservice as a
whole and in isolation—the collaborators of the microservice under test are replaced
with microservice mocks. Like system tests, these tests interact with the microservice under
test from the outside. But unlike system-level tests, they interact directly with the public
API of the microservice and make assertions about responses to the microservice as well
as the interactions the microservice has with other microservices: for instance, about
the commands the microservice under test sends to other microservices.

Like system-level tests, service-level tests test scenarios rather than single requests.
That is, they make a sequence of requests that together form a meaningful scenario.
The requests made from the microservice under test to its mocked collaborators are
real HTTP requests, and the responses are real HTTP responses.

 For examples, recall the Loyalty Program microservice from the example point-of-
sale system. In chapter 4, you saw that it collaborated with a number of other micro-
services, as shown in figure 7.2, using all three collaboration styles: events, queries,
and commands.

 To test Loyalty Program in isolation, you can create mock versions of its collaborators.
As shown in figure 7.3, when Loyalty Program interacts with a mocked collaborator, it
gets back a hardcoded response.

 

A microservice mock simulates a real microservice and records interactions
A microservice mock can be used in place of a real microservice in service-level tests.
It implements the same endpoints as the real microservice, but instead of using real
business logic to implement the endpoints, the mock has dumbed-down endpoint
implementations; usually endpoints in a mock return hardcoded responses. Further-
more, a mock often records the requests made to the endpoints, so the test code
can inspect the requests made during the test.

This is similar to the mock objects widely used in tests for object-oriented code. But
where mock objects replace a real object, a microservice mock replaces a real
microservice.

 



159What and how to test

A service-level test for the Loyalty Program microservice could do the following:

 Send a command to create a user
 Wait for the Loyalty Program microservice to query a mock Special Offer micro-

service for events, and get back a hardcoded event about a new special offer
 Record any commands sent to the Notifications microservice, and assert that a

command for a notification to the new user about the new special offer was sent

When a test like this passes, you can have confidence that important aspects of the
Loyalty Program microservice work. When it fails, you know that the problem is within
Loyalty Program itself.

 Service-level tests are much more precise than system-level tests, because they
cover only a single microservice: if such a test fails, the problem should lie within the
microservice under test, assuming the test setup itself isn’t buggy. Because microser-
vices are small—they’re replaceable, after all—knowing that a problem lies within a
certain microservice is a lot more precise than what you get from system-level tests.

Special Offers
microservice

Loyalty Program
microservice

API Gateway
microservice

Query: Get loyalty
points by user

Query: Get settings
for registered user

Command: Register
user

Command: Update
user settings

Notifications
microservice

Invoice
microservice

Events: Subscribe
to events

Query: Get loyalty
points by user

Command:
Send special offer

notification

Figure 7.2 The Loyalty Program microservice collaborates with a number of other microservices 
through all three types of collaboration: events, queries, and commands.

Poll for new events

Canned response containing
a hardcoded event

Loyalty Program
microservice

Mocked Special Offer
microservice

Figure 7.3 For service-level testing, the Loyalty Program microservice interacts with mocked versions 
of its collaborators. The mocked microservices respond to requests with hardcoded responses.

 



160 CHAPTER 7 Writing tests for microservices

 On the other hand, service-level tests are still slow, because they interact with the
microservice under test over HTTP, because the microservice uses a real database, and
because it interacts with its mocked collaborators over HTTP.

Contract tests
As you know by now, there’s a lot of collaboration between microservices in a micro-
services system. You implement the collaborations as requests from one microservice
to another. If you aren’t careful, changes in an endpoint can break the microservices
that call that endpoint. This is where contract tests come into the picture.

When any two microservices in the system collaborate, the one making requests to the
other has some expectations about how the other microservice will behave. That is, given
a collaboration, the calling microservice expects the called microservice to implement
a certain contract. A contract test is a test with the purpose of determining whether the
called microservice implements the contract expected by the calling microservice.

Contract tests are written from the point of view of the caller and are there for the sake
of the calling microservice: as long as the contract test passes, the assumptions the
caller makes about the contract are still valid. Consequently, the contract tests are
part of the caller’s code base. They aren’t part of the same code base as the endpoints
they test. Contract tests shouldn’t have any knowledge of how the microservices they
test are implemented. This is where contract tests differ from service-level tests. With
service-level tests, you isolate the microservice under test by providing it with mocked
microservices in place of its collaborators. You don’t want to do that for contract tests,
because the contract tests shouldn’t know about the other collaborators of the micro-
service they test. In other words, contract tests run against the complete system.

Because contact tests are part of the code base of one microservice but test things
in other microservices, and because they run against the complete system, it can be
a good idea to run them against a QA or staging environment. Moreover, it’s a good
idea to have them run automatically every time the microservice under test is
deployed. When a contract breaks, it’s a strong indication that the collaboration
between the microservice the contract test belongs to and the microservice under
test is broken, too.

In terms of implementation, contract tests look a bit like the service-level tests you’ll
write later in this chapter. The difference is that contract tests are a slightly higher level
in the test pyramid, between system-level tests and service-level tests. Contract tests
don’t set up mocked collaborators, whereas service-level tests do; but just like service-
level tests, they work by making real HTTP requests to the microservice under test.

Real HTTP request
Contact test

Microservice
under test

Other
microservices

CI server environment Complete system

A contract test runs against the complete system. It may, for instance, run against a staging or 
QA environment, where the complete microservices system is deployed.

 



161What and how to test

My recommendation regarding service-level tests is that you should write such tests for
the success versions of all functionality the microservice under test offers. Such tests
will naturally use all endpoints of the microservice as well as rely on any event sub-
scriptions in the microservice. In other words, they will cover all success paths in the
microservice. In general, I recommend writing service-level tests only for the most
important failure scenarios. Again, the number of service-level tests needed and how
many failure scenarios they should cover depends on the system and the cost of failure
in that particular system. 

7.1.4 Unit-level tests: testing endpoints from within the process

The tests at the bottom of the test pyramid also deal with a single microservice, but
these tests don’t work over HTTP and don’t deal with the entire microservice. These
unit tests interact with the parts of the microservice under test directly and in mem-
ory. To call the endpoints implemented in your Nancy modules, you’ll use the
Nancy.Testing library that comes as a companion library alongside Nancy. Nancy.Test-
ing lets you write tests that make calls to Nancy endpoints in memory. The calls go
through Nancy in exactly the same way HTTP requests would, but without going
through the network stack. To the code in your Nancy modules, calls made with
Nancy.Testing look exactly like real HTTP requests.

 At the unit-test level, I’ll show you
two kinds of tests (see figure 7.4): one
that uses a database and one that uses a
mock in place of the database. I con-
sider both to be unit tests, even though
the first type uses a database. Two things
make a test a unit test: its scope is a
small piece of functionality, and the test
code and the production code in the microservice run in the same process.

 The narrow scope of a unit test makes it precise: when it fails, the problem lies in a
small amount of code. A narrow scope also enables you to write tests that cover failure
scenarios properly. Both types of unit tests are faster than service-level tests, but of
course the tests that mock out databases are faster than those that use a database.
Therefore, you can have both and will probably have more tests that mock the data-
base than tests that don’t.

 Sometimes you may also have even narrower unit tests that test the business logic in
the microservices directly by instantiating domain objects and testing them directly. I
take a pragmatic approach to deciding how narrow the narrowest unit tests should be:
I use a test-first workflow that starts from the outside, with tests that use Nancy.Testing
making calls to endpoint handlers in Nancy modules. I start with tests that cover the
broad strokes of what the endpoint should do, an then I progressively add tests for more
details. Only when it becomes awkward to test a particular detail through the endpoint
handler do I begin to write narrower unit tests. For instance, covering a particular case
in the business logic with tests that call through the endpoint handler might require a

Unit tests using a database

Unit tests using a mocked database

Figure 7.4 At the unit-test level, there are two 
kinds of tests: those that use a database and those 
that don’t.

 



162 CHAPTER 7 Writing tests for microservices

lot of setup code. That’s a signal to switch down to a test that has a narrower scope: just
those cases in the business logic. I’ll write tests for those cases that work directly on the
classes that should implement that particular part of the business logic.

 For the Loyalty Program microservice, you need unit tests that test the endpoint
that lets you create users with a number of different inputs covering both possible
valid inputs and invalid inputs. Likewise, you need tests that try to read both existing
and nonexistent users from the query endpoint that lets you read users. You need sim-
ilar tests for the other endpoints in the microservice. Loyalty Program is sufficiently
simple that you don’t need to switch down to tests that are narrower than the micro-
service’s endpoints. So, the units tests I’ll show you later all work by calling endpoint
handlers through Nancy.Testing. 

7.2 Testing libraries: Nancy.Testing and xUnit
In this chapter, you’ll use two new libraries:

 Nancy.Testing (https://github.com/NancyFx/Nancy/wiki/Testing-your-
application)

 xUnit (https://xunit.github.io/)

I’ll give you a brief introduction to each, and then you’ll implement tests for some of
the microservices you wrote in earlier chapters.

7.2.1 Meet Nancy.Testing

The Nancy.Testing library is a companion to Nancy that makes it easy to test endpoints
implemented in Nancy modules. The main entry point into Nancy.Testing is the
Browser type, which accepts method calls like Get("/"), Post("/user"),
Put("/user/42"), and Delete("/user/42") that let tests call GET, POST, PUT, and DELETE
endpoints in Nancy modules, respectively. When a test calls an endpoint through the
Browser type, the call goes through the real Nancy pipeline. This means routes are
resolved the same way as for real HTTP requests, the dependency injection container is
set up and used as usual, and serialization and deserialization run as they normally do.
In short, to the endpoint, the call looks exactly like a real HTTP request. The cool thing
is that it’s all done in process, so it’s much faster than a real HTTP request would be. The
return value of each method is a NancyResponse object and contains everything a real
HTTP response would, including headers, status codes, and a body.

 In addition to the Browser type, the Nancy.Testing library provides Configurable-
Bootstrapper, which offers a nice API for creating ad hoc bootstrappers used in tests.
Among other things, ConfigurableBootstrapper allows you to do the following:

 Create Browser objects that see only one Nancy module instead of all modules
in the application

 Override registrations in the dependency injection container: for instance, to
provide mock objects in place of real ones

 Add hooks to the Nancy pipeline, such as an error handler

 

https://github.com/NancyFx/Nancy/wiki/Testing-your-application
https://github.com/NancyFx/Nancy/wiki/Testing-your-application
https://xunit.github.io/


163Testing libraries: Nancy.Testing and xUnit

Finally, Nancy.Testing comes with a bunch of convenience methods that make writing
assertions against NancyResponse objects easy.

 Nancy.Testing offers a wealth of functionality that makes it easier to write tests.
Going through all of it is beyond the scope of this chapter, but you’ll see some of its
power. I find the APIs in the library to be quite discoverable, so I’m sure once you get
going, you’ll discover more of what Nancy.Testing has to offer.

 You can find further information on Nancy.Testing in the Nancy documentation
(https://github.com/NancyFx/Nancy/wiki/Testing-your-application), or you can
jump right in and start using it. I think you’ll find that the APIs are quite discoverable
through IntelliSense. 

7.2.2 Meet xUnit

xUnit (http://xunit.github.io) is a unit-test tool for .NET. It has a library part that
allows you to write automated tests and a runner part that can run those tests. To write
a test with xUnit, you create a method with a Fact attribute over it and put the code to
perform the test there. The xUnit runner scans for methods with a Fact attribute and
executes all of them. In addition, xUnit has an API for making assertions in tests. If an
assertion fails, the xUnit runner picks up the failure and reports it back when it’s fin-
ished running tests. The xUnit test runner can be run by dotnet and is therefore well
suited for the projects you’re building in this book.

 Other .NET test tools similar to xUnit—NUnit, for instance—are available that you
can also use. This book sticks with xUnit because it’s used for the test projects that Yeo-
man and Visual Studio create. If you prefer another tool, feel free to use it, as long as
it works with dotnet. 

7.2.3 xUnit and Nancy.Testing working together

Putting Nancy.Testing and xUnit together, you can write succinct tests for endpoints
implemented in Nancy modules. In section 7.3.1, you’ll set up a project for these unit
tests and run them with dotnet; but for now, I just want to give you a quick peek at
how the tests will look. The following test calls the Get endpoint in TestModule and
makes the assertion that the response status code is 200 OK.

namespace LoyaltyProgramUnitTests
{

using Nancy;
using Nancy.Testing;
using Xunit;

public class TestModule_should
{

public class TestModule : NancyModule
{

Listing 7.1 Simple test using xUnit and Nancy.Testing

 

http://xunit.github.io
https://github.com/NancyFx/Nancy/wiki/Testing-your-application


164 CHAPTER 7 Writing tests for microservices

public TestModule()
{

Get("/", _ => 200;)
}

}

[Fact]
public async Task respond_ok_to_request_to_root()
{
var sut = new Browser(with => with.Module<TestModule>());
var actual = await sut.Get("/");
Assert.Equal(HttpStatusCode.OK, actual.StatusCode);

}
}

} 

You can run the previous test with dotnet; it will execute in-memory and give you
good coverage because the call to sut.Get("/") executes the real Nancy pipeline,
including the implementation of the endpoint in TestModule. The string argument
"/" is the relative URL to which the fake request is made. In section 7.3.1, we’ll look at
setting up a project for these unit tests and how to run them with dotnet.

 For the rest of this chapter, we’ll work at the code level and implement unit tests
and service-level tests for the Loyalty Program microservice. When you implemented
Loyalty Program in chapter 4, it didn’t have an event feed; but for these examples
you’ll add an event feed that other microservices can subscribe to. 

7.3 Writing unit tests using Nancy.Testing
In this section, you’ll implement some unit tests for the endpoints in the Loyalty Pro-
gram microservice. In chapter 4, you saw that Loyalty Program has three command
and query endpoints:

Endpoint used in the test

Configures a
Nancy

bootstrapper
with TestModule

Calls the Get endpoint
in TestModule

Asserts that the
endpoint returns a

200 OK response

Naming conventions
My tests follow these naming conventions:

 My tests work on an object called sut for system under test. In the previous
test, sut is a Browser object that I use to make a call to an endpoint.

 I name my test classes after the thing they test—TestModule in this example
test—followed by _should.

 I name the Fact method after the scenario being tested and the expected
result. I separate the words in Fact method names with underscores and try
to make sure they form a sentence when combined with the name of the sur-
rounding class. For instance, in this test, concatenating the class name and
the Fact method name and replacing underscores with spaces, you get
“TestModule should respond ok to requests to root.”

Whether you like these conventions is a matter of taste. I happen to like them, but
they’re in no way essential to writing good tests.

 



165Writing unit tests using Nancy.Testing

 An HTTP GET endpoint at URLs of the form /users/{userId} that responds with a
representation of the user

 An HTTP POST endpoint to /users/ that expects a representation of a user in
the body of the request and then registers that user in the loyalty program

 An HTTP PUT endpoint at URLs of the form /users/{userId} that expects a rep-
resentation of a user in the body of the request and then updates an already-
registered user

Let’s write tests for these endpoints. The Loyalty Program microservice has an event
feed for which you’ll also write a test. You won’t write comprehensive tests for the end-
points and event feed in Loyalty Program—only enough to see how tests against
Nancy endpoints are written.

 In the following subsections, you’ll do the following:

 Set up a test project to house unit tests for the Loyalty Program microservice.
 Write tests that use Browser from Nancy.Testing to test endpoints in Loyalty

Program and that let the code in the microservice use the real database. You’ll
write three such tests, one for each of these pieces of functionality:
– A test that tries to read a user that doesn’t exist
– A test that creates a user and reads it back out
– A test that modifies a user and reads it back out

 Write tests that also use Browser to test an endpoint but are limited in scope by
a mocked database injected in the endpoint under test. These tests test the
event feed in the microservice.

When you’re finished, you’ll have learned to write unit tests for Nancy endpoints both
with and without a real database.

7.3.1 Setting up a unit-test project

Before you can start writing tests, you need a project to house them. For that, create a
new project next to the LoyaltyProgram project, and call it LoyaltyProgramUnit-
Tests. If you create the project with Visual Studio, choose the Class Library (.NET
Core) template from the dialog; and if you use you Yeoman, choose Unit Test Project
(xUnit.net) from the menu.

 Your solution should look similar to this:

C:.
LoyaltyProgram

Bootstrapper.cs
project.json
README.md
Startup.cs
UsersModule.cs
YamlSerializerDeserializer.cs

LoyaltyProgram

 



166 CHAPTER 7 Writing tests for microservices

EventFeed
Event.cs
EventsFeedModule.cs
EventStore.cs
IEventStore.cs

LoyaltyProgramEventConsumer
Program.cs
project.json

LoyaltyProgramUnitTests
project.json
Class1.cs

If you used Yeoman to create the new LoyaltyProgramUnitTests project, you’re
ready to run your first tests. But if you used the Visual Studio template, you need to
edit the Class1.cs and project.json files a bit. The following listing shows how Class1.cs
should look.

using Xunit;

namespace UnitTest
{

// see example explanation on xUnit.net website:
// https://xunit.github.io/docs/getting-started-dotnet-core.html
public class Class1
{

[Fact]
public void PassingTest()
{

Assert.Equal(4, Add(2, 2));
}

[Fact]
public void FailingTest()
{

Assert.Equal(5, Add(2, 2));
}

int Add(int x, int y)
{

return x + y;
}

}
}

In the project.json file, add the following to set up a test command that refers to the
xunit test runner:

"testRunner": "xunit",

Listing 7.2 Class1.cs file

 



167Writing unit tests using Nancy.Testing

The xunit test runner is added to the project via the NuGet package dotnet-test-
xunit, and the xUnit package is installed. Here are all the dependencies:

"dependencies": {
"dotnet-test-xunit": "2.2.0-preview2-build1029",
"Microsoft.NETCore.App": {

"version": "1.0.0",
"type": "platform"

},
"xunit": "2.1.0"

},

You can now go to the LoyaltyProgramUnitTests folder in PowerShell and restore the
NuGet packages as usual, using dotnet:

PS> dotnet restore

The Class1.cs file now contains two small xUnit tests: one that passes and one that
fails. You run them with dotnet like this:

PS> dotnet test

Once you have the initial tests running, add a dependency on Nancy.Testing so you
can use Browser and later ConfigurableBootstrapper. Also add a dependency on
LoyaltyProgram so you can begin testing it. The dependencies now look like this:

"dependencies": {
"dotnet-test-xunit": "2.2.0-preview2-build1029",
"Microsoft.NETCore.App": {

"version": "1.0.0",
"type": "platform"

},
"xunit": "2.1.0",
"Nancy.Testing": "2.0.0--barneyrubble",
"LoyaltyProgram": {"target": "project"}

},

The last line is the reference to the LoyaltyProgram project. As you can see, the pro-
ject references in project.json look almost like NuGet references. You don’t specify a
version for LoyaltyProgram because you want the test to run against the version of the
LoyaltyProgram code that you have next to the LoyaltyProgramUnitTests project. 

7.3.2 Using the Browser object to unit-test endpoints

Now that you have a test project set up, you can begin adding tests to it. The first test
you’ll add is very simple: given that there are no registered users in the Loyalty Pro-
gram microservice, the test queries for a user and expects to get back a response with
a 404 Not Found status code. Add a file called userModule_should.cs to the Loyalty-
ProgramUnitTests project, and put the following code in it.

Project reference

 



168 CHAPTER 7 Writing tests for microservices

namespace LoyaltyProgramUnitTests
{

using LoyaltyProgram;
using Nancy;
using Nancy.Testing;
using Xunit;

public class UserModule_should
{
private Browser sut;

public UserModule_should()
{

this.sut = new Browser(
new Bootstrapper(),
defaultsTo => defaultsTo.Accept("application/json"));

}

[Fact]
public void respond_not_found_when_queried_for_unregistered_user()
{

var actual = await sut.Get("/users/1000");
Assert.Equal(HttpStatusCode.NotFound, actual.StatusCode);

}
}

}

The most interesting part of this test class is in the constructor, where you create a
Browser object. When xUnit runs, it creates an instance of UserModule_should and
then calls a method with the Fact attribute on that instance. Unlike most other .NET
test frameworks, xUnit create a new, clean instance for each Fact method.

 The Browser object in listing 7.3 is initialized with the real bootstrapper from Loy-
altyProgram. This means the LoyaltyProgram application that the Browser calls into
is wired up exactly the same way it is when it runs on top of a real web server and
receives real HTTP requests. Furthermore, for convenience, you set a default Accept
header on Browser. This header will be added to all requests made through the
Browser object unless explicitly overridden. For instance, sut.Get("/users/1000")
has the Accept header set.

 Let’s move on to a test that registers a new user and then queries it to check that it
was registered as it should be. Add the following test to the UserModule_should class.

[Fact]
public void allow_to_register_new_user()
{

var expected =
new LoyaltyProgramUser() { Name = "Chr" };

Listing 7.3 First test for the users endpoint

Listing 7.4 Test for registering a user through the users endpoint

Remember that sut stands 
for “system under test.”

Real LoyaltyProgram 
bootstrapper

All “requests” 
accept JSON

Requests a user that
doesn’t exist

 



169Writing unit tests using Nancy.Testing

var registrationResponse = await
sut.Post("/users", with => with.JsonBody(expected));

var newUser =
registrationResponse.Body.DeserializeJson<LoyaltyProgramUser>();

var actual = await sut.Get($"/users/{newUser.Id}");

Assert.Equal(HttpStatusCode.OK, actual.StatusCode);
Assert.Equal(

expected.Name,
actual.Body.DeserializeJson<LoyaltyProgramUser>().Name);

// more assertions on the response from the GET
}

Here, you see another use of the Browser object. For instance, you add a body to the
Post via the lambda in the second argument. In that lambda, you can do a variety of
things to the request, such as adding headers, cookies, form values, a host name, or an
identity, or choosing between HTTP and HTTPS. Here, you add a body to the request.

 The last test you’ll add registers a user and then modifies it via the PUT endpoint in
the Loyalty Program microservice. Add it to UserModule_should.cs.

[Fact]
public void allow_modifying_users()
{

var expected = "jane";
var user = new LoyaltyProgramUser() { Name = "Chr" };
var registrationResponse = await
sut.Post("/users", with => with.JsonBody(user));

var newUser =
registrationResponse.Body.DeserializeJson<LoyaltyProgramUser>();

newUser.Name = expected;
var actual = await
sut.Put($"/users/{newUser.Id}", with => with.JsonBody(newUser));

Assert.Equal(
expected,
actual.Body.DeserializeJson<LoyaltyProgramUser>().Name);

}

There’s nothing new in this code compared to what you’ve seen in the two previous tests.
But I wanted to include it because it’s a good illustration of the kind of unit tests I think
you should write for the endpoints in your microservices: unit tests that focus on the
behavior the endpoints provide rather than on testing just one endpoint in isolation. 

Listing 7.5 Test for modifying users through the users endpoint

Registers a new user
through the POST endpointReads the new

user from the
body of the

response from
the POST

Reads the
new user

through the
GET endpoint

Checks that the response
from the GET is correct

Registers a user

Updates the user

Asserts that the update was done

 



170 CHAPTER 7 Writing tests for microservices

7.3.3 Using a configurable bootstrapper to inject mocks into endpoints

Now that you’ve tested the endpoints in UserModule, let’s turn to testing the Loyalty-
Program event feed. The event feed is a Nancy module that depends on an IEvent-
Store to store and read events. Here’s the IEventStore interface.

using System.Collections.Generic;

namespace LoyaltyProgram.EventFeed
{

public interface IEventStore
{
IEnumerable<Event> GetEvents(

long firstEventSequenceNumber,
long lastEventSequenceNumber);

void Raise(string eventName, object content);
}

}

You saw an event feed in chapter 4, but I’ll repeat it here, to remind you how it works.

namespace LoyaltyProgram.EventFeed
{

using Nancy;

public class EventsFeedModule : NancyModule
{
public EventsFeedModule(IEventStore eventStore) : base("/events")
{

Get("/", _ =>
{

long firstEventSequenceNumber, lastEventSequenceNumber;
if (!long.TryParse(this.Request.Query.start.Value,

out firstEventSequenceNumber))
firstEventSequenceNumber = 0;

if (!long.TryParse(this.Request.Query.end.Value,
out lastEventSequenceNumber))
lastEventSequenceNumber = 50;

return
eventStore.GetEvents(

firstEventSequenceNumber,
lastEventSequenceNumber);

});
}

}
}

Listing 7.6 IEventStore interface

Listing 7.7 Event feed

Reads events from 
the event store

Stores events to 
the event store

Gets the 
start value 
from the 
query string

Gets the end value 
from the query string

Reads events “start” 
through “end” from 
the event store

 



171Writing unit tests using Nancy.Testing

As you can see, the event feed is a Nancy module that responds to requests to /events
with the events it reads from IEventStore. You want to write a test to check whether
the event feed returns exactly the event from the IEventFeed. Toward that end, you
want to control which events IEventStore returns. So, you’ll create a fake implemen-
tation of IEventStore and use that in the test.

public class FakeEventStore : IEventStore
{

public IEnumerable<Event> GetEvents(
long firstEventSequenceNumber,
long lastEventSequenceNumber)

{
if (firstEventSequenceNumber > 100)

return Enumerable.Empty<Event>();
else

return
Enumerable
.Range((int) firstEventSequenceNumber,

(int) (lastEventSequenceNumber - firstEventSequenceNumber))
.Select(i =>

new Event(
i,
DateTimeOffset.Now,
"some event",
new Object()));

}

public void Raise(string eventName, object content) {}
}

With this fake implementation of an event store, you know the event store
will return a list of events only if the firstEventSequenceNumber argument is less
than 100. Otherwise, FakeEventStore will return an empty list of events. If you inject
this IEventStore implementation into EventsFeedModule, you’ll know which
events EventsFeedModule will get from the event store and therefore which events it
should return.

 You can use another feature of Nancy.Testing to inject the fake IEventStore
implementation into EventsFeedModule: ConfigurableBootstrapper, which allows
you to modify how the Nancy application under test is configured. Here, you’ll use
ConfigurableBootstrapper to set up FakeEventStore as the implementation of
IEventStore when creating the Browser object. That is done with the following piece
of code.

 
 
 

Listing 7.8 Fake IEventStore to use in tests

Returns a list of fake events when 
firstEventSequenceNumber is less 
than 100

 



172 CHAPTER 7 Writing tests for microservices

this.sut = new Browser(
with => with
.Module<EventsFeedModule>()
.Dependency<IEventStore>(typeof(FakeEventStore)),

withDefault => withDefault.Accept("application/json"));

With this code in the tests, constructor instances of EventsFeedModule will have
FakeEventStore injected. You can use that to write two tests:

 A test that asserts that events are returned from the feed when the start number
in the request is less than 100

 A test that asserts that no events are returned when the start number is greater
than 100

using System;
using System.Collections.Generic;
using System.Linq;
using LoyaltyProgram.EventFeed;
using Nancy;
using Nancy.Testing;
using Xunit;

public class EventFeed_should
{

private Browser sut;

public EventFeed_should()
{
this.sut = new Browser(

with => with
.Module<EventsFeedModule>()
.Dependency<IEventStore>(typeof(FakeEventStore)),

withDefault => withDefault.Accept("application/json"));
}

[Fact]
public void return_events_when_from_event_store()
{
var actual = await sut.Get("/events/", with =>
{

with.Query("start", "0");
with.Query("end", "100");

});

Listing 7.9 Using the fake event store while testing

Listing 7.10 Tests for the event feed, using the fake event store

with has the type 
ConfigurableBootstrapper Limits Browser to using 

EventsFeedModule only

Registers FakeEventStore as the 
implementation of IEventStore

Adds a JSON 
Accept header 
to all requests

Creates Browser configured 
to use FakeEventStore

Makes a request to /events 
with the query string 
“start=0&end=100”

 



173Writing service-level tests

Assert.Equal(HttpStatusCode.OK, actual.StatusCode);
Assert.StartsWith("application/json", actual.ContentType);
Assert.Equal(100,

actual.Body.DeserializeJson<IEnumerable<Event>>().Count());
}

[Fact]
public void return_empty_response_when_there_are_no_more_events()
{
var actual = wait sut.Get("/events/", with =>
{

with.Query("start", "200");
with.Query("end", "300");

});

Assert.Empty(actual.Body.DeserializeJson<IEnumerable<Event>>());
}

}

Now that you have some unit tests in place, you can run them with dotnet, as you saw
earlier. When you do, xUnit will scan for classes with Fact methods and then execute
each Fact method. The output from the tests shows a summary of how many tests ran,
how many errors there were, how many tests failed, and how many were skipped:

PS > dotnet test
xUnit.net .NET CLI test runner (64-bit .NET Core win10-x64)

Discovering: LoyaltyProgramUnitTests
Discovered: LoyaltyProgramUnitTests
Starting: LoyaltyProgramUnitTests
Finished: LoyaltyProgramUnitTests

=== TEST EXECUTION SUMMARY ===
LoyaltyProgramUnitTests Total: 6, Errors: 0, Failed: 0, Skipped: 0, Time:

2.375s
SUMMARY: Total: 1 targets, Passed: 1, Failed: 0.

As you can see, six tests were run, and none of them failed. In other words, all tests
passed.

 Now that you have tests for EventsFeedModule and UsersModule, you’re off to a
good start writing unit tests for endpoints in your microservices. In real life, these tests
aren’t sufficient; I’d write more tests for edge cases and error scenarios. But now you
know how to write those tests using Nancy.Testing. 

7.4 Writing service-level tests
Let’s move on to writing service-level tests for the entire Loyalty Program microser-
vice. Service-level tests interact with a microservice from the outside and provide the
microservice with mocked versions of its collaborators.

 Loyalty Program makes requests to two collaborators: the event feed in the Special
Offers microservice and the API of the Notifications microservice. The service-level
tests for Loyalty Program go through these steps:

Makes a request to /events 
with the query string 
“start=200&end=300”

 



174 CHAPTER 7 Writing tests for microservices

1 Set up two endpoints in the same process as the test:
– One that works as a mocked special-offer event feed
– One that works as a mocked notification endpoint

2 Start the Loyalty Program microservice in separate processes, and configure it
to use the mocked endpoints in place of the real collaborators. This means
whenever Loyalty Program needs to call one of its collaborators, it will call one
of the mocked endpoints.

3 Execute a scenario against Loyalty Program as a sequence of HTTP requests.
4 Record any calls to the mocked endpoints.
5 Make assertions on the responses from Loyalty Program and on the requests

made to the mocked endpoints.

Figure 7.5 shows the runtime setup for the service-level tests for the Loyalty Program
microservice.

 You’ll follow these steps to create the test setup from figure 7.5:

1 Create a test project for the service-level tests.
2 Create the mocked endpoints for the special-offers event feed and the notifica-

tion endpoint.
3 Start both processes of the Loyalty Program microservice: the Nancy applica-

tion containing the HTTP API and the event consumer.
4 Write test code that executes a test scenario against Loyalty Program.

When that setup is in place, you’ll write a test that uses it.

Real HTTP request

Real HTTP request

Real HTTP request

Mocked Notifications
microservice

Integration
test scenario

Service-level test process

Loyalty Program
microservice

Mocked Special Offer
microservice

Figure 7.5 A service-level test executes a scenario against the API of the microservice under test but 
configures the microservice to use mocked endpoints running in the same process as the test, in place 
of real collaborators. When a service-level test runs, it makes real HTTP requests to the microservice 
under test, which makes real HTTP requests back to mocked endpoints as needed. The test can inspect 
the responses from the microservice under test as well as the calls it makes to the mocked endpoints.

 



175Writing service-level tests

7.4.1 Creating a service-level test project

For the service-level tests, you’ll create a new test project exactly like the unit-test project
you create earlier. That is, create a project based on either the ASP.NET Test Project
Template in Visual Studio or the Unit Test project template in Yeoman, and call it
LoyaltyProgramIntegrationTest. Just like the unit-test project, place this new project
side by side with LoyaltyProgram. You now have four projects:

Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 4/6/2016 8:53 PM LoyaltyProgram
d----- 4/6/2016 8:53 PM LoyaltyProgramEventConsumer
d----- 4/6/2016 8:53 PM LoyaltyProgramIntegrationTest
d----- 8/6/2016 10:59 PM LoyaltyProgramUnitTests

These are the two projects that make up the Loyalty Program microservice—the
Nancy application and the event consumer—and the test projects that go along with
the microservice. 

7.4.2 Creating mocked endpoints

As shown in figure 7.5, you need to create mocked versions of the endpoints in the
Special Offers microservice and the Notifications microservice that the Loyalty Pro-
gram microservice uses. You’ll do so by writing two simple Nancy modules, each of
which implements an endpoint that returns a hardcoded response. Listing 7.11 shows
the mocked special-offers event feed endpoint, and listing 7.12 shows the mocked
notifications endpoint.

public class MockEventFeed : NancyModule
{

public static AutoResetEvent polled =
new AutoResetEvent(initialState: false);

public MockEventFeed()
{
this.Get("/events", _ =>
{

polled.Set();
return new []
{

new
{

SequenceNumber = 1,
Name= "baz",
Content = new
{

Listing 7.11 Mock event feed returning hardcoded events

Signals to the test that 
Loyalty Program has 
been polled for events

Returns a hardcoded 
response

 



176 CHAPTER 7 Writing tests for microservices

OfferName = "foo",
Description = "bar",
item = new { ProductName = "name" }

}
}

};
});

}
} 

public class MockNotifications : NancyModule
{

public static AutoResetEvent notificationWasSent =
new AutoResetEvent(initialState: false);

public MockNotifications()
{
this.Get("/notify", _ =>
{

notificationWasSent.Set();
return 200;

});
}

}

The plan is to run these two modules in the test process. To do that, you’ll use Nancy
on top of ASP.NET Core like you usually do. You need to add the Microsoft.AspNet-
Core.Owin NuGet packages and add Nancy and LoyaltyProgram as dependencies.
The dependencies section in the project.json file now looks like this.

"dependencies": {
"dotnet-test-xunit": "2.2.0-preview2-build1029",
"Microsoft.NETCore.App": {

"version": "1.0.0",
"type": "platform"

},
"xunit": "2.1.0",
"Microsoft.AspNetCore.Owin": "1.0.0",
"Nancy": "2.0.0-barneyrubble",
"LoyaltyProgram": { "target": "project" }

},

Next, add a file called RegisterUserAndGetNotification.cs containing the following
code, which uses Nancy.Hosting.Self to start a Nancy application in the test process.

 
 

Listing 7.12 Mock endpoint that records when it was called

Listing 7.13 Integration project dependencies, including Nancy

Used later in 
the test to make 
assertions on

Returns a hardcoded 
response

 



177Writing service-level tests

public class RegisterUserAndGetNotification : IDisposable
{

private readonly NancyHost hostForMockEndpoints;

public RegisterUserAndGetNotification()
{
StartFakeEndpoints();

}

private void StartFakeEndpoints()
{
this.hostForFakeEndpoints = new WebHostBuilder()

.UseKestrel()

.UseContentRoot(Directory.GetCurrentDirectory())

.UseStartup<FakeStartup>()

.UseUrls("http://localhost:5001")

.Build();

new Thread(() => this.hostForFakeEndpoints.Run()).Start();
}

}

public class FakeStartup
{

public void Configure(IApplicationBuilder app)
{
app.UseOwin(buildFunc => buildFunc.UseNancy());

}
}

Later, you’ll add a Fact method to this class: then, when you run xUnit, it will find this
class and instantiate it to execute Fact. The constructor starts up Nancy, which will
automatically discover the MockEventsFeed and MockUsersModule modules and
expose the endpoints defined in them. This is all you need to create mocked end-
points in the service-level test process. 

7.4.3 Starting all the processes of the microservice under test

With the mocked endpoints running, you’re ready to start up Loyalty Program. The
microservice consists of two processes: a Nancy application and the event consumer.
You add the code to start those to the setup in RegisterUserAndGetNotification. The
following listing shows only new code—leave the existing code to start and stop Nancy.

public class RegisterUserAndGetNotification : IDisposable
{

...
private Process eventConsumer;

Listing 7.14 Starting up Nancy inside the test process

Listing 7.15 Starting the microservice in a separate process

Creates an ASP.NET
Core application

Uses FakeStartup
to bootstrap the

ASP.NET Core
application

Lets the ASP.NET 
Core application 
listen on port 5001

Adds 
Nancy to the 
ASP.NET Core 
application

 



178 CHAPTER 7 Writing tests for microservices

private Process web;

public RegisterUserAndGetNotification()
{
StartLoyaltyProgram();
...

}

private void StartLoyaltyProgram()
{
StartEventConsumer();
StartLoyaltyProgramApi();

}

private void StartLoyaltyProgramApi()
{
var apiInfo = new ProcessStartInfo("dotnet.exe")
{

Arguments = "run",
WorkingDirectory = "../LoyaltyProgram"

};
this.api = Process.Start(apiInfo);

}

private void StartEventConsumer()
{
var eventConsumerInfo = new ProcessStartInfo("dotnet.exe")
{

Arguments = "run localhost:5001",
WorkingDirectory = "../LoyaltyProgramEventConsumer"

};
this.eventConsumer = Process.Start(eventConsumerInfo);

}

public void Dispose()
{
this.eventConsumer.Dispose();
this.api.Dispose();

}
}

This code spawns two dotnet processes, one for each process in the Loyalty Program
microservice. This is like running dotnet from the command line, so running the
Nancy application is the same as usual. Running the event consumer is different, and
you need to solve these two problems:

 The event consumer expects to run as a Windows service. Now it also needs to
be able to run like a simple process.

