
www.allitebooks.com

http://www.allitebooks.org

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2010 by William Stanek

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any
form or by any means without the written permission of the publisher.

Library of Congress Control Number: 2010923882

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 WCT 5 4 3 2 1 0

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
infor mation about international editions, contact your local Microsoft Corporation office or contact
Microsoft Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.
com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, Access, Active Directory, ActiveX, Azure, BitLocker, Excel,
Expression, MS, Outlook, SharePoint, SQL Server, Visual Basic, Visual Studio, Win32, Windows,
Windows PowerShell, Windows Server, and Windows Vista are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

The example companies, organizations, products, domain names, e-mail addresses, logos,
people, places, and events depicted herein are fictitious. No association with any real company,
organization, product, domain name, e-mail address, logo, person, place, or event is intended or
should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is
provided without any express, statutory, or implied warranties. Neither the authors, Microsoft
Corporation, nor its resellers, or distributors will be held liable for any damages caused or alleged
to be caused either directly or indirectly by this book.

Acquisitions Editor: Ken Jones, Devon Musgrave
Developmental Editor: Karen Szall
Project Editor: Karen Szall
Editorial Production: John Pierce
Technical Reviewer: Rozanne Murphy Whalen; Technical Review services provided by
   Content Master, a member of CM Group, Ltd
Cover: Tom Draper Design

Body Part No. X16-84870

www.allitebooks.com

http://www.allitebooks.org

iii

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Contents

Acknowledgments	 xix

Introduction	 xxi

Chapter 1 SQL Server 2008 Administration Overview 1

SQL Server 2008 and Your Hardware . 2

SQL Server 2008 Editions . 5

SQL Server and Windows . 8

Services for SQL Server 9

SQL Server Logins and Authentication 10

Service Accounts for SQL Server 10

Using the Graphical Administration Tools . 12

Using the Command-Line Tools . 16

BCP 16

SQLCMD 16

Other Command-Line Tools 19

Using SQL Server PowerShell . 21

Running and Using Cmdlets 21

Running and Using SQL Server PowerShell 22

Working with SQL Server Cmdlets 23

Chapter 2 Deploying SQL Server 2008 27

SQL Server Integration Roles . 27

Using SQL Server Integration Services 27

Using SQL Server 2008 for Relational
Data Warehousing 28

Using SQL Server 2008 for Multidimensional
Databases and Data Mining 30

Using SQL Server 2008 for Managed Reporting 32

www.allitebooks.com

http://www.allitebooks.org

iv Contents

Planning for Your SQL Server 2008 Deployment 33

Building the Server System for Performance 33

Configuring the I/O Subsystem 34

Ensuring Availability and Scalability 36

Ensuring Connectivity and Data Access 37

Managing SQL Server Configuration and Security 39

Running and Modifying SQL Server Setup 40

Creating New Instances of SQL Server 41

Adding Components and Instances 53

Repairing a SQL Server 2008 Installation 54

Upgrading Your Edition of SQL Server 2008 54

Uninstalling SQL Server 54

Chapter 3 Managing the Surface Security, Access, and
Network Configuration 57

Managing SQL Server Component Feature Access 58

Configuring SQL Server Services . 62

Managing the Services Configuration 63

Managing Service State and Start Mode 67

Setting the Startup Service Account 69

Configuring File Streaming 70

Configuring Service Dump Directories, Error
Reporting, and Customer Feedback Reporting 73

Managing the Network and SQL Server Native Client
Configuration . 75

Managing the Connections Configuration 76

Specifying the Shared Memory Network
Configuration 77

Specifying the Named Pipes Network Configuration 77

Specifying the TCP/IP Network Configuration 78

Configuring Security for Native Client Configurations 81

Configuring the Native Client Protocol Order 81

Configuring the Shared Memory Native Client
Configuration 82

Configuring the Named Pipes Native Client
Configuration 82

Configuring the TCP/IP Native Client Configuration 83

www.allitebooks.com

http://www.allitebooks.org

vContents

Chapter 4 Configuring and Tuning SQL Server 2008 85

Accessing SQL Server Configuration Data . 86

Working with the System Catalog and Catalog Views 87

Working with System Stored Procedures 93

Techniques for Managing SQL Server Configuration
Options . 101

Setting Configuration Options 101

Working with SET Options 102

Working with Server Options 105

Working with Database Options 106

Managing Database Compatibility 108

Configuring SQL Server with Stored Procedures 109

Using SQL Server Management Studio for Queries 109

Executing Queries and Changing Settings 110

Checking and Setting Configuration Parameters 112

Changing Settings with ALTER DATABASE 117

Chapter 5 Managing the Enterprise 123

Using SQL Server Management Studio . 123

Getting Started with SQL Server Management
Studio 124

Connecting to a Specific Server Instance 125

Connecting to a Specific Database 126

Managing SQL Server Groups . 127

Introducing SQL Server Groups 127

Creating a Server Group 128

Deleting a Server Group 129

Editing and Moving Server Groups 129

Adding SQL Servers to a Group 130

Managing Servers . 130

Registering a Connected Server 131

Registering a New Server in the Registered Servers
View 132

Registering Previously Registered SQL Server 2000
Servers 133

Updating Registration for Local Servers 133

www.allitebooks.com

http://www.allitebooks.org

vi Contents

Copying Server Groups and Registration Details
from One Computer to Another 133

Editing Registration Properties 136

Connecting to a Server 136

Disconnecting from a Server 136

Moving a Server to a New Group 136

Deleting a Server Registration 137

Using Windows PowerShell for SQL Server Management 137

Starting, Stopping, and Configuring SQL Server Agent 142

Starting, Stopping, and Configuring Microsoft Distributed
 Transaction Coordinator . 142

Managing SQL Server Startup . 143

Enabling or Preventing Automatic SQL Server Startup 143

Setting Database Engine Startup Parameters 145

Managing Services from the Command Line 148

Managing the SQL Server Command-Line Executable 149

Managing Server Activity . 150

Examining Process Information 151

Tracking Resource Waits and Blocks 153

Troubleshooting Deadlocks and Blocking
Connections 157

Tracking Command Execution in SQL Server 159

Killing Server Processes 159

Chapter 6 Implementing Policy-Based Management 161

Introducing Policy-Based Management . 161

Working with Policy-Based Management 164

Managing Policies Throughout the Enterprise 171

Importing and Exporting Policies 171

Configuring Central Management Servers 172

Executing Statements Against Multiple Servers 176

Configuring and Managing Policy Facets 176

Creating and Managing Policy Conditions 178

Creating and Managing Policies 181

Managing Policy Categories and Mandating Policies 183

viiContents

Evaluating Policies 185

Troubleshooting Policy-Based Management Policies 188

Chapter 7 Configuring SQL Server with SQL Server
Management Studio 191

SQL Server Management Studio Essentials 192

Managing the Configuration with SQL Server
Management Studio 192

Determining System and Server Information 194

Configuring Utility Control Points 194

Configuring Authentication and Auditing 200

Setting the Authentication Mode 200

Setting the Auditing Level 201

Enabling or Disabling C2 Audit Logging 201

Enabling or Disabling Common Criteria Compliance 202

Tuning Memory Usage . 203

Working with Dynamically Configured Memory 205

Using Fixed Memory 206

Enabling AWE Memory Support 206

Optimizing Memory for Indexing 208

Allocating Memory for Queries 208

Configuring Processors and Parallel Processing 210

Optimizing CPU Usage 210

Setting Parallel Processing 213

Configuring Threading, Priority, and Fibers 214

Configuring User and Remote Connections 216

Setting Maximum User Connections 216

Setting Default Connection Options 217

Configuring Remote Server Connections 220

Managing Server Settings . 221

Enabling or Disabling File Streaming Support 221

Setting the Default Language for SQL Server 222

Allowing and Disallowing Nested Triggers 223

Controlling Query Execution 223

Configuring Year 2000 Support 224

viii Contents

Managing Database Settings . 224

Setting the Index Fill 225

Configuring Backup and Restore Time-Out Options 226

Configuring Backup and Restore Retention Options 227

Flushing the Cache with Checkpoints 227

Compressing the Backup Media 228

Adding and Removing Active Directory Information 228

Troubleshooting Configuration Problems 228

Recovering from a Bad Configuration 228

Changing Collation and Rebuilding the
master Database 230

Chapter 8 Core Database Administration 233

Database Files and Logs . 233

Database Administration Basics . 238

Viewing Database Information in SQL Server
Management Studio 239

Viewing Database Information Using T-SQL 240

Checking System and Sample Databases 241

Examining Database Objects 242

Creating Databases . 245

Creating Databases in SQL Server Management
Studio 245

Creating Databases Using T-SQL 249

Altering Databases and Their Options . 251

Setting Database Options in SQL Server
Management Studio 251

Modifying Databases Using ALTER DATABASE 252

Configuring Automatic Options 257

Controlling ANSI Compliance at the Database Level 259

Configuring Parameterization 261

Configuring Cursor Options 263

Controlling User Access and Database State 264

Setting Online, Offline, or Emergency Mode 266

Managing Cross-Database Chaining and External
Access Options 266

ixContents

Configuring Recovery, Logging, and Disk I/O Error
Checking Options 267

Viewing, Changing, and Overriding Database Options 269

Managing Database and Log Size . 270

Configuring SQL Server to Automatically Manage
File Size 270

Expanding Databases and Logs Manually 271

Compressing and Shrinking a Database Manually 271

Manipulating Databases . 275

Renaming a Database 275

Dropping and Deleting a Database 276

Attaching and Detaching Databases 277

Tips and Techniques . 280

Copying and Moving Databases 280

Moving Databases 284

Moving and Resizing tempdb	 285

Creating Secondary Data and Log Files 287

Preventing Transaction Log Errors 288

Preventing a Filegroup Is Full Error 288

Creating a New Database Template 288

Configuring Database Encryption 288

Chapter 9 Managing SQL Server 2008 Security 291

Overview of SQL Server 2008 Security . 292

Working with Security Principals and Securables 292

Understanding Permissions of Securables 295

Examining Permissions Granted to Securables 297

SQL Server 2008 Authentication Modes . 301

Windows Authentication 301

Mixed Security and SQL Server Logins 302

Special-Purpose Logins and Users . 302

Working with the Administrators Group 303

Working with the Administrator User Account 303

Working with the sa Login 303

Working with the NETWORK SERVICE and SYSTEM
Logins 304

x Contents

Working with the Guest User 304

Working with the dbo User 305

Working with the sys and INFORMATION_SCHEMA
Users 305

Permissions . 305

Object Permissions 306

Statement Permissions . 311

Implied Permissions 312

Roles . 312

Server Roles 313

Database Roles 314

Managing Server Logins . 317

Viewing and Editing Existing Logins 317

Creating Logins 319

Editing Logins with T-SQL 321

Granting or Denying Server Access 323

Enabling, Disabling, and Unlocking Logins 324

Removing Logins 325

Changing Passwords 326

Configuring Server Roles . 326

Assigning Roles by Login 326

Assigning Roles to Multiple Logins 328

Revoking Access Rights and Roles by Server Login 329

Controlling Database Access and Administration 329

Assigning Access and Roles by Login 329

Assigning Roles for Multiple Logins 330

Creating Standard Database Roles 331

Creating Application Database Roles 333

Removing Role Memberships for Database Users 334

Deleting User-Defined Roles 334

T-SQL Commands for Managing Access and Roles 335

Managing Database Permissions . 336

Assigning Database Permissions for Statements 336

Object Permissions by Login 342

Object Permissions for Multiple Logins 344

xiContents

Chapter 10 Manipulating Schemas, Tables, Indexes,
and Views 347

Working with Schemas . 348

Creating Schemas 349

Modifying Schemas 350

Moving Objects to a New Schema 351

Dropping Schemas 353

Getting Started with Tables . 353

Table Essentials . 354

Understanding Data Pages 354

Understanding Extents 357

Understanding Table Partitions 357

Working with Tables . 358

Creating Tables 358

Modifying Existing Tables 364

Viewing Table Row and Size Information 367

Displaying Table Properties and Permissions 367

Displaying Current Values in Tables 368

Copying Tables 368

Renaming and Deleting Tables 369

Adding and Removing Columns in a Table 370

Scripting Tables 371

Managing Table Values . 371

Using Native Data Types 371

Using Fixed-Length, Variable-Length, and
Max-Length Fields 376

Using User-Defined Data Types 377

Allowing and Disallowing Nulls 379

Using Default Values 380

Using Sparse Columns 380

Using Identities and Globally Unique Identifiers 381

Using User-Defined Table Types 383

Using Views . 386

Working with Views 387

Creating Views 388

xii Contents

Modifying Views 392

Using Updatable Views 393

Managing Views 393

Creating and Managing Indexes . 394

Understanding Indexes 394

Using Clustered Indexes 396

Using Nonclustered Indexes 397

Using XML Indexes 397

Using Filtered Indexes 397

Determining Which Columns Should Be Indexed 398

Indexing Computed Columns and Views 399

Viewing Index Properties 400

Creating Indexes 402

Managing Indexes 407

Using the Database Engine Tuning Advisor 411

Column Constraints and Rules . 415

Using Constraints 415

Using Rules 420

Creating Partitioned Tables and Indexes . 421

Creating Partition Functions 421

Creating Partition Schemes 422

Creating Partitions 423

Viewing and Managing Partitions 424

Compressing Tables, Indexes, and Partitions 425

Using Row and Page Compression 426

Setting or Changing Compression Settings 427

Chapter 11 Importing, Exporting, and Transforming Data 429

Working with Integration Services . 429

Getting Started with Integration Services 430

Integration Services Tools 431

Integration Services and Data Providers 433

Integration Services Packages 433

xiiiContents

Creating Packages with the SQL Server Import And
Export Wizard . 434

Stage 1: Source and Destination Configuration 435

Stage 2: Copy or Query 443

Stage 3: Formatting and Transformation 447

Stage 4: Save and Execute 450

Understanding BCP . 453

BCP Basics 454

BCP Syntax 454

BCP Permissions and Modes 457

Importing Data with BCP 458

Exporting Data with BCP 460

BCP Scripts . 460

Using the BULK INSERT Command . 461

Chapter 12 Linked Servers and Distributed Transactions 463

Working with Linked Servers and Distributed Data 463

Using Distributed Queries 464

Using Distributed Transactions 466

Running the Distributed Transaction Coordinator
Service 468

Managing Linked Servers . 469

Adding Linked Servers 469

Configuring Security for Linked Servers 473

Setting Server Options for Remote and Linked Servers 475

Deleting Linked Servers 477

Chapter 13 Implementing Snapshot, Merge, and
Transactional Replication 479

An Overview of Replication . 479

Replication Components 480

Replication Agents and Jobs 481

Replication Variants 483

xiv Contents

Planning for Replication . 485

Replication Models 486

Preliminary Replication Tasks 487

Distributor Administration . 490

Setting Up a New Distributor 490

Updating Distributors 495

Creating Distribution Databases 497

Enabling and Updating Publishers 497

Enabling Publication Databases 498

Deleting Distribution Databases 499

Disabling Publishing and Distribution 499

Creating and Managing Publications . 499

Creating Publications 500

Viewing and Updating Publications 508

Setting Publication Properties 508

Setting Agent Security and Process Accounts 510

Controlling Subscription Access to a Publication 511

Creating a Script for a Publication 511

Deleting a Publication 512

Subscribing to a Publication . 512

Subscription Essentials 512

Creating Subscriptions 513

Viewing Subscription Properties 518

Updating, Maintaining, and Deleting Subscriptions 518

Validating Subscriptions 518

Reinitializing Subscriptions 519

Chapter 14 Profiling and Monitoring SQL Server 2008 521

Monitoring Server Performance and Activity 521

Reasons to Monitor SQL Server 521

Getting Ready to Monitor 522

Monitoring Tools and Resources 523

Working with Replication Monitor . 525

Starting and Using Replication Monitor 526

Adding Publishers and Publisher Groups 526

xvContents

Working with the Event Logs . 528

Examining the Application Log 530

Examining the SQL Server Event Logs 532

Examining the SQL Server Agent Event Logs 534

Monitoring SQL Server Performance . 535

Choosing Counters to Monitor 535

Performance Logging 538

Viewing Data Collector Reports 542

Configuring Performance Counter Alerts 543

Configuring a Management Data Warehouse 544

Understanding Management Data Warehouses 544

Creating the Management Data Warehouse 545

Setting Up Data Collection 545

Managing Collection and Generating Reports 546

Solving Performance Problems with Profiler 546

Using Profiler 546

Creating New Traces 548

Working with Traces 551

Saving a Trace 551

Replaying a Trace 551

Chapter 15 Backing Up and Recovering SQL Server 2008 557

Creating a Backup and Recovery Plan . 557

Initial Backup and Recovery Planning 558

Planning for Mirroring and Mirrored Database Backups 562

Planning for Backups of Replicated Databases 563

Planning for Backups of Very Large Databases 564

Planning for Backup Compression 565

Selecting Backup Devices and Media . 566

Using Backup Strategies . 568

Creating a Backup Device . 570

Performing Backups . 572

Creating Backups in SQL Server Management Studio 572

Using Striped Backups with Multiple Devices 577

xvi Contents

Using Transact-SQL Backup 578

Performing Transaction Log Backups 582

Restoring a Database . 583

Database Corruption and Problem Resolution 584

Restoring a Database from a Normal Backup 586

Restoring Files and Filegroups 591

Restoring a Database to a Different Location 593

Recovering Missing Data 594

Creating Standby Servers 594

Using Transact-SQL Restore Commands 596

Restoring the master Database . 601

Chapter 16 Database Automation and Maintenance 603

Overview of Database Automation and Maintenance 604

Using Database Mail . 606

Performing the Initial Database Mail Configuration 606

Managing Database Mail Profiles and Accounts 611

Viewing or Changing Database Mail System
Parameters 612

Using SQL Server Agent . 612

Accessing Alerts, Operators, and Jobs 613

Configuring the SQL Server Agent Service 613

Setting the SQL Server Agent Mail Profile 614

Using SQL Server Agent to Restart Services
Automatically 615

Managing Alerts . 615

Using Default Alerts 615

Creating Error Message Alerts 616

Handling Alert Responses 617

Deleting, Enabling, and Disabling Alerts 618

Managing Operators . 619

Registering Operators 619

Deleting and Disabling Notification for Operators 620

Configuring a Fail-Safe Operator 620

xviiContents

Scheduling Jobs . 621

Creating Jobs 621

Assigning or Changing Job Definitions 622

Setting Steps to Execute 623

Configuring Job Schedules 627

Handling Job Alerts 629

Handling Notification Messages 630

Managing Existing Jobs 631

Managing Job Categories 631

Automating Routine Server-to-Server Administration
Tasks . 632

Copying User Accounts, Tables, Views, and Other
Objects from One Database to Another 633

Copying Alerts, Operators, and Scheduled Jobs
from One Server to Another 636

Multiserver Administration . 637

Event Forwarding 637

Multiserver Job Scheduling 638

Database Maintenance . 641

Database Maintenance Checklists 641

Using Maintenance Plans 642

Checking and Maintaining Database Integrity 648

Chapter 17 Managing Log Shipping and Database Mirroring 653

Log Shipping . 653

Log Shipping: How It Works 653

Preparing for Log Shipping 655

Upgrading SQL Server 2000 Log Shipping to
SQL Server 2008 Log Shipping 656

Enabling Log Shipping on the Primary Database 657

Adding Log Shipping Secondary Databases 661

Changing the Transaction Log Backup Interval 664

Changing the Copy and Restore Intervals 664

Monitoring Log Shipping 664

Failing Over to a Secondary Database 665

Disabling and Removing Log Shipping 668

xviii Contents

Database Mirroring . 668

Database Mirroring Essentials 668

Configuring Database Mirroring 670

Managing and Monitoring Mirroring 675

Recovering by Using Failover 678

Removing Database Mirroring 680

Using Mirroring and Log Shipping . 681

Index	 683

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

xix

Acknowledgments

You know you’ve been at this thing called writing for a long time when people
ask how many books you’ve written and you just have no idea . For many years,

my bio stated that I was the author of more than 25 books . Several times my pub-
lishers have asked me to update the bio with a more precise number, so at around
number 61 I started counting to keep everyone happy . That was a few years ago; I’m
now somewhere over 100, depending on how you count . ;-)

For me, it’s always been about the craft of writing . I love writing, and I love
challenging projects most of all . Some of the most challenging books I ever wrote
were the SQL	Server	7.0	Administrator’s	Pocket	Consultant, published in 1999, the
SQL	Server	2000	Administrator’s	Pocket	Consultant, published in 2000, and the SQL	
Server	2005	Administrator’s	Pocket	Consultant, published in 2005 . Writing SQL	Server	
2008	Administrator’s	Pocket	Consultant and updating it for a second edition was no
less demanding .

The challenge in writing a day-to-day administrator’s guide to SQL Server is that
there’s so much I’d like to cover, but pocket consultants aren’t meant to be all-in-
one references . Pocket Consultants are meant to be portable and readable—the
kind of book you use to solve problems and get the job done wherever you might
be . With that in mind, I have to continually make sure I focus on the core of SQL
Server 2008 administration . The result is the book you hold in your hand, which I
hope you’ll agree is one of the best practical, portable guides to SQL Server 2008
and SQL Server 2008 R2 .

As I’ve stated in the three dozen or so pocket consultants I’ve written, the team
at Microsoft Press is top-notch . Karen Szall was instrumental throughout the writing
process . She was my primary contact at Microsoft . Ken Jones was the acquisitions
editor for the project . He believed in the book from the beginning and was really
great to work with . Completing and publishing the book wouldn’t have been pos-
sible without their help! Thank you so much!

Unfortunately for the writer (but fortunately for readers), writing is only one
part of the publishing process . Next came editing and author review . I must say,
Microsoft Press has the most thorough editorial and technical review process I’ve
seen anywhere—and I’ve written a lot of books for many different publishers .
Rozanne Whalen was the technical reviewer for the book, John Pierce was the proj-
ect manager and copy editor, Curtis Philips prepared pages, and Andrea Fox was the
proofreader .

I hope I haven’t forgotten anyone, but if I have, it was an oversight . Honest . ;-)

xxi

Introduction

Microsoft	SQL	Server	2008	Administrator’s	Pocket	Consultant, Second Edition,
is designed to be a concise and compulsively usable resource for SQL Server

2008 and SQL Server 2008 Release 2 (R2) administrators . It covers everything you
need to know to perform the core administrative tasks for SQL Server and is the
readable resource guide that you’ll want on your desk at all times . Because the focus
is on giving you maximum value in a pocket-sized guide, you don’t have to wade
through hundreds of pages of extraneous information to find what you’re looking
for . Instead, you’ll find exactly what you need to get the job done .

This book is designed to be the one resource you turn to whenever you have
questions about SQL Server administration . To this end, the book zeroes in on
daily administration procedures, frequently used tasks, documented examples, and
options that are representative while not necessarily inclusive . One of the key goals
is to keep content concise enough that the book is compact and easy to navigate
while also ensuring that the book contains as much information as possible . Instead
of a 1,000-page tome or a 100-page quick reference, you get a valuable resource
guide that can help you quickly and easily perform common tasks, solve problems,
and implement advanced SQL Server technologies such as replication, distributed
queries, and multiserver administration .

Who Is This Book For?

Microsoft	SQL	Server	2008	Administrator’s	Pocket	Consultant, Second Edition, covers
the Standard, Enterprise, Developer, Web, and Workgroup editions of SQL Server .
The book is designed for:

■■ Current SQL Server database administrators

■■ Accomplished users who have some administrator responsibilities

■■ Administrators migrating to SQL Server 2008 and SQL Server 2008 R2 from
previous versions

■■ Administrators transitioning from other database architectures

To include as much information as possible, I had to assume that you have basic
networking skills and a basic understanding of SQL Server . With this in mind, I don’t
devote entire chapters to understanding SQL Server architecture or running simple
SQL queries . But I do cover SQL Server installation, configuration, enterprise-wide
server management, performance tuning, optimization, maintenance, and much
more .

I also assume that you’re fairly familiar with SQL commands and stored proce-
dures as well as the standard Windows user interface . If you need help learning SQL
basics, you should read other resources (many of which are available from Microsoft
Press) .

xxii Introduction

How Is This Book Organized?

Microsoft	SQL	Server	2008	Administrator’s	Pocket	Consultant, Second Edition,	is
designed to be used in the daily administration of SQL Server, and as such the book
is organized according to job-related tasks rather than SQL Server features . Before
you use this book, you should be aware of the difference between the Administra-
tor’s Pocket Consultant titles and the Administrator’s Companion titles . Both types
of books are designed to be a part of an overall administrator’s library, but books in
the Administrator’s Pocket Consultant series are the down-and-dirty, in-the-trenches
books, and Administrator’s Companion titles are the comprehensive tutorials and
references that cover every aspect of deploying a product or technology in the
enterprise .

Speed and ease of reference are essential parts of this hands-on guide . The book
has an expanded table of contents and an extensive index for finding answers to
problems quickly . Many other quick reference features have been added to the
book as well . These features include quick step-by-step procedures, lists, tables with
fast facts, and cross-references .

The first several chapters cover the fundamental tasks you need for SQL Server
administration . Chapter 1 provides an overview of SQL Server administration tools,
techniques, and concepts . Chapter 2 discusses deploying SQL Server . Chapter 3
shows you how to configure SQL Server’s services, components, and networking
capabilities . Chapter 4 examines the structures available for configuring and tuning
SQL Server . The chapter looks at SQL Server’s system catalog and then continues
with a discussion of catalog queries and stored procedures .

In Chapters 5 through 9, I describe the essential tasks for administering SQL
Server . Chapter 5 details management techniques for server groups and servers
in the enterprise . In Chapter 6, you’ll learn about essential tasks for implementing
Policy-Based Management . Policy-Based Management defines policies that not
only configure SQL Server settings but also control whether and how settings can
be changed . Before you deploy SQL Server, you should familiarize yourself with
the available options and determine whether your servers will be put into specific
management groups . Chapter 7 explores configuring and tuning SQL Server using
SQL Server Management Studio . You’ll learn about optimizing memory usage, paral-
lel processing, authentication, auditing, and more . The core administration tasks for
creating and managing databases are covered in Chapter 8 . Chapter 9 focuses on
SQL Server security . To manage server security, you’ll create user logins, configure
login permissions, and assign roles . The permissions and roles you assign determine
the actions users can perform as well as what types of data they can access .

Data administration is the subject of the next set of chapters . Chapter 10 covers
techniques for creating, managing, and optimizing schemas, tables, indexes, and
views . In Chapter 11, you’ll find tasks for importing and exporting data, as well as
the old standby bulk copy program (BCP) . Chapter 12 focuses on integrating SQL
Server databases with other SQL Server databases and with other data sources .
You’ll find detailed discussions on distributed queries, distributed transactions,

xxiiiIntroduction

Microsoft Distributed Transaction Coordinator (MS DTC), and linked servers . Chapter
13 explores data replication . You’ll learn all about the latest replication techniques,
including merge replication and immediate-updating subscribers .

In the last four chapters I cover administration tasks you’ll use to enhance and
maintain SQL Server . Chapter 14 provides the essentials for working with server logs,
monitoring SQL Server performance, and solving performance problems . Chapter
15 starts by explaining how to create a backup and recovery plan . The chapter then
dives into common tasks for creating and restoring backups . Chapter 16 explores
database automation and maintenance, showing you how to create alerts, schedule
jobs, handle operator notifications, and more . You’ll also learn how to create main-
tenance plans and resolve database consistency problems . Chapter 17 begins with a
discussion about log shipping and database mirroring . Log shipping and database
mirroring are disaster recovery solutions designed to help improve availability and
quickly recover SQL Server .

Conventions Used in This Book

I’ve used a variety of elements to help keep the text clear and easy to follow . You’ll
find code terms and listings in monospace type, except when I tell you to actually
type a command . In that case, the command appears in bold type . When I intro-
duce and define a new term, I put it in italics .

Other conventions include the following:

■■ Best Practices To examine the best technique to use when working with
advanced configuration and administration concepts

■■ Cautions To warn you about potential problems you should look out for

■■ More Info To provide more information on a subject

■■ Notes To provide additional details on a particular point that needs
emphasis

■■ Real World To provide real-world advice when discussing advanced topics

■■ Security Alerts To point out important security issues

■■ Tips To offer helpful hints or additional information

I truly hope you find that Microsoft	SQL	Server	2008	Administrator’s	Pocket	
	Consultant, Second Edition, provides everything you need to perform the essential
admin is tra tive tasks for SQL Server as quickly and efficiently as possible . You are
wel come to send your thoughts to me at williamstanek@aol.com or follow me at
 www.twitter.com/WilliamStanek . Thank you .

Other Resources

No single magic bullet for learning everything you’ll ever need to know about SQL
Server 2008 exists . While some books are offered as all-in-one guides, there’s simply
no way one book can do it all . With this in mind, I hope you use this book as it is

xxiv Introduction

intended to be used—as a concise and easy-to-use resource . It covers everything
you need to perform core administration tasks for SQL Server, but it is by no means
exhaustive .

Your current knowledge will largely determine your success with this or any other
SQL Server resource or book . As you encounter new topics, take the time to practice
what you’ve learned and read about . Seek out further information as necessary to
get the practical hands-on know-how and knowledge you need .

I recommend that you regularly visit the SQL Server site (www.microsoft.com/
sqlserver/) and Microsoft’s support site (www.support.microsoft.com) to stay current
with the latest changes . To help you get the most out of this book, you can visit
my corresponding Web site at www.williamstanek.com/sqlserver . This site contains
information about SQL Server 2008 and updates to the book .

Support for This Book

Every effort has been made to ensure the accuracy of this book . As corrections or
changes are collected, they will be added to a Microsoft Knowledge Base article
accessible via the Microsoft Help and Support site . Microsoft Press provides support
for books, including instructions for finding Knowledge Base articles, at the follow-
ing Web site:

www.microsoft.com/learning/support/books/

If you have questions regarding the book that are not answered by visiting this
site or viewing a Knowledge Base article, send them to Microsoft Press via e-mail to
mspinput@microsoft .com .

Please note that Microsoft software product support is not offered through
these addresses .

We Want to Hear from You

We welcome your feedback about this book . Please share your comments and ideas
via the following short survey:

www.microsoft.com/learning/booksurvey

Your participation will help Microsoft Press create books that better meet your
needs and your standards .

NOTE We hope that you will give us detailed feedback via our survey. If you have

questions about our publishing program, upcoming titles, or Microsoft Press in gen-

eral, we encourage you to interact with us via Twitter at www.twitter.com/Microsoft-

Press. For support issues, use only the e-mail address shown above.

1

CHAP TER 1

SQL Server 2008
Administration Overview

■■ SQL Server 2008 and Your Hardware 2

■■ SQL Server 2008 Editions 5

■■ SQL Server and Windows 8

■■ Using the Graphical Administration Tools 12

■■ Using the Command-Line Tools 16

■■ Using SQL Server PowerShell 21

Microsoft SQL Server 2008 was released in 2008, and SQL Server 2008 Release
2 (R2) followed in 2010 . For ease of reference in this book, I refer to both

SQL Server 2008 and SQL Server 2008 R2 as SQL Server or SQL Server 2008 . When
I need to differentiate between the two releases, I’ll indicate that Release 1 (R1)
does this but R2 does that . Sometimes, I’ll simply state the additional options or
features that R2 provides .

SQL Server 2008 builds on SQL Server 2005 and finally makes Microsoft’s vision
of SQL Server as an end-to-end data platform a reality . SQL Server 2008 R2 is
an incremental release that includes some additional functionality and perfor-
mance enhancements . By functioning as a mission-critical data platform, allow-
ing dynamic development, providing extensive business intelligence, and going
beyond relational data, SQL Server 2008 provides the bedrock foundation on
which small, medium, and large organizations can build their next generation IT
infrastructure . At the core of SQL Server 2008 and R2, you will find the following:

■■ Database Engine Services Includes the core database, notification, rep-
lication, and full-text search components . The core database—also know as
the Database Engine—is the heart of SQL Server . Replication increases data
availability by distributing data across multiple databases, allowing you to
scale out the read workload across designated database servers . Full-text
search allows plain-language queries on data stored in SQL Server tables .

 ChAPTeR 1  SQL Server 2008 Administration Overview2

■■ Analysis Services Delivers online analytical processing (OLAP) and data-
mining functionality for business intelligence applications . Analysis Services
enables your organization to aggregate data from multiple data sources,
such as relational databases, and work with this data in a wide variety of
ways .

■■ Integration Services Provides an enterprise data transformation and
integration solution for extracting and transforming data from multiple data
sources and moving it to one or more destination data sources . This func-
tionality allows you to merge data from heterogeneous data sources, load
data into data warehouses and data marts, and more .

■■ Reporting Services Includes Report Manager and Report Server, which
provide a complete server-based platform for creating, managing, and
distributing reports . Report Server is built on standard Internet Information
Services (IIS) and .NET Framework technology, allowing you to combine the
benefits of SQL Server and IIS to host and process reports .

■■ Service Broker Provides reliable queuing and messaging as a central part
of the database . Queues can be used to stack work such as queries and other
requests and perform the work as resources allow . Messaging allows data-
base applications to communicate with each other . The Database Engine uses
Service Broker to deliver notification messages . This notification functionality
doesn’t require or use Notification Services, which has been removed from
SQL Server 2008 .

■■ Sync Framework Enables data synchronization for collaboration and
offline use . Developers can use Sync Framework to synchronize databases
and other types of data stores as well as files, folders, and metadata .

As you get started with SQL Server 2008, you should concentrate on these areas:

■■ How SQL Server 2008 works with your hardware

■■ What versions and editions of SQL Server 2008 are available and how they
meet your needs

■■ How SQL Server 2008 works with Windows operating systems

■■ What administration tools are available

SQL Server 2008 and Your Hardware

Successful database server administration depends on three things:

■■ Knowledgeable database administrators

■■ Strong database architecture

■■ Appropriate hardware

The first two ingredients are covered: you’re the administrator, you’re smart
enough to buy this book to help you through the rough spots, and you’ve imple-
mented SQL Server 2008 to provide your high-performance database needs . This

 SQL Server 2008 Administration Overview ChAPTeR 1 3

brings us to the issue of hardware . You should run SQL Server 2008 on a system with
adequate memory, processing speed, and disk space . You also need an appropriate
data and system protection plan at the hardware level .

NOTE Well-written database applications and proper database design make a data-

base administrator’s job much easier. Poor performance is caused more often by poor

application and data-structure design than by anything a database administrator can

remedy. In a way, overall design is a fourth ingredient for success—but it’s an ingredi-

ent that’s largely beyond your control as a database administrator.

The hardware guidelines for SQL Server 2008 R1 and R2 are the same . Key guide-
lines for choosing hardware for SQL Server are as follows:

■■ Memory All editions of SQL Server 2008 except for Express editions require
a minimum of 512 megabytes (MB) of RAM and have a recommended level
of RAM of 2,048 MB . In most cases, you want to have at least twice the
recommended minimum amount of memory . The primary reason for hav-
ing extra memory is performance . SQL Server 2008 and standard Windows
services together use about 512 MB of memory as a baseline on Windows
Server 2003 and 1 GB of memory as a baseline on Windows Server 2008 and
Windows Server 2008 R2 .

Additional database features—such as Analysis Services, Reporting Services,
and Integration Services—increase the baseline memory requirements (by
about 30 MB of RAM each) . Running SQL Server Management Studio on a
server with SQL Server uses 50 MB to 60 MB of RAM as a baseline . Also con-
sider the number of user connections . Each user connection consumes about
24 KB . Data requests and other SQL Server processes use memory as well,
and this memory usage is in addition to all other processes and applications
running on the server .

■■ CPU The 32-bit versions of SQL Server 2008 run on Intel x86 or compatible
hardware . The 64-bit versions run on Intel Itanium (IA64) and the X64 family
of processors from AMD and Intel, including AMD64 and Intel Extended
Memory 64 Technology (Intel EM64T) . SQL Server provides solid benchmark
performance with Intel Xeon 3 .4 GHz and higher processors or AMD Opteron
3 .1 GHz and higher processors . Any of these CPUs provide good starting
points for the average SQL Server system . You can achieve significant per-
formance improvements with a high-level on-processor cache . Look closely
at the L1, L2, and L3 cache options available—a higher cache can yield much
better performance overall .

The primary advantages of 64-bit processors over 32-bit processors are
related to memory limitations and data access . Because 64-bit processors
can exceed the 4 gigabyte (GB) memory limit of 32-bit processors, they can
store greater amounts of data in main memory, providing direct access to
and faster processing of data . In addition, 64-bit processors can process
data and execute instruction sets that are twice as large as those that 32-bit

 ChAPTeR 1  SQL Server 2008 Administration Overview4

processors can handle . Accessing 64 bits of data (versus 32 bits) offers a sig-
nificant advantage when processing complex calculations that require a high
level of precision . However, not all applications are optimized for 64-bit pro-
cessors, and this can present an implementation and maintenance challenge .

■■ Symmetric multiprocessing (SMP) SQL Server 2008 supports symmetric
multiprocessors and can process complex parallel queries . Parallel queries
are valuable only when relatively few users are on a system and the sys-
tem is processing large queries . On a dedicated system that runs only SQL
Server and supports fewer than 100 simultaneous users who aren’t running
complex queries, a single CPU should suffice . If the server supports more
than 100 users or doesn’t run on a dedicated system, you might consider
adding processors (or using a system that can support additional processors
as your needs grow) . Keep in mind that the size of the queries and data sets
being processed affects how well SQL Server scales . As the size of jobs being
processed increases, you have increased memory and CPU needs .

■■ Disk drives The amount of data storage capacity you need depends
entirely on the number and size of the databases that the server supports .
You need enough disk space to store all your data plus work space, indices,
system files, virtual memory, and transaction logs . For log shipping and
mirroring, you need space for the backup share and, in the case of a cluster,
the quorum disk . I/O throughput is just as important as drive capacity . For
the best I/O performance, FC (Fiber Channel) is the recommended choice for
high-end storage solutions . Instead of using a single large drive, you should
use several smaller drives, which allows you to configure fault tolerance with
RAID (redundant array of independent disks) . I recommend separating data
and logs and placing them on separate spindles . This includes the backup
share for log shipping and the quorum disk for clustering .

■■ Data protection You should add protection against unexpected drive
failure by using RAID . For data, use RAID 0 + 1 or RAID 5 . For logs, use RAID
1 . RAID 0 (disk striping without parity) offers good read/write performance,
but the effect of any failed drive is that SQL Server can’t continue operation
on an affected database until the drive is replaced and data is restored from
backup . RAID 1 (disk mirroring) creates duplicate copies of data on separate
drives, and you can rebuild the RAID unit to restore full operations . RAID 5
(disk striping with parity) offers good protection against single drive failure
but has poor write performance . For best performance and fault tolerance,
RAID 0 + 1 is recommended . This configuration consists of disk mirroring
and disk striping without parity .

■■ Uninterruptible power supply (UPS) SQL Server is designed to maintain
database integrity at all times and can recover information by using transac-
tion logs . However, this does not protect the server hardware from sudden
power loss or power spikes . Both of these events can seriously damage hard-
ware . To prevent this, get an uninterruptible power supply that conditions

 SQL Server 2008 Administration Overview ChAPTeR 1 5

the power . A UPS system gives you time to shut down the system properly in
the event of a power outage, and it is also important in maintaining database
integrity when the server uses write-back caching controllers .

If you follow these hardware guidelines, you will be well on your way to success
with SQL Server 2008 .

SQL Server 2008 Editions

SQL Server 2008 is distributed in four main editions: Workgroup, Standard, Enter-
prise, and Developer . SQL Server 2008 R2 adds two premium editions: R2 Data-
center and R2 Parallel Data Warehouse . In all these editions, you will find instance
features and shared features for installation . The instance features include the full
version of SQL Server and support services . The shared features include Sync Frame-
work and Integration Services, as well as the client tools, development tools, and
documentation required for working with SQL Server from a workstation .

The Workgroup edition is designed as an entry-level database solution . This edi-
tion is ideal for small departments in large enterprises and for small businesses that
need a robust database solution but do not need the extended business intelligence
features of the Standard or Enterprise edition . The Workgroup edition has the fol-
lowing features:

■■ Runs on multiple versions of the Windows operating system, including desk-
top and server versions .

NOTE  For all editions of SQL Server 2008 running on Windows Server 2003 and

Windows XP Professional, Service Pack 2 (SP2) or later must be installed. For addi-

tional requirements pertaining to the operation of SQL Server 2008 on Windows

Server 2003 and Windows XP Professional, refer to SQL Server 2008 Books Online.

■■ Supports an unlimited database size, up to the operating system maximum
for RAM; two CPUs for symmetric multiprocessing; limited replication pub-
lishing; and full-text search .

■■ Enables log shipping, which allows SQL Server to send transaction logs from
one server to another . Use this feature to create a standby server .

The most widely deployed edition is the Standard edition, which is designed for
an average-size organization . The Standard edition has the following features:

■■ Runs on multiple versions of Windows, including desktop and server
versions .

■■ Supports an unlimited database size, an unlimited amount of RAM, four
CPUs for symmetric multiprocessing, full replication publishing, and full-text
search .

■■ Provides basic features for Analysis Services, Reporting Services, and Integra-
tion Services .

 ChAPTeR 1  SQL Server 2008 Administration Overview6

■■ Includes database mirroring (single-threaded), log stream compression, and
two-node failover clustering .

■■ Supports limited data encryption and auditing features .

In R2, the Standard edition now allows installation as a managed instance for
application and multiserver management capabilities . As discussed in Chapter 7,
“Configuring SQL Server with SQL Server Management Studio,” this allows a Stan-
dard edition instance of the Database Engine to be registered with and managed
by a Utility Control Point (UCP) and to be configured as a data-tier application
(DAC) . UCPs work in conjunction with the new SQL Server Utility and the new Utility
Explorer . Although the Standard edition is a strong database server solution, large
organizations should consider the Enterprise edition . The Enterprise edition adds the
following features:

■■ Unlimited scaling and partitioning, which provides for exceptional perfor-
mance and the ability to scale SQL Server to support very large database
installations . By horizontally partitioning tables across multiple servers, you
can configure a group of servers to work together to support a large Web
site or enterprise data processing .

■■ Advanced database mirroring for complete online parallel operations and
advanced analysis tools for data mining and full-featured OLAP .

■■ Failover clustering for up to 16 nodes, multi-instance support, database
snapshots, indexed views, online page and file restore, backup compression,
and hot-add memory and CPU support .

■■ Extended data encryption and auditing features, including transparent data
encryption (TDE) and C2-compliant tracing .

■■ Multiserver administration, unlimited virtualization, automatic server group
management, and mirrored backup media .

New capabilities for the Enterprise edition in R2 include:

■■ Data compression with support for UCS-2 Unicode

■■ Master Data Services for data consistency across heterogeneous systems

■■ PowerPivot for SharePoint to enable querying and managing PowerPivot
workbooks published to a SharePoint site

■■ Application and multiserver management for enrolling and managing server
instances across the enterprise .

A Database Engine instance running the Enterprise edition can act as a UCP . As
you might expect, SQL Server 2008 Enterprise edition runs on multiple versions of
Windows, including desktop and server versions . The Developer edition supports
all the features of the Enterprise edition but is licensed only for development and
test use .

R2 Datacenter builds on the enhancements provided with the Enterprise edition
and is designed to deliver a high-performance data platform . Datacenter offers
high-scale complex event processing with SQL Server StreamInsight, support for

 SQL Server 2008 Administration Overview ChAPTeR 1 7

more than 8 physical processors and up to 256 logical processors, and support for
RAM up to the operating system maximum . Most all editions of R2 can enroll for
multi-instance management and be configured for DAC operations, but only the
Datacenter edition can use the multi-instance dashboard views and drilldowns for
centralized management . A Database Engine instance running the Datacenter edi-
tion can also act as a UCP . See Chapter 7 for more information .

R2 Parallel Data Warehouse, a specialized Datacenter edition, also builds on the
enhancements provided with the Enterprise edition and is designed as a highly
scalable, application-based solution for data warehouses . Parallel Data Warehouse
offers support for massively parallel processing (MPP) architecture from tens of tera-
bytes (TB) to one or more petabytes (PB) and advanced data warehousing capabili-
ties, including star join queries, change data capture, and parallel database copy .

Other editions of SQL Server 2008 are available . These editions include the Web
edition, the Compact edition (which replaces the Mobile edition in SQL Server 2005),
the Express edition (which includes the redistributable database engine), and SQL
Server Express with Advanced Services . The Compact edition allows you to use SQL
Server as the data store for mobile devices, desktops, and Web clients . The Express
edition is the version you run when you want an easy-to-use, low-end database
solution for desktop and small server applications . The Express edition is free and
can be distributed with third-party applications . Both editions support up to a 4-GB
database size, up to 1 GB of RAM, and a single CPU .

NOTE With the exception of the express and Compact editions, the differences

between various editions of SQL Server are mostly below the surface and don’t affect

the user interface. I refer to specific editions and differentiate between their installa-

tions only when necessary. As you would expect, the express and Compact editions

have simple management interfaces.

All editions of SQL Server 2008 (as in SQL Server 2005) automatically and
dynamically configure user connections . This behavior is different from SQL Server
7 .0 and earlier versions, in which specific limitations were placed on the number of
simultaneous user connections . Therefore, you don’t have to be concerned about
managing user connections as much as in early versions . Just keep in mind that as
the number of user connections increases, so does the amount of resource usage on
the server . The server has to balance the workload among the many user connec-
tions, which can result in decreased throughput for user connections and for the
server as a whole .

Like SQL Server 2005, SQL Server 2008 uses the Windows Installer and has a
fully integrated installation process . This means you can configure SQL Server 2008
components much like you can any other application you install on the operating
system . You can perform the installation remotely from a command shell as well as
locally .

SQL Server 2008 uses the same modular component architecture found in
recent releases of Windows . Because of this modular architecture, all non-Express

 ChAPTeR 1  SQL Server 2008 Administration Overview8

editions of SQL Server 2008 can be part of a single build with the installed edition
determined by the key . Further, you now can upgrade from one edition to another
edition, which you could not do in earlier releases of SQL Server . For example, you
can upgrade from the Developer edition to the Enterprise edition .

Chapter 2, “Deploying SQL Server 2008,” provides detailed instructions for
installing SQL Server 2008 . In an initial installation, the installer first checks the
system configuration to determine the status of required services and components,
which includes checking the configuration and availability of the operating system,
operating system service packs, installation permissions for the default install path,
memory, and hardware .

After checking the system configuration, the installer offers a choice of compo-
nents to install . Whether you use the Developer, Workgroup, Standard, or Enterprise
edition, you have similar options . You can install instance features, shared fea-
tures, or both . With instance features—such as Database Engine Services, Analysis
Services, and Reporting Services—you can install one or more instances of each
on the Enterprise and Developer editions . Each instance of SQL Server consists of
a distinct set of services that have specific settings for collation and other options .
Directory structures in the file system and in the registry reflect instance names, as
do the names associated with SQL Server support services . Shared features, on the
other hand, are shared across all instances of SQL Server and include the client tools,
development tools, Sync Framework, and Integration Services .

SQL Server replication and full-text search are part of Database Engine Services .
Unlike in SQL Server 2005 and earlier releases of SQL Server, full-text search is now
fully integrated into the Database Engine . Additionally, if you choose to install
Reporting Services, SQL Server Setup configures the server as a report server . Unlike
in SQL Server 2005 and earlier releases of SQL Server, Reporting Services does not
require or use IIS .

By installing the client tools, you can work with remote computers running SQL
Server from your workstation . When you install the client tools, you might also want
to install SQL Server Books Online and Business Intelligence Development Studio .
Books Online provides extended help documentation . Business Intelligence Devel-
opment Studio allows you to develop business solutions for SQL Server .

TIP The SQL Native Client header and library files are installed with Database engine

instances of SQL Server. You’ll find them under %ProgramFiles%\Microsoft SQL

Server\100\SDK. When you are developing business solutions for SQL Server, you need

to ensure that you copy and install all the required files.

SQL Server and Windows

When you install SQL Server on server operating systems, SQL Server makes several
modifications to the environment . These modifications include new system services,
integrated authentication, new domain/workgroup accounts, and registry updates .

 SQL Server 2008 Administration Overview ChAPTeR 1 9

Services for SQL Server
When you install SQL Server on Windows, several services are installed on the
server . These services include the following:

■■ Distributed Transaction Coordinator Coordinates distributed transac-
tions between two or more database servers .

■■ SQL Active Directory Helper MSSQLServerADHelper100 adds and
removes objects used to register SQL Server and Analysis Server instances . It
also updates object permissions related to SQL Server service accounts .

■■ SQL Full-Text Filter Daemon Launcher Starts the full-text filter daemon
process . This process performs document filtering and word breaking for
SQL Server full-text search .

■■ SQL Server The SQL Server service is the primary database service . For the
default database instance, this service is named SQL Server (MSSQLServer) .
When multiple instances of SQL Server are installed, you also see
MSSQL$instancename, where instancename is the name of the SQL Server
instance .

■■ SQL Server Agent The SQL Server Agent is used with scheduling and
alerting . For the default database instance, this service is named SQLServer-
Agent . When multiple instances of SQL Server are installed, you also see
SQLAgent$instancename, where instancename is the name of the SQL Server
instance .

■■ SQL Server Analysis Services Microsoft SQL Server Analysis Services
are used for OLAP and data mining . For the default database instance, this
service is named MSSQLServerOLAPService . When multiple instances of SQL
Server are installed, you also see MSOLAP$instancename, where instance-
name is the name of the SQL Server instance .

■■ SQL Server Browser The SQL browser (SQLBrowser) provides connection
details and information to clients .

■■ SQL Server Integration Services 10.0 MsDtsServer100 provides an
enterprise data transformation and integration solution for extracting and
transforming data .

■■ SQL Server Reporting Services Microsoft Reporting Services creates,
manages, and delivers reports . For the default database instance, this service
is named ReportServer . When multiple instances of SQL Server are installed,
you also see ReportServer$instancename, where instancename is the name of
the SQL Server instance .

■■ SQL Server VSS Writer SQLWriter provides the necessary interfaces for
backing up and restoring SQL Server by using the Volume Shadow Copy
Service (VSS) .

NOTE You will learn more about managing services and configuring service-related

options in Chapter 5, “Managing the enterprise.”

 ChAPTeR 1  SQL Server 2008 Administration Overview10

SQL Server Logins and Authentication
SQL Server authentication uses simple connection strings containing user IDs and
passwords—a technique that is compatible with non-Windows clients and appli-
cations . Integrated Windows authentication provides a more robust solution for
authentication by using Windows domain accounts and local computer accounts .
Completely integrating SQL Server security with Windows domain security allows
for authentication based on user and group memberships as well . Together, these
authentication techniques make managing access and security much easier . You can
do the following:

■■ Combine Windows and SQL Server authentication so that users in Windows
domains can access the server by using a single account and other users can
be logged on using a SQL Server login ID .

■■ Use authentication based only on Windows domain accounts so that only
users with a domain account can access the server .

In SQL Server 2008, SQL Server authentication by default supports encryption,
using certificates generated by SQL Server to encrypt the channel when transmitting
login packets . Because of this, you do not have to acquire and install a valid Secure
Sockets Layer (SSL) certificate to ensure that SQL Server credentials are secure and
encrypted regardless of whether SQL Server logins or Windows logins are used .

When running on Windows Server, the Database Engine also uses Group Policy
for password policy enforcement rules on SQL Server logins . SQL Server validates
passwords automatically during authentication and whenever you set or reset pass-
words, unless you suspend enforcement for a specific login . For more information,
see Chapter 9, “Managing SQL Server 2008 Security .”

Service Accounts for SQL Server
When SQL Server services run on Windows Server, they can be configured to log
on as the LocalSystem, LocalService, or NetworkService account or to use Windows
logon accounts . There are advantages and disadvantages to each of these tech-
niques, as follows:

■■ Domain account This option sets the service to use a standard domain
account with privileges you configure . Use domain accounts when the server
requires access to resources across the network, when you need to forward
events to the application logs of other systems, and when you want to con-
figure e-mail or pager notifications .

■■ Local system account This option provides administrative privileges to
SQL Server on the local system but no privileges on the network . If the server
requires resources only on the local server, use a local system account . Use
local system accounts when you want to isolate SQL Server and restrict it
from interacting with other servers .