 In the following line from listing 7.15, the event consumer doesn’t understand the
command-line argument localhost:5001, which is the host name for the mocked
endpoints you want the event consumer to use in place of the real collaborators:

Arguments = "run localhost:5001",

Setup for running the 
command “dotnet run” 
in the LoyaltyProgram 
folder

Starts the 
LoyaltyProgram process

Setup for running
the event consumer

Starts the event-
consumer process

Closes the processes, 
and releases resources

 



179Writing service-level tests

Both of these issues are easy to solve. You just change the Main method in the event
consumer to the following.

public static void Main(string[] args) => new Program().Entry(args);

public void Entry(string[] args)
{

this.subscriber = new EventSubscriber(args[0]);
if (args.Length >= 2 && args[1].Equals("--service"))
Run(this);

else
{
OnStart(null);
Console.ReadLine();

}
}

Now both processes of the Loyalty Program microservice are started from the test
startup code. A nice side effect of the changes to the event consumer is that it’s also
easier to run by hand for testing reasons. 

7.4.4 Executing the test scenario against the microservice under test

Finally, you’re ready to write the test. It has three steps:

1 Make an HTTP request to register a user.
2 Wait for the Loyalty Program microservice to poll for events.
3 Assert that a request to the notifications endpoint was made.

In code, the test goes in the RegisterUserAndGetNotification file and is as follows.

[Fact]
public void Scenario()
{

RegisterNewUser();
WaitForConsumerToReadSpecialOffersEvents();
AssertNotificationWassent();

}

private async Task RegisterNewUser()
{

using (var httpClient = new HttpClient())
{
httpClient.BaseAddress = new Uri("http://localhost:5000");
var response = await

Listing 7.16 Letting the consumer run as a Windows or normal process

Listing 7.17 Service-level test using an outside loyalty program

Reads the host name from the
command-line argument

Runs as a service if 
there’s a --service 
in the command-
line arguments

Runs the start 
method by hand

 



180 CHAPTER 7 Writing tests for microservices

httpClient.PostAsync(
"/users/",
new StringContent(

JsonConvert.SerializeObject(new LoyaltyProgramUser()),
Encoding.UTF8,
"application/json")).ConfigureAwait(false);

Assert.Equal(HttpStatusCode.Created, response.StatusCode);
Console.WriteLine("registered users");

}
}

private static void WaitForConsumerToReadSpecialOffersEvents()
{

Assert.True(MockEventFeed.polled.WaitOne(30000));
Thread.Sleep(100);

}

private static void AssertNotificationWassent()
{

Assert.True(MockNotifications.NotificationWasSent);
}

You can run the test in PowerShell with dotnet:

PS> dotnet test

This will open two command windows: one with each of the processes in the Loyalty
Program microservice. The test runs, and, when it finishes, the two windows are
closed. The output from xUnit is as follows:

Discovering: LoyaltyProgramIntegrationTest
Discovered: LoyaltyProgramIntegrationTest
Starting: LoyaltyProgramIntegrationTest
LoyaltyProgramIntegrationTests.RegisterUserAndGetNotification.Scenario

Finished: LoyaltyProgramIntegrationTest
=== TEST EXECUTION SUMMARY ===

LoyaltyProgramIntegrationTest Total: 1, Errors: 0, Failed: 0, Skipped:

     ➥ 0, Time: 12.563s

This test is slow, and you had to do some setup before you were ready to write it. This
is why such tests are higher on the test pyramid than the unit tests you wrote earlier.
You should have only a few of this kind of test, whereas you can have many unit tests. 

7.5 Summary
 The test pyramid tells you to have few system-level tests that test the complete

system, several service-level tests for each microservice, and many unit tests for
each microservice.

 System-level tests are likely to be slow and are very imprecise.

Sends a request to
register a user

Puts a user into
the request

Waits for the microservice to
poll the event feed, and fails if

it doesn’t poll

Waits to give the 
microservice time 
to handle the event 
from the feed

 



181Summary

 You should write system-level tests for important success scenarios, to provide
some test coverage for most of the system.

 Service-level tests are likely to be slow, but they’re faster and more precise than
system-level tests.

 You should write service-level tests for success scenarios and important failure
scenarios for each microservice. This adds more test coverage to each microser-
vice than just the system-level tests.

 You can use the process for writing service-level tests as the basis for writing con-
tract tests that verify the assumption one microservice makes about the API and
behavior of another microservice. In terms of the test pyramid, contract tests
are between system-level tests and service-level tests.

 Unit tests are fast and should be kept fast. They’re also precise, because they tar-
get a specific, narrow piece of functionality.

 You should write unit tests for success and failure scenarios alike. Use them to
cover edge cases that are harder to cover with higher-level tests.

 I recommend working in an outside-in fashion with each microservice: write
service-level tests first, and then begin writing unit tests when the service-level
tests become awkward to work with.

 The Nancy.Testing library is a powerful companion to Nancy that makes it easy
to test endpoints in Nancy modules.

 You use the Browser type in Nancy.Testing to test endpoints through a nice API
that lets you simulate HTTP requests. Calls through the Browser object look
exactly like real HTTP requests to the endpoint handlers in Nancy modules.

 You test endpoints through Browser both with real data stores and with mocked
data stores.

 You can write service-level tests where you do the following:
– Write mocked endpoints for the collaborators of the microservice under test,

and use Nancy to host these in the test process.
– Start up all the processes of the microservice under test, passing in the con-

figuration through command-line arguments.
– Write scenarios that interact with the microservice under test via HTTP

requests.
– Make assertions both on the response from the microservice under test and

on the requests it makes to its collaborators.
 You can use the xUnit test framework to write and run your automated tests.
 xUnit can be run with dotnet.

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Part 3

Handling cross-cutting concerns:
building a reusable microservice

platform

In this part, you’ll build a platform that handles some important cross-cutting
concerns and that’s ready to be used across many microservices. The cross-cutting
concerns you’ll implement include monitoring, logging, passing correlation
tokens along with requests between microservices, and security concerns around
microservice-to-microservice requests. All these concerns make microservices
behave well in production. With them in place, you can gain insight into the health
of each microservice and trace business transactions across microservices.

 You can implement such concerns in each microservice or create reusable
implementations to use in many microservices. Implementing concerns in each
microservice obviously incurs some duplication of effort, but reusing an imple-
mentation creates coupling between microservices. How much you want to
reuse is, in other words, a tradeoff between keeping microservices independent
of each other and avoiding repeated effort. Where you land on this tradeoff is a
decision you’ll have to make in the context of your system. In this book I demon-
strate reusable handling of request logging, performance logging, passing
around correlation tokens, and securing microservice-to-microservice calls.
(Note that you should be cautious about reuse and only build reusable imple-
mentations for concerns that cut across many microservices with little or no vari-
ation among microservices.)

 



 Chapter 1 touched briefly on OWIN middleware; chapter 8 will dive deeper into
how OWIN works and what middleware is. In chapters 9 and 10, you’ll implement
cross-cutting concerns as OWIN middleware. In chapter 11, you’ll build a reusable
microservice platform from the middleware you’ve built. You can easily add this plat-
form to new microservices, enabling you to quickly create microservices that behave
well with regard to cross-cutting concerns.

 



185

Introducing OWIN:
 writing and testing
 OWIN middleware

When you’re implementing a system of microservices, some concerns cut across
the entire system. These are the things you need every microservice to do, and
they’re often related to keeping the system healthy in production:

 Monitoring
 Logging errors, requests, performance, and so on
 Security
 Policies related to technologies you use in many microservices—for example,

handling database connections 

This chapter covers
 Handling concerns that cut across several microservices

 Understanding OWIN, OWIN middleware, and OWIN 
pipelines

 Writing OWIN middleware

 Testing OWIN middleware and an OWIN pipeline

 



186 CHAPTER 8 Introducing OWIN: writing and testing OWIN middleware

All of these lend themselves well to being implemented as OWIN middleware. This
chapter explores how to use OWIN middleware to handle cross-cutting concerns.

8.1 Handling cross-cutting concerns
When you look at a single microservice, you see number of components. For instance, chap-
ter 2 broke the Shopping Cart microservice down into the components shown in figure 8.1.

None of these components address the cross-cutting concerns mentioned in the intro-
duction to this chapter: monitoring, request logging, and so on. Furthermore, none of
these components are good candidates for places to implement those cross-cutting con-
cerns. Why? Because all the components in figure 8.1 implement things specific to the
Shopping Cart microservice. In contrast, cross-cutting concerns aren’t specific to any one
microservice. Therefore, you need to implement them in components separate from
those in figure 8.1. Looking at Shopping Cart from a different angle, in figure 8.2, you see
that it gets HTTP requests through a web server, handles them using its various compo-
nents, and returns responses to the web server, which then sends them back to the caller.

 As I just mentioned, you want to keep the code for cross-cutting concerns sepa-
rated from the components in figure 8.1. Furthermore, cross-cutting concerns apply
to the microservice as a whole. This means a good place for the code that handles
cross-cutting concerns is between the web server and the endpoint handlers in your
Nancy modules (see figure 8.3).

 The pieces of code between the web server and the endpoint handlers form a pipe-
line: every request flows through each piece in turn before reaching the endpoint
handler in the Nancy module. Likewise, the response from the endpoint handler
flows back through the same pipeline before reaching the web server, which sends the
response back to the caller. In this chapter, you’ll use OWIN to implement such a pipe-
line; each piece of the pipeline is called OWIN middleware. 

EventStore
Shopping Cart 
domain model

HTTP API: accessible from
other microservices

HTTP API module

Event feed module

• Endpoint to get a shopping cart
• Endpoint to add items to a shopping cart
• Endpoint to delete an item from a shopping cart

ShoppingCartStore

ProductCatalogClient

Shopping Cart microservice

Shopping
Cart store

Figure 8.1 The view of the Shopping Cart microservice you’ve seen in earlier chapters shows a small number of 
components that together implement the Shopping microservice behavior.

 



187Handling cross-cutting concerns

ShoppingCartStore EventStore

Shopping Cart domain model

ProductCatalogClient

Command and
query endpoints

HTTP API

Event feed
module

Shopping Cart microservice

Web server
(e.g., IIS or Kestrel)

HTTP responsesHTTP requests

ShoppingCartStore EventStore

Shopping Cart domain model

ProductCatalogClient

Command and
query endpoints

HTTP API

Event feed
module

Shopping Cart microservice

Web server
(e.g., IIS or Kestrel)

HTTP responsesHTTP requests

Handling a
cross-cutting concern

Handling a
cross-cutting concern

Handling a
cross-cutting concern

Figure 8.2 The Shopping Cart microservice 
takes in HTTP requests through a web server.

Figure 8.3 You can use a pipeline of 
middleware between the web server 
and the endpoint handler to handle 
cross-cutting concerns.

 



188 CHAPTER 8 Introducing OWIN: writing and testing OWIN middleware

8.2 The OWIN pipeline
We touched briefly on OWIN (http://owin.org) in chapter 1, but now it’s time for a
closer look. OWIN is a community-driven standard for interoperability between .NET
web servers, .NET web frameworks, and pipeline pieces called middleware. In this case,
ASP.NET Core plays the role of the web server, and Nancy is the web framework.
Between the two, OWIN allows you to put pieces of middleware that are executed for
every request. Each request flows through each piece of middleware in turn.

 The setup in figure 8.4 is an OWIN pipeline with one piece of OWIN middleware.
OWIN defines the interface used to communicate between each part of the pipeline.
This is a uniform interface that all parts of the pipeline implement: each piece of

OWIN web application

OWIN-compliant web framework
(e.g., Nancy)

Request-logging OWIN middleware

Web server (e.g., IIS or HttpListener)

OWIN adapter

Standard
OWIN interface

Standard
OWIN interface

Requests are delegated to
the application through
the OWIN interface.

Requests are delegated to
the middleware through
the OWIN interface.

Figure 8.4 An OWIN web server with OWIN middleware and an OWIN web application on top. The web 
server delegates incoming requests to the layers above: in this case, the request-logging middleware, 
which writes a log message about the request and then delegates to the web application. To the web 
server, the middleware looks like an OWIN-compliant application; and to the application, the middleware 
looks like an OWIN-compliant web server.

 

http://owin.org


189The OWIN pipeline

middleware implements the interface, and so does the web framework. The web server
doesn’t implement the interface but communicates with the rest of the pipeline
through the interface. By having one uniform interface, you can compose a pipeline as
you like. You can put more middleware into it, you can take pieces out, or you can swap
them around. Because they all use the same interface, they can be rearranged as needed.

 When the request and the response pass through the middleware, the middleware
can read them and even change them. The interface used between the pieces of an
OWIN pipeline isn’t a C# interface, but a function signature. Each piece of middle-
ware, and even the web framework at the end of the pipeline, is a function with a sig-
nature compatible with this definition of the AppFunc type:

The name AppFunc is commonly used to refer to this function signature, and I’ll fol-
low that convention, too. The idea is that you chain AppFuncs together, and that the
OWIN environment is passed from one piece of middleware to the next when a
request is being handled.

 The OWIN environment contains all request and response data under keys speci-
fied by the OWIN standard. Table 8.1 gives an overview of the request keys specified by
OWIN. You can find more details about each key in the OWIN standard, but for all
you’ll do here, this will suffice. Table 8.2 gives the same overview for the response keys.

Table 8.1 OWIN request environment keys

Required Key Value

Yes owin.RequestBody Stream with the request body, if any

Yes owin.RequestHeaders IDictionary<string, string[]> of request 
headers

Yes owin.RequestMethod HTTP request method as a string (for example, 
"GET", "POST")

using AppFunc = Func<IDictionary<string, object>, Task>

The AppFunc takes an OWIN environment
and returns a task. The web server initializes
the environment with all request data under
the standardized keys. The web server also
adds the standardized response keys but
adds only empty or placeholder values
for response data.

The task captures the work done
in the AppFunc. Because an AppFunc
can be an OWIN pipeline or part of
a pipeline, the task can capture the
work of a complete pipeline or
part of one.

The OWIN environment is a dictionary that
contains all information about the request
and response. This data is in the environment
under a set of standardized keys.

 



190 CHAPTER 8 Introducing OWIN: writing and testing OWIN middleware

Because the OWIN environment is passed through the pipeline, any piece of middle-
ware along the way can modify any key. For instance, to set the response status, a piece
middleware just needs to set the value of the owin.ResponseStatusCode key.

 Notice that an AppFunc can be not only a single piece of OWIN middleware, but also
a pipeline. For instance, the web server calls into an AppFunc not knowing or caring
whether it’s a single piece of middleware or a long pipeline ending at a web framework.

 When you build up a pipeline of OWIN middleware pieces, you essentially chain
AppFuncs together: the first piece of middleware is given a reference to the next
piece, and so on. The middleware in front of the web framework holds on to a refer-
ence to an AppFunc implementation in the web framework. When the pipeline is
built and a request comes in, the server builds an OWIN environment and passes it
into the pipeline.

 To facilitate the chaining of OWIN middleware, you use functions of another type,
MidFunc:

Yes owin.RequestPath string containing the request path relative to a root

Yes owin.RequestPathBase string containing the root portion request path

Yes owin.RequestProtocol Request protocol name and version as a string 
(for example, "HTTP/1.1")

Yes owin.RequestQueryString string containing the query string of the HTTP 
request

Yes owin.RequestScheme URI scheme of the request as a string (for exam-
ple, "http", "https")

Table 8.2 OWIN response environment keys

Required Key Value

Yes owin.ResponseBody Stream used to write out the response body, if any.

Yes owin.ResponseHeaders IDictionary<string, string[]> of 
response headers.

No owin.ResponseStatusCode HTTP response status code as an int. The 
default is 200.

No owin.ResponseReasonPhrase string containing the reason phrase associated 
with the given status code.

No owin.ResponseProtocol string containing the protocol name and version 
(such as "HTTP/1.1"). If none is provided, then 
the owin.RequestProtocol key’s value is the 
default.

Table 8.1 OWIN request environment keys (continued)

Required Key Value

 



191The OWIN pipeline

A function that takes in an AppFunc returns another AppFunc. A MidFunc is a function
that takes in an AppFunc implementing an OWIN pipeline consisting of zero or more
pieces of OWIN middleware, adds a piece of middleware in front of that, and returns
an AppFunc for the new pipeline.

 This may sound difficult, but it turns out that implementing a MidFunc is easy. As
an example, let’s turn to this short example of a piece of OWIN middleware that you
saw in chapter 1:

You’re now well equipped to understand this code: the lambda function implements the
MidFunc. It takes an argument (next) that implements the AppFunc and returns another
AppFunc that calls the original AppFunc passed in (next) but does a little work first: writ-
ing to the console. Once the pipeline is set up, the value of next doesn’t change; but at
each request, a new environment is built and passed into the env argument.

 The idea of OWIN middleware takes a little getting used to, but once you grasp it,
you’ll appreciate it’s powerful simplicity, as shown in the following chapters.

8.2.1 What belongs in OWIN, and what belongs in Nancy?

OWIN gives you a way to build a pipeline that each request flows through. The differ-
ent parts of the pipeline can react to the request and write to the response. Likewise,
Nancy lets you handle requests and write responses. With Nancy, you primarily handle

using MidFunc = Func<AppFunc, AppFunc>

The MidFunc is
a function from an
AppFunc to an AppFunc.
It’s used to build up
OWIN pipelines.

The MidFunc returns a
new AppFunc, with the
middleware added in
front of the AppFunc
that came in.

The MidFunc takes in an AppFunc representing the
rest of the pipeline. This argument is traditionally
called next.

next =>
   env =>
   {
    System.Console.WriteLine("Got request");
    return next(env);
   }

next is an AppFunc.
It is the next piece
in the pipeline.

The outer lambda
is a MidFunc. It takes
in an AppFunc next
and returns the
inner lambda.

The inner lambda is
an AppFunc. It takes in
an OWIN environment,
does some work, and calls
next—thereby executing
the rest of the pipeline.
The inner lambda is only
called after the pipeline
has been built.

 



192 CHAPTER 8 Introducing OWIN: writing and testing OWIN middleware

requests in route handlers in Nancy modules, but you can also add code that’s exe-
cuted before and after the route handler. You do that by adding to the Nancy Before
or After pipelines, as mentioned briefly in chapter 6. Effectively, Nancy also lets you
build up a pipeline. But what belongs where?

 To decide what to implement in OWIN middleware and what to implement in
Nancy, you can follow a few simple rules:

 Code addressing a cross-cutting concern and meant to be used across many
microservices belongs in OWIN middleware. These reusable pieces of code
should have few dependencies so they don’t enforce too many technology
choices on the microservices in which they’re used. Therefore, you want to
keep them independent of Nancy.

 Code that addresses a domain or business rule of a single microservice belongs
in application code behind a Nancy module. This type of code doesn’t depend
on HTTP and therefore doesn’t need to depend on OWIN or Nancy. Putting it
in a separate component—for example, a domain model—enables you to keep
the implementation of business and domain rules clean and readable.

 Code that handles HTTP requests and responses in a way that’s specific to a par-
ticular endpoint belongs in a Nancy module. This code interprets the incoming
HTTP requests and then hands off control to the domain model. That interpre-
tation is at the same time tightly coupled to HTTP and to the specifics of the
endpoint, making the Nancy module the right place for it.

 Code that addresses a concern that cuts across all endpoints in a microservice,
but not across several microservices, usually belongs in OWIN middleware, but
not always. The more technical the concern is, the more I lean toward middle-
ware; and the more domain or business logic there is in the concern, the more
I lean toward Nancy modules or, in rare cases, a Nancy Before or After handler.

I’ve introduced OWIN and discussed what it’s used for. The rest of this chapter is about
writing and testing OWIN middleware. 

8.3 Writing middleware
We’ll look at two ways to write OWIN middleware:

 As a lambda—You’ve seen middleware as a lambda in chapter 1 as well as earlier
in this chapter. In the next section, I’ll reiterate this style.

 As a class that has a method that implements AppFunc—You’ll see this style in sec-
tion 8.3.2.

In both cases, you can use the convenient LibOwin library, which allows you to work
with the OWIN environment through types rather than working directly with the
IDictionary<string, object> environment.

 



193Writing middleware

8.3.1 Middleware as lambdas

You’ve already seen middleware implemented with a lambda function. In this section,
I’ll show you how to use LibOwin in a middleware lambda and then reiterate how to
add lambda middleware to the OWIN pipeline in a startup.cs file.

 This is the lambda middleware you’ve seen a few times before:

next =>
env =>
{
System.Console.WriteLine("Got request");
return next(env);

}

LibOwin
LibOwin is a small library that will help you work with OWIN. It’s a little different from
other libraries you use: it’s a source code library, which means it consists of source
code rather than .NET assemblies. LibOwin consists of a single file, LibOwin.cs, that
contains a number of types that make working with OWIN easier. Primarily you’ll use
the OwinContext type, which wraps the OWIN environment dictionary and lets you
access the keys in the environment dictionary through strongly typed properties. This,
for instance, gets the HTTP method of the HTTP request from the environment:

// env is an OWIN environment dictionary
var context = new OwinContext(env);
var method = context.Request.Method
// do something with the method

In addition to using LibOwin in middleware implementations, you’ll use it when writing
tests for middleware, to create and work with OWIN environments that you’ll send into
middleware to test it.

At the time of writing, dotnet restore doesn’t support distributing source code
through NuGet packages; so instead of using the LibOwin NuGet package, you need
to download the LibOwin.cs file. LibOwin can be found on GitHub at
https://github.com/damianh/LibOwin, and LibOwin.cs is at http://mng.bz/8pRq.
From PowerShell, you can use the wget command to download the file like this:

PS> wget https://raw.githubusercontent.com/<lineArrow />damianh/LibOwin/

➥ master/src/LibOwin

/LibOwin.cs -OutFile LibOwin.cs

Having run this, you’ll have your own copy of LibOwin.cs to add to your projects like
any other source file. The code in LibOwin.cs requires two NuGet packages, Sys-
tem.Security.Claims and System.Globalization, which you add like any other NuGet
package.

next is an AppFunc. The 
entire lambda is a MidFunc.

The inner lambda is an 
AppFunc and takes in an 
OWIN environment in env.

 

https://github.com/damianh/LibOwin
http://mng.bz/8pRq


194 CHAPTER 8 Introducing OWIN: writing and testing OWIN middleware

If you want to write not just a static string to the console but, say, the path and method
of the request, you can use the OwinContext type from LibOwin.

next =>
env =>
{
var context = new OwinContext(env);
var method = context.Request.Method;
var path = context.Request.Path;
System.Console.WriteLine($"Got request: {method} {path}");
return next(env);

}

You instantiate an OwinContext from the environment and dot into the properties. To
add this kind of middleware to the OWIN pipeline, you use the UseOwin extension
method on IAppBuilder, which is provided by ASP.NET Core in the Startup class.

public class Startup
{
public void Configure(IApplicationBuilder app)
{

app.UseOwin(
buildFunc => buildFunc(next => env =>

{
var context = new OwinContext(env);
var method = context.Request.Method;
var path = context.Request.Path;
System.Console.WriteLine($"Got request: {method} {path}");
return next(env);

}));
}

}

You’ve used the UseOwin extension method in previous chapters in every HTTP API
project to add Nancy to the OWIN pipeline. 

8.3.2 Middleware classes

Writing middleware as lambda functions works, but it becomes somewhat difficult
when the middleware is more complex. In such cases, it’s nicer to use a class to imple-
ment the middleware.

 To use a class to implement middleware, you can create a class that has a method
whose signature is the AppFunc.

 

Listing 8.1 Using OwinContext to get request details

Listing 8.2 Using UseOwin to build up the OWIN pipeline

env is the OWIN 
environment dictionary. Creates the strongly typed 

OwinContext from the 
OWIN environment

Picks out request data conveniently
via properties on OwinContext

ASP.NET Core calls 
this during startup.

Lets you use
OWIN with

ASP.NET Core
buildFunc builds an 
OWIN pipeline from 
MidFunc.

 



195Testing middleware and pipelines

public class ConsoleMiddleware
{

private AppFunc next;

public ConsoleMiddleware(AppFunc next)
{
this.next = next;

}

public Task Invoke(IDictionary<string, object> env)
{
var context = new OwinContext(env);
var method = context.Request.Method;
var path = context.Request.Path;
System.Console.WriteLine($"Got request: {method} {path}");
return next(env);

}
}

Middleware in this style takes in the nextAppFunc in the constructor and stores it in a
private variable, such that it can be called as needed in the Invoke method, which
implements the middleware’s behavior. To add this kind of middleware to the OWIN
pipeline, you instantiate it and then use the Invoke method as a delegate:

app.UseOwin(buildFunc =>
buildFunc(next => new ConsoleMiddleware(next).Invoke));

Now you know how to implement middleware as lambdas as well as classes. Next, let’s
look at testing middleware. 

8.4 Testing middleware and pipelines
Testing OWIN middleware is straightforward: you use LibOwin to create an OWIN envi-
ronment for the cases you want to test, and then you call the middleware, passing in
that OWIN environment.

NOTE As detailed in the previous chapter, you can create test projects from
Visual Studio or using Yeoman. These projects use xUnit, and that’s also the
test framework used here.

There’s one small issue to overcome: in order to call middleware, you first need to
provide it with a value for next. You get around that by passing in an AppFunc that
does nothing, like this:

AppFunc noOp = env => Task.FromResult(0);

You’ll use no-operation middleware in tests as a stub to provide to middleware under
test.

Listing 8.3 Middleware implemented in a class

Holds on to next 
when instantiated

Has the AppFunc 
signature

“noOp” is short for “no operation.”

 



196 CHAPTER 8 Introducing OWIN: writing and testing OWIN middleware

 With this in place, you can write tests for your middleware. Suppose you have the
following lambda-based middleware that you want to test.

namespace Middleware
{

using System;
using System.Collections.Generic;
using System.Threading.Tasks;
using LibOwin;

using AppFunc = Func<IDictionary<string, object>, Task>;

public class Middleware
{
public Func<AppFunc, AppFunc> Impl =

next => async env =>
{

var ctx = new OwinContext(env);
if (ctx.Request.Path.Value == "/test/path")

ctx.Response.StatusCode = 404;
else

await next(env);
};

}
}

You can write a test for this middleware as shown next.

namespace OwinMiddlewareTests
{

using System;
using System.Collections.Generic;
using System.Threading.Tasks;
using Xunit;
using LibOwin;

using AppFunc = Func<IDictionary<string, object>, Task>;

public class Middleware_should
{
private AppFunc noOp = env => Task.FromResult(0);

[Fact]
public void Return404_for_test_path()
{

var ctx = new OwinContext();
ctx.Request.Scheme =

LibOwin.Infrastructure.Constants.Https;

Listing 8.4 An example of a piece of middleware

Listing 8.5 Test that invokes middleware directly

Middleware lambda

If the request path is 
/test/path, respond 
with 404 Not Found. 
Otherwise, call the 
rest of the pipeline.

No-operation 
AppFunc

Sets up the OWIN 
environment for this test

 



197Testing middleware and pipelines

ctx.Request.Path = new PathString("/test/path");
ctx.Request.Method = "GET";

var pipeline = Middleware.Middleware.Impl(noOp));

var env = ctx.Environment;
pipeline(env);

Assert.Equal(404, ctx.Response.StatusCode);
}

}
}

The pattern of this test is to do the following:

1 Set up an OWIN environment that mimics the scenario you want to test. This is
done using the helper types in LibOwin.

2 Create a small OWIN pipeline consisting of the middleware under test followed
by the no-operation middleware. The result is an AppFunc that’s ready to be
called with an OWIN environment.

3 Call the pipeline with the OWIN environment set up at the beginning of the test.
4 Make assertions on the contents of the OWIN environment or other things that

the middleware under test is expected to work on. If, for instance, the middle-
ware under test creates a response, that should be part of the environment and
therefore accessible through the OwinContext object.

You can use the same pattern when testing class-based middleware. The only differ-
ence is in the line that constructs the pipeline. In listing 8.5, it looks like this:

var pipeline = Middleware.Middleware.Impl(noOp));

In a test for the class-based middleware in listing 8.4, it looks like this:

var pipeline = new ConsoleMiddleware(noOp).Invoke)

Notice that, once again, you pass in the no-operation AppFunc—the noOp—to the mid-
dleware under test.

 To test a longer pipeline of several pieces of middleware, you build the pipeline by
passing one into the other as next, just as you passed noOp into your middleware.
Once the pipeline is built, the rest is just like the middleware test in listing 8.5. If, for
instance, you want to test the lambda-based middleware and the class-based middle-
ware together, the line setting up the pipeline changes to this:

var pipeline =
new ConsoleMiddleware(Middleware.Middleware.Impl(noOp)))
.Invoke)

Constructs a pipeline of the
middleware under test and the

no-operation AppFunc

Invokes the pipeline 
with the middleware 
under test

Asserts on the contents
of the OWIN environment

 



198 CHAPTER 8 Introducing OWIN: writing and testing OWIN middleware

You compose the two pieces of middleware to form a short pipeline, resulting in an
AppFunc that you can test by calling it with an OWIN environment.

 Now that you’ve learned how write and test OWIN middleware, you’re ready to
build middleware to address some important cross-cutting concerns in the coming
chapters. 

8.5 Summary
 Some concerns cut across all or many microservices in a system. Reusing code

that addresses these concerns can save you a significant amount of duplicated
effort.

 Reusing code that addresses cross-cutting concerns ensures consistency across
microservices. For the cross-cutting concerns that make your microservices well-
behaved citizens in the production environment—like request logging and
monitoring—consistency is important.

 OWIN gives you a clean, flexible way to compose middleware into pipelines.
 OWIN middleware is nicely separated from the business logic of any microservice.
 OWIN middleware lends itself to reuse across many microservices.
 Many cross-cutting concerns can be implemented as OWIN middleware.
 OWIN middleware can be a lambda function. The lambda implements the MidFunc.
 OWIN middleware can be implemented with a class. The class takes in an App-

Func in the constructor and has an Invoke method that implements another
AppFunc. When you use class-based middleware, you form a MidFunc from the
constructor and the Invoke method.

 LibOwin is a library that provides some convenient types that make it easier to
work with OWIN. For instance, LibOwin gives you the OwinContext type, which
is a strongly typed wrapper around the OWIN environment dictionary.

 OWIN middleware is straightforward to test: you call it with an OWIN environ-
ment, wait for the task to be returned, and then assert on the contents of the
OWIN environment.

 OWIN pipelines are straightforward to test. Just like individual pieces of middle-
ware, you call them with an OWIN dictionary and assert on the environment
after the pipeline has executed.

 



199

Cross-cutting concerns:
monitoring and logging

In this chapter, you’ll start using the knowledge about OWIN you gained in chap-
ter 8 to create reusable pieces of OWIN middleware that address some important
cross-cutting concerns: monitoring and logging. Both are needed across all micros-
ervices, and they play an important role in making a microservice system operation-
friendly. Once your system is in production, you need to know whether all your
microservices are up, which is why you need to monitor them. In addition, as dis-
cussed in chapter 6, you need good logging to be able to diagnose the system.

This chapter covers
 Monitoring in a microservice system

 Exploring structured logging and the Serilog 
logging library

 Adding correlation tokens to log messages

 Logging requests and request performance

 Logging unhandled exceptions

 



200 CHAPTER 9 Cross-cutting concerns: monitoring and logging

 Here, you’ll build middleware in the context of one microservice. Then, in chap-
ter 11, you’ll take that middleware and put it into NuGet packages, ready to be reused
easily across all your microservices.

9.1 Monitoring needs in microservices
When you deploy any server-side system into production, you need to be able to check
the health of the system. You want to know whether the system is up, whether it’s expe-
riencing failures or errors, and whether it’s performing as well as it usually does. This
is true of any system. With a traditional monolithic system, you’d most likely set up
some monitoring and add logging to the system, as shown in figure 9.1. Logging is
often done many places in the code base—where there’s something important to
log—and the messages are often stored in a database.

The situation for a system of microservices is similar. You have the same overarching
need to monitor the health of the system, in terms of availability, performance,
throughput, and error rates. The difference is that a microservice system consists of
many small pieces that run independently and are deployed independently, and you
need to monitor all of those small parts. In figure 9.2, that seems complicated; but it
doesn’t have to be, if you build an infrastructure that lets you easily make your micro-
services monitoring friendly. We’ll get to that in a bit.

 In order to monitor a microservice, you add to it two endpoints that the monitor-
ing system will poll. As long as a microservice responds successfully to the polling to
both endpoints, it’s considered to be up. Figure 9.3 shows a microservice where two
monitoring endpoints have been added: one at /_monitor/shallow and one at
/_monitor/deep.

 The first endpoint—at /_monitor/shallow—does nothing but respond to every
request with a 204 No Content status code, when successful:

HTTP/1.1 204 No Content

Poll monitoring endpoint

Write log messages

Monitoring system

Database

Monolithic system

Figure 9.1 Traditionally, you set up monitoring around a system and add logging to 
the system code that logs messages to a database.

 



201Monitoring needs in microservices

Recommendations
store

Recommendations
microservice

Log
microservice

Log web
interface

Shopper
Tracking store

Shopper Tracking
microservice

Price Calculation
microservice Price Calculation

store

API gateway

Shopping Cart
microservice

Product Catalog
microservice

Shopping Cart
store

Log store

Product
Catalog store

Monitoring system

HTTP API: accessible from
other microservices

HTTP command and query API module

Event feed module

Monitoring endpoints
_monitor/shallow
_monitor/deep

Data access

Data store

Event storeEventStoreDomain model

Figure 9.2 Each microservice is monitored by polling an endpoint.

Figure 9.3 Every microservice should have two monitoring endpoints: one at /_monitor/shallow and 
one at /_monitor/deep. The monitoring system polls both endpoints. As long as both respond with a 
success response, the monitor considers the microservice to be up.

 



202 CHAPTER 9 Cross-cutting concerns: monitoring and logging

If this endpoint doesn’t respond as expected, the microservice is most likely com-
pletely down.

 The second endpoint—at /_monitor/deep—checks the internal health of the
microservice and, if everything is OK, also responds with a 204 No Content status
code. What checking the internal health of a microservice entails differs from micro-
service to microservice, but it’s typical to run a simple query toward the microservice’s
database and check that the result makes sense.

 You can implement both monitoring endpoints in OWIN middleware, resulting in
an OWIN pipeline like the one shown in figure 9.4

 You implement the monitoring endpoints in OWIN middleware because doing so
lets you keep the monitoring concerns separated from the business logic of the
microservice. Furthermore, because you’ll put the middleware in a NuGet package
and reuse it in many microservices, it’s nice that it has minimal dependencies and
therefore doesn’t dictate the technology choices made in the microservices that use
the middleware. Later in this chapter, you’ll implement the monitoring middleware
and see how each microservice can provide its own implementation of the health
check done in the /_monitor/deep endpoint. 

Health
check

Nancy

HTTP GET /_monitor/shallow

204 No Content

Nancy

HTTP GET /_monitor/deep

204 No Content

Monitoring
endpoints middleware

Monitoring
endpoints middleware

Figure 9.4 You can put monitoring endpoints in a piece of OWIN middleware in front of Nancy. When 
a request to the /_monitor/shallow endpoint comes in, the monitoring middleware gives a 204 No 
Content response. When a request to the /_monitor/deep endpoint comes in, the monitoring 
middleware calls a function that performs a health check and then responds with 204 No Content if the 
health check succeeded. Other requests pass through the monitoring middleware and on to Nancy.

 



203Logging needs in microservices

9.2 Logging needs in microservices
In addition to monitoring each individual microservice, you also need to send out log
messages regarding failures, errors, performance, and whatever else you need insight
into. As discussed in chapter 6, you can introduce a centralized Logging microservice
that receives log messages from all the other microservices, saves them (for example,
in a search engine), and provides easy access to them through dashboards and search
UIs (see figure 9.5). Again, you want to be able to easily set up each microservice to
send log messages to the Logging microservice.

6a. Publish
      ItemAddedtoCart
      event

Recommendations
store

Recommendations
microservice

Log
microservice

Log web
interface

Shopper
Tracking store

Shopper Tracking
microservice

6. Update
    user’s cart

4. Look up
    product

2. Add item
    to cart

7. JSON representation
    of cart

Price Calculation
microservice

8. Get updated
    price

9. Read price
    information

Price Calculation
store

12. Asynchronously read 
      ItemAddedToCart event

API gateway

1. Request: add
    item to cart

11. Response:
      updated cart
      and price 

Shopping Cart
microservice

3. Look up
    product

5. JSON representation
    of product

Product Catalog
microservice

Shopping Cart
store

Log store

Product
Catalog store

10. JSON representation
      of price information

Figure 9.5 All microservices send log messages to the central Logging microservice.

 



204 CHAPTER 9 Cross-cutting concerns: monitoring and logging

You also want each microservice to perform a base level of logging. All microservices
should log HTTP requests, HTTP responses, and the processing time for each request.
These logs provide insight into the microservice’s health:

 The HTTP request log provides invaluable insight into what’s going on in pro-
duction when you need to debug problems. Request logs aren’t enough for
debugging, though. The microservice’s business logic should also send log mes-
sages to the Logging microservice about all unusual occurrences.