 SQL Server 2008 Administration Overview ChAPTeR 1 11

■■ Network service account This option provides the same level of access
to resources and objects as is granted members of the Users group and
also allows services that run under this account to access the network and
communicate with other servers . Specifically, processes running under this
account can interact throughout a network by using the credentials of the
computer account .

■■ Local service account This option provides the same level of access to
resources and objects as is granted to members of the Users group . Ser-
vices that run under this account access network resources as a null session
without credentials . Use this account when a SQL Server service doesn’t need
access to other servers .

You should configure SQL Server services to log on using accounts with the
lowest possible privileges, making sure only those privileges required are assigned .
Table 1-1 provides a summary of the account types under which specific SQL Server
services can run as well as the default account . Although SQL Server and SQL Server
Agent can run under the NetworkService account, Microsoft doesn’t recommend
this when other services that use the account are installed on the computer .

TABLE 1-1 Account Types for SQL Server Services

SERVICE NAME
DOMAIN
USER

LOCAL
SYSTEM

NETWORK
SERVICE

LOCAL
SERVICE

DEFAULT
ACCOUNT

SQL Server Yes Yes Yes No Domain user

SQL Server Agent Yes Yes Yes No Domain user

Analysis Services Yes No Yes Yes Domain user

Reporting
Services

Yes Yes Yes Yes Domain user

Integration
Services

Yes Yes Yes Yes Network Service

SQL Server
Browser

Yes Yes Yes Yes Domain user

SQL Server Active
Directory Helper

No Yes Yes No Domain user

SQL Writer No Yes No No LocalSystem

NOTE Security in SQL Server is managed through logins, server roles, database

access permissions, and object permissions. Windows domain accounts can be used

for user authentication and logging on to SQL Server. You can, for example, specify

a Windows account to use for authentication and log on to SQL Server. You will learn

more about SQL Server logins, server roles, and security in Chapter 9.

 ChAPTeR 1  SQL Server 2008 Administration Overview12

Using the Graphical Administration Tools

SQL Server 2008 provides several types of tools for administration . The graphi-
cal administration tools are the ones you use most often . In R1, you can access
these tools by clicking Start, choosing All Programs, and then using the Microsoft
SQL Server 2008 menu . In R2, you can access these tools by clicking Start, choos-
ing All Programs, and then using the Microsoft SQL Server 2008 R2 menu . With
a full instance and shared feature installation, the Microsoft SQL Server 2008 and
Microsoft SQL Server 2008 R2 menus have the following options and suboptions:

■■ Import And Export Data

■■ SQL Server Business Intelligence Studio

■■ SQL Server Management Studio

■■ Analysis Services

■■ Deployment Wizard

■■ Configuration Tools

■■ Reporting Services Configuration Manager

■■ SQL Server Configuration Manager

■■ SQL Server Error And Usage Reporting

■■ SQL Server Installation Center

■■ Documentation And Tutorials

■■ Microsoft SQL Server Samples Overview

■■ SQL Server Books Online

■■ SQL Server Tutorials

■■ Integration Services

■■ Data Profile Viewer

■■ Execute Package Utility

■■ Performance Tools

■■ Database Engine Tuning Advisor

■■ SQL Server Profiler

SQL Server Management Studio is the tool you use to perform most core SQL
Server administration tasks . SQL Server Management Studio provides several differ-
ent views . When you start working with this tool, you see the Object Explorer view,
shown in Figure 1-1 . If this view is not displayed, you can access it (and other views)
from the View menu . The following descriptions explain how to use each view:

■■ Object Explorer Allows you to view and connect to SQL Server, Analysis
Services, Integration Services, Reporting Services, and SQL Server Compact
edition . Once you have connected to a particular server, you can view its

 SQL Server 2008 Administration Overview ChAPTeR 1 13

components as an object tree and can expand nodes to work your way to
lower levels of the tree .

■■ Registered Servers Shows the currently registered servers . The top bar of
the view allows you to quickly switch between servers of a particular type
(SQL Server, Analysis Server, Integration Server, Report Server, SQL Server
Compact Edition) .

■■ Template Explorer Provides quick access to the default Query Editor tem-
plates and any custom templates you create . You can create templates in any
script language supported by SQL Server Management Studio . SQL Server,
Analysis Server, and SQL Server Compact edition support templates .

■■ Solutions Explorer Provides quick access to existing SQL Server, Analysis
Server, and SQL Compact edition projects . A project details the connec-
tions, queries, and other functions that are performed when the project is
executed .

FIGURE 1-1 Use SQL Server Management Studio to perform core administration tasks .

If you have worked with SQL Server 2000 or SQL Server 2005, you will find that
SQL Server Management Studio is very different from the tools it replaces . Most of
the friendly wizards are gone and have been replaced with nonmodal dialog boxes
that provide quick access to configuration elements . As shown in Figure 1-2, Script
and Help options are provided on the top bar of these dialog boxes to make it easy
for you to generate a script based on your configuration choices and get help when
you need it .

 ChAPTeR 1  SQL Server 2008 Administration Overview14

FIGURE 1-2 Use the top bar options to quickly perform key tasks .

Another important tool is SQL Server Configuration Manager, shown in Fig-
ure 1-3 . SQL Server Configuration Manager replaces Server Network Utility, Client
Network Utility, and Services Manager . As a result, you can use SQL Server Configu-
ration Manager to perform many essential service, setup, and network configuration
tasks . When you select a service under the Services node, you can manage the ser-
vice in the details pane by right-clicking it and then choosing an appropriate option,
such as Start, Stop, or Restart . You can also choose Properties to configure the
related settings, such as startup mode, login account, and login account password .

FIGURE 1-3 Use SQL Server Configuration Manager to manage services and network configurations .

SQL Server 2008 is designed for local and remote management . You can use
most of the administration tools to manage local resources as well as remote
resources . For example, in SQL Server Management Studio, you can register a new

 SQL Server 2008 Administration Overview ChAPTeR 1 15

server and then connect to it . Afterward, you can remotely manage the server and
all its databases from your system . Table 1-2 provides a summary of the graphical
administration tools discussed, as well as other useful graphical tools .

TABLE 1-2 Quick Reference for Key SQL Server 2008 Administration Tools

ADMINISTRATION TOOL PURPOSE

Analysis Services Deployment
Wizard

Allows you to deploy the output from an Analy-
sis Services project to a target server by using
specified deployment configuration settings and
options .

Business Intelligence Develop-
ment Studio

Allows you to develop and manage business
intelligence objects . This feature includes SSIS
Designer, which you can use to create and
maintain SQL Server Integration Services (SSIS)
packages .

Database Engine Tuning Advisor Helps you tune the performance of SQL Server
databases .

Import And Export Data Wizard Allows you to define SSIS Services packages for
importing and exporting data .

SQL Server Configuration
Manager

Allows you to configure the client and server
network libraries and manage SQL Server
services . Replaces Server Network Utility, Client
Network Utility, and Services Manager . This
feature is covered in Chapter 3 .

SQL Server Installation Center Provides a central interface for upgrading to SQL
Server 2008 from SQL Server 2000 or SQL Server
2005, installing instance and shared features,
and configuring SQL Server clusters .

SQL Server Management Studio The main administration tool for SQL Server
2008 . This feature manages SQL servers,
databases, security, and more . Key aspects are
discussed in Chapter 7 . It replaces SQL Server
Enterprise Manager, Query Analyzer, and Analy-
sis Manager .

SQL Server Profiler Allows you to analyze user activity and gener-
ate audit trails . SQL Server Profiler is a graphical
interface to SQL Trace . This feature is covered
in Chapter 14, “Profiling and Monitoring SQL
Server 2008 .”

 ChAPTeR 1  SQL Server 2008 Administration Overview16

Using the Command-Line Tools

The graphical administration tools provide just about everything you need to
work with SQL Server . Still, there are times when you might want to work from the
command line, especially if you want to automate installation, administration, or
maintenance with scripts . The primary command-line tool is SQLCMD (sqlcmd .exe),
which replaces OSQL (osql .exe) and ISQL (isql .exe) . Another command-line tool you
can use is BCP (bcp .exe) .

BCP
BCP is the bulk copy program . You can use BCP to import and export data or to
copy data between instances of SQL Server 2008 . The major advantage of BCP is its
speed . It is much faster than standard database import/export procedures . Unfortu-
nately, its command-line syntax makes it much harder to use . The syntax for BCP is
shown in Sample 1-1 .

SAMPLE 1-1 BCP Syntax

bcp {dbtable | view | query} {in | out | queryout | format} datafile
 [-m maxerrors] [-f formatfile] [-e errfile]
 [-F firstrow] [-L lastrow] [-b batchsize]
 [-n native type] [-c character type] [-w Unicode characters]
 [-N keep non-text native] [-V file format version] [-q quoted id]
 [-C code page specifier] [-t field terminator] [-r row terminator]
 [-i inputfile] [-o outfile] [-a packetsize]
 [-S server name\instance name] [-U username] [-P password]
 [-T trusted connection] [-v version] [-R regional enable]
 [-k keep null values] [-E keep identity values]
 [-h "load hints"] [-x generate xml format file]

SQLCMD
SQLCMD is an SQL query tool that you can run from the command line . Unlike OSQL
and ISQL, which SQLCMD replaces, SQLCMD communicates with SQL Server only
through the OLE DB application programming interface (API) . Like OSQL and ISQL,
SQLCMD has very little overhead, making it a good choice when system resources
are a concern . Sample 1-2 shows the syntax for SQLCMD .

 SQL Server 2008 Administration Overview ChAPTeR 1 17

SAMPLE 1-2 SQLCMD Syntax

sqlcmd [-U login id] [-P password]
 [-S servername[\instancename]] [-H hostname] [-E trusted connection]
 [-d use database name] [-l login timeout] [-t query timeout]
 [-h headers] [-s colseparator] [-w screen width]
 [-a packetsize] [-e echo input] [-I Enable Quoted Identifier]
 [-c cmdend] [-L[c] list servers[clean output]]
 [-q "cmdline query"] [-Q "cmdline query" and exit]
 [-m errorlevel] [-V severitylevel] [-W remove trailing spaces]
 [-u unicode output] [-r[0|1] msgs to stderr]
 [-i inputfile] [-o outputfile] [-z new password]
 [-f <codepage> | i:<codepage>[,o:<codepage>]] [-Z new password and
 exit]
 [-k[1|2] remove[replace] control characters]
 [-y variable length type display width]
 [-Y fixed length type display width]
 [-p[1] print statistics[colon format]]
 [-R use client regional setting]
 [-b On error batch abort]
 [-v var = "value"...] [-A dedicated admin connection]
 [-X[1] disable commands[and exit with warning]]
 [-x disable variable substitution]

NOTE Unlike ISQL, SQLCMD supports connecting to named instances of SQL Server

2008. By default, SQLCMD connects to the default instance of SQL Server. If you

specify the instance name as well as the server name, SQLCMD will connect to the

specified instance on the designated server.

When you start SQLCMD, you can issue Transact-SQL (T-SQL) statements to run
queries, execute stored procedures, and perform additional tasks . Because you are
working at the command line, these commands aren’t executed automatically . You
need to use additional commands to tell SQLCMD when to execute statements,
when to ignore statements, and so on . These additional statements must be entered
on separate lines and are summarized in Table 1-3 .

NOTE With some commands, the colon [:] is optional to maintain compatibility with

OSQL scripts. This is indicated by the [:] notation in the table.

In previous releases of SQL Server, you used ODBCPING to verify an ODBC con-
nection between a client and server . In SQL Server 2008, OLE DB is the preferred
technique for establishing database connections . You can establish a connection to
a server for the purposes of testing and troubleshooting by using SQLCMD –A .

 ChAPTeR 1  SQL Server 2008 Administration Overview18

TABLE 1-3 SQLCMD Commands

COMMAND DESCRIPTION
SUPPORTED BY
INVOKE-SQLCMD

Ctrl+C Ends a query without exiting from SQLCMD . Yes

Go [count] Executes all statements entered up to the previ-
ous GO or RESET command . If count is used, the
cached statements are executed as a single batch
the number of times specified in count .

Yes

:!! command Executes the specified system command or script . No

:connect Connects to an instance of SQL Server or closes
the current connection . The syntax is as follows:
connect [timeout] [ServerName\Instance-
Name] [Username] [Password]

No

:ed Calls the text editor, which is defined by the SQL-
CMDEDITOR environment variable, such as SET
SQLCMDEDITOR=notepad .

No

:error
filename

Redirects all error output to the specified file . No

:exit
statement

Sets the exit statement . The batch or query is
executed, and then SQLCMD quits .

Yes

:help Displays a list of available commands . Yes

:list Prints the contents of the statement cache . No

:listvar Lists currently set variables . No

:out filename Redirects all query results to the specified file . No

:perftrace
filename

Redirects all performance trace information to
the specified file .

No

:quit Exits SQLCMD . Yes

:r filename Sets the name of a file containing T-SQL state-
ments to execute, which can include the GO
command .

Yes

:reset Clears statements you’ve entered so that they
aren’t executed .

No

:serverlist Lists the locally configured servers and any net-
work servers .

No

:setvar Sets variables . Yes

 SQL Server 2008 Administration Overview ChAPTeR 1 19

Other Command-Line Tools
Table 1-4 provides a summary of key command-line utilities included in SQL
Server 2008 . As the table shows, most command-line executables are stored in the
%ProgramFiles%\Microsoft SQL Server\100\Tools\Binn directory or in the directory
for the SQL Server component they relate to . On a 64-bit computer, you’ll find a
separate Program Files folder for 32-bit tools . For example, on X64 computers, you’ll
find a Program Files folder with 64-bit tools and a Program Files (x86) folder with
32-bit tools .

NOTE Some R2 tools are found under subfolders of %ProgramFiles%\Microsoft SQL

Server\MSSQL10_50, and some R1 tools are found under subfolders of %Program-

Files%\Microsoft SQL Server\MSSQL10. Officially, R1 is SQL Server 10 and R2 is SQL

Server 10.5

TABLE 1-4 Key Command-Line Tools for SQL Server 2008

NAME DESCRIPTION LOCATION

Bulk Copy Utility
(bcp .exe)

Used to import and
export data or to copy
data between instances
of SQL Server .

%ProgramFiles%\Microsoft
SQL Server\100\Tools\Binn

Database Maintenance
Plan Utility
(sqlmaint .exe)

Used to execute data-
base maintenance plans
created in previous ver-
sions of SQL Server .

%ProgramFiles%\
Microsoft SQL Server\
MSSQL10_50 .InstanceName\
MSSQL\Binn

Replication Monitor
(sqlmonitor .exe)

Used to start Replication
Monitor from a com-
mand line .

%ProgramFiles%\Microsoft
SQL Server\100\Tools\Binn

Reporting Services
Configuration Manager
(rsconfigtool .exe)

Used to start Reporting
Services Configuration
Manager from a com-
mand prompt .

%ProgramFiles%\Microsoft
SQL Server\100\Tools\Binn

Reporting Services
Configuration Utility
(rsconfig .exe)

Used to config-
ure a report server
connection .

%ProgramFiles%\Microsoft
SQL Server\100\Tools\Binn

Reporting Services Key
Management Utility
(rskeymgmt .exe)

Used to manage encryp-
tion keys on a report
server .

%ProgramFiles%\Microsoft
SQL Server\100\Tools\Binn

Reporting Services
 Utility (rs .exe)

Used to run Reporting
Services scripts .

%ProgramFiles%\Microsoft
SQL Server\100\Tools\Binn

 ChAPTeR 1  SQL Server 2008 Administration Overview20

NAME DESCRIPTION LOCATION

SQL Diagnostics Utility
(sqldiag .exe)

Used to perform
comprehensive diag-
nostics testing for
troubleshooting .

%ProgramFiles%\Microsoft
SQL Server\100\Tools\Binn

SQL Query Command-
Line Utility (sqlcmd .exe)

Used to perform admin-
istration and enter T-SQL
statements at the com-
mand prompt .

%ProgramFiles%\Microsoft
SQL Server\100\Tools\Binn

SQL Server Agent (sqla-
gent .exe)

Used to start SQL Server
Agent from a command
prompt .

%ProgramFiles%\
Microsoft SQL Server\
MSSQL10_50 .InstanceName\
MSSQL\Binn

SQL Server Database
Engine (sqlservr .exe)

Used to start and stop
an instance of the SQL
Server Database Engine .

%ProgramFiles%\
Microsoft SQL Server\
MSSQL10_50 .InstanceName\
MSSQL\Binn

SQL Server Database
Engine Tuning Advisor
(dta .exe)

Used to analyze work-
loads and recommend
optimization changes for
that workload .

%ProgramFiles%\Microsoft
SQL Server\100\Tools\Binn

SQL Server Execution
Package Utility
(dtexec .exe)

Used to configure and
execute a SQL Server
Integration Services
(SSIS) package . The cor-
responding GUI tool is
DTExecUI .

%ProgramFiles%\Microsoft
SQL Server\100\DTS\Binn

SQL Server Log Ship-
ping Agent (sqllogship .
exe)

Used to configure and
manage log shipping .

%ProgramFiles%\Microsoft
SQL Server\100\Tools\Binn

SQL Server PowerShell
(sqlps .exe)

Used to start the SQL
Server PowerShell and
load the SQL Server
provider .

%ProgramFiles%\Microsoft
SQL Server\100\Tools\Binn

SQL Server Profiler
(profiler .exe)

Used to start SQL Server
Profiler from a command
prompt .

%ProgramFiles%\Microsoft
SQL Server\100\Tools\Binn

 SQL Server 2008 Administration Overview ChAPTeR 1 21

NAME DESCRIPTION LOCATION

SQL Server Replication
Diff Tool (tablediff .exe)

Used to compare the
data in two tables and
display differences .

%ProgramFiles%\Microsoft
SQL Server\100\COM

SQL Server Service Bro-
ker Diagnostics Utility
(ssbdiagnose .exe)

Used to diagnose
communication and con-
figuration issues related
to SQL Server Service
Broker .

%ProgramFiles%\Microsoft
SQL Server\100\Tools\Binn

SQL Server SSIS Pack-
age Utilities
(dtutil .exe)

Used to manage SQL
Server Integration Ser-
vices (SSIS) packages .

%ProgramFiles%\Microsoft
SQL Server\100\DTS\Binn

Using SQL Server PowerShell

Windows PowerShell is being used more and more in enterprises, and SQL Server
2008 includes extensions to help you take advantage of this powerful shell environ-
ment . By default, when you install the Database Engine, SQL Server Setup installs
Windows PowerShell and then configures extensions for SQL Server 2008 . If you’ve
already installed the appropriate version of Windows PowerShell, SQL Server Setup
installs only the necessary extensions for SQL Server 2008 .

Running and Using Cmdlets
Windows PowerShell introduces the concept of a cmdlet (pronounced commandlet) .
A cmdlet is the smallest unit of functionality in Windows PowerShell . You can think
of a cmdlet as a built-in command . Rather than being highly complex, most cmdlets
are quite simple and have a small set of associated properties .

You use cmdlets the same way you use other commands and utilities . Cmdlet
names are not case-sensitive . This means you can use a combination of upper-
case and lowercase characters . After starting Windows PowerShell, you can enter
the name of a cmdlet at the prompt, and it will run in much the same way as a
 command-line command .

For ease of reference, cmdlets are named using verb-noun pairs . The noun tells
you specifically what the cmdlet works with . For example, the Get-Variable cmdlet
gets a named Windows PowerShell environment variable and returns its value . If you
don’t specify which variable to get as a parameter, Get-Variable returns a list of all
Windows PowerShell environment variables and their values .

You can work with cmdlets by executing commands directly at the shell prompt
or by running commands from scripts . You can enter any command or cmdlet that
you can run at the Windows PowerShell command prompt into a script by copying

 ChAPTeR 1  SQL Server 2008 Administration Overview22

the related command text to a file and saving the file with the .ps1 extension . You
can then run the script in the same way you would any other command or cmdlet .
However, when you are working with Windows PowerShell, the current directory
might not be part of the environment path . For this reason, you might need to use
the “ ./” notation when you run a script in the current directory, such as the following:

./runtasks

From the Windows command-line environment or a batch script, you can
execute Windows PowerShell cmdlets with the –Command parameter . Generally,
you should also suppress the Windows PowerShell logo with the –Nologo param-
eter and stop execution of profiles with the –Noprofile parameter . For example, at a
command prompt or in a .bat script, you can get a list of running processes by using
the following command:

powershell –nologo –noprofile –command get-process

NOTE Windows PowerShell also includes a rich scripting language and allows the use

of standard language constructs for looping, conditional execution, flow control, and

variable assignment. Discussion of these features is beyond the scope of this book. A

good resource is Windows	PowerShell	2.0	Administrator’s	Pocket	Consultant (Microsoft

Press, 2009).

Running and Using SQL Server PowerShell
SQL Server PowerShell (sqlps .exe) is a version of Windows PowerShell with exten-
sions for SQL Server 2008 . You use SQL Server PowerShell to work with instances of
the SQL Server Database Engine and the objects in those instances .

To invoke SQL Server PowerShell, you must first open a Command Prompt
window or Windows PowerShell prompt and then start SQL Server PowerShell by
typing sqlps at the command line . To exit SQL Server PowerShell and return to the
standard prompt, type exit .

Usually, when the shell starts, you see a message similar to the following:

Microsoft SQL Server PowerShell
Version 10.50
Microsoft Corp. All rights reserved.

You can disable this message by starting the shell with the –Nologo parameter,
such as

sqlps -nologo

Regardless of how you start the shell, you know you are using SQL Server Power-
Shell because the command prompt title bar changes to Command Prompt – sqlps
and the current path is preceded by PS .

 SQL Server 2008 Administration Overview ChAPTeR 1 23

The current execution policy for SQL Server PowerShell controls whether and
how you can run scripts . Although the default configuration depends on which
operating system and edition you’ve installed, you can quickly determine the execu-
tion policy by entering get-executionpolicy at the Windows PowerShell prompt .

To set the execution policy to require that all scripts have a trusted signature to
execute, enter the following command:

set-executionpolicy allsigned

To set the execution policy so that scripts downloaded from the Web execute
only if they are signed by a trusted source, enter:

set-executionpolicy remotesigned

To set the execution policy to run scripts regardless of whether they have a digi-
tal signature and work in an unrestricted environment, you can enter the following
command:

set-executionpolicy unrestricted

Working with SQL Server Cmdlets
When you work with the SQL Server provider for PowerShell, the available cmdlets
are different from those you use when you work with standard Windows PowerShell .
The reason is that the set of registered snap-ins is different . Additional SQL Server–
specific cmdlets are available, and some standard Windows PowerShell cmdlets
might not be available .

In the original implementation of SQL Server PowerShell, the following additional
cmdlets are included:

■■ Convert-UrnToPath Converts a SQL Server Management Object Uniform
Resource Name (URN) to a SQL Server provider path . The URN indicates a
management object’s location within the SQL Server object hierarchy . If the
URN path has characters not supported by Windows PowerShell, the charac-
ters are encoded automatically .

Convert-UrnToPath [-Urn] UrnToConvert

■■ Decode-SQLName Returns an unencoded SQL Server identifier when
given an identifier that has been encoded .

Decode-SqlName [-SqlName] IdentifierToBeDecoded

■■ Encode-SQLName Encodes special characters in SQL Server identifiers and
name paths to formats that are usable in Windows PowerShell paths . The
characters encoded by this cmdlet include \:/%<>*?[]| . If you don’t encode

 ChAPTeR 1  SQL Server 2008 Administration Overview24

these characters, you must escape them by using the single quotation mark
(') character .

Encode-SqlName [-SqlName] IdentifierToBeEncoded

■■ Invoke-PolicyEvaluation Evaluates management policies applied to SQL
Server instances . By default, this command reports compliance but does not
enforce compliance . To enforce compliance, set –AdHocPolicyEvaluation-
Mode to Configure .

Invoke-PolicyEvaluation [-Policy] PolicyName -TargetServerName
ServerName [-TargetExpression QueryString] <AddtlParams>

Invoke-PolicyEvaluation [-Policy] PolicyName -TargetObjects
SQLObjects <AddtlParams>

<AddtlParams>
[-AdHocPolicyEvaluationMode AdHocPolicyEvalMode] [-OutputXml]

■■ Invoke-Sqlcmd Runs a T-SQL or XQuery script containing commands
 supported by the SQLCMD utility . By default, this cmdlet doesn’t set any
 SQLCMD variables by default or return message output . As shown in
Table 1-3, many SQLCMD commands aren’t supported .

Invoke-Sqlcmd [-ServerInstance ServerStringOrObject] [-Database
DatabaseName] [-EncryptConnection] [-Username
UserName] [-Password Password] [[-Query] QueryString]

[-AbortOnError] [-ConnectionTimeout Timeout]
[-DedicatedAdministratorConnection]
[-DisableCommands] [-DisableVariables] [-ErrorLevel (0..24)]
[-HostName ComputerNameForSP_Who] [-IgnoreProviderContext]
[-InputFile FilePath]
[-MaxBinaryLength <1024|MaxBin] [-MaxCharLength <4000|MaxChars>]
[-NewPassword NewPasswordForSQLId] [-OutputSqlErrors]
[-QueryTimeout Timeout]
[-SeverityLevel (0..24)] [-SuppressProviderContextWarning]
[-Variable VariableString]

Because the set of available cmdlets and cmdlet options changes as new versions
of SQL Server PowerShell are released by Microsoft, you can use the following tech-
niques to discover new cmdlets and determine how they are used:

■■ To view a list of all cmdlets, type get-command at the shell prompt .

■■ To get detailed information about a cmdlet, type get-help cmdletname
–detailed, where cmdletname is the name of the cmdlet you want to
examine .

 SQL Server 2008 Administration Overview ChAPTeR 1 25

■■ To get detailed information about the SQL Server provider, which provides
SQL Server functionality for Windows PowerShell, type get-help sqlserver |
more .

You’ll find detailed information about using Windows PowerShell for administra-
tion in Chapter 5 . To load the SQL Server environment from a script, the script must
add the SQL Server snap-ins, set certain global variables, and then load the SQL
Server management objects . A sample initialization script follows:

#
Add the SQL Server PowerShell Provider, if available
$ErrorActionPreference = "Stop"
$sqlpsreg="HKLM:\SOFTWARE\Microsoft\PowerShell\1\ShellIds\
Microsoft.SqlServer.Management.PowerShell.sqlps"

if (Get-ChildItem $sqlpsreg -ErrorAction "SilentlyContinue")
{ throw "SQL Server Powershell Provider is not installed."
} else {
 $item = Get-ItemProperty $sqlpsreg
 $sqlpsPath = [System.IO.Path]::GetDirectoryName($item.Path)
}

Set global variables
Set-Variable SqlServerMaximumChildItems 0 -scope Global
Set-Variable SqlServerConnectionTimeout 30 -scope Global
Set-Variable SqlServerIncludeSystemObjects $false -scope Global
Set-Variable SqlServerMaximumTabCompletion 1000 -scope Global

Load the SQL Server Management Objects
$assemblylist = "Microsoft.SqlServer.Smo",
"Microsoft.SqlServer.Dmf ",
"Microsoft.SqlServer.SqlWmiManagement ",
"Microsoft.SqlServer.ConnectionInfo ",
"Microsoft.SqlServer.SmoExtended ",
"Microsoft.SqlServer.Management.RegisteredServers ",
"Microsoft.SqlServer.Management.Sdk.Sfc ",
"Microsoft.SqlServer.SqlEnum ",
"Microsoft.SqlServer.RegSvrEnum ",
"Microsoft.SqlServer.WmiEnum ",
"Microsoft.SqlServer.ServiceBrokerEnum ",
"Microsoft.SqlServer.ConnectionInfoExtended ",
"Microsoft.SqlServer.Management.Collector ",
"Microsoft.SqlServer.Management.CollectorEnum"

 ChAPTeR 1  SQL Server 2008 Administration Overview26

foreach ($asm in $assemblylist)
{ $asm = [Reflection.Assembly]::LoadWithPartialName($asm) }

Load SQL Server snapins, type data and format data
Push-Location
cd $sqlpsPath
Add-PSSnapin SqlServerCmdletSnapin100
Add-PSSnapin SqlServerProviderSnapin100
Update-TypeData -PrependPath SQLProvider.Types.ps1xml
update-FormatData -prependpath SQLProvider.Format.ps1xml
Pop-Location

Before you use this type of initialization script, you should check current
 documentation for the version and service pack of SQL Server you are run-
ning to determine the required components . On the Microsoft support site
(support.microsoft.com), you’ll likely find examples of initialization scripts for your
version and service pack .

27

CHAP TE R 2

Deploying SQL Server 2008
■■ SQL Server Integration Roles 27

■■ Planning for Your SQL Server 2008 Deployment 33

■■ Running and Modifying SQL Server Setup 40

With SQL Server Setup, you can create new instances of SQL Server, add com-
ponents, rebuild the SQL Server registry, uninstall SQL Server, and perform

other common setup tasks . Prior to setup and configuration, you need to decide
how SQL Server 2008 will be used in your environment . When you decide on the
role that SQL Server 2008 will have, you can plan for your deployment and then
roll out SQL Server .

SQL Server Integration Roles

SQL Server 2008 is designed as a comprehensive business intelligence platform
that can be used for the following:

■■ Extraction, transformation, and loading (ETL)

■■ Relational data warehouses

■■ Multidimensional databases and data mining

■■ Managed reporting

Using SQL Server Integration Services
SQL Server Integration Services (SSIS) provides a complete enterprise ETL platform
that is fully programmable and extensible . Although basic SSIS packages can be
created using SQL Server Management Studio, true ETL packages can be created
only with Business Intelligence Development Studio . With the redesigned SSIS, you
no longer have to write self-modifying packages . Instead, you can use package
variables and the package configuration framework to customize the way a pack-
age runs in different circumstances .

This book uses the terms DTS	2000 and SSIS to differentiate between SSIS
packages designed for SQL Server 2000 and SSIS packages designed for SQL

 ChAPTeR 2  Deploying SQL Server 200828

Server 2008 . You can use the DTS 2000 Package Migration Wizard to migrate DTS
packages designed for SQL Server 2000 to SSIS packages for SQL Server 2008 . A
DTS 2000 runtime is also provided so that you can run DTS 2000 packages without
upgrading them .

SQL Server 2008 improves ETL performance through the following features:

■■ Lookup cache enhancements A lookup builds a cache of retrieved rows
taken from the dataset you are working with . SQL Server 2005 has several
lookup limitations . It can populate the cache only by using an SQL query .
It can get data only from specific OLE DB connections . It reloads the cache
every time it is used . With SQL Server 2008, you can populate the cache
using a separate pipeline in the same package or in a different package
and use any available source data . To reuse the cache easily, you can save
the cache to virtual memory or file storage . Lookup performance has been
enhanced in many other ways as well, including a miss-cache feature that
loads key values that have no matching entries in the reference dataset into
the cache to save time .

■■ Pipeline parallelism Normally, SQL Server 2005 SSIS processes execution
trees serially even if you split the data flow . This occurs because all output
paths of a multicast belong to the same execution tree, and SQL Server
2005 SSIS doesn’t use more than one processor thread per execution tree
even if there are more processor threads available . With pipeline parallelism,
SQL Server 2008 can take full advantage of multiple processors or multiple
processor cores by using shared thread pools that allow multiple outputs of
a multicast to be executed simultaneously . Further, because each output has
an active buffer and not just one buffer and one active thread, this can result
in parallel execution that ensures that all processors and processor cores are
fully utilized .

NOTE You will find complete details for working with SSIS in Chapter 11, “Importing,

exporting, and Transforming Data.”

Using SQL Server 2008 for Relational Data Warehousing
SQL Server 2008 continues to provide a best-of-class relational data warehouse
platform in the tradition of SQL Server 2000 and SQL Server 2005 . The integration
of SQL Server with the Microsoft .NET Framework enables you to build database
applications that use managed code rather than Transact-SQL (T-SQL) .

Your managed code can be organized into classes and namespaces for ease of
management and maintenance . In many cases, you will find that managed code is
better than T-SQL at processing numbers, managing complicated execution logic,
and manipulating data strings with regular expressions . T-SQL remains a good
choice for performing data access with little or no procedural logic .

 Deploying SQL Server 2008 ChAPTeR 2 29

Like T-SQL, managed code runs on the computer running SQL Server . This
approach keeps the server functionality and the data close together without requir-
ing an additional layer in your infrastructure . It also allows you to take advantage
of the server’s processing power while reducing network traffic between database
servers and the middle tier .

SQL Server 2008 Enterprise has made significant enhancements to the relational
database management system (DBMS) that was used in previous versions . These
enhancements allow SQL Server 2008 to perform better when you create, manage,
and query large data warehouses . They include the following:

■■ Partitioned table parallelism SQL Server 2005 includes logic that allows
allocation of all available processor threads to a single-partition query . How-
ever, queries that work with more than one partition use one thread (and one
processor core) per partition even if more processor threads are available .
With partitioned table parallelism, SQL Server 2008 can take full advantage
of multiple processors or multiple processor cores when processing queries
across multiple partitions, and it can more predictably use available proces-
sor resources to improve query performance . Now when a query works with
more than one partition, SQL Server 2008 can assign all available threads to
the partitions, and it does so in round-robin fashion to boost performance .
This functionality can result in parallel execution plans that ensure all proces-
sors and processor cores are fully utilized .

■■ Partition-aligned indexed views Normally, when you have a fact table
that is partitioned by date or by another element, you use indexed views to
help speed up queries . With SQL Server 2005, you must drop any indexed
views defined on a partitioned table before using the ALTER TABLE SWITCH
statement to switch a partition in or out . With partition-aligned indexed
views in SQL Server 2008, you bring along the indexed views for the partition
when you switch in a partition . This means you don’t have to rebuild indexed
views on an entire partitioned table, and that helps to automatically maintain
indexed views while queries are automatically rewritten to use indexed views
to resolve queries that refer only to the base tables .

■■ GROUPING SET statements Normally, when you want to examine multiple
summary aggregates (indexed views), you have to run multiple queries and
then use the UNION ALL statement to combine the queries into one result
set . With the GROUP BY GROUPING SETS statement, you can write one query
against multiple aggregates and return a single result set . You can then order
the result set by using the ORDER BY statement .

■■ Merge operations Normally, when you want to perform multiple insert,
update, and delete operations on the same data, you must perform each
operation in turn by using separate INSERT, UPDATE, and DELETE statements,
which can tie up computer resources . With the MERGE statement, SQL Server
2008 joins the target table or view with a data source and then performs the
insert, update, and delete operations on the results of the join . Because the

 ChAPTeR 2  Deploying SQL Server 200830

merge operation requires only a single pass over the data, MERGE state-
ments offer much better performance than running separate insert, update,
and delete operations .

■■ Change data capture Normally, when you need to track changes made
to a database, you must use triggers, time-stamp columns, or resource-
intensive queries to determine what changed . Change data capture elimi-
nates the need for these techniques by tracking changes made to user tables
for you . The auxiliary data SQL Server 2008 gathers when using change data
capture makes it easy for you to determine what was changed and when .

■■ Minimally logged inserts Normally, when you write data to a database,
SQL Server must write it twice: once to the log and once to the database .
This write-twice approach is required because you might need to undo or
redo transactions . To bypass this write-twice approach, you can use minimal
logging with existing tables to log only the information that is required to
roll back the transaction while writing all the related data directly to the
database . Although this approach makes point-in-time recovery operations
impossible, it does speed up the write process considerably . SQL Server 2005
allows you to minimally log bulk import operations, index creation opera-
tions, index rebuild operations, and SELECT INTO statements . SQL Server
2008 extends minimal logging to include INSERT INTO…SELECT FROM
statements, provided that you are inserting into an empty table that has a
clustered index and no nonclustered indexes or that you are inserting into a
nonempty heap that has no indexes .

SQL Server 2008 supports resource controls, data compression, and backup
compression . Resource controls implemented in the Resource Governor allow you to
control the amount of CPU and memory resources allocated to various parts of the
database workload . It also allows you to reserve resources by prioritizing the work-
load . Data compression at the page and row level reduces the size of tables while
requiring additional processing power to compress and uncompress data . Backup
compression reduces the amount of data SQL Server 2008 has to write and the size
of your SQL Server backups .

Using SQL Server 2008 for Multidimensional Databases
and Data Mining
In SQL Server 2008, Analysis Services has been enhanced to provide better support
for multidimensional databases and data mining . Analysis Services has two key com-
ponents: an online analytical processing (OLAP) engine and a data-mining engine .
You can build an analytic database from any data source, including a relational
database . You then define the analytic structure, the data-mining models, and the
views into this structure .

SQL Server 2008 Analysis Services uses the Unified Dimension Model (UDM) . The
UDM combines the best features of the relational and OLAP data models, serving to
blur the lines between traditional relational databases and multidimensional OLAP

 Deploying SQL Server 2008 ChAPTeR 2 31

databases . A set of cubes and dimensions defined in SQL Server 2008 is referred
to as a Unified	Dimension	Model . This model improves query performance and
flexibility .

The data definition language for SQL Server 2008 Analysis Services is XML .
The use of XML means that the metadata repository has been removed and been
replaced by XML files that are stored and managed on the SQL Server 2008 Analysis
Services server . Additionally, unlike SQL Server 2000 Analysis Services, SQL Server
2008 Analysis Services performs all calculations on the server rather than on the
client . This eliminates the need for client-side caching and can improve query
performance for complex calculations . To reduce latency and improve performance,
proactive caching is used . The proactive caching mechanism can be customized so
that you can configure how often the cache is rebuilt, how queries are answered
while the cache is being rebuilt, and whether the cache is automatically refreshed
when transactions occur . You can control other characteristics of the cache as well .

With dimensionally modeled data warehouses, queries that join the fact table
with one or more dimension tables are known as star	join	queries . Most star join
queries express filter conditions on nonkey columns of the dimension tables and
perform an aggregation on a column of the fact table . SQL Server 2008 uses a
series of hash joins to optimize the star join, building a hash table for each dimen-
sion table . SQL Server 2008 also uses the hash tables to reduce the join information,
using a bitmap filter that eliminates nonqualifying fact table rows . Together, these
enhancements can reduce CPU processing time considerably .

When running MDX queries, SQL Server 2008 Analysis Services improves block
computation performance in two ways:

■■ By evaluating only nonnull values in the cube space

■■ By recognizing where the same work needs to be redone

Normally, regardless of whether the data is sparse or dense, cells in a cube are
always evaluated on a cell-by-cell basis . This means that if the data is sparse, cells
in a cube are calculated regardless of whether they return a null value, and if data
is dense, the same work is redone over and over . To speed up multidimensional
query processing, SQL Server 2008 calculates only cells that return nonnull values
and moves the evaluation process up the execution tree instead of performing it at
the cell level . This behavior allows SQL Server 2008 to work down the execution tree
to determine what cells need to be filled and then to obtain the necessary storage
engine data for base measures that are required to fill spaces as SQL Server 2008
works up the tree . Combined, these behaviors allow for fast and efficient processing .

Another area of Analysis Services that has been improved is cell writeback .
When users update cell values at the leaf or aggregate level, they are using the cell
writeback feature . With cell writeback, each measure group has a special writeback
partition that stores the difference between an updated cell value and a cell’s origi-
nal value . When a multidimensional query requests cell data from a measure group,
Analysis Services accesses all partitions, including the writeback partition, and

 ChAPTeR 2  Deploying SQL Server 200832

aggregates the results to produce the correct cell value . In SQL Server 2005, Analysis
Services requires writeback partitions to use relational OLAP storage . In SQL Server
2008, Analysis Services can use writeback partitions with multidimensional OLAP
storage, and this improves performance .

SQL Server 2008 Analysis Services has a new backup storage subsystem that
introduces an enhanced backup format . While you previously had to use raw file
system utilities to back up large databases, you can now use the backup subsystem
that is integrated into Analysis Services .

The scalable shared database (SSD) feature allows you to mark a database as
read-only and share it across multiple server instances from a storage area network
(SAN) . Previously, you needed to use a load-balancing solution, such as network
load balancing (NLB), and replicate the data between the servers to scale out in this
way . With SSD, you scale out processing, queries, data, and cache management to
new servers while eliminating the need to replicate data by using a central read-only
database on a shared SAN drive . This saves time and disk space .

A typical SSD deployment for Analysis Services involves the following:

■■ A network load-balancing solution between the clients and the servers

■■ SQL Server Analysis Services servers connected to a SAN

■■ A read-only database on a shared SAN drive

As in SQL Server 2005, you can apply a similar SSD solution to your relational
database needs .

Using SQL Server 2008 for Managed Reporting
SQL Server 2008 Reporting Services is designed to help you create a complete
solution for creating, distributing, and managing reports . Reporting Services
includes a set of tools for working with and viewing reports, an engine for hosting
and processing reports, and an extensible architecture for integration with exist-
ing IT infrastructure . For example, Reporting Services can be integrated easily with
Microsoft Office SharePoint Server so that a SQL Server 2008 report server can
deliver automatically generated reports to a SharePoint portal .

As an administrator, you can use the report server Web application to do the
following:

■■ Define role-based security for reports

■■ Schedule report generation and delivery

■■ Track reporting history

Reports can be delivered in a variety of ways and formats . You can configure
Reporting Services to deliver reports to a portal on a server running SharePoint,
send reports by e-mail to users, or allow users to access reports on the Web-based
report server . Reports can be created in HTML, PDF, TIFF, Microsoft Office Excel,
XML, CSV, and other formats . HTML reports are ideal for viewing on the Web .
Adobe PDF and TIFF are good formats to use for reports that will be printed . Excel,

 Deploying SQL Server 2008 ChAPTeR 2 33

XML, or CSV reports work well if the data in a report needs to be stored in a data-
base or if the user needs to manipulate the report data .

For SQL Server 2008, Microsoft rewrote the reporting engine in significant ways .
The changes allow the reporting engine to create much larger and much more com-
plex reports . Because Reporting Services no longer runs within Internet Information
Services (IIS) and manages its own memory, you have many more configuration
options . These changes to Reporting Services allow you to configure it to run more
efficiently with other database services .

Planning for Your SQL Server 2008 Deployment

As a SQL Server 2008 administrator or developer, you fill several different roles,
including database designer and database architect . The organization where you
work might have dedicated database designers and database architects, but so
much has changed in SQL Server that it is critical that you understand the new con-
figuration and setup options before deploying servers that run SQL Server .

Building the Server System for Performance
You have many basic options for deploying SQL Server 2008 . You need to choose
an edition of SQL Server and the version of Windows on which SQL Server will
run . After you make this decision, you should spend some time thinking about the
system configuration . In Chapter 1, “SQL Server 2008 Administration Overview,” you
learned some key guidelines, but you should not overlook the importance of the I/O
subsystem .

The I/O subsystem is one of the most fundamental components of the server sys-
tem, and you should give considerable thought to its configuration . Start by choos-
ing drives or storage systems that provide the appropriate level of performance .
There really is a substantial difference in speed and performance between various
drive specifications . When given a choice of internal drives for a computer running
SQL Server, look closely at both SATA II or higher and Ultra SCSI (preferably Ultra320
SCSI or higher) drives .

Consider not only the capacity of the drive, but also its rotational speed and
average seek time . The rotational speed is a measurement of how fast the disk spins .
The average seek time is a measurement of how long it takes to seek between disk
tracks during sequential I/O operations . Generally speaking, when comparing drives
that conform to the same specification, such as SATA II or Ultra320 SCSI, the higher
the rotational speed (measured in thousands of rotations per minute) and the lower
the average seek time (measured in milliseconds, or ms) the better . As an example,
a drive with a rotational speed of 15,000 RPM gives you 45–50 percent more I/O
per second than the average 10,000-RPM drive, all other things being equal . A drive
with a seek time of 3 .5 ms gives you a 25–30 percent response time improvement
over a drive with a seek time of 4 .7 ms .

 ChAPTeR 2  Deploying SQL Server 200834

Other factors to consider include the maximum sustained data transfer rate and
the mean time to failure (MTTF) . Most drives of comparable quality have similar
transfer rates and MTTF . For example, if you compare Ultra320 SCSI drives with a
15,000-RPM rotational speed, you will probably find similar transfer rates and MTTF .
As an example, the Maxtor Atlas 15K II has a maximum sustained data transfer
rate of up to 98 megabytes per second (MBps) . The Seagate Cheetah 15K .4 has a
maximum sustained data transfer rate of up to 96 MBps . Both have an MTTF of 1 .4
million hours .

Transfer rates can also be expressed in gigabits per second . A transfer rate of 1 .5
gigabits per second is equivalent to a data rate of 187 MBps . A transfer rate of 3 .0
gigabits per second is equivalent to 374 MBps . Sometimes you’ll see a maximum
external transfer rate (per the specification to which the drive complies) and an aver-
age sustained transfer rate . The average sustained transfer rate is the most impor-
tant factor . The Seagate Barracuda 7200 SATA II drive has a rotational speed of 7,200
RPM and an average sustained transfer rate of 58 MBps . With an average seek time
of 8 .5 ms and an MTTF of 1 million hours, the drive performs comparably to other
7200-RPM SATA II drives . However, most Ultra320 SCSI drives perform better .

NOTE Temperature is another important factor to consider when you are selecting

a drive—but it is a factor few administrators take into account. Typically, the faster a

drive rotates, the hotter it runs. This is not always the case, but it is certainly some-

thing you should consider when making your choice. For example, 15K drives tend

to run hot, and you must be sure to carefully regulate temperature. Both the Maxtor

Atlas 15K II and the Seagate Cheetah 15K.4 can become nonoperational at tempera-

tures of 70 degrees Celsius or higher (as would most other drives were they to reach

these temperatures).

Configuring the I/O Subsystem
When you configure your server system, you typically have to make a choice
between hardware RAID (redundant array of independent disks) and software RAID
for the server’s internal disk drives . You must make this choice, in most cases, even
if your server will use external storage . Cost and performance are the two key issues
to consider for internal RAID .

Hardware RAID is more expensive than software RAID because it requires RAID
controller cards, but the expense of hardware RAID is offset by the performance
boost it offers . With software RAID, the server’s operating system manages the RAID
implementation, which requires system resources: CPU processing power, memory,
and so on . With hardware RAID, the server’s RAID controllers manage the RAID
implementation .

Hardware RAID might also give you additional fault-tolerance options . For
example, releases of Windows Server support software RAID levels 0 (disk striping),
1 (disk mirroring), and 5 (disk striping with parity) . With hardware RAID, you might

 Deploying SQL Server 2008 ChAPTeR 2 35

have additional options, such as RAID 0 + 1 (which is also referred to as RAID 10 and
combines disk striping and mirroring) .

The operating system drive of a SQL Server system is often configured with
RAID 1, as are drives used for SQL Server’s transaction logs . RAID 1 provides a full
duplicate (or mirror) of a drive that can be used in case of the failure of a primary
drive . Because all data writes must go to two drives, disk mirroring doesn’t have
the best write performance . Read performance is improved over that provided by
a single disk because seeks typically can be split over both disks in the set, which
means you could essentially get twice as many reads as with a single disk .

NOTE RAID can be configured in many ways. Sometimes it is more efficient to use

both hardware and software RAID. For example, you could use hardware RAID control-

lers to perform parity calculations and software RAID to stripe across the disks. Some-

times you should use two drive controllers with mirroring (a technique referred to as

disk	duplexing). Disk duplexing has the same write performance as a single disk.

With RAID 1, failure recovery is easier and quicker than with other RAID options
because you have a full duplicate disk . This is also why RAID 1 is recommended for
the operating system drive . RAID 1 is recommended for drives containing transac-
tion logs because transaction logs are written sequentially and read only in the case
of a rollback operation . Thus, when you put a transaction log on its own mirrored
drive, you can achieve good performance and have fault tolerance .

Drives containing SQL Server’s data files are often configured with RAID 5 or
RAID 0 + 1 . RAID 5 provides fault tolerance by striping data across multiple disks
and storing parity information as data is written . Sections of data and parity infor-
mation are written to each disk in the set in turn . In the case of disk failure, the par-
ity information can be used to re-create the data on any lost disk . It is important to
point out that this parity information can be used to recover only from the loss of a
single drive in the array . If multiple drives fail simultaneously, the entire array will fail .

RAID 5 has advantages and disadvantages . With RAID 1, you can mirror a
1 .5-terabyte (TB) drive onto another 1 .5-TB drive . When you do this, there is a
50-percent overhead requirement, meaning that you use double the number of
disks and gain no additional storage space . With a three-disk RAID 5 array, the
amount of overhead required is about one-third (33 percent) of the total disk
space . As you add volumes to a RAID 5 array, the overhead requirement decreases .
Because reads are performed across multiple drives, RAID 5 offers better read per-
formance than RAID 1 . Essentially, you can perform as many reads as with a single
disk multiplied by the number of disks in the array . This means that an array with
five disks would have a read capacity five times that of a single disk .

RAID 5 has poorer write performance than RAID 1 because whenever data is
written to a RAID 5 array, four I/O operations are required: two reads and two
writes . The target disk stripe and the parity stripe must be read first . The parity is
then calculated, and then the target stripe and the parity stripe are written to disk .

 ChAPTeR 2  Deploying SQL Server 200836

RAID 0 + 1 is a combination of disk striping and mirroring . With RAID 0 + 1, you
mirror a disk stripe, ensuring that there is a duplicate for each striped disk, while
gaining the performance of pure disk striping . As with RAID 1, each RAID 0 + 1
write operation requires two I/O operations: a write to each disk in the mirror . Read
operations typically are spread across multiple disks, offering high performance (as
with RAID 0 or RAID 5) .

RAID 0 + 1 offers very high fault tolerance . Unlike RAID 1 and 5, the array can
continue to operate in many cases even if more than one disk fails . In fact, all the
disks on one side of the mirror could fail and the array would continue to oper-
ate . Failure of both sides of the mirror would result in a complete failure of the set,
however .

NOTE A disadvantage of RAID 0 + 1 is the number of disks required. You need twice

as many disks as you would need with a striped set. To mirror a 1-TB stripe set, you

need another 1-TB stripe set, but the total capacity of the mirror does not change. It

remains 1 TB.

 When choosing between RAID 5 and RAID 0 + 1, and without considering the
comparative cost, the key factor should be the way the disks will be used . RAID 5
works well when there is a high percentage of reads and few writes . RAID 0 + 1
offers better performance compared to RAID 5 as the volume of write operations
increases . Specifically, with 90 percent reads and 10 percent writes, RAID 5 is the
better choice . As the ratio of writes to reads increases, you will see improved perfor-
mance if you select RAID 0 + 1 .

TIP When using RAID 1, 5, and 0 + 1, be sure that the disks have a battery-backed

write cache. A battery-backed write cache can help protect data because the data can

still be written to disk in the event of power interruption or failure. This backup power

source is important to have when the same data must be written to multiple disks, as

with RAID 1 and RAID 0 + 1, and when parity information must be written accurately

to ensure fault tolerance.

ensuring Availability and Scalability
Not long ago, your options for ensuring the availability and scalability of SQL
Server were limited . This is no longer the case . You have many options—and most
of these options do not require expensive storage subsystems or SANs . To ensure
the availability of SQL Server, you can use log shipping to establish a standby server
that you have to manually bring online if the primary server fails . SQL Server 2008
includes log stream compression, which can significantly reduce the amount of data
transmitted during log shipping . You can use the Cluster service to create a failover
server—one that can automatically come online if the primary server fails . For scal-
ability, you can use distributed partition views to horizontally distribute tables across
multiple servers . To improve read-ahead performance, you can use indexed views .

The key drawback to server clustering is that it is expensive in terms of required
equipment and in resources required for setup . SQL Server 2008 uses an extended

 Deploying SQL Server 2008 ChAPTeR 2 37

form of log shipping called database	mirroring, which works on standard server
hardware and requires no special storage or controllers . Database mirroring allows
you to continuously stream a transaction log from a source server to a destination
server . If the source server fails, applications can reconnect to the database on the
secondary server within a matter of seconds . Unlike server clustering, transaction
logs used with database mirroring can be fully synchronized between the servers .
This approach allows changes to be synchronized in both directions .

Database mirroring requires three servers running SQL Server 2008:

■■ A source server, also referred to as the principal. The principal server is the
one to which applications connect and where transactions are processed .

■■ A destination server, also referred to as the mirror. The mirroring server is the
target of the shipped transaction logs, and it operates in a standby state that
does not allow read operations .

■■ A tracking server, also referred to as the witness. The witness server tracks
which server is currently acting as the principal and which server is acting as
the mirror . The witness is used when automatic failover is needed . Whenever
there is contention between which server has which role, the witness makes
a decision .