 The logged HTTP responses reveal whether requests to a microservice are failing.
In particular, a microservice that responds often with status codes in the 500
range—used for server errors, such as unhandled exceptions—is most likely
stressed or buggy.

 Logged request times can be used to establish a
baseline for how well the microservice per-
forms. Once the baseline is established, you can
compare current request times to the baseline.
If the request times increase significantly, the
microservice is probably stressed.

You’ll turn to OWIN middleware to perform request
logging and performance logging. The result will be
that each microservice has an OWIN pipeline like the
one shown in figure 9.6.

 The pipeline in figure 9.6 includes the monitoring
middleware, the request-logging middleware, and the
performance-logging middleware. In front of them is a
piece of middleware responsible for making sure all log
messages contain a correlation token. Even though
each piece of middleware is self-contained and doesn’t
depend on the other middleware, the order in which
they appear in the pipeline is significant. Figure 9.6
shows the correlation token middleware first, such that
the logging done in the subsequent pieces of middle-
ware includes a correlation token. Likewise, the two
pieces of logging middleware come before the moni-
toring middleware, so you also log requests to the moni-
toring endpoints. You could rearrange the pipeline if
you wanted different behavior—for instance, if you
didn’t want to log requests to the monitoring end-
points, you could move the monitoring endpoints to
the front of the pipeline.

 With this pipeline in place, the microservice is
already much friendlier to operations: it’s easy to
monitor, and it provides base-level insight into its

Incoming
HTTP request

Outgoing
HTTP response

Correlation
token middleware

Request
logging middleware

Performance
logging middleware

Monitoring
endpoints middleware

Nancy

Figure 9.6 You build an OWIN 
pipeline with middleware to add 
correlation tokens, logging, and 
monitoring. At the end of the 
pipeline is Nancy.

 



205Logging needs in microservices

health through the logs. In chapter 11, you’ll create NuGet packages containing the
OWIN middleware pieces, to make it easy to set up new microservices with the stan-
dard monitoring endpoints and good basic logging behavior.

9.2.1 Structured logging with Serilog

Traditional logging libraries treat log messages as simple strings, possibly with an
exception attached, but we’ll use something better: a structured logging library named
Serilog. The idea of structured logging is to allow log messages to contain structured
data: a log message contains not only a flat message—like “something went wrong”—
but also objects.

 Serilog introduces a bit of syntax to log messages on top of .NET format strings.
The extra syntax lets you give names to parameters and control whether a parameter’s
value should be converted to a string with a .ToString() call, or whether the object
should be included as a whole in the log message. Named parameters are enclosed in
braces: for example, "{RequestTime}". You tell Serilog to include the entire value in
the message by putting an @ in front of the name: "{@Request}". As with .NET format
strings, you add formatting directives to parameters without a leading @.

 For instance, you can use Serilog to send a log message like this, assuming that log
is an object of the Serilog type Ilogger:

var simplyfiedRequest = new
{

Path = "/foo",
Method = "GET",
Protocol = "HTTP",

};

var requestTime = 200;

log.Information(
"Processed request: {@Request} in {RequestTime:000} ms.",
simplyfiedRequest,
requestTime);

simplyfiedRequest and requestTime are objects that are part of the message. Like
other logging frameworks, Serilog lets you configure different sinks to which log mes-
sages are written. The sink you’ll use here is the console. When the previous log mes-
sage is written to the console, simplyfiedRequest and requestTime are JSON
serialized and inserted into the log message string. Serilog also adds some metadata,
so the message written to the console looks like this:

09:14:22 [Information] Processed request { Path: "/foo", Method: "GET",

➥ Protocol: "HTTP" } in 200 ms.

As you can see, this preserves all the data from the original log message, because the
complete simplyfiedRequest object and requestTime are included in the message

 



206 CHAPTER 9 Cross-cutting concerns: monitoring and logging

written to the console. This is nice, but it becomes even better when the sink is a search
engine like Elasticsearch. When you use the Elasticsearch sink, the objects included in
the log messages—like simplyfiedRequest—are stored and indexed in the search
engine. This means you can search for log messages based on values of particular prop-
erties of the objects included in the messages. For instance, you might search for log
messages with a Request object that has a Path property with the value /foo. The pre-
vious message would be included, but a log message about a request to /bar wouldn’t.

 Preserving the structure of the data included in log messages means the web front-
end of the Logging microservice can present the log message in a structured way. The
end results are logs that are easier to search, easier to get an overview from, and
include more data, and that you can drill into as needed. One such frontend is
Kibana, which works well with logs stored in Elasticsearch and provides powerful
search and visualization tools.

 As you’ll see when you implement the logging middleware later, you can configure
Serilog to include extra data with every log message. You’ll use this ability to add a cor-
relation token to every log message.

 For the remainder of this chapter, you’ll be implementing monitoring and log-
ging. You want to do this in all microservices, so you can work in the context of any
one of the microservices you’ve already implemented. You’ll use the Shopping Cart
microservice as an example and build on top of the code from chapter 5, but the code
fits just the same in the other microservices. 

9.3 Implementing the monitoring middleware
In this section, you’ll create a piece of middleware that implements the two monitor-
ing endpoints we discussed earlier. The endpoints will behave as follows:

 /_monitor/shallow responds to every request with a 204 No Content status.
 /_monitor/deep performs a basic health check and then responds with 204 No

Content if the health check succeeds. If the health check fails, it responds
with 503 Service Unavailable. The health check will query the Shopping Cart
microservice database to see how many shopping carts there are. As long as that
number is above a certain threshold, the health check is successful; but if the
count drops below the threshold, the health check fails. A health check like this
must be built based on knowledge of the system: this particular check makes sense
only if you have enough traffic on the e-commerce site that there should always
be more active shopping carts than the threshold. Over time, you gain more
insight into how the system runs and how it looks when it’s healthy. You can and
should exploit this knowledge to make health checks better over time.

The plan to implement the monitoring endpoint is as follows:

1 Add LibOwin to the Shopping Cart microservice.
2 Add a new MonitoringMiddleware.cs file to the microservice.
3 Create a piece of OWIN middleware that implements the /_monitor/shallow

endpoint.

 



207Implementing the monitoring middleware

4 Add the implementation of the /_monitor/deep endpoint to the monitoring
middleware.

5 Create the health check for Shopping Cart.
6 Add the monitoring middleware to the Shopping Cart OWIN pipeline.

Let’s get started.

9.3.1 Implementing the shallow monitoring endpoint

The first thing to do is to add LibOwin to the Shopping Cart microservice as
described in chapter 8.

 Next, add a file called MonitoringMiddleware.cs to Shopping Cart. Put the follow-
ing code in it, to implements the /_monitor/shallow endpoint as a piece of OWIN
middleware.

namespace ShoppingCart.Infrastructure
{

using System.Collections.Generic;
using System.Threading.Tasks;
using LibOwin;

using AppFunc =
System.Func<System.Collections.Generic.IDictionary<string, object>,

System.Threading.Tasks.Task>;

public class MonitoringMiddleware
{

private AppFunc next;

public MonitoringMiddleware(AppFunc next)
{
this.next = next;

}

public Task Invoke(IDictionary<string, object> env)
{
var context = new OwinContext(env);
if (context.Request.Path.Equals("/_monitor/shallow"))

return ShallowEndpoint(context);
else

return this.next(env);
}

private Task ShallowEndpoint(OwinContext context)
{
context.Response.StatusCode = 204;
return Task.FromResult(0);

}
}

}

Listing 9.1 OWIN middleware that implements a shallow monitoring endpoint

OWIN AppFunc 
signature, discussed 
in depth in chapter 8

Stores a reference to 
the rest of the pipeline

Checks whether
the incoming

request is for the
/_monitor/shallow

endpoint

Invokes the rest
of the pipeline if
the request isn’t
for a monitoring

endpoint

Sets the response status code
to 204, and short-circuits the

pipeline

 



208 CHAPTER 9 Cross-cutting concerns: monitoring and logging

This code implements a piece of OWIN middleware that responds to the shallow end-
point. The middleware uses the class style you learned about in chapter 8. You use the
OwinContext type from LibOwin to make it easier to work with the OWIN environment. 

9.3.2 Implementing the deep monitoring endpoint

You’ll enhance the piece of middleware that responds to the shallow monitoring end-
point to also implement the other monitoring endpoint: /_monitor/deep. To do so,
assume that a function that performs a health check is injected into MonitoringMid-
dleware when it’s created. The health check is expected to be a function that takes no
arguments and returns a bool indicating whether the health check was successful. You
also want to let the health check be async, so instead of a bool, the health check can
return a Task<bool>.

 To allow the health check function to be injected, add a parameter to the Moni-
toringMiddleware constructor. Also, add a private field in which to store the health
check function.

public class MonitoringMiddleware
{

private AppFunc next;
private Func<Task<bool>> healthCheck;

public MonitoringMiddleware(AppFunc next, Func<Task<bool>> healthCheck)
{
this.next = next;
this.healthCheck = healthCheck;

}
...
}

With the health check function available in MonitoringMiddleware, you’re ready to
implement the /_monitor/deep endpoint. You’ll refactor the Invoke method on
MonitoringMiddleware slightly to look for any path that starts with /_monitor instead
of only the /_monitor/shallow path. A second check on the path distinguishes
between the /_monitor/shallow and /_monitor/deep endpoints.

private static readonly PathString monitorPath =
new PathString("/_monitor");

private static readonly PathString monitorShallowPath =
new PathString("/_monitor/shallow");

private static readonly PathString monitorDeepPath =
new PathString("/_monitor/deep");

public Task Invoke(IDictionary<string, object> env)

Listing 9.2 Monitoring middleware with a health check injected

Listing 9.3 Monitoring endpoints and calling healthCheck

 



209Implementing the monitoring middleware

{
var context = new OwinContext(env);
if (context.Request.Path.StartsWithSegments(monitorPath))
return HandleMonitorEndpoint(context);

else
return this.next(env);

}

private Task HandleMonitorEndpoint(OwinContext context)
{

if (context.Request.Path.StartsWithSegments(monitorShallowPath))
return ShallowEndpoint(context);

else if (context.Request.Path.StartsWithSegments(monitorDeepPath))
return DeepEndpoint(context);

return Task.FromResult(0);
}

private async Task DeepEndpoint(OwinContext context)
{

if (await this.healthCheck())
context.Response.StatusCode = 204;

else
context.Response.StatusCode = 503;

}

private Task ShallowEndpoint(OwinContext context)
{

context.Response.StatusCode = 204;
return Task.FromResult(0);

}

Now you have a piece of middleware that implements both monitoring endpoints and
is independent of anything particular to the Shopping Cart microservice. The imple-
mentation of the health check function will be particular to Shopping Cart, but you’ve
purposefully kept that out of the middleware.

 With the middleware in place, it’s time to implement the health check. Then you’ll
add MonitoringMiddleware to the microservice’s OWIN pipeline.

 As mentioned earlier, the health check queries the Shopping Cart database for the
number of shopping carts and compares the count to a threshold. Recall that the
microservice uses a SQL database and that you’re using Dapper to query that database.
Using Dapper again, the following code performs the health check.

private const string connectionString =
@"Data Source=.\SQLEXPRESS;
Initial Catalog=ShoppingCart;

Listing 9.4 Health check that looks at the number of shopping carts

All requests to monitoring
endpoints are handled in

this branch.

All other requests 
are passed on to 
the rest of the 
pipeline.

Returns Task even 
though nothing is 
explicitly returned 
because the method 
is async

The health check may 
be async, so you must 
await the result.

Connection string 
for the shopping 
cart database

 



210 CHAPTER 9 Cross-cutting concerns: monitoring and logging

Integrated Security=True";

private readonly int threshold = 1000;

public async Task<bool> HealthCheck()
{

using (var conn = new SqlConnection(connectionString))
{
var count =

(await conn.QueryAsync<int>("select count(ID) from ShoppingCart"))
.Single();

return count > this.threshold;
}

}

This code encapsulates something specific for the Shopping Cart microservice: a sim-
ple operation that checks whether the microservice is healthy. This check makes sure
Shopping Cart has access to its database and that there are shopping carts in the data-
base. It doesn’t capture every imaginable failure mode, but it can give a good indica-
tion of the microservice’s health. 

9.3.3 Adding the monitoring middleware to the OWIN pipeline

The only bits remaining are to inject the health check into MonitoringMiddleware
and to add the middleware to the OWIN pipeline. You do both things in the Startup
class.

 Until now, you’ve only used the Startup class to add Nancy to the pipeline. Now,
you’ll put the health check method into Startup and extend the pipeline, resulting in
the following listing.

namespace ShoppingCart
{

using System.Data.SqlClient;
using System.Threading.Tasks;
using Microsoft.AspNet.Builder;
using System.Linq;
using Dapper;
using Nancy.Owin;
using global::ShoppingCart.Infrastructure;

public class Startup
{
public void Configure(IApplicationBuilder app)
{

app.UseOwin(buildFunc =>
{

buildFunc(next =>
new MonitoringMiddleware(next, HealthCheck).Invoke);

Listing 9.5 Adding MonitoringMiddleware to the OWIN pipeline in Startup

Queries for how many shopping
carts are in the database

Decides whether the query 
results indicate that the 
microservice is healthy

Adds 
MonitoringMiddleware 
to the OWIN pipeline

 



211Implementing the monitoring middleware

buildFunc.UseNancy();
});

}

private const string connectionString =
@"Data Source=.\SQLEXPRESS;
Initial Catalog=ShoppingCart;
Integrated Security=True";

private readonly int threshold = 1000;

public async Task<bool> HealthCheck()
{

using (var conn = new SqlConnection(connectionString))
{

var count =
(await conn.QueryAsync<int>("select cound(ID) from ShoppingCart"))
.Single();

return count > this.threshold;
}

}
}

}

With this in place, you can run the Shopping Cart microservice with dotnet and test
the monitoring endpoints. A request to the /_monitor/shallow endpoint looks like
this:

GET /_monitor/shallow HTTP/1.1
Host: localhost:5000
Accept: application/json

A successful response is as follows:

HTTP/1.1 204 No Content

Here’s a request to the /_monitor/deep endpoint:

GET /_monitor/deep HTTP/1.1
Host: localhost:5000
Accept: application/json

And this is a successful response:

HTTP/1.1 204 No Content

Finally, the following is a failure response:

HTTP/1.1 503 Service Unavailable

This concludes the implementation of the monitoring middleware. Because only the
health check is specific to the Shopping Cart microservice, and because that’s imple-
mented outside of the middleware, the middleware lends itself well to reuse across
microservices. 

The same health check 
you saw earlier

 



212 CHAPTER 9 Cross-cutting concerns: monitoring and logging

9.4 Implementing the logging middleware
Next, you’ll implement three pieces of middleware that relate to logging:

 One that makes sure all log messages includes a correlation token. Along with
this, you’ll make sure all outgoing HTTP requests contain the correlation token.

 One that logs all requests and responses.
 One that times the handling of each request and logs the result.

As mentioned earlier, you’ll use Serilog to write log messages. You’ll configure Ser-
ilog to write the log messages to the console; but Serilog supports writing to lots of
places, including Elasticsearch, which you can use to send messages to the Logging
microservice.

 In this and the following sections, you’ll see how to do the following:

1 Install and configure Serilog, and create a Serilog logger.
2 Write a piece of middleware that ensures that all log messages include a correla-

tion token. If the incoming request has a correlation token in a header, the
middleware will use that token; otherwise, it will create a new token and use
that.

3 Write the necessary configuration and factory code to make sure outgoing
requests have the correlation token.

4 Write a piece of middleware that logs all requests as well as all responses.
5 Write a piece of middleware that times the handling of each request and logs

each one.
6 Add all three pieces of middleware to the OWIN pipeline in the Shopping Cart

microservice.

The first thing to do is install the Serilog and Serilog.Sinks.ColoredConsole
NuGet packages. You do that by adding them to the project.json file:

"dependencies": {
"Microsoft.AspNetCore.Server.IISIntegration": "1.0.0",
"Microsoft.AspNetCore.Server.Kestrel": "1.0.0",
"Microsoft.AspNetCore.Owin": "1.0.0",
"Nancy": "2.0.0-barneyrubble",
"Polly": "4.2.1",
"Dapper": "1.50.0-rc2a",
"LibOwin": "1.0.0",
"Serilog": "2.0.0-rc-600",
"Serilog.Sinks.ColoredConsole": "2.0.0-beta-1001"

}

Now, go to the Startup.cs file to configure Serilog and create a logger object. The log-
ger object is an ILogger—an interface from Serilog—and is the object used to send
out log messages. Add this method to the Startup class.

 
 

 



213Implementing the logging middleware

private ILogger ConfigureLogger()
{
return new LoggerConfiguration()

.Enrich.FromLogContext()

.WriteTo.ColoredConsole(
LogEventLevel.Verbose,
"{NewLine}{Timestamp:HH:mm:ss} [{Level}]

                ➥ ({CorrelationToken}) {Message}{NewLine}{Exception}")
.CreateLogger();

}

The LoggerConfiguration type is the entry point to a fluent API for configuring Ser-
ilog. Here, you configure Serilog to write to the console and to include the correlation
token in what is written out. Serilog lets you write log messages to several different
places at the same time—you add more WriteTo segments to do so. Serilog also allows
you to enrich log messages, which means adding extra properties to them. Enriching
can be used to add a server name, an environment name (such as QA or production),
the role of the user who initiated the request, or whatever else you’re interested in
putting in log messages that isn’t readily available in the code where you write the
messages. Here, you use enriching to add the correlation token. You add the token to
the log context, which is a Serilog facility that allows you to add log properties to every-
thing that goes on in a certain context. We’ll return to what this means shortly.

 You’ll call the ConfigureLogger method in the Configure method in the Startup
class. After you’ve written all three pieces of middleware, you’ll send the logger into
the ones that need it. Remember that the Configure method is called during startup
by ASP.NET Core. For now, it looks like this.

public void Configure(IApplicationBuilder app)
{

var log = ConfigureLogger();

app.UseOwin(buildFunc =>
{
buildFunc(next => new MonitoringMiddleware(next, HealthCheck).Invoke);
buildFunc.UseNancy();

});
}

Now that you’ve configured and created a logger, let’s add a correlation token to the
log context.

Listing 9.6 Configuring and creating a Serilog logger

Listing 9.7 Creating a logger in Configure by calling ConfigureLogger

The correlation token will 
be added to a log context. 
This enriches all log 
messages with it.

Sets up logging to
the console with a

format including the
correlation token

 



214 CHAPTER 9 Cross-cutting concerns: monitoring and logging

9.4.1 Adding correlation tokens to all log messages

Recall from chapter 6 that log messages become more valuable if you can use them to
trace how a user request moves through the microservice system. The user request
probably won’t be handled by a single microservice. It’s more likely that several
microservices will collaborate to fulfill the user request. Being able to trace user
requests across all those collaborating microservices is useful—and that’s what a corre-
lation token can give you. A correlation token is a GUID that you attach to a request
and then pass to all collaborators when you call them during handling of the request.
You pass the correlation token from one microservice to another in a custom HTTP
request header called Correlation-Token:

GET /shoppingcart/42 HTTP/1.1
Host: localhost:5000
Accept: application/json
Correlation-Token: 600580e6-90b6-47e7-a054-1f5d2731135f

The piece of middleware you’re about to write will look for a Correlation-Token
request header and, if it finds one, add it to the log context. Otherwise, it will create a
new token and add that to the log context. Let’s look at the middleware and then talk
about what the log context does.

 Add a new LoggingMiddleware file to the Shopping Cart microservice. You’ll
implement all three pieces of middleware in this file, starting with the following,
which adds a correlation token to the Serilog log context.

namespace ShoppingCart.Infrastructure
{

using System;
using LibOwin;
using Serilog;
using Serilog.Context;

public class CorrelationToken
{
public static AppFunc Middleware(AppFunc next)
{

return async env =>
{

Guid correlationToken;
var owinContext = new OwinContext(env);
if (!(owinContext.Request.Headers["Correlation-Token"] != null

&& Guid.TryParse(owinContext.Request.Headers["Correlation-

                   ➥ Token"],
out correlationToken)))

correlationToken = Guid.NewGuid();

Listing 9.8 OWIN middleware implemented as a lambda

Contains a 
correlation token

Tries to find a correlation
token in the request header

 



215Implementing the logging middleware

owinContext.Set("correlationToken", correlationToken.ToString());
using (LogContext.PushProperty("CorrelationToken", correlationToken))

await next(env);
};

}
}

}

This is implemented as lambda-style OWIN middleware. It tries to read a Correlation-
Token request header from the OWIN environment; if it finds one with a GUID as the
value, it uses that GUID as the correlation token. The middleware adds the correlation
token to Serilog’s log context. When a logger is created, it can be configured to use the
log context to enrich all log messages. That’s how you configured the logger earlier,
which means the log messages you send will be enriched with the properties in the con-
text. The correlation token is in the log context for all code executed under the using
statement: that is, everything executed in the line await next(env), including the rest
of the OWIN pipeline, any middleware you add after the correlation token middleware,
and Nancy. All in all, this means all log message you send in those pieces of middleware,
in Nancy modules, and further inside the code of the Shopping Cart microservice.

 The correlation token middleware checks for a Correlation-Token header before
creating a new correlation token. Once a correlation token is created, it should be
attached to any requests to other microservices made as a result of processing this
one. That way, operations can be traced across all microservices involved. That’s why
the middleware adds the correlation token to the OWIN environment. The next step is
to make sure all outgoing requests have the correlation token set, and for that you’ll
pick the correlation token back out of the OWIN environment. 

9.4.2 Adding a correlation token to all outgoing HTTP requests

The Shopping Cart microservice sometimes makes requests to the Product Catalog
microservice. When it does, the request should contain a correlation token in a
Correlation-Token request header. Recall that you use HttpClient to make HTTP
requests and that until now you’ve created a new instance of HttpClient when you’re
about to make an HTTP request. Let’s change that slightly: you’ll use a factory to
create HttpClient objects, instead, and in that factory you’ll set up the HttpClient to
put a Correlation-Token header on every request.

 To create, set up, and use the HttpClient factory, you’ll do the following:

1 Write an HttpClientFactory class that can create HttpClient objects set up to
send the correct Correlation-Token header with each request.

2 Create a Nancy bootstrapper that picks the correlation token out of the OWIN
environment, creates an HttpClientFactory, and registers it with Nancy’s
dependency injection container.

Saves the correlation token for later use

Adds the correlation
token to the log context

 



216 CHAPTER 9 Cross-cutting concerns: monitoring and logging

3 Take a dependency on the HttpClientFactory factory in the part of Shopping
Cart that makes HTTP requests. Nancy will take care of injecting the instance of
HttpClientFactory that you created in the bootstrapper.

First, add an HttpClientFactory.cs file in the Shopping Cart microservice, containing
the following code.

namespace ShoppingCart
{

using System;
using System.Net.Http;

public interface IHttpClientFactory
{
HttpClient Create(Uri uri);

}

public class HttpClientFactory : IHttpClientFactory
{
private readonly string correlationToken;

public HttpClientFactory(string correlationToken)
{

this.correlationToken = correlationToken;
}

public HttpClient Create(Uri uri)
{

var client = new HttpClient() { BaseAddress = uri } ;
client

.DefaultRequestHeaders

.Add("Correlation-Token", this.correlationToken);
return client;

}
}

}

You add both an implementation and an interface, so code that needs an HttpClient
only has to depend on the interface.

 The next step is to set up an HttpClientFactory in a Nancy bootstrapper that reg-
isters a logger and an HttpClientFactory in the dependency injection container. Add
this bootstrapper code in a new Bootstrapper.cs file.

namespace ShoppingCart
{

using Nancy;

Listing 9.9 Creating HttpClient objects to send correlation tokens

Listing 9.10 Nancy bootstrapper

Gets a correlation 
token injected

Adds the 
correlation token 
to each request

 



217Implementing the logging middleware

using Nancy.Bootstrapper;
using Nancy.TinyIoc;
using Serilog;

public class Bootstrapper : DefaultNancyBootstrapper
{
private readonly ILogger log;

public Bootstrapper(ILogger log)
{

this.log = log;
}

protected override void ApplicationStartup(
TinyIoCContainer container, IPipelines pipelines)

{
base.ApplicationStartup(container, pipelines);
container.Register(this.log);

}

protected override void RequestStartup(
TinyIoCContainer container,
IPipelines pipelines,
NancyContext context)

{
base.RequestStartup(container, pipelines, context);
var correlationToken =

context.GetOwinEnvironment()["correlationToken"] as string;
container.Register<IHttpClientFactory>(

new HttpClientFactory(correlationToken));
}

}
}

This bootstrapper uses the RequestStartup method to create and register an Http-
ClientFactory per request. It must be one per request, because each request has its
own correlation token. In the correlation token middleware, you stored the correlation
token in the OWIN environment. Here, you pick it out of the environment and hand it
off to HttpClientFactory. You get the correlation token directly from the OWIN envi-
ronment dictionary rather than by creating an OwinContext with LibOwin, because
correlationToken is your own custom key that LibOwin knows nothing about.

 If you run Shopping Cart now, it will crash at startup because the bootstrapper
doesn’t have a default constructor. You created it with a constructor that takes an
ILogger because you want the same ILogger created in the Startup class to be used
everywhere. That’s why you inject it into the bootstrapper and register it in Nancy’s
container. Nancy will inject the correct ILogger instance whenever a class takes a
dependency on ILogger.

 To make the microservice run again, change the Configure method in Startup
slightly to create the bootstrapper and hand it to Nancy.

Injects the 
Serilog logger

Registers the 
logger in Nancy’s 
container

Gets the correlation token
from the OWIN environment

Injects the correlation token 
in an HttpClientFactory, and 
registers the factory in 
Nancy’s container

 



218 CHAPTER 9 Cross-cutting concerns: monitoring and logging

public void Configure(IApplicationBuilder app)
{

var log = ConfigureLogger();

app.UseOwin(buildFunc =>
{
buildFunc(next => GlobalErrorLogging.Middleware(next, log));
buildFunc(next => CorrelationToken.Middleware(next));
buildFunc(next => RequestLogging.Middleware(next, log));
buildFunc(next => PerformanceLogging.Middleware(next, log));
buildFunc(next => new MonitoringMiddleware(next, HealthCheck).Invoke);
buildFunc.UseNancy(opt => opt.Bootstrapper = new Bootstrapper(log));

});
}

Now the microservice can start, but you’re still not using HttpClientFactory. Recall
from chapter 5 that Shopping Cart has a ProductCatalogClient class that handles
sending requests to the Product Catalog microservice. Modify that class to take a
dependency on HttpClientFactory, so the HttpClientFactory object is created per
request in the bootstrapper injected into any object Nancy creates.

private readonly IHttpClientFactory httpClientFactory;

public ProductCatalogClient(
ICache cache,
IHttpClientFactory httpClientFactory)

{
this.cache = cache;
this.httpClientFactory = httpClientFactory;

}

Next, you can begin using HttpClientFactory to create HttpClient objects instead of
creating them with new. The RequestProductFromProductCatalogue method con-
tains this line of code:

var httpClient = new HttpCient(productCatalogBaseUrl);

Change that one line so it looks like this:

var httpClient =
this.httpClientFactory.Create(new Uri(productCatalogBaseUrl));

Now, requests made from ProductCatalogClient will contain a Correlation-Token
header containing the correct correlation token. If Product Catalog is well behaved,

Listing 9.11 Giving Nancy a bootstrapper to use

Listing 9.12 Creating an HttpClientFactory object per request

Creates a bootstrapper
and gives it to Nancy

Nancy injects the 
HttpClientFactory 
registered per request 
in the bootstrapper.

 



219Implementing the logging middleware

reads the correlation token from the header, and uses it in all log messages as it
should, you’ll be able to trace user requests to add an item to their shopping cart
through the Shopping Cart microservice to the Product Catalog microservice. That’s
helpful when debugging production issues.

 Next up, you’ll implement the two pieces of middleware that log requests and log
request performance. 

9.4.3 Logging requests and request performance

You have two more pieces of middleware to write. The first will log each incoming
request and each outgoing response. Because the correlation token is part of these
log messages, you can correlate the request and the response. Add the following
request-logging middleware code to the LoggingMiddleware.cs file.

public class RequestLogging
{

public static AppFunc Middleware(AppFunc next, ILogger log)
{
return async env =>
{

var owinContext = new OwinContext(env);
log.Information(

"Incoming request: {@Method}, {@Path}, {@Headers}",
owinContext.Request.Method,
owinContext.Request.Path,
owinContext.Request.Headers);

await next(env);
log.Information(

"Outgoing response: {@StatusCode}, {@Headers}",
owinContext.Response.StatusCode,
owinContext.Response.Headers);

};
}

}

This is lambda-style OWIN middleware that picks out the most important bits of the
request and response and sends log messages with them.

 Next, add the request-performance middleware to the LoggingMiddleware.cs file.
The request-performance middleware uses the Stopwatch class, so add this using
statement at the top the file:

using System.Diagnostics;

The middleware is as follows.
 
 
 

Listing 9.13 Middleware that logs the request and response

Sends a log message with
the request method, path,

and headers

Sends the request through 
the rest of the pipeline

Sends a log 
message with the 
response status 
code and headers

 



220 CHAPTER 9 Cross-cutting concerns: monitoring and logging

public class PerformanceLogging
{

public static AppFunc Middleware(AppFunc next, ILogger log)
{
return async env =>
{

var stopWatch = new Stopwatch();
stopWatch.Start();
await next(env);
stopWatch.Stop();
var owinContext = new OwinContext(env);
log.Information(

"Request: {@Method} {@Path} executed in {RequestTime:000} ms",
owinContext.Request.Method, owinContext.Request.Path,
stopWatch.ElapsedMilliseconds);

};
}

}

This piece of middleware measures the time it takes to execute the rest of the pipe-
line. If you place the middleware early in the pipeline, this means the time it takes to
handle the request. When the rest of the pipeline is finished, the middleware logs the
execution time. 

9.4.4 Configuring an OWIN pipeline with a correlation token and logging middleware

You’ve written all three pieces of middleware, and you can now add them to the OWIN
pipeline of the Shopping Cart microservice. You’ll build a pipeline with the correlation
token middleware first, followed by the request-logging middleware, the performance-
logging middleware, the monitoring middleware, and finally Nancy. The OWIN pipeline
is built in the Configure method in the Startup class. With all the middleware added,
the Configure method is as shown next.

public void Configure(IApplicationBuilder app)
{

var log = ConfigureLogger();

app.UseOwin(buildFunc =>
{
buildFunc(next => CorrelationToken.Middleware(next));
buildFunc(next => RequestLogging.Middleware(next, log));
buildFunc(next => PerformanceLogging.Middleware(next, log));
buildFunc(next => new MonitoringMiddleware(next, HealthCheck).Invoke);
buildFunc.UseNancy();

});
}

Listing 9.14 Middleware that times request execution and logs the result

Listing 9.15 OWIN pipeline with middleware and Nancy

Starts and stops the stopwatch 
before and after executing the 
rest of the pipeline

Sends a log message with
information about the request

and the execution time

 



221Implementing the logging middleware

Once the pipeline is set up, you’ll see request and performance log messages in the
console when you run Shopping Cart and send requests to it. For instance, start the
microservice with dotnet and then send this request-monitoring request to it:

GET /_monitor/shallow HTTP/1.1
Host: localhost:5000
Accept: application/json

You’ll see the following output in the console:

PS> dotnet run
Hosting environment: Production
Now listening on: http://localhost:5000
Application started. Press Ctrl+C to shut down.

22:24:04 [Information] (1717b4c2-9734-4425-933f-7cf18f9b0bca) Incoming

➥ request: "GET", PathSt
ring { Value: "/_monitor/shallow", HasValue: True }, [KeyValuePair`2 {

➥ Key: "Cache-Control",
Value: ["no-cache"] }, KeyValuePair`2 { Key: "Connection", Value:

➥ ["keep-alive"] }, KeyValueP
air`2 { Key: "Content-Type", Value: ["application/json"] },

➥ KeyValuePair`2 { Key: "Accept", V
alue: ["application/json"] }, KeyValuePair`2 { Key: "Accept-Encoding",

➥ Value: ["gzip, deflate
, sdch"] }, KeyValuePair`2 { Key: "Accept-Language", Value:

➥ ["en-US,en;q=0.8,da;q=0.6,nb;q=0.
4,sv;q=0.2"] }, KeyValuePair`2 { Key: "Cookie", Value:

➥ ["__atuvc=4%7C37; todoUser=chr_horsdal
; _nc=xoP1b4VkX70TpRWvKVfanfyaAckK8L8pkaVJehq4pns%3di5jbH1%2fJPKfbgy99

➥ ZaaFUhSoZtmNTYZxuHm3NPr
3mIdyVccjbWCrKBtYCYZFbaknlwUTSbgMnEwjl8HkLi%2fI4XTsa4hzaEngPZ5wp8waBcO

➥ 7sOHeARlfeMhbMF6x11iwkT
HebV67sBTW8B7S8u2jCgVtSlrps%2bXx6s3W4MH1NGJjJK6wy48O4xFmauLJWBQ%2bvISV

➥ XpROXKu%2fM5QdeKwTNw%3d
%3d"] }, KeyValuePair`2 { Key: "Host", Value: ["localhost:5000"] },

➥ KeyValuePair`2 { Key: "Us
er-Agent", Value: ["Mozilla/5.0 (Windows NT 10.0; WOW64)

➥ AppleWebKit/537.36 (KHTML, like Geck
o) Chrome/47.0.2526.111 Safari/537.36"] }, KeyValuePair`2 { Key:

➥ "Location", Value: ["http://
www.google.com"] }, KeyValuePair`2 { Key: "Postman-Token", Value:

➥ ["e180f522-dea5-0c56-0e35-9
c2be0626112"] }]

22:24:04 [Information] (1717b4c2-9734-4425-933f-7cf18f9b0bca)

➥ Request: "GET" PathString { Val
ue: "/_monitor/shallow", HasValue: True } executed in 001 ms

22:24:04 [Information] (1717b4c2-9734-4425-933f-7cf18f9b0bca)

➥ Outgoing response: 200, [KeyVal
uePair`2 { Key: "Date", Value: ["Mon, 25 Jan 2016 21:24:04 GMT"] },

➥ KeyValuePair`2 { Key: "Se
rver", Value: ["Kestrel"] }]

 



222 CHAPTER 9 Cross-cutting concerns: monitoring and logging

This output contains three log messages: one with the request, one with the execution
time of the request, and one with the response—just as expected. You may notice that
because you’re using structured logging, it’s easy to include a lot of data in a log mes-
sage. When you’re looking at the messages in the console, they can seem overwhelm-
ing; but when the log messages are sent to a Logging microservice with good search
capabilities and a good GUI—for instance, using Elasticsearch for storage and Kibana
for the GUI—the added data isn’t a problem. On the contrary, it’s valuable information.

 In this chapter, you’ve built four pieces of OWIN middleware in the Shopping Cart
microservice, but none of them use any of the microservice’s business logic. All four
may as well have been written in any other microservice. In chapter 11, you’ll extract
the pieces of middleware from Shopping Cart and package them in NuGet packages,
ready to be reused across many microservices. 

9.5 Summary
 Microservice systems need monitoring and logging just like any other server-

side systems.
 Every microservice should be monitored and should send log messages.
 Because of the number of microservices in a system, setting up monitoring and

logging needs to be easy.
 Correlation tokens make it easier to trace a request across several microservices.
 You can use OWIN middleware to create two monitoring endpoints: one that

responds 204 No Content to any request, and one that performs a health check
first.

 Structured logging is a good way to include valuable information in log mes-
sages and make that data searchable.

 Serilog is a library for doing structured logging.
 You can use OWIN middleware and Serilog’s log context to add correlation

tokens to log messages.
 You can use OWIN middleware to implement request and response logging and

log request-execution times.
 You can use the OWIN environment to carry the per-request correlation token

from middleware into a Nancy bootstrapper.
 You can set up HttpClient to include a Correlation-Token header with every

outgoing HTTP request.

 



223

Securing microservice-to-
microservice communication

Up to this point in the book, we’ve ignored security; but for most systems, security
is an important concern that needs careful attention. This chapter discusses how to
address security concerns in a microservice system. In a monolith, the monolith
does user authentication and authorization—there is, after all, only the monolith
to do those things. In a microservice system, several microservices are involved in
answering most user requests; the question is this: which ones are responsible for
authentication, and which ones are responsibility for authorization? You must also
ask how much the microservices can trust each other:

 If one microservice authenticates a user, can other microservices trust that user?
 Are all microservices allowed to call each other?

This chapter covers
 Determining where to perform user authentication and 

authorization in a microservice system

 Deciding on the level of trust in your microservice system

 Using IdentityServer to authenticate users

 Authorizing microservice-to-microservice requests

 



224 CHAPTER 10 Securing microservice-to-microservice communication

The answers vary from system to system. The first part of this chapter discusses how to
address these questions, and the second part dives into an implementation of one set
of answers.

10.1 Microservice security concerns
Security is an important concern for almost any server-side system. It’s also a very
broad topic, much of which is outside the scope of this book. We’ll concentrate on two
areas of security that are relevant to developers of microservice systems: authentication
and authorization, and how to secure communication between microservices.