As transaction log records are generated on the principal, they can be com-
pressed and then replayed on the mirror either synchronously (at the same time) or
asynchronously (at different times, such as after a short delay) . This behavior ensures
that the mirror server is in sync or very close to being in sync with the principal
server . For example, there might be no write lag between the two servers, or there
might be one or more transaction write lags between the two .

From the client’s point of view, failover from the principal to the mirror is auto-
matic and nearly instantaneous . If the principal goes offline, the application fails
over to the mirror . The mirror then becomes the principal . When the failed server
comes back online, it becomes the mirror and receives transaction log records .

NOTE SQL Server replication can also be used to create copies of a database. You

can use replication to distribute data across multiple databases. SQL Server supports

several types of replication, including snapshot replication, transactional replication,

and merge replication. For more information on replication, see Chapter 13, “Imple-

menting Snapshot, Merge, and Transactional Replication.”

ensuring Connectivity and Data Access
SQL Server 2008 has two features that can help ensure consistent connectivity and
data access:

■■ Dedicated administrator connections Designed to ensure that adminis-
trators can get consistent access to SQL Server

■■ Multiple active result sets Designed to ensure that users accessing the
database have consistent access to SQL Server

 ChAPTeR 2  Deploying SQL Server 200838

Unlike previous versions of SQL Server, in which administrators could be locked
out if SQL Server became unresponsive, SQL Server 2008 uses dedicated adminis-
trator connections to provide a way for administrators to access a server that is not
responding or is otherwise unavailable . With this feature, administrators are able to
establish a connection that can be used to troubleshoot and resolve problems .

Any administrator who is a member of the sysadmin fixed server role can estab-
lish a dedicated server connection using the SQLCMD command-line utility with the
–A parameter . Consider the following example:

sqlcmd –U wrstanek –P moreFunPlease -S corpdbsrv05 -A

Here, the user wrstanek, who is a member of the sysadmin fixed server role, is
connecting to the default instance on CorpDBSrv05 . You could also connect to a
named instance, such as in the following, where webapp05 is the name of the SQL
Server instance:

sqlcmd –U wrstanek –P moreFunPlease -S corpdbsrv05\webapp05 -A

Multiple active result sets (MARS) have improved SQL Server connectivity mark-
edly for users as well . With SQL Server 2000, you could have at most one pending
request in a given situation . Although server-side cursors and other techniques can
be used to work around this limitation, you still do not have a direct way to handle
multiple result sets in a single session . MARS corrects this problem by providing
the programming interfaces necessary to separately represent a connection and a
request executed under that connection . As an example, with Open Database Con-
nectivity (ODBC) you represent connections and executed requests within connec-
tions by using handles:

■■ The SQL_HANDLE_DBC type represents connection handles .

■■ The SQL_HANDLE_STMT type represents executed statements within
connections .

The SQLODBC and SQLOLEDB drivers included in the SQL Native Client Instal-
lation for SQL Server 2008 are enabled for MARS, as is the SqlClient .NET Data
Provider included in the .NET Framework, version 2 .0 or later . By default, these driv-
ers establish connections and handle requests using MARS . Technically, execution
requests can be a single T-SQL statement, a batch of T-SQL statements, or the name
of a stored procedure or function to run (along with any appropriate parameter
values) . Regardless, SQL Server sequentially executes the statements as it iterates
through them, and the statements might or might not produce results . Thus, you
can have more than one pending request under a given connection and more than
one default result set .

TIP Native drivers for SQL Server 2000 or earlier versions do not support MARS.

MARS works by interleaving execution of multiple requests and not by parallel execu-

tion. MARS allows a statement, batch, or procedure to run, and within the execution

it allows other requests to run. Interleaving works with SeLeCT, FeTCh, ReADTeXT,

ReCeIVe, and BULK INSeRT. It also works with asynchronous cursor population.

 Deploying SQL Server 2008 ChAPTeR 2 39

In contrast to SQL Server 2000, in which implicit spawning of connections under
OLE DB and additional requests under ODBC are not allowed, SQL Server 2008
allows both to occur . This means that if a session has an active transaction, all new
requests run under the transaction . When there is no active transaction, batches
run in autocommit mode, in which each statement is executed under its own
transaction .

The SqlClient .NET Data Provider has separate SqlConnection, SqlCommand, and
SqlTransaction objects . SqlConnection objects represent connections established to
a server . SqlCommand objects represent commands (requests) executed under the
connection . SqlTransaction objects represent active transactions . When you begin
a transaction within the context of a specific connection, a SqlTransaction object is
returned to represent this transaction .

Managing SQL Server Configuration and Security
SQL Server configuration and security administration tasks have changed con-
siderably over earlier releases . As I’ll discuss in detail in Chapter 3, “Managing the
Surface Security, Access, and Network Configuration,” SQL Server 2008 introduces
a configuration architecture called Policy-Based Management . Like Group Policy,
Policy-Based Management defines management policies that not only configure
SQL Server settings but also control whether and how settings can be changed .
Before you deploy SQL Server 2008, you might want to familiarize yourself with the
available options and determine whether you should put your servers into specific
management groups .

SQL Server 2008 has many security enhancements, and for data encryption solu-
tions, you have many options . You can use any of the following:

■■ Cell-level encryption, as in SQL Server 2005

■■ File-level encryption using Encrypting File System (EFS)

■■ Volume-level encryption using BitLocker Drive Encryption

■■ Full database-level encryption using transparent data encryption (TDE)

■■ Upgrading your edition of SQL Server 2008

When you are using Windows Server, SQL Server 2008 also enforces the pass-
word policy requirements you’ve configured in Group Policy . Even if you aren’t
using Windows Server, SQL Server still enforces some password strength rules to
help enhance security . This means you won’t be able to use null or empty pass-
words, passwords that have the same name as the computer or login name, or any
password of “password,” “admin,” “administrator,” “sysadmin,” or “sa .” The only way
to override this feature is to use the CHECK_POLICY = OFF setting when creating or
altering a login . For more information, see Chapter 9, “Managing SQL Server 2008
Security .”

 ChAPTeR 2  Deploying SQL Server 200840

TIP SQL Server 2008 enterprise supports hot-add memory and hot-add CPU func-

tionality when running on the enterprise or Datacenter edition of Windows Server, but

there are several caveats. Your server hardware also must support this functionality.

Only 64-bit editions of SQL Server enterprise support both hot-add memory and hot-

add CPU. With 32-bit editions of SQL Server 2008 enterprise, you can hot-add memory

provided that Address Windowing extensions (AWe) is enabled and that SQL Server

was started using the –h option.

Running and Modifying SQL Server Setup

SQL Server Installation Center, shown in Figure 2-1, is the utility you use to perform
key installation tasks for SQL Server . You use SQL Server Installation Center to launch
SQL Server Setup so that you can create new instances of SQL Server . Other tasks
you can perform with SQL Server Installation Center include the following:

■■ Creating a new SQL Server instance or adding features to an existing
installation

■■ Creating a single-node failover cluster

■■ Adding or removing cluster nodes

■■ Upgrading from SQL Server 2000 or a later release to SQL Server 2008 or
SQL Server 2008 R2

FIGURE 2-1 Use SQL Server Installation Center to perform most installation tasks .

When you first start working with SQL Server 2008, the Setup process launches
SQL Server Installation Center for you . After you install SQL Server 2008, you’ll find a

 Deploying SQL Server 2008 ChAPTeR 2 41

related option on the Start menu . For R1, the option is under All Programs\Microsoft
SQL Server 2008\Configuration Tools . For R2, the option is under All Programs\
Microsoft SQL Server 2008 R2\Configuration Tools . SQL Server Installation Center
has the following wizard pages:

■■ Planning Provides links to planning documentation and helpful planning
tools .

■■ Installation Includes options for installing SQL Server instances, upgrading
from earlier versions, and adding features .

■■ Maintenance Includes options for upgrading your edition of SQL Server,
repairing your installation, and removing cluster nodes .

■■ Tools Includes options for checking the system configuration prior to
installation, reporting the current configuration of SQL Server products, and
upgrading Integration Services packages .

■■ Resources Provides links to additional documentation that might be
helpful .

■■ Advanced Includes an option for installing SQL Server by using a configu-
ration file as well as advanced clustering options .

■■ Options Allows you to specify the root directory for SQL Server media,
such as would be required if you want to install from a shared folder .

Creating New Instances of SQL Server
You can install multiple instances of the SQL Server 2008 Database Engine on a
single computer . Each Database Engine instance has its own integrated replication
and full-text search functionality . Running multiple instances of the Database Engine
is ideal in the following circumstances:

■■ You need to support multiple test and development environments on a
single large server .

■■ You need to run multiple applications on a desktop, and each application
installs its own instance of the SQL Server 2008 Database Engine .

■■ You need to securely isolate the databases that are available on a single
server .

In most other situations, however, you should not run multiple instances of the
SQL Server 2008 Database Engine . Each instance of the SQL Server 2008 Database
Engine has its own set of system and user databases . Each instance has separate SQL
Server and SQL Server Agent services and, as applicable, separate occurrences of
Analysis Services and Reporting Services as well . All other components and services
are shared, and this adds to the overhead on the server due to management of the
shared resources .

When you run SQL Server 2008 on Windows Server 2008 or Windows Server
2008 R2, an additional option you have is virtualization . Virtualizing your SQL
Server 2008 deployments helps to isolate one deployment from another . The virtual

 ChAPTeR 2  Deploying SQL Server 200842

machine must run an operating system supported for the specific SQL Server 2008
edition . Each virtual machine must be configured with appropriate processor,
memory, and disk resources for SQL Server . SQL Server 2008 R2 supports guest
failover clustering .

Understanding SQL Server Instances

When you install SQL Server 2008, you have the option of installing a default
instance of the SQL Server 2008 Database Engine or a named instance of the SQL
Server 2008 Database Engine . In most cases, you should install the default instance
first and then install additional named instances of the Database Engine as neces-
sary . There is no limit to the number of named instances that you can run on a
single computer .

The default instance is identified by the name of the computer on which the
SQL Server 2008 Database Engine is running; it does not have a separate instance
name . Applications connect to the default instance by using the computer name in
their requests . Only one default instance can run on any computer, and this default
instance can be any version of SQL Server .

All instances of SQL Server other than the default instance are identified by the
instance name that you specify during installation . Applications connect to a named
instance by specifying the computer name and the instance name in the format
computer_name\instance_name . Only the SQL Server 2000, SQL Server 2005, and
SQL Server 2008 Database Engines can run as named instances . Earlier versions of
SQL Server do not support named instances .

NOTE When you run SQL Server 2008 enterprise, you can create multinode server

clusters. Applications connect to the default instance on a SQL Server cluster by

specifying the virtual server name. Applications connect to a named instance on a SQL

Server cluster by specifying the virtual server name and the named instance in the

format virtual_server_name\instance_name.

Installing a SQL Server Instance

The SQL Server 2008 installation process has changed considerably since SQL Server
2000 . The installation process now requires the .NET Framework version 3 .5 SP1 or
later, SQL Server Native Client, SQL Server Setup support files, Windows Installer 4 .5
or later, and Microsoft Data Access Components (MDAC) 2 .8 SP1 or later . If these
components aren’t installed, the installation process installs them and any other
prerequisites .

Using Windows Installer not only helps streamline and stabilize the installation
process, it also makes modification of installed components easier . With Windows
Installer, you can do the following:

■■ Perform upgrades directly using the Installation Wizard .

■■ Install additional components or instances by rerunning the Installation
Wizard .

 Deploying SQL Server 2008 ChAPTeR 2 43

■■ Maintain installed components . With Windows Server 2003, use Add Or
Remove Programs in Control Panel . With Windows Server 2008 or Windows
Server 2008 R2, use the Programs And Features page under Control Panel\
Programs .

■■ Resume a failed installation or modification . With Windows Server 2003,
use Add Or Remove Programs in Control Panel . With Windows Server 2008
or Windows Server 2008 R2, use the Programs And Features page under
 Control Panel\Programs .

REAL WORLD Keep in mind that only SQL Server 2008 R2 supports data-tier

applications (DACs) and Utility Control Points (UCPs). every R2 edition from express

to Datacenter supports DAC operations. Only Database engine instances running the

Datacenter, enterprise, Standard, Web, or Workgroup editions can be managed by

a UCP. The enterprise edition and higher editions can act as a UCP, and all managed

instances of SQL Server must be configured as Database engines within two-way

trusted domains. The related SQL Server service accounts must have read permission

for Users in Active Directory. For Windows Server 2003, the SQL Server Agent service

account must be a member of the Performance Monitor User group. See Chapter 7,

“Configuring SQL Server with SQL Server Management Studio,” for more information

on DACs and UCPs.

For administration purposes, you can install the SQL Server client tools, devel-
opment tools, and SQL Server Books Online on a workstation computer running
Windows XP Service Pack 2 or later . This workstation must also have Windows
PowerShell installed .

To install an instance of SQL Server 2008 or SQL Server 2008 R2, complete the
following steps:

  1. Log on to the server by using an account with administrator privileges . If you
are using installation media, insert the media . If Autorun is enabled and you
are using a DVD, the SQL Server 2008 Setup program should start automati-
cally . Otherwise, double-click the appropriate executable in the base folder
of the installation media .

TIP  Be sure to keep a detailed record of the actions you perform. These actions

should explicitly state the server, server instance, and installation options you use.

You might need this information later.

  2. Setup determines the status of required components . If Setup can install the
required components, it begins the installation and prompts you to con-
firm by clicking OK . Because required components might be downloaded
from the Internet, you might need to connect the computer to the Internet .
Follow the prompts to install the required additional components . In some
cases, you might need to restart the computer to complete the installation of
required components . If so, you need to restart Setup .

 ChAPTeR 2  Deploying SQL Server 200844

  3. Review the items on the Planning page as necessary . Click the new installa-
tion option on the Installation page to continue .

  4. Setup attempts to verify that the computer meets all other requirements
for successful installation . When it finishes, you’ll see a status of Operation
Completed, as shown in Figure 2-2 . If any tests failed, you received warnings,
or tests were skipped, click Show Details to see detailed information and
any errors . Note any errors, and take the necessary corrective actions before
continuing . If no corrective actions are required, click OK to proceed with the
installation .

FIGURE 2-2 SQL Server 2008 Setup scans the computer on which SQL Server 2008 will be
installed .

  5. If you are prompted to enter a product key, enter the product key for the
SQL Server edition you want to install and then click Next . Remember, all
editions of SQL Server 2008 except the Express edition can be part of a single
build, and the edition installed is determined by the key you enter .

  6. If you agree to the license terms, click I Accept The License Terms, and then
click Next .

  7. If Setup needs to install any additional support files, you’ll see the Setup
Support Files page . Click Install . When Setup finishes, you’ll see a status
of Operation Completed . If there are any issues, click Show Details to see

 Deploying SQL Server 2008 ChAPTeR 2 45

detailed information . Note any errors or issues, and take the necessary cor-
rective actions before continuing . If no corrective actions are required, click
Next to proceed with the installation . If you installed additional support files,
Setup checks for problems again before continuing . Click Next .

  8. When you are installing R2, you’ll see the Setup Role page next . This page
allows you to specify whether you are installing a SQL Server instance or an
instance of Analysis Services with SharePoint integration . Because the default
option is for a SQL Server instance, click Next .

NOTE  If you select All Features With Defaults, some options are selected for you

or set to default values. On the Feature Selection page, all features are selected by

default. On the Server Configuration page, default accounts are set for most SQL

Server services. On the Database engine Configuration page, your current logon

account is added as a SQL Server administrator.

  9. On the Feature Selection page, shown in Figure 2-3, select the check boxes
for the components to install, including:

■■ Database Engine Services Allows you to install a SQL Server instance .
You can also install SQL Server 2008 instances on cluster nodes . To install
the replication or full-text search components as well, select the related
check boxes .

■■ Analysis Services Allows you to install an Analysis Services instance .
You can also install Analysis Services instances on cluster nodes .

■■ Reporting Services Allows you to configure the server as a report
server . Report servers no longer require IIS . You will, however, need to
install a Simple Mail Transfer Protocol (SMTP) server for sending reports
or know the name of your organization’s Microsoft Exchange gateway .

■■ Business Intelligence Development Studio Allows you to install SQL
Server developer tools, including the related command-line tools .

■■ Integration Services Allows you to install SSIS for the purposes of ETL .

■■ SQL Server Books Online Allows you to install SQL Server Books
Online .

■■ Management Tools Allows you to install SQL Server management and
configuration tools, including the command-line and Windows Power-
Shell tools .

■■ Microsoft Sync Framework Allows you to install the Sync Framework
to synchronize databases and other types of data stores, as well as files,
folders, and metadata .

 ChAPTeR 2  Deploying SQL Server 200846

FIGURE 2-3 Select the features to install, and set the shared component path .

  10. The path under Shared Feature Directory shows where shared features will
be installed . Click the options button to the right of the path to browse for a
new path, or type the path in the text box provided . Click Next to continue .

NOTE  64-bit systems have two path boxes: Shared Feature Directory, for speci-

fying where 64-bit components should be stored, and Shared Feature Directory

(X86), for specifying where 32-bit components should be stored.

  11. With R2, you’ll see a status of Operation Completed after Setup checks
whether there are any reasons why installation would be blocked . If there are
any issues, click Show Details to see detailed information . Note any errors or
issues, and take the necessary corrective actions before continuing . If no cor-
rective actions are required, click Next to proceed with the installation .

  12. As shown in Figure 2-4, you must now determine the instance type to install .
To install a default instance of SQL Server, select Default Instance, and then
click Next . Otherwise, select Named Instance, type the instance name in the
field provided, and then specify the instance root directory . Click Next to
continue .

NOTE  You can install only one default instance on a computer. If a default

instance already exists, you cannot select the Default Instance option. The

instance name can include as many as 16 characters and must follow the naming

rules for nondelimited identifiers. If you type an invalid instance name, you will

see an error message, and you will have to change the instance name before you

can continue.

 Deploying SQL Server 2008 ChAPTeR 2 47

FIGURE 2-4 Use the options to select the instance type as either default or named .

  13. On the Disk Space Requirements page, review the required and available disk
space, and then click Next . If you determine that you need to change the
installation paths, you can use the Back button to return to earlier pages .

  14. On the Server Configuration page, determine how the SQL Server services
will run, as shown in Figure 2-5, and then click Next . You have the following
options:

■■ Customize the service accounts You can configure each service
account individually . Type a user name and password for each service
before continuing . For domain accounts, be sure to enter names in
Domain\UserName format, such as Cpandl\WilliamS . For local computer
accounts, simply enter the account name .

■■ No customization of service accounts You assign a built-in system
account or a specific domain user account for all SQL Server services . If
the server requires resources on the local server only, use the LocalSystem
account . Otherwise, use a domain user account . See Table 1-1 for more
information .

■■ Configure service startup Use the drop-down lists to configure service
startup . In most deployments, the SQL Server Agent service is set to start
up manually, and most other services are set to automatically start up by
default .

 ChAPTeR 2  Deploying SQL Server 200848

FIGURE 2-5 Server Configuration page with login options for SQL Server services

NOTE  Use a local system account when you are configuring a SQL Server

database instance that will be isolated from other servers—that is, one that will

operate independently and not connect to other servers over the network. The

permissible actions, of course, depend on the permissions granted to the Local-

System account. If interaction with other servers is required, rather than granting

additional permissions to the LocalSystem account, you should use domain user

accounts and grant the appropriate level of permissions to these accounts.

NOTE  Although the SQL Server service does not require administrator account

privileges, the SQL Server Agent service does require them in some cases. Specifi-

cally, if you create Cmdexec and ActiveScript jobs that belong to a user other than

a SQL Server administrator or if you use the AutoRestart feature, the SQL Server

Agent service does require administrator privileges. Additionally, if you are con-

figuring Reporting Services and the report server database is on a remote server,

you should use a domain user account.

  15. If you want to customize the collation settings, click the Collation tab . The
Collation tab provides settings that enable you to define the sorting behavior
for the server . (See Figure 2-6 .) By clicking Customize and making the appro-
priate selections, you can specify separate collation settings for the Database
Engine and Analysis Services instances before continuing .

 Deploying SQL Server 2008 ChAPTeR 2 49

NOTE  The default Collation Designator is the Windows locale setting for the

server, such as Latin1_General. Typically, you want to use the default locale set-

ting. Binary and case-sensitive are the fastest sorting orders. If the sort order is

set to Binary, the other options are not available. SQL Server collations are used

for compatibility with earlier versions of SQL Server and are not used for Analysis

Services.

FIGURE 2-6 Configure the collation settings on the Collation tab .

CAUTION  Although you can change the collation settings on individual

databases, you cannot change the collation settings on an existing SQL Server

installation without rebuilding the master database. Rebuilding the master

database detaches all other databases on the server, making them unusable. For

more information about this process, see “Changing Collation and Rebuilding the

master Database” in Chapter 7.

  16. If you are installing a Database Engine instance, you have the follow-
ing options tabs on the Database Engine Configuration page, shown in
Figure 2-7:

■■ Account Provisioning Use the Security Mode settings to configure the
authentication settings . The SQL Server instance can run under Windows
authentication or mixed mode authentication . With Windows authenti-
cation, you use only domain user accounts to authenticate connections

 ChAPTeR 2  Deploying SQL Server 200850

to the SQL Server instance . With mixed mode authentication, users can
access the SQL Server instance using domain user accounts or SQL Server
IDs . If you select mixed mode authentication, enter a strong password
for the sa account . Strong passwords use a mix of numbers, letters, and
special characters to make them difficult to crack .

Specify users who have administrative permissions for the Database
Engine instance . You can add the currently logged-on user as an adminis-
trator by clicking Add Current Users . To add other users as administrators,
click the Add button .

■■ Data Directories Use the options provided to specify the directories for
system databases, user databases, temporary databases, and backup . By
default, all subdirectories build off the Data Root Directory . Because of
this, you should set the root directory first and then customize the other
directories as needed .

■■ FILESTREAM Use the options provided to specify file-streaming
options . File streaming allows SQL Server to work with binary large
objects (BLOBs) that are stored outside the database . When you enable
file streaming, SQL Server stores pointers to BLOBs in the database . By
default, BLOBs can be stored only on local disk volumes . Also, you cannot
use tables that contain file streams in database snapshots or database
mirroring sessions .

FIGURE 2-7 Configure a Database Engine instance .

 Deploying SQL Server 2008 ChAPTeR 2 51

  17. If you are installing an Analysis Services instance, you have the follow-
ing options tabs on the Analysis Services Configuration page, shown in
Fig ure 2-8:

■■ Account Provisioning Specify users who have administrative permis-
sions for Analysis Services . You can add the currently logged-on user
as an administrator by clicking Add Current User . To add other users as
administrators, click the Add button .

■■ Data Directories Use the options provided to specify the directories for
data, logs, temporary files, and backup . By default, all subdirectories build
off a common Data Root Directory .

FIGURE 2-8 Configure an Analysis Services instance .

  18. If you are installing a Reporting Services instance, select an installation mode
on the Reporting Services Configuration page . As shown in Figure 2-9, you
can specify Native mode or SharePoint mode with a default configuration, or
you can install but not configure the server . The virtual directories to use for
the report server and Report Manager can be accessed in a Web browser as
follows:

■■ For the default SQL Server instance, use http://ServerName/Directory-
Name, where ServerName is the host name or Domain Name System
(DNS) name of the server computer, and DirectoryName is the name of
the virtual directory for either the report server or Report Manager, such
as http://corprs17/reports .

 ChAPTeR 2  Deploying SQL Server 200852

■■ For the default SQL Server instance, use http://ServerName/
DirectoryName$InstanceName, where ServerName is the host name or
DNS name of the server computer, DirectoryName is the name of the
virtual directory for either the report server or Report Manager, and
InstanceName is the SQL Server instance to which you are connecting,
such as http://corprs17/reports$webapp05 .

NOTE  With the default configuration, the report server is installed on the SQL

Server instance you are configuring, and the names of various components reflect

that instance name. If you are installing a named SQL Server instance called

CustData on engDbSrv12, for example, the default report server name would be

ReportServer$CustData and the default virtual directories would be http://engdb-

srv12/ReportServer$CustData	and	http://engdbsrv12/Reports$CustData, respec-

tively. If you don’t want to use the default configuration, you can install but not

configure the report server at this time and then later use the Reporting Services

Configuration Manager to configure the report server.

FIGURE 2-9 Configure a Reporting Services instance .

  19. On the Error And Usage Report Settings page, choose whether to automati-
cally report fatal error messages and feature usage data, and then click Next .
Error information is sent over Secure HTTP (HTTPS) to Microsoft by default
or to a designated corporate error reporting server if you have configured
one in Active Directory–based Group Policy . When feature usage reporting is
configured, reports about component usage are generated and reported to

 Deploying SQL Server 2008 ChAPTeR 2 53

Microsoft . The intent of these reports is to help Microsoft better understand
how components and features are being used . This feature is also referred to
as Customer	Feedback	Reporting.

  20. Setup attempts to identify problems that might occur when you install SQL
Server with the current selections . When it finishes, you’ll see a status of
Operation Completed . If any components failed to install, you received warn-
ings, or components were skipped, click Show Details to see detailed infor-
mation on the installation process and any errors . Note any errors, and take
the necessary corrective actions before continuing . If no corrective actions
are required, click Next to proceed with the installation .

  21. On the Ready To Install page, review the configuration options you’ve cho-
sen . Click Install to begin the installation process . The Installation Progress
page tracks the components that are being installed and the progress of the
installation . When Setup finishes, note the status of each installed compo-
nent and click the link provided to check the setup log file if there are any
problems . For future reference, you might want to save the install log to a
folder . Click Next, and then click Close to complete the installation process .

Adding Components and Instances
SQL Server keeps track of components you have installed and those you have not
installed . If you ever want to add components and instances, you can do so by com-
pleting the following steps:

  1. In SQL Server Installation Center, click the new installation option on the
Installation page .

  2. As necessary, insert the SQL Server 2008 media . If you are prompted to
browse for the installation media, use the Browse For Folder dialog box to
select the root folder for the installation media, and then click OK .

  3. As it does when you are installing SQL Server for the first time, Setup
attempts to verify the computer configuration and also checks to ensure that
required components are installed . You need to proceed through each phase
of the checks as appropriate .

  4. On the Installation Type page, specify whether you want to perform a new
installation or add features to an existing instance . If you want to add fea-
tures to an existing instance, use the drop-down list to select the instance of
SQL Server to update . You cannot add features to a failover cluster instance
and must instead perform a new installation to install a separate instance .

TIP Although you can install multiple instances of instance features, you need to

install shared features only once. If you already installed the SQL Server Database

Services and have an existing instance of SQL Server, the Installation Type and Instance

Configuration pages will list installed instances of SQL Server, Analysis Services, and

Reporting Services.

 ChAPTeR 2  Deploying SQL Server 200854

Repairing a SQL Server 2008 Installation
You can repair SQL Server 2008 installations by completing the following steps:

  1. In SQL Server Installation Center, click Repair on the Maintenance page .

  2. As necessary, insert the SQL Server 2008 media . If you are prompted to
browse for the installation media, use the Browse For Folder dialog box to
select the root folder for the installation media, and then click OK .

  3. As it does when you are installing SQL Server for the first time, Setup
attempts to verify the computer configuration and also checks to ensure that
required components are installed . You need to proceed through each phase
of the checks as appropriate .

  4. On the Select Instance page, select the appropriate repair option . If you want
to repair an instance of SQL Server 2008 and all related components, select
that instance . If you want to repair only the management tools and shared
features, select Repair Shared Features Only .

  5. Setup attempts to verify that the repair process will work . Review any issues
and make corrections as necessary before clicking Next to continue .

  6. Click Repair to begin the repair process . The Repair Progress page tracks the
components that are being repaired and the progress of the repair . When
Setup finishes, note the status of each repaired component . Click Next . Click
the link provided to review the summary log, and then click Close to com-
plete the repair process .

Upgrading Your edition of SQL Server 2008
All editions of SQL Server 2008 except the Express edition are part of a single build,
and the edition installed is determined by the key . You can upgrade from one edi-
tion to another edition by using SQL Server Installation Center . Select the Mainte-
nance page, click Edition Upgrade, and then follow the prompts .

Uninstalling SQL Server
The way you uninstall SQL Server depends on what release of Windows Server you
are working with .

With Windows Server 2003, use Add Or Remove Programs in Control Panel to
uninstall SQL Server or any of its components . You must uninstall each instance of
the SQL Server Database Engine separately . To uninstall an instance of SQL Server,
complete these steps:

  1. Select the SQL Server instance in Add Or Remove Programs, and then click
Change/Uninstall . In the SQL Server 2008 dialog box, click Remove .

  2. Setup attempts to verify that the uninstall process will work . Note any issues,
and then click OK when you are ready to continue .

 Deploying SQL Server 2008 ChAPTeR 2 55

  3. On the Select Instance page, select an uninstall option . If you want to unin-
stall an instance of SQL Server 2008 and related components, select that
instance . If you want to uninstall only the management tools and shared
features, select Remove Shared Features Only .

  4. On the Select Features page, select the components to remove, and then
click Next

  5. Setup attempts to verify that the uninstall process will work . Note any issues,
and then click Next when you are ready to continue .

  6. Click Remove . Setup removes the selected instances, components, or both .

With Windows Server 2008 and Windows Server 2008 R2, you use the Programs
And Features page in Control Panel . Again, you must uninstall each instance of
the SQL Server Database Engine separately . To uninstall an instance of SQL Server,
complete these steps:

  1. In Control Panel, click the Uninstall A Program link under Programs . In Pro-
grams And Features, select the SQL Server 2008 or SQL Server 2008 R2 entry
to display the Change/Uninstall button . In the SQL Server 2008 dialog box,
click Remove .

  2. Follow steps 2 through 6 in the previous procedure .

57

CHAP TE R 3

Managing the Surface
Security, Access, and
Network Configuration

■■ Managing SQL Server Component Feature Access 58

■■ Configuring SQL Server Services 62

■■ Managing the Network and SQL Server Native Client Configuration 75

For controlling access to your server, few things are more important than
how you configure the services, components, and networking capabilities in

Microsoft SQL Server . Every SQL Server installation has a specific configuration for
the services it uses, its components, and the network, and the configuration deter-
mines security levels that control access in the surface area of the server, such as:

■■ Who can access the server and by what means

■■ What SQL Server services run automatically at startup or manually as
needed

■■ Where and by what means SQL Server components can connect to (or be
connected from) remote resources

By limiting these who, what, and where aspects of the server’s configuration,
you reduce the server’s surface area, which improves the server’s security and can
also enhance overall performance because you are running only necessary services
and components .

Client access to SQL Server is managed through SQL Native Client Configura-
tion parameters . SQL Server access to local and remote resources is managed
through SQL Server 2008 services and the SQL Server 2008 network configuration .
You can manage client access, SQL Server services, and the network configuration
by using SQL Server Configuration Manager .

 ChAPTeR 3  Managing the Surface Security, Access, and Network Configuration58

Managing SQL Server Component Feature Access

To reduce a server’s surface area and improve server security, you should enable
only the features needed by your clients and applications . This step limits the ways
the server can be exploited by malicious users and closes avenues of potential
attack . Table 3-1 details the surface area features you can manage for the SQL
Server Database Engine, Analysis Services, and Reporting Services components . In
SQL Server 2008, you manage these surface area features by using Policy-Based
Management policies, as discussed in Chapter 6, “Implementing Policy-Based Man-
agement .” By default, these features are all disabled .

TABLE 3-1 Component Features for Managing Surface Area Access

COMPONENT/FACET DESCRIPTION/USAGE

DATABASE ENGINE

AdHocRemoteQueries-
Enabled

The OPENROWSET and OPENDATASOURCE functions
can use ad hoc connections to work with remote data
sources without an administrator specifically config-
uring linked or remote servers . If your applications
or scripts use these functions, you should enable
support for OPENROWSET and OPENDATASOURCE .
Otherwise, this functionality should be disabled .

ClrIntegrationEnabled With common language runtime (CLR) integra-
tion, you can write stored procedures, triggers,
user-defined types, and user-defined functions
using Microsoft Visual Basic, C#, and any other .NET
Framework language . If your applications or scripts
use .NET Framework languages, enable this feature .
Otherwise, this feature should be disabled .

DatabaseMailEnabled Database Mail replaces SQL Mail as the preferred
technique for sending e-mail messages from SQL
Server through Simple Mail Transfer Protocol (SMTP) .
Enable this feature if you have created a mail host
database (by running the %ProgramFiles%\Microsoft
SQL Server\MSSQL .1\MSSQL\Install\Install_DBMail_
Upgrade .sql script on the server) and the necessary
database mail profiles, and you want applications and
scripts to be able to use the sp_send_dbmail stored
procedure to send e-mail messages from SQL Server .
Otherwise, this feature should be disabled .

 Managing the Surface Security, Access, and Network Configuration ChAPTeR 3 59

COMPONENT/FACET DESCRIPTION/USAGE

OleAutomationEnabled OLE Automation provides the ability to use Transact-
SQL (T-SQL) batches, stored procedures, and triggers
to reference SQL DMO and custom OLE Automation
objects . Enable this feature if you want to use OLE
Automation, including the extended stored proce-
dures sp_OACreate, sp_OADestroy, sp_OAGetError-
Info, sp_OAGetProperty, sp_OAMethod, sp_OASet-
Property, and sp_OAStop . Otherwise, this feature
should be disabled .

RemoteDacEnabled By using the SQLCMD command-line utility with
the –A parameter, administrators can maintain SQL
Server installations through a dedicated connection
from the command line, either locally or remotely . By
default, only local dedicated connections are permit-
ted . If you want to authorize remote dedicated con-
nections, enable this feature . Otherwise, this feature
should be disabled .

ServiceBrokerEndpoint-
Active

Service Broker provides queuing and messaging for
the Database Engine . Applications can use Service
Broker to communicate across instances of SQL
Server . If your applications use Service Broker and
you have configured the necessary HTTP endpoints,
you can configure the state of each endpoint as
Started, Stopped, or Disabled .

SoapEndpointsEnabled With native Web services, you can access SQL Server
over HTTP by using Simple Object Access Protocol
(SOAP) messaging . SOAP messages contain text-
based commands that are formatted in XML . If you
plan to use SOAP for data exchange and have config-
ured the necessary HTTP endpoints, you can config-
ure the state of each endpoint as Started, Stopped,
or Disabled . The SQL Server Reporting Services, SQL
Server Service Broker, and Database Mirroring com-
ponents make use of native Web services, but they
have separate configurations .

 ChAPTeR 3  Managing the Surface Security, Access, and Network Configuration60

COMPONENT/FACET DESCRIPTION/USAGE

SqlMailEnabled SQL Mail can be used with legacy applications for
sending e-mail messages from SQL Server using
SMTP . Enable this feature if you want legacy applica-
tions and scripts to be able to use the xp_sendmail
stored procedure to send e-mail messages from SQL
Server . Otherwise, this feature should be disabled .

WebAssistantEnabled In previous versions of SQL Server, Web Assistant
stored procedures could be used to generate HTML
files from SQL Server data . In SQL Server 2005 and
SQL Server 2008, Reporting Services takes the place
of these stored procedures because Reporting
Services is more robust and has more configuration
options . If you have legacy applications or scripts that
use Web Assistant, enable this feature . Otherwise, this
feature should be disabled .

XPCmdShellEnabled The xp_cmdshell stored procedure executes com-
mand strings using the operating system command
shell and returns the results as rows of text . If you
want applications and scripts to run operating
system commands, you must enable this feature . By
default, only members of the sysadmin fixed server
role can execute xp_cmdshell . You can grant execu-
tion permission to other users . For sysadmin users,
xp_cmdshell is executed under the security context
in which the SQL Server service is running . For other
users, xp_cmdshell impersonates the command shell
proxy account (as specified by using xp_cmdshell_
proxy_account) . If the proxy account is not available,
xp_cmdshell fails .

ANALYSIS SERVICES

AdHocDataMiningQueries-
Enabled

The Data Mining Extensions OPENROWSET function
establishes a connection to a data source object by
using a provider name and connection string . This
permits ad hoc connections to remote data sources
without an administrator specifically configuring
linked or remote servers . Enable this feature if your
applications or scripts use OPENROWSET with Data
Mining . Otherwise, this feature should be disabled
to prevent applications and scripts from passing a
provider name and connection string when using the
OPENROWSET function .

 Managing the Surface Security, Access, and Network Configuration ChAPTeR 3 61

COMPONENT/FACET DESCRIPTION/USAGE

AnonymousConnections-
Enabled

With anonymous connections, unauthenticated users
can establish connections with Analysis Services .
Enable this feature if your applications and scripts
require unauthenticated user access . Otherwise, dis-
able this feature .

LinkedObjectsLinksFrom-
OtherInstancesEnabled

With Analysis Services, you can use linked objects to
link dimensions and measure groups between serv-
ers . If you want an instance to be linked from other
servers, enable this feature . Otherwise, disable this
feature .

LinkedObjectsLinksTo-
OtherInstancesEnabled

With Analysis Services, you can use linked objects
to link dimensions and measure groups between
servers . If you want Analysis Server to link to other
servers, select Enable Links To Other Instances . Oth-
erwise, disable this feature .

ListenOnlyOnLocal-
Connections

Analysis Services can work with remote resources as
well as local resources . When you allow Analysis Ser-
vices to work with remote resources, Analysis Services
listens for TCP/IP connections from both local and
remote server instances, which allows connections
from remote computers . When you restrict Analy-
sis Services from working with remote resources,
Analysis Services opens a TCP/IP port on the server
but listens only for connections from local server
instances . If you want Analysis Services to work only
with local resources, enable this feature . Otherwise,
disable this feature .

UserDefinedFunctions-
Enabled

Analysis Services is integrated with the .NET Frame-
work and can load assemblies containing user-
defined functions . These functions can be written
using the CLR or with component object model
(COM) objects . CLR objects and functions have an
integrated security model . COM objects do not use
this model and are therefore inherently less secure .
Enable this feature if your applications and scripts
require user-defined COM functions . Otherwise, dis-
able this feature to permit only CLR functions .

 ChAPTeR 3  Managing the Surface Security, Access, and Network Configuration62

COMPONENT/FACET DESCRIPTION/USAGE

REPORTING SERVICES

ReportManagerEnabled Report Manager is a Web-based application for
viewing reports, managing report server content, and
controlling access to report servers running in Native
mode . Enable this feature if you use Report Manager
with this Reporting Services installation . Otherwise,
disable this feature .

ScheduledEventsAnd-
ReportDeliveryEnabled

With Reporting Services, you can use ad hoc, on-
demand reports and scheduled reports . Typically,
when you have installed Reporting Services, both
types of reports are enabled . If you do not use sched-
uled reports, you can disable this aspect of report
generation and delivery by disabling this feature .

WebServiceRequests-
AndHTTPAccessEnabled

Reporting Services components use SOAP messaging
over HTTP for communications and use HTTP for URL
access requests . These features are handled by the
Report Server Web Service and permit you to work
with Reporting Services through Report Manager,
Report Designer, and SQL Server Management
Studio . Typically, if Reporting Services is installed,
the server handles HTTP and Web Service requests .
Enable this feature if your client applications use
the Report Server Web Service or if you use Report
Manager, Report Designer, or SQL Server Manage-
ment Studio with this Reporting Services installation .
Otherwise, disable this feature .

Configuring SQL Server Services

SQL Server Configuration Manager is implemented in a custom Microsoft Man-
agement Console and is also available as a snap-in that you can add to your own
custom consoles . You can start SQL Server Configuration Manager by using one of
the following techniques:

■■ Log on to the database server through a local or remote login, and then start
SQL Server Configuration Manager by clicking the Start button, pointing
to All Programs, Microsoft SQL Server 2008, Configuration Tools, and then
selecting SQL Server Configuration Manager . You can also start this tool by
clicking Start, and typing sqlservermanager10.msc in the Search box .

 Managing the Surface Security, Access, and Network Configuration ChAPTeR 3 63

■■ In SQL Server Management Studio, open the Registered Servers view by
pressing Ctrl+Alt+G . Use the Registered Servers toolbar to select the top-
level group, and then expand the group nodes by double-clicking them .
Right-click the server entry, and then select SQL Server Configuration
Manager . If your server isn’t registered, you need to register it as discussed in
“Managing Servers” in Chapter 5 .

When you start SQL Server Configuration Manager, you see the main window,
shown in Figure 3-1 . You can use SQL Server Configuration Manager to perform
several main tasks:

■■ Manage the services configuration of related SQL Server instances

■■ Manage the connections configuration of related SQL Server instances

■■ Manage the configuration of the SQL Server Native Client on the computer
running SQL Server

NOTE On 64-bit computers, you’ll find multiple nodes for managing network and

client configuration settings. You use the nodes with the suffix (32bit) to manage

32-bit settings and the other nodes to manage 64-bit settings.

FIGURE 3-1 SQL Server Configuration Manager main window

Managing the Services Configuration
You can use SQL Server Configuration Manager to view and manage the startup
state of SQL Server services . After you start SQL Server Configuration Manager, click
the SQL Server Services node to view the critical SQL Server services configured for
all running instances of SQL Server 2008 on the computer you are currently con-
nected to . The services available depend on the components you have installed .
Keep the following in mind:

■■ Active Directory Helper Runs as the SQL Server Active Directory Helper
service . The executable file for this service is Sqladhlp .exe, specified with the
service startup command line, such as:

"C:\Program Files\Microsoft SQL Server\100\Shared\sqladhlp.exe"

You cannot configure this service in SQL Server Configuration Manager . Use
the Services utility instead .

 ChAPTeR 3  Managing the Surface Security, Access, and Network Configuration64

■■ Analysis Services Runs as the SQL Server Analysis Services (InstanceName)
service . The executable file for this service is Msmdsrv .exe, and the service
runs an initialization file specified by the folder path in the startup command
line, such as:

"C:\Program Files\Microsoft SQL Server\MSAS10_50.CUSTDATAW\OLAP\bin\
 msmdsrv.exe" -s "C:\Program Files\Microsoft SQL Server\
 MSAS10.CUSTDATAW\OLAP\Config"

The initialization file (Msmdsrv .ini) is defined using XML and should not be
edited directly .

■■ Database Engine Runs as the SQL Server (InstanceName) service . The
executable file for this service is Sqlservr .exe, and the service runs under
an instance specified in the startup command line, such as (for the default
instance, MSSQLSERVER):

"C:\Program Files\Microsoft SQL Server\MSSQL10_50.MSSQLSERVER\MSSQL\
 Binn\sqlservr.exe" –s MSSQLSERVER

NOTE  Although some components, such as the Database engine, can be started

directly from the command line, services typically are started with the appropri-

ate tool or with NeT START. If you start the Database engine manually, you can set

specific startup parameters, as discussed in Chapter 4, “Configuring and Tuning

SQL Server 2008.”

You can also set startup parameters by using SQL Server Configuration Manager.

Double-click the SQL Server service for the instance with which you want to work.

In the Properties dialog box, on the Log On tab, click Stop to stop the service.

Then, on the Advanced tab, enter the startup parameters in the Startup Param-

eters field. Finally, on the Log On tab, click Start to start the service.

■■ Integration Services Runs as the SQL Server Integration Services service .
The executable file for this service is Msdtssrvr .exe, specified with the service
startup command line, such as:

"C:\Program Files\Microsoft SQL Server\100\DTS\Binn\MsDtsSrvr.exe"

■■ Reporting Services Runs as the Report Server (InstanceName) service . The
executable file for this service is ReportingServicesService .exe, specified with
the service startup command line, such as:

"C:\Program Files\Microsoft SQL Server\MSRS10_50.CUSTDATAW\
 Reporting Services\ReportServer\bin\ReportingServicesService.exe"

■■ SQL Server Agent Runs as the SQL Server Agent (InstanceName) service .
The executable file for this service is Sqlagent .exe, and the service runs under
an instance specified in the startup command line, such as:

"C:\Program Files\Microsoft SQL Server\MSSQL10_50.MSSQLSERVER\MSSQL\
 Binn\SqlAgent.exe" -i MSSQLSERVER

 Managing the Surface Security, Access, and Network Configuration ChAPTeR 3 65

■■ SQL Server Browse Runs as the SQL Browser service . The executable file
for this service is Sqlbrowser .exe, specified with the service startup command
line, such as:

"C:\Program Files\Microsoft SQL Server\90\Shared\sqlbrowser.exe"

■■ SQL Writer Runs as the SQL Server VSS Writer service . The executable file
for this service is Sqlwriter .exe, specified with the service startup command
line, such as:

"C:\Program Files\Microsoft SQL Server\100\Shared\sqlwriter.exe"

You cannot configure this service in SQL Server Configuration Manager . Use
the Services utility instead .

After you select the SQL Server Services node, you see a detailed entry for each
service that includes the following information:

■■ Name The common name for the service shown in the user interface .

■■ State The status of the service as of the last refresh, such as Running or
Stopped .

■■ Start Mode The startup state of the service—Automatic, Manual, or
Disabled .

■■ Log On As The user account under which the service runs . For services
running under system accounts, you see the name of the system account
used, such as NT AUTHORITY\LOCAL SERVICE for a service running under the
LocalService account, NT AUTHORITY\NETWORK SERVICE for a service run-
ning under the NetworkService account, or LocalSystem for a service running
under the LocalSystem account .

■■ Process ID The identification number of the system process under which
the service is running .

■■ Service Type The type of SQL Server component to which the service
relates, such as Report Server .

Any SQL Server services not being used or not required for your installation
should be set to manual startup and stopped if they are running . If you want to
prevent a service from running, you should set Start Mode to Disabled . Keep in
mind that the SQL Server Browser service provides connection information to client
computers . If clients connect to SQL Server remotely, this service is required (in most
instances) .

NOTE You can also use the Services utility to manage SQL Server services. The

advantage that SQL Server Configuration Manager has over the Services utility is that

it streamlines the information and provides access only to SQL Server services rather

than to all system services.

When you install SQL Server, SQL Server Setup creates user groups for the SQL
Server services and adds the service accounts to these groups as appropriate . These

 ChAPTeR 3  Managing the Surface Security, Access, and Network Configuration66

groups are meant to simplify the process of granting permissions required to run
SQL Server services and related executables . Table 3-2 lists the user groups created
by SQL Server Setup, the related SQL Server services, and the default permissions .
These groups also are assigned access permissions for numerous files and folders
used by SQL Server .

TABLE 3-2 Related Groups and Assigned Permissions for Services

SERVICE RELATED GROUP OR GROUPS ASSIGNED PERMISSIONS

SQL Server Default instance: SQLServerMSSQLUser-
$ComputerName$MSSQLSERVER

Named instance: SQLServerMSSQLUser-
$ComputerName$InstanceName

Log on as a service

Log on as a batch job

Replace a process-level
token

Bypass traverse checking

Adjust memory quotas
for a process

Permission to start SQL
Server Active Directory
Helper

Permission to start SQL
Writer

SQL Server
Active Direc-
tory Helper

Default or named instance:
SQLServerMSSQLServerADHelperUser-
$ComputerName

N/A

SQL Server
Agent

Default instance: SQLServerSQLAgent-
User$ComputerName$MSSQLSERVER

Named instance: SQLServerSQLAgent-
User$ComputerName$InstanceName

Log on as a service

Act as part of the oper-
ating system (only on
Windows 2000)

Log on as a batch job

Replace a process-level
token

Bypass traverse checking

Adjust memory quotas
for a process

SQL Server
Analysis
Services

Default instance:
SQLServerMSASUser$ComputerName-
$MSSQLSERVER

Named instance:
SQLServerMSASUser$ComputerName-
$InstanceName

Log on as a service

 Managing the Surface Security, Access, and Network Configuration ChAPTeR 3 67

SERVICE RELATED GROUP OR GROUPS ASSIGNED PERMISSIONS

SQL Server
Browser

Default or named instance: SQLServer-
SQLBrowserUser$ComputerName

Log on as a service

SQL Server
Integration
Services

Default or named instance:
SQLServerDTSUser$ComputerName

Log on as a service

Permission to write to
application event log

Bypass traverse checking

Impersonate a client
after authentication

SQL Server
Reporting
Services

Default instance: SQLServerReport-
ServerUser$ComputerName$MSSQL-
SERVER and SQLServerReporting-
ServicesWebServiceUser-
$ComputerName$MSSQLSERVER

Named instance: SQLServerReport-
ServerUser$ComputerName$Instance-
Name and SQLServerReporting-
ServicesWebServiceUser-
$ComputerName$InstanceName

Log on as a service

SQL Writer N/A N/A

Managing Service State and Start Mode
You can use the Services utility or SQL Server Configuration Manager to manage
SQL Server services . With the Services utility, you manage SQL Server services as you
would any other service . With SQL Server Configuration Manager, you can man-
age the service login account, the start mode, and status . If applicable, you can also
manage advanced features such as the dump directory, error reporting, and startup
parameters . The advantage that SQL Server Configuration Manager has over the
Services utility is that it streamlines the information available so that you see only
SQL Server services rather than all system services . Additionally, some advanced
options, such as the dump directory, can be configured only by using SQL Server
Configuration Manager .

Using SQL Server Configuration Manager, you can stop, start, pause, or restart a
server service by completing the following steps:

  1. Start SQL Server Configuration Manager, and then select the SQL Server
Services node .

 ChAPTeR 3  Managing the Surface Security, Access, and Network Configuration68

  2. In the right pane, you see a list of services used by SQL Server and its con-
figured components, as shown previously in Figure 3-1 . You can work with
services in several ways:

■■ Click the name of the service to select it . Use the Start, Pause, Stop, and
Restart buttons on the toolbar to manage the service run state, or click
the Properties button to view the service properties .

■■ Right-click the service, and then use the shortcut menu to manage the
service run state or click Properties to view the service properties .

■■ Double-click the service to view the service properties .

You can set a service’s start mode by following these steps:

  1. Start SQL Server Configuration Manager, and then select the SQL Server
Services node .

  2. In the right pane, right-click a service, and then select Properties from the
shortcut menu .

  3. On the Service tab of the Properties dialog box, use the Start Mode list to
select the start mode, as shown in Figure 3-2 . Options include Automatic,
Disabled, and Manual .

FIGURE 3-2 Use Service tab options for setting the start mode .

  4. Click OK .

 Managing the Surface Security, Access, and Network Configuration ChAPTeR 3 69

Setting the Startup Service Account
SQL Server and its components have specific rights and permissions from the
startup service account . These permissions are used whenever the Database Engine
or another SQL Server component performs tasks on the local system or across the
network . As you learned in “Service Accounts for SQL Server” in Chapter 1, you can
configure services to use three different types of built-in accounts: local service,
local system, and network service . You also can configure services to use domain
accounts .

You can specify a built-in account for a SQL Server service by completing the
following steps:

  1. Start SQL Server Configuration Manager, and then select the SQL Server
Services node .

  2. In the right pane, right-click a service to select it, and then select Properties .

  3. On the Log On tab of the Properties dialog box, select Built-In Account, and
then use the drop-down list to choose the account to use .

  4. If the service is running, you must restart the service by clicking Restart . This
stops the service and starts it again using the new credentials .

  5. Click OK .

You can specify a domain account for a SQL Server service by completing the
following steps:

  1. Start SQL Server Configuration Manager, and then select the SQL Server
Services node .

  2. In the right pane, right-click a service to select it, and then select Properties .

  3. On the Log On tab of the Properties dialog box, choose the This Account
option, as shown in Figure 3-3 . Then type the designated account name and
password . For domain accounts, specify the domain as part of the account
name, such as CPANDL\sqlprimary, where CPANDL is the domain name
and sqlprimary is the account name . For local computer accounts, enter .\
 followed by the name of the account, such as .\sqlaccount . Click Browse if
you want to use the Select User Or Group dialog box to select an account .

  4. If the service is running, you must restart the service by clicking Restart . This
stops the service and starts it again using the new credentials .

  5. Click OK to close the Properties dialog box, and then be sure you’ve granted
the specified domain account the appropriate permissions and privileges .
Refer to Table 3-2 to determine the groups to which you should add the
domain account to ensure that the account has the appropriate access per-
missions for files and folders used by SQL Server .

 ChAPTeR 3  Managing the Surface Security, Access, and Network Configuration70

FIGURE 3-3 Set the startup account for a selected service .