 Most systems have some functionality that’s only accessible to logged-in users.
Think about the point-of-sale system discussed in earlier chapters. In chapters 3 and 4,
we talked about adding a loyalty program that allows registered users to receive special
offers via email, based on their interests. If users are interested in golf, they’ll be noti-
fied about good deals on golf balls. If users want to edit their interests—they may have
given up golf and taken up quilting, instead—they need to be logged in. Otherwise,
one user could edit another user’s interests, resulting in their being notified about the
wrong offers. Making sure a user really is who they claim to be is a matter of authentica-
tion. Deciding what the user is allowed to do—for instance, that they can edit their
own interests but not anyone else’s—is a matter of authorization.

 Authentication and authorization are concerns that your systems will probably have
regardless of whether you build them with microservices. The difference is that the gran-
ular nature of a microservice system begs the question: which microservices handle
authentication and authorization? The following two sections address that question.

Data in motion vs. data at rest
Systems handle data. That data is most often essential to the systems, but it’s also
often essential to users. The data may be sensitive, such as users’ home addresses,
credit card numbers, or medical records. Even if the data isn’t sensitive, it can still
be valuable to the system—the product catalog of an e-commerce site isn’t sensitive,
but it’s worth a lot to the business behind the site. The data your systems handle is
important and needs to be handled safely. Broadly speaking, we can place data han-
dling in one of two categories:

 Data in motion—When data is moved from one part of a system to another, it’s
said to be in motion. For instance, when collaborating microservices exchange
data via commands, queries, or events, the data they exchange is in motion.

 Data at rest—When data is stored for later use, it’s said to be at rest. For
instance, when the microservice that owns a piece of data stores it in its
database, that piece of data is at rest.

It’s important that data be kept safe in both situations. This chapter concentrates on
data in motion, because this is where a microservice system differs from systems
with other architectures. The techniques for securing data at rest are the same in a
microservice system as in a monolithic or traditional SOA system.

 



225Microservice security concerns

10.1.1 Authenticating users at the edge

Authentication is about verifying that users are who they claim to be. In the context of
a microservice system, that means verifying that requests are made on behalf of the
users they appear to be from. Let’s look at the example in figure 10.1, which shows
part of the point-of-sale system from chapters 3 and 4—the part centered around the
Loyalty Program microservice.

If you add to the loyalty program a web frontend where registered users can edit their
interests—for example, remove their interest in golf and add quilting, instead—you get
something like figure 10.2. You only want users to be allowed to edit their own interests,
not the interests of other users. Therefore, you require users to be logged in to be able
to edit interests. In figure 10.2, you must authenticate the request to update user set-
tings. The obvious place to perform the authentication is in the API Gateway microser-
vice, which is the microservice that
receives the request to update the user
settings from the client. That request is
made on behalf of a user, and you must
verify that clients are allowed to make
requests on behalf of users. You do so by
making sure the user is logged in.

 Figure 10.3 adds a Login microservice
to the system. The new microservice is
responsible for handling the login pro-
cess, but the API gateway is still responsi-
ble for making sure only requests from
logged-in users are accepted. In the API
gateway, authentication is handled by a

Special Offers
microservice

Loyalty Program
microservice

API Gateway
microservice

Get loyalty
points by user

Get settings for
registered user

Register user

Update user
settings

Notifications
microservice

Invoice
microservice

Subscribe
to events

Get loyalty
points by user

Send special
offer notification

Figure 10.1 The Loyalty Program microservice in the point-of-sale system

Web frontend

Loyalty Program
microservice

API Gateway
microservice

2. API Gateway delegates
    to other microservices

1. All requests from
    browser to server side

Figure 10.2 The web frontend for users of the 
loyalty program communicates only with the API 
gateway.

 



226 CHAPTER 10 Securing microservice-to-microservice communication

piece of middleware that redirects users to Login if they aren’t already logged in. Login
decides how the user can log in and leads the user through the login process. Users can
log in various ways, including the following:

 With a username and password
 Via a two-factor login mechanism
 Via an external system, such as Active Directory
 Via social identity providers like Facebook, Twitter, Google, and so on

Whatever the login mechanism, the Login microservice handles the login and gives
the API gateway proof of the user’s identity in a form the API gateway can verify. There
are standardized protocols to do this; the implementation half of this chapter uses the
OpenId Connect protocol to achieve this separation.
Notice that user authentication is at the edge of the system—that is, it’s done by the
microservice that receives the request from the client. This is the general pattern: user
authentication is done at the edge of the system. 

10.1.2 Authorizing users in microservices

We’ve established that authentication is initiated at the edge of the system by the
microservice that receives the request from the client. When the request has been
authenticated, you know who the user is, but you don’t know whether the user is
allowed to make the request. That’s a question of authorization. The user is only
authorized to update their own interests. If a client sends a request on behalf of user A
that attempts to update the interests of user B, the system should reject the request.

 In a microservice system, the microservice at the edge—the one that initiates
authentication—often isn’t the microservice that performs the action the request is
about. Figure 10.4 shows the loyalty program again. The API Gateway microservice

Web frontend

Login
microservice

API Gateway
microservice

Delegate authentication
   to Login microservice

Authentication
middleware 

Figure 10.3 Adding the Login microservice to the point-of-sale system. Login is responsible for 
authentication; a piece of middleware in the API gateway redirects unauthenticated users to the 
microservice.

 



227Microservice security concerns

gets requests from the client, but the Loyalty Program microservice is responsible for
keeping track of user interests. Therefore, Loyalty Program updates users’ interests.

 Remember from chapter 3 that microservices are primarily scoped to business
capabilities—a business capability is handled by one microservice. That includes
authorization, because authorization is part of the capability’s business rules. This is in
line with letting the Loyalty Program microservice decide whether a user is allowed to
update interests. For this to work, the user identity needs to be passed along from
microservice to microservice. In the loyalty program, the API Gateway microservice
must include the user identity in the requests it sends to Loyalty Program. 

10.1.3 How much should microservices trust each other?

Microservices collaborate to deliver functionality to end users, assuming all microser-
vices work toward delivering that end user functionality; but how can you be sure this
is the case? Couldn’t an attacker take control of a microservice and make it behave
maliciously? Yes, that’s possible. The question then becomes this: can one microser-
vice trust another microservice? The answer to this question, unfortunately, is that it
depends. It depends, for instance, on what threats the system faces and what the con-
sequences of a successful attack would be. It can also depend on other factors, such as
organizational structure and compliance with regulations.

 At the highest level of trust between microservices, all microservices completely
trust every request and every response from any other microservice. That is, implicitly,
the level of trust among the microservices you’ve built so far in this book.

 The principle of defense in depth suggests that this may not be a good idea. If an
attacker can compromise just one microservice and have it make requests to other
microservices, they will have full access to everything in the system. For a particular
system, you may or may not be OK with that situation. If you aren’t, you can limit
which microservices can collaborate.

 For instance, referring to figure 10.1, API Gateway, Special Offers, and Invoice are
allowed to make calls to Loyalty Program, but Notifications isn’t. On the other hand, only
Loyalty Program is allowed to make calls to Notifications; the other microservices aren’t.
This limits the scope of what an attacker can do if they compromise one microservice.

API Gateway includes user in requests
to Loyalty Program microservice

Loyalty Program
microservice

API Gateway
microservice

Figure 10.4 Authorization should be done as part of the business logic; the Loyalty 
Program microservice is responsible for authorizing updates to user settings.

 



228 CHAPTER 10 Securing microservice-to-microservice communication

 You can take this a step further and limit not only which microservices can call
each other, but also which endpoints they can call. For instance, Special Offers may
only call the event feed endpoint on Loyalty Program, not the user administration
endpoints. Conversely, API Gateway may call the user administration endpoints, but
not the event feed.

To enforce limitations on which microservices may collaborate, you create scopes in the
Login microservice. When one microservice needs to call another, it will ask Login for
permission by asking for a token that gives access to a particular scope. Login must
authenticate the caller—for instance, by demanding that each service include a unique
secret in its requests—and then decide whether to provide the token based on the per-
mission you set up in Login. The microservice that receives the request can then inspect
the token in a piece of middleware and verify that the required scope is present.

 For instance, the Loyalty Program microservice can add a piece of middleware that
requires a loyalty_program_write scope for all requests to endpoints that modify or
register users. The API gateway then needs to ask the Login microservice for a token
for the loyalty_program_write scope before making requests to Loyalty Program.
Only if you’ve set up Login to allow calls from the API gateway to Loyalty Program will
it provide the token. This setup ensures that Login is in charge of deciding which
microservices can collaborate.

 Even when you limit which microservices may collaborate and how they may
collaborate, there’s still an implicit trust that whatever one microservice sends to
another is legitimate. If you use HTTPS instead of HTTP between microservices, you

Some terminology
We need to quickly define a bit of terminology:

 Scope—An identifier for one or more endpoints that you want to protect.
When a microservice wants to call any of those endpoints, it first needs per-
mission to do so. That permission is given in the form of a token containing
the scope. You can think of scopes as names for groups of endpoints you
want to protect—for example, all endpoints that might alter product informa-
tion may require the scope product_information_write.

 Access token—A signed object that’s used to allow access to resources. A
microservice can request an access token for a given scope from the Login
microservice. If Login will allow the microservice to access the scope, it
returns an access token that can be passed along with requests to the end-
points the scope is for.

 OAuth and OpenId Connect—Open standards that work together to allow
authentication and authorization of both end users and microservices. You’ll
use these two protocols to perform authentication and authorization, but I
won’t go into detail about them because you’ll rely on IdentityServer to imple-
ment them.

 



229Implementing secure microservice-to-microservice communication

get transport-level encryption and thereby some protection against an attacker
tampering with requests going from one microservice to another. Even so, there’s the
question of whether the data sent with the request can be trusted. Of particular
interest here is user identity, because you’ll use that to perform authorization.

 You saw in the last section that the API gateway should pass the user identity along
with requests to Loyalty Program. If you want the microservice receiving a user iden-
tity in a request to be able to verify the identity, you need to pass the identity as an
encrypted token and not as plain text.

 As you can see, the level of trust between microservices will vary from system to sys-
tem. You can choose from a range of trust levels. In the following sections, you’ll
implement a level of trust that follows the principles outlined so far in the chapter, but
this isn’t the only way to go about implementing these security principles. 

10.2 Implementing secure microservice-to-microservice communication
For the remainder of this chapter, we’ll dive into implementing security around the
loyalty program. The security requirements are as follows:

 Authenticate users in the API gateway.
 Limit which microservices may collaborate.
 Allow microservices to verify user identities passed along from other microservices.

To fulfill the requirements, you’ll rely on a few standards:

 OpenId Connect to authenticate users
 OAuth to limit which microservices may collaborate
 JSON Web Tokens (JWTs) for user identities

You’ll also rely on an open source product called IdentityServer to play the role of the
Login microservice. I’ll introduce IdentityServer in the next section, and you’ll get it
up and running.

 In the API gateway, you’ll implement the setup illustrated in figure 10.5. The pipe-
line in the API gateway has an authentication middleware and Nancy. The authentica-
tion middleware checks whether users are authenticated and, if they aren’t, redirects
to the Login microservice. 

Defense in depth
Defense in depth is an approach to security that uses several defense mechanisms
in combination. The idea is to employ a layering strategy: if an attacker is able get
past the first line of defense, they meet the next line of defense. For example, even
though a microservice at the edge of a system may authenticate and authorize all
incoming requests, it shouldn’t have administrative rights to the server it runs on.
Even if an attacker circumvents the authorization and tricks a microservice into exe-
cuting uploaded code, the attacker still doesn’t have full control over the server—
they’re limited by what the operating system allows the microservice to do.

 



230 CHAPTER 10 Securing microservice-to-microservice communication

In the Loyalty Program microservice, you’ll implement the pipeline shown in fig-
ure 10.6. There are two pieces of middleware in front of Nancy: one that ensures
that all incoming requests have an access token for the scope needed to communi-
cate with Loyalty Program, and one that reads the identity token that identifies the
end user who originally initiated the request.

Authentication
middleware

Nancy

Login
microservice

Redirect
unauthenticated users

Pipeline in
API Gateway

Incoming request on
behalf of end user

Outgoing
response

Figure 10.5 Use authentication middleware to redirect unauthenticated users to 
the Login microservice.

More terminology
Before we examine the implementation, you need to know some more terminology:

 JSON Web Token (JWT)—A standardized format for access tokens. JWTs can
be cryptographically signed, which means a microservice receiving a JWT
from another microservice can check the token’s validity. If the token is valid,
the contents can be trusted, and it’s safe to rely on the JWT for authorization
purposes.

 Claims and ClaimsPrincipal—Claims are key/value pairs used to provide
information about an authenticated end user or microservice. In the case of
an end user, claims can include the user ID, name, email address, and so on,
as well as permissions the user has—such as write access to certain data.
In the case of a microservice, claims can include a scope the microservice is
allowed to access. .NET has built-in support for claims through the types in
the System.Security.Claims namespace. In particular, you’ll use Claims-
Principal. A ClaimsPrincipal represents an authenticated user and pro-
vides access to inspect all of the user’s claims.

 Authorization HTTP request header—A standardized HTTP request header
that you’ll use to send access tokens along with requests.

 



231Implementing secure microservice-to-microservice communication

In the following sections, you’ll implement these:

 A Login microservice for the point-of-sale sys-
tem. It will be based entirely on IdentityServer.

 Middleware in the API gateway that initiates user
authentication on incoming requests. If the user
isn’t logged in, they will be redirected to Login,
where they can log in. The API gateway will use
Login to verify that users are already logged in
on subsequent requests.

 Secure communication between the API gateway
and Loyalty Program. There are three parts to
this:

1 You’ll set up a scope in Login and give the API
gateway permission to call Loyalty Program.

2 In the API gateway, you’ll request a token
from Login before each request to Loyalty
Program. You’ll put the token in the Autho-
rization header of all requests to Loyalty
Program.

3 In Loyalty Program, you’ll implement middleware that requires a token with
the appropriate scope. If the scope isn’t present, the middleware will short-
circuit the pipeline and send a response with a 403 Forbidden status code back
to the caller. If the scope is present, the request will be processed as usual.

 Transferring the user identity from the API gateway to Loyalty Program, and
using it to perform authorization in your Nancy modules. To achieve this, you’ll
do the following:

1 Add the user identity to a header in all requests from the API gateway to Loy-
alty Program.

2 Read the user identity in a piece of middleware in Loyalty Program, and
assign it to the user property on the Nancy context.

3 Use the user from the Nancy context in the Nancy modules to perform
authorization.

With all of these things in place, you’ll have fulfilled the security requirements stated
at the beginning of this section.

10.2.1 Meet IdentityServer

IdentityServer is an open source product that makes it easy to implement single sign-
on and access control in web applications and HTTP APIs. It’s .NET-based and
designed to be a flexible framework that lets you set up an IdentityServer that suits
your needs. In this example, you’ll set up IdentityServer to play the role of the Login

Required scope
middleware

ID token
middleware

Incoming request from
the API Gateway

Outgoing
response

Nancy

Figure 10.6 Use middleware to 
authorize requests and identify 
the end user.

 



232 CHAPTER 10 Securing microservice-to-microservice communication

microservice in the point-of-sale system. You’ll use hardcoded in-memory “databases”
for both users and scopes, but IdentityServer supports a range of other options, such
as using a relational database for users, or delegating login to another identity service
such as Twitter, Google, Active Directory, or one of many others.

NOTE You can find more information at https://identityserver.github.io/
Documentation, including thorough technical documentation demonstrat-
ing how to set up and use IdentityServer. This section doesn’t go into detail
and only shows how to do a simple setup.

Let’s set up a simple Login microservice using IdentityServer. You’ll do the following:

1 Create an empty ASP.NET Core project, just as you would for any other microservice.
2 Add the IdentityServer framework to the new microservice via NuGet.
3 Configure IdentityServer in the Startup class.
4 Set up a couple of hardcoded users and a scope for the Loyalty Program microservice.

When you’re finished, you’ll have a Login microservice with the components shown
in figure 10.7. Note that almost all the microservice is implemented by IdentityServer.

 Let’s follow those steps. First, create a
new empty ASP.NET Core project with
Visual Studio or Yeoman, and call it
Login. You’ve created many such projects
in this book, so I won’t repeat the details.

 Next, add the IdentityServer NuGet
package by adding IdentityServer4 to
the project.json file in the new microser-
vice along with Serilog and some
ASP.NET Core logging packages. The
dependencies section in project.json
should look like this:

"dependencies": {
"Microsoft.NETCore.App": {

"version": "1.0.0",
"type": "platform"

},
"Microsoft.AspNetCore.Server.IISIntegration": "1.0.0",
"Microsoft.AspNetCore.Server.Kestrel": "1.0.0",
"Microsoft.AspNetCore.StaticFiles": "1.0.0",
"Microsoft.AspNetCore.Mvc": "1.0.0",
"Microsoft.Extensions.Logging.Console": "1.0.0",
"Microsoft.Extensions.Logging.Debug": "1.0.0",
"IdentityServer4": "1.0.0-beta5",
"SeriLog": "2.0.0-rc-600"

},

When you run dotnet restore, the IdentityServer framework will be added.

ClientsIdentityServer

Scopes

Users

Login microservice

Figure 10.7 The Login microservice is built in 
IdentityServer.

 

https://identityserver.github.io/Documentation
https://identityserver.github.io/Documentation


233Implementing secure microservice-to-microservice communication

 Let’s make one more tweak to the new project to make sure the Login microser-
vice runs on its own port. Change program.cs as follows, setting up the microservice to
run on port 5001.

namespace Login
{

using System.IO;
using Microsoft.AspNetCore.Hosting;

public class Program
{
public static void Main(string[] args)
{

var host = new WebHostBuilder()
.UseKestrel()
.UseContentRoot(Directory.GetCurrentDirectory())
.UseIISIntegration()
.UseStartup<Startup>()
.UseUrls("http://localhost:5001")
.Build();

host.Run();
}

}
}

The third step is to configure IdentityServer. For the sake of simplicity, you’ll use in-
memory versions of everything IdentityServer needs. In a real situation, you’d most
likely use another user login implementation and maybe other implementations for
the other parts. The IdentityServer configuration is done in code using the Identity-
Server API, in the Startup class. The following listing uses three classes—Users,
Claims, and Scoped—that you’ll write shortly.

namespace Login
{

using System.IO;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using System.Security.Cryptography.X509Certificates;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.Logging;
using Microsoft.Extensions.DependencyInjection;

using Configuration;

public class Startup

Listing 10.1 Configuring the port the Login microservice runs on

Listing 10.2 Startup class with a simple IdentityServer configuration

Configures ASP.NET Core 
to listen on port 5001

 



234 CHAPTER 10 Securing microservice-to-microservice communication

{
private readonly IHostingEnvironment environment;

public Startup(IHostingEnvironment env)
{
this.environment = env;

}

public void ConfigureServices(IServiceCollection services)
{
var cert =

new X509Certificate2(
Path.Combine(

this.environment.ContentRootPath,
"idsrv3test.pfx"),

"idsrv3test");

services.AddSingleton<IHttpContextAccessor,
      ➥ HttpContextAccessor>();

var builder = services
.AddIdentityServer()
.SetSigningCredential(cert);

builder.AddInMemoryClients(Clients.Get());
builder.AddInMemoryScopes(Scopes.Get());
builder.AddInMemoryUsers(Users.Get());

services.AddMvc();
}

public void Configure(IApplicationBuilder app, ILoggerFactory
    ➥ loggerFactory)

{
loggerFactory.AddConsole(LogLevel.Trace);
loggerFactory.AddDebug(LogLevel.Trace);

app.UseCookieAuthentication(new CookieAuthenticationOptions
{

AuthenticationScheme = "Temp",
AutomaticAuthenticate = false,
AutomaticChallenge = false

});

app.UseIdentityServer();

app.UseStaticFiles();
app.UseMvcWithDefaultRoute();

}
}

}

Now, you just need to add simple implementations of the Users, Clients, and Scopes
classes. Let’s start with Users.

 
 

ASP.NET Core can inject 
dependencies into StartUp.

ASP.NET Core
configuration that

IdentityServer
depends on

Configures 
IdentityServer

Uses a
certificate to

sign tokens
Sets up an in-memory 
version of everything 
IdentityServer needs

Adds authentication
middleware that

IdentityServer relies on
Starts

IdentityServer

Adds routing that 
IdentityServer relies on

 



235Implementing secure microservice-to-microservice communication

namespace IdentityServer.Configuration
{

using System.Collections.Generic;
using System.Security.Claims;
using IdentityModel;
using IdentityServer4.Services.InMemory;

static class Users
{
public static List<InMemoryUser> Get()

=>
new List<InMemoryUser>
{

new InMemoryUser{
Subject = "818727", Username = "alice", Password = "alice",
Claims = new[]
{

new Claim(JwtClaimTypes.Name, "Alice Smith"),
new Claim(JwtClaimTypes.GivenName, "Alice"),
new Claim(JwtClaimTypes.FamilyName, "Smith"),
new Claim(JwtClaimTypes.Email, "AliceSmith@email.com"),
new Claim(JwtClaimTypes.EmailVerified,

"true", ClaimValueTypes.Boolean),
new Claim(JwtClaimTypes.Role, "User"),
new Claim(JwtClaimTypes.Id, "1", ClaimValueTypes.Integer64)

}
},

...
};

}
}

You add a number of users, such as Alice, that you’ll be able to log in as later. This is
somewhat unrealistic: the idea of the loyalty program is to get lots of users registered,
so it doesn’t make sense to hardcode them in the Login microservice. It would make
much more sense to allow a range of social login options—Facebook, Twitter, Google,
and so on—and let users authenticate using one of those when they want to register or
change their profile. As I mentioned, IdentityServer supports these scenarios; all the
information you need to implement them is in the IdentityServer documentation.

 Next, you’ll define a scope for the Loyalty Program microservice. Change Loyalty
Program to only accepts calls that contain that scope in a token.

namespace IdentityServer.Configuration
{

using System.Collections.Generic;
using IdentityServer4.Core.Models;

Listing 10.3 Hardcoded definitions of Users

Listing 10.4 Hardcoded definitions of scopes

Definition of 
user “alice”

List of claims
for “alice”

More user 
definitions go here.

 



236 CHAPTER 10 Securing microservice-to-microservice communication

public class Scopes
{
public static IEnumerable<Scope> Get() =>

new[]
{

// standard OpenID Connect scopes
StandardScopes.OpenId,
StandardScopes.ProfileAlwaysInclude,
StandardScopes.EmailAlwaysInclude,
new Scope
{

Name = "loyalty_program_write",
DisplayName = "Loyalty Program write access",
Type = ScopeType.Resource,

}
};

}
}

Unlike hardcoded users, having hardcoded scopes is realistic until the system reaches
a certain size; there’s nothing wrong with starting here. The downside is that when-
ever a new microservice is introduced, you’ll need to change the code in the Login
microservice and set up scopes for the new microservice. This can be OK for a while,
but it gets out of hand when you reach a certain number of microservices.

 Finally, you need to set up clients. Clients in this case are microservices that need to
call other microservices. The client configuration tells IdentityServer which scopes to
allow when a microservice requests a token.

namespace IdentityServer.Configuration
{

using System.Collections.Generic;
using IdentityServer4.Models;

public class Clients
{
public static IEnumerable<Client> Get() =>

new List<Client>
{

new Client
{

ClientName = "API Gateway",
ClientId = "api_gateway",
ClientSecrets = new List<Secret>
{

new Secret("secret".Sha256())
},
AllowedScopes = new List<string>
{

"loyalty_program_write",

Listing 10.5 Hardcoded definitions of clients

Three standard scopes 
for end users decide 
what’s included in 
identity tokens.

Definition of the scope 
of the endpoints in 
Loyalty Program

Configures the ID and 
secret the API gateway 
needs to request a token

Scopes to include in tokens 
for the API gateway

 



237Implementing secure microservice-to-microservice communication

},
AllowedGrantTypes = GrantTypes.ClientCredentials

},
new Client
{
ClientName = "Web Client",
ClientId = "web",
RedirectUris = new List<string>
{

"http://localhost:5003/signin-oidc",
},
PostLogoutRedirectUris = new List<string>
{

"http://localhost:5003/",
},
AllowedScopes = new List<string>
{

"openid",
"email",
"profile",

}
}

};
}

}

This setup allows the API gateway to access the loyalty_program_write scope, which
in practice means it can call endpoints at the Loyalty Program microservice. When the
API gateway asks Login for permission to call Loyalty Program, it will be granted that
permission.

 This concludes the setup of the Login microservice. You can run it the usual way
with dotnet. 

10.2.2 Implementing authentication with IdentityServer middleware

In this section, you’ll enable end users to log in. You’ll assume that the API gateway
provides users with some sort of web interface. This could be a JavaScript application
that uses the endpoints in the API gateway and that’s initially loaded from the API gate-
way. To use the JavaScript application, users need to log in.

 Making the API gateway require users to log in is a matter of some setup at the
ASP.NET Core level to have the application initiate authentication using the Identity-
Server-based Login microservice. Before you write that setup code, you need to add
the Microsoft.AspNet.Authentication.Cookies and Microsoft.AspNet.Authenti-
cation.OpenIdConnect NuGet packages to the API gateway. The dependencies sec-
tion in the API gateway’s project.json file should look like this:

"dependencies": {
"Microsoft.AspNet.IISPlatformHandler": "1.0.0",
"Microsoft.AspNet.Server.Kestrel": "1.0.0",
"Microsoft.AspNet.Diagnostics": "1.0.0",

Client that allows 
user logins through 
a web frontend

 



238 CHAPTER 10 Securing microservice-to-microservice communication

"Microsoft.AspNet.Mvc": "6.0.0",
"Microsoft.AspNet.Authentication.Cookies": "1.0.0",
"Microsoft.AspNet.Authentication.OpenIdConnect": "1.0.0"

},

Once the packages have been added, change the Startup class in the API gateway to
the following.

public class Startup
{
public void Configure(IApplicationBuilder app)
{

JwtSecurityTokenHandler.DefaultInboundClaimTypeMap.Clear();
app.UseCookieAuthentication(new CookieAuthenticationOptions
{

AuthenticationScheme = "Cookies",
AutomaticAuthenticate = true

});

var oidcOptions = new OpenIdConnectOptions
{

AuthenticationScheme = "oidc",
SignInScheme = "Cookies",
Authority = "http://localhost:5001",
RequireHttpsMetadata = false,
ClientId = "web",
ResponseType = "id_token token",
GetClaimsFromUserInfoEndpoint = true,
SaveTokens = true

};
oidcOptions.Scope.Clear();
oidcOptions.Scope.Add("openid");
oidcOptions.Scope.Add("profile");
oidcOptions.Scope.Add("api1");

app.UseOwin(buildFunc => buildFunc.UseNancy());
}

}

That’s all it takes. Now users who aren’t already logged in are redirected to a login
page in the Login microservice that IdentityServer comes with out of the box. You can
log in with the users you hardcoded, such as Alice. Once a user is logged in, subse-
quent requests will have a login cookie that the API gateway checks. As long as the
cookie is valid, the API gateway will accept the requests; but as soon as it isn’t, the user
will be redirected to Login again. 

Listing 10.6 Authenticating via the Login microservice

Configures ASP.NET
Core to read and

write a login cookie

Configures
ASP.NET Core to
use the OpenId

Connect protocol
Points to the Login 
microservice as the 
authentication 
authority

Identifies this
web client to

the Login
microservice

 



239Implementing secure microservice-to-microservice communication

10.2.3 Implementing microservice-to-microservice authorization with 
IdentityServer and middleware

With user authentication in place, the next thing to secure is communication between
microservices. You’ll use the Login microservice to make sure only microservices that
are allowed to collaborate do so. To do that, you need to implement the communica-
tion shown in figure 10.8: the API gateway first requests an access token from the
Login microservice and then includes that access token in the request to the Loyalty
Program microservice.

The Loyalty Program microservice checks that each request from the API gateway
includes an access token and that the access token contains the required scope. The
steps to implement this are as follows:

1 Modify the API gateway to request a token from Login before each request to
Loyalty Program and to put the token in the Authorization header of all
requests to Loyalty Program.

2 Modify Loyalty Program to require a token with the appropriate scope on each
incoming request. You’ll do this in middleware. If the scope isn’t present, the
middleware will short-circuit the pipeline and send a response with a 403 For-
bidden status code back the to the caller. If the scope is present, the request will
be processed as usual.

First, you need to request a token from the Login microservice. Because you want to put
the token in every request you’ll make to the Loyalty Program microservice, you’ll
request the token in the HttpClientFactory you created in chapter 8. Remember that
HttpClientFactory is a small class that can create HttpClient objects ready to use to
make requests, but with a standard configuration. In chapter 8, you used HttpClient-
Factory to add correlation tokens to all requests; now you’ll enhance HttpClientFac-
tory to add access tokens to all requests, as shown next.

public interface IHttpClientFactory
{

Task<HttpClient> Create(Uri uri, string scope);

Listing 10.7 Adding access tokens and correlation tokens to requests

Login
microservice

Loyalty Program
microservice

API Gateway
microservice

1. Request access token
   for the scope required
   by the Loyalty Program
   microservice

2. API Gateway must include
    access token for the correct
    scope in requests to Loyalty
    Program microservice

Figure 10.8 Using tokens to authorize requests between microservices

Returns Task to allow the 
implementation to be async

 



240 CHAPTER 10 Securing microservice-to-microservice communication

}

public class HttpClientFactory : IHttpClientFactory
{

private readonly TokenClient tokenClient;
private readonly string correlationToken;

public HttpClientFactory(string correlationToken)
{
this.correlationToken = correlationToken;
this.tokenClient = new TokenClient(

"http://localhost:5001/connect/token",
"api_gateway",
"secret");

}

public async Task<HttpClient> Create(Uri uri, string scope)
{
var response = await

this.tokenClient
.RequestClientCredentialsAsync(scope)
.ConfigureAwait(false);

var client = new HttpClient() {BaseAddress = uri};
client

.DefaultRequestHeaders

.Authorization =
new AuthenticationHeaderValue("Bearer", response.AccessToken);

client
.DefaultRequestHeaders
.Add("Correlation-Token", this.correlationToken);

return client;
}

}

With these enhancements to HttpClientFactory, you’ll have access tokens on all outgo-
ing requests as long as you remember to use HttpClientFactory to create HttpClients.
In chapter 8, you also added HttpClientFactory to Nancy’s DI container, so it’s easy for
any application code to take a dependency on HttpClientFactory and use it.

 Now let’s turn our attention to the Loyalty Program microservice, which needs to
make sure only requests with a valid access token are accepted. Doing so only requires
that you add LibOwin—as described in chapter 8—and the NuGet package Microsoft
.AspNetCore.Authentication.JwtBearer to Loyalty Program. Then, you need to add
a bit of configuration code to the Startup class in Loyalty Program and add a piece of
middleware to the OWIN pipeline. Adding the configuration code changes the Startup
class to the following.

namespace LoyaltyProgram
{

using System.Collections.Generic;

Listing 10.8 Reading a bearer token from incoming requests

Prepares to request an 
access token from Login

Requests an access 
token from Login

Adds the access 
token to outgoing 
requests

 



241Implementing secure microservice-to-microservice communication

using System.IdentityModel.Tokens.Jwt;
using System.Threading.Tasks;
using LibOwin;
using Microsoft.AspNet.Builder;
using Nancy.Owin;

public class Startup
{
public void Configure(IApplicationBuilder app)
{

JwtSecurityTokenHandler.DefaultInboundClaimTypeMap =
new Dictionary<string, string>();

app.UseJwtBearerAuthentication(options =>
{

options.Authority = "http://localhost:5001";
options.RequireHttpsMetadata = false;
options.Audience = "http://localhost:5001/resources";
options.AutomaticAuthenticate = true;

});

app.UseOwin(buildFunc => buildFunc.UseNancy());
}

}
}

This tells ASP.NET Core to read the bearer token from the authorization header on
incoming requests, which fits exactly with how you set it up in HttpClientFactory in
the API gateway. ASP.NET Core will use the token to create a ClaimsPrincipal that you
can access through the OWIN environment. The claims on that ClaimsPrincipal are
the claims that the Login microservice sets when the API gateway requests an access
token, which includes the scopes you allow for the API gateway.

 The last piece involved in making sure Loyalty Program only accepts requests with
the right scope is to add a piece of middleware that checks the principal for the
required scope. Using the lambda style of OWIN middleware, extend the OWIN pipe-
line with a new piece of middleware as follows.

app.UseOwin(buildFunc =>
{

buildFunc(next => env =>
{

var ctx = new OwinContext(env);
var principal = ctx.Request.User;
if (principal.HasClaim("scope", "loyalty_program_write"))

return next(env);
ctx.Response.StatusCode = 403;
return Task.FromResult(0);

});
buildFunc.UseNancy();

});

Listing 10.9 OWIN pipeline with middleware that requires a scope

Configures ASP.NET Core to
read the bearer token on

incoming requests and use
Login to verify the token

New piece of 
middleware

Checks for
the required

scope

If the scope is
present, proceeds
with the pipeline

If the scope isn’t 
present, responds 
with 403 Forbidden

 



242 CHAPTER 10 Securing microservice-to-microservice communication

Now Loyalty Program will respond with a 403 Forbidden status code if a request
comes in with an access token that doesn’t contain the required scope. Putting this
kind of setup in all of your microservices lets you control which microservices may
collaborate. 

10.2.4 Implementing user authorization in Nancy modules

Now that you’ve allowed users to log in and you have a setup for controlling which
microservices can collaborate, you have only one more thing to implement: sending
the user identity securely from one microservice to another, so you can do authoriza-
tion in the correct microservice. The plan for implementing that is as follows:

1 In the API gateway, use HttpClientFactory to add another header, called
pos-end-user, to all outgoing requests. It contains the user’s identity.

2 In Loyalty Program, use a piece of middleware to read the user identity from
the pos-end-user header.

3 In Loyalty Program, use the Nancy bootstrapper to assign the user’s identity to
the CurrentUser property on the Nancy context.

You’ll implement these three steps in the following subsections.

ADDING THE USER’S IDENTITY TO REQUESTS

First, you want HttpClientFactory to add another header. You’ll call the header pos-
end-user, and it’ll contain the end user’s identity in the form of a token. That token is
returned from the Login microservice when the user is authenticated and can be
found as a claim called id_token. You already created an instance of HttpClientFac-
tory on each request in the bootstrapper, but now you want to pass the ID token in to
HttpClientFactory along with the correlation token it already gets.

using LibOwin;

public class Bootstrapper : DefaultNancyBootstrapper
{

...

protected override void RequestStartup(
TinyIoCContainer container,
IPipelines pipelines,
NancyContext context)

{
base.RequestStartup(container, pipelines, context);
var correlationToken =

context.GetOwinEnvironment()["correlationToken"] as string;
var principal =

context.GetOwinEnvironment()[OwinConstants.RequestUser]
as ClaimsPrincipal;

Listing 10.10 Reading the ID token in the bootstrapper

Reads the user
from the OWIN

environment

 



243Implementing secure microservice-to-microservice communication

var idToken = principal.FindFirst("id_token");
container.Register<IHttpClientFactory>(

new HttpClientFactory(idToken, correlationToken));
}

}

This requires a change to HttpClientFactory, because it now needs to take in the ID
token as a constructor argument. The updated HttpClientFactory is shown next.

public class HttpClientFactory : IHttpClientFactory
{

private readonly TokenClient tokenClient;
private readonly string correlationToken;
private readonly string idToken;

public HttpClientFactory(
string tokenUrl,
string correlationToken,
string idToken)

{
this.tokenClient = new TokenClient(tokenUrl, clientName, clientSecret);
this.correlationToken = correlationToken;
this.idToken = idToken;
this.tokenClient = new TokenClient(

"http://localhost:5001/connect/token",
"api_gateway",
"secret");

}

public async Task<HttpClient> Create(Uri uri)
{
var response = await

this.tokenClient
.RequestClientCredentialsAsync("loyalty_program_write")
.ConfigureAwait(false);

var client = new HttpClient() { BaseAddress = uri };
client

.DefaultRequestHeaders

.Authorization =
new AuthenticationHeaderValue("Bearer", response.AccessToken);

client
.DefaultRequestHeaders
.Add("Correlation-Token", this.correlationToken);

client
.DefaultRequestHeaders
.Add("pos-end-user", this.idToken);

return client;
}

}

Listing 10.11 HttpClientFactory that takes the ID token as a constructor argument

Reads the ID token

Passes the ID 
token to the 
factory

Adds the ID token 
to a header

 



244 CHAPTER 10 Securing microservice-to-microservice communication

Now, all requests going out of the API gateway have a pos-end-user header contain-
ing the ID token. 

READING THE USER’S IDENTITY FROM REQUESTS

The next step is for the Loyalty Program microservice to read the ID token from the
header, which you’ll do with a piece of middleware that you add to the OWIN pipeline
in Loyalty Program.

public class Startup
{

public void Configure(IApplicationBuilder app)
{
...

app.UseOwin(buildFunc =>
{

...
buildFunc(next => env =>
{

var ctx = new OwinContext(env);
if (ctx.Request.Headers.ContainsKey("pos-end-user"))
{

var tokenHandler = new JwtSecurityTokenHandler();
SecurityToken token;
var userPrincipal =

tokenHandler.ValidateToken(
ctx.Request.Headers["pos-end-user"],
new TokenValidationParameters(),
out token);

ctx.Set("pos-end-user", userPrincipal);
}
return next(env);

});
});

}
}

This code reads the ID token from the request header, validates it, and, as a byproduct
of that, creates a ClaimsPrincipal with all the claims in the ID token—that is, all the
claims the Login microservice returned when the user logged in. 

ASSIGNING THE USER’S IDENTITY TO NANCY’S CURRENTUSER

Once the ClaimsPrincipal object is in the OWIN environment, you can get it in the
Loyalty Program bootstrapper and assign it to the CurrentUser on NancyContext, as
follows.

 
 
 

Listing 10.12 Reading the ID token in a piece of middleware

Checks whether there’s
a pos-end-user header

Reads and validates 
the ID token

Creates a user based 
on the ID token, and 
adds it to the OWIN 
environment

 



245Implementing secure microservice-to-microservice communication

public class Bootstrapper : DefaultNancyBootstrapper
{

...

protected override void RequestStartup(
TinyIoCContainer container,
IPipelines pipelines,
NancyContext context)

{
base.RequestStartup(container, pipelines, context);
context.CurrentUser =

context.GetOwinEnvironment()["pos-end-user"] as ClaimsPrincipal;
}

}

Nancy offers some convenience methods you can use in your Nancy modules to do
authorization. Suppose you want to only allow users with a certain claim to access the
endpoints in a module. You can use RequiresClaims, like this:

public class UsersModule : NancyModule
{

public SecuredModule() : base("/secret-stuff")
{
this.RequiresClaims("my claim");

Get("/", ...);
Post("/", ...);

}
}

The RequiresClaims method can also be applied at the endpoint-handler level by
calling it in a handler. In this case, you don’t want to require any particular user claim
in the module, but you do want to make sure users are changing their own interests.
So, in the Post and Put handlers in UserModule, you check the identity of the user
against the user ID provided in the request URL.

public class UsersModule : NancyModule
{

public SecuredModule() : base("/secret-stuff")
{
...
Put("/{userId:int}", parameters =>
{

int loggedInUserId;

Listing 10.13 Assigning the user created from the ID token to the Nancy context

Listing 10.14 Check claims to make sure users are changing their own interests

Called by Nancy on each 
incoming request

Assigns the user from the ID token
in the custom HTTP header to the

user on the Nancy context

 



246 CHAPTER 10 Securing microservice-to-microservice communication

int.TryParse(
this.Context

.CurrentUser

.Claims.FirstOrDefault(c => c.Type.StartsWith("id"))
?.Value.Split(':').Last() ?? "",

out loggedInUserId);
int userId = parameters.userId;
if (loggedInUserId != userId)

return HttpStatusCode.Forbidden;
var updatedUser = this.Bind<LoyaltyProgramUser>();
registeredUsers[userId] = updatedUser;
return updatedUser;

});
}

}

Now, users are only allowed to change their own interests.
 This concludes the implementation of the security requirements. You’ve fulfilled

these requirements by leaning on IdentityServer, which you used to implement a
Login microservice. The API gateway uses Login to do authentication, and it’s also
Login that both authenticates and authorizes calls from the API gateway to Loyalty
Program. Finally, you pass an ID token from microservice to microservice to share the
identity of the logged-in user. 

10.3 Summary
 Users should be authenticated at the edge of the system. That is, the microser-

vice that first receives a user request should initiate authentication.
 Authorization should happen in the microservice system in the microservice

that owns whatever data or action the request is for. The principle is that autho-
rization is part of the business rules belonging to a business capability. Because
microservices are—as you saw in chapter 3—designed around business capabili-
ties, it follows that a microservice responsible for a business capability should
also be responsible for any authorization related to that business capability.

 The principle of security in depth requires that you consider the level of trust
you can accept between microservices. In some systems, it may be acceptable for
microservices to trust requests from other microservices. In other systems, it
may not.

 There’s a trade-off between the convenience of having a high degree of trust
between microservices and the security that follows from a lower degree of
trust.

 You can introduce a Login microservice that’s responsible for all authentica-
tion, including both end user authentication and authentication of calls from
one microservice to another.

Tries to read the id claim
from the user’s identity

Compares the 
logged-in user to the 
user ID in the URL

 



247Summary

 You use the Login microservice to control which microservices may collaborate
by configuring scopes and configuring which microservices receive which
scopes.

 You can set up the Login microservice using IdentityServer.
 You can set up a microservice to use Login for end user authentication.
 You can make secure calls between microservices by including a token obtained

from Login in each request and checking that the token contains the required
scope in middleware in the microservice receiving the request.

 You can use an ID token obtained from Login to pass the user identity around
in a more secure way than including a user ID in the request URL.

 You can read the ID token from incoming requests and assign it to the Nancy
context, making it available to Nancy modules as a current user that can then
be used for authorization purposes.

 



248

Building a reusable
 microservice platform

A microservice system can include many microservices. You’ll create new ones fre-
quently, either because you’re adding capabilities to the system or because you’re
replacing existing microservices. You want to able to create them quickly but
include all the code that makes them behave well in production—that is, the infra-
structure code you’ve created in the previous couple of chapters. In this chapter,
you’ll create a platform—consisting of NuGet packages—that enables you to
quickly create new, well-behaved microservices.

This chapter covers
 Creating microservices more quickly with a reusable 

platform

 Components of a reusable platform

 Packaging reusable middleware with NuGet

 Building a reusable platform from several NuGet 
packages

 



249Creating a reusable microservice platform

11.1 Creating a new microservice should be quick and easy
In chapter 1, I listed a number of characteristics of microservices, including this one:
a microservice is responsible for a single capability. I explained that this characteristic is a
variation of the Single Responsibility Principle. Taking this seriously drives you toward
having many microservices. And as the system evolves, you’ll create new microservices
fairly often when the system needs new end user functionality and as your understand-
ing of the domain grows over time.

 As discussed in chapter 3, you aren’t likely to get the scoping of all microservices
right the first time; and, when in doubt, you should create slightly bigger microser-
vices. This also leads to the need to create new microservices along the way: when you
gain a better understanding of the domain, the responsibilities of the different capa-
bilities become clearer, and you’ll sometimes discover that one microservice should be
split in two.

 Another characteristics of microservices from chapter 1 is as follows: a microservice
is replaceable. The point is that a microservice can be completely rewritten quickly if its
implementation becomes unsuitable. The code may get out of hand, or the design
and technology choices you make early on may not be suitable for a growing load on
the microservice; whatever the reason, you’ll sometimes need to replace an existing
microservice with a new one.

 The bottom line is that when you work with a microservice system, you’ll often
need to create new microservices. If you don’t, your system’s services will slowly but
surely become bigger, and its service boundaries will become less clear, meaning you’ll
lose the flexibility and speed of development that a microservice system provides. You
need a way to make it both quick and easy to create new microservices so you won’t be
reluctant to do so.

11.2 Creating a reusable microservice platform
Chapters 8 and 9 explained that microservices must be well-behaved citizens in the
production environment. They need to provide insight into their health through log-
ging, they should allowing monitoring, and they need to follow the security standards
you decide on for the system—for instance, authorizing microservice-to-microservice
requests via scopes issued by a login microservice, as discussed and implemented in
chapter 10. Thus, creating a new microservice involves more than just creating a new,
empty project and adding Nancy NuGet to it.

 That’s why I recommend building a standard microservice platform to use across
your .NET-based microservices in a microservices system. As shown in figure 11.1, the
platform is installed in every microservice. In the second half of this chapter, you’ll
create such a platform, including the following:

 Monitoring- and logging-related middleware
 Security-related middleware
 Components that support sending HTTP requests according to the standards of

your microservice system

 



250 CHAPTER 11 Building a reusable microservice platform

These are the platform areas I’ve chosen to cover for this book, but they aren’t
necessarily the things you’ll need in a microservice platform for your system. I’ve tried
to include common components. In particular, I think such platforms should include
the monitoring, correlation token, request/response-logging, and performance-
logging bits. They don’t have to be in the exact form used in this book—you may, for
instance, prefer a different correlation token format or another logging framework.
Your authorization middleware will be tied to the approach you choose to use for
security between microservices; but if you choose to put security measures in place
around microservice collaboration, libraries supporting that should be included in
your microservice platform.

 The other side of the coin is this: should you include more in your microservice plat-
form? There’s no overarching answer, but you should be cautious about adding items:
every time you include something in the platform, it becomes a little bigger and
heavier. Furthermore, when you add something that all microservices are expected to
include, what happens if they aren’t running the same version of the platform? Can
other microservices handle that? Can the infrastructure around your microservice sys-
tem handle that? If the platform grows into something that must be in sync across all
microservices, but it changes often, it becomes a serious bottleneck instead of an
enabler. First, the platform must be updated in the code base of each microservice, and
then each microservice must be deployed. If there are many microservices, that’s a lot
of work; and each time a new microservice is created, it becomes even more work.

 Ideally, your microservice platform will hit the sweet spot of including only
technical concerns that really do cut across microservices and that you can update

Monitoring and
logging package

Security package

Communication
components package

Installed in all
microservices

Microservice platform

Product Catalog microservice

Microservice
platform

Shopping Cart microservice

Microservice
platform

Recommendations microservice

Microservice
platform

Figure 11.1 The microservice platform is a collection of packages implementing the technical 
concerns that cut across all microservices. The platform is installed in—and thus becomes part of—
every microservice.

 



251Packaging and sharing middleware with NuGet

incrementally—that is, in one microservice at a time over a period of time. This makes
the barrier to creating a new microservice much lower: you need less-detailed
knowledge about the cross-cutting technical concerns, and less effort is required. 

11.3 Packaging and sharing middleware with NuGet

We’ll now turn our attention to the code required to build a platform you can reuse
across microservices. You’ve already built all the functionality that goes into the plat-
form, but you’ve done so in one microservice at a time. Now, you’ll extract the code
from the microservices in which you created it and put it in packages that you can eas-
ily install and use in new microservices. You’ll use NuGet because it will give you easy-
to-create packages that your microservice can install and use. You’re already using
many NuGet packages in your microservices, so it’s part of your workflow; the pack-
ages in the reusable microservice platform will fit right in.

 You’ll build the platform from the following pieces:

 The monitoring middleware from chapter 9
 The correlation-token middleware from chapter 9
 The request- and response-logging middleware from chapter 9
 The performance-logging middleware from chapter 9
 The authorization middleware from chapter 10 that checks a request token for

a required scope
 The middleware from chapter 10 that reads the end user’s identity token from

incoming requests
 HttpClientFactory from chapters 9 and 10
 Automatic registration of HttpClientFactory in Nancy’s container, which

you’ll build in section 11.3.3

As shown in figure 11.2, the platform will consist of the following NuGet packages:

 MicroserviceNET.Logging—Monitoring middleware, correlation token mid-
dleware, request- and response-logging middleware, and performance-logging
middleware.

Using NuGet for your platform
NuGet is a package format as well as a group of tools for installing those packages.
Until this point in the book, you’ve only installed existing NuGet packages; all of them
have been publicly available in the package feed on nuget.org. But NuGet isn’t limited
to installing publicly available packages. As you’ll see in section 11.3.3, you can
install packages from your private package feed. And you can also create your own
NuGet packages—as you’ll also see in section 11.3.1—and put them in your private
NuGet feed.

 



252 CHAPTER 11 Building a reusable microservice platform

 MicroserviceNET.Auth—Authorization middleware and middleware that reads
the end user’s identity.

 MicroserviceNET.Platform—HttpClientFactory and automatic registration
of HttpClientFactory in Nancy’s container. This package depends on the
other two.

Your microservices will only have to add the MicroserviceNET.Platform package and
a little startup code to use and configure the microservice platform and get all the
functionality it comes with. With the platform installed and configured, a microservice
will have the pipeline shown in figure 11.3.

 In the following sections, you’ll create each of the three NuGet packages in turn.

11.3.1 Creating a package with logging and monitoring middleware

In this section, you’ll create the MicroserviceNET.Logging NuGet package by doing
the following:

1 Extract the monitoring, correlation token, request/response-logging, and
performance-logging middleware created in chapter 9 from the Shopping Cart
microservice to a class library called MicroserviceNET.Logging.

2 Add a convenience method that makes it easy to add the monitoring and log-
ging middleware to an OWIN pipeline.

3 Create a NuGet package from the MicroserviceNET.Logging library.

The first step is to create a .NET Core class library and call it MicroserviceNET.Logging.
You can do that with your IDE or with Yeoman. Then, add the monitoring and logging
middleware pieces you developed in chapter 9 to the MicroserviceNET.Logging
library. I’ll repeat the middleware code here, but for an explanation of the code, refer
to chapter 9.

Monitoring and logging package:

• Authorization middleware
• User identity token middleware

• Monitoring middleware
• Correlation token middleware
• Request/reponse-logging middleware
• Performance-logging middleware • HttpClientFactory

• Automatic registration in Nancy’s container
Security package:

Communication components package:

Microservice platform

Figure 11.2 The microservice platform contains three packages, and each package contains 
code for a number of technical cross-cutting concerns.

 



253Packaging and sharing middleware with NuGet

Add a MonitoringMiddleware.cs file to the MicroserviceNET.Logging project, and
put the following code in it. It responds to requests to /_monitor/shallow and
/_monitor/deep.

namespace MicroserviceNET.Logging
{

using System;
using System.Collections.Generic;
using System.Threading.Tasks;
using LibOwin;

Listing 11.1 Monitoring middleware you developed in chapter 9

Incoming
HTTP request

Outgoing
HTTP response

Correlation-
token middleware

Request-
logging middleware

Performance-
logging middleware

Monitoring-
endpoints middleware

Required-scope middleware

NancyID token middleware

Nancy

All part of the
microservice
platform

Figure 11.3 When the microservice platform is 
installed and configured in a microservice, a pipeline 
is set up that ensures that the microservice can be 
monitored, that it logs as expected, and that it 
performs the security checks you’ve decided on.

 



254 CHAPTER 11 Building a reusable microservice platform

using AppFunc =
System.Func<

System.Collections.Generic.IDictionary<string, object>,
System.Threading.Tasks.Task>;

public class MonitoringMiddleware
{
private AppFunc next;
private Func<Task<bool>> healthCheck;

private static readonly PathString monitorPath =
new PathString("/_monitor");

private static readonly PathString monitorShallowPath =
new PathString("/_monitor/shallow");

private static readonly PathString monitorDeepPath =
new PathString("/_monitor/deep");

public MonitoringMiddleware(
AppFunc next,
Func<Task<bool>> healthCheck)

{
this.next = next;
this.healthCheck = healthCheck;

}

public Task Invoke(IDictionary<string, object> env)
{

var context = new OwinContext(env);
if (context.Request.Path.StartsWithSegments(monitorPath))

return HandleMonitorEndpoint(context);
else

return this.next(env);
}

private Task HandleMonitorEndpoint(OwinContext context)
{

if (context.Request.Path.StartsWithSegments(monitorShallowPath))
return ShallowEndpoint(context);

else if (context.Request.Path.StartsWithSegments(monitorDeepPath))
return DeepEndpoint(context);

return Task.FromResult(0);
}

private async Task DeepEndpoint(OwinContext context)
{

if (await this.healthCheck())
context.Response.StatusCode = 204;

else
context.Response.StatusCode = 503;

}

private Task ShallowEndpoint(OwinContext context)
{

Signature of the OWIN AppFunc

Paths you want to 
respond to in this 
middleware

Monitoring 
middleware AppFunc 
implementation that 
can be added to an 
OWIN pipeline

Checks whether the
incoming request is for
a monitoring endpoint

Performs a microservice-
specific health check in the 
/_monitor/deep endpoint

 



255Packaging and sharing middleware with NuGet

context.Response.StatusCode = 204;
return Task.FromResult(0);

}
}

}

Next, add a LoggingMiddleware.cs file to the project. Put in it the following logging-
related middleware from chapter 9: middleware for request and response logging,
performance logging, global error logging, and creating and reading correlation
tokens.

namespace MicroserviceNET.Logging
{

using System;
using System.Diagnostics;
using LibOwin;
using Serilog;
using Serilog.Context;

using AppFunc =
System.Func<

System.Collections.Generic.IDictionary<string, object>,
System.Threading.Tasks.Task>;

public class RequestLogging
{
public static AppFunc Middleware(AppFunc next, ILogger log)
{

return async env =>
{

var owinContext = new OwinContext(env);
log.Information(

"Incoming request: {@Method}, {@Path}, {@Headers}",
owinContext.Request.Method,
owinContext.Request.Path,
owinContext.Request.Headers);

await next(env);
log.Information(

"Outgoing response: {@StatucCode}, {@Headers}",
owinContext.Response.StatusCode,
owinContext.Response.Headers);

};
}

}

public class PerformanceLogging
{
public static AppFunc Middleware(AppFunc next, ILogger log)
{

return async env =>

Listing 11.2 Logging-related middleware from chapter 9

Always responds with success in 
the /_monitor/shallow endpoint

Signature of the 
OWIN AppFunc

Middleware that logs requests
and responses, implemented
as lambda-style middleware

Logs request times for all
requests in a piece of

lambda-style middleware

 



256 CHAPTER 11 Building a reusable microservice platform

{
var stopWatch = new Stopwatch();
stopWatch.Start();
await next(env);
stopWatch.Stop();
var owinContext = new OwinContext(env);
log.Information(

"Request: {@Method} {@Path} executed in {RequestTime:000} ms",
owinContext.Request.Method, owinContext.Request.Path,
stopWatch.ElapsedMilliseconds);

};
}

}

public class CorrelationToken
{
public static AppFunc Middleware(AppFunc next)
{

return async env =>
{

Guid correlationToken;
var owinContext = new OwinContext(env);
if (!(owinContext.Request.Headers["Correlation-Token"] != null

&& Guid.TryParse(owinContext.Request.Headers["Correlation-

                    ➥ Token"],
out correlationToken)))

correlationToken = Guid.NewGuid();

owinContext.Set("correlationToken", correlationToken.ToString());
using (LogContext.PushProperty("CorrelationToken", correlationToken))

await next(env);
};

}
}

public class GlobalErrorLogging
{
public static AppFunc Middleware(AppFunc next, ILogger log)
{

return async env =>
{

try
{

await next(env);
}
catch (Exception ex)
{

log.Error(ex, "Unhandled exception");
}

};
}

}
}

Middleware that sets a correlation 
token on the logging context for 
each request

Middleware that catches and 
logs all otherwise unhandled 
exceptions

 



257Packaging and sharing middleware with NuGet

You’ve now lifted all the monitoring and logging middleware code from the Shopping
Cart microservice and put it in a class library. If you package this up, it will already be
fairly easy to use in a microservice: just install the package and wire all the pieces of
middleware into the OWIN pipeline. You did that in Shopping Cart, where it looked
like the following.

app.UseOwin(buildFunc =>
{

buildFunc(next => GlobalErrorLogging.Middleware(next, log));
buildFunc(next => CorrelationToken.Middleware(next));
buildFunc(next => RequestLogging.Middleware(next, log));
buildFunc(next => PerformanceLogging.Middleware(next, log));
buildFunc(next => new MonitoringMiddleware(next, HealthCheck).Invoke);
buildFunc.UseNancy(opt => opt.Bootstrapper = new Bootstrapper(log));

});

As you can see, to implement all the logging and monitoring, you need to add five
pieces of middleware to the OWIN pipeline—and you must do so in the correct order.
To make this easier, you’ll create a convenience method that does it for you. Add a
BuildFuncExtensions.cs file to the MicroserviceNET.Logging project, and put this
code in it.

namespace MicroserviceNET.Logging
{

using System;
using System.Threading.Tasks;
using Serilog;

using BuildFunc = System.Action<System.Func<
System.Func<

System.Collections.Generic.IDictionary<string, object>,
System.Threading.Tasks.Task>,

System.Func<
System.Collections.Generic.IDictionary<string, object>,
System.Threading.Tasks.Task>

>>;

public static class BuildFuncExtensions
{
public static BuildFunc UseMonitoringAndLogging(

this BuildFunc buildFunc,
ILogger log,
Func<Task<bool>> healthCheck)

Listing 11.3 OWIN pipeline set up in the Shopping Cart microservice

Listing 11.4 Adding the monitoring and logging middleware to the pipeline

The rather scary 
OWIN BuildFunc

Extension method 
on BuildFunc

 



258 CHAPTER 11 Building a reusable microservice platform

{
buildFunc(next => GlobalErrorLogging.Middleware(next, log));
buildFunc(next => CorrelationToken.Middleware(next));
buildFunc(next => RequestLogging.Middleware(next, log));
buildFunc(next => PerformanceLogging.Middleware(next, log));
buildFunc(next => new MonitoringMiddleware(next, healthCheck).Invoke);
return buildFunc;

}
}

}

You add a extension method where each piece of middleware is added to the OWIN
pipeline by using BuildFunc. The method takes two arguments, which the microser-
vice using this is expected to provide. Now, to set up the monitoring and logging mid-
dleware, you can make a single call to the UseMonitoringAndLogging extension
method in a microservice’s Startup class, as shown next.

public void Configure(IApplicationBuilder app)
{

app.UseOwin(buildFunc =>
{
var log = ConfigureLogger();
buildFunc.UseMonitoringAndLogging(log, HealthCheck);
buildFunc.UseNancy();

}
}

private ILogger ConfigureLogger() {...}
public async Task<bool> HealthCheck() { ... }

This is all the code you need in the MicroserviceNET.Logging project. The only
thing left to do is to create a NuGet package from the library, which you can do using
dotnet. Go to the project folder—the one where project.json is located—in Power-
Shell, and run this command:

PS> dotnet pack --configuration Release

This creates a NuGet package called MicroserviceNET.Logging.1.0.0.nupkg in
bin/Release. Figure 11.4 shows MicroserviceNET.Logging.1.0.0.nupkg opened in
NuGet Package Explorer. The package contains all the code of the MicroserviceNET
.Logging project compiled to a DLL, plus an XML file containing the documentation
comments from that code. You can also see that the package requires the Serilog
library, which means that whenever this package is installed in a project, so is Serilog.

 This package is ready to be installed and used in as many microservices as you
want. At the end of this chapter, you’ll return to installing this package from your local
machine when you create a new microservice based on the platform you’ve built. 

Listing 11.5 Using UseMonitoringAndLogging in a Startup class

Returns BuildFunc to 
allow chaining of calls 
to BuildFunc extensions

Adds the 
monitoring and 
logging middleware 
in the correct order

 



259Packaging and sharing middleware with NuGet

11.3.2 Creating a package with authorization middleware

In this section, you’ll build a MicroserviceNET.Auth NuGet package containing the
authorization middleware you created in chapter 10. The steps are similar to those for
creating the MicroserviceNET.Logging NuGet package:

1 Extract the authorization middleware from the Loyalty Program microservice
in chapter 10 to a class library called MicroserviceNET.Auth.

2 Create a NuGet package from the MicroserviceNET.Auth library that includes
all the code in the library.

Just as in the last section, you begin by creating a new class library. Call it Microservice-
NET.Auth. Then, add an AuthorizationMiddleware.cs file to this new library, and add
the following authorization middleware code from chapter 10.

The contents
of the packageThe dependencies

Figure 11.4 A peek inside MicroserviceNET.Logging.nupkg using NuGet Package Explorer. The 
package contains the logging and monitoring code compiled into a DLL. The package also indicates that 
it depends on Serilog.

 



260 CHAPTER 11 Building a reusable microservice platform

namespace MicroserviceNET.Auth
{

using System.Threading.Tasks;
using LibOwin;

using AppFunc =
System.Func<

System.Collections.Generic.IDictionary<string, object>,
System.Threading.Tasks.Task>;

public class Authorization
{
public AppFunc Middleware(AppFunc next, string requiredScope)
{

return env =>
{

var ctx = new OwinContext(env);
var principal = ctx.Request.User;
if (principal.HasClaim("scope", requiredScope))

return next(env);
ctx.Response.StatusCode = 403;
return Task.FromResult(0);

};
}

}
}

This middleware checks all incoming requests for a required scope. Remember that in
chapter 10, you set up communication between microservices such that the Login
microservice provided scopes for microservices, allowing them to collaborate. Only if
Login allows it can two microservices collaborate. The scope is the proof that a
request is allowed by Login, which is why microservices must check incoming requests
for any and all required scopes.

 In chapter 10, you also created middleware to read the end user’s identity from a
header on requests between microservices. Extract that middleware, call it IdToken,
and put it in the MicroserviceNET.Auth library.

using LibOwin;
using System.IdentityModel.Tokens;
using System.IdentityModel.Tokens.Jwt;

using AppFunc =
System.Func<

System.Collections.Generic.IDictionary<string, object>,
System.Threading.Tasks.Task>;

public class IdToken

Listing 11.6 Authorization middleware from the Loyalty Program microservice

Listing 11.7 User identity middleware

The authorization
middleware uses the

lambda style of
middleware.

Calls next in the 
pipeline only if the 
request has the 
required scope

If the request doesn’t have 
the required scope, gives a 
403 Forbidden response

 



261Packaging and sharing middleware with NuGet

{
public static AppFunc Middleware(AppFunc next)
{

return env =>
{

var ctx = new OwinContext(env);
if (ctx.Request.Headers.ContainsKey("microservice.NET-end-user"))
{

var tokenHandler = new JwtSecurityTokenHandler();
SecurityToken token;
var userPrincipal =

tokenHandler.ValidateToken(
ctx.Request.Headers["microservice.NET-end-user"],
new TokenValidationParameters(), out token);

ctx.Set("microservice.NET-end-user", new User(userPrincipal));
}
return next(env);

};
}

In chapter 10, you wrote some code in the Nancy bootstrapper to read the user object
back out of the OWIN context and pass it on to Nancy, so Nancy knows about the user.
You’ll bring that functionality into the package, but in a slightly different way, using a
Nancy interface you haven’t seen before: IRequestStartup. Just as Nancy automati-
cally picks up bootstrappers and Nancy modules, it also picks up implementations of
IRequestStartup. Nancy will find all such implementations—including those in
NuGet packages—at application startup time and hook them into the request pipe-
line. The IRequestStartup implementation reads the user from the OWIN environ-
ment and hands it over to Nancy, as follows:

public class SetUser : IRequestStartup
{

public void Initialize(IPipelines pipelines, NancyContext context) =>
context.CurrentUser =

context.GetOwinEnvironment()["microservice.NET-end-user"]

             ➥ as ClaimsPrincipal;
}

This little class makes the MicroserviceNET.Auth NuGet package easier to use,
because this bit of functionality is automatically wired up. Unfortunately, the OWIN
middleware pieces aren’t wired up automatically; to make that part easy as well, create
the following convenience method to add middleware to the OWIN pipeline.

namespace MicroserviceNET.Auth
{

using BuildFunc = System.Action<System.Func<
System.Func<

Listing 11.8 Extension method to add authorization middleware

Checks for the header
that should contain

the end user’s identity

Reads and
validates the end

user’s identity

Creates a user object based on the
claims in the end user’s identity,
and adds it to the OWIN context

Called on each request

Assigns the user to the user 
on the Nancy context

Signature of the 
OWIN BuildFunc

 



262 CHAPTER 11 Building a reusable microservice platform

System.Collections.Generic.IDictionary<string, object>,
System.Threading.Tasks.Task>,

System.Func<
System.Collections.Generic.IDictionary<string, object>,
System.Threading.Tasks.Task>

>>;

public static class BuildFuncExtensions
{
public static BuildFunc UseAuthPlatform(

this BuildFunc buildFunc, string requiredScope)
{

buildFunc(next => Authorization.Middleware(next, requiredScope));
buildFunc(next => IdToken.Middleware(next));
return buildFunc;

}
}

}

This is all the code you need to add to the MicroserviceNET.Auth package. Create
the NuGet package with dotnet, like this:

PS> dotnet pack --configuration Release

The new package is called MicroserviceNET.Auth.1.0.0.nupkg and is found in the
bin/release folder. Now you have two of the three NuGet packages that make up the
microservice platform. In the next section, you’ll build the last package. 

11.3.3 Creating a package with rest client factory

The last package in the microservice platform will be called MicroserviceNET.Plat-
form and will contain the HttpClientFactory you developed in chapters 9 and 10. It
will depend on the other two packages, which means microservices will only have to
install MicroserviceNET.Platform to get the entire platform.

 The steps to create the MicroserviceNET.Platform package are as follows:

1 Create a new class library called MicroserviceNET.Platform.
2 Add the MicroserviceNET.Logging and MicroserviceNET.Auth NuGet pack-

ages you created previously.
3 Add the RestSharp, IdentityModel, and Nancy NuGet packages.
4 Add the LibOwin.cs file from http://mng.bz/8pRq, as described in chapter 8.
5 Add the HttpClientFactory code to MicroserviceNET.Platform.
6 Add a convenience method to MicroserviceNET.Platform that makes it easier

to configure HttpClientFactory correctly and register it in the Nancy depen-
dency injection (DI) container.

The first three steps are similar to what you’ve done many times. Once you’ve created
the new MicroserviceNET.Platform project and added the NuGet packages, the
dependencies section in the project.json file should look like this:

Helper method for 
adding the authorization 
middleware and the 
identity token middleware

 

http://mng.bz/8pRq


263Packaging and sharing middleware with NuGet

"dependencies": {
"NETStandard.Library": "1.6.0",
"MicroserviceNET.Auth": {

"target": "project",
"version": "1.0.0"

},
"MicroserviceNET.Logging": {

"target": "project",
"version": "1.0.0"

},
"Nancy": "2.0.0-barneyrubble",
"IdentityModel": "2.0.0-beta5"

}

The next step is to add a new HttpClientFactory.cs file to the project and fill in the
code for HttpClientFactory, which you wrote in chapters 9 and 10.

Setting up and using your own NuGet feed
The NuGet packages you build for the microservice platform are meant to be used
only in your own microservice system. As such, they don’t belong in the public NuGet
feed on www.nuget.org. Fortunately, NuGet doesn’t require much from a feed—a
folder on your local disk or a shared folder on a network drive will do. You just need
to configure NuGet to look for packages in that folder as well as on www.nuget.org.

First, you must decide on a folder in which to use your NuGet packages; in this case,
use c:\nuget-packages\. Next, copy the NuGet packages to this folder. When the
packages are created with dotnet, they’re in the bin\Release folder under the pro-
ject. Copy the package—that is, the .nupkg file—to c:\nuget-packages. Finally, con-
figure NuGet to look for packages in the folder by adding the folder the list of feeds
in the NuGet configuration file located under your user profile at ~AppData\Roaming\
NuGet\NuGet.Config. For instance, my NuGet.Config looks like this:

<?xml version="1.0" encoding="utf-8"?>
<configuration>

<packageSources>
<add key="nuget.org" value="https://www.nuget.org/api/v2/" />
<add key="test" value="c:\nuget-packages\" />

</packageSources>
<disabledPackageSources>
<add key="NancyAsync" value="true" />

</disabledPackageSources>
<activePackageSource>
<add key="nuget.org" value="https://www.nuget.org/api/v2/" />

</activePackageSource>
</configuration>

Now, a call to dotnet restore will also look in c:\nuget-packages\ for NuGet pack-
ages, which enables you to install your own packages from that folder into various
projects.

 

http://www.nuget.org
http://www.nuget.org


264 CHAPTER 11 Building a reusable microservice platform

namespace MicroserviceNET.Platform
{

using System;
using System.Net.Http;
using System.Net.Http.Headers;
using System.Threading.Tasks;
using IdentityModel.Client;

public interface IHttpClientFactory
{
Task<HttpClient> Create(Uri uri, string requestScope);

}

public class HttpClientFactory : IHttpClientFactory
{
private readonly TokenClient tokenClient;
private readonly string correlationToken;
private readonly string idToken;

public HttpClientFactory(
string tokenUrl,
string clientName,
string clientSecret,
string correlationToken,
string idToken)

{
this.tokenClient =

new TokenClient(tokenUrl, clientName, clientSecret);
this.correlationToken = correlationToken;
this.idToken = idToken;

}

public async Task<HttpClient> Create(Uri uri, string requestScope)
{

var response = await
this.tokenClient

.RequestClientCredentialsAsync(requestScope)

.ConfigureAwait(false);
var client = new HttpClient() { BaseAddress = uri };
client.DefaultRequestHeaders.Authorization =

new AuthenticationHeaderValue("Bearer", response.AccessToken);
client

.DefaultRequestHeaders

.Add("Correlation-Token", this.correlationToken);
if (!string.IsNullOrEmpty(this.idToken))

client
.DefaultRequestHeaders
.Add("microservice.NET-end-user", this.idToken);

return client;
}

}
}

Listing 11.9 HttpClientFactory

URL of the
token endpoint

in the Login
microservice

Client name and secret 
used to obtain an access 
token from the token 
endpoint

Per-request correlation 
token coming from a 
piece of middleware

Token with
the end user’s

identity

Requests an
authorization

token from the
Login microservice,
allowing calls that
require the scope

in requestScope

Prepares the
client to make
requests to uri

Adds the
authorization

token to a
request header Adds the corre-

lation token to a 
request header

Adds the end user’s identity
to a request header

 



265Packaging and sharing middleware with NuGet

HttpClientFactory is responsible for creating HttpClient objects that can be used
to make requests to other microservices. The factory makes sure the HttpClient
objects are set up to only make requests that adhere to the rules of your microservice
system. HttpClientFactory makes sure requests made with HttpClients it created
have the following:

 An authorization token for a scope—The code that uses the HttpClient to make
requests must specify which scope it wants on those requests, but HttpClient-
Factory makes sure the authorization token is obtained and put on the
requests.

 A correlation token—This can be used to trace a chain of requests through the
microservice system. One of the pieces of middleware from the MicroserviceNET
.Logging package makes sure correlation tokens on incoming requests are read.
The token should be passed to HttpClientFactory, which makes sure the corre-
lation token is also on any outgoing requests.

 A token containing the end user’s identity, if the request originates from an end user
request—A piece of middleware in the MicroserviceNET.Auth package handles
reading the end user’s identity from incoming requests. This token should be
passed to HttpClientFactory so it can make sure the token is passed along with
any outgoing requests.

You can see from listing 11.9 that HttpClientFactory takes no fewer than five con-
structor arguments. Two of these arguments—the correlation token and the identity
token—come from middleware in the other packages in the microservice platform.
These pieces of middleware add the correlation token and the identity token to the
OWIN environment. 

11.3.4 Automatically registering an HTTP client factory in Nancy’s container

You want the platform to be easy to use when you’re creating microservices with it. So,
let’s add a couple of methods to the MicroserviceNET.Platform package that sim-
plify configuring the HttpClientFactory. These methods assume that microservices
have added the middleware from the two other packages in the platform and that the
correlation token and the identity token can be found in the OWIN environment.

 Add a MicroservicePlatformHelper.cs file to the MicroserviceNET.Platform proj-
ect. You’ll add two methods to this file. The first will be called by microservices from
the Startup class and will remember some static configuration: the token URL, the cli-
ent name, and the client secret.

namespace MicroserviceNET.Platform
{

using System.Security.Claims;
using Nancy;

Listing 11.10 Storing static configuration required by HttpClientFactory

 



266 CHAPTER 11 Building a reusable microservice platform

using Nancy.Owin;
using Nancy.TinyIoc;
using LibOwin;

public static class MicroservicePlatform
{
private static string TokenUrl;
private static string ClientName;
private static string ClientSecret;

public static void Configure(
string tokenUrl,
string clientName,
string clientSecret)

{
TokenUrl = tokenUrl;
ClientName = clientName;
ClientSecret = clientSecret;

}
}

}

The second convenience method, shown in listing 11.11, is meant to be used from the
Nancy bootstrapper, where it should be called at every request. It creates an HttpCli-
entFactory based on that configuration and information from the OWIN environ-
ment and then registers it with the Nancy DI container, such that application code
(Nancy modules, and so on) can take a dependency on HttpClientFactory and have
it injected automatically.

public static TinyIoCContainer UseHttpClientFactory(
this TinyIoCContainer self,
NancyContext context)

{
var correlationToken =
context.GetOwinEnvironment()?["correlationToken"] as string;

object key = null;
context

.GetOwinEnvironment()
?.TryGetValue(OwinConstants.RequestUser, out key);

var principal = key as ClaimsPrincipal;
var idToken = principal?.FindFirst("id_token");
self.Register<IHttpClientFactory>(

new HttpClientFactory(
TokenUrl, ClientName,
ClientSecret,
correlationToken ?? "",
idToken?.Value));

return self;
}

Listing 11.11 Convenience method for registering HttpClientFactory

Reads the
correlation token

from the OWIN
environment

Reads the end user from
the OWIN environment

Gets the end
user’s identity
token from the

user object

Creates an 
HttpClientFactory 
with all necessary 
information

Registers the
HttpClientFactory

as a per-request
dependency in

Nancy’s container

 



267Packaging and sharing middleware with NuGet

This is all that goes in the MicroserviceNET.Platform package. All that remains is to
build the NuGet package:

PS> dotnet pack --configuration Release

MicroserviceNET.Platform is built into bin/Release/ MicroserviceNET.Platform.1.0.0
.nupkg. Figure 11.5 shows the contents of that NuGet package, which is a DLL. The fig-
ure also shows that MicroserviceNET.Platform depends on the two other packages in
the platform: MicroserviceNET.Logging and MicroserviceNET.Auth.