Configuring File Streaming
File streaming allows the SQL Server Database Engine to work with binary large
objects (BLOBs) that are stored outside the database . To distinguish standard
BLOBs stored in database tables from BLOBs stored outside the database, BLOBS
stored outside the database are called FILESTREAM BLOBs . Like standard BLOBs,
FILESTREAM BLOBs are specified in the database as varbinary(max) data types and
can include any type of unstructured data from Microsoft Office documents to
videos to digital images . Unlike standard BLOBs, FILESTREAM BLOBs do not have a
2-gigabyte (GB) file size limit . You distinguish a FILESTREAM BLOB from a standard
BLOB by setting the FILESTREAM attribute on a varbinary(max) column . This tells the
Database Engine to store the data for that column on the file system rather than in
the database . SQL Server is able to locate the BLOB data because it stores pointers
to BLOBs in the database .

T-SQL statements can insert, update, query, search, and delete file-stream data .
For caching file data while streaming files, the SQL Server Database Engine uses the
features of the NTFS file system rather than the SQL Server buffer pool . This helps
ensure that memory is available for processing queries and also helps maintain
Database Engine performance .

Although you can use an insert operation to prepopulate a FILESTREAM field
with a null value, an empty value, or a limited amount of inline data, a large amount
of data is more efficiently streamed into a file that uses Win32 interfaces . Here, the
Win32 interfaces work within the context of a SQL Server transaction, and you use

 Managing the Surface Security, Access, and Network Configuration ChAPTeR 3 71

the Pathname intrinsic function to obtain the logical Universal Naming Convention
(UNC) path of the BLOB file on the file system . You then use the OpenSqlFilestream
application programming interface (API) to obtain a file handle and operate on
the BLOB via the file system by using the following Win32 file streaming interfaces:
ReadFile, WriteFile, TransmitFile, SetFilePointer, SetEndOfFile, and FlushFileBuffers .
Close the handle by using CloseHandle . Because file operations are transactional,
you cannot delete or rename FILESTREAM files through the file system .

When you update a FILESTREAM field, you modify the underlying BLOB data in
the file system . When a FILESTREAM field is set to NULL, the BLOB data associated
with the field is deleted . To perform partial updates to the data, you cannot use a
T-SQL chunked update implemented as UPDATE .Write() . Instead, use a device FS
control (FSCTL_SQL_FILESTREAM_FETCH_OLD_CONTENT) to fetch the old content
into the file that the opened handle references, which triggers a content copy . When
you delete a row or delete or truncate a table that contains FILESTREAM data, you
delete the underlying BLOB data in the file system .

FILESTREAM data must be stored in FILESTREAM filegroups . A FILESTREAM file-
group is a special filegroup that contains file system directories instead of the files
themselves . These file system directories are called data	containers and act as the
interface between Database Engine storage and file system storage .

When working with FILESTREAM data, you should also keep in mind the
following:

■■ You can create database snapshots only of standard (non-FILESTREAM) file-
groups . The FILESTREAM filegroups are marked as offline for those snapshot
databases . Further, a SELECT statement that is executed on a FILESTREAM
table in a snapshot database must not include a FILESTREAM column .

■■ Log shipping supports file streaming as long as the primary and secondary
servers are running SQL Server 2008 (or a later version) and have file stream-
ing enabled .

■■ Database mirroring does not support file streaming . You cannot create a
FILESTREAM filegroup on the principal server and cannot configure database
mirroring for a database that contains FILESTREAM filegroups .

■■ Full-text indexing works with a FILESTREAM column in the same way that it
does with a varbinary(max) column as long as the FILESTREAM table has a
column that contains the file name extension for each FILESTREAM BLOB .
The full-text engine indexes the contents of FILESTREAM BLOBs, and when-
ever a FILESTREAM BLOB is updated, it is reindexed .

■■ A varbinary(max) column that has the FILESTREAM attribute enabled at the
Publisher can be replicated to a Subscriber with or without the FILESTREAM
attribute . You can specify the way in which the column is replicated by using
the Article Properties - <Article> dialog box or the @schema_option param-
eter of sp_addarticle or sp_addmergearticle .

 ChAPTeR 3  Managing the Surface Security, Access, and Network Configuration72

■■ For failover clustering, FILESTREAM filegroups must be put on a shared disk .
You also must enable file streaming on each node in the cluster that will host
the FILESTREAM instance .

You can enable and configure file streaming by completing the following steps:

  1. Start SQL Server Configuration Manager, and then select the SQL Server
Services node .

  2. In the right pane, right-click the instance of the Database Engine service that
you want to configure, and then select Properties .

  3. On the FILESTREAM tab of the Properties dialog box, shown in Figure 3-4,
you can now use the Enable FILESTREAM For Transact-SQL Access check box
to enable or disable file streaming for T-SQL . Select this check box to allow
file streaming to be used; clear this check box to prevent file streaming from
being used . If you disabled file streaming, click OK and skip the remaining
steps .

FIGURE 3-4 Configure FILESTREAM data for a Database Engine instance .

  4. If you want to enable file I/O streaming access by local clients, select Enable
FILESTREAM For File I/O Streaming Access, and then specify the name of
the Windows share from which files will be streamed . The default share
name is MSSQLSERVER, which sets the global root for file streaming as
\\?\GLOBALROOT\Device\RsFx0101\<localmachine>\MSSQLSERVER .

 Managing the Surface Security, Access, and Network Configuration ChAPTeR 3 73

  5. If you enabled local file streaming and want to enable file I/O streaming
access by remote clients, select Allow Remote Clients To Have Streaming
Access To FILESTREAM Data . Remote file system access to FILESTREAM data
is enabled over the Server Message Block (SMB) protocol . If the client is
remote, no write operations are cached by the client side, which means that
write operations are always sent to the server, where they can be cached if
necessary .

  6. If you made changes and the service is running, you must restart the service
by clicking Restart on the Log On tab . This stops the service and then restarts
it using the new settings .

  7. Click OK .

Configuring Service Dump Directories, error Reporting, and
Customer Feedback Reporting
You can use advanced service configuration options to configure reporting and
error-logging features . When you install SQL Server, you are asked whether you
want to enable two types of reports:

■■ Error reports

■■ Feature reports (also called Customer Feedback Reporting)

When error reporting is enabled, error reports are generated and sent to
Microsoft or a designated corporate error-reporting server whenever fatal errors
cause a service to terminate . Error reports help determine the cause of the fatal
error so that it can be corrected, and they contain details to identify what caused
the error, including the version of SQL Server being used, the operating system
and hardware configuration, and data from the memory or files of the process that
caused the error .

Error information is also logged in a designated dump directory . The dump
directory used depends on the component and its related instance . For example,
the dump directory for the default SQL Server instance might be located under
%ProgramFiles%\Microsoft SQL Server\MSSQL10 .MSSQLSERVER\MSSQL\LOG, and
the Reporting Services dump directory might be located under %ProgramFiles%\
Microsoft SQL Server\MSRS10 .CUSTDATAWAREHOUS\Reporting Services\LogFiles .

Customer Feedback Reporting generates reports about component usage that
are sent to Microsoft when this feature is configured . These reports help Microsoft
understand how components and features are being used .

You can manage reporting and error dumps for each service individually . To do
so, complete the following steps:

  1. Start SQL Server Configuration Manager, and then select the SQL Server
Services node .

  2. In the right pane, right-click a service to select it, and then select Properties .

 ChAPTeR 3  Managing the Surface Security, Access, and Network Configuration74

  3. Select the Advanced tab in the Properties dialog box . Using the properties
boxes shown in Figure 3-5, you can now do the following:

■■ Use the Dump Directory box to view the current dump directory . To
change the dump directory, simply enter the new directory to use . Be sure
that the logon account for the selected service has appropriate read and
write access to this directory .

■■ Use the Error Reporting and Customer Feedback Reporting lists to enable
or disable reporting as appropriate . Select Yes to enable reporting, or
select No to disable reporting .

FIGURE 3-5 Set advanced options for a selected service .

  4. If you made changes and the service is running, you must restart the service
by clicking Restart on the Log On tab . This stops the service and then starts it
again using the new settings .

  5. Click OK .

 Managing the Surface Security, Access, and Network Configuration ChAPTeR 3 75

Managing the Network and SQL Server Native Client
Configuration

SQL Server installations can be configured to allow local and remote connections .
SQL Server can use several protocols, including Shared Memory, Named Pipes,
TCP/IP, and Virtual Interface Architecture (VIA) . These protocols all have separate
server and client configurations .

As shown in Figure 3-6, the network configuration is set separately for each
server instance by using the SQL Server Network Configuration node . The client
configuration is set on a per-client basis by using the SQL Native Client Configura-
tion node .

FIGURE 3-6 View network configuration settings for a SQL Server instance .

When multiple client protocols are available and configured for use, clients
use the protocols in a specified order . As Figure 3-7 shows, the default order is as
follows:

  1. Shared Memory

  2. TCP/IP

  3. Named Pipes

  4. VIA

FIGURE 3-7 Clients attempt to use network protocols in a specific order .

NOTE Any system on which you install SQL Server Native Client is a SQL Server client.

This can include systems running Windows XP Professional, Windows Vista, or Windows

7 as well as Windows Server 2003, Windows Server 2008, or Windows Server 2008 R2.

 ChAPTeR 3  Managing the Surface Security, Access, and Network Configuration76

Managing the Connections Configuration
SQL Server installations can be configured to provide local, remote, and dedicated
connections . Local connections are used by applications running on the computer
that is also running SQL Server . Remote connections are used by clients connecting
to the server, by applications running on other servers, and by other servers running
SQL Server . Dedicated connections are a special feature used by administrators to
maintain SQL Server installations (and are managed as a configurable feature rather
than as a permissible connection type) .

NOTE The default configuration for connections depends on how you have config-

ured service accounts, what components are installed, and other installation options,

such as whether you performed an upgrade or a new installation. Typically, a new

installation is configured for local connections only. however, if you installed addi-

tional components, such as Reporting Services, the configuration usually permits local

and remote connections.

Although a configuration for only local connections provides obvious security
advantages, you cannot always run SQL Server in this configuration . Often, and
more typically, you need to allow incoming connections from remote clients and
servers, and in this case, the permitted connection protocols can affect the amount
of resources used and the relative security of the server . For remote connections,
SQL Server 2008 can use TCP/IP, Named Pipes, or both .

TCP/IP is a widely used protocol suite consisting of Transmission Control Protocol
(TCP) and Internet Protocol (IP) . SQL Server listens on and communicates over
dynamic ports, static ports, or both port types, depending on its configuration .
SQL Server 2008 supports both IP version 4 (IPv4) and IP version 6 (IPv6) . The IP
addresses SQL Server uses for network communications depend on its configuration
as well . TCP/IP includes standards for routing traffic that help to ensure that data
packets reach their destination and standards for communications security that help
protect sensitive information . This makes TCP/IP ideal for use on both local area
networks (LANs) and wide area network (WANs) .

Named Pipes is a protocol designed for LANs . With Named Pipes, part of mem-
ory is used by one process to pass information to another process so that the output
of one process becomes the input of another process . The second process can be
local, meaning it is on the same computer as the first process, or it can be remote,
meaning it is on a different computer than the first process . Although local named
pipes run in kernel mode and are very fast, remote named pipes don’t work well on
slow networks because named pipes typically generate a lot of message traffic over
the network .

Because TCP/IP and Named Pipes require specific and different ports to be open
across a firewall, you can limit the server to one protocol or the other to reduce
the potential attack surface . Before you change the permissible connection types,
however, you should be sure that all clients and applications are configured to use
the appropriate network library .

 Managing the Surface Security, Access, and Network Configuration ChAPTeR 3 77

With TCP/IP, SQL Server can communicate using standard IP and the TCP/IP
Sockets Net-Library . The default listen port for the default instance is TCP port 1433 .
The default listen port for named instances is set dynamically, unless it is assigned
otherwise . TCP port 1434 is used for client connections . When you use named
pipes, SQL Server 2008 uses the Named Pipes Net-Library to communicate over a
standard network address: \\ .\pipe\sql\query for the default instance and \\ .\pipe\
MSSQL$instancename\sql\query for a named instance . Named pipes require a range
of ports to be open for communication across a firewall . With named pipes, the
server listens on TCP port 445 .

SQL Server 2008 also supports the Shared Memory protocol for local connec-
tions . Although support for VIA is deprecated, both R1 and R2 continue to support
VIA for local and remote connections . NWLink IPX/SPX and AppleTalk are no longer
supported .

Specifying the Shared Memory Network Configuration
The Shared Memory protocol is used for local connections only . If the protocol is
enabled, any local client can connect to the server by using this protocol . If you
don’t want local clients to use the Shared Memory protocol, you can disable it .

You can enable or disable the Shared Memory protocol by completing the fol-
lowing steps:

  1. Start SQL Server Configuration Manager . Expand the SQL Server Network
Configuration node, and then select the Protocols For entry for the SQL
Server instance you want to work with .

  2. Right-click Shared Memory, and then do one of the following:

■■ Select Enable to enable the protocol to be used .

■■ Select Disable to prevent the protocol from being used .

Specifying the Named Pipes Network Configuration
The Named Pipes protocol is used primarily for local or remote connections by
applications written for early versions of the Windows operating system . When
you enable Named Pipes, SQL Server 2008 uses the Named Pipes Net-Library to
communicate over a standard network address: \\ .\pipe\sql\query for the default
instance and \\ .\pipe\MSSQL$instancename\sql\query for a named instance . In addi-
tion to enabling or disabling the use of Named Pipes, you can configure properties
of this protocol to change the named pipe to use .

You can manage the Named Pipes network configuration by completing the fol-
lowing steps:

  1. Start SQL Server Configuration Manager . Expand the SQL Server Network
Configuration node, and then select the Protocols For entry for a SQL Server
instance .

  2. Right-click Named Pipes, and select Properties .

 ChAPTeR 3  Managing the Surface Security, Access, and Network Configuration78

  3. You can now do the following:

■■ Use the Enabled list to enable or disable the protocol . Select Yes to allow
the protocol to be used, or select No to prevent the protocol from being
used .

■■ Change the name of the default pipe by typing a new value in the Pipe
Name field . (Don’t forget to update the client configuration .)

  4. Click OK .

Specifying the TCP/IP Network Configuration
The TCP/IP protocol is the preferred protocol for local or remote connections to
SQL Server . When you use TCP/IP, SQL Server listens on a specific TCP port and
IP address for requests . By default, SQL Server listens on TCP port 1433 on all IP
addresses that are configured for its network cards . For security reasons, you might
want SQL Server to use a different TCP/IP configuration, and you have several
options:

■■ Configure SQL Server to listen on all configured IP addresses and to use the
same TCP port configuration across however many IP addresses this includes .

■■ Configure SQL Server to listen to only specifically enabled IP addresses and
then configure each TCP listen port separately for each IP address .

With either configuration approach, you can configure the TCP listen ports
manually or dynamically . When you manually assign a TCP listen port, the TCP port
is static and changes only if you assign a new value . When you dynamically assign
a TCP listen port, the related SQL Server instance dynamically assigns the TCP listen
port whenever you start the related service . Because the TCP listen port is dynami-
cally assigned at startup, client applications need a helper service to determine the
incoming listen port, and this is where the SQL Server Browser service comes into
the picture . When SQL Server instances are using dynamically assigned TCP ports,
the SQL Server Browser service checks for incoming connections and directs them
to the current port for the related SQL Server instance .

NOTE You shouldn’t use dynamically assigned ports when clients are connecting

through a firewall. If you do, clients might experience connection problems whenever

the dynamically assigned port changes.

Disabling, enabling, and Configuring TCP/IP

You can disable or enable and configure TCP/IP by completing the following steps:

  1. Start SQL Server Configuration Manager . Expand the SQL Server Network
Configuration node, and then select the Protocols For entry for a SQL Server
instance .

 Managing the Surface Security, Access, and Network Configuration ChAPTeR 3 79

  2. Right-click TCP/IP, and select Properties . This displays the TCP/IP Properties
dialog box .

  3. On the Protocol tab, you can now use the Enabled list to enable or disable
the protocol . Select Yes to allow the protocol to be used, or select No to pre-
vent the protocol from being used . If you disabled TCP/IP, click OK and skip
the remaining steps .

  4. On the Protocol tab, you can configure parameters that control whether and
how the SQL Server instance tries to maintain idle TCP/IP connections . Two
parameters are used:

■■ Listen All Controls whether SQL Server listens on all IP addresses that
are configured for its network cards . If you set this value to Yes, the set tings
of the IPAll properties box on the IP Addresses tab apply to all active IP
addresses . If you set this value to No, you must configure each IP address
separately using the related properties boxes on the IP Addresses tab .

■■ Keep Alive Controls how often SQL Server tries to verify that the com-
puter at the end of a remote connection is still available . By default, SQL
Server checks a remote connection after it has been idle for 30,000 mil-
liseconds (30 seconds) . In most cases, a value between 30 and 60 seconds
will suffice . Depending on how busy the server is and the importance of
client activity, you might want to verify and maintain idle connections
more frequently, which can ensure that idle connections are not termi-
nated . For example, you could use a smaller value, such as 15,000 or
20,000 milliseconds, to ensure that idle connections are validated more
often .

  5. Click OK .

Using Static TCP/IP Network Configurations

You can configure a SQL Server instance to use a static TCP/IP network configuration
by completing the following steps:

  1. Start SQL Server Configuration Manager . Expand the SQL Server Network
Configuration node, and then select the Protocols For entry for a SQL Server
instance .

  2. Right-click TCP/IP, and then select Properties . On the IP Addresses tab of the
TCP/IP Properties dialog box, you should see entries representing the IPv4
and IPv6 addresses configured on the server . Individual IP address entries in
numerical order—such as IP1, IP2, IP3, and so on—are for when SQL Server is
listening for specific IP addresses . The IPAll entry is used when SQL Server is
listening on all IP addresses on the server .

NOTE  The IP addresses 127.0.0.1 and ::1 are the local loopback addresses for

IPv4 and IPv6, respectively. These addresses are used to listen for connections

from local clients.

 ChAPTeR 3  Managing the Surface Security, Access, and Network Configuration80

  3. If you want SQL Server to listen on all configured IP addresses on the server,
you should do the following:

  a. On the Protocol tab, set Listen All to Yes .

  b. On the IP Addresses tab, scroll down and set a specific TCP listen port
for IPAll . The default is 1433 . To change the TCP listen port, type the port
you want to use in the field provided .

  4. If you want to enable listening on specific IP addresses and TCP ports, you
should do the following:

  a. On the Protocol tab, set Listen All to No .

  b. On the IP Addresses tab, specify the IP addresses that SQL Server should
actively listen on by setting their IP address entries to Active Yes and
Enabled Yes . Then type the TCP listen port for each IP address in the
fields provided .

  c. On the IP Addresses tab, specify the IP addresses that SQL Server
shouldn’t actively listen on by setting their IP address entries to Active
No and Enabled No .

  5. Click OK .

TIP SQL Server can listen to multiple TCP ports on the same IP address. Simply list

the ports separated by commas, such as 1433,1533,1534. Be sure that you don’t insert

a space between the comma and the values. The TCP Port field is limited to a total of

2,047 characters.

Using Dynamic TCP/IP Network Configurations

You can configure a SQL Server instance to use a dynamic TCP/IP network configu-
ration by completing the following steps:

  1. Start SQL Server Configuration Manager . Expand the SQL Server Network
Configuration node, and then select the Protocols For entry for a SQL Server
instance .

  2. Right-click TCP/IP, and then select Properties . On the IP Addresses tab of the
TCP/IP Properties dialog box, you should see entries representing the IPv4
and IPv6 addresses configured on the server . Individual IP address entries in
numerical order—such as IP1, IP2, IP3, and so on—are for when SQL Server is
listening for specific IP addresses . The IPAll entry is used when SQL Server is
listening on all IP addresses on the server .

NOTE  The IP addresses 127.0.0.1 and ::1 are the local loopback addresses for

IPv4 and IPv6, respectively. These addresses are used to listen for connections

from local clients.

 Managing the Surface Security, Access, and Network Configuration ChAPTeR 3 81

  3. If you want SQL Server to listen to the same dynamic port on all configured
IP addresses on the server, you should do the following:

  a. On the Protocol tab, set Listen All to Yes .

  b. On the IP Addresses tab, scroll down and then type 0 (zero) in the TCP
Dynamic Ports box .

  4. If you want to enable listening on specific IP addresses, you should do the
following:

  a. On the Protocol tab, set Listen All to No .

  b. On the IP Addresses tab, specify the IP addresses that SQL Server should
actively listen on by setting their IP address entries to Active Yes and
Enabled Yes . Then type 0 (zero) in the related TCP Dynamic Ports field .

  c. On the IP Addresses tab, specify the IP addresses that SQL Server should
not actively listen on by setting their IP address entries to Active No and
Enabled No .

  5. Click OK .

Configuring Security for Native Client Configurations
By default, clients do not use Secure Sockets Layer (SSL) or attempt to validate
server certificates . You can force protocol encryption, server certificate validation, or
both by completing the following steps:

  1. Start SQL Server Configuration Manager . Expand SQL Server Network Con-
figuration and SQL Native Client Configuration .

  2. Right-click SQL Native Client Configuration, and then select Properties .

  3. For Force Protocol Encryption, select Yes to force clients to use SSL, or select
No to use unencrypted connections .

  4. For Trust Server Certificate, select Yes to force clients to validate server cer-
tificates, or select No to skip validation of server certificates .

Configuring the Native Client Protocol Order
Shared Memory is always the preferred local connection protocol . You can disable
the Shared Memory protocol and change the order of the other protocols by com-
pleting the following steps:

  1. Start SQL Server Configuration Manager . Expand SQL Native Client Configu-
ration, and then click Client Protocols .

  2. Right-click any of the protocols listed, and then select Order . The Client Pro-
tocols Properties dialog box opens .

  3. In the Client Protocols Properties dialog box, you can do the following:

■■ Change the order of an enabled protocol . First click the name of the
protocol you want to move, and then use the arrow buttons to the right

 ChAPTeR 3  Managing the Surface Security, Access, and Network Configuration82

of the Enabled Protocols list to position the protocol where you want it in
the list .

■■ Disable or enable protocols . To disable an enabled protocol, select it,
and then click the shift left button to move the name of the protocol to
the Disabled Protocols list . To enable a disabled protocol, select it, and
then click the shift right button to move the name of the protocol to the
Enabled Protocols list .

■■ Enable or disable the Shared Memory protocol . To enable the Shared
Memory protocol for local client connections, select Enable Shared
Memory Protocol . To disable the Shared Memory protocol for local client
connections, clear Enable Shared Memory Protocol .

  4. Click OK .

Configuring the Shared Memory Native Client Configuration
The Shared Memory protocol is used for local client connections only . You can
enable or disable the Shared Memory protocol for clients by completing the follow-
ing steps:

  1. Start SQL Server Configuration Manager . Expand SQL Server Network
Configuration and SQL Native Client Configuration, and then click Client
Protocols .

  2. Right-click Shared Memory, and then select Properties .

  3. You can now use the Enabled list to enable or disable the protocol . Select Yes
to allow the protocol to be used, or select No to prevent the protocol from
being used .

Configuring the Named Pipes Native Client Configuration
The Named Pipes protocol is used primarily for local or remote connections by
applications written for early versions of the Windows operating system . The
default named pipes are \\ .\pipe\sql\query for the default instance, and \\ .\pipe\
MSSQL$instancename\sql\query for a named instance . The default pipe for clients
is set using an alias . The standard alias for clients is sql\query, which refers to the
default pipe, such as \\ .\pipe\sql\query or \\ .\pipe\MSSQL$instancename\sql\query .
If you change the default pipe in the server’s network configuration, you need to
change the default pipe in the client configuration (and for all clients that connect to
SQL Server in this way) . For example, if SQL Server is using \\ .\pipe\sqlserver\app1 as
the default pipe, the client must use \sqlserver\app1 as the pipe name .

You can manage the Named Pipes client configuration by completing the follow-
ing steps:

  1. Start SQL Server Configuration Manager . Expand SQL Native Client Configu-
ration, and then click Client Protocols .

 Managing the Surface Security, Access, and Network Configuration ChAPTeR 3 83

  2. Right-click Named Pipes, and then select Properties . You can now do the
following:

■■ Use the Enabled list to enable or disable the protocol . Select Yes to allow
the protocol to be used, or select No to prevent the protocol from being
used .

■■ Set the default pipe . In the Named Pipes Properties dialog box, enter the
default pipe for the client in the field provided, and then click OK .

Configuring the TCP/IP Native Client Configuration
The TCP/IP protocol is the preferred protocol for local or remote connections to SQL
Server . When connecting to a default instance of the Database Engine using TCP/IP,
the client must know the TCP port value . Thus, if a default instance has been config-
ured to listen on a different port, you must change the client TCP/IP configuration
to that port number . When connecting to a named instance of the Database Engine,
the client attempts to obtain the port number from the SQL Browser service on the
server to which it is connecting . If the SQL Browser service is not running, the TCP
port number must be provided in the client configuration or as part of the connec-
tion string .

You can configure the TCP/IP client configuration by completing the following
steps:

  1. Start SQL Server Configuration Manager . Expand SQL Native Client Configu-
ration, and then click Client Protocols .

  2. If you want to enable or disable TCP/IP, right-click TCP/IP, and then select
Enable or Disable as appropriate .

  3. To view TCP/IP connection properties, right-click TCP/IP, and then select
Properties .

  4. While you are working with the TCP/IP Properties dialog box, you can set the
default port by entering the port value for the client in the field provided .

  5. You can also configure parameters that control whether and how the client
tries to maintain idle TCP/IP connections . Two parameters are used:

■■ Keep Alive Controls when a client first tries to verify that an idle con-
nection is still valid and attempts to maintain the connection . By default,
the client checks a connection after it has been idle for 30,000 millisec-
onds (30 seconds) . In most cases, a value between 30 and 60 seconds will
suffice . Depending on how busy the server is and the importance of client
activity, you might want to verify and maintain idle connections more
frequently, which can ensure that idle connections are not terminated . For
example, you could use a smaller value, such as 15,000 or 20,000 millisec-
onds, to ensure that idle connections are validated more often .

■■ Keep Alive Interval Controls how frequently a client rechecks an
idle connection when there is no initial response to the KEEPALIVE

 ChAPTeR 3  Managing the Surface Security, Access, and Network Configuration84

transmission . By default, the client retransmits the KEEPALIVE request
every 1,000 milliseconds (1 second) . If many clients are connecting to
a busy server, you might want to lengthen the Keep Alive interval to
decrease the number of KEEPALIVE retransmissions .

  6. Click OK .

85

CHAP TE R 4

Configuring and Tuning
SQL Server 2008

■■ Accessing SQL Server Configuration Data 86

■■ Techniques for Managing SQL Server Configuration Options 101

■■ Configuring SQL Server with Stored Procedures 109

Microsoft designed SQL Server 2008 to balance workloads dynamically and
to self-tune configuration settings . For example, SQL Server can increase

or decrease memory usage based on overall system memory requirements . SQL
Server also manages memory efficiently, especially when it comes to queries and
user connections—and memory is just one of dozens of areas in which configura-
tion settings are automatically adjusted .

Although the SQL Server self-tuning feature works well, there are times when
you need to configure SQL Server settings manually . For example, if you are run-
ning a large database with special constraints and the database is not perform-
ing the way you expect it to, you might want to customize the configuration .
You might also need to modify configuration settings for SQL Server accounts,
authentication, and auditing . Key tools you use to configure and tune SQL Server
include the following:

■■ System catalog queries Provide a direct way to determine database
configuration characteristics and their related settings .

■■ Stored procedures Let you view and manage configuration settings
through stored procedures such as sp_configure .

■■ SQL Server Management Studio Provides an easy-to-use interface that
updates the database and registry settings for you .

■■ SQLServr.exe Starts SQL Server from the command line . You can use
SQLServr .exe to set configuration parameters at startup .

In this chapter, I’ll describe the structures available for configuring and tuning
SQL Server . I’ll start with a look at the SQL Server 2008 system catalog and then

 ChAPTeR 4  Configuring and Tuning SQL Server 200886

continue with a discussion of catalog queries and stored procedures . This discussion
provides the essential background for understanding how to configure and tune
SQL Server 2008 . Chapter 5, “Managing the Enterprise,” provides details about using
SQL Server Management Studio and SQLServr .exe .

Accessing SQL Server Configuration Data

SQL Server 2008 uses an object-based approach to representing servers and data-
bases and all of their configuration characteristics and data contents . At the heart
of this object-based structure is the system catalog, which describes the objects in a
particular instance of SQL Server along with their attributes . For example, attributes
of a database can describe the following:

■■ The number and names of the tables and views

■■ The number and names of columns in a table or view

■■ The column data type, scale, and precision

■■ The triggers and constraints that are defined on a table

■■ The indexes and keys that are defined for a table

■■ The statistics used by the query optimizer for generating query plans

In queries, you can access these attributes and other system catalog information
by using the following:

■■ Catalog views Provide access to metadata stored in a database, which
includes database attributes and their values . Catalog views can be used to
access all user-available metadata except for metadata related to replication,
backup, database maintenance plans, and SQL Server Agent .

■■ Compatibility views Provide access to many of the system tables included
in earlier releases of SQL Server by using SQL Server 2008 views . These views
are meant for backward compatibility only and expose the same metadata
that is available in SQL Server 2000 . They do not expose metadata for new
SQL Server 2008 features, such as database partitioning and mirroring .

■■ Information Schema views Provide access to a subset of metadata stored
in a database, which includes database attributes and their values . Informa-
tion Schema views are based on catalog view definitions in the SQL-92 stan-
dard and do not contain metadata specific to SQL Server 2008 . Applications
that use these views are portable between heterogeneous SQL-92-compliant
database systems .

■■ ODBC catalog functions Provide an interface that Open Database Con-
nectivity (ODBC) drivers can use to return result sets containing system
catalog information . The result sets present catalog information in a way that
is independent of the structure of the underlying catalog tables .

■■ OLE DB schema rowsets Provide an IDBSchemaRowset interface that
OLE DB providers can use to access system catalog information . The rowsets

 Configuring and Tuning SQL Server 2008 ChAPTeR 4 87

 present catalog information independently from the structure of the under-
lying catalog tables .

■■ System stored procedures and functions Provide Transact-SQL (T-SQL)
stored procedures and functions that return catalog information .

Catalog views and stored procedures are the recommended methods for access-
ing a database’s metadata, primarily because catalog views present metadata in a
format that is independent of any catalog table implementation, which means that
the views are not affected by changes in the underlying catalog tables . When you
want to configure or manage a server, you typically use stored procedures to help
you perform the necessary tasks . Stored procedures provide the functionality to
view and manage the configuration of SQL Server and related databases with ease .

Working with the System Catalog and Catalog Views
Catalog views contain information used by the SQL Server 2008 Database Engine .
They provide the most general interface to the catalog metadata and are the most
direct way to access and work with this information . All user-available metadata in
the system catalog is exposed through catalog views . Catalog views do not contain
information about replication, backup, database maintenance plans, or SQL Server
Agent .

Like all structures in SQL Server 2008 databases, catalog views follow an object-
based hierarchy in which lower-level objects inherit attributes from higher-level
objects . Some catalog views inherit rows from other catalog views . For example,
the Tables catalog view inherits all the columns defined in the Objects catalog view .
Thus, in addition to columns that are specific to the Tables catalog view itself, the
Tables catalog view includes the columns from the Objects catalog view . Table 4-1
summarizes the SQL Server 2008 catalog views and their uses .

TABLE 4-1 SQL Server 2008 Catalog Views

VIEW TYPE DESCRIPTION KEY CATALOG VIEWS

Change
Tracking

Describes change
tracking components
and values in databases
and tables

sys .change_tracking_databases
sys .change_tracking_tables

CLR Assembly Describes common
language runtime (CLR)
assemblies

sys .assemblies
sys .assembly_files
sys .assembly_references

Databases
and Files

Describes databases,
database files, and
backup devices
associated with a SQL
Server instance

sys .backup_devices
sys .database_files
sys .database_recovery_status
sys .databases
sys .master_files

 ChAPTeR 4  Configuring and Tuning SQL Server 200888

VIEW TYPE DESCRIPTION KEY CATALOG VIEWS

Database
Mirroring

Describes witness roles
that a server plays as
a database mirroring
partner

sys .database_mirroring
sys .database_mirroring_endpoints
sys .database_mirroring_witnesses

Data Spaces Describes filegroups and
partition schemes

sys .data_spaces
sys .destination_data_spaces
sys .filegroups
sys .partition_schemes

Endpoints Describes endpoints
used for mirroring,
service broker
messaging, and Web
services

sys .endpoints
sys .endpoint_webmethods
sys .http_endpoints
sys .service_broker_endpoints
sys .soap_endpoints
sys .tcp_endpoints
sys .via_endpoints

Extended
Properties

Describes extended
properties and the class
of objects from which
they originate

sys .extended_properties

Linked
Servers

Describes linked or
remote servers and their
related logins

sys .linked_logins
sys .remote_logins
sys .servers

Messages
(for Errors)

Describes system-
defined and user-
defined error messages

sys .messages

Objects Describes top-level
database objects

sys .allocation_units
sys .assembly_modules
sys .check_constraints
sys .columns
sys .computed_columns
sys .default_constraints
sys .event_notifications
sys .events
sys .extended_procedures
sys .foreign_key_columns
sys .foreign_keys
sys .function_order_columns
sys .identity_columns
sys .index_columns

 Configuring and Tuning SQL Server 2008 ChAPTeR 4 89

VIEW TYPE DESCRIPTION KEY CATALOG VIEWS

Objects
(continued)

Describes top-level
database objects

sys .indexes
sys .key_constraints
sys .numbered_procedure_parameters
sys .numbered_procedures
sys .objects
sys .parameters
sys .partitions
sys .procedures
sys .service_queues
sys .spatial_index_tessellations
sys .spatial_indexes
sys .sql_dependencies
sys .sql_modules
sys .stats
sys .stats_columns
sys .synonyms
sys .table_types
sys .tables
sys .trace_events
sys .traces
sys .trigger_event_types
sys .trigger_events
sys .triggers
sys .views

Partition
Function

Describes partition
functions, parameters,
and range values

sys .partition_functions
sys .partition_parameters
sys .partition_range_values

Resource
Governor

Describes workloads,
resource pools, and
states for managed
resources

sys .resource_governor_configuration
sys .resource_governor_workload_groups
sys .resource_governor_resource_pools

Scalar Types Describes user-defined
scalar types for CLR
assemblies as well as
other system-defined
and user-defined scalar
types

sys .assembly_types
sys .types

Schemas Describes database
schemas

sys .schemas

 ChAPTeR 4  Configuring and Tuning SQL Server 200890

VIEW TYPE DESCRIPTION KEY CATALOG VIEWS

Security Describes server-level,
database-level, and
encryption security
attributes and values

Database-level views:
sys .database_permissions
sys .database_principals
sys .database_role_members
sys .master_key_passwords

Server-level views:
sys .server_permissions
sys .server_principals
sys .server_role_members
sys .sql_logins
sys .system_components_surface_area_
 configuration

Encryption views:
sys .asymmetric_keys
sys .certificates
sys .credentials
sys .crypt_properties,
sys .cryptographic_providers
sys .key_encryptions
sys .symmetric_keys

Audit views:
sys .database_audit_specification_details
sys .database_audit_specifications
sys .server_audit_specifications
sys .server_audit_specifications_details
sys .server_audits
sys .server_file_audits

Service
Broker

Describes Service
Broker endpoints and
messaging components

sys .conversation_endpoints
sys .conversation_groups
sys .conversation_priorities
sys .remote_service_bindings
sys .routes
sys .service_contract_message_usages
sys .service_contract_usages
sys .service_contracts
sys .service_message_types
sys .service_queue_usages
sys .services
sys .transmission_queue

 Configuring and Tuning SQL Server 2008 ChAPTeR 4 91

VIEW TYPE DESCRIPTION KEY CATALOG VIEWS

Server-Wide
Configuration

Describes serverwide
configuration option
values

sys .configurations
sys .trace_categories
sys .trace_columns
sys .trace_event_bindings
sys .trace_events
sys .trace_subclass_values
sys .traces

XML Schemas
(XML Type
System)

Describes XML Schema
components and values

sys .xml_indexes
sys .xml_schema_attributes
sys .xml_schema_collections
sys .xml_schema_component_placements
sys .xml_schema_components
sys .xml_schema_elements
sys .xml_schema_facets
sys .xml_schema_model_groups
sys .xml_schema_namespaces
sys .xml_schema_types
sys .xml_schema_wildcard_namespaces
sys .xml_schema_wildcards

Table 4-2 shows the mapping between SQL Server 2000 system tables and SQL
Server 2008 system views . The entries are organized by database and view type .
Mappings for the master database are followed by mappings for all databases .
When you want to map uses of the sysfulltextcatalogs stored procedure, you should
use the following data definition language (DDL) statements instead of the avail-
able SQL Server stored procedures: CREATE FULLTEXT CATALOG, ALTER FULLTEXT
CATALOG, and DROP FULLTEXT CATALOG . These statements provide additional
functionality and help ensure that your applications are compatible with future edi-
tions of SQL Server .

 ChAPTeR 4  Configuring and Tuning SQL Server 200892

TABLE 4-2 Mapping SQL Server 2000 System Tables to SQL Server 2008 System Views

SQL SERVER 2000
SYSTEM TABLE

SQL SERVER 2008
SYSTEM VIEW

SQL SERVER 2008
VIEW TYPE

master DATABASE

sysaltfiles sys .master_files Catalog view

syscacheobjects sys .dm_exec_cached_plans
sys .dm_exec_plan_attributes
sys .dm_exec_sql_text
sys .dm_exec_cached_plans_
 dependent_objects

Dynamic management view

syscharsets sys .syscharsets Compatibility view

sysconfigures sys .configurations Catalog view

syscurconfigs sys .configurations Catalog view

sysdatabases sys .databases Catalog view

sysdevices sys .backup_devices Catalog view

syslanguages sys .languages Compatibility view

syslockinfo sys .dm_tran_locks Dynamic management view

syslocks sys .dm_tran_locks Dynamic management view

syslogins sys .server_principals
sys .sql_logins

Catalog view

sysmessages sys .messages Catalog view

sysoledbusers sys .linked_logins Catalog view

sysopentapes sys .dm_io_backup_tapes Dynamic management view

sysperfinfo sys .dm_os_performance_
 counters

Dynamic management view

sysprocesses sys .dm_exec_connections
sys .dm_exec_requests
sys .dm_exec_sessions

Dynamic management view

sysremotelogins sys .remote_logins Catalog view

sysservers sys .servers Catalog view

ALL DATABASES

fn_virtualfilestats sys .dm_io_virtual_file_stats Dynamic management view

syscolumns sys .columns Catalog view

 Configuring and Tuning SQL Server 2008 ChAPTeR 4 93

SQL SERVER 2000
SYSTEM TABLE

SQL SERVER 2008
SYSTEM VIEW

SQL SERVER 2008
VIEW TYPE

syscomments sys .sql_modules Catalog view

sysconstraints sys .check_constraints
sys .default_constraints
sys .key_constraints
sys .foreign_keys

Catalog view

sysdepends sys .sql_expression_
 dependencies

Catalog view

sysfilegroups sys .filegroups Catalog view

sysfiles sys .database_files Catalog view

sysforeignkeys sys .foreign_key_columns
sys .foreign_keys

Catalog view

sysindexes sys .indexes
sys .partitions
sys .allocation_units

sys .dm_db_partition_stats

Catalog view

Dynamic management view

sysindexkeys sys .index_columns Catalog view

sysmembers sys .database_role_members Catalog view

sysobjects sys .objects Catalog view

syspermissions sys .database_permissions
sys .server_permissions

Catalog view

sysprotects sys .database_permissions
sys .server_permissions

Catalog view

sysreferences sys .foreign_keys Catalog view

systypes sys .types Catalog view

sysusers sys .database_principals Catalog view

Working with System Stored Procedures
You can use system stored procedures to view SQL Server configuration details and
to perform general administration . SQL Server 2008 has two main categories of
system stored procedures:

■■ Those meant for administrators

■■ Those used to implement functionality for database application program-
ming interfaces (APIs)

 ChAPTeR 4  Configuring and Tuning SQL Server 200894

Of course, you will work with system stored procedures meant for administration
and not with those that implement database API functions . System stored proce-
dures are written using Transact-SQL (T-SQL) . Most return a value of 0 to indicate
success and a nonzero value to indicate failure . As an example, sp_dboption is a
stored procedure for managing the configuration options of SQL Server databases
(except for the master and tempdb databases) . When you use sp_dboption to set a
database configuration value, a return code of 0 indicates that the option was set
as expected . A return code of 1 indicates that the stored procedure failed and the
option was not set as expected .

The following example takes the Personnel database offline if there are no cur-
rent users:

T-SQL

USE master;
GO
EXEC sp_dboption "Personnel", "offline", "TRUE";
GO

PowerShell

Invoke-Sqlcmd -Query "USE master; EXEC sp_dboption 'Personnel',
'offline', 'TRUE';" -ServerInstance "CorpServer17\DataServices"

If the stored procedure returns 0, the database was successfully taken offline . A
return value of 1 indicates that a problem occurred taking the database offline, and
the database is still online . For more information about using stored procedures, see
“Configuring SQL Server with Stored Procedures” later in this chapter . Note that you
can change some options of sp_configure only when Show Advanced Options is set
to 1, as in the following examples:

T-SQL

exec sp_configure "show advanced options", 1

PowerShell

Invoke-Sqlcmd -Query "exec sp_configure 'show advanced options', 1"
-ServerInstance "DbServer18\OrderSystem"

NOTE When you use Invoke-Sqlcmd, you specify the Database engine instance with

the –ServerInstance parameter in the form –ServerInstance "ServerName" for the

default instance or –ServerInstance "ServerName\InstanceName" for a nondefault

instance. For more information on using Invoke-Sqlcmd, see Chapter 5.

Table 4-3 provides a summary of stored procedures for administration . The table
entries are organized by the type of administration activity for which the stored
procedure is designed .

 Configuring and Tuning SQL Server 2008 ChAPTeR 4 95

TABLE 4-3 Key System Stored Procedures by Type

STORED
PROCEDURE TYPE DESCRIPTION RELATED SYSTEM STORED PROCEDURES

Active
Directory
stored
procedures

Register instances
of SQL Server
and SQL Server
databases in
Active Directory .

sp_ActiveDirectory_Obj,
sp_ActiveDirectory_SCP

Catalog stored
procedures

Implement ODBC
data dictionary
functions .

sp_column_privileges, sp_columns,
sp_databases, sp_fkeys, sp_pkeys,
sp_server_info, sp_special_columns,
sp_sproc_columns, sp_statistics,
sp_stored_procedures, sp_table_privileges,
sp_tables

Change
Tracking stored
procedures

Implement,
manage,
and monitor
change tracking
functionality .

sys .sp_cdc_add_job, sys .sp_cdc_change_job,
sys .sp_cdc_cleanup_change_table,
sys .sp_cdc_disable_db,
sys .sp_cdc_disable_table,
sys .sp_cdc_drop_job,
sys .sp_cdc_enable_db,
sys .sp_cdc_enable_table,
sys .sp_cdc_generate_wrapper_function,
sys .sp_cdc_get_captured_columns,
sys .sp_cdc_get_ddl_history,
sys .sp_cdc_help_change_data_capture,
sys .sp_cdc_help_jobs, sys .sp_cdc_scan,
sys .sp_cdc_start_ job, sys .sp_cdc_stop_job

Cursor stored
procedures

Implement
cursor variable
functionality .

sp_cursor_list, sp_describe_cursor,
sp_describe_cursor_columns,
sp_describe_cursor_tables

Database
Engine stored
procedures

Maintain
SQL Server
instances and
perform general
administration
activities .

sp_add_data_file_recover_suspect_db,
sp_add_log_file_recover_suspect_db,
sp_addextendedproc,
sp_addextendedproperty,
sp_addmessage, sp_addtype,
sp_addumpdevice, sp_altermessage,
sp_attach_db, sp_attach_single_file_db,
sp_autostats, sp_bindefault, sp_bindrule,
sp_bindsession, sp_certify_removable,
sp_configure, sp_control_plan_guide,
sp_create_plan_guide,
sp_create_plan_guide_from_cache,

 ChAPTeR 4  Configuring and Tuning SQL Server 200896

STORED
PROCEDURE TYPE DESCRIPTION RELATED SYSTEM STORED PROCEDURES

Database
Engine stored
procedures
(continued)

Maintain
SQL Server
instances and
perform general
administration
activities .

sp_create_removable, sp_createstats,
sp_cycle_errorlog, sp_datatype_info,
sp_dbcmptlevel,
sp_dbmmonitoraddmonitoring,
sp_dbmmonitorchangealert,
sp_dbmmonitorchangemonitoring,
sp_dbmmonitordropalert,
sp_dbmmonitordropmonitoring,
sp_dbmmonitorhelpalert,
sp_dbmmonitorhelpmonitoring,
sp_dbmmonitorresults, sp_dboption,
sp_dbremove, sp_delete_backuphistory,
sp_depends, sp_detach_db,
sp_dropdevice, sp_dropextendedproc,
sp_dropextendedproperty, sp_dropmessage,
sp_droptype, sp_executesql,
sp_filestream_configure, sp_getapplock,
sp_getbindtoken, sp_help,
sp_helpconstraint, sp_helpdb, sp_helpdevice,
sp_helpextendedproc, sp_helpfile,
sp_helpfilegroup, sp_helpindex,
sp_helplanguage, sp_helpserver, sp_helpsort,
sp_helpstats, sp_helptext, sp_helptrigger,
sp_indexoption, sp_invalidate_textptr, sp_lock,
sp_monitor, sp_procoption, sp_recompile,
sp_refreshview, sp_releaseapplock,
sp_rename, sp_renamedb, sp_resetstatus,
sp_serveroption, sp_setnetname,
sp_settriggerorder, sp_spaceused,
sp_tableoption, sp_unbindefault,
sp_unbindrule, sp_updateextendedproperty,
sp_updatestats, sp_validname, sp_who

Database
Mail stored
procedures

Perform e-mail
operations from
SQL Server .

sp_send_dbmail,
sysmail_add_account_sp,
sysmail_add_principalprofile_sp,
sysmail_add_profile_sp,
sysmail_add_profileaccount_sp,
sysmail_configure_sp,
sysmail_delete_account_sp,
sysmail_delete_log_sp,
sysmail_delete_mailitems_sp,

 Configuring and Tuning SQL Server 2008 ChAPTeR 4 97

STORED
PROCEDURE TYPE DESCRIPTION RELATED SYSTEM STORED PROCEDURES

Database
Mail stored
procedures
(continued)

Perform e-mail
operations from
SQL Server .

sysmail_delete_principalprofile_sp,
sysmail_delete_profile_sp,
sysmail_delete_profileaccount_sp,
sysmail_help_account_sp,
sysmail_help_configure_sp,
sysmail_help_principalprofile_sp,
sysmail_help_profile_sp,
sysmail_help_profileaccount_sp,
sysmail_help_queue_sp, sysmail_start_sp,
sysmail_stop_sp,
sysmail_update_account_sp,
sysmail_update_principalprofile_sp,
sysmail_update_profile_sp,
sysmail_update_profileaccount_sp

Database
Maintenance
Plan stored
procedures

Configure and
manage database
maintenance
plans and related
tasks .

sp_add_maintenance_plan,
sp_add_maintenance_plan_db,
sp_add_maintenance_plan_job,
sp_delete_maintenance_plan,
sp_delete_maintenance_plan_db,
sp_delete_maintenance_plan_job,
sp_help_maintenance_plan

Distributed
Queries stored
procedures

Implement
and manage
distributed
queries .

sp_addlinkedserver, sp_addlinkedsrvlogin,
sp_catalogs, sp_column_privileges_ex,
sp_columns_ex, sp_droplinkedsrvlogin,
sp_dropserver, sp_foreignkeys, sp_indexes,
sp_linkedservers, sp_primarykeys,
sp_serveroption, sp_table_privileges_ex,
sp_tables_ex, sp_testlinkedserver

Full-Text
Search stored
procedures

Implement and
query full-text
indexes .

Deprecated . Use CREATE FULLTEXT CATALOG,
ALTER FULLTEXT CATALOG, and DROP
FULLTEXT CATALOG .

General
Extended
stored
procedures

Provide an
interface from
SQL Server
to external
programs,
primarily
for server
maintenance .

xp_cmdshell, xp_enumgroups,
xp_findnextmsg, xp_grantlogin, xp_logevent,
xp_loginconfig, xp_logininfo, xp_msver,
xp_revokelogin, xp_sprintf, xp_sqlmaint,
xp_sscanf

 ChAPTeR 4  Configuring and Tuning SQL Server 200898

STORED
PROCEDURE TYPE DESCRIPTION RELATED SYSTEM STORED PROCEDURES

Log Shipping
stored
procedures

Implement,
manage,
and monitor
log shipping
configurations .

sp_add_log_shipping_alert_ job,
sp_add_log_shipping_primary_database,
sp_add_log_shipping_primary_secondary,
sp_add_log_shipping_secondary_database,
sp_add_log_shipping_secondary_primary,
sp_change_log_shipping_primary_database,
sp_change_log_shipping_secondary_
 database,
sp_change_log_shipping_secondary_
 primary,
sp_cleanup_log_shipping_history,
sp_delete_log_shipping_alert_ job,
sp_delete_log_shipping_primary_database,
sp_delete_log_shipping_primary_secondary,
sp_delete_log_shipping_secondary_database,
sp_delete_log_shipping_secondary_
 primary, sp_help_log_shipping_alert_ job,
sp_help_log_shipping_monitor_primary,
sp_help_log_shipping_monitor_secondary,
sp_help_log_shipping_primary_database,
sp_help_log_shipping_primary_secondary,
sp_help_log_shipping_secondary_database,
sp_help_log_shipping_secondary_primary,
sp_refresh_log_shipping_monitor,
sp_resolve_logins

OLE
Automation
stored
procedures

Create and
manage OLE
automation
objects .

sp_OACreate, sp_OADestroy,
sp_OAGetErrorInfo, sp_OAGetProperty,
sp_OAMethod, sp_OASetProperty, sp_OAStop

Security stored
procedures

Manage server
and database
security .

sp_addapprole, sp_addlinkedsrvlogin,
sp_addlogin, sp_addremotelogin,
sp_addrole, sp_addrolemember,
sp_addserver, sp_addsrvrolemember,
sp_adduser, sp_approlepassword,
sp_change_users_login, sp_changedbowner,
sp_changeobjectowner,
sp_dbfixedrolepermission,
sp_defaultdb, sp_defaultlanguage,
sp_denylogin, sp_dropalias, sp_dropapprole,
sp_droplinkedsrvlogin, sp_droplogin,

 Configuring and Tuning SQL Server 2008 ChAPTeR 4 99

STORED
PROCEDURE TYPE DESCRIPTION RELATED SYSTEM STORED PROCEDURES

Security stored
procedures
(continued)

Manage server
and database
security .

sp_dropremotelogin, sp_droprolemember,
sp_dropserver, sp_dropsrvrolemember,
sp_dropuser, sp_grantdbaccess,
sp_grantlogin, sp_helpdbfixedrole,
sp_helplinkedsrvlogin, sp_helplogins,
sp_helpntgroup, sp_helpremotelogin,
sp_helprole, sp_helprolemember,
sp_helprotect, sp_helpsrvrole,
sp_helpsrvrolemember, sp_helpuser,
sp_MShasdbaccess, sp_password,
sp_remoteoption, sp_revokedbaccess,
sp_revokelogin, sp_setapprole,
sp_srvrolepermission, sp_validatelogins

SQL Mail
stored
procedures

Perform e-mail
operations from
SQL Server . (In
SQL Server 2008,
Database Mail is
preferred over
SQL Mail .)

sp_processmail, xp_deletemail,
xp_findnextmsg, xp_readmail, xp_sendmail,
xp_startmail, xp_stopmail

SQL Server
Profiler stored
procedures

Used by SQL
Server Profiler
to monitor
performance and
activity .

sp_trace_create, sp_trace_generateevent,
sp_trace_setevent, sp_trace_setfilter,
sp_trace_setstatus,

SQL Server
Agent stored
procedures

Manage
scheduled alerts
and other SQL
Server Agent
activities .

sp_add_alert, sp_add_category, sp_add_job,
sp_add_jobschedule, sp_add_jobserver,
sp_add_jobstep, sp_add_notification,
sp_add_operator, sp_add_proxy,
sp_add_schedule, sp_add_targetservergroup,
sp_add_targetsvrgrp_member,
sp_apply_ job_to_targets, sp_attach_schedule,
sp_cycle_agent_errorlog, sp_cycle_errorlog,
sp_delete_alert, sp_delete_category,
sp_delete_ job, sp_delete_ jobschedule,
sp_delete_ jobserver, sp_delete_ jobstep,
sp_delete_ jobsteplog, sp_delete_notification,
sp_delete_operator, sp_delete_proxy,
sp_delete_schedule, sp_delete_targetserver,
sp_delete_targetservergroup,

 ChAPTeR 4  Configuring and Tuning SQL Server 2008100

STORED
PROCEDURE TYPE DESCRIPTION RELATED SYSTEM STORED PROCEDURES

SQL Server
Agent stored
procedures
(continued)

Manage
scheduled alerts
and other SQL
Server Agent
activities .

sp_delete_targetsvrgrp_member,
sp_detach_schedule,
sp_enum_login_for_proxy,
sp_enum_proxy_for_subsystem,
sp_enum_sqlagent_subsystems,
sp_grant_login_to_proxy,
sp_grant_proxy_to_subsystem, sp_help_alert,
sp_help_category, sp_help_downloadlist,
sp_help_job, sp_help_jobactivity,
sp_help_jobcount, sp_help_jobhistory,
sp_help_jobs_in_schedule,
sp_help_jobschedule, sp_help_jobserver,
sp_help_jobstep, sp_help_jobsteplog,
sp_help_notification, sp_help_operator,
sp_help_proxy, sp_help_schedule,
sp_help_targetserver,
sp_help_targetservergroup,
sp_manage_jobs_by_login, sp_msx_defect,
sp_msx_enlist, sp_msx_get_account,
sp_msx_set_account, sp_notify_operator,
sp_post_msx_operation, sp_purge_jobhistory,
sp_remove_job_from_targets,
sp_resync_targetserver,
sp_revoke_login_from_proxy,
sp_revoke_proxy_from_subsystem,
sp_start_ job, sp_stop_job, sp_update_alert,
sp_update_category, sp_update_job,
sp_update_jobschedule, sp_update_jobstep,
sp_update_notification, sp_update_operator,
sp_update_proxy, sp_update_schedule,
sp_update_targetservergroup

XML stored
procedures

Manage XML
text .

sp_xml_preparedocument,
sp_xml_removedocument

 Configuring and Tuning SQL Server 2008 ChAPTeR 4 101

Techniques for Managing SQL Server
Configuration Options

You can think of configuration options as a set of rules that define how SQL Server is
configured and used . Individual server instances can have different configurations,
as can the databases they support, the connections made by applications, and any
statements or batch programs that are executed .