This concludes the implementation of your microservice platform. In the next sec-
tion, you’ll take the platform for a quick spin. 

11.3.5 Using the microservice platform

You’ve built a platform that should make it easier to create new microservices that
behave the way they should in your production environment. In this section, you’ll
create a small Hello World–style microservice, using the platform and Nancy. Because

Figure 11.5 Looking in MicroserviceNET.Platform.1.0.0.nupkg shows that the package 
depends on the other two packages in the platform—MicroserviceNET.Logging and 
MicroserviceNET.Auth—as well as a number of external packages.

 



268 CHAPTER 11 Building a reusable microservice platform

the microservice will be built using your microservice platform, it will have the plat-
form’s monitoring, logging, and security features.

 Creating the microservice doesn’t involve a lot of work. All you have to do is the
following:

1 Create an empty web application called HelloMicroservicePlatform.
2 Add the MicroserviceNET.Platform NuGet package.
3 Configure the microservice platform in the Startup class.
4 Create a small Nancy bootstrapper, and configure the registration of HttpCli-

entFactory.
5 Add a small Nancy module.

Begin by creating an empty web application with yo or Visual Studio. Add the Micros-
erviceNET.Platform NuGet package by adding it to the dependencies in project.json
and running dotnet restore. Adding your NuGet package works the same as adding
any other NuGet package, so the dependencies should look like this:

"dependencies": {
"Microsoft.NETCore.App": {

"version": "1.0.0-rc2-3002702",
"type": "platform"

},
"Microsoft.AspNetCore.Server.IISIntegration": "1.0.0-rc2-final",
"Microsoft.AspNetCore.Server.Kestrel": "1.0.0-rc2-final",
"Microsoft.AspNetCore.Owin": "1.0.0-rc2-final",
"Serilog": "2.0.0-rc-600",
"MicroserviceNET.Platform": "1.0.0",
"Serilog.Sinks.ColoredConsole": "2.0.0-beta-700"

},

MicroserviceNET.Platform brings in the other two NuGet packages in the microser-
vice platform—MicroserviceNET.Logging and MicroserviceNET.Auth—as well as
Serilog and Nancy. In other words, MicroserviceNET.Platform brings in everything
you need to build a microservice.

 The next step is to configure the microservice platform. You do so in the Startup
class by calling a couple of convenience methods, setting up Serilog, and creating a
simple health check.

public class Startup
{

public void Configure(IApplicationBuilder app)
{
app.UseOwin()

.UseMonitoringAndLogging(ConfigureLogger(), HealthCheck)

.UseAuthPlatform("test-scope")

.UseNancy();
}

Listing 11.12 Configuring the microservice platform in the Startup class

Configures the
monitoring and
logging part of

the platformConfigures the
authorization

part of the
platform

 



269Packaging and sharing middleware with NuGet

private ILogger ConfigureLogger()
{
...

}

private static Task<bool> HealthCheck()
{
...

}
}

Now you have the monitoring endpoints, the request logging and performance log-
ging are in place, and you’re checking access tokens on incoming requests. The
remaining parts of the platform are related to outgoing requests. To get these up and
running, add the following Nancy bootstrapper to the microservice.

public class Bootstrapper : DefaultNancyBootstrapper
{

protected override void RequestStartup(
TinyIoCContainer container,
IPipelines pipelines,
NancyContext context)

{
base.RequestStartup(container, pipelines, context);
container.UseHttpClientFactory(context);

}
}

With this done, the microservice platform is configured and ready to run. This is all it
takes to create a new microservice—from here on, it’s a matter of adding behavior.
The last step in creating your Hello World microservice is to add a Nancy module with
a single endpoint that makes a request to another microservice and sends the
response back to the caller (see listing 11.14). This isn’t much of a behavior for a
microservice, but it serves as an illustration of how the microservice platform works
with regard to outgoing requests: the request to the other microservice has both a cor-
relation token and an access token added to it by the microservice platform.

public class Hello : NancyModule
{

public Hello(IHttpClientFactory clientFactory)
{
Get("/", async (_, __) =>
{

Listing 11.13 Registering HttpClientFactory in Nancy’s container

Listing 11.14 Using HttpClientFactory to make well-behaved requests

Called by Nancy for 
each request

Convenience method 
that registers 
HttpClientFactory in 
Nancy’s container

 



270 CHAPTER 11 Building a reusable microservice platform

var client = await
clientFactory.Create(

new Uri("http://otherservice/"),
"scope_for_other_microservice");

var resp = await
client.GetAsync("/some/path").ConfigureAwait(false);

return resp.StatusCode;
});

}
}

Now the Hello World microservice is ready to be used. You start it the same way as any
other microservice, using dotnet. If you had another microservice running at
http://otherservice, the Hello World microservice would only accept requests with a
valid access token for the scope test-scope; it would log all requests and responses, and
it would return the status code of the response from the other microservice. The Hello
World microservice also has monitoring endpoints, and it uses a correlation token. 

11.4 Summary
 Because you’ll often be building new microservices in a microservice system,

you need to be able to quickly and easily build a new one from scratch.
 To meet cross-cutting requirements for monitoring, logging, and security, there

are a number of things that all microservices in a system need to do. Which
things, exactly, differ from system to system.

 You should develop a reusable microservice platform for your microservice sys-
tem. With such a platform, it’s simply to create new microservices that behave as
they’re supposed to in terms of logging, monitoring, and security.

 A reusable microservice platform should only address cross-cutting technical
concerns such as monitoring, logging, and security.

 A reusable microservices platform shouldn’t address domain logic, because this
differs between microservices.

 NuGet is a good format for distributing a microservice platform.
 You can easily set up a local NuGet feed.
 You use the dotnet pack command to create a NuGet package.
 You can create NuGet packages to do the following:

– Add monitoring endpoints to microservices
– Add request/response logging to microservices
– Add performance logging to microservices
– Add correlation tokens to all log messages
– Add correlation tokens to all outgoing requests
– Only allow incoming requests with an access token for a required scope
– Add an access token for scopes to all outgoing requests

 You can build NuGet packages from libraries.
 You can use custom NuGet packages in your microservices. 

Creates an HttpClient to make 
requests to another microservice

Sends request to the other microservice, including
a correlation token and an access token, which are

added by the microservice platform

 



Part 4

Building applications

This part of the book adds a finishing touch to the picture: how to create
applications for end users. You’ve learned how to break down a system into
microservices and how to create those microservices. In chapter 12, you’ll put a
GUI on top of your microservices so end users can take full advantage of their
functionality.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 

 



273

Creating applications
 over microservices

So far, we’ve concentrated on implementing business capabilities in microservices
and exposing those capabilities through HTTP APIs. But end users don’t use HTTP
APIs—they use web apps, mobile apps, desktop applications, smart TVs, VR glasses,
and other applications on devices with interfaces geared to humans. To give end
users access to all the capabilities of microservices, we need to implement applica-
tions on top of microservices. This chapter is about doing that: we’ll move from
looking at designing single microservices to bringing all the microservices together
in an architecture that supports building applications for end users.

 We’ll start with a broad, nontechnical discussion of how to approach building
applications on top of a microservice system. Then we’ll go into three specific

This chapter covers
 Building an end user application on top of a 

microservice system

 Understanding the composite application, API gateway, 
and the backend for frontend design patterns

 Using server-side and client-side rendering in web 
applications

 



274 CHAPTER 12 Creating applications over microservices

architectural patterns for implementing applications: The composite application, API
gateway, and backend for frontend patterns.

12.1 End user applications for microservice systems: one or 
many applications?
There are several ways to go about building end user–oriented applications both from
a user perspective and from a technical perspective. We’ll begin with the user perspec-
tive and look at a range of ways to surface the functionality in your microservices to
end users in applications: from general-purpose applications that provide all the func-
tionality of the system to a collection of small, specialized applications, each of which
offers only a few capabilities. These two ways of surfacing functionality represent each
end of a spectrum, as illustrated in figure 12.1.

Between the two extremes lie many other options for building applications that cover
bigger or smaller parts of the microservice system’s functionality. Where on the spec-
trum the applications for a particular microservice system should fall depends on the
context of that particular system: its end users, its functionality, and so on.

 Both ends of the spectrum have merit. The next two sections discuss them, to give
you a feel for the breadth of ways your microservice systems can provide functionality.
The choice of where on the spectrum to land impacts how your application(s) should
be built and which design pattern you should use.

12.1.1 General-purpose applications

A microservice system can provide a great deal of functionality. Consider, for instance,
a line-of-business system for an insurance company. The system drives business pro-
cesses including selling policies, setting prices, and handling claims made by custom-
ers. Users include the following:

 Salespeople who call and solicit potential customers
 Actuaries who set policy prices and evaluate business risks based on estimated

future claims and income
 Appraisers who valuate goods that customers want to insure and about which

customers make claims
 Claims adjusters who investigate and settle customer claims
 IT staff who oversee users and permissions

Single-functionality
applications

All functionality in
one application

Figure 12.1 A wide spectrum of application types can be build on top of a microservice system, 
ranging from general-purpose applications to very specialized applications.

 



275End user applications for microservice systems: one or many applications?

You implement all the different business capabilities of the insurance system in
different microservices, but you may also decide to implement a common application
that covers all functionality and is used by all users. This can be thought of as a general-
purpose application. It can be any type of application—for example, a web application
or a desktop application. The Facebook app for iOS or Android is an example of a
general-purpose application: the app lets users do everything on Facebook, such as
read their newsfeed, send messages, write on walls, manage settings, upload photos to
albums, and more.

 Various reasons may drive a decision to implement a general-purpose application
that surfaces all functionality in the system. For example, some users in the insurance
system may have more than one function, such as claims adjusters who also do
appraisals. There also may be overlap between the functionalities needed by different
types of users.

 By managing their permissions, you can still limit what each user can do in a general-
purpose application. But they all use the same application, and it provides all of the sys-
tem’s functionality. 

12.1.2 Specialized applications

Another option for building applications on top of a microservices system is to build
lots of small, specialized applications. This is in some ways the opposite of the general-
purpose application approach: you have many highly specialized applications, each of
which surfaces only a little of the functionality of the entire system. Continuing with
the example of a line-of-business application for an insurance company, you may have
separate specialized applications for the following:

 Browsing the catalog of policies offered by the company
 Creating offers for potential customers
 Creating an insurance policy for a customer
 Creating reports about currently active insurance policies
 Creating forecasts about the cost of future claims
 Registering and investigating claims
 Appraising insured goods
 Settling claims

With this approach, users must use more than one application. That may sound like a
bad user experience at first, but is it really? If you choose to implement the applications
as web apps, they can easily link to each other, creating a cohesive experience even
though the functionality is spread over many small applications. And the philosophy
of doing one thing and doing it well can lead to very good applications for each piece
of functionality. For instance, Facebook has an Android app called Selfies for Messen-
ger, which is for doing just one thing: taking selfies and sending them with Facebook
Messenger. The app streamlines that single functionality.

 



276 CHAPTER 12 Creating applications over microservices

 Although I’ve only mentioned general-purpose applications and specialized appli-
cations, these aren’t the only two possibilities. There’s a spectrum of options (shown
again in figure 12.2), ranging from one big application that provides all functionality
in the system to a long list of single-capability applications. Other possibilities include

 Splitting the large, all-in-one application into two applications, with administra-
tive functionalities in the first and all other functionality in the second

 Joining some of the single-capability applications into slightly larger applica-
tions that cover all the functionalities required by one type of user

In the case of the insurance company, one middle-ground approach would be to cre-
ate an application for each type of user. Salespeople would get a sales application with
all the functionality they need, from canvassing for leads to signing a deal. Likewise,
actuaries, appraisers, claims adjusters, and IT staff would get applications tailored to
their usage.

 Although this approach avoids the complexities of big, general-purpose applica-
tions as well as those of a vast number of single-purpose applications, it does have its
own issues: functionality will probably be duplicated between applications, some users
play more than one role, and so on. There’s no one right way; you need to decide
where in the spectrum you fall, based on user-experience concerns rather than techni-
cal concerns.

 Now, let’s turn to the more technical side of things and look at three technical pat-
terns for building applications on top of microservices. 

12.2 Patterns for building applications over microservices
This section discusses the composite application, API gateway, and backend for front-
end design patterns. I’ll explain each pattern in turn and also discuss their pros and
cons. Then I’ll turn to the question of when to use each one.

12.2.1 Composite applications: integrating at the frontend

The first pattern for building applications over microservices is the composite applica-
tion. A composite application is made up of functionality drawn from several places—
in the case of microservices, from different microservices—by communicating with
each one directly. Each microservice provides both functionality and a GUI for the
functionality. Microservices may communicate with each other to perform their tasks;
the composite application doesn’t care.

Single-functionality
applications

All functionality in
one application

Figure 12.2 To repeat: a wide spectrum of types of applications can be built on top of microservices.

 



277Patterns for building applications over microservices

Figure 12.3 returns to the insurance example, with a general-purpose application that
includes all of the system’s functionality. The insurance system is built using microser-
vices, so to provide all of the system’s functionality through the application, the appli-
cation needs to draw on the business capabilities of many microservices. There are
more microservices in the system than are shown in the figure, and the application
won’t draw directly from all of them. The application composes these functionalities
into one application—thus the term composite application.

 When you build a general-purpose application in front of a microservice system as
a composite application, the microservices provide functionality and also a GUI to go
with the functionality. As a consequence, the GUI of the application is a composite of
smaller GUIs drawn from different microservices. Figure 12.4 shows an example struc-
ture for the insurance application’s GUI: it consists of four sections, each drawn from a
microservice that provides both functionality and a GUI.

 How GUI composition is achieved depends on the technology used to build the cli-
ent. In the case of a desktop Windows Presentation Foundation (WPF) application
(http:mng.bz/0YfW), you could, for instance, use a Managed Extensibility Framework
(MEF, http://mng.bz/6NKA) to dynamically load components into the application,
each of which could have its own piece of the GUI. In the case of a web application,
the GUI can be built by loading HTML fragments and JavaScript bundles from the
microservices into the main application and adding them to the DOM with JavaScript.
In both cases, microservices provide both the functionality and the GUI.

 Composite applications aren’t all general-purpose applications; they can be
smaller applications, as well. For instance, if the insurance application has one appli-
cation per user type, each application must provide functionality that belongs to dif-
ferent business capabilities and therefore to different microservices. It follows that
each per-user-type application can be built as a composite application.

Insurance Quote
microservice

Customers
microservice

Client side

Server side

Policy Catalog
microservice

Claim Settling
microservice

Appraisal
microservice

Claim Registration 
microservice

General-purpose insurance application 

Figure 12.3 A composite general-purpose application uses many different microservices, each of 
which provides both functionality and a GUI for that functionality.

 

http:mng.bz/0YfW
http://mng.bz/6NKA


278 CHAPTER 12 Creating applications over microservices

ADVANTAGES

When you’re building composite applications, the GUI is split into smaller parts
according to business capabilities, just as functionality is distributed across microser-
vices following business capabilities. That means the GUI for each business capability
is implemented close to the code for the capability and is deployed along with that
code. Because the composite application draws the GUI for the capability from the
microservice, the application is updated every time a microservice GUI is updated.
This means the agility you gain by splitting the system into small, focused microser-
vices applies to the application GUI, too.

Insurance app

http://mycompany.com

Family insurance A
Family insurance B
_
House insurance I
House insurance II
House insurance III
_
Car insurance I
Car insurance 2

The list of insurance policies comes
from the Policy Catalog microservice.

The claim settling form comes from
the Claim Settling microservice.

The appraisals form comes from
the Appraisal microservice.

Incident date Claim type

Description

Bacon ipsum dolor amet
turducken turkey ham hock
fatback salami shoulder
pancetta short loin prosciutto
venison ground round biltong
kevin t-bone. Tenderloin
shoulder meatloaf ham kevin
shank, cow spare ribs tail

Registration date

Lorum ipsum
dolor sit
amet
consectetur

Date ComboBox

Final settlement amount

Duis at sollicitudin diam.
Pellentesque et libero orci.
Curobitur odio risus, condimentum
ac sapien at, blandit condimentum

Item Value

Item Value

Item Value

Item Value

Claims registration

Claims settling Appraisals

The claims registration form comes from
the Claims Registration microservice.

Figure 12.4 A composite application takes GUI components from different microservices and uses 
them to form a cohesive, composite GUI.

 



279Patterns for building applications over microservices

DISADVANTAGES

A composite application is responsible for integrating all the functionality imple-
mented throughout the system of microservices. This can be a complex task: there
are potentially many business capabilities in a microservice system, and the applica-
tion’s GUI may not be split along quite the same lines, leading to pages that include
UIs from several different microservices but that need to feel like a single screen to
the end user.

 This kind of complexity can mean that the composite application has intimate
knowledge of how the microservices work and, in particular, how their UIs work. If
the composite application begins to make too many assumptions about the microser-
vices’ UIs, it becomes sensitive to changes in each microservice, and thus the applica-
tion as a whole may break because of GUI changes in a single microservice. If you
wind up in that situation, you lose the agility that’s one the major advantages of using
a composite application.

 In conclusion, composite applications can work very well—but only if you can
avoid implementing complex integrations. 

12.2.2 API gateway

The second pattern for building applications over microservices is the API gateway. An
API gateway is a microservice with a public HTTP API that covers all of the system’s
functionality but doesn’t implement any of the functionality itself. Instead, the API
gateway delegates everything to other microservices. In effect, an API gateway acts like
an adapter between applications and the system of microservices.

 When you build applications in front of a microservice system that uses an API
gateway, the applications are shielded from knowing anything about how the system
functionality is split across microservices, or even that the system uses microservices.
The application only needs to know about one microservice: the API gateway.

 Throughout this book, you’ve seen the example of a shopping cart in an e-commerce
system, including an API gateway. Figure 12.5 shows a request to add an item to a user’s
shopping cart coming in from the application to the API gateway, which delegates to
other microservices to serve the request. The role of the API gateway in this case is to pro-
vide a single entry point for applications and thus simplify the system interface so that
applications don’t have to interact directly with several microservices.

 You can build any kind of application in front of an API gateway, from a general-
purpose application that uses everything the API gateway has to offer, to specialized,
single-capability applications that use only a fraction of the API gateway, to everything
in between.

ADVANTAGES

The main benefit of the API gateway pattern is that it decouples applications nicely
from the way the system is decomposed into microservices. The API gateway hides that
completely from applications.

 



280 CHAPTER 12 Creating applications over microservices

In cases where several applications have overlapping functionality or where some appli-
cations are built by third parties, using the API gateway pattern facilitates the following:

 Maintaining a low barrier to entry for building applications
 Keeping the public API stable
 Keeping the public API backward compatible

Using an API gateway means application developers need to look at only one API in
order to get started. You can concentrate on keeping the API stable and backward
compatible while other microservices evolve.

6a. Publish ItemAddedtoCart event

Recommendations
store

Recommendations
microservice

Shopper
Tracking store

Shopper Tracking
microservice

6. Update user’s cart

4. Look up product

2. Add item
    to cart

7. JSON representation
    of cart

Price Calculation
microservice

8. Get updated
    price

9. Read price information
Price Calculation

store

12. Asynchronously read 
      ItemAddedToCart event

API gateway

1. Request: add
    item to cart

11. Response:
      updated cart
      and price 

Shopping Cart
microservice

3. Look up
    product

5. JSON representation
    of product

Product Catalog
microservice

Shopping Cart
store

Product
Catalog store

10. JSON representation
      of price information

Figure 12.5 An API gateway is the single entry point for applications. Any request from an application goes to the 
API gateway, which delegates to the rest of the microservice system to fulfill the request.

 



281Patterns for building applications over microservices

DISADVANTAGES

The main disadvantage of the API gateway pattern is that the API gateway itself can
grow into a large codebase and display all the disadvantages of a monolith. This is
especially true if you succumb to the temptation to implement business logic in the
API gateway. The API gateway may draw on many other microservices to serve a single
request. Because it’s combining the data from several microservices anyway, it’s tempt-
ing to apply a few business rules to the data as well. Doing so may be quick in the short
run, but it pushes the API gateway down the path toward becoming a monolith.

 In conclusion, the API gateway pattern is very useful and often the right way to go.
But keep a keen eye on the size of the API gateway, and be ready to react if it becomes
so large that it’s difficult to work with. 

12.2.3 Backend for frontend (BFF) pattern

The third and final pattern for building applications over microservices that we’ll look
at is the backend for frontend (BFF) pattern. The BFF pattern is relevant when you need
to build more than one application for a microservice system—for instance, the insur-
ance system may have a web application for the most common functionality, an iOS
app that appraisers can use on the road, and a specialized desktop application for
actuarial tasks. A BFF is a microservice akin to an API gateway, but it’s specialized for
one application. If you use this pattern for the applications in the insurance system,
you’ll have a BFF for the web app, a BFF for the iOS app, and a BFF for the actuarial
desktop application (see figure 12.6).

 The point of a BFF is to support the single application built on top of it. That means
the application and the BFF are tightly coupled: the BFF exposes the functionality the

Client side

Server side

Actuarial desktop
application BFF

Claims web
application

iOS appraisal
app

Sales web
application

Actuarial desktop
application

Claims web
application BFF

Claim Settling
microservice

Claim Registration
microservice

Customers
microservice

Policy Catalog
microservice

Insurance Quote
microservice

Appraisal
microservice

Sales web
application BFF

iOS appraisal
app BFF

Figure 12.6 BFFs are used by a single application. The BFF is the only entry point for the application it’s used 
by and therefore serves every request for that application. It answers requests by delegating to other 
microservices responsible for business capabilities.

 



282 CHAPTER 12 Creating applications over microservices

application needs, and it does so in a way that makes writing the application as easy
as possible.

ADVANTAGES

With the BFF pattern, each applications gets to use an API that’s tailored exactly to its
needs. With an API gateway, there’s a risk of the API gateway becoming bloated as you
add more and more functionality to it over time. With a BFF, this is less of a risk,
because the BFF doesn’t have to cover everything in the system: only the functionality
needed by the application it serves.

 It’s fairly easy to know when something can be removed from a BFF: when no active
version of the application it serves uses that functionality. Compare this to an API gate-
way with several applications in front: something can be removed from the API gateway
only when no version of any of the applications uses it. All in all, BFFs offer a way to both
simplify application development and keep the server side focused and well factored.

DISADVANTAGES

In cases where you have several applications that provide similar or overlapping func-
tionality to end users—such as having both an iOS app and an Android app targeted
at the same type of end user—the BFF pattern leads to duplicating code among several
BFFs. This comes with the usual disadvantages of duplication: duplicated effort every
time there are changes to the duplicated parts, and a tendency for the duplicated
parts to drift away from each other over time and end up working slightly differently
in different applications.

 In conclusion, the BFF pattern can strike a good balance between placing the bur-
den of integration on the application and creating an API gateway that may grow too
large over time. 

12.2.4 When to use each pattern

Now that you know about the three patterns for building end user applications for a
microservice system, the inevitable question is which one to choose. All three patterns
have merit and are useful, so I won’t recommend one over the other. But when you’re
about to build an application, you must make a choice. I base that choice on the fol-
lowing questions:

 How much intelligence do you want to put into the application?
For a line-of-business application that’s only used within the company firewall
and only on company machines, you may opt to build a desktop application
with a lot of intelligence. In that case, the composite application pattern is the
obvious choice.

For a public-facing e-commerce application meant to run in any old browser,
with the risk of somebody trying to hack the app, you may shy away from put-
ting intelligence into the application, making the composite application pat-
tern less attractive.

 



283Patterns for building applications over microservices

 Is there more than one application? If so, how different are the applications?
If you haven’t put much intelligence in the application, and if there’s only one
application, or if all applications provide similar functionality—maybe even in
similar ways—an API gateway is probably a good choice.

If there are several applications, and they provide different sets of function-
ality, the BFF pattern is a good option. With an API gateway or with BFFs, the
intelligence is on the backend. The API gateway works well as long as it’s cohe-
sive—that is, as long as the set of all endpoints exposed by the API gateway has
a certain consistency in terms of how applications should use them and how
they’re structured. 

If some endpoints follow a remote procedure call (RPC) style and others fol-
low a representation state transfer (REST) style, they’re inconsistent, and cohe-
sion in the API gateway codebase will probably be low. In such cases, you should
consider the BFF pattern. With BFFs, you can have some applications that work
with an RPC-style API in one BFF and other apps that use a REST API in another
BFF, without compromising cohesion. Each BFF can be cohesive and consistent
by itself, but you don’t need consistency among BFFs in terms of API style.

 How big is the system?

With a large system—in terms of the amount of functionality it exposes—an API
gateway can become an unmanageable codebase that exposes many of the dis-
advantages of monoliths. With large systems, using a number of BFFs is probably
a better choice than one big API gateway. On the other hand, if the system isn’t
that big, an API gateway can be simpler than BFFs.

Finally, it’s worth noting that you don’t need to make the same choice for all applica-
tions. You may start with an API gateway and build a few applications on it, but then
decide that a new application with an innovative approach to doing things doesn’t fit
the API gateway’s way of doing things, and give the new application a BFF. Likewise, you
may have internal-facing applications that use the composite application pattern, while
at the same time having external-facing apps that go through an API gateway of BFFs. 

12.2.5 Client-side or server-side rendering?

I’ve talked about three patterns for building applications over microservices: compos-
ite applications, API gateway, and BFF. If you build web apps using these patterns,
there’s another question to address: should you use server-side or client-side render-
ing? That is, should you generate ready-to-go HTML on the server—using, for
instance, Razor (http://mng.bz/l73n)—or should you render the HTML in a
JavaScript application, using one of the many JavaScript application frameworks such
as Angular (https://angularjs.org), Ember (http://emberjs.com), Aurelia
(http://aurelia.io), or React (https://facebook.github.io/react)? 

 This, again, is a question that doesn’t have one clear answer but depends entirely on
the application you want to build. How dynamic is the application? Is it more concerned

 

http://mng.bz/l73n
https://angularjs.org
http://emberjs.com
http://aurelia.io
https://facebook.github.io/react


284 CHAPTER 12 Creating applications over microservices

with working with data or with showing and entering data? The more dynamic the app
is, and the more its workflow is about working with and manipulating data, the more I
lean toward client-side rendering; whereas the more static the app is, and the more the
workflow is about viewing and entering data, the more I lean toward server-side render-
ing. The main point, though, is that the choice between client-side and server-side ren-
dering is about the application you want to build, not the fact that you’ve chosen to use
a microservice architecture on the server side.

 All three patterns support both server-side and client-side rendering. More than
that—they support mixing server-side and client-side rendering, such that some parts
of an application are server-side rendered and others are client-side rendered. For
instance, the catalog of policies in the insurance system is static and read-only in most
situations; it probably makes sense to render it on the server side. On the other hand,
the valuation calculator is a more dynamic component that lets users play around with
parameters before saving a final result; it’s probably well suited for client-side render-
ing in a JavaScript application. The two can coexist in the same application:

 If you’re building a composite application, it can draw in the server-side-rendered
catalog of policies as well as the JavaScript app for the valuation calculator. The
microservice responsible for the policy catalog will provide the server-side-
generated GUI for the policy catalog, whereas the microservice in charge of
valuations will provide the valuation calculator JavaScript application.

 If you’re using an API gateway, it can contain endpoints that return HTML and
others that return data—for example, in the form of JSON. It can even contain
endpoints that can return either HTML or JSON data, based on the Accept
header in the request. So again, an app can contain a server-side-rendered pol-
icy catalog along with a client-side-rendered valuation calculator.

 If you’re using BFFs, you have the same possibilities for having endpoints return
HTML, data, or both. In addition, BFFs give you the opportunity to make differ-
ent decisions for different applications: in one BFF, the policy catalog can be
server-side rendered, but in another it may be client-side rendered.

The choice between server-side and client-side rendering of a web GUI isn’t impacted by
the fact that the server side uses microservices. All the patterns we’ve looked at for building
applications over microservices support both server-side and client-side rendering. 

12.3 Example: a shopping cart and product list 
Let’s look at a concrete example and see the code required to implement a couple of
pieces of functionality in one application. This example uses one application pattern
and doesn’t show the other two in detail; it will show you how to bring together func-
tionality from a number of different microservices in an application, which is also at
the core of the other two patterns.

 The remainder of this chapter picks up the example of the shopping cart on an e-
commerce website from earlier chapters. First I’ll recap the example, then I’ll show you
a small UI for the shopping cart and a product list, and finally you’ll implement them.

 



285Example: a shopping cart and product list

 On the e-commerce website, users can browse products and add them to the shop-
ping cart. When a user adds a product to their cart, the process shown in figure 12.7 is
triggered. A number of things happen:

1 The item is added to the shopping cart.
2 A new total is calculated for the contents of the cart.
3 The Recommendation microservice and Shopper Tracking microservice are

notified of the change to the shopping cart through the event feed on the
Shopping Cart microservice.

Recommendations
store

Recommendations
microservice

Shopper
Tracking store

Shopper Tracking
microservice

Price Calculation
microservice Price Calculation

store

API gateway

Shopping Cart
microservice

Product Catalog
microservice

Shopping Cart
store

Product
Catalog store

The user’s application
calls the API gateway.

All requests to add
items to and remove
items from a shopping
cart are delegated to
the Shopping Cart
microservice.

The Shopping Cart microservice is
responsible for all business rules
around shopping carts and
for storing shopping carts.

The API gateway
delegates requests to
other microservices.

Figure 12.7 The Shopping Cart Microservice is responsible for storing and maintaining shopping carts on behalf 
of users, but the API gateway makes that functionality (along with other pieces of functionality) available to end 
users to use in a web app.

 



286 CHAPTER 12 Creating applications over microservices

In the following sections, you’ll implement part of this process as well as a simple
product list that allows users to add items to their carts. Figure 12.8 shows the part of
the system that you’ll implement.

 This will be enough to give users the page shown in figure 12.9. That page lets
users see a list of products and add products to their shopping cart. When a user adds
a product to their cart, the right side of the page—the part showing the contents of
the cart—updates and shows the new contents. The page also allows the user to
remove products from the cart.

API gateway

Shopping Cart
microservice

Product Catalog
microservice

Shopping Cart
store

Product
Catalog store

Figure 12.8 This example focuses on the API gateway, the Product Catalog microservice, and 
the Shopping Cart microservice. You’ll implement part of an application based on those three.

Figure 12.9 The part of the e-commerce application that you’ll implement shows a 
list of products and lets users add and remove products from their shopping cart.

 



287Example: a shopping cart and product list

To implement this UI, you’ll perform the following steps:

1 Reuse the Product Catalog microservice and Shopping Cart microservice from
chapter 5.

2 Create an API gateway.
3 Create the product list from figure 12.9:

– Create an endpoint in the API gateway for fetching a page with the product list.
– Make the new endpoint read the list of products from Product Catalog.
– Create a view with the list of products, and return it from the new endpoint.

4 Add the shopping cart from figure 12.9 to the web page:
– Make the API gateway get the current state of the shopping cart from Shop-

ping Cart.
– Add the shopping cart to the web page.

5 Create an endpoint in the API gateway for adding products to the shopping
cart:
– Add a POST endpoint for adding products to the shopping cart in the API

gateway.
– Call Shopping Cart from the API gateway to add the new product.
– Update the view the user sees to reflect that a product was added to the shop-

ping cart.
6 Create an endpoint in the API gateway to remove products from the shopping

cart.

You’ll use the Product Catalog microservice and the Shopping Cart microservice from
chapter 5 just as they are in the new API gateway. You could, at this point, add the
microservice platform from chapter 11 to these microservices, but for the sake of brev-
ity you’ll skip that step. The only thing you’ll do in these microservices is make sure
they run on different ports so that they can run at the same time on your development
machine. You specify these ports in the microservices’ respective project.json files—I
use 5100 for Product Catalog and port 5200 for Shopping Cart.

NOTE To keep the scope of this example tenable, I’ve cut some corners. Most
notably, you won’t implement a login system. Instead, you’ll hardcode the
user ID. This means the application can only manage that single user’s shop-
ping cart. In chapter 10, you saw how to deal with security in general, includ-
ing authenticating end users.

12.3.1 Creating an API gateway

Create a new project for the API gateway the same way you’ve created projects many
times before. Call the new project ApiGateway. Then, add the microservice platform
you developed in chapter 11 as a NuGet package to the new project. Remember that
the platform pulls in a few other packages, such as Nancy; the list of dependencies in
the project.json file should look like this.

 



288 CHAPTER 12 Creating applications over microservices

"dependencies": {
"Microsoft.NETCore.App": {

"version": "1.0.0-rc2-3002702",
"type": "platform"

},
"Microsoft.AspNetCore.Server.IISIntegration": "1.0.0",
"Microsoft.AspNetCore.Server.Kestrel": "1.0.0",
"Microsoft.AspNetCore.StaticFiles": "1.0.0",
"Microsoft.AspNetCore.Owin": "1.0.0",
"MicroserviceNET.Platform": "1.0.0",
"Serilog.Sinks.ColoredConsole": "2.0.0-beta-700"

},

Next, change the Startup.cs file in this new project to do the same initialization of Nancy
that you’ve seen before, as well as the initialization of the microservice platform.

public class Startup
{
public void Configure(IApplicationBuilder app)
{

var logger = ConfigureLogger();
app.UseStaticFiles();
app.UseOwin()

.UseMonitoringAndLogging(logger, HealthCheck)

.UseNancy(opt => opt.Bootstrapper = new Bootstrapper(logger));
}

private ILogger ConfigureLogger()
{

MicroservicePlatform.Configure(
tokenUrl: "http://localhost:5001/",
clientName:"api_gateway",
clientSecret: "secret");

return new LoggerConfiguration()
.Enrich.FromLogContext()
.WriteTo.ColoredConsole(

LogEventLevel.Verbose,
"{NewLine}{Timestamp:HH:mm:ss} [{Level}] ({CorrelationToken})

          ➥ {Message}{NewLine}{Exception}")
.CreateLogger();

}

private static Task<bool> HealthCheck()
{

return Task.FromResult(true);
}

}

Listing 12.1 Dependencies in the API gateway

Listing 12.2 Initializing Nancy and the microservice platform

The platform depends 
on Nancy, so this 
installs Nancy, too.

Configures ASP.NET Core 
to serve JavaScript and 
CSS files from the file 
system

Configures
the

monitoring
middleware

from the
microservice

platform

Shares the logger between the
microservice platform and Nancy

by passing it into the bootstrapper

Does the static 
configuration of the 
microservice platform

Dummy 
health check

 



289Example: a shopping cart and product list

public class Bootstrapper : DefaultNancyBootstrapper
{
private ILogger logger;
public Bootstrapper(ILogger logger)
{

this.logger = logger;
}
protected override void ApplicationStartup(

TinyIoCContainer container,
IPipelines pipelines)

{
container.Register(logger);
container.UseHttpClientFactory(new NancyContext());

}

protected override void RequestStartup(
TinyIoCContainer container,
IPipelines pipelines,
NancyContext context)

{
base.RequestStartup(container, pipelines, context);
container.UseHttpClientFactory(context);

}
}

Now you have an empty project, ready for the implementation of the API gateway. 

12.3.2 Creating the product list GUI

The next step is to create the part of the application that lists products. Add a new
Nancy module called GatewayModule to the API gateway, and add a /productlist end-
point to that module. GatewayModule will contain all the endpoints that serve the
application to end users: it will have endpoints that give end users a web GUI and also
endpoints used by the JavaScript in that web GUI.

 To keep it simple at first, let’s begin with an endpoint that does nothing. Then
you’ll add a GUI based on a hardcoded list of products, and finally you’ll retrieve the
real list of products from the Product Catalog microservice.

 GatewayModule will serve the web frontend to end users, but start with the follow-
ing endpoint that always responds with an empty 501 Not Implemented.

namespace ApiGateway
{

using System;
using System.Threading.Tasks;
using Nancy;

public class GatewayModule : NancyModule
{
public GatewayModule()
{

Listing 12.3 Placeholder endpoint implementation in the API gateway

Holds on to 
the logger

Shares the logger with 
any module that wants a 
dependency on ILogger

Configures 
HttpClientFactory, 
and registers it in 
the container

 



290 CHAPTER 12 Creating applications over microservices

Get("/productlist", _ => 501);
}

}
}

The next step is to add a GUI that shows the product list. So far, throughout the book,
you’ve returned data—for example, in the form of JSON—from all endpoints. Now, you’ll
return a GUI, in the form of server-side-generated HTML. Unsurprisingly, Nancy supports
this very well. Out of the box, Nancy comes with its own view engine called the Super Sim-
ple View Engine (SSVE, http://mng.bz/ydy4), which you’ll use for this example. 

Nancy, SSVE, and Razor
Nancy lets you use several different view engines. Out of the box, Nancy comes with
the Super Simple View Engine (SSVE); but if you’d rather use another view engine—
Microsoft’s Razor view engine, for instance—you can. Like everything else in Nancy,
the view engine can be replaced or supplemented with another view engine. For
instance, to use Razor with Nancy, you install the Nancy.Viewengines.Razor NuGet
package. which contains the code needed to adapt Razor for Nancy and which also
pulls in Razor itself.