Setting Configuration Options
Configuration options can be set for the following:

■■ A specific server instance Server options are also referred to as instance-
wide options and are set by executing the sp_configure stored procedure .

■■ A specific database Database options are also referred to as database-
level	options and are set by executing the ALTER DATABASE statement . The
database compatibility level can be set by executing the sp_dbcmptlevel
stored procedure .

■■ A specific connection Connection options are set by the Microsoft OLE
DB Provider for SQL Server or the SQL Server ODBC driver properties and by
ANSI SET options when a connection is established .

■■ A specific statement or batch Batch-level options are specified with
SET statements . Statement-level options are specified in individual T-SQL
statements .

Each of these configuration areas can be thought of as a level in the SQL Server
configuration hierarchy . When an option is supported at more than one level, the
applicable setting is determined by the following precedence order:

  1. A server option

  2. A database option

  3. A connection (ANSI SET) or batch (SET) option

  4. A specific statement (HINT) option

NOTE The stored procedure sp_configure provides the option user	options, which

allows you to change the default values of several SeT options. Although user	options

appears to be an instance option, it is a SeT option. In previous releases of SQL Server,

batch-level options are called connection-level	options. When you disable multiple

active result sets (MARS), batch-level options are considered connection-level options

as well.

You use ALTER DATABASE to change settings for a database, sp_configure to
change server-level settings, and the SET statement to change settings that affect
only the current session . If there are conflicts among configuration options, the
options applied later have precedence over options set previously . For example,
connection options have precedence over database and server options .

 ChAPTeR 4  Configuring and Tuning SQL Server 2008102

Working with SeT Options
Typically, SET options are configured by users within a batch or script and they apply
until they are reset or the user’s session with the server is terminated . SET options
can also be configured within a stored procedure or trigger . In that case, the SET
options apply until they are reset inside that stored procedure or trigger, or until
control returns to the code that invoked the stored procedure or trigger .

SET options are applied at either parse time or execute time . The parse-time
options are QUOTED_IDENTIFIER, PARSEONLY, OFFSETS, and FIPS_FLAGGER . All
other SET options are execute-time options . Parse-time options are applied dur-
ing parsing as they are encountered . Execute-time options are applied during the
execution of the code in which they are specified .

Batch statements are parsed in their entirety prior to execution . This means
that control flow statements do not affect parse-time settings . In contrast, both
control flow and execution affect whether execute-time options are set . Execute-
time options are set only if control is changed to a section of the batch containing
execute-time options and the related statements are executed without error . If
execution fails before an execute-time option is set or during the processing of the
statement that sets the option, the option is not set .

When a user connects to a database, some options might be set to ON automati-
cally . These options can be set through user options, server options, or the ODBC
and OLE DB connection properties . If the user changes the SET options within a
dynamic SQL batch or script, those changes apply only for the duration of that batch
or script .

NOTE MARS-enabled connections maintain a list of default SeT option values. When

a batch or script executes under that connection, the default SeT option values are

copied to the current request’s environment. These values remain in effect unless

they are reset within the connection. When the batch or script ends, the execution

environment is copied back to the session’s default. This ensures that multiple batches

executing simultaneously under the same connection run in an isolated SeT options

environment. however, because the execution environment is copied back to the ses-

sion default when batch or script execution is complete, the current default environ-

ment for a connection depends on the last batch or script that completes execution.

Table 4-4 lists the batch/connection SET options available and indicates the
 corresponding database and server options supported in SQL Server 2008 as well
as the default setting (as applicable) . The SET ANSI_DEFAULTS statement is pro-
vided as a shortcut for setting SQL-92 standard options to their default values . The
options that reset when this statement is used are as follows: SET ANSI_NULLS, SET
CURSOR_CLOSE_ON_COMMIT, SET ANSI_NULL_DFLT_ON, SET IMPLICIT_TRANSAC-
TIONS, SET ANSI_PADDING, SET QUOTED_IDENTIFIER, and SET ANSI_WARNINGS .

 Configuring and Tuning SQL Server 2008 ChAPTeR 4 103

NOTE In a future release of SQL Server, ANSI_PADDING will always be turned on and

you will not be able to turn this setting off. ANSI_PADDING must be on when you are

creating or changing indexes on computer columns or indexed views. The SQL Server

Native Client ODBC driver and SQL Server Native Client OLe DB Provider for SQL Server

automatically set ANSI_PADDING to ON when connecting. For connections from

DB-Library applications, however, the default for SeT ANSI_PADDING is OFF.

TABLE 4-4 SET Options

SET OPTION
DATABASE
OPTION

SERVER
OPTION

DEFAULT
SETTING

ANSI_DEFAULTS None None N/A

ANSI_NULL_DFLT_OFF
ANSI_NULL_DFLT_ON

ANSI_NULL_DEFAULT user options
default

OFF

ANSI_NULLS ANSI_NULLS user options
default

OFF

ANSI_PADDING ANSI_PADDING user options
default

ON

ANSI_WARNINGS ANSI_WARNINGS user options
default

OFF

ARITHABORT ARITHABORT user options
default

OFF

ARITHIGNORE None user options
default

OFF

CONCAT_NULL_
YIELDS_NULL

CONCAT_NULL_
YIELDS_NULL

None OFF

CONTEXT_INFO None None OFF

CURSOR_CLOSE_
ON_COMMIT

CURSOR_CLOSE_
ON_COMMIT

user options
default

OFF

DATEFIRST None None 7

DATEFORMAT None None mdy

DEADLOCK_PRIORITY None None NORMAL

FIPS_FLAGGER None None OFF

FMTONLY None None OFF

FORCEPLAN None None OFF

IDENTITY_INSERT None None OFF

 ChAPTeR 4  Configuring and Tuning SQL Server 2008104

SET OPTION
DATABASE
OPTION

SERVER
OPTION

DEFAULT
SETTING

IMPLICIT_TRANSACTIONS None user options
default

OFF

LANGUAGE None None us_english

LOCK_TIMEOUT None None No limit

NOCOUNT None user options
default

OFF

NOEXEC None None OFF

NUMERIC_
ROUNDABORT

NUMERIC_
ROUNDABORT

None OFF

OFFSETS None None OFF

PARSEONLY None None OFF

QUERY_GOVERNOR_
COST_LIMIT

None query
governor cost
limit

OFF

QUOTED_IDENTIFIER quoted identifier user options
default

OFF

REMOTE_PROC_
TRANSACTIONS

None None OFF

ROWCOUNT None None OFF

SHOWPLAN_ALL None None OFF

SHOWPLAN_TEXT None None OFF

SHOWPLAN_XML None None OFF

STATISTICS IO None None OFF

STATISTICS PROFILE None None OFF

STATISTICS TIME None None OFF

STATISTICS XML None None OFF

TEXTSIZE None None OFF

TRANSACTION ISOLATION
LEVEL

None None N/A

XACT_ABORT None None OFF

 Configuring and Tuning SQL Server 2008 ChAPTeR 4 105

Working with Server Options
Server options can be set using the Properties dialog boxes in SQL Server Manage-
ment Studio or with the sp_configure stored procedure . The difference between
these two methods is which options are available to set . Only the most commonly
used server configuration options are available through SQL Server Management
Studio, but all configuration options are accessible through sp_configure . Table 4-5
lists the server options available and provides the corresponding SET options and
database options that are supported in SQL Server 2008, as well as the default set-
ting (as applicable) .

TABLE 4-5 Server Options

SERVER OPTION
SET
OPTION

DATABASE
OPTION

DEFAULT
SETTING

allow updates None None 0

backup
compression
default

None None 0

clr enabled None None 0

cross db
ownership
chaining

None None 5

default language None None 0

filestream access
level

None None 0

max text repl size None None 65536

nested triggers None None 1

remote access None None 1

remote admin
connections

None None 0

remote login
timeout

None None 20

remote proc trans None None 0

remote query
timeout

None None 600

server trigger
recursion

None None 0

 ChAPTeR 4  Configuring and Tuning SQL Server 2008106

SERVER OPTION
SET
OPTION

DATABASE
OPTION

DEFAULT
SETTING

show advanced
options

None None 0

user options ANSI_NULL_DFLT_ON
ANSI_NULL_DFLT_OFF

ANSI_NULL_DEFAULT OFF

ANSI_NULLS ANSI_NULLS OFF

ANSI_PADDING ANSI_PADDING ON

ANSI_WARNINGS ANSI_WARNINGS OFF

ARITHABORT ARITHABORT OFF

ARITHIGNORE None OFF

CURSOR_CLOSE_ON_
COMMIT

CURSOR_CLOSE_ON_
COMMIT

OFF

DISABLE_DEF_CNST_CHK None OFF

IMPLICIT_TRANSACTIONS None OFF

NOCOUNT None OFF

QUOTED_IDENTIFIER QUOTED_IDENTIFIER OFF

Working with Database Options
Database options are set by executing the ALTER DATABASE statement . In new SQL
Server installations, the settings in the model and master databases are the same .
When you create new databases, the default database options for those databases
are taken from the model database . Whenever you change a database option, the
Database Engine recompiles everything in the database cache . Table 4-6 lists the
standard database options that are available and provides the corresponding SET
and server options supported in SQL Server 2008, as well as the default setting (as
applicable) .

NOTE Microsoft recommends that ANSI_PADDING always be set to ON to avoid

problems with future versions of SQL Server. Note that AUTO_UPDATe_STATISTICS_

ASYNC has no effect unless you set AUTO_UPDATe_STATISTICS to ON.

 Configuring and Tuning SQL Server 2008 ChAPTeR 4 107

TABLE 4-6 Database Options

DATABASE OPTION
SET
OPTION

SERVER
OPTION

DEFAULT
SETTING

ANSI_NULL_DEFAULT ANSI_NULL_DFLT_ON
ANSI_NULL_DFLT_OFF

user options
default

OFF

ANSI_NULLS ANSI_NULLS user options
default

OFF

ANSI_PADDING ANSI_PADDING user options
default

ON

ANSI_WARNINGS ANSI_WARNINGS user options
default

OFF

AUTO_CLOSE None None OFF

AUTO_CREATE_STATISTICS None None ON

AUTO_SHRINK None None OFF

AUTO_UPDATE_STATISTICS None None ON

AUTO_UPDATE_STATISTICS_
ASYNC

None None OFF

CONCAT_NULL_YIELDS_
NULL

CONCAT_NULL_YIELDS_
NULL

None OFF

CURSOR_CLOSE_ON_
COMMIT

CURSOR_CLOSE_ON_
COMMIT

user options
default

OFF

CURSOR_DEFAULT None None GLOBAL

MERGE PUBLISH None None FALSE

PUBLISHED None None FALSE

QUOTED_IDENTIFIER QUOTED_IDENTIFIER user options
default

ON

READ_ONLY None None FALSE

RECOVERY BULK_LOGGED None None FALSE

RECOVERY SIMPLE None None TRUE

RECURSIVE_TRIGGERS None None FALSE

RESTRICTED_USER None None FALSE

SINGLE_USER None None FALSE

SUBSCRIBED None None TRUE

TORN_PAGE_DETECTION None None TRUE

 ChAPTeR 4  Configuring and Tuning SQL Server 2008108

Managing Database Compatibility
By default, when you create a new database in SQL Server 2008, the default com-
patibility level is 100 (unless the model database has a lower compatibility level) .
When a database is upgraded to SQL Server 2008, pre–SQL Server 2000 databases
are upgraded to compatibility level 80 . All other databases retain their existing
compatibility level:

■■ 80 for SQL Server 2000 compatibility level

■■ 90 for SQL Server 2005 compatibility level

■■ 100 for SQL Server 2008 compatibility level

Although the compatibility level of the master database cannot be modified, the
compatibility level setting of the model database can be changed . This flexibility
allows you to create new databases with a nondefault compatibility level . To change
the compatibility level, you can use the ALTER DATABASE statement .

The ALTER DATABASE statement allows you to set the database compatibility
level for a specific database . The ALTER DATABASE statement sets certain database
behaviors to be compatible with the specified earlier version of SQL Server . The
following example changes the compatibility level of the Personnel database to SQL
Server 2005:

T-SQL

ALTER DATABASE Personnel
SET COMPATIBILITY_LEVEL = 90;
GO

PowerShell

Invoke-Sqlcmd -Query "ALTER DATABASE Personnel;
SET COMPATIBILITY_LEVEL = 90;" -ServerInstance "DbServer17\Cwhouse"

When there are possible conflicts between compatibility (and other) settings, it
is important to know which database context is being used . Generally speaking, the
current database context is the database defined by the USE statement if the state-
ment is in a batch or script, or it is the database that contains the stored procedure
if the statement is in a stored procedure applied to that statement . When a stored
procedure is executed from a batch or another stored procedure, it is executed
under the option settings of the database in which it is stored . For example, when a
stored procedure in the Support database calls a stored procedure in the Personnel
database, the Support procedure is executed under the compatibility level setting of
the Support database and the Personnel procedure is executed under the compati-
bility level setting of the Personnel database .

 Configuring and Tuning SQL Server 2008 ChAPTeR 4 109

Configuring SQL Server with Stored Procedures

You can configure many areas of SQL Server using the SQL Server Properties dialog
box, which is discussed in Chapter 5 . As you have learned in this chapter, you can
also configure SQL Server with stored procedures, such as sp_configure . You execute
stored procedures and other queries in SQL Server Management Studio . SQL Server
Management Studio has a built-in client tool that sends commands to a SQL Server
instance, which in turn parses, compiles, and executes the commands .

The following sections explain how to use SQL Server Management Studio and
stored procedures to configure SQL Server . You can find more detailed coverage of
SQL Server Management Studio in other chapters .

Using SQL Server Management Studio for Queries
You can start SQL Server Management Studio and access the built-in query client by
completing the following steps:

  1. Click Start, Programs or All Programs, Microsoft SQL Server 2008, SQL Server
Management Studio . Or click Start, type ssms in the Search box, and then
press Enter .

  2. In the Connect To Server dialog box, shown in Figure 4-1, use the Server
Type list to select the database component you want to connect to, such as
Database Engine .

FIGURE 4-1 The Connect To Server dialog box

  3. In the Server Name field, type the name of the server on which SQL Server is
running, such as CorpSvr04 .

NOTE  You can connect only to registered servers. If the instance of SQL Server

you want to work with is not registered, you need to register the server before

you can work with it. See “Managing Servers” in Chapter 5 for details.

 ChAPTeR 4  Configuring and Tuning SQL Server 2008110

  4. Use the Authentication list to specify the authentication type as Windows
authentication or SQL Server authentication (based on the allowed authenti-
cation types when you installed the server) . Provide a Windows user name or
SQL Server login ID and password as necessary .

■■ Windows Authentication Uses your current domain account and
password to establish the database connection . This option works only if
Windows authentication is enabled and you have appropriate privileges .

■■ SQL Server Authentication Allows you to specify a SQL Server login ID
and password .

  5. Click Connect . You connect to the default database (unless you have con-
figured another default previously) . To change the database you connect
to, click the Options button prior to clicking Connect, select the Connection
Properties tab, and then use the Connect To Database list to select the data-
base you want to connect to .

  6. In SQL Server Management Studio, you can connect to the database you
previously selected by clicking New Query on the toolbar, and then skip the
remaining steps . To connect to a different database, click File, click New, and
then select the query type, such as Database Engine Query .

  7. In the Connect To Database Engine dialog box, specify the server name or
select Browse For More in the drop-down list to search for all computers that
are running SQL Server within an Active Directory forest as well as the dif-
ferent instances running on a particular server .

  8. Specify the authentication technique to use . Click Connect . As before, you
connect to the default database (unless you have configured another default
previously) . To change the database to which you connect, click the Options
button, select the Connection Properties tab, and then use the Connect To
Database list to select the database you want to connect to .

If you are working with an active database in SQL Server Management Studio
and have already authenticated the connection, you can automatically connect to
the currently selected database server instance and use your current authentication
information to log on . To do this, right-click the database in Object Explorer view in
SQL Server Management Studio, and then select New Query .

executing Queries and Changing Settings
The query window in SQL Server Management Studio is normally divided into two
panes . (See Figure 4-2 .) The top pane allows you to enter queries . The lower pane
displays results .

If you do not see a separate pane in the lower part of the window, don’t worry . It
appears automatically when you execute a query . You can also set the pane to open
by default by selecting the Show Results Pane option on the Window menu .

 Configuring and Tuning SQL Server 2008 ChAPTeR 4 111

FIGURE 4-2 Executing queries in SQL Server Management Studio .

As you know, you can use sp_configure to view and change SQL Server con-
figuration settings . Two types of configuration settings are available: those that are
dynamic and those that are not . In this instance, a dynamic setting is one that you
can change without having to stop and restart SQL Server . To execute sp_config-
ure or other types of queries, type a command in the top pane and then click the
Execute button on the toolbar (the red exclamation point) . You can also execute
commands by using these key sequences:

■■ F5

■■ Ctrl+E

■■ Alt+X

NOTE By default, all users have execute permissions on sp_configure so that they can

view settings. however, only users with the Alter Settings server-level permission can

use sp_configure to change configuration options. By default, only members of the

sysadmin and serveradmin fixed server roles have this permission. As with sp_config-

ure, only users with the Alter Settings server-level permission can execute the ReCON-

FIGURe or ReCONFIGURe WITh OVeRRIDe command.

Whenever you use sp_configure to modify settings, the changes do not take
place until you also execute the RECONFIGURE command . You can change some
highly risky settings by using only the RECONFIGURE WITH OVERRIDE command .
Additionally, sp_configure settings are divided into two categories: standard and
advanced . You can execute standard commands at any time, but you can execute

 ChAPTeR 4  Configuring and Tuning SQL Server 2008112

advanced commands only when Show Advanced Options is set to 1 . With this set-
ting in effect, you can modify both standard and advanced settings . Follow this
procedure to allow modification of advanced settings:

  1. In SQL Server Management Studio, type the following:

exec sp_configure 'show advanced options', 1
go
reconfigure
go

TIP  You can disable advanced options later by setting the value to 0.

  2. Execute the commands by pressing Ctrl+E .

  3. Clear the query window .

  4. Now type one sp_configure command for each option you want to change .

  5. Type reconfigure (or reconfigure with override) .

  6. Type go .

  7. Execute the commands by pressing Ctrl+E .

  8. If you changed any nondynamic settings, stop and restart the server . (See
Table 4-7 and Table 4-8 for details .)

Checking and Setting Configuration Parameters
Table 4-7 provides a summary of the standard configuration parameters . The
parameters are listed in alphabetical order, with the minimum, maximum, and
default values shown . The dynamic parameter column tells you whether the setting
is dynamic . If you see an “N” in this column, you need to stop and restart the server
to enforce changes .

TABLE 4-7 Quick Reference Summary for Standard Configuration Parameters

CONFIGURATION OPTION
MINIMUM
VALUE

MAXIMUM
VALUE

DEFAULT
VALUE

DYNAMIC
YES/NO

allow updates 0 1 0 Y

backup compression default 0 1 0 Y

clr enabled 0 1 0 Y

cross db ownership chaining 0 1 0 Y

default language 0 9999 0 Y

filestream access level 0 2 0 Y

max text repl size –1 2147483647 65536 Y

nested triggers 0 1 1 Y

 Configuring and Tuning SQL Server 2008 ChAPTeR 4 113

CONFIGURATION OPTION
MINIMUM
VALUE

MAXIMUM
VALUE

DEFAULT
VALUE

DYNAMIC
YES/NO

remote access 0 1 1 N

remote admin connections 0 1 0 Y

remote login timeout(s) 0 2147483647 20 Y

remote proc trans 0 1 0 Y

remote query timeout(s) 0 2147483647 600 Y

server trigger recursion 0 1 1 Y

show advanced options 0 1 0 Y

user options 0 32767 0 Y

Table 4-8 provides a summary of advanced configuration parameters . To view or
change these parameters, you have to set the parameter Show Advanced Options
to 1 . Self-configuring options have an asterisk (*) after their name . With max worker
threads, 1,024 is the maximum recommended for 32-bit operating systems . The
default value zero (0) autoconfigures by using the following formula: 256 + (number
of processors – 4) * 8) . Note also that you cannot change some advanced options,
although you can view them .

NOTE If there are differences between the values used in R1 and R2, Table 4-8 shows

the R1 value followed by the R2 value. For example, “0; 1” means the R1 value is 0 and

the R2 value is 1.

TABLE 4-8 Quick Reference Summary for Advanced Configuration Parameters

CONFIGURATION OPTION
MINIMUM
VALUE

MAXIMUM
VALUE

DEFAULT
VALUE

DYNAMIC
YES/NO

ad hoc distributed queries 0 1 0 Y

access check cache bucket
count

0 65536 0 Y

access check cache quota 0 2147483647 0 Y

affinity I/O mask –2147483648 2147483647 0 N

affinity64 I/O mask –2147483648 2147483647 0 Y

affinity mask –2147483648 2147483647 0 Y

affinity64 mask –2147483648 2147483647 0 Y

Agent XPs 0 1 0; 1 Y

awe enabled 0 1 0 N

 ChAPTeR 4  Configuring and Tuning SQL Server 2008114

CONFIGURATION OPTION
MINIMUM
VALUE

MAXIMUM
VALUE

DEFAULT
VALUE

DYNAMIC
YES/NO

blocked process
threshold(s)

0 86400 0 Y

c2 audit mode 0 1 0 N

common criteria
compliance enabled

0 1 0 N

cost threshold for
parallelism

0 32767 5 Y

cursor threshold –1 2147483647 –1 Y

Database Mail XPs 0 1 0 Y

default full-text language 0 2147483647 1033 Y

default trace enabled 0 1 1 Y

disallow results from
triggers

0 1 0 Y

EKM provider enabled 0 1 0 N

fill factor (%) 0 100 0 N

ft crawl bandwidth (max) 0 32767 100 Y

ft crawl bandwidth (min) 0 32767 0 Y

ft notify bandwidth (max) 0 32767 100 Y

ft notify bandwidth (min) 0 32767 0 Y

index create memory (kb)* 704 2147483647 0 Y

in-doubt xact resolution 0 2 0 Y

lightweight pooling 0 1 0 N

locks* 5000 2147483647 0 N

max degree of parallelism 0 64; 1024 0 Y

max full-text crawl range 0 256 4 Y

max server memory (mb)* 16 2147483647 2147483647 N

max text repl size (b) –1 2147483647 65536 Y

max worker threads 128 32767 0 N

media retention 0 365 0 N

min memory per query
(kb)

512 2147483647 1024 Y

 Configuring and Tuning SQL Server 2008 ChAPTeR 4 115

CONFIGURATION OPTION
MINIMUM
VALUE

MAXIMUM
VALUE

DEFAULT
VALUE

DYNAMIC
YES/NO

min server memory (mb)* 0 2147483647 0 Y

network packet size (b) 512 32767 4096 Y

Ole Automation
Procedures

0 1 0 Y

open objects 0 2147483647 0 N

optimize for ad hoc
workloads

0 1 0 Y

ph_timeout(s) 1 3600 60 Y

precompute rank 0 1 0 Y

priority boost 0 1 0 N

query governor cost limit 0 2147483647 0 Y

query wait(s) –1 2147483647 –1 Y

recovery interval (min)* 0 32767 0 Y

Replication XPs 0 1 0 Y

scan for startup procs 0 1 0 N

set working set size 0 1 0 N

SMO and DMO XPs 0 1 1 Y

SQL Mail XPs 0 1 0 Y

transform noise words 0 1 0 Y

two digit year cutoff 1753 9999 2049 Y

user connections* 0 32767 0 N

xp_cmdshell 0 1 0 Y

You can view the current settings of all configuration options by executing the
following query:

T-SQL

exec sp_configure
go

PowerShell

Invoke-Sqlcmd -Query "exec sp_configure"
-ServerInstance "DataServer91\CorpServices"

 ChAPTeR 4  Configuring and Tuning SQL Server 2008116

NOTE Show Advanced Options must be set to 1 to see advanced options.

To view the current setting of a configuration option, execute the following
query:

T-SQL

exec sp_configure 'optionName'
go

PowerShell

Invoke-Sqlcmd -Query "exec sp_configure 'optionName'"
-ServerInstance "DataServer91\CorpServices"

where optionName is the name of the option you want to examine, such as:

T-SQL

exec sp_configure 'allow updates'
go

PowerShell

Invoke-Sqlcmd -Query "exec sp_configure 'allow updates'"
-ServerInstance "DataServer91\CorpServices"

To change the value of a setting, execute the following query:

T-SQL

exec sp_configure 'optionName', newValue
go
reconfigure with override
go

PowerShell

Invoke-Sqlcmd -Query "exec sp_configure 'optionName', newValue;
reconfigure with override" -ServerInstance "DataServer91\CorpServices"

where optionName is the name of the option you want to examine, and newValue is
the new value for this option, such as:

T-SQL

exec sp_configure 'allow updates', 1
go
reconfigure with override
go

PowerShell

Invoke-Sqlcmd -Query "exec sp_configure 'allow updates', 1;
reconfigure with override" -ServerInstance "DataServer91\CorpServices"

 Configuring and Tuning SQL Server 2008 ChAPTeR 4 117

NOTE You do not always have to use ReCONFIGURe WITh OVeRRIDe. This value is

required only when making ad hoc updates and setting an option to a value that is

not generally recommended. Keep in mind that some setting changes are applied only

when you restart the SQL Server instance.

Changing Settings with ALTeR DATABASe
For SQL Server 2008 and later releases, the ALTER DATABASE statement replaces the
sp_dboption stored procedure as the preferred way to change database settings .
To change database settings, you must be a member of a role granted the ALTER
permission on the database or be explicitly assigned this permission . When you
execute an ALTER DATABASE statement, a checkpoint occurs in the database for
which the option was changed, and this causes the change to take effect imme-
diately . Table 4-9 provides an overview of the database options you can set with
ALTER DATABASE .

TABLE 4-9 Quick Reference Summary for Database Options

OPTION WHEN TRUE OR SET TO VALUE
ACCEPTED
VALUES

ANSI_NULL_DEFAULT CREATE TABLE uses SQL-92 rules to
determine if a column allows null
values .

ON | OFF

ANSI_NULLS All comparisons to a null value
evaluate to UNKNOWN . (When OFF,
non-UNICODE values evaluate to TRUE
if both values are NULL .)

ON | OFF

ANSI_PADDING Trailing blanks are inserted into
character values, and trailing zeros are
inserted into binary values to pad to
the length of the column .

ON | OFF

ANSI_WARNINGS Errors or warnings are issued when
conditions such as “divide by zero”
occur .

ON | OFF

ARITHABORT An overflow or divide-by-zero error
causes the query or batch to terminate .
If the error occurs in a transaction,
the transaction is rolled back . (When
this option is set to OFF, a warning
message is displayed, but execution
continues as if no error occurred .)

ON | OFF

 ChAPTeR 4  Configuring and Tuning SQL Server 2008118

OPTION WHEN TRUE OR SET TO VALUE
ACCEPTED
VALUES

AUTO_CLEANUP Change tracking information is
automatically removed after the
retention period .

ON | OFF

AUTO_CREATE_STATISTICS Any missing statistics needed for
query optimization are automatically
generated .

ON | OFF

AUTO_UPDATE_STATISTICS Any out-of-date statistics needed for
query optimization are automatically
generated .

ON | OFF

AUTOCLOSE After the last user logs off, the
database is shut down cleanly and its
resources are freed .

ON | OFF

AUTOSHRINK Automatic periodic shrinking is
enabled for the database .

ON | OFF

CHANGE_RETENTION When change tracking is set to ON,
this option sets the retention period
for change tracking information .

RetPeriod
{DAYS |
HOURS |
MINUTES}

CHANGE_TRACKING Turns on and enables change tracking . ON | OFF

COMPATIBILITY_LEVEL Sets the database compatibility level . 80 | 90 | 100

CONCAT_NULL_YIELDS_
NULL

If either operand in a concatenation
operation is NULL, the result is NULL .

ON | OFF

CURSOR_CLOSE_ON_
COMMIT

Any cursors that are open when a
transaction is committed or rolled
back are closed . (When this option is
set to OFF, cursors remain open when
a transaction is committed . Rolling
back a transaction closes any cursors
except those defined as INSENSITIVE
or STATIC .)

ON | OFF

CURSOR_DEFAULT Cursor declarations default to LOCAL . LOCAL |
GLOBAL

DATE_CORRELATION_
OPTIMIZATION

SQL Server maintains correlation
statistics between tables in a database
that are linked by a foreign key
constraint and have datetime columns .

ON | OFF

 Configuring and Tuning SQL Server 2008 ChAPTeR 4 119

OPTION WHEN TRUE OR SET TO VALUE
ACCEPTED
VALUES

DB_CHAINING The database can be the source or
target of a cross-database ownership
chain . The instance of SQL Server
recognizes this setting only when the
cross db ownership chaining server
option is 0 (OFF) . Otherwise, all user
databases can participate in cross-
database ownership chains, regardless
of the value of this option .

ON | OFF

EMERGENCY Marks the database as read-only,
disables logging, and allows access
only by members of the sysadmin role .

EMERGENCY

ENCRYPTION Transparent data encryption is turned
on for the database .

ON | OFF

MULTI_USER Multiple users can access the database . MULTI_USER

NUMERIC_ROUNDABORT An error is generated when loss of
precision occurs in an expression .
(When this option is set to OFF, losses
of precision do not generate error
messages and the result is rounded to
the precision of the column or variable
storing the result .)

ON | OFF

OFFLINE The database is offline . (Otherwise, the
database is online .)

OFFLINE

ONLINE The database is online and available
for use .

ONLINE

PAGE_VERIFY SQL Server can discover damaged
database pages .

CHECKSUM |
TORN_PAGE_
DETECTION |
NONE

PARAMETERIZATION SQL Server parameterizes all queries in
the database .

SIMPLE |
FORCED

QUOTED_IDENTIFIER Double quotation marks can be used
to enclose delimited identifiers .

ON | OFF

 ChAPTeR 4  Configuring and Tuning SQL Server 2008120

OPTION WHEN TRUE OR SET TO VALUE
ACCEPTED
VALUES

READ_ONLY The database is set to read-only (but
can be deleted by using the DROP
DATABASE statement) . The database
cannot be in use when this option is
set (except for the master	database) .

READ_ONLY

RECOVERY Causes the recovery model to be reset .
SIMPLE allows a checkpoint to truncate
the inactive part of the log .

FULL | BULK_
LOGGED |
SIMPLE

RECURSIVE_TRIGGERS Enables recursive firing of triggers .
(When this option is set to OFF, it
prevents direct recursion but not
indirect recursion . To disable indirect
recursion, set the nested triggers
server option to 0 using sp_configure .)

ON | OFF

RESTRICTED_USER Only the database owner can use the
database .

RESTRICTED_
USER

SINGLE_USER Only one user at a time can access the
database .

SINGLE_USER

TORN_PAGE_DETECTION Allows incomplete pages to be
detected . (This option is being
replaced by PAGE_VERIFY .)

ON | OFF

TRUSTWORTHY Database modules that use
impersonation can access resources
outside the database .

ON | OFF

Most of the options listed accept a value of ON or OFF, which is used to set the
state of the option . For example, you can enable transparent data encryption on the
CustomerSupport database by using the following command:

T-SQL

USE master;
GO
ALTER DATABASE CustomerSupport
SET ENCRYPTION ON;
GO

PowerShell

Invoke-Sqlcmd -Query "USE master; ALTER DATABASE CustomerSupport
SET ENCRYPTION ON;" -ServerInstance "DataServer91\CorpServices"

 Configuring and Tuning SQL Server 2008 ChAPTeR 4 121

Some options explicitly set a specific state . For example, if no users are currently
connected to the CustomerSupport database, you could set the database to read-
only by using the following command:

T-SQL

USE master;
GO
ALTER DATABASE CustomerSupport
SET READ_ONLY;
GO

PowerShell

Invoke-Sqlcmd -Query "USE master; ALTER DATABASE CustomerSupport
SET READ_ONLY;" -ServerInstance "DataServer91\CorpServices"

123

CHAP TE R 5

Managing the enterprise
■■ Using SQL Server Management Studio 123

■■ Managing SQL Server Groups 127

■■ Managing Servers 130

■■ Using Windows PowerShell for SQL Server Management 137

■■ Starting, Stopping, and Configuring SQL Server Agent 142

■■ Starting, Stopping, and Configuring Microsoft Distributed Transaction
Coordinator 142

■■ Managing SQL Server Startup 143

■■ Managing Server Activity 150

Microsoft SQL Server Management Studio is the primary tool you use to man-
age database servers . Other tools available to manage local and remote

servers include SQL Server Configuration Manager, Performance Monitor, and
Event Viewer . You use SQL Server Configuration Manager to manage SQL Server
services, networking, and client configurations . Performance Monitor is available
to track SQL Server activity and performance, and Event Viewer lets you examine
events generated by SQL Server, which can provide helpful details for trouble-
shooting . In this chapter, you will learn how to use SQL Server Management Stu-
dio . SQL Server Configuration Manager is discussed in Chapter 3, “Managing the
Surface Security, Access, and Network Configuration .” For details on Performance
Monitor and Event Viewer, see Chapter 14, “Profiling and Monitoring SQL Server
2008 .”

Using SQL Server Management Studio

The SQL Server Management Studio graphical point-and-click interface makes
server, database, and resource management easy to do . Using SQL Server Man-
agement Studio, you can manage local and remote server instances by establish-
ing a connection to SQL Server and then administering its resources . If you have
disabled remote server connections to a particular server, you can work only with

 ChAPTeR 5  Managing the Enterprise124

the server locally (by logging on to the system at the keyboard or by establishing
a remote Terminal Server session in Windows and then running the local manage-
ment tools) .

Getting Started with SQL Server Management Studio
To run SQL Server Management Studio, click Start, type ssms.exe in the Search box,
and then press Enter . Alternatively, select the related option on the Microsoft SQL
Server 2008 or Microsoft SQL Server 2008 R2 menu . Next, you must connect to the
server you want to work with . There are several ways to do this:

■■ Connect using a standard login to a server instance .

■■ Connect using a login to a specific database .

■■ Connect using server groups and registered servers .

Connecting to a server instance allows you to work with that particular server
and its related components . (See Figure 5-1 .) Typically, you want to connect to a
server’s Database Engine . The Database Engine gives you access to the following
components and features:

■■ Databases Manage system databases, including the master and model
databases, as well as user databases and database snapshots . You can also
access the ReportServer and Report ServerTempDB databases under this
node .

■■ Security Manage SQL Server logins, server roles, stored credentials, cryp-
tographic providers, and auditing .

■■ Server Objects Configure backup devices, HTTP endpoints, linked servers,
and server triggers .

■■ Replication Configure distribution, update replication passwords, and
launch Replication Monitor .

■■ Management Configure SQL Server logs, maintenance plans, Microsoft
Distributed Transaction Coordinator, and Database Mail . Configure data col-
lection, Resource Governor, and Policy-Based Management policies . You can
also configure legacy features, such as SQL Server 2000 database mainte-
nance plans, SQL Mail, and DTS 2000 packages .

■■ SQL Server Agent Configure SQL Server Agent jobs, alerts, operators,
proxies, and error logs .

If you are not automatically connected or you exited the Connect To Server
dialog box, you can connect to a server instance by clicking Connect in the Object
Explorer view . You store server and login information by using the registration
feature . Registered servers can be organized using server groups and can then be
accessed quickly in the Registered Servers view . Methods to manage server groups
and register servers are discussed in “Managing SQL Server Groups” and “Managing
Servers” later in this chapter .

 Managing the Enterprise ChAPTeR 5 125

FIGURE 5-1 Use the Database Engine to access core SQL Server components and features .

Connecting to a Specific Server Instance
To connect to a specific server instance by using a standard logon, follow these
steps:

  1. Start SQL Server Management Studio . In the Connect To Server dialog box,
use the Server Type list to select the database component you want to con-
nect to, such as Database Engine .

  2. In the Server Name box, type the fully qualified or host name of the server
on which SQL Server is running, such as corpsvr04 .cpandl .com or CorpSvr04,
or select Browse For More in the related drop-down list . In the Browse
For Servers dialog box, select the Local Servers or Network Servers tab as
appropriate . After the instance data has been retrieved, expand the nodes
provided, select the server instance, and then click OK .

NOTE  The list in the Browse For Servers dialog box is populated by the SQL

Server Browser service running on the database servers. There are several reasons

why a SQL Server instance you want to work with might not be listed. The SQL

Server Browser service might not be running on the computer running SQL Server.

A firewall might be blocking UDP port 1434, which is required for browsing. Or

the hideInstance flag might be set on the SQL Server instance.

  3. Use the Authentication list to choose the option for authentication type,
either Windows Authentication or SQL Server Authentication (based on the
authentication types selected when you installed the server) . Provide a SQL
Server login ID and password as necessary .

■■ Windows Authentication Uses your current domain account and
password to establish the database connection . This authentication type
works only if Windows authentication is enabled and you have appropri-
ate privileges .

■■ SQL Server Authentication Allows you to specify a SQL Server login ID
and password . To save the password so that you do not have to re-enter it
each time you connect, select Remember Password .

 ChAPTeR 5  Managing the Enterprise126

  4. Click Connect . You can now use the Object Explorer view to work with this
server .

Connecting to a Specific Database
To connect to a specific database by using a standard login, follow these steps:

  1. Start SQL Server Management Studio . In the Connect To Server dialog box,
use the Server Type list to select the database component you want to con-
nect to, such as Database Engine, and then, in the Server Name box, type
the fully qualified or host name of the server on which SQL Server is running,
such as corpsvr04 .cpandl .com or CorpSvr04 .

  2. Use the Authentication list to choose the option for authentication type,
either Windows Authentication or SQL Server Authentication (based on the
authentication types selected when you installed the server) . Provide a SQL
Server login ID and password as necessary .

  3. Click Options to display the advanced view of the Connect To Server dialog
box . Select the Connection Properties tab, shown in Figure 5-2 .

FIGURE 5-2 The Connection Properties tab in the Connect To Server dialog box

  4. In the Connect To Database box, type the name of the database you want to
connect to, such as Personnel, or select Browse Server in the related drop-
down list . When prompted, click Yes to establish a connection to the previ-
ously designated server . In the Browse Server For Database dialog box, select
the database you want to use, and then click OK .

  5. Using the Network Protocol list, select the network protocol and any other
connection properties if you are prompted to do so . Shared Memory is the
default network protocol for local connections . TCP/IP is the default for

 Managing the Enterprise ChAPTeR 5 127

remote connections . Optionally, establish a secure connection by selecting
the Encrypt Connection check box .

  6. Click Connect . You are now able to work with the specified database in the
Object Explorer view .

Managing SQL Server Groups

You use SQL Server groups to organize sets of computers running SQL Server . You
define these server groups, and you can organize them by function, department, or
any other criteria . Creating a server group is easy . You can even create subgroups
within a group, and if you make a mistake, you can delete a group as well .

NOTE As discussed in “Configuring Central Management Servers” in Chapter 6, cen-

trally managed servers can also be organized into server groups. For more informa-

tion, see Chapter 6, “Implementing Policy-Based Management.”

Introducing SQL Server Groups
In SQL Server Management Studio, you use the Registered Servers view to work with
server groups . To use this view, or to display it if it is hidden, press Ctrl+Alt+G .

The top-level groups are already created for you, based on the SQL Server
instances . Use the Registered Servers toolbar to switch between the various top-
level groups . These top-level groups are organized by SQL Server instance:

■■ Database Engine

■■ Analysis Services

■■ Reporting Services

■■ SQL Server Compact Edition

■■ Integration Services

Although you can add registered servers directly to the top-level groups (as
explained in “Managing Servers” later in this chapter), in a large enterprise with
many SQL Server instances, you probably want to create additional levels in the
server group hierarchy . These additional levels make it easier to access and work
with your servers . You can use the following types of organizational models:

■■ Division or business unit model In this model, group names reflect
the divisions or business units to which the computers running SQL Server
belong or in which they are located . For example, you could have server
groups such as Engineering, IS, Operations, and Support .

■■ Geographic location model In this model, group names reflect the
geographic location of your servers, such as North America and Europe .
You could have additional levels under North America for USA, Canada, and
Mexico, for example, and levels under Europe could include UK, Germany,
and Spain .

 ChAPTeR 5  Managing the Enterprise128

Figure 5-3 shows an example of using server groups . As the figure shows,
subgroups are organized under their primary group . Under Database Engine, you
might have Corporate Customers, Engineering, and Enterprise Data groups . Within
Engineering, you might have Dev, Test, and Core subgroups .

FIGURE 5-3 Use server groups to organize SQL Server deployments .

Creating a Server Group
You can create a server group or a subgroup by completing the following steps:

  1. In SQL Server Management Studio, display the Registered Servers view by
pressing Ctrl+Alt+G . If the view was previously hidden, this step also displays
the view .

  2. Use the Registered Servers toolbar to select the top-level group . For exam-
ple, if you want to create a second-level or third-level group for Database
Engine instances, select Database Engine .

  3. As necessary, expand the top-level group node and the Local Server Groups
nodes by double-clicking each in turn . You will see the names of the top-
level server group and any second-level server groups that you created . You
can now do the following:

■■ Add a server group to one of the top-level or second-level groups by
right-clicking the group name and choosing New Server Group .

■■ Add a server group to a lower-level group by expanding the server group
entries until the group you want to use is displayed . Right-click the group
name, and then choose New Server Group .

  4. In the New Server Group Properties dialog box, shown in Figure 5-4, type a
name and description for the new group in the boxes provided . Click OK .

 Managing the Enterprise ChAPTeR 5 129

FIGURE 5-4 Enter a name and description in the New Server Group Properties dialog box .

Deleting a Server Group
You can delete a group or subgroup by completing the following steps:

  1. In SQL Server Management Studio, display the Registered Servers view by
pressing Ctrl+Alt+G . If the view was previously hidden, this step also displays
the view .

  2. Use the Registered Servers toolbar to select the top-level group in which
the group you want to delete is located . For example, if you want to delete
a second-level or third-level group for Database Engine instances, select
Database Engine .

  3. Click the plus sign (+) next to the group or subgroup you want to delete . If
the group has servers registered in it, move them to a different group . (The
steps involved in moving servers to a new group are explained in “Moving a
Server to a New Group” later in this chapter)

  4. Select the group or subgroup entry .

  5. Press Delete . When prompted to confirm the action, click Yes .

editing and Moving Server Groups
Server groups have several key properties that you can edit: the name, the descrip-
tion, and the location in the Registered Server hierarchy . To edit a group’s name or
description, follow these steps:

  1. Right-click the group in the Registered Servers view, and then select
Properties .

  2. In the Edit Server Group Properties dialog box, enter the new group name
and description . Click OK .

To move a group (and all its associated subgroups and servers) to a new level in
the server group hierarchy, follow these steps:

  1. Right-click the group in the Registered Servers view, point to Tasks, and then
select Move To .

 ChAPTeR 5  Managing the Enterprise130

  2. In the Move Server Registration dialog box, you can now do the following:

■■ Move the group to the top-level group by selecting the top-level group .
This makes the group a second-level group .

■■ Move the group to a different level by selecting a subgroup into which
you want to place the group .

  3. Click OK .

Adding SQL Servers to a Group
When you register a computer running SQL Server for use with SQL Server Manage-
ment Studio, you can choose the group in which you want to place the server . You
can even create a new group specifically for the server . The next section covers the
topic of server registration .

Managing Servers

Servers and databases are the primary resources you manage in SQL Server Man-
agement Studio . When you select a top-level group in the Registered Servers view,
you can see the available server groups . If you expand the view of these groups by
double-clicking the group name, you can see the subgroups or servers assigned to a
particular group . Local servers are registered automatically (in most cases) . If a local
server is not shown, you need to update the local registration information . If the
remote server you want to manage is not shown, you need to register it .

Registration saves the current connection information and assigns the server to a
group for easy future access using the Registered Servers view . After you register a
server, you can connect to the server to work with it and then disconnect when you
have finished simply by double-clicking the server entry in the Registered Servers
view . If you are not automatically connected, you can force a connection by right-
clicking the server entry and then selecting New Query (if you want to create an SQL
query) or Object Explorer (if you want to view and manage the server) .

You can start the registration process by using either of the following techniques:

■■ Register a server to which you are connected in Object Explorer .

■■ Register a new server in the Registered Servers view .

You can manage previous registrations in a variety of ways:

■■ Import registration information on previously registered SQL Server 2000
servers .

■■ Update registration information for local servers .

■■ Copy registration information from one computer to another by importing
and exporting the information .

 Managing the Enterprise ChAPTeR 5 131

Registering a Connected Server
Any server to which you have connected in Object Explorer can be registered easily .
Registration saves the current connection information and assigns the server to a
group for easy future access using the Registered Servers view . To register a con-
nected server, follow these steps:

  1. In Object Explorer view, right-click any server to which you are currently
connected, and then choose Register to display the New Server Registration
dialog box, shown in Figure 5-5 .

FIGURE 5-5 The New Server Registration dialog box

  2. On the General tab, the current values for the server name and authentica-
tion type are filled in for you . Although the Registered Server Name option is
set to the same value as the server name, you can modify this name and add
a description .

  3. On the Connection Properties tab, you can specify the database to which you
want to connect and set options for networking and connections . If you want
to encrypt the connection, select the Encrypt Connection check box .

  4. To test your settings before you save the registration settings, click Test . If
the test is unsuccessful, verify the settings and then make changes as neces-
sary . As discussed in Chapter 3, SQL Server doesn’t allow remote connections
by default, so you must change the configuration settings to allow remote
connections .

  5. Click Save to save the server registration .

 ChAPTeR 5  Managing the Enterprise132

By default, the server is added to the top-level group . To move the server to a
new level in the server group hierarchy, follow these steps:

  1. Right-click the server in the Registered Servers view, point to Tasks, and then
select Move To .

  2. In the Move Server Registration dialog box, you can move the server to a
different level by selecting the subgroup into which you want to place the
server .

  3. Click OK .

Registering a New Server in the Registered Servers View
You do not have to connect to a server in Object Explorer to register the server . You
can register new servers directly in the Registered Servers view by following these
steps:

  1. In the Registered Servers view, use the toolbar to select the type of server
you want to connect to, such as Database Engine .

  2. Expand the available groups as necessary . In the Registered Servers view,
right-click the group into which you want to place the server, and then select
New Server Registration to display the New Server Registration dialog box,
shown previously in Figure 5-5 .

  3. In the Server Name box, type the fully qualified domain name or host name
of the server on which SQL Server is running, such as corpsvr04 .cpandl .com
or CorpSvr04 .

  4. Use the Authentication list to choose the option for authentication type,
either Windows Authentication or SQL Server Authentication (based on the
authentication types selected when you installed the server) . Provide a SQL
Server login ID and password as necessary .

■■ Windows Authentication Uses your current domain account and
password to establish the database connection . This authentication type
works only if Windows authentication is enabled and you have appropri-
ate privileges .

■■ SQL Server Authentication Allows you to specify a SQL Server login ID
and password . To save the password so that you do not have to re-enter it
each time you connect, select Remember Password .

  5. You can also specify connection settings by using the options on the Con-
nection Properties tab . These options allow you to connect to a specific data-
base instance and to set the network configuration . If you want to encrypt
the connection, select the Encrypt Connection check box .

  6. The registered server name is filled in for you based on the previously
entered server name . Change the default name only if you want SQL Server
Management Studio to use an alternate display name for the server .

 Managing the Enterprise ChAPTeR 5 133

  7. To test the settings, click Test . If you successfully connect to the server, you
see a prompt confirming this . If the test fails, verify the information you pro-
vided, make changes as necessary, and then test the settings again .

  8. Click Save .

Registering Previously Registered SQL Server 2000 Servers
Registration details for servers registered by SQL Server 2000 can be imported
into SQL Server Management Studio . This makes it easier to work with existing SQL
Server 2000 installations . If the SQL Server 2000 installations were previously regis-
tered on the computer, you can import the registration details into a specific server
group by completing the following steps:

  1. In the Registered Servers view, use the toolbar to select the type of server
you are registering, such as Database Engine .

  2. Right-click the Local Server Groups entry, point to Tasks, and then select
Previously Registered Servers .

  3. Available registration information for SQL Server 2000 servers will be
imported . If an error prompt is displayed, you might not be logged on locally
to the computer on which the servers were registered previously .

Updating Registration for Local Servers
Local servers are registered automatically (in most cases) . If you have added or
removed SQL Server instances on the local computer and those instances are not
displayed, you need to update the local server registration . Updating the registra-
tion information ensures that all currently configured local server instances are
shown in SQL Server Management Studio .

To update registration details for local servers, follow these steps:

  1. In the Registered Servers view, use the toolbar to select the type of servers
you are registering, such as Database Engine .

  2. Right-click the Local Server Groups entry, point to Tasks, and then select
Register Local Servers .

Copying Server Groups and Registration Details from One
Computer to Another
After you register servers in SQL Server Management Studio and place the servers
into a specific group hierarchy, you might find that you want to use the same reg-
istration information and server group structure on another computer . SQL Server
Management Studio allows you to copy registration information from one computer
to another by using an import/export process . You can copy the registration details
with or without the user names and passwords .

 ChAPTeR 5  Managing the Enterprise134

To export the registration and group information to a file on one computer and
then import it onto another computer, complete the following steps:

  1. Start SQL Server Management Studio on the computer with the registration
and group structure details that you want to copy .

  2. Select the Registered Servers view by pressing Ctrl+Alt+G .

  3. In the Registered Servers view, use the toolbar to select the type of servers
you want to work with, such as Database Engine .

  4. Right-click the Local Server Groups entry, point to Tasks, and then select
Export to display the Export Registered Servers dialog box, shown in
Figure 5-6 .

FIGURE 5-6 The Export Registered Servers dialog box

  5. Under Server Group, select the point from which the export process will
begin . You can start copying registration information at any level in the
group structure:

■■ To copy the structure for a top-level group, all its subgroups, and all
registration details for all related servers, select the Local Server Groups
entry .

■■ To copy the structure for a subgroup, its subgroups (if any), and all regis-
tration details for all related servers, select a subgroup .

■■ To copy the registration details for a single server, select the server .

  6. The server group structure and registration details are exported to a registra-
tion server file with the .regsrvr extension . By default, this file is created in
the %SystemRoot%\System32 folder . Under Export Options, type a name for
the registration server file, such as CurrentDBConfig .

 Managing the Enterprise ChAPTeR 5 135

TIP  If you place the registration server file on a secure network share, you can

access it on the computer to which you want to copy the registration information.

Otherwise, you need to copy this file to the destination computer later.

  7. By default, the current authentication details for server connections are not
exported into the saved file . If you want to export user names and pass-
words, clear the Do Not Include User Names And Passwords In The Export
File check box .

  8. Click OK . If the export is successful, you see a dialog box confirming this .
Click OK in the dialog box . If there is a problem, note and correct the
problem .

  9. Start SQL Server Management Studio on the computer to which you want to
copy the server group and registration details . If you did not place the regis-
tration server file on a secure network share, you need to copy the file to this
computer now .

  10. Select the Registered Servers view by pressing Ctrl+Alt+G .

  11. In the Registered Servers view, use the toolbar to select the type of server
you want to work with, such as Database Engine .

  12. Right-click the Local Server Groups entry, point to Tasks, and then select
Import to display the Import Registered Servers dialog box, shown in
Figure 5-7 .

FIGURE 5-7 The Import Registered Servers dialog box

  13. In the dialog box, click the button to the right of the Import File text box,
and then use the Open dialog box that is displayed to select the registration
server file you want to import .

 ChAPTeR 5  Managing the Enterprise136

  14. Under Server Group, select the server group under which you want the
imported groups and servers to be created .

  15. Click OK . If the import is successful, you see a dialog box confirming this .
Click OK in the dialog box . If there is a problem, note and correct the
problem .

editing Registration Properties
You can change a server’s registration properties at any time by right-clicking the
server entry in the Registered Servers view in SQL Server Management Studio and
then selecting Properties . Use the Edit Server Registration Properties dialog box to
make changes . The only property you cannot change is the server type . Be sure to
test the settings before saving them .

Connecting to a Server
After you register a server, connecting to it is easy . Right-click the server entry in
the Registered Servers view in SQL Server Management Studio, and then select New
Query (if you want to create an SQL query) or Object Explorer (if you want to view
and manage the server) . You can also double-click the server entry to establish a
connection and then work with the server in the Object Explorer view .

NOTE SQL Server Management Studio connects to other servers that are running

SQL Server by using the network protocol set in the registration properties. If you have

disabled the network protocol or remote access entirely for a server, you won’t be able

to connect to that server in SQL Server Management Studio. You need to make the

appropriate changes in the registration properties or in the surface area configuration.

Chapter 3 discusses surface area configuration.

Disconnecting from a Server
When you have finished working with a server, you can disconnect from it . This
cuts down on the back-and-forth communications to the server . To disconnect,
right-click the server’s entry in the Object Explorer view in SQL Server Management
Studio, and then select Disconnect from the shortcut menu .

Moving a Server to a New Group
To move the server to a new group, complete the following steps:

  1. Right-click the server in the Registered Servers view, point to Tasks, and then
select Move To from the shortcut menu to display the Move Server Registra-
tion dialog box .

 Managing the Enterprise ChAPTeR 5 137

  2. In the Move Server Registration dialog box, expand the Local Server Groups
entry to see a list of subgroups . Expand subgroups as necessary . You can now
do the following:

■■ Move the server to the top-level group by selecting the top-level group .
This makes the server a member of the top-level group .

■■ Move the server to a different level by selecting the subgroup into which
you want to place the server .

  3. Click OK .

Deleting a Server Registration
If you change a server name or remove a server, you might want to delete the server
registration in SQL Server Management Studio so that SQL Server Management
Studio no longer tries to connect to a server that cannot be accessed . Right-click the
server entry in the Registered Servers view, and then select Delete . When prompted
to confirm the action, click Yes to delete the server registration details .

Using Windows PowerShell for SQL Server Management

The graphical management tools provide just about everything you need to work
with SQL Server . Still, there are many times when you might want to work from the
command line . To help with all your command-line needs, SQL Server 2008 includes
the SQL Server provider for Windows PowerShell (aka SQL Server Windows Power-
Shell) . To work with SQL Server via Windows PowerShell, you must first open a Com-
mand Prompt window or Windows PowerShell prompt and then start SQL Server
PowerShell by typing sqlps at the command line .

For administration at the PowerShell prompt, you use Invoke-Sqlcmd to run
Transact-SQL (T-SQL) or XQuery scripts containing commands supported by the
SQLCMD utility . Invoke-Sqlcmd fully supports T-SQL and the XQuery syntax sup-
ported by the Database Engine but does not set any scripting variables by default .
Invoke-Sqlcmd also accepts the SQLCMD commands listed in Table 1-3 . By default,
results are formatted as a table, with the first result set displayed automatically and
subsequent result sets displayed only if they have the same column list as the first
result set .

The basic syntax you use most often with Invoke-Sqlcmd follows:

Invoke-Sqlcmd [-ServerInstance ServerStringOrObject]
[-Database DatabaseName] [-EncryptConnection]
[-Username UserName] [-Password Password] [[-Query] QueryString]
[-DedicatedAdministratorConnection]

[-InputFile FilePath] [| Out-File –filepath FilePath]

 ChAPTeR 5  Managing the Enterprise138

The command’s parameters are used as follows:

■■ –Database Specifies the name of the database that you want to work
with . If you don’t use this parameter, the database that is used depends on
whether the current path specifies both the SQLSERVER:\SQL folder and a
database name . If both are specified, Invoke-Sqlcmd connects to the data-
base that is specified in the path . Otherwise, Invoke-Sqlcmd connects to the
default database for the current login ID .

NOTE  Use –IgnoreProviderContext to force a connection to the database

defined as the default for the current login ID.

■■ –DedicatedAdministratorConnection Ensures a dedicated administrator
connection (DAC) is used to force a connection when one might not be pos-
sible otherwise .

■■ –EncryptConnection Enables Secure Sockets Layer (SSL) encryption for the
connection .

■■ –InputFile Provides the full path to a file that should be used as the query
input . The file can contain T-SQL statements, XQuery statements, SQLCMD
commands, and scripting variables . Spaces are not allowed in the file path or
file name .

■■ –Password Sets the password for the SQL Server Authentication login ID
that is specified in –Username .

■■ –Query Defines one or more queries to be run . The queries can be T-SQL
queries, XQuery statements, or SQLCMD commands . Separate multiple que-
ries with a semicolon .

TIP  You do not need to use the SQLCMD GO command. escape any double quo-

tation marks included in the string and consider using bracketed identifiers such

as [empTable] instead of quoted identifiers such as "empTable". To ensure message

output is returned, add the –Verbose parameter. –Verbose is a parameter common

to all cmdlets.

■■ –ServerInstance Specifies the name of an instance of the Database Engine
that you want to work with . For default instances, specify only the com-
puter name, such as "DbServer18" . For named instances, use the format
 "ComputerName\InstanceName", such as "DbServer18\EmployeeDb" .

■■ –Username Sets the login ID for making a SQL Server authentication
connection to an instance of the Database Engine . You must also set the
password for the login ID .

NOTE  By default, Invoke-Sqlcmd attempts a Windows authentication connec-

tion by using the Windows account running the PowerShell session. Windows

authentication connections are preferred. To use a SQL Server authentication

connection instead, specify the user name and password for the SQL login ID that

you want to use.

 Managing the Enterprise ChAPTeR 5 139

With this in mind, you could replace the following T-SQL statements:

USE OrderSystem;
GO
SELECT * FROM Inventory.Product
ORDER BY Name ASC
GO

with the following PowerShell command:

Invoke-Sqlcmd -Query "SELECT * FROM Inventory.Product; ORDER BY Name ASC"
-ServerInstance "DbServer18\OrderSystem"

You also could read the commands from a script, as shown in Sample 5-1 .

SAMPLE 5-1 Example SQL Command Script

Contents of SqlCmd.sql Script

SELECT * FROM Inventory.Product
ORDER BY Name ASC

Command to Run the Script

Invoke-Sqlcmd -InputFile "C:\Scripts\SqlCmd.sql"

When you work with Windows PowerShell, don’t overlook the importance of SQL
Server support being implemented through a provider . As discussed in Chapter 3,
“Managing Your Windows PowerShell Environment,” in Windows	PowerShell	2.0	
Administrator’s	Pocket	Consultant (Microsoft Press, 2009), the data that providers
expose appears as a drive that you can browse . One way to browse is to get or set
the location with respect to the SqlServer: provider drive . The top of the hierarchy
exposed is represented by the SQL folder, next is a folder for the machine name, and
then there is a folder for the instance name . Following this, you could navigate to
the top-level folder for the default instance by entering:

Set-Location SQLSERVER:\SQL\DbServer18\Default

You could then determine the available database structures by entering Get-
ChildItem (or one of its aliases, such as ls or dir) . To navigate logins, triggers, end-
points, databases, and any other structures, you set the location to the name of the
related folder . For example, you could use Set-Location Databases and then enter
Get-ChildItem to list available databases for the selected instance . Of course, if you
know the full path you want to work with in the first place, you can also access it
directly, as shown in the following example:

Set-Location SQLSERVER:\SQL\DbServer18\Default\Databases\OrderSystem

 ChAPTeR 5  Managing the Enterprise140

Here, you navigate to the structures for the OrderSystem database on
Db Server18’s default instance . If you then want to determine what tables are avail-
able for this database, you could enter:

Get-ChildItem Tables

Or you could enter:

Set-location Tables
Get-ChildItem

To manage SQL Server 2008 from a computer that isn’t running SQL Server, you
need to install the management tools . In the SQL Server Installation Center, select
Installation, and then click the New Installation Or Add Features To An Existing
Installation option . When the wizard starts, follow the prompts . On the Feature
Selection page, select the Management Tools—Basic option to install Management
Studio, SQLCMD, and the SQL Server provider for PowerShell .

For remote management via Windows PowerShell, you need to ensure that
WinRM 2 .0 and Windows PowerShell 2 .0 are installed and made available by using
the Add Features wizard . You also need to enable remote commands on both your
management computer and the server running SQL Server . Computers running
Windows 7 and Windows Server 2008 Release 2 and later include WinRM 2 .0 or later
and Windows PowerShell 2 .0 . On computers running earlier versions of Windows,
you need to install Windows Management Framework, which includes Windows
PowerShell 2 .0 and WinRM 2 .0 or later as appropriate .

You can verify the availability of WinRM 2 .0 and configure Windows PowerShell
for remoting by following these steps:

  1. Click Start, All Programs, Accessories, Windows PowerShell . Then start
Windows PowerShell as an administrator by right-clicking the Windows
Power Shell shortcut and selecting Run As Administrator .

  2. The WinRM service is configured for manual startup by default . You must
change the startup type to Automatic and start the service on each com-
puter you want to work with . At the PowerShell prompt, you can verify that
the WinRM service is running by using the following command:

get-service winrm

As shown in the following example, the value of the Status property in the
output should be Running:

Status Name DisplayName
------ ---- -----------
Running WinRM Windows Remote Management

 Managing the Enterprise ChAPTeR 5 141

If the service is stopped, enter the following command to start the service
and configure it to start automatically in the future:

set-service –name winrm –startuptype automatic –status running

  3. To configure Windows PowerShell for remoting, type the following
command:

Enable-PSRemoting –force

You can enable remoting only when your computer is connected to a
domain or private network . If your computer is connected to a public
network, you need to disconnect from the public network and connect to a
domain or private network and then repeat this step . If one or more of your
computer’s connections has the Public connection type, but you are actually
connected to a domain or private network, you need to change the network
connection type in Network And Sharing Center and then repeat this step .

In many cases, you can work with remote computers in other domains . However,
if the remote computer is not in a trusted domain, the remote computer might not
be able to authenticate your credentials . To enable authentication, you need to add
the remote computer to the list of trusted hosts for the local computer in WinRM .
To do so, type the following:

winrm s winrm/config/client '@{TrustedHosts="RemoteComputer"}'

where RemoteComputer is the name of the remote computer, such as:

winrm s winrm/config/client '@{TrustedHosts="DbServer18"}'

When you are working with computers in workgroups or homegroups, you
must use HTTPS as the transport or add the remote machine to the TrustedHosts
configuration settings . If you cannot connect to a remote host, you can verify that
the service on the remote host is running and is accepting requests by running the
following command on the remote host:

winrm quickconfig

This command analyzes and configures the WinRM service . If the WinRM service
is set up correctly, you see output similar to the following:

WinRM already is set up to receive requests on this machine.
WinRM already is set up for remote management on this machine.

If the WinRM service is not set up correctly, you see errors and need to respond
affirmatively to several prompts that allow you to automatically configure remote
management . When this process is complete, WinRM should be set up correctly .
Don’t forget that you need to enable remote management on the database server
as well as your management computer .

 ChAPTeR 5  Managing the Enterprise142

Starting, Stopping, and Configuring SQL Server Agent

SQL Server Agent runs as a service and is used to schedule jobs, alerts, and other
automated tasks . After you have scheduled automated tasks, you usually want
SQL Server Agent to start automatically when the system starts . This configura-
tion ensures that the scheduled tasks are performed as expected . Using SQL Server
Service Manager, you can control the related SQL Server Agent (InstanceName) ser-
vice just as you do the SQL Server service . For details, see “Configuring SQL Server
Services” in Chapter 3 .

You use SQL Server Management Studio to configure SQL Server Agent . Chapter
16, “Database Automation and Maintenance,” covers the agent configuration in
detail, but the basic steps are as follows:

  1. Connect to the Database Engine on the server you want to configure . You
can do this in the Registered Servers view by double-clicking the server
entry, or you can use the Object Explorer view . In the Object Explorer view,
click Connect, and then select Database Engine to display the Connect To
Server dialog box, which you can use to connect to the server .

  2. Right-click the SQL Server Agent node, and then select Properties from the
shortcut menu . You can now configure SQL Server Agent . Keep in mind that
if the service is not running, you need to start it before you can manage its
properties .

  3. The SQL Server Agent shortcut menu also lets you manage the SQL Server
Agent service . Select Start, Stop, or Restart as appropriate .

Starting, Stopping, and Configuring Microsoft
Distributed Transaction Coordinator

Microsoft Distributed Transaction Coordinator (DTC) is a transaction manager that
makes it possible for client applications to work with multiple sources of data in one
transaction .

When a distributed transaction spans two or more servers, the servers coordinate
the management of the transaction by using DTC . When a distributed transaction
spans multiple databases on a single server, SQL Server manages the transaction
internally .

SQL Server applications can call DTC directly to start an explicit distributed trans-
action . Distributed transactions can also be started implicitly by using one of the
following methods:

■■ Calling stored procedures on remote servers running SQL Server

■■ Updating data on multiple OLE DB data sources

■■ Enlisting remote servers in a transaction

 Managing the Enterprise ChAPTeR 5 143

If you work with transactions under any of these scenarios, you should have
DTC running on the server, and you probably also want DTC to start automatically
when the server starts . As with SQL Server itself, DTC runs as a service . This service
is named Distributed Transaction Coordinator . Unlike the SQL Server service, only
one instance of the MS DTC service runs on a computer, regardless of how many
database server instances are available . This means that all instances of SQL Server
running on a computer use the same transaction coordinator .

You can view the current state of Distributed Transaction Coordinator in SQL
Server Management Studio by connecting to the server’s Database Engine . In Object
Explorer, expand the server and Management nodes . If the service is running, you
see a green circle with a right-facing triangle in it (similar to a play button) . If the
service is stopped, you see a red circle with a square in it (similar to a stop button) .
You can control the DTC service with Computer Management . Follow these steps:

  1. Start Computer Management by clicking the Start button, pointing to All
Programs, Administrative Tools, and then selecting Computer Management .

  2. By default, you are connected to the local computer . To connect to a remote
computer, right-click the Computer Management node, and then select
Connect To Another Computer . In the Select Computer dialog box, choose
Another Computer, and then type the name of the computer . The name can
be specified as a host name, such as CorpSvr04, or as a fully qualified domain
name, such as corpsvr04 .cpandl .com .

  3. Expand Services And Applications, and then select Services . Right-click Dis-
tributed Transaction Coordinator, and then choose Properties . You can now
manage DTC .

Managing SQL Server Startup

The SQL Server Database Engine has two modes of operation . It can run as com-
mand-line application (SQLServr .exe) or as a service . Use the command-line applica-
tion when you need to troubleshoot problems or modify configuration settings in
single-user mode . Except in those cases, you normally run SQL Server as a service .

enabling or Preventing Automatic SQL Server Startup
In Chapter 3, you learned that you can use SQL Server Configuration Manager to
manage the SQL Server (MSSQLSERVER) service, related services for other Database
Engine instances, and other SQL Server–related services . Any of these services can
be configured for automatic startup or can be prevented from starting automati-
cally . To enable or prevent automatic startup of a service, follow these steps:

  1. Start SQL Server Configuration Manager by using one of the following
techniques:

■■ Log on to the database server through a local or remote login, and then
start SQL Server Configuration Manager by clicking the Start button;

 ChAPTeR 5  Managing the Enterprise144

pointing to All Programs, Microsoft SQL Server 2008 (or Microsoft SQL
Server 2008 R2), Configuration Tools; and then selecting SQL Server Con-
figuration Manager .

■■ In SQL Server Management Studio, open the Registered Servers view by
pressing Ctrl+Alt+G . Use the Registered Servers toolbar to select the top-
level group, and then expand the group nodes by double-clicking them .
Right-click the server entry, and then select SQL Server Configuration
Manager .

  2. Select the SQL Server Services node . Right-click the SQL Server service that
you want to start automatically, and then select Properties . You can now do
the following:

■■ Enable automatic startup On the Service tab, set the Start Mode to
Automatic . If the server state is Stopped, click Start on the Log On tab to
start the service .

■■ Prevent automatic startup On the Service tab, set the Start Mode to
Manual .

  3. Click OK .

You can also use Computer Management to configure services . To configure
automatic startup of a service by using Computer Management, follow these steps:

  1. Click the Start button, point to All Programs, Administrative Tools, and then
selecting Computer Management .

  2. By default, you are connected to the local computer . To connect to a remote
computer, right-click the Computer Management node and select Connect
To Another Computer . In the Select Computer dialog box, select Another
Computer, and then type the name of the computer . The name can be speci-
fied as a host name, such as CorpSvr04, or as a fully qualified domain name,
such as corpsvr04 .cpandl .com .

  3. Expand Services And Applications, and then select Services .

  4. Right-click the SQL Server service that you want to start automatically, and
then select Properties .

  5. You can now do the following:

■■ Enable automatic startup On the General tab, set the Startup Type to
Automatic . If the Service Status reads Stopped, click Start .

■■ Prevent automatic startup On the General tab, set the Startup Type to
Manual .

  6. Click OK .

 Managing the Enterprise ChAPTeR 5 145

Setting Database engine Startup Parameters
Startup parameters control how the SQL Server Database Engine starts and which
options are set when it does . You can configure startup options by using SQL Server
Configuration Manager or Computer Management . SQL Server Configuration Man-
ager is the recommended tool for this task because it provides the current default
settings and allows you to easily make modifications .

TIP You can pass startup parameters to the command-line utility SQLServr.exe as

well. Passing the –c option to this utility starts SQL Server without using a service. You

must run SQLServr.exe from the Binn directory that corresponds to the instance of

the SQL Server Database engine that you want to start. For the default instance, the

utility is located in MSSQL10.MSSQLSeRVeR\MSSQL\Binn or MSSQL10_50.MSSQL-

SeRVeR\MSSQL\Binn depending on whether you are working with R1 or R2. For

named instances, the utility is located in MSSQL10.InstanceName\MSSQL\Binn or

MSSQL10_50.MSSQLSeRVeR\MSSQL\Binn.

Adding Startup Parameters

You can add startup parameters by completing the following steps:

  1. Start SQL Server Configuration Manager by using one of the following
techniques:

■■ Log on to the database server through a local or remote login, and then
start SQL Server Configuration Manager . On the Microsoft SQL Server
2008 or Microsoft SQL Server 2008 R2 menu, the related option is found
under Configuration Tools .

■■ In SQL Server Management Studio, open the Registered Servers view by
pressing Ctrl+Alt+G . Use the Registered Servers toolbar to select the top-
level group, and then expand the group nodes by double-clicking them .
Right-click the server entry, and then select SQL Server Configuration
Manager .

  2. Select the SQL Server Services node . Right-click the SQL Server service that
you want to modify, and then select Properties .

  3. On the Advanced tab, click in the Startup Parameters box, and then press
End to go to the end of the currently entered parameters . The –d, –e, and –l
parameters are set by default . Be careful not to modify these or other exist-
ing parameters accidentally .

  4. Each parameter is separated by a semicolon . Type a semicolon and then a
hyphen followed by the letter and value of the parameter you are adding,
such as ;–g512 .

 ChAPTeR 5  Managing the Enterprise146

  5. Repeat step 3 and step 4 as necessary to specify additional parameters and
values .

  6. Click Apply to save the changes . The parameters are applied the next time
the SQL Server instance is started . To apply the parameters right away, you
must stop and then start the service by clicking Restart on the Log On tab .

Removing Startup Parameters

You can remove startup parameters by completing the following steps:

  1. Start SQL Server Configuration Manager by using one of the following
techniques:

■■ Log on to the database server through a local or remote login, and then
start SQL Server Configuration Manager by clicking the Start button,
pointing to All Programs, Microsoft SQL Server 2008 (or Microsoft SQL
Server 2008 R2), Configuration Tools, and then selecting SQL Server Con-
figuration Manager .

■■ In SQL Server Management Studio, open the Registered Servers view by
pressing Ctrl+Alt+G . Use the Registered Servers toolbar to select the top-
level group, and then expand the group nodes by double-clicking them .
Right-click the server entry, and then select SQL Server Configuration
Manager .

  2. Select the SQL Server Services node . Right-click the SQL Server service that
you want to modify, and then select Properties .

  3. On the Advanced tab, click in the Startup Parameters box . Each parameter is
specified with a hyphen, parameter letter, and parameter value . A semicolon
is used to separate parameter values, as shown in the following example:

-g512;

  4. Remove the parameter by deleting its entry .

  5. The change is applied the next time the SQL Server instance is started . To
apply the change right away, you must stop and then start the service by
clicking Restart on the Log On tab .

Common Startup Parameters

Table 5-1 shows startup parameters and how they are used . The first three parame-
ters (–d, –e, and –l) are the defaults for SQL Server . The remaining parameters allow
you to configure additional settings .

 Managing the Enterprise ChAPTeR 5 147

TABLE 5-1 Startup Parameters for SQL Server

PARAMETER DESCRIPTION

–d<path> Sets the full path for the master database . If this parameter is
omitted, the registry values are used .

Example: –dC:\Program Files\Microsoft SQL Server\MSSQL10_
50 .MSSQLSERVER\MSSQL\DATA\master .mdf

–e<path> Sets the full path for the error log . If this parameter is omitted, the
registry values are used .

Example: –eC:\Program Files\Microsoft SQL Server\MSSQL10_
50 .MSSQLSERVER\MSSQL\LOG\ERRORLOG

–l<path> Sets the full path for the master database transaction log . If this
parameter is omitted, the registry values are used .

Example: –lC:\Program Files\Microsoft SQL Server\MSSQL10_
50 .MSSQLSERVER\MSSQL\DATA\mastlog .ldf

–B Sets a breakpoint on error; used with the –y option when
debugging .

–c Prevents SQL Server from running as a service . This setting makes
startup faster when you are running SQL Server from the com-
mand line .

 –f Starts SQL Server with minimal configuration . This setting is useful
if a configuration value has prevented SQL Server from starting .

–g number Specifies the amount of virtual address space memory in mega-
bytes to reserve for SQL Server . This memory is outside the SQL
Server memory pool and is used by the extended procedure DLLs,
OLE DB providers referenced in distributed queries, and the auto-
mation object referenced in T-SQL . The default value is 256 .

Example: –g256

–h Reserves virtual address space for hot-add memory metadata
when Address Windowing Extensions (AWE) is enabled with 32-bit
editions of SQL Server . Although this setting is required for using
hot-add memory with 32-bit AWE, it uses approximately 500 MB
of virtual address space and makes memory tuning more difficult .
This setting is not required for using hot-add memory with 64-bit
editions of SQL Server . Hot-add memory is available only for the
Enterprise and Datacenter editions of Windows Server and must
also be supported by the server hardware .

–K Forces regeneration of the service master key if it exists .

 ChAPTeR 5  Managing the Enterprise148

PARAMETER DESCRIPTION

–k number Sets the checkpoint speed in megabytes (MB) per second . Use a
decimal value .

Example: –k25

–m Starts SQL Server in single-user mode . Only a single user can
connect, and the checkpoint process is not started . Enables the
sp_configure allow updates option, which is disabled by default .

–n Tells SQL Server not to log errors in the application event log . Use
with –e .

–s instance Starts the named instance of SQL Server . You must be in the rel-
evant Binn directory for the instance .

Example: –sdevapps

–T<tnum> Sets a trace flag . Trace flags set nonstandard behavior and are
often used in debugging or diagnosing performance issues .

Example: –T237

–t<tnum> Sets an internal trace flag for SQL Server . Used only by SQL Server
support engineers .

Example: –t8837

–x Disables statistics tracking for CPU time and cache-hit ratio . Allows
maximum performance .

–y number Sets an error number that causes SQL Server to dump the stack .

Example: –y1803

Managing Services from the Command Line
You can start, stop, and pause SQL Server as you would any other service . On a local
system, you can type the necessary command at a standard command prompt . You
can also connect to a system remotely and then issue the necessary command . To
manage the default database server instance, use these commands:

■■ NET START MSSQLSERVER Starts SQL Server as a service .

■■ NET STOP MSSQLSERVER Stops SQL Server when running as a service .

■■ NET PAUSE MSSQLSERVER Pauses SQL Server when running as a service .

■■ NET CONTINUE MSSQLSERVER Resumes SQL Server when it is running as
a service .

 Managing the Enterprise ChAPTeR 5 149

To manage named instances of SQL Server, use the following commands:

■■ NET START MSSQL$instancename Starts SQL Server as a service;
instance	name is the actual name of the database server instance .

■■ NET STOP MSSQL$instancename Stops SQL Server when it is running as a
service; instancename is the actual name of the database server instance .

■■ NET PAUSE MSSQL$instancename Pauses SQL Server when it is running
as a service; instancename is the actual name of the database server instance .

■■ NET CONTINUE MSSQL$instancename Resumes SQL Server when it is
running as a service; instancename is the actual name of the database server
instance .

You can add startup options to the end of NET START MSSQLSERVER or NET
START MSSQL$instancename commands . Use a slash (/) instead of a hyphen (–), as
shown in these examples:

net start MSSQLSERVER /f /m
net start MSSQL$CUSTDATAWAREHOUS /f /m

REAL WORLD Instead of referencing MSSQLSeRVeR or MSSQL$instancename,

you also can reference the service by its display name. For the default instance, you

use "SQL Server (MSSQLSeRVeR)" with NeT START, NeT STOP, NeT PAUSe, and NeT

CONTINUe. For a named instance, you use net start "SQL Server (InstanceName)",

where InstanceName is the name of the instance, such as net start "SQL Server (CUST-

DATAWARehOUS)". In both usages, the quotation marks are required as part of the

command text.

Managing the SQL Server Command-Line executable
The SQL Server command-line executable (SQLServr .exe) provides an alternative
to the SQL Server service . You must run SQLServr .exe from the Binn directory that
 corresponds to the instance of the SQL Server Database Engine that you want to
start . For the default instance, the utility is located in MSSQL10 .MSSQLSERVER\
MSSQL\Binn or MSSQL10_50 .MSSQLSERVER\MSSQL\Binn, depending on whether
you are working with R1 or R2 . For named instances, the utility is located in
MSSQL10 .Instance	Name\MSSQL\Binn or MSSQL10_50 .MSSQLSERVER\MSSQL\Binn .

When SQL Server is installed on a local system, start SQL Server by changing to
the directory where the instance of SQL Server you want to start is located and then
type sqlservr at the command line . On a remote system, connect to the system
remotely, change to the appropriate directory, and then issue the startup command .
Either way, SQL Server reads the default startup parameters from the registry and
starts execution .

You can also enter startup parameters and switches that override the default
settings . (The available parameters are summarized in Table 5-1 .) You can still con-
nect SQL Server Management Studio and SQL Configuration Manager to the server .

 ChAPTeR 5  Managing the Enterprise150

However, when you do, these programs show an icon indicating that the SQL Server
service is stopped because you aren’t running SQL Server via the related service .
You also will be unable to pause, stop, or resume the instance of SQL Server as a
Windows service .

When you are running SQL Server from the command line, SQL Server runs in
the security context of the user, not the security context of the account assigned to
the SQL Server service . You should not minimize the command console in which SQL
Server is running because doing so causes Windows to remove nearly all resources
from SQL Server .

Additionally, when you are running SQL Server from the command line, you can
make configuration changes that might be necessary for diagnosing and resolv-
ing problems, and you can also perform tasks that you can accomplish only when
SQL Server is running in single-user mode . However, you should be careful when
creating databases, changing data file locations, or making other similar types
of changes . If you are logged on as an administrator and create a new database
or change the location of a data file, SQL Server might not be able to access the
database or data file when it runs later under the default account for the SQL Server
service .

You must shut down the instance of SQL Server before logging off Windows . To
stop an instance of SQL Server started from the command line, complete the follow-
ing steps:

  1. Press Ctrl+C to break into the execution stream .

  2. When prompted, press Y to stop SQL Server .

Managing Server Activity

As a database administrator, your job is to be sure that SQL Server runs smoothly . To
ensure that SQL Server is running optimally, you can actively monitor the server to
do the following:

■■ Keep track of user connections and locks

■■ View processes and commands that active users are running

■■ Check the status of locks on processes and objects

■■ See blocked or blocking transactions

■■ Ensure that processes complete successfully, and detect errors if they do not

When problems arise, you can terminate a process if necessary .

NOTE For more coverage of monitoring SQL Server, see Chapter 14. In that chapter,

you will learn how to use Performance Monitor and SQL Server Profiler to keep track

of SQL Server activity, performance, and errors.

 Managing the Enterprise ChAPTeR 5 151

examining Process Information
Process information provides details about the status of processes, current user con-
nections, and other server activity . You can view process information by completing
the following steps:

  1. Start SQL Server Management Studio, and then connect to a server .

  2. Use the Object Explorer view to access an instance of the Database Engine .

  3. Right-click the Database Engine instance, and then select Activity Monitor .

In Activity Monitor, shown in Figure 5-8, you should see a graphical overview of
activity as well as an activity summary by processes, resource waits, data file I/O, and
recent expensive queries . The overview and the summaries are provided in separate
panels that you can expand to display or shrink to hide .

FIGURE 5-8 Working with Activity Monitor

The Overview panel has graphs depicting processor time, waiting tasks, database
I/O, and batch requests . By default, the graphs are updated every 10 seconds . You
can specify a different refresh interval by right-clicking in the panel, pointing to
Refresh Interval, and then selecting an interval, such as 30 seconds .

In the Processes panel, processes are sorted by process ID by default, but you
can arrange them by any of the available information categories summarized in
Table 5-2 . Click a category header to sort processes based on that category . Click
the same category header again to perform a reverse sort on the category .

 ChAPTeR 5  Managing the Enterprise152

TABLE 5-2 Process Information Used in Database Administration

CATEGORY DESCRIPTION

Session ID Provides the session ID of the process on the server .

User Process Provides the user ID of the process on the server .

Login Shows which user is running the process by SQL Server ID or
domain account, depending on the authentication technique
used .

Database Indicates the database with which the process is associated .

Task Status Shows the status of the process . A running process is active
and currently performing work . A runnable process has a
connection but currently has no work to perform . A sleeping
process is waiting for something such as user input or a lock .
A background process is running in the background and
periodically performing tasks . A suspended process has work
to perform but has stopped .

Command Displays the command being executed or the last command
executed .

Application Shows the application or SQL Server component (such as
a report server) connecting to the server and running the
process .

Wait Time Indicates the elapsed wait time in milliseconds .

Wait Type Specifies whether the process is waiting or not waiting .

Wait Resource Displays the resource that the process is waiting for (if any) .

Blocked By Displays the process ID blocking this process .

Head Blocker Shows 1 if the session ID is the head blocker in the blocking
chain . Otherwise shows 0 .

Memory Use Displays the amount of memory the process is using (in
kilobytes) .

Host Name Displays the host from which the connection originated .

Workload Group Displays the name of the Resource Governor workload group
for the query .

 Managing the Enterprise ChAPTeR 5 153

Tracking Resource Waits and Blocks
When you are diagnosing performance issues, you should look closely at the Wait
Time, Wait Type, Wait Resource, and Blocked By values for each process . Most of the
process information is gathered from data columns returned by various dynamic
management views, including the following:

■■ sys.dm_os_tasks Returns information about each task that is active in the
instance of SQL Server .

■■ sys.dm_os_waiting_tasks Returns information about each task that is
waiting on some resource .

■■ sys.dm_exec_requests Returns information about each request that is
executing within SQL Server .

■■ sys.dm_exec_sessions Returns information about each authentication ses-
sion within SQL Server .

■■ sys.dm_resource_governor_workload_group Returns information about
workload groups configured for Resource Governor .

Although Activity Monitor provides a good overview, you might need to use
these dynamic management views to get more detailed information about pro-
cesses, resource waits, and resource blocks .

The Resource Waits panel provides additional information about resource waits .
Each wait category combines the wait time for closely related wait types, such as
buffer I/O or network I/O . Keep the following in mind:

■■ Wait Time Shows the accumulated wait time per second . Here, a rate
of 3,000 ms indicates three tasks on average were waiting with this wait
category .

■■ Recent Wait Time Shows the wait average of accumulated wait time per
second . This combines all the wait times over the last several minutes and
averages them for this wait category .

■■ Average Waiter Count Shows the average number of waiting tasks per
second for this wait category .

■■ Cumulative Wait Time Shows the total amount of wait time for this wait
category since SQL Server was started or the wait statistics were reset .

TIP You can reset wait statistics using DBCC SQLPeRF.

To get a clearer picture of resource waits and blocks, you can use the
sys .dm_tran_locks view . Table 5-3 summarizes the information returned with this
view . Actual values are in parentheses, preceded by a general category name .

 ChAPTeR 5  Managing the Enterprise154

TABLE 5-3 Lock-Related Information Used in Database Administration

CATEGORY TYPE DESCRIPTION

Process ID
(request_session_id)

The process ID of the related
user process within SQL Server .

Object ID (resource_associ-
ated_entity_id)

The ID of the entity with which a
resource is associated .

Context
(request_exec_context_id)

The ID of the thread associated
with the process ID .

Batch ID
(request_request_id)

The batch ID associated with the
process ID .

Type (resource_type) RID Row identifier; used to lock a
single row within a table .

KEY A row lock within an index; used
to protect key ranges .

PAGE A lock on a data or index page .

EXTENT A lock on a contiguous group of
eight data or index pages .

TABLE A lock on an entire table, includ-
ing all data and indexes .

DATABASE A lock on an entire database .

METADATA A lock on descriptive informa-
tion about the object .

ALLOCATION_
UNIT

A lock on allocation unit page
count statistics during deferred
drop operations .

HOBT A lock on basic access path
structures for heap or index
reorganization operations or
heap-optimized bulk loads .

Subtype (resource_subtype) The lock subtype, frequently
used with METADATA locks to
identify metadata lock activity .

Description
(resource_description)

Optional descriptive
information .

 Managing the Enterprise ChAPTeR 5 155

CATEGORY TYPE DESCRIPTION

Request Mode
(request_mode)

S Shared; used for read-only
operations, such as a SELECT	
statement .

U Update; used when reading/
locking an updatable resource;
prevents some deadlock
situations .

X Exclusive; allows only one ses-
sion to update the data; used
with the modification opera-
tions, such as INSERT, DELETE,
and UPDATE .

I Intent; used to establish a lock
hierarchy .

Sch-S Schema stability; used when
checking a table’s schema .

Sch-M Schema modification; used when
modifying a table’s schema .

BU Bulk update; used when bulk
copying data into a table and
the TABLOCK hint is specified .

RangeS_S Serializable range scan; used
with shared resource locks on
shared ranges .

RangeS_U Serializable update; used for
updating resource locks on
shared ranges .

RangeI_N Insert range with a null resource
lock; used to test ranges before
inserting a new key into an
index .

RangeX_X Exclusive range with an exclusive
lock; used when updating a key
in a range .

 ChAPTeR 5  Managing the Enterprise156

CATEGORY TYPE DESCRIPTION

Request Type
(request_type)

The type of object requested .

Request Status
(request_status)

GRANT The lock was obtained .

WAIT The lock is blocked by another
process .

CNVT The lock is being converted—
that is, it is held in one mode
but waiting to acquire a stronger
lock mode .

Owner Type
(request_owner_type)

CURSOR The lock owner is a cursor .

SESSION The lock owner is a user session .

TRANSACTION The lock owner is a transaction .

SHARED_TRANS-
ACTION_WORK-
SPACE

The lock owner is the shared
portion of the transaction
workspace .

EXCLUSIVE_
TRANSACTION_
WORKSPACE

The lock owner is the exclu-
sive portion of the transaction
workspace .

Owner ID
(request_owner_id)

The owner ID associated with
the lock .

Owner GUID
(request_owner_guid)

The GUID of the owner associ-
ated with the lock .

Database
(resource_database_id)

The database containing the
lock .

Object (resource_associ-
ated_entity_id)

The name of the object being
locked .

 Managing the Enterprise ChAPTeR 5 157

Troubleshooting Deadlocks and Blocking Connections
Two common problems you might encounter are deadlocks and blocking connec-
tions . Deadlocks and blocking connections, as described in the following list, can
occur in almost any database environment, especially when many users are making
connections to databases:

■■ Deadlocks occur when two users have locks on separate objects and each
wants a lock on the other’s object . Each user waits for the other user to
release the lock, but this does not happen .

■■ Blocking connections occur when one connection holds a lock and a second
connection wants a conflicting lock type . This forces the second connection
to wait or to block the first .

Both deadlocks and blocking connections can degrade server performance .

Although SQL Server can detect and correct deadlocks and blocking situations,
you can help speed up this process by identifying potential problems and taking
action when necessary . Process information can tell you when deadlocks or blocking
connections occur . Examine these process information columns: Wait Time, Wait
Type, Resource, Blocking, and Blocked By . When you have a deadlock or blocking
situation, take a closer look at the locks on the objects that are causing problems .
Refer to “Tracking Resource Waits and Blocks” earlier in this chapter for details . You
might also want to stop the offending processes, and you can do this by following
the steps described in “Killing Server Processes” later in this chapter .

You can also use the sys .dm_tran_locks view to obtain information about active
locks . Each row in the results returned by this view represents a currently active
request to the lock manager for a lock that has been granted or is waiting to be
granted . The following example returns a list of locks in the Customer database:

T-SQL

USE customer;
GO
SELECT * FROM sys.dm_tran_locks

PowerShell

Invoke-Sqlcmd -Query "USE customer; SELECT * FROM sys.dm_tran_locks"
-ServerInstance "DbServer25"

In the result set, the results are organized in two main groups . Columns that
begin with resource_ describe the resource on which the lock request is being made .
Columns that begin with request_ describe the lock request itself . (Table 5-3 lists the
correlation between the columns in the results and the categories listed in Activity
Monitor .) While Activity Monitor returns the actual database name, the resource_
database_id column returns the database_id as set in the sys .databases view . In SQL
Server, database IDs are set on a per-server basis . You can determine the database

 ChAPTeR 5  Managing the Enterprise158

name for a particular database ID on a particular server by using the following
statement:

SELECT name, database_id FROM sys.databases

In the results returned by sys .dm_tran_locks, request_session_id tracks process
IDs . Process IDs tracked internally by SQL Server do not correspond to process IDs
tracked by the operating system . You can determine the association between the
SQL Server process IDs and Windows thread IDs by using the following query:

SELECT ServerTasks.session_id, ServerThreads.os_thread_id
 FROM sys.dm_os_tasks AS ServerTasks
 INNER JOIN sys.dm_os_threads AS ServerThreads
 ON ServerTasks.worker_address = ServerThreads.worker_address
 WHERE ServerTasks.session_id IS NOT NULL
 ORDER BY ServerTasks.session_id;
GO

While you are connected to the database that contains the locking object, you
get more information about the locking object and blocking information . Use the
following query, where <resource_associated_entity_id> is the value in the related
column, to get information about the locking object:

SELECT object_name(object_id), *
 FROM sys.partitions
 WHERE hobt_id=<resource_associated_entity_id>

Use the following query to get blocking information:

SELECT
 tr1.resource_type,
 tr1.resource_subtype,
 tr1.resource_database_id,
 tr1.resource_associated_entity_id,
 tr1.request_mode,
 tr1.request_type,
 tr1.request_status,
 tr1.request_session_id,
 tr1.request_owner_type,
 tr2.blocking_session_id
 FROM sys.dm_tran_locks as tr1
 INNER JOIN sys.dm_os_waiting_tasks as tr2
 ON tr1.lock_owner_address = tr2.resource_address;

 Managing the Enterprise ChAPTeR 5 159

Tracking Command execution in SQL Server
Sometimes you want to track the commands that users are executing . You can do
this by using Activity Monitor:

  1. In SQL Server Management Studio, use the Object Explorer view to access an
instance of the Database Engine .

  2. Right-click the Database Engine instance, and then select Activity Monitor .

  3. Expand the Processes panel by clicking the Options button . The entries in the
Session ID, User Process, and Login columns can help you track user sessions
and the processes they are using .

  4. Right-click a process, and then select Details to display the dialog box shown
in Figure 5-9 . This dialog box shows the last command batch executed by the
user .

FIGURE 5-9 The Session Details dialog box

  5. To track current commands being executed by the user, click Refresh
periodically .

  6. To end the process, click Kill Process . Then, when prompted, choose Yes .

Killing Server Processes
You might need to stop processes that are blocking connections or using too much
CPU time . To do this, complete the following steps:

  1. In SQL Server Management Studio, use the Object Explorer view to access an
instance of the Database Engine .

  2. Right-click the Database Engine instance, and then select Activity Monitor .

  3. Expand the Processes panel by clicking the Options button .

  4. Right-click the process you want to stop, and then choose Kill Process . When
prompted to confirm, click Yes .

NOTE Usually, you don’t want to kill processes that SQL Server is running. If you are

concerned about a process, stop it and then restart the related service instead of try-

ing to kill the process.

161

CHAP TE R 6

Implementing Policy-Based
Management

■■ Introducing Policy-Based Management 161

■■ Working with Policy-Based Management 164

■■ Managing Policies Throughout the Enterprise 165

Policy-Based Management is an extensible and scalable configuration frame-
work that you can use to manage servers, databases, and other objects in your

data environments . As an administrator, you need to be very familiar with how
Policy-Based Management technology works, and that’s exactly what this chapter
is about . If you haven’t worked with Policy-Based Management technology before,
one thing you’ll notice immediately is that the technology is fairly advanced and
has many features . To help you manage this complex technology, I’ll start with an
overview of Policy-Based Management and then explore its components .

Introducing Policy-Based Management

Just about every administrative task you perform is affected by the policy-based
framework in some way . The policy-based framework provides the ability to define
policies that apply to servers, databases, and other objects in your data environ-
ments . You use these policies to help you control and manage the configuration
of data services throughout the enterprise . Through intelligent monitoring and
proactive responses, you can prevent changes that deviate from the configurations
you specify and want . You also can scale management across multiple servers,
which makes enforcing consistent configuration policies easier .

Within the policy-based framework, you use the following objects to configure
policy management:

■■ Facet Defines a management area within the policy-based framework .
Each management area has a set of related properties that you can con-
figure . For example, the Backup Device facet has the following properties:
BackupDeviceType, Name, PhysicalLocation, and SkipTapeLabel .

 ChAPTeR 6  Implementing Policy-Based Management162

■■ Condition Defines the permitted states for one or more properties of a
single facet . For example, you can create a condition called Limit Backup
Devices to specify that for the Backup Device facet, BackupDeviceType can
be set to hard disk or tape and SkipTapeLabel should always be set to True .

■■ Policy Contains a single condition that you want to enforce . For example,
you can create a policy named Standard Backup Device Policy that assigns
the Limit Backup Devices condition .

■■ Category Contains one or more policies that you want to enforce together .
For example, you can create a category named Standard DB Policies that
contains all the standard policies that you want to enforce within your
Microsoft SQL Server databases .

■■ Target Defines the servers, databases, or other database objects to which
policies are applied . For example, a target set could include all the databases
on an instance of SQL Server .

You create and manage policies in SQL Server Management Studio . The policy
creation process includes the following steps:

  1. Select a facet that contains the properties you want to configure .

  2. Define a condition that specifies the permitted states of the facet .

  3. Define a policy that contains the condition and sets one of the evaluation
modes listed in Table 6-1 .

  4. Determine whether an instance of SQL Server is in compliance with the
policy, and then take appropriate action .

TABLE 6-1 Evaluation Modes for Policy-Based Management

POLICY EVALUATION MODE DESCRIPTION EXECUTION TYPE

On Demand Evaluates the policy only when you
directly execute the policy . Also
referred to as ad	hoc policy evaluation .

Manual

On Change: Log Only Evaluates a policy when a relevant
change is made and logs policy
violations in the event logs .

Automatic

On Change: Prevent When nested triggers are enabled,
uses data definition language (DDL)
triggers to prevent policy violations by
detecting changes that violate a policy
and rolling them back .

Automatic

On Schedule Uses SQL Server Agent jobs to
periodically evaluate policies . Logs
policy violations in the event logs and
generates a report .

Automatic

 Implementing Policy-Based Management ChAPTeR 6 163

NOTE All facets support the On Demand and On Schedule modes. Facets support

the On Change: Log Only mode only if the change of the facet state can be captured

by related system events. Facets support the On Change: Prevent mode only if there is

transactional support for the DDL statements that change the facet state. Only auto-

matic policies can be enabled or disabled.

Policy categories apply to databases and servers . At the database level, database
owners can subscribe a database to a set of policy categories, and those policies
govern the database . By default, all databases implicitly subscribe to the default
policy category . At the server level, you can apply policy categories to all databases .

You can mark categories as Active or Inactive at the server or database level .
Although you can classify policies into different policy categories, a policy can
belong only to one policy category .

All objects defined on a SQL Server instance form a target hierarchy . Within a
policy, you define a target when you apply filters to the target hierarchy . For exam-
ple, a target set with a large scope could include all the databases on an instance of
SQL Server, while a target set with a small scope could include only the tables and
indexes owned by the Sales schema in the Customers database .

The effective policies of a target are those policies that govern the target . For
a policy to be effective with regard to a target, the policy must be enabled and
the target must be subject to the policy . Within your data services environments,
you enforce Policy-Based Management by using configuration servers . A desig-
nated configuration server is responsible for monitoring and enforcing policies
as assigned . By default, each instance of SQL Server acts as its own configuration
server . This means that each SQL Server instance normally handles its own policy
monitoring and enforcement .

REAL WORLD To be notified when messages from automatically executed policies

are written to the event logs, you can create alerts to detect these messages and

perform necessary actions. The alerts should detect the messages according to their

message number. Look for message numbers 34050, 34051, 34052, and 34053. You can

configure alerts as discussed in “Managing Alerts” in Chapter 16.

When policies are executed automatically, they execute as a member of the sysadmin

role. This allows the policy to write entries to the event logs and raise an alert. When

policies are evaluated on demand, they execute in the security context of the current

user. To write to the event log, the user must have ALTeR TRACe permissions or be a

member of the sysadmin fixed server role; otherwise, Windows will not write to the

event log and will not fire an alert.

 ChAPTeR 6  Implementing Policy-Based Management164

Working with Policy-Based Management

You must be a member of the PolicyAdministratorRole role in the msdb database
to configure Policy-Based Management settings . This role has complete control of
all policies and can create policies and conditions, edit policies and conditions, and
enable or disable policies .

When working with policies, keep the following in mind:

■■ A system administrator or database owner can subscribe a database to a
policy or policy group .

■■ On demand policy execution occurs in the security context of the user .

■■ Members of the PolicyAdministratorRole role can create policies that they do
not have permission to execute on an ad hoc basis .

■■ Members of the PolicyAdministratorRole role can enable or disable policies .

■■ Policies that are in the On Schedule mode use SQL Server Agent jobs that are
owned by the sa login .

Although you can manage policies for each instance of SQL Server, you’ll likely
reuse policies you’ve defined and then apply them to other instances of SQL Server .
With Policy-Based Management, you can apply policies to multiple instances of SQL
Server in several ways . As discussed in “Importing and Exporting Policies” later in
this chapter, you can export the policies you’ve defined on a particular instance of
SQL Server and then import the policies on another instance of SQL Server . During
the import process, you can specify whether policies are enabled or disabled and
whether to preserve the exported state of the policies .

Being able to export and import policies is useful . However, you don’t necessarily
need to move policies around to enforce the policies on multiple computers running
SQL Server . Instead, you can manage policies by using a central management server .
A central management server is a special type of configuration server that is respon-
sible for monitoring and enforcing policy on any instance of SQL Server registered
as a subordinate server . As discussed in “Configuring Central Management Servers”
later in this chapter, you designate central management servers and their subordi-
nates by using SQL Server Management Studio . Because the central management
architecture is already an execution environment for Transact-SQL (T-SQL) state-
ments related to policies, you can execute T-SQL statements on multiple instances of
SQL Server at the same time from a central management server .

Because SQL Server stores policy-related data in the msdb database, you should
back up msdb after you change conditions, policies, or categories . Policy history
for policies evaluated in the current instance of the Database Engine is maintained
in msdb system tables . Policy history for policies applied to other instances of
the Database Engine or applied to Reporting Services or Analysis Services is not
retained .

As summarized in Table 6-2, SQL Server 2008 includes several sets of predefined
policies, including those for the Database Engine, Analysis Services, and Reporting

 Implementing Policy-Based Management ChAPTeR 6 165

Services . By default, the policies are stored as XML files in the following locations
and you must import them into SQL Server:

■■ Microsoft SQL Server\100\Tools\Policies\DatabaseEngine\1033

■■ Microsoft SQL Server\100\Tools\Policies\AnalysisServices\1033

■■ Microsoft SQL Server\100\Tools\Policies\ReportingServices\1033

NOTE On 64-bit computers, policies are located under Program Files (x86) rather

than Program Files when you install SQL Server in the default file system location.

Surface area configuration is discussed in “Managing SQL Server Component Feature

Access” in Chapter 3.

TABLE 6-2 Predefined Policies for SQL Server 2008

PREDEFINED
POLICY NAME DESCRIPTION

Asymmetric
Key Encryption
Algorithm

Checks whether asymmetric keys were created by using 1024-
bit or stronger encryption . As a best practice, you should use
RSA 1024-bit or stronger encryption to create asymmetric keys
for data encryption .

Backup And
Data File
Location

Checks whether database files are on devices separate from the
backup files . As a best practice, you should put the database
and backups on separate backup devices . This approach helps
safeguard the data in case of device failure and also optimizes
the input/output (I/O) performance for both the production use
of the database and the writing of backups .

CmdExec Rights
Secured

Checks an instance of SQL Server 2000 to determine whether
only members of the sysadmin server role can run CmdExec and
ActiveX Script job steps, which is a recommended best practice .

Data And Log
File Location

Checks whether data and log files are placed on separate logical
drives . As a best practice, placing the files on separate drives
allows the I/O activity to occur at the same time for both the
data and log files .

Database Auto
Close

Checks whether the AUTO_CLOSE option is set to OFF . When
AUTO_CLOSE is set to ON, this option can cause performance
degradation on frequently accessed databases because of the
increased overhead of opening and closing the database after
each connection . AUTO_CLOSE also flushes the procedure
cache after each connection . As a best practice, you should set
the AUTO_CLOSE option to OFF on a database that is accessed
frequently .

 ChAPTeR 6  Implementing Policy-Based Management166

PREDEFINED
POLICY NAME DESCRIPTION

Database Auto
Shrink

Checks whether the AUTO_SHRINK database option is set to
OFF . Because frequently shrinking and expanding a database
can lead to fragmentation on the storage device, you should set
the AUTO_SHRINK database option to OFF in most instances .