In this chapter, you’ll stick with SSVE. It really is a simple view engine, but it supports
passing a model object into views and using that model object for basic templating
such as if conditions, accessing properties on the model, and iterating over enumer-
able properties on the model; it also supports more-advanced features like partial
views and master pages. The syntax for all features in SSVE is prefixed with @, as
shown in the following example. First, you define a type for the model object used in
this example:

public class MyModel
{

public string Headline { get; set;}
public bool SomeCondition { get; set; }
public IEnumerable<string> SomeList { get; set; }

}

Now, use it in a view:

<html>
<body>

<h1>@Model.Headline</h1>
@If.SomeCondition

<p>the condition is true</p>
@Endif
<ol>

@Each.SomeList
<li>@Current</li>

@EndEach
</ol>

</body>
</html>

 

http://mng.bz/ydy4


291Example: a shopping cart and product list

To make the /productlist endpoint return a view, change it as shown next. It returns a
view called productlist and passes a hardcoded list of products into the view as a
model object.

namespace ApiGateway
{

using System;
using System.Threading.Tasks;
using Nancy;

public class GatewayModule : NancyModule
{
public GatewayModule()
{

Get("/productlist", _ =>
{

var products = new[]
{

new Product {ProductId = 1, ProductName = "T-shirt"},
new Product {ProductId = 2, ProductName = "Hoodie"},
new Product {ProductId = 1, ProductName = "Trousers"},

};
return View["productlist", new { ProductList = products }];

});
}

}
}

Listing 12.4 uses a Nancy feature you haven’t used before: View["productlist", new
{ ProductList = products }];. This is how you return a view from a Nancy module.
The first argument is the name of the view, and the second is an optional model
object that will be passed to the view and that can be used while rendering the view.

 To implement the productlist view, create a new file called productlist.sshtml
next to GatewayModule.cs, as shown in listing 12.5. The file extension .sshtml tells
Nancy that this a SSVE view. The productlist.sshtml file contains a simple view that iter-
ates over the list of products in the model object and builds an HTML list from the
products. To give the page a bit of structure, you import the Bootstrap CSS framework
(http://getbootstrap.com), and add a few Bootstrap CSS classes here and there.

 

Listing 12.4 Hard-coded endpoint implementation in the API gateway

(continued)
This view uses the Headline property from the model object as a headline, checks
the Boolean SomeCondition, renders a short paragraph only when SomeCondition
is true, and renders an ordered list with a bullet for each string in SomeList.

Hard-coded list 
of products

Returns a view called productlist and
passes the product list into the view. The

productlist view is shown in listing 12.5.

 

http://getbootstrap.com


292 CHAPTER 12 Creating applications over microservices

<!DOCTYPE html>
<html>
<head>
<link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css"

>
title>MicroCommerce.NET</title>

</head>
<body>

<div class="container">
<div class="page-header">

<h1>MicroCommerce <small>- Product List</small></h1>
</div>

<div class="row">
<div class="col-md-8">

@Each.ProductList
<div class="row"

style="background-color: #eee; border-bottom-style: solid">
<div class="col-md-8">

<h4>@Current.ProductName</h4>
<p>lorem ipsum</p>

</div>
<div class="col-md-4">

<p></p>
<button class="btn btn-primary" type="button">BUY!</button>

</div>
</div>
@EndEach

</div>
</div>

</div>
</div>

</body>
</html>

This code renders a product list, but the products are hardcoded in the API gateway.
They should be fetched from the Product Catalog microservice. To do that, change
the /productlist endpoint in GatewayModule to make an HTTP request to Product Cat-
alog to get the list of products.

namespace ApiGateway
{

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using MicroserviceNET.Platform;
using Nancy;

Listing 12.5 Simple product list view

Listing 12.6 Finished endpoint implementation in the API gateway

Imports Bootstrap and 
uses it for all styling

Adds a heading 
to the page

Iterates over all products 
in the product list

Adds a row for
each product

Writes out the name 
of each product

Adds a placeholder BUY!
button for each product. The

button doesn’t work yet.

End of the
iteration over

products

 



293Example: a shopping cart and product list

using Nancy.ModelBinding;
using Newtonsoft.Json;
using RestSharp;
using Serilog;

public class GatewayModule : NancyModule
{
public GatewayModule(IHttpClientFactory clientFactory, ILogger logger)
{

Get("/productlist", async _ =>
{

var client = await
clientFactory.Create(

new Uri("http://localhost:5100/"),
"product_catalog_read");

var response = await
client.GetAsync("/products?productIds=1,2,3,4");

var content = await
response?.Content.ReadAsStringAsync();

productList =
JsonConvert
.DeserializeObject<List<Product>>(content)
.ToArray();

logger.Information(productList);
return View["productlist", new { ProductList = productList }];

});
}

public class Product
{
public string ProductName;
public int ProductId;

}
}
}

Now that the list of products is fetched from the Product Catalog microservice, the
view shows the correct products (see figure 12.10). 

The HttpClientFactory
and ILogger set up in
Startup are injected.

Creates an HttpClient, 
and points it to Product 
Catalog at port 5100

Sends an HTTP GET 
request to Product 
CatalogDeserializes the

list of products
from Product

Catalog

Passes the list of
products to the view

Figure 12.10 When you’ve fetched 
the list of products from the Product 
Catalog microservice, you can see 
them in the GUI.

 



294 CHAPTER 12 Creating applications over microservices

12.3.3 Creating the shopping cart GUI

The next bit of GUI that you want to add is the contents of the shopping cart. To do
this, first extend /productlist to call not only the Product Catalog microservice but
also the Shopping Cart microservice.

namespace ApiGateway
{

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using System.Net.Http;
using MicroserviceNET.Platform;
using Nancy;
using Nancy.ModelBinding;
using Newtonsoft.Json;
using Serilog;
using static System.Text.Encoding;

public class GatewayModule : NancyModule
{
public GatewayModule(IHttpClientFactory clientFactory, ILogger logger)
{

Get("/productlist", async parameters =>
{

var userId = (int)parameters.userid;

var client = await
clientFactory.Create(

new Uri("http://localhost:5100/"),
"product_catalog_read");

var response = await
client.GetAsync("/products?productIds=1,2,3,4");

var content = await response?.Content.ReadAsStringAsync();
logger.Information(content);
productList =

JsonConvert
.DeserializeObject<List<Product>>(content)
.ToArray();

client = await
clientFactory.Create(new Uri(

"http://localhost:5200/"),
"shopping_cart_write");

response = await client.GetAsync($"/shoppingcart/{userId}");
content = await response?.Content.ReadAsStringAsync();
logger.Information(content);
var basketProducts = GetBasketProductsFromResponse(content);

return View["productlist",

Listing 12.7 Extending /productlist to fetch the shopping cart

?. is the C# 6 null-
conditional operator.

Creates a new HttpClient 
for calling Shopping CartGets the

shopping
cart from
Shopping

Cart

 



295Example: a shopping cart and product list

new
{

ProductList = productList,
BasketProducts = basketProducts

}];
});

private List<Product> GetBasketProductsFromResponse(string responseBody)
{

return
JsonConvert
.DeserializeObject<ShoppingCart>(responseBody)
.Items
?.Select(item =>

new Product
{

ProductName = item.ProductName,
ProductId = item.ProductCatalogueId

})
?.ToList() ?? new List<Product>();

}
}

public class Product
{
public string ProductName;
public int ProductId;

}

public class ShoppingCart
{
public IEnumerable<ShoppingCartItem> Items { get; set; }

}

public class ShoppingCartItem
{
public int ProductCatalogueId { get; set;}
public string ProductName { get; set; }

}
}
}

Next, extend the view to render the contents of the shopping cart on the right side of
the page.

<!DOCTYPE html>
<html>
<head>
<link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css"
integrity="sha384-1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWP

Listing 12.8 Extending the view to include the shopping cart

Deserializes the response 
from Shopping Cart

Transforms the 
response from 
Shopping Cart into 
a view model

Passes the list
of products in
the shopping

cart to the
view

API GatewayModule’s 
model of a ShoppingCart

 



296 CHAPTER 12 Creating applications over microservices

➥ Gmkzs7"
crossorigin="anonymous">

<title>MicroCommerce.NET</title>
</head>
<body>

<div class="container">
<div class="page-header">

<h1>MicroCommerce <small> - Product List</small></h1>
</div>

<div class="row">
<div class="col-md-8">

@Each.ProductList
<div class="row"

style="background-color: #eee; border-bottom-style: solid">
<div class="col-md-8">

<h4>@Current.ProductName</h4>
<p>lorem ipsum</p>

</div>
<div class="col-md-4">

<p></p>
<button class="btn btn-primary" type="button">BUY!</button>

</div>
</div>
@EndEach

</div>
<div class="col-md-4">

<div class="panel panel-info">
<div class="panel-heading">Basket</div>
<div class="panel-body">

@Each.BasketProducts
<div>

@Current.ProductName
<button class="btn btn-link">

<span class="glyphicon glyphicon-remove"
aria-hidden="true"></span>

</button>
</div>

@EndEach
</div>

</div>
</div>

</div>
</div>

</body>
</html>

This view iterates over the products in the shopping cart and shows them all. With
both the product list and the shopping cart, the view looks as shown in figure 12.11.

 You have the complete application GUI but no functionality. The BUY! buttons
don’t work, nor do the Xs in the shopping cart. You’ll change this in the next two sec-
tions, where you’ll add some behavior to the application. 

Adds a column on the 
right for the shopping 
cart

Iterates over the products 
in the shopping cart

Writes the
name of each

product

Placeholder button that
looks like an X. The

button doesn’t work yet.

 



297Example: a shopping cart and product list

12.3.4 Letting users add products to the shopping cart

The first piece of behavior you’ll add will make the BUY! button in the product list
work. You’ll do two things:

1 Add an endpoint to GatewayModule that allows the application to add a product
to the shopping cart. This endpoint in the API gateway is thin and delegates to
the Shopping Cart microservice.

2 Add an OnClick function to the BUY! button that calls the new endpoint in
GatewayModule.

The following listing shows the endpoint in GatewayModule that lets the application
add a product to the shopping cart.

public GatewayModule(IHttpClientFactory clientFactory, Ilogger logger)
{

...

Post("/shoppingcart/{userid}", async parameters =>
{
var productId = this.Bind<int>();
var userId = (int) parameters.userid;

var client = await
clientFactory.Create(

new Uri("http://localhost:5200/"),
"shopping_cart_write");

Listing 12.9 Endpoint to add a product to the shopping cart

Figure 12.11 Now that you’ve built the first part of the application, it can 
show a list of products and an empty shopping cart.

New 
endpoint

Reads a product ID from 
the body of the request

Creates an HttpClient for 
calling Shopping Cart

 



298 CHAPTER 12 Creating applications over microservices

var response = await
client.PostAsync(

$"/shoppingcart/{userId}/items",
new StringContent(

JsonConvert.SerializeObject(new[] { productId }),
UTF8,
"application/json"));

var content = await response?.Content.ReadAsStringAsync();
var basketProducts = GetBasketProductsFromResponse(content);
logger.Information("{@basket}", basketProducts);

return View["productlist",
new
{

ProductList = productList,
BasketProducts = basketProducts

}];
});

}

This endpoint receives some data—a product ID—in the body of the POST request and
delegates to the Shopping Cart microservice by sending it an HTTP POST request.
Shopping Cart—as you’ve seen in earlier chapters—handles adding the product to
the shopping cart, storing the updated shopping cart, and raising an event that noti-
fies subscribers about the update.

 To use this endpoint from the application, you need to add a bit of JavaScript to
the view: a function that calls the new endpoint and replaces the current page with
the page returned from the endpoint.

function buy(productId) {
var xhttp = new XMLHttpRequest();
xhttp.onreadystatechange = function() {

if (xhttp.readyState == 4 && xhttp.status == 200) {
document.write(xhttp.responseText);
document.close();

}
}
xhttp.open('POST', '/shoppingcart/123', true);
xhttp.setRequestHeader('Content-type', 'application/json');
xhttp.send( JSON.stringify(productId));

}

This function adds a product to the shopping cart. It should be called whenever the
user clicks one of the BUY! buttons. So, add an onclick handler to the BUY! button by

Listing 12.10 Calling the endpoint to add a product to the shopping cart

Sends a request to Shopping 
Cart to add the product

Passes the updated list 
of products from the 
response back to the view

Function that’s called 
when the request to the 
API gateway is completed

Checks
whether the
request was

successful

Prepares a POST request 
to the API gatewaySends the

POST
request

Replaces the contents of the current
page with the HTML in the response

from the POST request

 



299Example: a shopping cart and product list

changing the line in the view that renders the BUY! button for each product in the
product list, as follows:

<html>
...

<button class="btn btn-primary" type="button"
onclick="buy(@Current.ProductId);">
BUY!

</button>
...
</html>

That’s all you need to do to make the BUY! buttons work. 

12.3.5 Letting users remove products from the shopping cart

The last bit you need to implement will let users remove products from their shopping cart.
Similar to the previous section, that means adding an endpoint to GatewayModule and add-
ing an onclick handler to the X buttons in the shopping cart part of the application. Add
a DELETE endpoint that again mainly delegates to the Shopping Cart microservice.

public GatewayModule(IHttpClientFactory clientFactory, Ilogger logger)
{

...

Delete("/shoppingcart/{userid}", async parameters =>
{

var productId = this.Bind<int>();
var userId = (int) parameters.userid;

HttpClient client = await
clientFactory.Create(

new Uri("http://localhost:5200/"),
"shopping_cart_write");

var request =
new HttpRequestMessage(

HttpMethod.Delete,
$"/shoppingcart/{userId}/items")

{
Content = new StringContent(

JsonConvert.SerializeObject(new[] { productId }),
UTF8, "application/json")

};
var response = await client.SendAsync(request);
var content = await response?.Content.ReadAsStringAsync();
var basketProducts = GetBasketProductsFromResponse(content);

logger.Information("{@basket}", basketProducts);

Listing 12.11 Endpoint to remove a product from the shopping cart

Calls the buy 
function with the 
product ID for the 
current product in 
the iteration over 
the list of products

Prepares a DELETE request 
to remove a product from 
the shopping cart

Sends the
DELETE

request to
Shopping

Cart

 



300 CHAPTER 12 Creating applications over microservices

return View["productlist",
new
{

ProductList = productList,
BasketProducts = basketProducts

}];
});

}

To use this endpoint, add another JavaScript function to the view.

function removeFromBasket(productId) {
var xhttp = new XMLHttpRequest();
xhttp.onreadystatechange = function() {
if (xhttp.readyState == 4 && xhttp.status == 200) {

document.write(xhttp.responseText);
document.close();

}
}
xhttp.open('DELETE', '/shoppingcart/123', true);
xhttp.setRequestHeader('Content-type', 'application/json');
xhttp.send(JSON.stringify(productId));

}

Next, use this JavaScript function from the X button in the shopping cart part of the
view:

<html>
...

<button class="btn btn-link"
onclick="removeFromBasket(@Current.ProductId);">
<span class="glyphicon glyphicon-remove"
aria-hidden="true"></span>

</button>
...
</html>

With this code in place, the example application works! The user can add products to
and remove them from their shopping cart. 

12.4 Summary
 There’s a spectrum of possible kinds of applications to build on top of a micros-

ervice system, from general-purpose applications covering all the functionality
in the system to small, single-capability applications.

 Applications over microservices can be built as composite applications that
draw in functionality and GUI components from various microservices and com-
pose them together to form a complete application.

Listing 12.12 Calling the endpoint to remove a product from the shopping cart

Prepares to send a 
DELETE request to 
the API gateway

Calls the removeFromBasket
function with the product ID

for the current product

 



301Summary

 The composite application pattern allows microservices to stay decoupled, but
the composite application itself can become complex.

 Applications over microservices can be built using the API gateway pattern, which
puts one general-purpose API in front of all the microservices. That API gateway
is the only microservice the application uses directly, but it delegates all requests
to other microservices where the business capabilities are implemented.

 The API gateway pattern can simplify application development and decouple
applications from the architecture of the server side.

 An API gateway can grow bigger over time because it needs to expose all func-
tionality. This is especially true if several applications use the API gateway,
because it needs to support all scenarios in all applications.

 Applications over microservices can be built with the backend for frontend
(BFF) pattern. A BFF is a microservice that acts like an API gateway, but for only
one application.

 BFFs are less prone to growing bigger than API gateways are.
 BFFs are tailored to the single application using them and should therefore

make that application as simple to implement as possible.
 When you build web applications over microservices, you’re free to use server-

side rendering, client-side rendering, or a mix.
 All three patterns—composite application, API gateway, and BFF—support

server-side rendering, client-side rendering, and mixes of the two.
 The implementation of an API gateway is very thin: all the endpoints you added

to the example API gateway delegated to other microservices.
 Nancy supports returning server-side-rendered HTML using either the built-in

Super Simple View Engine or Razor.

 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



303

appendix A
Development

 environment setup

This appendix describes how to set up a development environment for working
with the code you write throughout this book. The development environment has
five parts:

 An IDE—You can choose between using Visual Studio 2015 or newer, Visual
Studio Code, ATOM, or JetBrains Rider. Visual Studio 2015 is Windows-only,
whereas the other three work on Windows, OS X, and Linux.

 dotnet—You need the dotnet command-line tool.
 Yeoman ASP.NET generator—You need this to create ASP.NET Core projects. If

you use Visual Studio, you can create projects through Visual Studio instead,
but throughout this book you’ll use Yeoman. Visual Studio and Yeoman pro-
ject templates are similar, but not identical.

 Postman—You need a tool for making HTTP requests. There are many such
tools, including cURL and Fiddler; but I recommend Postman, which I find
easy to use and which works on Windows, OS X, and Linux.

 SQL database—On Windows, you can use SQL Server (which you’ll do
throughout the book); but if you prefer, you can use another SQL database,
such as PostgreSQL.

I’ll walk you through installing and getting up and running with the development
environment in the following sections.

 



304 APPENDIX A Development environment setup

A.1 Setting up an IDE
There are four IDEs you can use with this book’s code. Which one you choose is a mat-
ter of taste; all of them work fine with everything in the book. I, for one, have been
switching back and forth among all four while developing the code for the book.

A.1.1 Visual Studio 2015

Visual Studio is the traditional choice for .NET development and has everything you’d
expect from an IDE. Of relevance to the code in the book, Visual Studio gives you a
good C# editor, IntelliSense in project.json files, NuGet package management, and
launching and debugging of ASP.NET Core applications.

 Visual Studio 2015 comes in a number of different editions. The free edition—
Visual Studio 2015 Community—has everything you need to code along with the
examples. To get Visual Studio 2015 Community, go to http://mng.bz/7i8F and
choose Visual Studio Community. Doing so downloads an installer. Run it, and follow
the instructions.

 Once you have Visual Studio 2015 installed, you need to install the .NET Core plug-
in for Visual Studio to get ASP.NET Core support in Visual Studio. You can find a link
to the latest version of this plug-in at http://mng.bz/nvpd. It makes Visual Studio
aware of ASP.NET Core and gives you project templates, project.json IntelliSense, auto-
matic NuGet package restore when project.json is edited, and debugging of ASP.NET
Core applications. 

A.1.2 Visual Studio Code

Visual Studio Code is a lighter-weight, cross-platform alternative to Visual Studio 2015.
It doesn’t have the breadth of features Visual Studio has, but with the C# extension
installed, it works well for the kinds of projects you write in this book: ASP.NET Core
applications. Visual Studio Code provides a good C# editor, IntelliSense in pro-
ject.json files, NuGet package management, and launching and debugging of ASP.NET
Core applications.

 You can get Visual Studio Code from https://code.visualstudio.com; click the
Download button to access an installer suitable for your platform. Run the installer,
and follow the instructions.

 You also need the C# plug-in for Visual Studio Code. To install it, press Ctrl-P in
Visual Studio Code to open the VS Code Quick Open bar. Then type ext install
csharp and press Enter to install the C# extension. 

A.1.3 ATOM

ATOM is a cross-platform, open source editor that’s widely used across many different
programming languages. To make ATOM work well with C#, you need to install the
omnisharp-atom plugin that provides C# IntelliSense, refactorings, code fixes, Intel-
liSense in project.json files, automatic NuGet package restore, and launching of

 

http://mng.bz/7i8F
http://mng.bz/nvpd
https://code.visualstudio.com


305Setting up Yeoman ASP.NET generator

ASP.NET Core applications. At the time of writing, there’s no ASP.NET Core debugging
capability in ATOM.

 You can get ATOM from https://atom.io. Click the Download button, and follow the
instructions. When ATOM is installed, you can get the omnisharp-atom plugin through
ATOM’s package manager: select File > Settings, choose Packages on the Settings page,
and enter omnisharp-atom in the search box. The omnisharp-atom package should
appear under Community Packages, and you can install it by clicking Install.

 With the omnisharp-atom plugin installed, you can open a folder with a pro-
ject.json file, and ATOM will recognize it as a .NET Core project and provide C#,
NuGet, project.json, and dotnet support. 

A.1.4 JetBrains Rider

At the time of writing, the Rider IDE from JetBrains is only available through the early
access program, which you can apply for at www.jetbrains.com. Rider is a full-fledged,
cross-platform C# IDE based on the IntelliJ IDE platform and the ReSharper Visual
Studio plugin, both of which are tried-and-true JetBrains products. Rider, even in
early access, provides very good C# code navigation, refactorings, code fixes, and
IntelliSense. At the time of writing, Rider doesn’t have good NuGet or debugging sup-
port for .NET Core, but the roadmap for Rider includes both of those, as well as an
integrated test runner. 

A.2 Setting up the dotnet command-line interface
You use the dotnet command-line tool throughout the book to run microservices,
restore NuGet packages, create NuGet packages, and run tests. To install it, go to
http://dot.net, click Download .NET Core, and follow the instructions for your pre-
ferred development platform. 

A.3 Setting up Yeoman ASP.NET generator
Yeoman is a scaffolding tool based on Node.js. It’s a versatile tool that can be used to
generate ASP.NET Core projects as well as projects for many other stacks. To set up
Yeoman to generate ASP.NET Core projects, you need Node.js, Yeoman, and the
ASP.NET generator plugin.

 To install Node.js using an installer or from a tarball, go to https://nodejs.org/
en/download and follow the instructions. If you prefer to install it via a package
manager such as apt-get, Homebrew, or Chocolatey, go to https://nodejs.org/en/
download/package-manager, and follow the instructions.

 Once you have Node.js installed, you also have npm—the package manager for
Node. Let’s use npm to install first Yeoman and then the ASP.NET generator. To install
Yeoman, run this from a command line:

PS> npm install -g yo

 

http://dot.net
https://atom.io
https://nodejs.org/en/download
https://nodejs.org/en/download
https://nodejs.org/en/download/package-manager
https://nodejs.org/en/download/package-manager
http://www.jetbrains.com


306 APPENDIX A Development environment setup

You can now run Yeoman from the command line with the command yo. To install the
ASP.NET generator plugin for Yeoman, run this from the command line:

PS> npm install -g generator-aspnet

You’re now ready to generate ASP.NET Core projects by running the command yo
aspnet from the command line. 

A.4 Setting up Postman
Postman is a nice GUI tool for working with HTTP requests. It allows you to create any
HTTP request and see all details of the response. This is useful when you’re working
with HTTP APIs, which you do a lot in this book. It also lets you test the HTTP APIs
directly and see exactly what the response is in both success and failure scenarios.

 You can get Postman from www.getpostman.com. Once it’s installed, you can
launch it and start making HTTP requests. Figure A.1, which also appears in chapter 1,
illustrates how to create HTTP requests with Postman.

 Now that you have an IDE, the dotnet command-line tool, and a tool for working
with HTTP requests, you’re all set to code along with the examples throughout the
book. 

Choose HTTP
method from the
drop-down menu.

The request
URL

The response body

Add request
headers here.

Figure A.1 Postman makes it easy to send HTTP requests while controlling the details of the 
request, such as the headers and the HTTP method.

 

http://www.getpostman.com


307Installing SQL Server Express

A.5 Installing SQL Server Express
In chapter 5, you begin using a SQL Server database. You can get the installer for the
free SQL Server Express database server from http://mng.bz/090m. Download the
installer, run it, and follow the instructions.

 If you aren’t on Windows, I recommend using PostgreSQL. The Dapper library that
you use in chapter 5 to talk to SQL Server can just as easily talk to PostgreSQL. To install
PostgreSQL, follow the instructions for your OS at www.postgresql.org/download. 

 

http://mng.bz/090m
http://www.postgresql.org/download


308

appendix B
Deploying to production

This appendix runs through the main options for running the microservices you
develop throughout the book in a production environment. The main factor that
affects where and how you can deploy the microservices is that they’re based on
.NET Core.

 The microservices I discuss include two kinds of processes: HTTP APIs and event
consumers. The HTTP APIs are based on ASP.NET Core and therefore run on top of
Kestrel; the event consumers are .NET Core console applications.

 Because .NET Core runs on both Windows and Linux, so can your microser-
vices. Likewise, your microservices can run on your own servers or in the cloud—
either Amazon or Azure.

B.1 Deploying HTTP APIs
All the HTTP APIs in this book’s microservices are built in Nancy and run on top of
ASP.NET Core. That means they run on top of the Kestrel web server. Kestrel isn’t a
full-featured web server; rather, it’s a small, fast web server geared toward serving
dynamic content from ASP.NET Core. The recommended way to use Kestrel in a
production environment is to place it behind a reverse proxy. The reverse proxy
can handle things that Kestrel isn’t well suited for—like serving static files, SSL ter-
mination, and response compression. The setup is as shown in figure B.1 on Win-
dows or Linux.

Incoming
request

Forward
response

Reverse proxy
(e.g., IIS or nginx)

Forward
request

Response

Kestrel
(running the microservice)Internet

Figure B.1 Kestrel should run behind a reverse proxy.

 



309Deploying HTTP APIs

B.1.1 Windows servers

To deploy the HTTP APIs of your microservices to a Windows server, you need to do
the following:

1 Go into your microservice project, and create a deployment package with the
command dotnet publish.

2 Install IIS on the server.
3 Install the .NET Core Windows Server Hosting Bundle into IIS.
4 Include a web.config file in the microservice project that configures AspNet-

CoreModule to handle all requests. Such a web.config file is included in projects
created with Yeoman.

5 Create a website in IIS that points to the deployment package and uses an appli-
cation pool configured to use No Managed Code.

You can find detailed documentation for this setup at http://mng.bz/YA0j. It will work
for your own Windows server as well as Windows cloud servers on Amazon and Azure. 

B.1.2 Linux servers

To deploy the HTTP APIs of your microservices to a Linux server, follow these steps:

1 Alter the startup code in program.cs to make it listen on a Unix socket—for
example, http://unix:/var/microservicenet/hello/kestrel.sock. This means
adding a call to UseUrls on IWebHostBuilder. IWebHostBuilder is already cre-
ated and otherwise configured in the program.cs file, so the UseUrls call is
another in the existing chain of calls.

2 Go into your microservice project, and create a deployment package with the
command dotnet publish.

3 Install nginx on the server.
4 Configure a site on nginx to forward all incoming requests to the Unix socket

the microservice is listening on.
5 Configure the supervisor daemon to start up and supervise the microservice

when the server boots.

You can find detailed documentation for this setup at http://mng.bz/ZWNh. It will
work for your own Linux servers as well as Linux cloud servers on Amazon and Azure. 

B.1.3 Azure Web Apps

Azure offers a PaaS–level option for running .NET Core web applications: Azure Web
Apps. With this option, you don’t have to handle the reverse proxy setup yourself—
Azure does that. You just need to create a web app on Azure—for example, through
the Azure portal. Then, you can deploy to the web app by creating a deployment pack-
age using dotnet publish and copying it to the web app via FTP or a number of other
deployment options, including pushing to a Git repository. You can find detailed doc-
umentation for this setup at http://mng.bz/1ubQ. 

 

http://mng.bz/YA0j
http://mng.bz/YA0j
http://mng.bz/1ubQ


310 APPENDIX B Deploying to production

B.1.4 Azure Service Fabric

Azure offers another PaaS-level option called Azure Service Fabric, which can also run
your Nancy-based HTTP APIs. To do this, you have to start from a different project
template than the one you use throughout the book; see the documentation at
http://mng.bz/1WyY. Once you have a project ready to deploy to Azure Service Fab-
ric, you can install Nancy and the other NuGet packages into it and do everything you
do throughout the book using Nancy, Polly, and OWIN. 

B.2 Deploying event consumers
The event consumers you write in chapters 4, 6, and 7 are .NET Core console applica-
tions that are ready to run as Windows services, so they only work on Windows. The
event consumers are Windows-only because they’re Windows services—but all the
code for fetching events from a feed, keeping track of which events have already been
handled, and handling events could just as well run on Linux. The only thing you’d
need to implement differently to run on Linux is the implementation of Service-
Base: the code that reacts to the start and stop signals from Windows when the Win-
dows service starts and stops. The following sections outline some alternatives to using
a Windows service to host the event consumer code.

B.2.1 Windows servers

On a Windows server, you can install the event consumer from chapter 4 as a Windows
service, as described in that chapter. No modifications to the event consumer code are
needed. 

B.2.2 Linux servers

On Linux, you can run an event consumer with the supervisor daemon in much the
same way you can run a Kestrel-hosted HTTP API on Linux. You need to change the
code a little: instead of implementing ServiceBase and starting a timer in OnStart,
the timer should be started at startup in the Main method.

 To get ready to run the event consumer under the supervisor daemon, first run
dotnet publish in the event consumer project. Then, write a supervisor configura-
tion file for the event consumer in /etc/supervisor/conf.d/ with contents along the
lines of the following:

[program:eventconsumer]
command=dotnet /var/microservicesnet/eventconsumer/eventconsumer.dll
autostart=true
autorestart=true
stderr_logfile=/var/log/eventconsumer.err.log
stdout_logfile=/var/log/eventconsumer.out.log
environment=Hosting__Environment=Production
user=www-data
stopsignal=INT

Path to the DLL created by
the <data></data>dotnet

publish command

 

http://mng.bz/1WyY


311Deploying event consumers

Next, you need to restart the supervisor daemon, and it will pick up the new configu-
ration and start the event consumer. These two commands restart the supervisor
daemon:

sudo service supervisor stop
sudo service supervisor start

Now the event consumer runs under the supervision of the supervisor daemon. 

B.2.3 Azure WebJobs

Azure WebJobs let you run console applications on Azure on a schedule (see
http://mng.bz/R4m9). To do this, you should drop the implementation of Service-
Base and do one batch of event handling whenever the console application is run.
The Azure scheduler takes care of calling the event consumer on a schedule. When it
runs, the event consumer can do whatever it needs to do, including polling an event
feed, using a data store to keep track of handled events, and any business logic for
handling events. 

B.2.4 Azure Functions

Azure Functions is, in a sense, a lighter-weight version of Azure WebJobs, which is part
of the wider Azure Service Fabric offering. Azure Functions also lets you run .NET
code on a schedule handled by Azure. The documentation for setting up Azure Func-
tions is at http://mng.bz/h7D9.

 To run the event consumer as an Azure Function, you need to cut it back to the
code to run a batch of event handling: the code to poll an event feed, the code to
keep track of handled events, and the business logic to handle events. Azure takes
care of calling the function on a schedule. 

B.2.5 Amazon Lambda

Amazon Lambda is similar to Azure Functions. Again, you cut back the code for the
event consumer to the code for running a batch of event handling. You can find the
documentation for setting up Amazon Lambda to run C# code on a schedule at
http://mng.bz/5wJd. 

 

http://mng.bz/R4m9
http://mng.bz/h7D9
http://mng.bz/5wJd


312

Further reading

Microservices
Cramon, Jeppe. “Microservices: It’s not (only) the size that matters, it’s (also) how you use them,”

parts 1–5. 2014–2015. http://mng.bz/zQ2a.
Fowler, Martin. “MicroservicePrerequisites.” August 28, 2014. http://martinfowler.com/bliki/Micros-

ervicePrerequisites.html.
———.“MonolithFirst.” June 3, 2015. http://martinfowler.com/bliki/MonolithFirst.html.
Lewis, James and Martin Fowler. “Microservices.” March 25,2014. http://martinfowler.com/articles/

microservices.html.
Tilkov, Stefan. “Don’t start with a monolith.” June 9, 2015. http://martinfowler.com/articles/dont-

start-monolith.html.
Newman, Sam. Building Microservices: Designing Fine-Grained Systems. O’Reilly Media, 2015.
———.“Pattern: Backends for Frontends.” November 18, 2015. http://samnewman.io/patterns/

architectural/bff.

Software design and architecture in general
Beck, Kent. Test Driven Development: By Example. Addison-Wesley Professional: 2002. 
Conway, Melvin E. “How Do Committees Invent?” Datamation (April 1968). www.melconway.com/

research/committees.html.
“Defense in Depth.” Open Web Application Security Project (OWASP). www.owasp.org/index.php/

Defense_in_depth. 
Evans, Eric. Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-Wesley Profes-

sional: 2003. 
Fowler, Martin. “TestPyramid.” May 1, 2012. http://martinfowler.com/bliki/TestPyramid.html.
———.“IntegrationContractTest.” January 12, 2011. http://martinfowler.com/bliki/IntegrationCon-

tractTest.html. 
Freeman, Steve and Nat Pryce. Growing Object-Oriented Software, Guided by Tests. Addison-Wesley Profes-

sional: 2009. 
Hohpe, Gregor and Bobby Woolf. Enterprise Integration Patterns: Designing, Building, and Deploying Mes-

saging Solutions. Addison-Wesley Professional: 2003. 
Humble, Jez and David Farley. Continuous Delivery: Reliable Software Releases through Build, Test, and

Deployment Automation. Addison-Wesley Professional: 2010. 
Martin, Robert C. “The Single Responsibility Principle.” May 5, 2014. http://mng.bz/RZgU. 
———.“SRP: The Single Responsibility Principle.” http://mng.bz/zQyz.
Nygard, Michael T. Release It!: Design and Deploy Production-Ready Software. Pragmatic Programmers:

2007. 
Vernon, Vaughn. Implementing Domain-Driven Design. Addison-Wesley Professional: 2013.

 

http://mng.bz/zQ2a
http://martinfowler.com/bliki/MicroservicePrerequisites.html
http://martinfowler.com/bliki/MicroservicePrerequisites.html
http://martinfowler.com/bliki/MonolithFirst.html
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/dont-start-monolith.html
http://martinfowler.com/articles/dont-start-monolith.html
http://samnewman.io/patterns/architectural/bff
http://samnewman.io/patterns/architectural/bff
http://www.melconway.com/research/committees.html
http://www.melconway.com/research/committees.html
http://www.owasp.org/index.php/Defense_in_depth
http://www.owasp.org/index.php/Defense_in_depth
http://martinfowler.com/bliki/TestPyramid.html
http://martinfowler.com/bliki/IntegrationContractTest.html
http://martinfowler.com/bliki/IntegrationContractTest.html
http://mng.bz/RZgU
http://mng.bz/zQyz


313Technologies used

Technologies used
ASP.NET Core. www.asp.net/core. Dapper. http://mng.bz/7LHZ. 
Elasticsearch. https://info.elastic.co/Getting-Started-ES.html. 
Event Store. https://geteventstore.com. 
IdentityServer. https://identityserver.github.io/Documentation. 
Kibana. www.elastic.co/products/kibana. Nancy. http://nancyfx.org.
Nancy documentation. https://github.com/NancyFx/Nancy/wiki/Documentation. 
Nancy samples. https://github.com/NancyFx/Nancy/tree/master/samples.
.NET Core. https://dotnet.github.io. 
NuGet documentation. http://docs.nuget.org. 
OAuth. http://oauth.net/2. 
OpenID Connect. http://openid.net/connect. 
OWIN standard. http://owin.org. 
Polly documentation. https://github.com/App-vNext/Polly#polly. 
Serilog. https://serilog.net. 
xUnit. https://xunit.github.io.