Database
Collation

Checks whether user-defined databases are defined using
a database collation that is the same as the collation for the
master and model databases, which is a recommended best
practice . Otherwise, collation conflicts can occur that might
prevent code from executing . You can resolve collation conflicts
by exporting the data from the user database, importing it
into new tables that have the same collation as the master and
model databases, and then rebuilding the system databases to
use a collation that matches the user database collation . Or you
can modify any stored procedures that join user tables to tables
in tempdb to create the tables in tempdb by using the collation
of the user database .

Database Page
Status

Checks for user databases that have the database status
set to Suspect . The Database Engine marks a database as
Suspect when it reads a database page that contains an 824
error . Error 824 indicates that a logical consistency error was
detected during a read operation, and it frequently indicates
data corruption caused by a faulty I/O subsystem component .
Resolve this situation by running DBCC CHECKDB .

Database Page
Verification

Checks whether the PAGE_VERIFY database option is set to
CHECKSUM . This recommended best practice helps provide a
high level of data-file integrity by forcing the Database Engine
to calculate a checksum over the contents of the whole page
and store the value in the page header when a page is written
to disk . When the page is read from disk, the checksum is
recomputed and compared to the checksum value that is stored
in the page header .

File Growth For
SQL Server 2000

Checks an instance of SQL Server 2000 for data files that are
1 gigabyte or larger and are set to autogrow by a percentage
instead of by a fixed size . As a recommended best practice,
large databases should autogrow by a fixed size . Growing a data
file by a percentage can cause performance problems with SQL
Server because of progressively larger growth increments .

 Implementing Policy-Based Management ChAPTeR 6 167

PREDEFINED
POLICY NAME DESCRIPTION

Guest
Permissions

Checks whether the Guest user has permission to access a user
database . As a best practice, you should revoke the Guest user
permission to access a database if it is not required . Although
the Guest user cannot be dropped, the Guest user can be
disabled by revoking its CONNECT permission . Execute REVOKE
CONNECT FROM GUEST within any database other than master
or tempdb .

Last Successful
Backup Date

Checks to ensure that a database has recent backups .
Scheduling regular backups protects a database against data
loss . If there are no recent backups, you should schedule
backups by using a database maintenance plan .

Public Not
Granted Server
Permissions

Checks whether the public server role has server permissions .
Every login that is created on the server is a member of the
public server role and has server permissions . As a best practice,
however, do not grant server permissions directly to the public
server role .

Read-Only
Database
Recovery Model

Checks for read-only user databases that have recovery set to
Full . As a best practice, these databases should use the Simple
recovery model because they aren’t frequently updated .

SQL Server
32-Bit Affinity
Mask Overlap

Checks whether the 32-bit instance of SQL Server has one or
more processors that are assigned to be used with both the
Affinity Mask and the Affinity I/O Mask options . Enabling a CPU
with both these options can slow performance by forcing the
processor to be overused .

SQL Server
64-Bit Affinity
Mask Overlap

Checks whether the 64-bit instance of SQL Server has one or
more processors that are assigned to be used with both the
Affinity Mask and the Affinity I/O Mask options . Enabling a CPU
with both these options can slow performance by forcing the
processor to be overused .

SQL Server
Affinity Mask

Checks whether the Affinity Mask option is set to 0 . This is the
default value, which dynamically controls CPU affinity . Using the
default value is a recommended best practice .

SQL Server
Blocked Process
Threshold

Checks the Blocked Process Threshold option and ensures it
is set to 0 (disabled) or to a value higher than or equal to 5
seconds . Setting the Blocked Process Threshold option to a
value from 1 through 4 can cause the deadlock monitor to
run constantly, and this state is desirable only when you are
troubleshooting .

 ChAPTeR 6  Implementing Policy-Based Management168

PREDEFINED
POLICY NAME DESCRIPTION

SQL Server
Default Trace

Determines whether the Default Trace option is disabled . When
this option is enabled, default tracing provides information
about configuration and DDL changes to the SQL Server
Database Engine .

SQL Server
Dynamic Locks

Checks whether the Locks option is set to 0 . This is the default
value, which dynamically controls locks . Using the default value
is a recommended best practice . If the maximum number of
locks is reached, batch jobs stop and SQL Server generates “out
of locks” errors .

SQL Server
Lightweight
Pooling

Checks whether the Lightweight Pooling option is set to 0 .
This is the default value, which prevents SQL Server from using
lightweight pooling . Using the default value is a recommended
best practice .

SQL Server
Login Mode

Checks the login security configuration to ensure Windows
authentication is being used . Using Windows authentication
is a recommended best practice because this mode uses the
Kerberos security protocol, provides support for account
lockout, and supports password expiration . For Windows Server
2003 and Windows Server 2008, Windows authentication also
provides password policy enforcement in terms of complexity
validation for strong passwords .

SQL Server
Max Degree Of
Parallelism

Checks whether the Max Degree Of Parallelism (MAXDOP)
option is set to a value greater than 8 . Setting this option
to a value greater than 8 often causes unwanted resource
consumption and performance degradation, so you usually
want to reduce the value to 8 or less .

SQL Server Max
Worker Threads
For SQL Server
2005 And Above

Checks the Max Worker Threads Server option for potentially
incorrect settings . Setting the Max Worker Threads option to
a small value might prevent enough threads from servicing
incoming client requests in a timely manner . Setting the option
to a large value can waste address space because each active
thread consumes 512 kilobytes (KB) on 32-bit servers and up to
4 megabytes (MB) on 64-bit servers . For instances of SQL Server
2005 and SQL Server 2008, you should set this option to 0,
which allows SQL Server to automatically determine the correct
number of active worker threads based on user requests .

 Implementing Policy-Based Management ChAPTeR 6 169

PREDEFINED
POLICY NAME DESCRIPTION

SQL Server
Network Packet
Size

Determines whether the network packet size of any logged-in
user is more than 8,060 bytes . As a best practice, the network
packet size should not exceed 8,060 bytes . Otherwise, SQL
Server performs different memory allocation operations, and
this can cause an increase in the virtual address space that is not
reserved for the buffer pool .

SQL Server
Password
Expiration

Checks whether password expiration is enabled for each
SQL Server login . As a best practice, you should use ALTER
LOGIN to enable password expiration for all SQL Server logins .
Additionally, if SQL Server authentication is not required in your
environment, you should enable only Windows authentication .

SQL Server
Password Policy

Checks whether the Enforce Password policy is enabled for
each SQL Server login . As a best practice, you should enable the
Enforce Password policy for all the SQL Server logins by using
ALTER LOGIN .

SQL Server
System Tables
Updatable

Checks whether system tables for SQL Server 2000 can be
updated . As a best practice, you shouldn’t allow updates to
system tables .

Symmetric Key
Encryption For
User Databases

Checks whether encryption keys that have a length of less than
128 bytes do not use the RC2 or RC4 encryption algorithm . As
a best practice, you should use AES 128 bit or larger to create
symmetric keys for data encryption . If AES is not supported by
your operating system, you should use 3DES encryption .

Symmetric Key
For master
Database

Checks for user-created symmetric keys in the master database .

Symmetric Key
For System
Databases

Checks for user-created symmetric keys in the model, msdb, and
tempdb databases . As a best practice, you should not create
symmetric keys in the system databases .

Trustworthy
Database

Checks whether the dbo role for a database is assigned to the
sysadmin fixed server role and the database has its trustworthy
bit set to ON . As a best practice, you should turn off the
trustworthy bit or revoke sysadmin permissions from the dbo
database role . Otherwise, a privileged database user can elevate
privileges to the sysadmin role and then create and run unsafe
assemblies that could compromise the system .

 ChAPTeR 6  Implementing Policy-Based Management170

PREDEFINED
POLICY NAME DESCRIPTION

Windows Event
Log Cluster
Disk Resource
Corruption Error

Checks the system event log for EventId 1066 . This error can
occur when a device is malfunctioning and also as a result of
SCSI host adapter configuration issues .

Windows Event
Log Device
Driver Control
Error

Checks the system event log for EventId 11 . This error can be
caused by a corrupt device driver, a hardware problem, faulty
cabling, or connectivity issues .

Windows Event
Log Device Not
Ready Error

Checks the system event log for EventId 15 . This error can be
caused by SCSI host adapter configuration issues or related
problems .

Windows
Event Log Disk
Defragmentation

Checks the system event log for EventId 55 . This error occurs
when the Disk Defragmenter tool cannot move a particular data
element, and as a result Chkdsk .exe is scheduled to run .

Windows Event
Log Failed I_O
Request Error

Checks the system event log for EventId 50 . This error is caused
by a failed I/O request .

Windows Event
Log I_O Delay
Warning

Checks the event log for error message 833 . This message
indicates that SQL Server has issued a read or write request from
disk and that the request has taken longer than 15 seconds to
return . You can troubleshoot this error by examining the system
event log for hardware-related error messages . Look also for
hardware-specific logs .

Windows Event
Log I_O Error
During Hard
Page Fault Error

Checks the system event log for EventId 51 . This error is caused
by an error during a hard page fault .

Windows Event
Log Read Retry
Error

Checks the event log for SQL Server error message 825 . This
message indicates that SQL Server was unable to read data
from the disk on the first try . You need to check the disks, disk
controllers, array cards, and disk drivers .

Windows Event
Log Storage
System I_O
Timeout Error

Checks the system event log for EventId 9 . This message
indicates that an I/O time-out has occurred in the storage
system .

Windows Event
Log System
Failure Error

Checks the system event log for EventId 6008 . This event
indicates an unexpected system shutdown .

 Implementing Policy-Based Management ChAPTeR 6 171

Managing Policies Throughout the Enterprise

As discussed previously, you create and manage policies in SQL Server Management
Studio . Implementing Policy-Based Management is a multistep process that involves
selecting a facet that contains the properties you want to configure, defining a
condition that specifies the permitted states of the facet, and defining a policy that
contains the condition and sets an evaluation mode . The evaluation mode you set
determines whether SQL Server uses automated policy monitoring, reporting, and
compliance enforcement .

Importing and exporting Policies
SQL Server 2008 includes predefined policies for the Database Engine, Analysis
Services, and Reporting Services . You can import these predefined policies with
their preconfigured conditions if you want to use them with a particular instance of
the Database Engine, Analysis Services, or Reporting Services . If you create your own
policies, you can export those policies with their conditions to XML files and then
import the XML files to another instance of SQL Server .

You can export a policy by completing the following steps:

  1. In SQL Server Management Studio, access the Management folder on the
instance of the Database Engine you want to work with .

  2. In Object Explorer, under the Management node, expand Policy Manage-
ment and Policies . Right-click a policy, and then click Export Policy . This
displays the Export Policy dialog box, shown in Figure 6-1 .

FIGURE 6-1 The Export Policy dialog box

  3. Use the options in the Export Policy dialog box to select a save location, and
then type the name of the XML file .

  4. Click Save . By default, SQL Server preserves the current state of the policy .
This state will be set when the policy is imported . Note that any condition
associated with the policy is exported as well .

You can import a policy by completing the following steps:

  1. In SQL Server Management Studio, access the Management folder on the
instance of the Database Engine you want to work with .

  2. In Object Explorer, under the Management node, expand Policy Manage-
ment, right-click Policies, and then click Import Policy .

 ChAPTeR 6  Implementing Policy-Based Management172

  3. In the Import dialog box, shown in Figure 6-2, click the options (. . .) button,
and then use the Select Policy dialog box to locate the XML file that contains
the policy . Select a policy by clicking it, and then click Open . You can select
multiple files using Shift+click or Ctrl+click .

FIGURE 6-2 The Import dialog box

  4. Remember that any condition associated with the policy is imported as well .
If identically named policies (and conditions) already exist, the import pro-
cess will fail with an error stating that the policies exist . To force SQL Server
to overwrite existing policies, you must select the Replace Duplicates With
Items Imported check box .

  5. By default, SQL Server preserves the policy state on import . If a policy was
enabled when it was exported, it will be enabled . If a policy was disabled
when it was exported, it will be disabled . You can modify this behavior by
explicitly setting the state . To enable the policies you are importing, select
Enable All Policies On Import in the Policy State list . To disable the policies
you are importing, select Disable All Policies On Import .

  6. Click OK to begin the import process .

Configuring Central Management Servers
By default, each instance of SQL Server is responsible for monitoring and enforc-
ing its own policies . Although this configuration is useful in stand-alone deploy-
ments, you often want a more robust solution in the enterprise, and this is where
central management servers are useful . Central management servers take over the
responsibility of monitoring and enforcing policies from any instance of SQL Server
registered as a subordinate server . From a central management server, you also can
execute T-SQL statements on multiple instances of SQL Server simultaneously .

 Implementing Policy-Based Management ChAPTeR 6 173

You can specify a SQL Server instance that you want to use as a central manage-
ment server by registering the server in the Registered Servers view . Afterward, you
can specify and register the subordinate servers that you will manage via the central
management server . Although you must register subordinate servers individually,
you can manage subordinate servers collectively by using subordinate server groups .

NOTE Because SQL Server relies on Windows authentication to establish connections

to registered servers, you must register all central management servers and subordi-

nate servers to use Windows authentication. Only members of the ServerGroup-

Administrator Role role can manage the central management server. Membership

in the ServerGroupReaderRole role is required to connect to a central management

server.

Registering Central Management Servers

A central management server cannot be a subordinate server or a member of a
subordinate group that it maintains . You can register a central management server
by following these steps:

  1. In SQL Server Management Studio, use the Registered Servers view to work
with central management servers . To use this view or to display it if it is hid-
den, press Ctrl+Alt+G .

  2. Under the Central Management Servers node, you’ll see a list of previously
registered central management servers . To register a new server, right-click
the Central Management Servers node, and then select Register Central
Management Server . This displays the New Server Registration dialog box,
shown in Figure 6-3 .

FIGURE 6-3 The New Server Registration dialog box

 ChAPTeR 6  Implementing Policy-Based Management174

  3. In the Server Name box, type the fully qualified domain name or host name
of the central management server, such as dbsvr23 .cpandl .com or DBSvr23 .

  4. Choose Windows Authentication as the authentication type .

  5. The registered server name is filled in for you on the basis of the server
name you entered previously . Change the default name only if you want SQL
Server Management Studio to use an alternate display name for the server .

  6. To test the settings, click Test . If you successfully connect to the server, you
will see a prompt confirming this . If the test fails, verify the information you
provided, make changes as necessary, and then test the settings again .

  7. Click Save .

Registering Subordinate Servers

After you register a central management server, you can register subordinate serv-
ers and create subordinate server groups . You can register a subordinate server by
following these steps:

  1. In the Registered Servers view, expand the Central Management Servers
node . You’ll see a list of previously registered central management servers .

  2. Right-click the central management server that will have management
responsibility for the subordinate server, and then select New Server
Registration .

  3. In the Server Name box, type the fully qualified domain name or host
name of the subordinate server, such as DatabaseServer12 .cpandl .com or
DatabaseServer12 .

  4. Choose Windows Authentication as the authentication type .

  5. The registered server name is filled in for you on the basis of the previously
entered server name . Change the default name only if you want SQL Server
Management Studio to use an alternate display name for the server .

  6. To test the settings, click Test . If you successfully connect to the server, you
will see a prompt confirming this . If the test fails, verify the information you
provided, make changes as necessary, and then test the settings again .

  7. Click Save .

Registering Subordinate Server Groups

You can create a subordinate server group by completing the following steps:

  1. In the Registered Servers view, expand the Central Management Servers
node . You’ll see a list of previously registered central management servers .

  2. Right-click the central management server that will have management
responsibility for the subordinate server group, and then select New Server
Group .

 Implementing Policy-Based Management ChAPTeR 6 175

  3. In the New Server Group Properties dialog box, type a name and description
for the new group in the boxes provided . Click OK .

Moving Subordinate Servers and Server Groups

Sometimes, you need to move a subordinate server or server group to a new loca-
tion in the central management server hierarchy . You can do this by completing the
following steps:

  1. In the Registered Servers view, expand the Central Management Servers
node and the related server and group nodes as necessary .

  2. Right-click the subordinate server or server group that you want to move,
point to Tasks, and then select Move To .

  3. In the Move Server Registration dialog box, select the node into which you
want to place the server or group .

  4. Click OK .

The Move To process does not let you move a subordinate server or server group
to a different central management server . To move a subordinate server or server
group to a different central management server, you need to export the related
registration settings and then import them to the new location . The export and
import process works like this:

  1. In the Registered Servers view, right-click the node with the settings to
export, point to Tasks, and then select Export .

  2. Click the options (…) button to the right of the Export File box .

  3. Use the Save As dialog box to select a save location, type a name for the
exported registered servers file, and then click Save .

  4. Click OK to close the Export Registered Servers dialog box .

  5. Right-click the node where you want to import the settings, point to Tasks,
and then select Import .

  6. Click the options (…) button to the right of the Import File box .

  7. Use the Open dialog box to navigate to the save location, select the
exported registered servers file, and then click Open .

  8. Click OK to close the Import Registered Servers dialog box . If you no longer
need the original server and server group settings, you should remove them
to avoid possible conflicts .

Deleting Subordinate Servers and Server Groups

If you no longer use a server as a subordinate server or no longer want to use a
server group, you can remove the entry for the server or server group . Right-click
the server or server group, and then select Delete . When prompted to confirm, click
Yes . When you delete a server group, SQL Server Management Studio removes the
group and all the subordinate server registrations it contains .

 ChAPTeR 6  Implementing Policy-Based Management176

executing Statements Against Multiple Servers
You can query multiple servers at the same time by using central management
servers . You can also execute T-SQL statements against local server groups in the
Registered Servers view . Keep the following in mind:

■■ To query all subordinate servers for a central management server, right-click
the central management server in the Registered Servers view and select
New Query . In the Query Editor, type and execute your T-SQL statements .

■■ To query every server in a server group, right-click the server group in the
Registered Servers view and select New Query . In the Query Editor, type and
execute your T-SQL statements .

By default, the results pane combines the query results from all the servers .
Because the connections to subordinate servers are executed using Windows
authentication in the context of the currently logged-on user, the effective permis-
sions might vary . If a connection cannot be established to one or more servers,
those servers are ignored, and results for the other servers are displayed .

The combined results have the server name but do not have any login names . If
you want, you can modify multiserver results by using the Options dialog box . Click
Options on the Tools menu, expand Query Results and SQL Server, and then click
Multiserver Results . On the Multiserver Results page, do one or more of the follow-
ing, and then click OK:

■■ Configure the Add Login Names To The Results option . Use True to add login
names to the results . Use False to remove login names from the results .

■■ Configure the Add Server Names To The Results option . Use True to add
server names to the results . Use False to remove server names from the
results .

■■ Configure the Merge Results option . Use True to merge results in a single
results pane . Use False to display results in a separate pane for each server .

Configuring and Managing Policy Facets
Facets define management areas within the policy-based framework . Each manage-
ment area has a set of related properties that you can configure by using a particu-
lar facet . You can view or modify the current state of any facet properties via the
related object .

To view an object’s current state and modify this state, follow these steps:

  1. In Object Explorer, right-click a server instance, database, or database object,
and then click Facets .

  2. In the View Facets dialog box, shown in Figure 6-4, use the Facet list to select
a facet related to the object . You then see a list of properties that shows the
names and values of the facets .

 Implementing Policy-Based Management ChAPTeR 6 177

FIGURE 6-4 Modify property values as necessary .

  3. Click in the box next to the property to select a property value . If a property
is dimmed, you cannot modify the property value .

  4. Click OK .

Exporting an object’s current state as policy allows you to use the current con-
figuration of a server instance, database, or other database object to define policies
that you want to implement throughout the enterprise . After you export an object’s
current state as policy, you can save the policy to the Policy Management\Policies
node on the local server or to a policy file that you can import on another server .

Exporting an object’s current state as policy creates a condition and a policy . To
view an object’s current state and export this state as policy, follow these steps:

  1. In Object Explorer, right-click a server instance, database, or database object,
and then click Facets .

  2. In the View Facets dialog box, use the Facet list to select a facet related to
the object . You then see a list of properties that shows the names and values
of the facets .

  3. Click Export Current State As Policy to display the Export As Policy dialog
box, shown in Figure 6-5 .

 ChAPTeR 6  Implementing Policy-Based Management178

FIGURE 6-5 Export the property settings as a policy .

  4. Type a name for the policy, and then type a name for the condition .

  5. To save the policy to the Policy Management\Policies node on the local
server, select To Local Server, and then click OK to close the Export As Policy
dialog box . The related policy and condition are created under the appropri-
ate nodes within Policy Management .

  6. To save the policy to a file that you can import on another server, select To
File . Click the options (…) button . Use the Export Policy dialog box to select
a save location and name for the policy file, and then click Save . Click OK to
close the Export As Policy dialog box . Later, you can import the policy using
the technique discussed in “Importing and Exporting Policies” earlier in this
chapter .

Creating and Managing Policy Conditions
Facets represent management areas within SQL Server . Most facets have multiple
properties that you can manage using conditions . Conditions define the permitted
states for properties . Although you can use a single condition in multiple policies,
you define conditions for each facet individually .

When you are defining conditions, you join property evaluation expressions by
using And or Or clauses to form a logical statement . For example, with the data-
base facet, you might want to establish the condition shown in Figure 6-6 . In this
example, the evaluation expression specifies the following:

■■ AutoClose must be True

■■ And AutoShrink must be False

■■ And PageVerify must be set to either TornPageDetection or Checksum

■■ And AutoUpdateStatisticsEnabled must be True

■■ And Trustworthy must be True

 Implementing Policy-Based Management ChAPTeR 6 179

FIGURE 6-6 Define a condition by joining property expressions .

Although the allowed values depend on the property you are configuring, values
generally can be numeric, a string, or a fixed list . With properties that are on (true)
or off (false), you can set the operator to equals (=) or not equals (!=) . When you set
a property to equals, the property must equal the specified value . When you set a
property to not equals, the property cannot equal the specified value, but it can be
set to other permitted values .

With multivalued properties, other operators you can use are as follows:

■■ > Greater than; the property must be greater than the value specified .

■■ >= Greater than or equal to; the property must be greater than or equal to
the value specified .

■■ < Less than; the property must be less than the value specified .

■■ <= Less than or equal to; the property must be less than or equal to the
value specified .

■■ Like Pattern match, as with the LIKE clause in T-SQL; the property must
match a specified pattern . Enclose the Like value in single quotation marks,
such as '%computer%' or '[D-Z]arwin' .

■■ Not Like Pattern match, as with the NOT LIKE clause in T-SQL; the prop-
erty must not match a specified pattern . Enclose the Not Like value in single
quotation marks .

■■ In Query or list match, as with the IN clause for T-SQL; the property must
match a value in the specified query or list . Enclose the In clause in parenthe-
ses, enclose individual values in single quotation marks, and separate values
with commas, such as ('Hawaii', 'Idaho', 'Nebraska') .

 ChAPTeR 6  Implementing Policy-Based Management180

■■ Not In Query or list match, as with the NOT IN clause for T-SQL; the prop-
erty must not match a value in the specified query or list .

You can create a condition by completing the following steps:

  1. In SQL Server Management Studio, access the Management folder on the
instance of the Database Engine you want to work with .

  2. In Object Explorer, under the Management node, expand Policy Manage-
ment, expand Facets, right-click the facet that contains the properties that
you want, and then click New Condition .

  3. On the General page of the Create New Condition dialog box, type the name
of the new condition, such as Standard Database Settings, in the Name box .

  4. Confirm that the correct facet is shown in the Facet box, or select a different
facet .

  5. In the Expression area, construct condition expressions by selecting a facet
property in the Field box together with its associated operator and value .
When you add multiple expressions, the expressions can be joined by using
And or Or .

  6. To create complex expressions, press the Shift or Ctrl key, and then click two
or more clauses to select a range . Right-click the selected area, and then
click Group Clauses . Grouping clauses is like putting parentheses around an
expression in a mathematical expression, which forces the clauses to operate
as a single unit that is separate from the rest of the condition .

  7. Optionally, on the Description page, type a description for the new
condition .

  8. Click OK to create the condition .

After creating a condition, you can view or modify its settings by completing
these steps:

  1. In SQL Server Management Studio, access the Management folder on the
instance of the Database Engine you want to work with .

  2. In Object Explorer, under the Management node, expand Policy Manage-
ment, expand Conditions, right-click the condition that you want to view or
modify, and then select Properties .

  3. View the condition settings on the General page . Make changes as necessary,
and then click OK .

Although you cannot delete a condition referenced in a policy, you can delete
unreferenced conditions . You delete a condition by right-clicking it and then select-
ing Delete . When prompted to confirm, click OK .

 Implementing Policy-Based Management ChAPTeR 6 181

Creating and Managing Policies
You use policies to check and optionally enforce conditions . When you create a
policy, you can use a condition that you created earlier, or you can create a new
condition when you are creating the policy . Although you can use a particular con-
dition in many policies, a policy can contain only a single condition .

When you create a policy, the policy normally is associated with the current
instance of the Database Engine . If the current instance is a central management
server, the policy can be applied to all subordinate servers . You also can directly
create a policy by choosing New from the File menu and then saving the policy to a
file . This enables you to create policies when you are not connected to the instance
of the Database Engine that you want to work with .

You can create a policy and associate it with a particular instance of the Database
Engine by completing the following steps:

  1. In SQL Server Management Studio, access the Management folder on the
instance of the Database Engine you want to work with .

  2. In Object Explorer, under the Management node, expand Policy Manage-
ment, right-click Policies, and then click New Policy . This displays the Create
New Policy dialog box, shown in Figure 6-7 .

FIGURE 6-7 Create the policy and specify the condition that applies .

  3. In the Name box, type the name of the new policy, such as Standard Data-
base Settings Policy .

 ChAPTeR 6  Implementing Policy-Based Management182

  4. Use the Check Condition list to select one of the existing conditions, or select
New Condition . To edit a condition, select the condition, and then click the
options (. . .) button . Make changes as necessary to the condition settings, and
then click OK .

  5. In the Against Targets box, select one or more target types for this policy .
Some conditions and facets can be applied only to certain types of targets .
The available target sets appear in the associated box . If no targets appear in
this box, the check condition is scoped at the server level . To select a filtering
condition for some types of targets, click the Every entry, and then select an
existing filter condition, or define a condition by selecting New Condition
and then specifying the settings for the condition .

  6. Use the Evaluation Mode list to select how this policy will behave . Different
conditions can have different valid evaluation modes . Available modes can
include On Demand, On Change: Prevent, On Change: Log Only, and On
Schedule . If you specify a mode other than On Demand, you can enable the
policy by selecting the Enabled check box . If you specify On Schedule as the
mode, click Pick to select an existing run schedule, or click New to create a
new schedule .

  7. To limit the policy to a subset of the target types, select a limiting condi-
tion in the Server Restriction list, or select New Condition to create a new
condition .

  8. By default, policies are assigned to the Default category . On the Description
page, in the Category box, you can select a different default policy category .
(See Figure 6-8 .) Otherwise, to create a new category, click New, type a cat-
egory name, and then click OK .

  9. On the Description page, you can type an optional description of the policy .
Click OK to create the policy .

REAL WORLD To help administrators understand your policies, you can publish help

documents on a Web site and then refer administrators to the help documentation by

using a hyperlink. You can define a help hyperlink by using the Additional help hyper-

link option on a policy’s Description page. enter the help text for the link in the Text To

Display box, and then enter the hyperlink address in the Address box. You can provide

a link to a Web page that starts with http:// or https://, or you can provide a mail link

that starts with mailto://. After you type a hyperlink, click the Test Link button to check

the validity of the hyperlink. When you are evaluating a server instance, database, or

other object for policy compliance, the help text and link are displayed as part of the

detailed results.

 Implementing Policy-Based Management ChAPTeR 6 183

FIGURE 6-8 Assign the policy to a category .

After creating a policy, you can view or modify its settings by completing these
steps:

  1. In SQL Server Management Studio, access the Management folder on the
instance of the Database Engine you want to work with .

  2. In Object Explorer, under the Management node, expand Policy Manage-
ment, expand Policies, right-click the policy that you want to view or modify,
and then select Properties .

  3. View the policy settings on the General and Description pages . Make
changes as necessary . Click OK .

You can manage policies you’ve created by using the following techniques:

■■ Delete a policy by right-clicking it and selecting Delete . When prompted to
confirm, click OK .

■■ Disable a policy by right-clicking it and selecting Disable .

■■ Enable a policy by right-clicking it and selecting Enable .

Managing Policy Categories and Mandating Policies
SQL Server 2008 uses policy categories to help you organize your policies . In a large
organization, grouping policies into categories makes policy management easier .
You can assign a policy to a category in several ways . By default, any policy you cre-
ate belongs to the Default category . When you create a policy, you can assign the

 ChAPTeR 6  Implementing Policy-Based Management184

policy to an available category or to a new category as well . To move a policy to a
different policy category, complete the following steps:

  1. Right-click the policy that you want to view or modify, and then select
Properties .

  2. On the Description page, in the Category box, select a different default
policy category . Otherwise, to create a new category, click New, type a cat-
egory name, and then click OK .

  3. Click OK to apply the changes .

In addition to helping you organize policies, policy categories help with policy
application . Policies within categories are either mandated or not mandated . If a
policy is mandated, it means that all databases on the instance of SQL Server must
enforce the policy . If a policy is not mandated, it means that you must manually
apply the policy as appropriate .

By default, any policy assigned to the Default category is a mandated policy . You
can control whether a policy category and its related policies are mandated or not
mandated by completing the following steps:

  1. In SQL Server Management Studio, access the Management folder on the
instance of the Database Engine you want to work with .

  2. In Object Explorer, under the Management node, right-click the Policy Man-
agement node, and then select Manage Categories .

  3. The available categories are listed by name . To create a new policy category,
simply click in an empty text box in the Name column and type the category
name .

  4. In the Manage Policy Categories dialog box, shown in Figure 6-9, select or
clear the Mandate Database Subscriptions check box for each category, as
appropriate . Click OK .

FIGURE 6-9 Specify whether policies within categories are mandated .

 Implementing Policy-Based Management ChAPTeR 6 185

You can determine the policies that are applied to a database or other object by
completing the following steps:

  1. In Object Explorer, right-click a database or database object, point to Poli-
cies, and then click Categories .

  2. In the Categories dialog box, expand the category entries to determine
which policies are being applied . As shown in Figure 6-10, the following
information is available:

■■ Name Shows the name of the policy category .

■■ Subscribed Indicates whether the selected object has subscribed to the
policy category . If the related check box is dimmed, the policy category is
mandated and applies to all databases on the server .

■■ Policy Shows the policies in the policy category, provided that you’ve
expanded the related category node .

■■ Enabled Indicates whether the policy is enabled or disabled .

■■ Evaluation Mode Shows the evaluation mode of the policy .

■■ History Click the View History link to open the Log File viewer and
display the creation and change history for the policy .

FIGURE 6-10 Determine which policies are being applied .

evaluating Policies
By using automatically evaluated modes, you can check policy compliance when
changes are made or on a regularly scheduled basis . You also can evaluate a policy
manually to determine whether a server instance, database, or other object com-
plies with the policy . If you later apply or enforce the policy, you can configure the
selected database instance or database object to comply with the policy .

 ChAPTeR 6  Implementing Policy-Based Management186

Because the connections to subordinate servers are executed using Windows
authentication in the context of the currently logged-on user, the effective per-
missions might vary . If a connection cannot be established to one or more serv-
ers, those servers are ignored, and evaluation against the other servers continues
independently .

You can determine whether a particular object complies with a policy by com-
pleting the following steps:

  1. In Object Explorer, right-click a server instance, database, or database object,
point to Policies, and then click Evaluate .

  2. The Evaluate Policies dialog box shows only the policies that are appropriate
for the object . (See Figure 6-11 .) In the Evaluate Policies dialog box, select
one or more policies, and then click Evaluate to run the policy in evaluation
mode . (The evaluation mode is defined as part of the policy and cannot be
changed in the Evaluate Policies dialog box .)

FIGURE 6-11 Evaluate an object against policies to determine compliance .

  3. If there are compliance issues, you’ll see a red warning icon . You can click
the View link that appears in the Details column under Target Details to view
the detailed compliance results . As shown in Figure 6-12, the Result col-
umn shows whether each property in the joined evaluation expression is in
compliance or out of compliance . Expected and actual values are also shown .
Note that help text is provided if it was previously defined . Click Close when
you finish reviewing the detailed results .

  4. In the Evaluate Policies dialog box, clicking Evaluate generates a compliance
report for the target set but does not reconfigure SQL Server or enforce
compliance . For targets that do not comply with the selected policies and
have properties that can be reconfigured by Policy-Based Management, you
can enforce policy compliance by selecting the policy or policies to apply on
the Evaluation Results page and then clicking Apply .

 Implementing Policy-Based Management ChAPTeR 6 187

FIGURE 6-12 Review compliance issues .

  5. The first time you try to apply a policy, you’ll see a Policy Evaluation Warn-
ing dialog box prompting you to confirm the action . Click Yes to proceed . If
you don’t want to see the warning in the future, select the Do Not Show This
Message Again check box before clicking Yes .

  6. After you apply a policy, you can review the detailed results by clicking the
View link that appears in the Details column under Target Details . If the
properties can be reconfigured using Policy-Based Management, the prop-
erties will be changed . Click Close when you finish reviewing the detailed
results .

  7. Optionally, you can export the results to a policy results file for later review .
Click the Export button . Use the Export Results dialog box to select a save
location for the results file, type a file name, and then click Save .

You can determine whether the targets of a policy are in compliance by complet-
ing the following steps:

  1. In Object Explorer, expand Management, Policy Management, and Policies .
Right-click a policy, and then click Evaluate .

  2. Follow steps 2 through 7 in the previous procedure .

You can determine whether the targets of a policy are in compliance with a
schedule by completing the following steps:

  1. In Object Explorer, expand Management, Policy Management, and Policies .
Right-click a policy, and then click Properties .

  2. On the General page, specify On Schedule as the evaluation mode .

  3. Click Pick to select an existing run schedule, or click New to create a sched-
ule . Click OK twice to save your changes .

To view the history of compliance checks in the future, right-click the policy and
then select View History . In Log File Viewer, expand the available run dates to show

 ChAPTeR 6  Implementing Policy-Based Management188

additional details . Review the related details in the detailed view by clicking the link
provided in the Details column .

Each property in the joined evaluation expression is listed according to whether
it is in or out of compliance . If there are compliance issues, you’ll see a red warning
icon to show properties not in compliance or a green OK icon to show properties in
compliance . Expected and actual values are also shown . Note that help text is pro-
vided if it was previously defined . Click Close when you finish reviewing the detailed
results .

Troubleshooting Policy-Based Management Policies
In the msdb database, you’ll find the following views for displaying policy informa-
tion . These views are owned by the dbo schema .

■■ syspolicy_conditions

■■ syspolicy_policies

■■ syspolicy_policy_execution_history

■■ syspolicy_policy_execution_history_details

■■ syspolicy_policy_group_subscriptions

■■ syspolicy_policy_groups

■■ syspolicy_system_health_state

■■ syspolicy_target_filters

SQL Server records compliance issues in the Windows event logs . For scheduled
policies, compliance issues are recorded in the SQL Server Agent log as well . To
view the history information recorded in the SQL Server Agent logs, right-click the
policy and then select View History . Review the related details in the detailed view
by clicking the link provided in the Details column . If policies are not enabled or do
not affect a target, the failure is not considered an error and is not logged . For more
information, see “Evaluating Policies” earlier in this chapter .

Remember that compliance checks for scheduled policies occur only during
scheduled run times and that on-demand policies run only when you manually exe-
cute them . If you have problems with policies set to On Change: Log or On Change:
Prevent, be sure that the policies are enabled and that the target you want is not
excluded by a filter . As discussed in “Managing Policy Categories and Mandating
Policies” earlier in this chapter, you can determine the policies that are applied to a
database or other object by right-clicking a database or database object, pointing
to Policies, and then clicking Categories .

You can determine whether a policy ran by right-clicking the policy and then
selecting View History . The policy execution history in the msdb .dbo .syspolicy_
policy_execution_history view also provides information about whether a policy
ran . You can also determine whether the policy executed for the specific target by
checking the policy execution history for the specific target in the msdb .dbo .sys-
policy_policy_execution_history_details view . You can determine the execution time

 Implementing Policy-Based Management ChAPTeR 6 189

for policies by querying the start_date and end_date columns in the msdb .dbo .sys-
policy_policy_execution_history view .

For policies that use the On Change: Prevent mode, Service Broker handles the
rollback of changes . You should ensure that Service Broker is running and config-
ured properly . If it is, you can check the Service Broker Queue to be sure that it is
monitoring for the correct events by using either of the following queries:

T-SQL

SELECT * FROM sys.server_event_notifications
WHERE name = N'syspolicy_event_notification';
GO

PowerShell

Set-Location SQLSERVER:\SQL\DbServer18\OrderSystem
Invoke-Sqlcmd -Query "SELECT * FROM sys.server_event_notifications
WHERE name = N'syspolicy_event_notification';"

NOTE In the PowerShell example, you define the working server context by explicitly

setting the location. This allows you to invoke SQL commands in this location and is

the same as using –ServerInstance "DbServer18\OrderSystem".

Keep in mind that if the nested triggers server configuration option is disabled,
On Change: Prevent mode will not work correctly . Policy-Based Management relies
on DDL triggers to detect and roll back DDL operations that do not comply with
policies that use this evaluation mode . Removing the Policy-Based Management
DDL triggers or disabling nested triggers causes this evaluation mode to fail .

Because On Schedule policies rely on SQL Server Agent jobs, you should always
check to be sure that SQL Server Agent is running and configured properly . You
should also check to ensure that the related SQL Server Agent jobs are enabled and
configured properly . Working with SQL Server Agent jobs is discussed in Chapter 16,
“Database Automation and Maintenance .”

191

CHAP TE R 7

Configuring SQL Server with
SQL Server Management
Studio

■■ SQL Server Management Studio Essentials 192

■■ Configuring Authentication and Auditing 200

■■ Tuning Memory Usage 203

■■ Configuring Processors and Parallel Processing 210

■■ Configuring Threading, Priority, and Fibers 214

■■ Configuring User and Remote Connections 216

■■ Managing Server Settings 221

■■ Managing Database Settings 224

■■ Adding and Removing Active Directory Information 228

■■ Troubleshooting Configuration Problems 228

Microsoft SQL Server 2008 replaces Enterprise Manager with SQL Server Man-
agement Studio to complement the expanding role of SQL Server adminis-

trators and developers . SQL Server Management Studio provides the easiest way
to configure SQL Server . In SQL Server Management Studio, you can easily access
the properties of a registered server and then use the pages and options provided
to configure the server .

NOTE Policy-Based Management settings can affect your ability to configure SQL

Server 2008. See Chapter 6, ”Implementing Policy-Based Management,” for more

information.

 ChAPTeR 7  Configuring SQL Server with SQL Server Management Studio192

SQL Server Management Studio Essentials

In Chapter 5, I discussed techniques for getting started with and using SQL Server
Management Studio . Before you can work with a server instance or database, you
must connect to it . To save connection information, you can register servers . To
organize sets of servers, you can use groups . These server groups can be local
groups or groups associated with central management servers . Servers within local
groups are independent, but servers within centrally managed groups are not . SQL
Server 2008 R2 extends centralized management concepts by introducing SQL
Server Utility, utility control points, managed instances, and data-tier applications .

Managing the Configuration with SQL Server
Management Studio
After you connect to a registered server in SQL Server Management Studio, you can
view and manage its configuration properties by using the Server Properties dialog
box . To access this dialog box, complete the following steps:

  1. Click the Start button, point to All Programs, Microsoft SQL Server 2008, and
then select SQL Server Management Studio .

  2. In the Connect To Server dialog box, use the Server Type list to select the
server instance you want to connect to, such as Database Engine .

  3. In the Server Name box, select or type the name of the server on which SQL
Server is running, such as DBSvr18 .

NOTE  You can connect only to registered servers. If you need to work with a

server that is not registered, you must register the server before you can use SQL

Server Management Studio to configure it. See “Managing Server Settings” later

in this chapter for details.

  4. Use the Authentication list to choose an option for authentication type,
either Windows Authentication or SQL Server Authentication (based on the
authentication types selected when you installed the server) . Provide a SQL
Server login ID and password as necessary .

■■ Windows Authentication Uses your current domain account and
password to establish the database connection . This authentication type
works only if Windows authentication is enabled and you have appropri-
ate privileges .

■■ SQL Server Authentication Allows you to specify a SQL Server login ID
and password .

  5. Click Connect . You connect to the default instance (unless you have config-
ured another default previously) . To change the instance to which you con-
nect, click Options, select the Connection Properties tab, and then use the
Connect To Database list to select the instance you want to connect to .

 Configuring SQL Server with SQL Server Management Studio ChAPTeR 7 193

  6. In the SQL Server Management Studio Object Explorer view, right-click the
server name, and then choose Properties to open the dialog box shown in
Figure 7-1 .

FIGURE 7-1 The General page of the Server Properties dialog box

You can now manage common SQL Server configuration settings . For more
advanced settings, you need to use a stored procedure, such as sp_configure, as
discussed in Chapter 4, “Configuring and Tuning SQL Server 2008 .”

The Server Properties dialog box has many pages, which are listed at the top of
the left pane in Figure 7-1 . The rest of the sections in this chapter explain how to
use the configuration options provided on these pages . Permissions are discussed in
Chapter 9, “Managing SQL Server 2008 Security .”

If you want to view a summary of current settings, run the following query in
Query view:

USE master
GO
EXEC sp_configure
GO

Or use SQL Server PowerShell as shown in the following example:

Invoke-Sqlcmd -Query "USE master; EXEC sp_configure"
-ServerInstance "DataServer91\CorpServices"

 ChAPTeR 7  Configuring SQL Server with SQL Server Management Studio194

NOTE Show Advanced Options must be set to 1 to see advanced options, as dis-

cussed in Chapter 4.

Determining System and Server Information
General system and server information is available on the General page of the
Server Properties dialog box . (See Figure 7-1 .) The information on the General page
helps you determine the following:

■■ SQL Server edition

■■ Operating system version

■■ SQL Server version

■■ Platform and chip architecture

■■ Default language

■■ Amount of RAM installed on the system

■■ Number of CPUs

■■ Root directory location for the selected instance

■■ Default server collation

You can obtain similar information by using the extended stored procedure
xp_msver . Execute the following command:

exec xp_msver "ProductName", "ProductVersion", "Language", "Platform",
"WindowsVersion", "PhysicalMemory", "ProcessorCount"

TIP You can use Query view to execute the command just shown. Basic techniques

for using this utility are covered in “Configuring SQL Server with Stored Procedures” in

Chapter 4.

You also can use SQL Server PowerShell, as shown in the following example:

Invoke-Sqlcmd -Query "exec xp_msver 'ProductName', 'ProductVersion',
'Language', 'Platform', 'WindowsVersion', 'PhysicalMemory',
'ProcessorCount'" -ServerInstance "DataServer91\CorpServices"

Configuring Utility Control Points
SQL Server Utility is a central repository for Database Engine instances that helps
you collect performance data . Every instance of SQL Server Utility has a single con-
trol point that you must create . A control point is the central collection point for SQL
Server Utility and is used to view performance information collected from managed
instances and deployed data-tier applications . You can use this information to help
you perform capacity planning and to ensure that resources are not overutilized .

 Configuring SQL Server with SQL Server Management Studio ChAPTeR 7 195

Your organization can have multiple control points . Each control point can man-
age instances of SQL Server and data-tier applications . After you enroll an instance
in a control point or deploy a data-tier application on a control point, you can moni-
tor resource usage policies on the control point to help determine how the follow-
ing resources are being used:

■■ CPU

■■ Data files

■■ Log files

■■ Disks

SQL Server Utility, control points, and managed instances are features of SQL
Server 2008 R2 . When you are working with R2, you use the Utility Explorer view in
SQL Server Management Studio to work with control points and managed instances .
If this view is not displayed, you can display it by selecting the Utility Explorer tab in
the lower portion of any view window or by choosing the related option from the
View menu .

To configure SQL Server Utility with a control point and managed instances, you
need to do the following:

  1. Create and then connect to a utility control point .

  2. Enroll instances of SQL Server with the control point .

  3. Create and register a data-tier application for use with the control point .

  4. Establish resource health policies for managed instances and data-tier
applications .

  5. Grant user rights to view or manage health policies for the instance of SQL
Server Utility .

I discuss these procedures in the sections that follow .

Creating a Control Point

Creating a control point creates the related schema, jobs, and policies on the desig-
nated instance of SQL Server . It also configures a utility management data ware-
house (UMDW) for storing the control point information and enables the control
point to collect and store data in the data warehouse . To create a control point,
follow these steps:

  1. On the Getting Started tab of the Utility Explorer view, click Create A Utility
Control Point . Alternatively, click Create Utility Control Point on the Utility
Explorer toolbar . When the wizard starts, click Next if the Introduction page
is displayed .

  2. Click Connect . Use the Connect To Server dialog box to specify the instance
of SQL Server where you want to create the control point . To successfully
create the control point, you must have administrative privileges on this
instance, the instance must be running the Enterprise edition (or higher) of

 ChAPTeR 7  Configuring SQL Server with SQL Server Management Studio196

SQL Server 10 .50 or later, and the instance must not already be a control
point or enrolled in any other control point . Click Connect to connect to the
instance and close the Connect To Server dialog box .

  3. Enter a descriptive name for the control point, such as Team Services Control
Point . This name is displayed in Utility Explorer .

  4. Click Next . Specify a Windows domain account to run the utility collec-
tion set . You can use the existing SQL Server Agent service account for this
purpose, or you can specify an account to act as the SQL Server Agent proxy
account for collection activities . You cannot use a built-in account .

  5. When you click Next, the wizard verifies that all conditions for creating the
control point have been met . Successful verification allows you to continue . If
any part of the verification fails, you need to repeat the creation process .

  6. Click Next . Review the summary details . When you click Next again, the
wizard prepares the instance to act as the control point, creates and initial-
izes the related data warehouse, and then configures and enrolls the control
point . Enrolling the control point makes the control point a member of its
own managed group . Click Finish .

After you create a control point, you are automatically connected to it in Utility
Explorer, as shown in Figure 7-2 . When you select the top-level node, Utility Explorer
displays a summary view of resource health for managed instances and deployed
data-tier applications .

FIGURE 7-2 Utility Explorer with a new control point

 Configuring SQL Server with SQL Server Management Studio ChAPTeR 7 197

If you want to connect to a different control point, you need to disconnect from
the control point you just created by clicking the Disconnect From Utility button
on the Utility Explorer toolbar . You can then connect to a different control point by
clicking the Connect To Utility button on the Utility Explorer toolbar and selecting
the server hosting the control point that you want to work with in the Connect To
Server dialog box .

enrolling an Instance

Instances of the Database Engine running on SQL Server 2008 R2 or later can be
enrolled in a control point . Enrolling an instance with a control point creates a rela-
tionship between the control point and the instance, allowing the control point to
manage and collect data from the instance . To enroll an instance, follow these steps:

  1. On the Getting Started tab of the Utility Explorer view, click Enroll Instances
Of SQL Server With A UCP . Alternatively, in the Utility Explorer view, right-
click the Managed Instances node and then select Enroll Instance . When the
wizard starts, click Next if the Introduction page is displayed .

  2. Click Connect . Use the Connect To Server dialog box to specify the instance
of SQL Server to enroll . To successfully enroll the instance with the con-
trol point, you must have administrative privileges on this instance and the
instance must not already be enrolled with any other control point . Click Con-
nect to connect to the instance and close the Connect To Server dialog box .

  3. Click Next . Specify a Windows domain account to run the utility collection
set as an administrator on the previously specified instance . You can use
the existing SQL Server Agent service account for this purpose, or you can
specify an account to act as the SQL Server Agent proxy account for collec-
tion activities . You cannot use a built-in account .

  4. When you click Next, the wizard verifies that all conditions for enrolling the
instance have been met . Successful verification allows you to continue . If any
part of the verification fails, you need to repeat the enrollment process .

  5. Click Next . Review the summary details . When you click Next again, the wiz-
ard enrolls the instance . Click Finish .

After you enroll an instance, the control point’s global resource utilization poli-
cies are applied and the control point begins to collect and display resource utiliza-
tion information for the instance .

Deploying Data-Tier Applications

Data-tier applications (DACs) are used to represent all the objects and deployment
prerequisites for a database application . Essentially, DACs are containers that include
server and database schema objects used by an application, as well as the configu-
ration details and policy requirements . You can extract a DAC from an existing SQL
Server database to create a package file containing all related database objects
and SQL Server elements . You can then work with and modify the DAC package in
Microsoft Visual Studio 2010 or later prior to deploying the application .

 ChAPTeR 7  Configuring SQL Server with SQL Server Management Studio198

Using SQL Server Management Studio for R2, you can extract an application
from an instance of SQL Server 2000, SQL Server 2005, or SQL Server 2008 R1, and
then deploy the DAC to an instance of SQL Server 2008 R2 . After you deploy the
DAC, you can upgrade the schema to SQL Server 2008 R2 by transferring the source
database for the application to a new target database . To do this, you can use SQL
Server Integration Services or the bulk copy utility .

To extract a data-tier application, follow these steps:

  1 Install the server and client tools for R2 on the computer running SQL Server .
In SQL Server Management Studio for R2, register the instances of SQL
Server that you want to work with .

  2. In Object Explorer, expand the node for the database instance you want to
work with, right-click the user database to extract, click Tasks, and then select
Extract A Data-Tier Application . When the wizard starts, click Next if the
Introduction page is displayed .

  3. Specify a name for the application, an arbitrary application version number,
and an optional description . Next, set the file path for the package file . If this
file exists in the specified location and you want to overwrite it, select the
Overwrite Existing File check box .

  4. When you click Next, the wizard verifies that all conditions for extracting the
application have been met . Generally, successful verification means that all
the objects in the application are supported and success allows you to con-
tinue . If any part of the verification fails, you need to repeat the extraction
process .

  5. Click Next . Review the summary details . When you click Next again, the wiz-
ard builds the package file . Click Finish .

After you build the package file, you can modify it using Visual Studio 2010 or
later . To do this, import the package file into a DAC Visual Studio project . When you
are ready to test or deploy the application, you can deploy the application to a SQL
Server instance by following these steps:

  1. In SQL Server Management Studio for R2, connect to a SQL Server 2008 R2
instance .

  2. In Object Explorer, expand the Management node, right-click the Data-Tier
Application node, and then click Deploy Data-Tier Application . When the
wizard starts, click Next if the Introduction page is displayed .

  3. Click Browse, and then select the .dacpac package file that you want to
deploy . Click Next .

  4. Specify a name for the data-tier application and the name of the database to
create for hosting the application’s database objects .

  5. Click Next . Review the summary details . When you click Next again, the
wizard creates the new database, the required database schema, and the
required logins . Click Finish .

 Configuring SQL Server with SQL Server Management Studio ChAPTeR 7 199

Performing Utility Administration

Control points help you better manage and monitor the resource utilization of
enrolled instances and deployed applications . When you connect to a control point
using Utility Explorer, you can select the control point node and then click the Utility
Explorer Content tab to view resource health and utilization information . As shown
in Figure 7-3, the available second-level nodes in the left pane include:

■■ Deployed Data-Tier Applications Shows deployed applications by name .
For each application, you can also see the application’s CPU utilization, the
associated server’s CPU utilization, file space usage, volume (disk) space
usage, the policy type applied, and the associated database instance .

FIGURE 7-3 Utility administration

■■ Managed Instances Shows managed instances by name . For each
instance, you can also see the instance’s CPU utilization, the associated
server’s CPU utilization, file space usage, volume (disk) space usage, and the
policy type applied .

■■ Utility Administration Provides access to administration features for poli-
cies, security, and the utility’s data warehouse . When you select this node,
there are three available tabs in the right pane:

■■ Policy When you are working with the Policy tab, you can set global
policies separately for data-tier applications and managed instances . You
also can control how policies are evaluated by the control point .

 ChAPTeR 7  Configuring SQL Server with SQL Server Management Studio200

■■ Security When you are working with the Security tab, you can view log-
ins that have the utility reader role . To add this role to a login, grant the
role via the related database instance . To remove this role from a listed
login, clear the check box .

■■ Data Warehouse When you are working with the Data Warehouse tab,
you can review details for the control point’s data warehouse and config-
ure the data retention period .

Configuring Authentication and Auditing

You configure authentication and auditing options with the Security page of the
Server Properties dialog box . This page is shown in Figure 7-4 .