 

http://mng.bz/7LHZ
https://info.elastic.co/Getting-Started-ES.html
https://geteventstore.com
https://identityserver.github.io/Documentation
http://www.elastic.co/products/kibana
http://nancyfx.org
https://github.com/NancyFx/Nancy/wiki/Documentation
https://github.com/NancyFx/Nancy/tree/master/samples
https://dotnet.github.io
http://docs.nuget.org
http://oauth.net/2
http://openid.net/connect
http://owin.org
https://github.com/App-vNext/Polly#polly
https://serilog.net
https://xunit.github.io


 



315

index

Symbols

@ symbol 205, 290

Numerics

201 Created status code 92
204 No Content 206, 222
403 Forbidden status code

231, 239, 260
404 Not Found status code

90, 196
500 status codes 204
501 Not Implemented 289
503 Service Unavailable 206

A

Accept header 36, 88, 93, 284
access token 228, 270
AddItems call 40
admin user name 127
After pipeline 154, 192
Amazon Lambda, running event 

consumers 311
Angular 283
anti-corruption layer 66
API Gateway microservice

93, 95, 147, 225
API gateway pattern 274
Apiary 43
ApiGateway project 287
AppFunc 189–191, 254

applications, creating over 
microservices

end user applications for 
microservice systems
274–276

patterns for 276–284
shopping cart and product list 

example 284–300
ApplicationStartup method 153
ASP.NET Core 101, 188
ASP.NET generator, 

Yeoman 102, 303
AspNetCoreModule 309
async declaration 40
async/await feature 40
asynchronous collaboration

85–87
exposing event feed 85–86
subscribing to events 86–87

ATOM editor, setting up
304–305

ATOM event feed 118, 126
Aurelia 283
authentication

overview 224–226
with IdentityServer-based 

Login microservice
237–238

authorization 226–227
in Nancy modules 242–246

adding user's identity to 
requests 242–244

assigning user's identity to 
CurrentUser 244–246

reading user's identity from 
requests 244

with IdentityServer and 
middleware 239–242

Authorization header 230, 239
AuthorizationMiddleware.cs 

file 259
awaitables 41
Azure Functions, running event 

consumers as 311
Azure Service Fabric, HTTP 

APIs and 310
Azure Web Apps, HTTP APIs 

and 309
Azure WebJobs, event 

consumers and 311

B

Before pipeline 154, 192
BFF (backend for frontend) 

pattern 274, 281–282
bool 208
Bootstrapper.cs file 90, 216
bounded context 59
Browser object 162, 181
Browser type 162
BuildFunc method 258
BuildFuncExtensions.cs file 257
business capabilities 57–64, 76

identifying 59–60
individually deployable 76
overview 58–59
point-of-sale system 

example 60–64

 



INDEX316

business capabilities (continued)
identifying business capabil-

ities in point-of-sale 
domain 61–63

Special Offers 
microservice 63–64

replaceable and maintainable 
by small team 76

responsible for single 
capability 76

C

C# array 40
cache headers

reading and using 130–132
setting in Nancy 

responses 129–130
using to control caching

113–115
cache variable 131
cache-control header

113–114, 129
caching, using HTTP cache 

headers to control 113–115
CanProcess 98
characteristics of 

microservices 5–10
consists of one or more 

processes 7–8
individually deployable

6–7, 76–77
maintainable by small 

team 10, 76–77
owns its own data store 8–9
replaceable 10, 76–77
responsible for single 

capability 6, 76–77
circuit breaker

implementing using 
Polly 149–150

overview 144–145
Claims 230
ClaimsPrincipal 230, 244
Clients class 234
closed state 145
code communication 73
code reuse 15–16
collaboration

implementing 88–107
commands and queries 91
commands with HTTP 

POST or PUT 91–95
data formats 96–98

event-based 
collaboration 98–107

queries with HTTP 
GET 95–96

setting up project for Loy-
alty Program 89–91

types of 80–88
asynchronous 85–87
data formats 87–88
synchronous 82–84

command failures 135
command processing 110, 122
command- or query-based 

collaboration 142
commands 79–80

collaboration and 82–84
implementing

with HTTP POST 
command 91–95

with HTTP PUT 
command 91–95

communication failures 134
composite application pattern 274
ConfigurableBootstrapper 162
Configure method 213, 220
ConfigureAwait call 41
ConfigureLogger method 213
console app 102
Console Application (Package) 

project option 101
Content property 101, 106
Content-Type header 88
continuous delivery 11–12
Conway’s law 59
correlation tokens 138, 204, 

212, 265, 270
adding to log messages

214–215
adding to outgoing HTTP 

requests 215–219
configuring OWIN pipeline 

with 220–222
Correlation-Token request 

header 214–215
correlationToken 217
costs 13–14
Couchbase 117
couplings, loosening 113
Coupons microservice 75
create-shopping-cart-db.sql 120
cross-cutting concerns, 

handling 186
cross-cutting requirements 270
CurrentUser, assigning user’s 

identity to 244–246

D

Dapper library 118, 307
Dapper NuGet package 120
data at rest 224
data in motion 224
data locality 110
data model 115
data ownership, partitioning 

data between 
microservices 110–117

location of stored data
116–117

ownership of data follows busi-
ness capabilities 110–111

replication for speed and 
robustness 113–116

data storage
cache headers

reading and using 130–132
setting in Nancy 

responses 129–130
partitioning data between 

microservices
location of stored 

data 116–117
ownership of data follows 

business 
capabilities 110–111

replication for speed and 
robustness 113–116

storing data owned by 
microservice 119–122

storing events raised by 
microservice 122–129
by hand 123–126
using event store database 

system 126–129
data-model duplication 71
database technology, 

choosing 116
DefaultNancyBootstrapper 

class 90
defense in depth principal 227
DELETE endpoint 35, 41, 299
delivery, continuous 11–12
dependencies section, json 

file 103
dependency injection. See DI
deploying

event consumers 310–311
Amazon Lambda 311
Azure Functions 311
Azure WebJobs 311

 



INDEX 317

deploying (continued)
Linux servers 310–311
Windows servers 310

HTTP APIs 308–310
Azure Service Fabric 310
Azure Web Apps 309
Linux servers 309
Windows servers 309

deserializing data 53
development environment setup

dotnet command-line 
interface setup 305

IDE setup 304–305
ATOM 304–305
JetBrains Rider 305
Visual Studio 2015 304
Visual Studio Code 304

overview 22–23
Postman setup 306
SQL Server Express 

installation 307
Yeoman ASP.NET generator 

setup 305–306
DI (dependency injection)

40, 262
disadvantages of 

microservices 13–14
domain model code 53
domain model, Shopping 

Cart 33
domain-driven design 58, 111
dotnet command-line interface, 

setting up 305
dotnet pack command 270
dotnet publish command 309
dotnet restore command

120, 193, 263, 268
dotnet-test-xunit 167
drivers 75–76

E

Elasticsearch 138, 206, 212
Ember 283
end argument 50
end user applications for micros-

ervice systems 274–276
general-purpose 

applications 274–275
specialized applications

275–276
end value 51
endpoints, polling 52
Entity Framework 118
env argument 191

ERP (Enterprise Resource 
Planning) system 65, 67

error page 135
error-handling code 34
errors 135
etag header 113, 115
event consumers, 

deploying 310–311
Amazon Lambda 311
Azure Functions 311
Azure WebJobs 311
Linux servers 310–311
Windows servers 310

event feeds 85–86
Event Store database 118
Event type 123
event-based collaboration

81, 101
event-subscriber process 87, 89
EventData type 128
EventFeed component 48
events

event feed
exposing 85–86
implementing 99–101
subscribing to 104–107

raised by microservice, 
storing 122–129
by hand 123–126
using event store database 

system 126–129
subscribing to

event-subscriber 
process 101–104

overview 86–87
/events endpoint 52, 86
EventsFeedModule 171
EventsModule 51
EventStore component 33, 50, 

86, 123
EventStore.Client package 127
EventStore.cs file 124
eventStore.GetEvents 101
EventSubscriber class 104, 106
EventTable 125
example of microservices 23–28

adding Nancy module with 
implementation of 
endpoint 25–27

adding Nancy to project
24–25

adding OWIN 
middleware 27–28

creating empty ASP.NET core 
application 24

exponential backoff 143
extension method, Dapper 121
ExtensionMappings 98
external product catalog system, 

integrating with 65–67

F

Fact method 163–164, 173, 177
failed commands 140
FAILED microservices 139
failures 135–140

keeping logs 136–138
propagation of, 

avoiding 139–140
rolling forward vs. rolling 

back 138–139
using correlation tokens 138

fast-paced retry strategy
implementing 148–149
overview 146

feeds, ATOM 118, 126
fire and forget messages 138
firstEventSequenceNumber 

argument 171
fluent API, Polly 47
foo value 206
framework section, json file 103
function signature 189

G

GatewayModule 289, 292, 297
general-purpose 

application 275, 277
GET endpoint 35–36, 82, 

91, 163
greenfield projects 14–15

H

half-open state 145
HandleEvents method 106
hardcoded scopes 236
hardcoded users 232
hardware failures 134
Headline property 291
health check function 208
Hello World–style 

microservice 267
HelloMicroservicePlatform 

application 268
helper types, LibOwin 197

 



INDEX318

HTTP APIs
deploying 308–310

Azure Service Fabric 310
Azure Web Apps 309
Linux servers 309
Windows servers 309

of Shopping Cart 
microservice 35–42
adding items to shopping 

cart 38–40
getting shopping cart

35–38
removing items from 

shopping cart 41–42
HTTP cache headers, using to 

control caching 113–115
HTTP communication 94
HTTP GET command

implementing queries 
with 95–96

overview 43–44
HTTP POST command, 

implementing commands 
with 91–95

HTTP PUT command, 
implementing commands 
with 91–95

HTTP requests
adding correlation token 

to 215–219
overview 145

HTTP-based event feed 101
HttpClient method 34, 43, 105, 

215, 265
HttpClientFactory class

215–217, 239–240, 243, 251, 
262, 265–266

HttpClientFactory.cs file 263
HttpException 147

I

IAppBuilder 194
IBodyDeserializer interface

96, 98
ICache interface 131
id_token claim 242
IDbConnection 121
IDE (integrated development 

environment), setting 
up 304–305

ATOM 304–305
JetBrains Rider 305
Visual Studio 2015 304
Visual Studio Code 304

IdentityModel package 262
IdentityServer 228, 231, 

233–237
authorization with 239–242
IdentityServer-based Login 

microservice, authentica-
tion with 237–238

IdentityServer4 232
IdToken 260
IEventStore interface 49–50, 

125, 170
ILogger type 205, 212
INancyBootstrapper 

interface 90
insert statement, SQL 125
installing SQL Server 

Express 307
integer values 36
InternalConfiguration 90
Invoice microservice 83
Invoke method 195, 208
IPipelines interface 153
IRequestStartup 261
IResponseProcessor 96, 98
IShoppingCart interface 120
IShoppingCartStore 

interface 37, 120
ItemAddedToShoppingCart 

event 122
IWebHostBuilder 309

J

JetBrains Rider IDE, setting 
up 305

JSON array 44
JWTs (JSON Web Tokens)

229–230

K

Kibana 138, 206

L

lambda function 198
lambda-style middleware 255
lambdas, middleware as 193–194
LibOwin library 192
LibOwin.cs file 262
Linux servers

deploying event consumers 
to 310–311

deploying HTTP APIs to 309

localhost 5001 178
Location header 92–93
location of stored data 116–117
log context 213, 215
LoggerConfiguration type 213
logging

middleware for, 
implementing 212–222
adding correlation token to 

outgoing HTTP 
requests 215–219

adding correlation tokens 
to log messages
214–215

logging requests and 
request 
performance 219–220

overview 203–206
structured, with Serilog

205–206
LoggingMiddleware.cs file

219, 255
login mechanisms 226
Login microservice 231
lost connections 134
Loyalty Program microservice, 

setting up project for 89–91
loyalty_program_write 

scope 228, 237
LoyaltyProgramClient class

83–84, 93
LoyaltyProgramEventConsumer

102
LoyaltyProgramIntegrationTest

175
LoyaltyProgramUnitTests 

program 166
LoyaltyProgramUser class 84

M

Main method 102, 179, 310
maintainability, high level 

of 12–13
mapping capabilities 58, 121
Massive library 118
max-age value 113, 131
max-value 130
MEF (Managed Extensibility 

Framework) 277
micro ORMs 118
MicroserivceNET.Auth 252
MicroserivceNET.Logging 

package 251–252, 259

 



INDEX 319

MicroserivceNET.Platform 
package 252, 262, 267

MicroserviceNET.Auth 
package 259

MicroserviceNET.Log-
ging.1.0.0.nupkg 
package 258

microservices 3–10
.NET microservices 

technology stack 20–23
Nancy framework 20
OWIN (Open Web Inter-

face for .NET) 21–22
setting up development 

environment 22–23
characteristics of 5–10

consists of one or more 
processes 7–8

individually deployable 6–7
maintainable by small 

team 10
owns its own data store 8–9
replaceable 10
responsible for single 

capability 6
code reuse 15–16
costs and downsides of 13–14
creating applications over

end user applications for 
microservice 
systems 274–276

patterns for 276–284
shopping cart and product 

list example 284–300
example 23–28

adding Nancy module with 
implementation of 
endpoint 25–27

adding Nancy to 
project 24–25

adding OWIN 
middleware 27–28

creating empty ASP.NET 
core application 24

for greenfield projects 14–15
overview 5
reasons for using 10–13

enabling continuous 
delivery 11–12

high level of 
maintainability 12–13

robust and scalable 13
user requests 16–20

complete picture 19–20

main handling of 17–18
side effects of 18–19

See also reusable microservice 
platform, building

microservices, under stress 139
Microsoft.AspNet.Authentica-

tion.Cookies package 237
Microsoft.AspNet.Authentica-

tion.OpenIdConnect 
package 237

Microsoft.AspNetCore.Authenti-
cation.JwtBearer 
package 240

Microsoft.AspNetCore.Owin 
NuGet package 176

MidFunc 191
mocked endpoints 174
MockEventFeed 177
MongoDB 117
monitor/deep endpoint

207, 254
monitor/deep—checks 

endpoint 202
monitor/shallow endpoint

206, 255
monitor/shallow—does 

endpoint 200
monitoring

endpoints 200
implementing monitoring 

middleware 206–211
adding monitoring 

middleware to OWIN 
pipeline 210–211

deep monitoring 
endpoint 208–210

shallow monitoring 
endpoint 207–208

overview 200–202
pipeline, adding monitoring 

middleware to 210–211
MonitoringMiddleware 

constructor 209
MonitoringMiddleware.cs 

file 206, 253
MySQL 118

N

Nancy framework
adding module with imple-

mentation of endpoint
25–27

adding to project 24–25

authorization in 
modules 242–246
adding user's identity to 

requests 242–244
assigning user's identity to 

CurrentUser 244–246
reading user's identity from 

requests 244
automatically registering 

HTTP client factory in 
Nancy's container 265–267

Nancy.Testing library
162–173
setting up unit-test 

project 165–167
using browser object to 

unit-test 
endpoints 167–169

using configurable boot-
strapper to inject 
mocks into 
endpoints 170–173

setting cache headers in 
responses 129–130

Nancy.Response object 154
Nancy.Testing library 161
Nancy.Viewengines.Razor 

package 290
NancyModule class 36, 93
NancyResponse object 162
Negotiate property 93
.NET microservices technology 

stack 20–23
Nancy framework 20
OWIN (Open Web Interface 

for .NET) 21–22
setting up development 

environment 22–23
NewSpecialOffer event 100–101
next argument 191
NHibernate 118
noOp 197
Notifications microservice

68, 150
notifications, sending to 

customers 67–69
NotificationsClient 

component 87
NuGet client tools, packaging 

and sharing middleware 
with 251–270

automatically registering 
HTTP client factory
265–267

 



INDEX320

NuGet client tools, packaging 
and sharing middleware 
with (continued)

creating package with authori-
zation middleware 259–262

creating package with logging 
and monitoring 
middleware 252–258

creating package with rest 
client factory 262–265

using microservice 
platform 267–270

O

OAuth 228
omnisharp-atom 305
OnClick function 297
OnError pipeline 154
OnStart method 103
OnStop method 103
open state 145
OpenID Connect protocol

228, 238
ORM (object-relational 

mapper) 118
OWIN (Open Web Interface 

for .NET) 21–22
adding 27–28
as middleware

pipeline 188–192, 220–222
testing 195–198
writing 192–195

cross-cutting concerns, 
handling 186

OWIN pipeline 252, 257
owin.RequestProtocol 190
OwinContext type

193–194, 217

P

PaaS-level option 309
packaging middleware, with 

NuGet 251–270
automatically registering 

HTTP client factory in 
Nancy’s container 265–267

creating package with authori-
zation middleware 259–262

creating package with logging 
and monitoring 
middleware 252–258

creating package with rest 
client factory 262–265

using microservice 
platform 267–270

parameters object 37
partitioning data between 

microservices
location of stored data 116–117
ownership of data follows busi-

ness capabilities 110–111
replication for speed and 

robustness 113–116
using HTTP cache headers 

to control 
caching 113–115

using read models to mirror 
data owned by other 
microservices 115–116

Path property 206
patterns, for creating 

applications over 
microservices 276–284

API gateway 279–281
backend for frontend 

pattern 281–282
client-side vs. server-side 

rendering 283–284
composite applications

276–279
when to use 282–283

pipeline, Nancy 98
point-of-sale system 

example 60–64
identifying business capabili-

ties in point-of-sale 
domain 61–63

Special Offers 
microservice 63–64

Policy class 147
polling endpoints 52
Polly library

implementing circuit breaker 
using 149–150

overview 34, 47, 53, 147
pos-end-user header 242, 244
POST endpoint 35, 38–39, 

82–83, 91, 165, 287
PostgreSQL 118, 307
Postman

overview 52, 303
setting up 306

private|public directive 113
Product Catalog 

microservice 31, 61, 
111, 287

product list example. See shop-
ping cart and product list 
example

product_information_wrtie 
scope 228

ProductCatalogClient class
33, 42, 45, 130, 218

ProductCatalogProduct class 46
productlist view 291
ProductsModule 129
Program class 102
public API 75, 280
publishing events 49
PUT endpoint 83, 91, 165

Q

QA environment 160
queries

collaboration and 82–84
implementing

overview 91
with HTTP GET 

command 95–96
overview 79–80

query failures 135
query strings 113, 170
query-based collaboration 96

R

RabbitMQ 87
Raise method 49–50
raising events 49
Razor 283
React 283
read models, using to mirror 

data owned by other 
microservices 115–116

ReadEvents method 105
Recommendations 

microservice 48, 111, 285
register-user command

93, 98, 148
RegisterUserAndGetNotifica-

tion.cs file 176
remote procedure call. See RPC
removeFromBasket function 300
RemoveItems method 42
request method, HTTP 46, 189
Request object 206
Request.Query object 51
RequestProductFromProduct-

Catalogue method 218

 



INDEX 321

requestScope 264
RequestStartup method 217
requestTime 205
RequireClaims method 245
REST (representation state 

transfer) 283
RestSharp package 262
retry strategy

fast-paced, implementing
148–149

overview 142–144
slow-paced, implementing

150–153
retrying 142
reusable microservice platform, 

building
overview 249–251
packaging and sharing middle-

ware with NuGet 251–270
automatically registering 

HTTP client 
factory 265–267

creating package with 
authorization 
middleware 259–262

creating package with log-
ging and monitoring 
middleware 252–258

creating package with rest 
client factory 262–265

using microservice 
platform 267–270

robustness
client side's responsibility 

for 140–145
failures and 135–140

keeping logs 136–138
propagation of, avoiding

139–140
rolling forward vs. rolling 

back 138–139
using correlation 

tokens 138
robustness patterns 146–154

circuit breaker
implementing using 

Polly 149–150
overview 144–145

logging all unhandled 
exceptions 153–154

retry strategy 142–144
fast-paced, implementing

148–149
slow-paced, implementing

150–153

route handler 37
route-definition API, Nancy 52
RowAddedToShoppingCart-

Table event 122
RPC (remote procedure 

call) 46, 283

S

sc.exe utility 104
scalability 13
Scopes class 228, 234
scoping microservices

business capabilities 58–64
identifying 59–60
overview 58–59
point-of-sale system 

example 60–64
microservice characteristics 

and 75–77
primarily scoping to busi-

ness capabilities leads 
to good 
microservices 76

secondarily scoping to sup-
porting technical capa-
bilities leads to good 
microservices 76–77

technical capabilities 65–69
identifying 69
overview 65
supporting, examples 

of 65–69
unclear scope, moving for-

ward despite 69–75
carving out new microser-

vices from existing
73–74

planning to carve out new 
microservices later 75

starting bigger 70–73
security

authentication
overview 225–226
with IdentityServer-based 

Login 
microservice 237–238

authorization 226–227
in Nancy modules 242–246
with IdentityServer and 

middleware 239–242
trust between 

microservices 227–229
serializing data 53

Serilog library
overview 205, 212–213, 

222, 258
structured logging with

205–206
Serilog.Sinks.ColoredConsole 

package 212
Service Bus 87
service tests 157
service-level tests 173–180

creating mocked 
endpoints 175–177

creating test project 175
executing test scenario against 

microservice under 
test 179–180

starting processes of microser-
vice under test 177–179

ServiceBase class 103, 310–311
Shopper Tracking 

microservice 48, 116, 285
shopping cart and product list 

example 284–300
API gateway 287–289
letting users add products to 

cart 297–299
letting users remove products 

from cart 299–300
product list GUI 289–293
shopping cart GUI 294–296

Shopping Cart microservice
31, 111, 287

adding failure-handling 
policy 46–48

components of 33–34
creating empty project 34
fetching product 

information 42–44
HTTP API of 35–42

adding items to shopping 
cart 38–40

getting shopping cart
35–38

removing items from 
shopping cart 41–42

implementing basic event 
feed 48–52
raising event 49–50
simple event feed 50–52
storing event 50

overview 31–34
parsing product response

44–46
running code 52

ShoppingCartModule 36–37, 39

 



INDEX322

ShoppingCartStore 
component 33, 37

Simple.Data library 118
simplyfiedRequest 205
sinks 205
slow-paced retry strategy

implementing 150–153
overview 146

Sngle Responsibility 
Principle 249

software failures 135
SomeCondition 291
SomeList 291
source code library 193
Special Offers microservice

61, 63–64, 70, 75, 85, 99
SpecialOfferEvent 106
SpecialOffersSubscriber 

component 87
SQL database 303
SQL Server 118–119
SQL Server Express, 

installing 307
SSVE (Super Simple View 

Engine) 290
Start method 107
start value 51
startNumber variable 152
StartUp class 34, 210, 212, 

232–233, 238, 258, 265, 268
StatusCodeHandlers 90
Stop method 107
Stopwatch class 219
storing events 49
stressed API gateway 140
structured logging library 205
subscriber failures 135
subscribers, and events

50, 86–87
SubscriptionCycleCallback

105–106
Super Simple View Engine. See 

SSVE
sut object 164
synchronous collaboration

82–84
system under test 164
system-level tests 157–161
System.Globalization 

package 193
System.Security.Claims 

package 193, 230

T

Task 41
technical capabilities 57, 65–69, 

76–77
identifying 69
individually deployable 77
overview 65
replaceable and maintainable 

by small team 77
responsible for single 

capability 77
supporting, examples of 65–69

integrating with external 
product catalog 
system 65–67

sending notifications to 
customers 67–69

testing
Nancy.Testing library 162–173

setting up unit-test 
project 165–167

using browser object to 
unit-test 
endpoints 167–169

using configurable boot-
strapper to inject 
mocks into 
endpoints 170–173

OWIN middleware 195–198
service-level tests 173–180

creating mocked 
endpoints 175–177

creating test project 175
executing test scenario 

against microservice 
under test 179–180

starting processes of micros-
ervice under test
177–179

system-level tests 157–161
testing libraries 162–164
unit-level tests 161–162
what to test 156–157
See also xUnit library

TestModule 163–164
text-based formats 87
.ToString() method 205
transient failures 142
trust between 

microservices 227–229
trust levels 229

U

unit-level tests 157, 161–162
update-user command 94
UpdatedSpecialOffer 

event 100–101
usage-tracking process 63
UseMonitoringAndLogging 

method 258
UseOwin method 194
User class 234
user requests 16–20

complete picture 19–20
main handling of 17–18
side effects of 18–19

userid 36
UserModule class 93
UserModule_should class 168
userModule_should.cs file 167
UserModule.cs file 91
UseUrls 309
using statement 215

V

Visual Studio 2015, setting up 304

W

wget command 193
Windows servers, deploying 

event consumers to 310
WithHeader method 98
WithStatusCode method 98
WriteTo segments 213
writing events 127

X

xUnit library 163–164
xUnit test framework 181
xunit test runner 166

Y

YAML 87–88
YamlBodySerializer 98
YamlDotNet NuGet package 96
YamlSerializerDeserializer.cs 

file 96
Yeoman

ASP.NET generator, setting 
up 305–306

overview 102, 175, 232
yo command 306

 



MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Rx.NET in Action
by Tamir Dresher

ISBN: 9781617293061
375 pages
$49.99
February 2017

Reactive Applications with Akka.NET
by Anthony Brown

ISBN: 9781617292989
375 pages
$44.99
April 2017

Docker in Action
by Jeff Nickoloff

ISBN: 9781633430235
304 pages
$49.99
March 2016

 

www.manning.com
https://www.manning.com/books/rx-dot-net-in-action
https://www.manning.com/books/reactive-applications-with-akka-net
https://www.manning.com/books/docker-in-action
https://www.manning.com/books/rx-dot-net-in-action
https://www.manning.com/books/reactive-applications-with-akka-net
https://www.manning.com/books/docker-in-action


MORE TITLES FROM MANNING

For ordering information go to www.manning.com

C# in Depth, Third Edition
by Jon Skeet

ISBN: 9781617291340
616 pages
$49.99
September 2013

Functional Programming in C#
by Enrico Buonanno

ISBN: 9781617293955
325 pages
$49.99
March 2017

Kubernetes in Action
by Marko Lukša

ISBN: 9781617293726
325 pages
$44.99
July 2017

 

https://www.manning.com/books/c-sharp-in-depth-third-edition
https://www.manning.com/books/functional-programming-in-c-sharp
https://www.manning.com/books/kubernetes-in-action
www.manning.com
https://www.manning.com/books/c-sharp-in-depth-third-edition
https://www.manning.com/books/functional-programming-in-c-sharp
https://www.manning.com/books/kubernetes-in-action


A typical microservice system

The figure below illustrates how an e-commerce site built with microservices might handle a
user’s request to add an item to their shopping cart. Six different microservices are involved in
handling the request, and none of these microservices know anything about the internals of
the others. Five have their own private data stores dedicated to serving only their purpose.
Some of the handling happens synchronously in the context of the user request, and some
happens asynchronously.

 This is a typical microservice system. Requests are handled through the collaboration of
several microservices, each with a single responsibility and each as independent of the others
as possible. This book explores how to implement such a system and includes multiple com-
plete examples in which you write your own microservices.

6a. Publish ItemAddedtoCart event

Recommendations
store

Recommendations
microservice

Shopper
Tracking store

Shopper Tracking
microservice

6. Update user’s cart

4. Look up product

2. Add item
    to cart

7. JSON representation
    of cart

Price Calculation
microservice

8. Get updated
    price

9. Read price information
Price Calculation

store

12. Asynchronously read 
      ItemAddedToCart event

API gateway

1. Request: add
    item to cart

11. Response:
      updated cart
      and price 

Shopping Cart
microservice

3. Look up
    product

5. JSON representation
    of product

Product Catalog
microservice

Shopping Cart
store

Product
Catalog store

10. JSON representation
      of price information

 



Christian Horsdal Gammelgaard

M
icroservice applications are built by connecting single-
capability, autonomous components that communicate 
via APIs. These systems can be challenging to develop 

because they demand clearly defi ned interfaces and reliable 
infrastructure. Fortunately for .NET developers, OWIN (the 
Open Web Interface for .NET), and the Nancy web frame-
work help minimize plumbing code and simplify the task of 
building microservice-based applications.

Microservices in .NET Core provides a complete guide to build-
ing microservice applications. After a crystal-clear introduc-
tion to the microservices architectural style, the book will 
teach you practical development skills in that style, using 
OWIN and Nancy. You’ll design and build individual services 
in C# and learn how to compose them into a simple but 
functional application back end. Along the way, you’ll 
address production and operations concerns like monitoring, 
logging, and security. 

What’s Inside
●  Design robust and ops-friendly services
●  Build HTTP APIs with Nancy
●  Expose events via feeds with Nancy
●  Use OWIN middleware for plumbing

This book is written for C# developers. No previous experi-
ence with microservices required.

Christian Horsdal Gammelgaard is a Nancy committer and a 
Microsoft MVP.

To download their free eBook in PDF, ePub, and Kindle formats, 
owners of this book should visit 

www.manning.com/books/microservices-in-net-core

$49.99 / Can $57.99  [INCLUDING eBOOK]

Microservices in .NET Core

MICROSOFT.NET/MICROSERVICES

M A N N I N G

“A defi nite must-read for 
anyone who works in 
 C#/.NET regularly.” 

—Nick McGinness, Direct Supply

“Elegant and convincing. 
Developers will rethink their 
application architecture.”—James McGinn

Bull Valley Software

“Brings together two 
modern technologies 

and delves deeply 
  into the code.”—Andy Kirsch
Concur Technologies 

“An extremely approachable 
book that tackles a 
  complex topic.” 

—Shahid Iqbal
Head For Cloud

SEE  INSERT


	Microservices in .NET Core
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized
	Code conventions and downloads
	Author Online
	About the author

	about the cover illustration
	Part 1: Getting started with microservices
	Chapter 1: Microservices at a glance
	1.1 What is a microservice?
	1.1.1 What is a microservices architecture?
	1.1.2 Microservice characteristics

	1.2 Why microservices?
	1.2.1 Enabling continuous delivery
	1.2.2 High level of maintainability
	1.2.3 Robust and scalable

	1.3 Costs and downsides of microservices
	1.4 Greenfield vs. brownfield
	1.5 Code reuse
	1.6 Serving a user request: an example of how microservices work in concert
	1.6.1 Main handling of the user request
	1.6.2 Side effects of the user request
	1.6.3 The complete picture

	1.7 A .NET microservices technology stack
	1.7.1 Nancy
	1.7.2 OWIN
	1.7.3 Setting up a development environment

	1.8 A simple microservices example
	1.8.1 Creating an empty ASP.NET Core application
	1.8.2 Adding Nancy to the project
	1.8.3 Adding a Nancy module with an implementation of the endpoint
	1.8.4 Adding OWIN middleware

	1.9 Summary

	Chapter 2: A basic shopping cart microservice
	2.1 Overview of the Shopping Cart microservice
	2.1.1 Components of the Shopping Cart microservice

	2.2 Implementing the Shopping Cart microservice
	2.2.1 Creating an empty project
	2.2.2 The Shopping Cart microservice’s API for other services
	2.2.3 Fetching product information
	2.2.4 Parsing the product response
	2.2.5 Adding a failure-handling policy
	2.2.6 Implementing a basic event feed

	2.3 Running the code
	2.4 Summary


	Part 2: Building microservices
	Chapter 3: Identifying and scoping microservices
	3.1 The primary driver for scoping microservices: business capabilities
	3.1.1 What is a business capability?
	3.1.2 Identifying business capabilities
	3.1.3 Example: point-of-sale system

	3.2 The secondary driver for scoping microservices: supporting technical capabilities
	3.2.1 What is a technical capability?
	3.2.2 Examples of supporting technical capabilities
	3.2.3 Identifying technical capabilities

	3.3 What to do when the correct scope isn’t clear
	3.3.1 Starting a bit bigger
	3.3.2 Carving out new microservices from existing microservices
	3.3.3 Planning to carve out new microservices later

	3.4 Well-scoped microservices adhere to the microservice characteristics
	3.4.1 Primarily scoping to business capabilities leads to good microservices
	3.4.2 Secondarily scoping to supporting technical capabilities leads to good microservices

	3.5 Summary

	Chapter 4: Microservice collaboration
	4.1 Types of collaboration: commands, queries, and events
	4.1.1 Commands and queries: synchronous collaboration
	4.1.2 Events: asynchronous collaboration
	4.1.3 Data formats

	4.2 Implementing collaboration
	4.2.1 Setting up a project for Loyalty Program
	4.2.2 Implementing commands and queries
	4.2.3 Implementing commands with HTTP POST or PUT
	4.2.4 Implementing queries with HTTP GET
	4.2.5 Data formats
	4.2.6 Implementing an event-based collaboration

	4.3 Summary

	Chapter 5: Data ownership and data storage
	5.1 Each microservice has a data store
	5.2 Partitioning data between microservices
	5.2.1 Rule 1: Ownership of data follows business capabilities
	5.2.2 Rule 2: Replicate for speed and robustness
	5.2.3 Where does a microservice store its data?

	5.3 Implementing data storage in a microservice
	5.3.1 Storing data owned by a microservice
	5.3.2 Storing events raised by a microservice
	5.3.3 Setting cache headers in Nancy responses
	5.3.4 Reading and using cache headers

	5.4 Summary

	Chapter 6: Designing for robustness
	6.1 Expect failures
	6.1.1 Keeping good logs
	6.1.2 Using correlation tokens
	6.1.3 Rolling forward vs. rolling back
	6.1.4 Don’t propagate failures

	6.2 The client side’s responsibility for robustness
	6.2.1 Robustness pattern: retry
	6.2.2 Robustness pattern: circuit breaker

	6.3 Implementing robustness patterns
	6.3.1 Implementing a fast-paced retry strategy with Polly
	6.3.2 Implementing a circuit breaker with Polly
	6.3.3 Implementing a slow-paced retry strategy
	6.3.4 Logging all unhandled exceptions

	6.4 Summary

	Chapter 7: Writing tests for microservices
	7.1 What and how to test
	7.1.1 The test pyramid: what to test in a microservices system
	7.1.2 System-level tests: testing a complete microservice system end-to-end
	7.1.3 Service-level tests: testing a microservice from outside its process
	7.1.4 Unit-level tests: testing endpoints from within the process

	7.2 Testing libraries: Nancy.Testing and xUnit
	7.2.1 Meet Nancy.Testing
	7.2.2 Meet xUnit
	7.2.3 xUnit and Nancy.Testing working together

	7.3 Writing unit tests using Nancy.Testing
	7.3.1 Setting up a unit-test project
	7.3.2 Using the Browser object to unit-test endpoints
	7.3.3 Using a configurable bootstrapper to inject mocks into endpoints

	7.4 Writing service-level tests
	7.4.1 Creating a service-level test project
	7.4.2 Creating mocked endpoints
	7.4.3 Starting all the processes of the microservice under test
	7.4.4 Executing the test scenario against the microservice under test

	7.5 Summary


	Part 3: Handling cross-cutting concerns: building a reusable microservice platform
	Chapter 8: Introducing OWIN: writing and testing OWIN middleware
	8.1 Handling cross-cutting concerns
	8.2 The OWIN pipeline
	8.2.1 What belongs in OWIN, and what belongs in Nancy?

	8.3 Writing middleware
	8.3.1 Middleware as lambdas
	8.3.2 Middleware classes

	8.4 Testing middleware and pipelines
	8.5 Summary

	Chapter 9: Cross-cutting concerns: monitoring and logging
	9.1 Monitoring needs in microservices
	9.2 Logging needs in microservices
	9.2.1 Structured logging with Serilog

	9.3 Implementing the monitoring middleware
	9.3.1 Implementing the shallow monitoring endpoint
	9.3.2 Implementing the deep monitoring endpoint
	9.3.3 Adding the monitoring middleware to the OWIN pipeline

	9.4 Implementing the logging middleware
	9.4.1 Adding correlation tokens to all log messages
	9.4.2 Adding a correlation token to all outgoing HTTP requests
	9.4.3 Logging requests and request performance
	9.4.4 Configuring an OWIN pipeline with a correlation token and logging middleware

	9.5 Summary

	Chapter 10: Securing microservice-to- microservice communication
	10.1 Microservice security concerns
	10.1.1 Authenticating users at the edge
	10.1.2 Authorizing users in microservices
	10.1.3 How much should microservices trust each other?

	10.2 Implementing secure microservice-to-microservice communication
	10.2.1 Meet IdentityServer
	10.2.2 Implementing authentication with IdentityServer middleware
	10.2.3 Implementing microservice-to-microservice authorization with IdentityServer and middleware
	10.2.4 Implementing user authorization in Nancy modules

	10.3 Summary

	Chapter 11: Building a reusable microservice platform
	11.1 Creating a new microservice should be quick and easy
	11.2 Creating a reusable microservice platform
	11.3 Packaging and sharing middleware with NuGet
	11.3.1 Creating a package with logging and monitoring middleware
	11.3.2 Creating a package with authorization middleware
	11.3.3 Creating a package with rest client factory
	11.3.4 Automatically registering an HTTP client factory in Nancy’s container
	11.3.5 Using the microservice platform

	11.4 Summary


	Part 4: Building applications
	Chapter 12: Creating applications over microservices
	12.1 End user applications for microservice systems: one or many applications?
	12.1.1 General-purpose applications
	12.1.2 Specialized applications

	12.2 Patterns for building applications over microservices
	12.2.1 Composite applications: integrating at the frontend
	12.2.2 API gateway
	12.2.3 Backend for frontend (BFF) pattern
	12.2.4 When to use each pattern
	12.2.5 Client-side or server-side rendering?

	12.3 Example: a shopping cart and product list
	12.3.1 Creating an API gateway
	12.3.2 Creating the product list GUI
	12.3.3 Creating the shopping cart GUI
	12.3.4 Letting users add products to the shopping cart
	12.3.5 Letting users remove products from the shopping cart

	12.4 Summary


	Appendix A: Development environment setup
	A.1 Setting up an IDE
	A.1.1 Visual Studio 2015
	A.1.2 Visual Studio Code
	A.1.3 ATOM
	A.1.4 JetBrains Rider

	A.2 Setting up the dotnet command-line interface
	A.3 Setting up Yeoman ASP.NET generator
	A.4 Setting up Postman
	A.5 Installing SQL Server Express

	Appendix B: Deploying to production
	B.1 Deploying HTTP APIs
	B.1.1 Windows servers
	B.1.2 Linux servers
	B.1.3 Azure Web Apps
	B.1.4 Azure Service Fabric

	B.2 Deploying event consumers
	B.2.1 Windows servers
	B.2.2 Linux servers
	B.2.3 Azure WebJobs
	B.2.4 Azure Functions
	B.2.5 Amazon Lambda


	Further reading
	Microservices
	Software design and architecture in general
	Technologies used

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y