FIGURE 7-4 The Security page options

Setting the Authentication Mode
SQL Server security is completely integrated with Windows domain security, allow-
ing for authentication based on user and group memberships as well as standard
SQL Server user accounts .

In the Server Properties dialog box, go to the Security page . The Server Authen-
tication options allow you to configure authentication . To use combined authentica-
tion, select the SQL Server And Windows Authentication Mode option . Now users in

 Configuring SQL Server with SQL Server Management Studio ChAPTeR 7 201

Windows domains can access the server by using a domain account, and other users
can be logged on using a SQL Server login ID .

To use domain authentication only, select the Windows Authentication Mode
option . Now only users with a domain account can access the server .

TIP If you change the authentication settings, you must restart all SQL Server

instance services. With combined authentication, SQL Server first checks to see

whether a new login is a SQL Server login. If the login exists, SQL Server uses the

password provided to authenticate the user. If the login does not exist, SQL Server

uses Windows authentication.

Setting the Auditing Level
Auditing allows you to track user access to SQL Server . You can use auditing with
both authentication modes as well as with trusted and untrusted connections .

The Login Auditing options on the Security page allow you to configure auditing .
When auditing is enabled, user logins are recorded in the Windows application log,
the SQL Server error log, or both logs, depending on how you configure logging for
SQL Server . The available auditing options include the following:

■■ None Disables auditing

■■ Failed Logins Only Audits only failed login attempts (the default setting)

■■ Successful Logins Only Audits only successful login attempts

■■ Both Failed And Successful Logins Audits both successful and failed login
attempts

To manage the auditing level, complete the following steps:

  1. In the Server Properties dialog box, go to the Security page .

  2. Select the auditing level you want to use, and then click OK .

  3. If you change the auditing settings, you must restart all SQL Server instance
services .

enabling or Disabling C2 Audit Logging
Standards organizations have created many security standards . The Department of
Defense (DOD) in the United States created the Trusted Computer System Evaluation
Criteria standard as a means of evaluating the security of computer systems . The
standard defines the security divisions from D (the lowest) to A (the highest), and it
specifies the criteria against which computer systems can be evaluated for each of
these classifications . Within divisions C and B are subdivisions known as classes. Cri-
teria for classes C2 through A1 require that a user’s actions be open to auditing and
that there be personnel designated as responsible for audit procedures . C2 audit
requirements define specific events and auditable information . B1 and higher classes
add further requirements .

 ChAPTeR 7  Configuring SQL Server with SQL Server Management Studio202

On your SQL Server implementation, you can enable C2 audit tracing to meet C2
compliance requirements . When you enable C2 audit tracing, SQL Server audits all
attempts to access statements and objects and records them to a file in the \MSSQL\
Data directory . If the audit log file reaches its size limit of 200 megabytes (MB), SQL
Server creates a new file, closes the old file, and writes all new audit records to the
new file . This process continues until the audit data directory fills up or auditing is
turned off . You can determine the status of a C2 trace by querying the sys .traces
view .

C2 auditing saves a large amount of event information to the audit log file . If the
log directory runs out of space, SQL Server shuts itself down . To restart SQL Server
after a forced shutdown, you need to use the –f flag to bypass auditing or free up
additional disk space for the audit logs .

In the Server Properties dialog box, go to the Security page . You can enable C2
audit logging by selecting the Enable C2 Audit Tracing check box . With sp_config-
ure, the related commands are as follows:

T-SQL

exec sp_configure "c2 audit mode", <0 or 1>
GO
RECONFIGURE
GO

PowerShell

Invoke-Sqlcmd -Query "exec sp_configure 'c2 audit mode', <0 or 1>;
RECONFIGURE;" -ServerInstance "Server\Instance"

You use 0 to disable and 1 to enable C2 audit mode .

enabling or Disabling Common Criteria Compliance
Beginning with SQL Server 2005 Service Pack 2 (SP2), a set of common criteria could
be enabled to enhance security and comply with Common Criteria Evaluation Level
4 (EAL4+) security requirements . Common Criteria (CC) is an international security
standard meant to be used as the basis for evaluating the security properties of
applications and servers . Enabling compliance with these security requirements
enforces the following common criteria:

■■ Column GRANT should not override table DENY Ensures a table-level
DENY takes precedence over a column-level GRANT . Without this criteria, a
column-level GRANT takes precedence over a table-level DENY .

■■ View login statistics capability Ensures that login auditing is enabled so
that each time a user logs in to SQL Server, information is made available
about the last successful login time, the last unsuccessful login time, and the
number of attempts between the last successful and current login times . You
can view these statistics by querying the sys .dm_exec_sessions view .

 Configuring SQL Server with SQL Server Management Studio ChAPTeR 7 203

■■ Residual Information Protection (RIP) compliance Requires previously
allocated memory to be overwritten with a known pattern of bits before SQL
Server reallocates the memory to a new resource . Although this technique
can improve security, overwriting previously allocated memory can slow
performance .

In the Server Properties dialog box, go to the Security page . You can enable
common criteria compliance by selecting the Enable Common Criteria Compliance
check box . With sp_configure, the related commands are:

T-SQL

exec sp_configure "common criteria compliance", <0 or 1>
GO
RECONFIGURE
GO

PowerShell

Invoke-Sqlcmd -Query "exec sp_configure 'common criteria compliance',
<0 or 1>; RECONFIGURE;" -ServerInstance "Server\Instance"

You use 0 to disable and 1 to enable common criteria compliance .

Tuning Memory Usage

SQL Server is designed to manage memory needs dynamically, and it does an
excellent job in most cases . Using dynamic memory allocation, SQL Server can add
memory to handle incoming queries, release memory for another application you
are starting, or reserve memory for possible needs . The default memory settings are
the following:

■■ Dynamically configure SQL Server memory

■■ Minimum memory allocation set at 0 MB

■■ Maximum memory allocation set to allow SQL Server to use virtual memory
on disk as well as physical RAM

■■ No memory reserved specifically for SQL Server

■■ Address Windowing Extensions (AWE) not enabled

■■ Minimum memory for query execution set at 1,024 kilobytes (KB)

You can change these settings, but you need to be careful about allocating too
little or too much memory to SQL Server . Too little memory might prevent SQL
Server from handling tasks in a timely manner . Too much memory might cause
SQL Server to take essential resources from other applications or the operating
system, which might result in excessive paging and cause a drain on overall server
performance .

 ChAPTeR 7  Configuring SQL Server with SQL Server Management Studio204

TIP Some statistics can help you allocate memory correctly, such as the number of

page faults per second and the cache-hit ratio. Page faults per second can track paging

to and from virtual memory. The cache-hit ratio can determine whether data being

retrieved is in memory. You will learn more about using these types of statistics in

Chapter 14, “Profiling and Monitoring SQL Server 2008.”

This section examines important areas of memory management . The primary
method for configuring memory usage is to select options on the Memory page of
the Server Properties dialog box, shown in Figure 7-5 . You will also learn a better
way to configure Windows memory usage for SQL Server .

FIGURE 7-5 The Memory page of the Server Properties dialog box

REAL WORLD If you are running SQL Server 2008 on Windows Server 2003, do not

use the Maximize Data Throughput For Network Applications setting. This setting

gives priority to applications that perform buffered I/O by caching their I/O pages in

file system cache. Using this option might limit the amount of memory available to

SQL Server 2008. To view and change this setting, complete the following steps:

  1. Access Network Connections in Control Panel.

  2. Right-click Local Area Connection, and then select Properties.

  3. Select File And Printer Sharing For Microsoft Networks, and then choose

 Properties.

  4. On the Server Optimization tab, choose an appropriate setting other than

Maximize Data Throughput For Network Applications.

  5. Restart the server to apply the setting change.

 Configuring SQL Server with SQL Server Management Studio ChAPTeR 7 205

Working with Dynamically Configured Memory
With dynamically configured memory, SQL Server configures memory usage auto-
matically based on workload and available resources . Total memory usage varies
between the minimum and maximum values that you set . The minimum server
memory sets the baseline usage for SQL Server, but this memory is not allocated at
startup . Memory is allocated as needed based on the database workload . When the
minimum server memory threshold is reached, this threshold becomes the baseline,
and memory is not released if it will leave SQL Server with less than the minimum
server memory threshold .

To use dynamically configured memory, complete the following steps:

  1. In the Server Properties dialog box, go to the Memory page .

  2. Set the memory usage values to different values in the Minimum Server
Memory and Maximum Server Memory boxes, respectively . The recom-
mended maximum value for stand-alone servers is at or near total RAM
(physical memory + virtual memory) . However, if multiple instances of SQL
Server are running on a computer, you should consider setting the maximum
server memory so that the instances are not competing for memory .

  3. Click OK .

You can use the stored procedure sp_configure to change the minimum and
maximum settings . Use the following commands:

T-SQL

exec sp_configure "min server memory", <number of megabytes>
exec sp_configure "max server memory", <number of megabytes>

PowerShell

Invoke-Sqlcmd -Query "exec sp_configure 'min server memory', <num mb>"
Invoke-Sqlcmd -Query "exec sp_configure 'max server memory', <num mb>"

BEST PRACTICES With dynamically configured memory, you usually do not need

to set minimum and maximum memory usage values. On a dedicated system running

only SQL Server, however, you might achieve smoother operation by setting minimum

memory to 8 MB + (24 KB * NumUsers), where NumUsers is the average number of

users simultaneously connected to the server. You might also want to reserve physi-

cal memory for SQL Server. SQL Server uses about 8 MB for its code and internal

structures. Additional memory is used as follows: 96 bytes for locks, 2,880 bytes for

open databases, and 276 bytes for open objects, which include all tables, views, stored

procedures, extended stored procedures, triggers, rules, constraints, and defaults.

You can check the baseline memory usage by using the SQLServer:Memory Manager

performance object. Select all counters for monitoring, and use the Report view to

examine the memory usage. Pay particular attention to the Total Server Memory coun-

ter. See Chapter 14 for more details on monitoring SQL Server performance.

 ChAPTeR 7  Configuring SQL Server with SQL Server Management Studio206

Using Fixed Memory
If you want to override the dynamic memory management features, you can do so
by reserving memory specifically for SQL Server . When you reserve physical memory
for SQL Server, the operating system does not swap out SQL Server memory pages
even if that memory could be allocated to other processes when SQL Server is idle .
This means SQL Server has a fixed memory set . On a dedicated system, reserving
memory can improve SQL Server performance by cutting down on paging and
cache hits .

To reserve physical memory for SQL Server, complete the following steps:

  1. In the Server Properties dialog box, go to the Memory page .

  2. Set the Minimum Server Memory and Maximum Server Memory fields to the
working set memory size you want to use . Use the same value for both fields .

  3. Click OK .

You can also use the stored procedure sp_configure to reserve physical memory .
The commands you use to do this are as follows:

T-SQL

exec sp_configure "set working set size", 1
go
exec sp_configure "min server memory", <number of megabytes>
go
exec sp_configure "max server memory", <number of megabytes>
go
reconfigure with override
go

PowerShell

Invoke-Sqlcmd -Query "exec sp_configure 'set working set size', 1;
exec sp_configure 'min server memory', <number of megabytes>;
exec sp_configure 'max server memory', <number of megabytes>;
reconfigure with override;" -ServerInstance "Server\Instance"

CAUTION Setting fixed working set memory incorrectly can cause serious perfor-

mance problems for SQL Server. Use fixed working set memory only in circumstances

in which you need to ensure that an exact amount of memory is available for SQL

Server.

enabling AWe Memory Support
Address Windowing Extensions (AWE) memory allows Windows to support up to 64
gigabytes (GB) of physical memory . AWE support is required only on 32-bit operat-
ing systems . SQL Server 2008 Enterprise, Standard, and Developer editions include
AWE memory support . Analysis Services cannot take advantage of AWE-mapped

 Configuring SQL Server with SQL Server Management Studio ChAPTeR 7 207

memory . Additionally, if the available physical memory is less than the user-mode
virtual address space, AWE cannot be enabled .

When AWE memory support is enabled, SQL Server 2008 dynamically allocates
AWE memory at startup and allocates or deallocates AWE-mapped memory as
required within the constraints of the minimum server memory and maximum
server memory options . The goal is to balance SQL Server memory use with the
overall system requirements . SQL Server always attempts to use AWE-mapped
memory, even on computers configured to provide applications with less than 3 GB
of user-mode address space .

NOTE The hot-add memory feature requires AWe to be enabled during SQL Server

startup. Additionally, note that SQL Server can dynamically release AWe-mapped

memory, but the current amount of allocated AWe-mapped memory cannot be

swapped out to the page file.

TIP If you enable AWe support, the user or system account under which the

instance runs must have the Lock Pages In Memory user privilege. This privilege can

be assigned to the account by using Group Policy. See Chapters 9 and 10 of Windows	

Server	2008	Administrator’s	Pocket	Consultant,	Second edition (Microsoft Press, 2010)

for details.

To enable AWE support, complete the following steps:

  1. In the Server Properties dialog box, go to the Memory page and select the
Use AWE To Allocate Memory option .

  2. Consider setting a specific maximum server memory for SQL Server to
ensure that other applications have additional memory . For example, you
might want to set minimum server memory to 2 GB (2,048 MB) and maxi-
mum server memory to 8 GB (8,192 MB) to limit the amount of memory SQL
Server 2008 can use .

  3. Click OK .

You can also use the stored procedure sp_configure to enable AWE support . The
commands you use to do this are as follows:

T-SQL

exec sp_configure "awe enabled", 1
reconfigure
go

PowerShell

Invoke-Sqlcmd -Query "exec sp_configure 'awe enabled', 1; reconfigure"
-ServerInstance "Server\Instance"

 ChAPTeR 7  Configuring SQL Server with SQL Server Management Studio208

Optimizing Memory for Indexing
By default, SQL Server 2008 dynamically manages the amount of memory allocated
for index creation operations . If additional memory is needed for creating indexes,
and the memory is available based on the server memory configuration settings, the
server will allocate additional memory for index creation operations . If additional
memory is needed but not available, index creation will use the memory already
allocated to perform index creation .

Normally, SQL Server self-tuning works very well with this feature . The main
exception is in cases in which you use partitioned tables and indexes and have
nonaligned partitioned indexes . In these cases, if there is a high degree of parallel-
ism (lots of simultaneous index creation operations), you might encounter prob-
lems creating indexes . If this happens, you can allocate a specific amount of index
creation memory .

To use a specific index creation memory allocation, complete the following steps:

  1. In the Server Properties dialog box, go to the Memory page and set a value
in the Index Creation Memory box . This value is set in kilobytes .

  2. Click OK .

You can also use the stored procedure sp_configure to set the index creation
memory size . The related commands are as follows:

T-SQL

exec sp_configure "index create memory", <number of kilobytes>

PowerShell

Invoke-Sqlcmd -Query "exec sp_configure 'index create memory', <num kb>"
-ServerInstance "Server\Instance"

NOTE The amount of memory allocated to index creation operations should be at

least as large as the minimum memory per query. If it is not, SQL Server will use the

amount of memory specified as the minimum memory per query and display a warn-

ing about this.

Allocating Memory for Queries
By default, SQL Server allocates a minimum of 1,024 KB of memory for query execu-
tion . This memory allocation is guaranteed per user, and you can set it anywhere
from 512 KB to 2 GB . If you increase the minimum query size, you can improve the
performance of queries that perform processor-intensive operations, such as sort-
ing or hashing . If you set the value too high, however, you can degrade the overall
system performance . In light of this, you should adjust the minimum query size only
when you are having trouble executing queries quickly .

 Configuring SQL Server with SQL Server Management Studio ChAPTeR 7 209

BEST PRACTICES The default setting of 1,024 KB of RAM works in most cases.

however, you might want to consider changing this value if the server operates in an

extremely busy environment, with lots of simultaneous queries running in separate

user connections, or in a relatively slow environment, with few (but large or complex)

queries. In this case, four factors should determine your decision to adjust the mini-

mum query size:

■■ The total amount of free memory (when the system is idle and SQL Server is

running)

■■ The average number of simultaneous queries running in separate user

connections

■■ The average query size

■■ The query response time you hope to achieve

Often a compromise is necessary with these values. You cannot always get an instant

response, but you can optimize performance based on available resources.

Use the following equation to get a starting point for the optimization:

FreeMemory	/	(AvgQuerySize	*	AvgNumSimulQueries)	

For example, if the system has 2,200 MB of free memory, the average query size is

2 MB, and the average number of simultaneous queries is 50, then the optimal value

for the query size is 2,200 MB / (2 * 50), or 22 MB. Generally, this value represents the

maximum you should assign given the current environment, and you should lower this

value if possible.

To allocate memory for queries, complete the following steps:

  1. In the Server Properties dialog box, go to the Memory page and set a value
for the Minimum Memory Per Query box . This value is set in kilobytes .

  2. Click OK .

You can also use the stored procedure sp_configure to set the minimum query
size . The related commands are as follows:

T-SQL

exec sp_configure "min memory per query", <number of kilobytes>

PowerShell

Invoke-Sqlcmd -Query "exec sp_configure 'min memory per query', <num kb>"
-ServerInstance "Server\Instance"

 ChAPTeR 7  Configuring SQL Server with SQL Server Management Studio210

Configuring Processors and Parallel Processing

Systems that use multiprocessors can take advantage of the enhancements provided
by SQL Server for parallel and symmetric multiprocessing . You can control how and
when processors are used by SQL Server as well as when queries are processed in
parallel .

Optimizing CPU Usage
Multitasking is an important part of the operating system . Often the operating
system needs to move threads of execution among different processors . On a
system with a light load, moving threads of execution allows the server to improve
performance by balancing the workload . On a system with a heavy load, however,
the shuffling of threads can reduce performance because processor cache has to be
reloaded repeatedly .

SQL Server 2008 supports processor affinity and I/O affinity to optimize how
processors are used . Processor affinity assigns processors to specific threads of
execution to eliminate processor reloads and reduce thread migration across
processors . I/O affinity specifies which processors are eligible to process SQL Server–
related disk I/O operations . If you decide to manage affinity manually, you will want
some processors to have priority for threading and some processors to have priority
for disk I/O, with no overlap between the two . For example, on a 32-processor
system running SQL Server 2008 Enterprise edition, you might want processors 0
through 15 to have processor affinity (which means they manage threads of execu-
tion) and processors 16 through 31 to have I/O affinity (which means they manage
disk I/O operations) .

NOTE There is no specific formula for allocation. You do not need to allocate half

of the CPUs to processor affinity and half to I/O affinity. The actual configuration

depends on server usage and load.

Affinity settings are automatically configured and optimized when you install
SQL Server . If you are trying to optimize performance for a server under a heavy
load, you might want to try to optimize the affinity settings . Keep the following
guidelines in mind before reconfiguring affinity settings:

■■ Do not change these settings without careful forethought . You can reduce
performance by incorrectly managing affinity settings .

■■ Do not configure CPU affinity in both the operating system and in SQL
Server . Both techniques have the same goal . Use one technique or the other .

■■ Do not enable the same CPU for both processor and I/O affinity . Each pro-
cessor can have only one affinity . This means that there are three possible

 Configuring SQL Server with SQL Server Management Studio ChAPTeR 7 211

affinity states: processor affinity enabled, I/O affinity enabled, or no affinity
enabled .

You can manually configure processor usage by completing the following steps:

  1. Start SQL Server Management Studio, and then connect to the server you
want to configure .

  2. Right-click the server name in the SQL Server Management Studio Object
Explorer view, and then choose Properties from the shortcut menu .

  3. In the Server Properties dialog box, go to the Processors page, as shown in
Figure 7-6 .

FIGURE 7-6 The Processors page of the Server Properties dialog box

  4. By default, processor affinity is set automatically, and you are unable to
change the processor affinity settings . When you clear the Automatically
Set Processor Affinity Mask For All Processors check box, the fixed option
changes to check boxes that you can select or clear . Use the Processor
Affinity check boxes in the Processor list to determine which processors SQL
Server uses . Select the check box for processors you want to use, and clear
the check box for processors you do not want to use . The first CPU on the
system is identified as CPU 0, the second as CPU 1, and so on .

 ChAPTeR 7  Configuring SQL Server with SQL Server Management Studio212

BEST PRACTICES  If the system has more processors than SQL Server supports,

SQL Server does not use all of them. For example, on an eight-way symmetric

multiprocessing (SMP) system, SQL Server Standard edition can use only four pro-

cessors. This leaves four processors for other applications and system-level tasks.

You might be tempted to assign SQL Server to the higher numbered processors

(5, 6, 7, and 8), but this is not a good idea. Windows assigns deferred process calls

associated with network interface cards (NICs) to the highest numbered proces-

sors. If the system described in the example had two NICs, these calls would be

directed to CPU 8 and CPU 7. Be sure to consult the equipment documentation

before changing these values.

  5. By default, I/O affinity is set automatically, and you are unable to change the
I/O affinity settings . When you clear the Automatically Set I/O Affinity Mask
For All Processors check box, the fixed option changes to check boxes that
you can select or clear . Use the I/O Affinity check boxes in the Processor list
to determine which processors SQL Server uses .

  6. Click OK . The new settings apply when the SQL Server instance has been
stopped and then started again .

You can also use the stored procedure sp_configure to set the affinity mask . The
related commands are as follows:

T-SQL

exec sp_configure "affinity mask", <integer value>
exec sp_configure "affinity i/o mask", <integer value>

PowerShell

Invoke-Sqlcmd -Query "exec sp_configure 'affinity mask', <integer value>
exec sp_configure 'affinity i/o mask', <integer value>"
-ServerInstance "Server\Instance"

SQL Server interprets the integer value as a bit mask representing the processors
you want to use . In this bit mask, CPU 0 is represented by bit 0, CPU 1 with bit 1,
and so on . A bit value of 1 tells SQL Server to use the CPU . A bit value of 0 tells SQL
Server not to use the CPU . For example, if you want to turn on support for proces-
sors 1, 2, and 5, you would have a binary value of

000100110

The corresponding integer value is 38:

32	+	4	+	2	=	38

 Configuring SQL Server with SQL Server Management Studio ChAPTeR 7 213

Setting Parallel Processing
A lot of calculations are required to determine whether parallel processing should
be used . Generally, SQL Server processes queries in parallel in the following cases:

■■ When the number of CPUs is greater than the number of active connections

■■ When the estimated cost for the serial execution of a query is higher than
the query plan threshold (The estimated cost refers to the elapsed time in
seconds required to execute the query serially .)

Certain types of statements cannot be processed in parallel unless they contain
clauses, however . For example, UPDATE, INSERT, and DELETE operations are not
normally processed in parallel even if the related query meets the criteria . But if the
UPDATE or DELETE statements contain a WHERE clause, or an INSERT statement
contains a SELECT clause, WHERE and SELECT can be executed in parallel . Changes
are applied serially to the database in these cases .

You can configure parallel processing by completing the following steps:

  1. In the Server Properties dialog box, go to the Advanced page .

  2. By default, the Max Degree Of Parallelism setting has a value of 0, which
means that the maximum number of processors used for parallel processing
is controlled automatically . Essentially, SQL Server uses the actual number
of available processors, depending on the workload . To limit the number of
processors used for parallel processing to a set amount (up to the maximum
supported by SQL Server), change the Max Degree Of Parallelism setting
to a value greater than 1 . A value of 1 tells SQL Server not to use parallel
processing .

  3. Large, complex queries usually can benefit from parallel execution . However,
SQL Server performs parallel processing only when the estimated number of
seconds required to run a serial plan for the same query is higher than the
value set in the cost threshold for parallelism . Set the cost estimate threshold
by using the Cost Threshold For Parallelism box on the Advanced page of the
Server Properties dialog box . You can use any value from 0 through 32,767 .
On a single CPU, the cost threshold is ignored .

  4. Click OK . These changes are applied immediately . You do not need to restart
the server .

You can use the stored procedure sp_configure to configure parallel processing .
The commands are as follows:

T-SQL

exec sp_configure "max degree of parallelism", <integer value>
exec sp_configure "cost threshold for parallelism", <integer value>

 ChAPTeR 7  Configuring SQL Server with SQL Server Management Studio214

PowerShell

Invoke-Sqlcmd -Query "exec sp_configure 'max degree of parallelism',
<integer value> exec sp_configure 'cost threshold for parallelism',
<integer value>" -ServerInstance "Server\Instance"

Configuring Threading, Priority, and Fibers

Threads are an important part of a multitasking operating system, and they enable
SQL Server to do many things at once . Threads are not processes, however . They are
concurrent execution paths that allow applications to use the CPU more effectively .

SQL Server tries to match threads to user connections . When the number of
threads that are available is greater than the number of user connections, at least a
one-to-one ratio of threads to user connections exists, which allows each user con-
nection to be handled uniquely . When the number of threads available is less than
the number of user connections, SQL Server must pool threads; as a result, the same
thread might serve multiple user connections, which can reduce performance and
response time if additional resources are available and are not being used .

Normally, the operating system handles threads in kernel mode, but it handles
applications and user-related tasks in user mode . Switching between modes, such as
when the kernel needs to handle a new thread, requires CPU cycles and resources .
To allow the application to handle threading directly, you can use fibers . Switch-
ing fibers does not require changing modes and therefore can sometimes improve
performance .

Another way to improve performance is by increasing the priority of SQL Server
threads . Normally, threads have a priority of 1 through 31, and higher priority
threads get more CPU time than lower priority threads . Higher priority threads can
also preempt lower priority threads, forcing threads to wait until higher priority
threads finish executing . By increasing thread priority, you can give the threads a
higher preference for CPU time and ensure that other threads do not preempt them .

NOTE The complete range for thread priority is 0 through 31. Thread priority 0 is

reserved for operating system use.

You configure worker threads, fibers, and thread priority by using the Server
Properties dialog box . Go to the Processors page and use these options:

■■ Maximum Worker Threads Sets the maximum number of threads . By
default, the value is set to 0, which allows SQL Server to configure the num-
ber of worker threads as shown in Table 7-1 . However, you can use any value
from 10 through 32,767 . On a busy server with many user connections, you
might want to increase this value . On a slow server with few connections, you
might want to decrease this value . Computers with multiple processors can
concurrently execute one thread per CPU . Microsoft recommends a maxi-
mum setting of 1,024 on 32-bit systems and 2,048 on 64-bit systems .

 Configuring SQL Server with SQL Server Management Studio ChAPTeR 7 215

■■ Boost SQL Server Priority Increases the priority of SQL Server threads .
Without boosting, SQL Server threads have a priority of 7 (normal priority) .
With boosting, SQL Server threads have a priority of 13 (high priority) . On a
dedicated system running only SQL Server, this option can improve perfor-
mance . However, if the server runs other applications, the performance of
those applications might be degraded .

■■ Use Windows Fibers (Lightweight Pooling) Configures SQL Server to
use fibers, which it can handle directly . SQL Server still needs threads to carry
out tasks . SQL Server allocates one thread per CPU and then allocates one
fiber per concurrent user connection up to the value of Maximum Worker
Threads . You must restart the server to apply this option .

TIP Fibers work best when the server has multiple CPUs and a relatively low user-to-

CPU ratio. For example, on an installation of the enterprise edition with 32 CPUs and

250 users, you might see a noticeable performance boost with fibers. But if you have

a system with eight CPUs and 5,000 users, you might see performance decrease with

fibers.

TABLE 7-1 The Default Maximum Worker Threads Used by SQL Server

NUMBER OF CPUS 32-BIT OPERATING SYSTEM 64-BIT OPERATING SYSTEM

1–4 256 512

5–8 288 576

9–16 352 704

17–32 480 960

You can use sp_configure to set fibers, maximum worker threads, and priority
boost by using the following commands:

T-SQL

exec sp_configure "lightweight pooling", <0 or 1>
exec sp_configure "max worker threads", <integer value>
exec sp_configure "priority boost", <0 or 1>

PowerShell

Invoke-Sqlcmd -Query "exec sp_configure 'lightweight pooling', <0 or 1>;
exec sp_configure 'max worker threads', <integer value>;
exec sp_configure 'priority boost", <0 or 1>'"
-ServerInstance "Server\Instance"

When setting lightweight pooling (fibers) and priority boost, you use 0 to disable
and 1 to enable .

 ChAPTeR 7  Configuring SQL Server with SQL Server Management Studio216

Configuring User and Remote Connections

Requests for data are handled through user connections to client systems . The client
opens a connection to SQL Server, makes a request, and waits for a response from
SQL Server . When the client is finished with its request, it closes the connection .
Other servers and applications can also connect to SQL Server remotely . To config-
ure client connections and remote server connections, you can use the Connections
page in the Server Properties dialog box .

Many settings are associated with client and server connections, as you can see
in Figure 7-7, which shows the default configuration . This section examines connec-
tion settings and cases in which you might want to change these settings .

FIGURE 7-7 The default connection settings on the Connections page of the Server Properties
dialog box

Setting Maximum User Connections
On the Connections page, the Maximum Number Of Concurrent Connections box
lets you set the maximum number of connections at any one time to SQL Server .
You can use a value from 0 through 32,767 . By default, the value is set to 0, which
means that an unlimited number of connections can be made to SQL Server .
 However, the actual number of possible user connections really depends on hard-
ware, application, and other server limitations . You can determine the number of

Configuring SQL Server with SQL Server Management Studio ChAPTeR 7 217

user connections your system can handle by executing the following command in
Query view:

select @@max_connections

To set the maximum number of user connections, complete the following steps:

  1. In the Server Properties dialog box, go to the Connections page .

  2. Type a new value in the Maximum Number Of Concurrent Connections box,
and then click OK . The new settings apply when the SQL Server instance has
been stopped and then started again .

You can also set the maximum number of concurrent connections by using the
following command:

exec sp_configure "user connections", <integer value>

NOTE You should not need to change the value of Maximum Number Of Concurrent

Connections. If you do change the setting, be careful. When the server reaches the

maximum number of connections, users receive an error message and are not able to

connect to the server until another user disconnects and a connection becomes avail-

able. The only time you need to set this option is in a situation with a large number of

users and you need to limit the number of active connections to ensure that requests

for connected users are handled in a timely manner. A better alternative is to add

sufficient memory to the system, configure a cluster to balance the workload, or take

both of these steps. If you administer a system with a large numbers of users, you

should also be sure that SQL applications connect and then disconnect promptly when

finished to reallocate resources quickly to other users.

Setting Default Connection Options
The Connections page includes a list box labeled Default Connection Options . (See
Figure 7-7 .) Use the options to set default query-processing options for user con-
nections . Select an option by selecting its check box . Cancel an option by clearing
the check box . Any changes you make affect new logins only; current logins are not
affected . Furthermore, users can override the defaults by using SET statements, if
necessary .

Table 7-2 provides a summary of the connection options, as well as the default
state for ODBC (Open Database Connectivity) and OLE DB (which might be different
from the SQL Server default) . The table also includes a list of commands you can use
with sp_configure, the corresponding value for the configuration bit mask, and the
SET commands that can override the default settings in a user session .

 ChAPTeR 7  Configuring SQL Server with SQL Server Management Studio218

TABLE 7-2 Configuring Connection Options

CONNECTION
OPTION WHEN ON

DEFAULT
STATE

BIT MASK
VALUE SET COMMAND

Implicit
Transactions

Uses transactions implicitly
whenever statements are
executed .

OFF 2 IMPLICIT_
TRANSACTIONS

Cursor Close
On COMMIT

Automatically closes a cursor
at the end of a transaction .

OFF 4 CURSOR_CLOSE_
ON_COMMIT

ANSI
Warnings

SQL Server displays null,
overflow, and divide-by-
zero warnings . Otherwise,
no error or NULL might be
returned .

OFF 8 ANSI_
WARNINGS

ANSI Padding Data in fixed-length fields
are padded with trailing
spaces to fill out the width of
the column .

OFF 16 ANSI_PADDING

ANSI Nulls Comparing anything with
NULL gives an unknown
result .

OFF 32 ANSI_NULLS

Arithmetic
Abort

Causes a query to terminate
when an overflow or a
divide-by-zero error occurs .

OFF 64 ARITHABORT

Arithmetic
Ignore

Returns NULL when an
overflow or a divide-by-zero
error occurs during a query .

OFF 128 ARITHIGNORE

Quoted
Identifier

SQL Server interprets
double quotation marks as
indicating an identifier rather
than as delimiting a string .

OFF 256 QUOTED_
IDENTIFIER

No Count Turns off the display of the
number of rows returned in
a query .

OFF 512 NOCOUNT

 Configuring SQL Server with SQL Server Management Studio ChAPTeR 7 219

CONNECTION
OPTION WHEN ON

DEFAULT
STATE

BIT MASK
VALUE SET COMMAND

ANSI Null
Default ON

New columns are defined
to allow nulls (if you do not
explicitly allow or disallow
nulls) .

OFF 1024 ANSI_NULL_
DFLT_ON

ANSI Null
Default OFF

New columns are defined not
to allow nulls (if you don’t
explicitly allow or disallow
nulls) .

OFF 2048 ANSI_NULL_
DFLT_OFF

Concat Null
Yields Null

Returns NULL when
concatenating a NULL value
within a string .

OFF 4096 CONCAT_NULL_
YIELDS_NULL

Numeric
Round Abort

Generates an error when a
loss of precision occurs .

OFF 8192 NUMERIC_
ROUNDABORT

Xact Abort Rolls back a transaction if
a T-SQL statement raises a
runtime error .

OFF 16384 XACT_ABORT

For sp_configure, the default options are set with the following user options
parameter:

exec sp_configure "user options", <integer bit mask value>

In this case, the bit mask value is the sum of the numeric values for all the options
you want to use . Each option has a corresponding SET command as well . When you
make a connection, you can use the SET command to override the default setting
for the session . For example, if you want to turn on ANSI padding, ANSI nulls, and
ANSI warnings, use the bit mask value 56, such as in the following line of code:

exec sp_configure "user options", 56

In a user session, you can turn these options on or off by using a line of code
such as the following:

set ansi_padding on set ansi_nulls off

 ChAPTeR 7  Configuring SQL Server with SQL Server Management Studio220

Configuring Remote Server Connections
Connections from other servers are handled differently than user connections . You
can determine whether servers can connect to this server, how long it takes for
remote queries to time out, and whether distributed transactions are used . To con-
figure remote connections, complete these steps:

  1. In the Server Properties dialog box, go to the Connections page .

  2. To allow servers to connect to this server, select the option Allow Remote
Connections To This Server . Remote servers can then log on to the server to
execute stored procedures remotely . You must stop and then start the SQL
Server instance to apply the change if you select this option .

CAUTION  Remote procedure call (RPC) connections are allowed by default. If

you change this behavior, remote servers cannot log on to SQL Server. This setting

change keeps SQL Server secure from remote server access.

  3. By default, queries executed by remote servers time out in 600 seconds . To
change this behavior, type a time-out value in the Remote Query Timeout
box on the Connections page . Time-out values are set in seconds, and the
acceptable range of values is from 0 through 2,147,483,647 . A value of 0
means that there is no query time-out for remote server connections .

  4. Stored procedures and queries executed on the server can be handled as
distributed transactions by using Distributed Transaction Coordinator (DTC) .
If you want to execute procedures this way, select the Require Distributed
Transactions For Server-To-Server Communication check box . If you change
this option, you must stop and then start the SQL Server instance .

  5. Click OK .

These options can also be set with sp_configure . The related commands are as
follows:

exec sp_configure "remote access", <0 or 1>
exec sp_configure "remote query timeout", <number of seconds>
exec sp_configure "remote proc trans", <0 or 1>

NOTE A value of 0 turns a remote server connection option off, and a value of 1

turns an option on.

 Configuring SQL Server with SQL Server Management Studio ChAPTeR 7 221

Managing Server Settings

You use the Advanced page of the Server Properties dialog box to configure many
server settings . As shown in Figure 7-8, you can set the default language, general
server behavior, and other options on this page .

FIGURE 7-8 General server settings options on the Advanced page

enabling or Disabling File Streaming Support
When file streaming is enabled, the SQL Server Database Engine can work with
binary large objects (BLOBs) that are stored outside the database . At the server level,
you control whether and how file streaming can be used by using the Filestream
Access Level setting, which by default is set to Disabled . When file streaming is dis-
abled, BLOB databases cannot be stored on the file system . If you want to enable file
streaming, you can do the following on the Advanced page:

■■ Enable Transact-SQL access Enabling Transact-SQL access allows you to
use Transact-SQL statements to insert, update, query, search, and delete file-
stream data .

■■ Enable full access Enabling full access allows you to use the OpenSql-
Filestream application programming interface (API) to obtain a file handle
and operate on the BLOB via the file system .

 ChAPTeR 7  Configuring SQL Server with SQL Server Management Studio222

On the Advanced page of the Server Properties dialog box, use the Filestream
Access Level list to set the access level for file streaming, and then click OK . The first
time you enable file streaming, you might need to restart the computer to allow
Windows to reconfigure drivers . With sp_configure, the related commands are as
follows:

T-SQL

exec sp_configure "filestream access level", <0 or 1 or 2>

PowerShell

Invoke-Sqlcmd -Query "exec sp_configure 'filestream access level',
<0 or 1 or 2>" -ServerInstance "Server\Instance"

Use 0 for disabled, 1 for Transact-SQL access, or 2 for full access . To complete
the file-streaming configuration, you must also configure the settings discussed in
“Configuring File Streaming” in Chapter 3 .

Setting the Default Language for SQL Server
The default language determines default display formats for dates as well as the
names of months and days . All output is in U .S . English unless you are running a
localized version of SQL Server . Localized versions of SQL Server are available for
French, German, Japanese, Spanish, and other languages . On a localized server, two
sets of system messages are available, one in U .S . English and one in the local lan-
guage . If the default language is set to the local language, SQL Server messages are
displayed in the local language . Otherwise, they are displayed in U .S . English .

On the Advanced page of the Server Properties dialog box, use the Default
Language list to select the default language, and then click OK . You must stop and
then start the SQL Server instance to apply a new default language setting . With
sp_configure, the related commands are as follows:

T-SQL

exec sp_configure "default language", <language id number>

PowerShell

Invoke-Sqlcmd -Query "exec sp_configure 'default language',
<language id number>" -ServerInstance "Server\Instance"

The language ID number for U .S . English is always 0 . The sys .languages system
view contains one row for each language present on a server .

 Configuring SQL Server with SQL Server Management Studio ChAPTeR 7 223

Allowing and Disallowing Nested Triggers
By default, SQL Server allows you to nest up to 32 levels of triggers . Nested triggers
are useful for executing a series of tasks within a single transaction . For example,
an action can initiate a trigger that starts another trigger, which in turn can start
another trigger, and so on . Because the trigger is handled within a transaction,
a failure at any level causes the entire transaction to roll back, which reverses all
changes to the database . As a fail-safe measure, triggers are terminated when the
maximum nesting level is exceeded . This protects against an infinite loop .

An option on the Advanced page allows you to configure SQL Server to use
nested triggers . To do so, complete the following steps:

  1. In the Server Properties dialog box, go to the Advanced page .

  2. Set Allow Triggers To Fire Others to True or False as appropriate .

  3. Click OK .

With sp_configure, the related commands are as follows:

T-SQL

exec sp_configure "nested triggers", <0 or 1>

PowerShell

Invoke-Sqlcmd -Query "exec sp_configure 'nested triggers', <0 or 1>"
-ServerInstance "Server\Instance"

You use 0 to set this option to false and 1 to set it to true .

Controlling Query execution
The query governor does not allow the execution of any query that has a running
time that exceeds a specified query cost . The query cost is the estimated time, in
seconds, required to execute a query, and it is estimated prior to execution based
on an analysis by the query engine . By default, the query governor is turned off,
meaning there is no maximum cost . To activate the query governor, complete the
following steps:

  1. In the Server Properties dialog box, go to the Connections page .

  2. Select the option Use Query Governor To Prevent Long-Running Queries .

  3. In the box below the option, type a maximum query cost limit . The valid
range is 0 through 2,147,483,647 . A value of 0 disables the query governor;
any other value sets a maximum query cost limit .

  4. Click OK .

With sp_configure, the following command activates the query governor:

exec sp_configure "query governor cost limit", <limit>

 ChAPTeR 7  Configuring SQL Server with SQL Server Management Studio224

You can also set a per-connection query cost limit by using the following
command:

set query_governor_cost_limit <limit>

NOTE Before you activate the query governor, you should use the Query view to

estimate the cost of current queries you are running on the server. This will give you a

good idea of a value to use for the maximum query cost. You can also use the Query

view to optimize queries.

Configuring Year 2000 Support
SQL Server allows you to insert or modify dates without specifying the century part
of the date . However, to be year 2000–compliant, SQL Server interprets two-digit
dates within a certain time span . By default, this time span includes the years 1950
through 2049 . Using this default setting, all two-digit dates from 50 through 99 are
read as years beginning with 19, and all two-digit dates from 00 through 49 are
read as years beginning with 20 . Thus, SQL Server would interpret a two-digit year
of 99 as 1999 and a two-digit year of 02 as 2002 .

To maintain backward compatibility, Microsoft recommends that you leave the
setting at the default value . You can, however, change this value by completing the
following steps:

  1. In the Server Properties dialog box, go to the Advanced page .

  2. Set Two Digit Year Cutoff to a value that is the ending year of the time span
you want to use . The valid range for the ending year is 1753 through 9999 .

  3. Click OK .

NOTE The time span you select affects all databases on the current server. Also,

some older OLe clients only support dates in a range of years from 1931 through 2030.

To maintain compatibility with these clients, you might want to use 2030 as the ending

year for the time span.

With sp_configure, the related command is the following:

exec sp_configure "two digit year cutoff", <ending year>

Managing Database Settings

You use the Database Settings page of the Server Properties dialog box to config-
ure serverwide database settings . As shown in Figure 7-9, you can use this page
to set index fill, backup and restore options, and recovery intervals for checkpoint
execution .

 Configuring SQL Server with SQL Server Management Studio ChAPTeR 7 225

FIGURE 7-9 The Database Settings page of the Server Properties dialog box

Setting the Index Fill
The default index fill determines how much space SQL Server should reserve when it
creates a new index using existing data . Setting the fill factor involves a tradeoff—if
you set the fill factor too high, SQL Server slows down when you add data to a
table . However, if you set the fill factor too low, read performance can be affected
by an amount inversely proportional to the fill factor . For example, a fill factor of 25
percent can degrade read performance by a factor of four (or four times normal),
but the setting makes it possible to perform large updates faster initially . Ideally, you
should balance the need to make updates quickly with the need to have good read
performance, and then select a fill factor that makes sense for your situation .

BEST PRACTICES The fill factor is used only when an index is created; it is not

maintained afterward. This allows you to add, delete, or update data in a table without

worrying about maintaining a specific fill factor.

The empty space in the data pages can fill up if you make extensive additions or

modifications to the data. To redistribute the data, re-create the index and specify

a fill factor when you do so. Indexes are discussed more completely in Chapter 10,

 “Manipulating Schemas, Tables, Indexes, and Views.”

By default, the index fill is set to 0, but the valid range is 0 through 100 . The
setting of 0 is the optimized index fill setting; any other value is an actual fill
percentage .

 ChAPTeR 7  Configuring SQL Server with SQL Server Management Studio226

SQL Server handles the optimized setting in much the same way as a fill percent-
age of 100—SQL Server creates clustered indexes with full data pages and nonclus-
tered indexes with full leaf pages . But the optimized setting of 0 leaves space for
growth in the upper level of the index tree, which an index fill setting of 100 does
not do . This is the reason why you should use this value only with read-only tables in
which you never plan to add data .

If necessary, you can override the default setting when you create indexes, but
you have to remember to do this . You can also set a fixed index fill as the default by
completing the following steps:

  1. In the Server Properties dialog box, go to the Database Settings page .

  2. Use the Default Index Fill Factor box to set a fill percentage . A low fill factor
provides more room for insertions without requiring page splits, but the
index takes up more space . A high fill factor provides less room for insertions
that do not require page splits, but the index uses less space .

  3. Click OK .

With sp_configure, the related command is the following:

exec sp_configure "fill factor (%)", <integer percentage>

Configuring Backup and Restore Time-Out Options
You can make SQL Server backups to tape devices . When working with tape devices
and DB-Library (which supports connections from older applications as long as a
related DLL is available), you might want to control whether you want to enforce
a read/write time-out to wait for a new tape . The options you can use include the
following:

■■ Wait Indefinitely DB-Library waits until a new tape is found . If you select
this option, however, you will not necessarily receive an error message to let
you know that you are having backup problems .

■■ Try Once DB-Library tries once for a response from SQL Server . If there is
no response or no tape is available, it quits and typically generates an error .

■■ Try For DB-Library tries to get a response from SQL Server for a specified
number of minutes . If there is no response or no tape is available within the
wait time, DB-Library quits and usually generates an error .

You set the time-out period by completing the following steps:

  1. In the Server Properties dialog box, go to the Database Settings page .

  2. To set an indefinite time-out, select the Wait Indefinitely option .

  3. To set the backup process to try once and then quit, select the Try Once
option .

 Configuring SQL Server with SQL Server Management Studio ChAPTeR 7 227

  4. To set the backup process to try for a specified amount of time, select the
Try For n Minute(s) option, and then enter the time-out period in the box
provided .

  5. Click OK .

Configuring Backup and Restore Retention Options
As you will learn in Chapter 15, “Backing Up and Recovering SQL Server 2008,” SQL
Server has many features to help you back up and restore data . When you write
data to tapes using DB-Library, you can specify the number of days to maintain old
files . This value is called the retention	period, and you set it by completing the fol-
lowing steps:

  1. In the Server Properties dialog box, go to the Database Settings page .

  2. In the Default Backup Media Retention (In Days) box, enter the number of
days you want to maintain old files . The minimum value is 0, which specifies
that old files are always overwritten . The valid range is 0 through 365 .

  3. Click OK .

With sp_configure, the related Transact-SQL statement to set the retention
period for backup files is as follows:

exec sp_configure "media retention", <number of days>

Flushing the Cache with Checkpoints
Database checkpoints flush all cached data pages to the disk, and these checkpoints
are done on a per-database basis . In SQL Server, you control how often checkpoints
occur by using the Recovery Interval setting on the Database Settings page . By
default, the recovery interval is set to 0, which allows SQL Server to control when
checkpoints occur dynamically . This usually means that checkpoints occur about
once a minute on active databases . Unless you are experiencing performance prob-
lems that are related to checkpoints, you should not change this option .

If you need to set the checkpoint interval manually, you must complete the fol-
lowing steps:

  1. In the Server Properties dialog box, go to the Database Settings page .

  2. In the Recovery Interval (Minutes) box, enter the checkpoint time in minutes .
The valid range is 0 through 32,767, and this is a serverwide setting .

  3. Click OK .

With sp_configure, the related command is the following:

exec sp_configure "recovery interval", <number of minutes>

 ChAPTeR 7  Configuring SQL Server with SQL Server Management Studio228

Compressing the Backup Media
Backup compression reduces the amount of data SQL Server 2008 has to write and
the size of your SQL backups . Although using compression can significantly speed
up the backup and restore process when working over a network, compression
significantly increases CPU usage . To reduce the impact on SQL Server performance,
you can configure backup to run under a user login whose CPU usage is limited by
the Resource Governor whenever CPU contention occurs .

To enable backup media compression, complete the following steps:

  1. In the Server Properties dialog box, go to the Database Settings page .

  2. Select the Compress Backup check box, and then click OK .

With sp_configure, the related command is the following:

exec sp_configure "backup compression default", <0 or 1>

You use 0 to disable backup compression and 1 to enable it .

Adding and Removing Active Directory Information

For servers that are part of an Active Directory domain, you use the Active Direc-
tory page of the Server Properties dialog box to manage SQL Server information
published in Active Directory services . The page has the following three buttons:

■■ Add Publishes information about a SQL Server instance to Active Directory .

■■ Refresh Updates information related to a SQL Server instance in Active
Directory . This option is useful when you create databases, server cubes, or
data-mining models and you want the updates reflected throughout the
directory before normal replication .

■■ Remove Removes information about a SQL Server instance from Active
Directory .

Troubleshooting Configuration Problems

There are two specific techniques that you can use to resolve SQL Server configura-
tion problems . In this section, you will learn how to recover from a bad configura-
tion and how to rebuild the master database .

Recovering from a Bad Configuration
Although SQL Server 2008 has many safeguards that help you avoid configura-
tion settings that keep SQL Server from starting, you might occasionally find that a

 Configuring SQL Server with SQL Server Management Studio ChAPTeR 7 229

 configuration change prevents SQL Server from starting . If you encounter this situa-
tion, you can recover the server instance by completing the following steps:

  1. Log on to the affected server locally, or log on remotely through Telnet or
Terminal Server . You must log on using a local administrator account or the
account used by the database server instance .

  2. Make sure that the MSSQLServer or MSSQL$instancename service is stopped .
If it is not, stop the service by using one of the following methods:

■■ SQL Server Configuration Manager

■■ Computer Management

■■ Services

If the instance of SQL Server was installed as a default installation, you can
stop the service by using the following command:

net stop MSSQLSERVER

  3. From the command prompt, switch to the directory of the associated
SQL Server instance (either MSSQL10 .MSSQLSERVER\MSSQL\Binn or
MSSQL10 .InstanceName\MSSQL\Binn) . You must be in this directory to use
the Sqlservr utility .

  4. Start SQL Server from the command line with the following option:

sqlservr –s(instancename) –f

You must use the –s option to specify the instance of SQL Server if multiple
instances of SQL Server are installed . The –f option starts SQL Server in
single-user mode with a minimum configuration . This ensures that the bad
configuration is not loaded .

  5. Wait for the server to start up . SQL Server should write a few pages of output
to the screen . Leave the server running .

  6. In another Command Prompt window or Telnet session, start SQLCMD with
the user name of a SQL Server account with administrator privileges and
password:

sqlcmd –U username –P password

NOTE  You must specify the instance to which you are connecting (sqlcmd –U

username –P password –Scomputername\instancename) if multiple instances of

SQL Server 2008 are installed.

 ChAPTeR 7  Configuring SQL Server with SQL Server Management Studio230

  7. If you have accessed SQLCMD properly, you should see the prompt change
to > .

  8. Reverse the changes made to the configuration by entering commands as
you would in SQL Server Management Studio . The main difference is that
you follow the commands with GO, as shown in the following example:

exec sp_configure "max server memory", 128
go
reconfigure
go

  9. When you have finished, exit SQLCMD by typing exit .

  10. From the command line in the window running SQL Server, press Ctrl+C .

  11. When prompted, type Y for Yes . This stops SQL Server .

  12. Restart SQL Server as you normally would . If you have made the appropriate
changes, the server should start normally . Otherwise, repeat this procedure .

Changing Collation and Rebuilding the master Database
Rebuilding the master database restores all system databases to their original
contents and attributes . The main reasons for rebuilding the master database are as
follows:

■■ To set a new default collation for a database server instance

TIP  In SQL Server 2000 and later, collation can be set separately for each data-

base—as well as for tables, parameters, and literal strings—without having to

rebuild the master database.

■■ To repair a corrupted master database when no backup of the master data-
base is available

■■ To repair a corrupted master database when the SQL Server instance cannot
be started

The Rebuildm utility is no longer used for rebuilding the master database .
Instead, run the SQL Server 2008 Setup program again to rebuild the master data-
base . If you choose to rebuild the master database, keep the following guidelines in
mind:

■■ After you rebuild the master database, you should restore the most recent
master, model, and msdb databases . If the server was configured for replica-
tion, you must restore the most recent distribution database . Any data that
cannot be restored must be manually created .

■■ After you rebuild the master database, all user databases are detached and
unreadable . To recover them, you must re-create all your user databases .
You cannot restore the user databases from backup—the restore maintains
the information that was set when you created the backup, and you might

 Configuring SQL Server with SQL Server Management Studio ChAPTeR 7 231

instead want to move the databases to another server by importing and
exporting them, a process covered in Chapter 11, “Importing, Exporting, and
Transforming Data .”

■■ You must reapply any SQL Server updates to bring the Resource database up
to date . The Resource database is updated whenever patches, hot fixes, or
service packs are applied to SQL Server .

To rebuild the master database, follow these steps:

  1. Log on to the server by using an account with administrator privileges . With
Windows Server 2003, double-click Add Or Remove Programs in Control
Panel . With Windows Server 2008, click the Uninstall A Program link under
Programs in Control Panel .

  2. Select Microsoft SQL Server 2008, and then click Change . When the SQL
Server 2008 Maintenance Wizard starts, select the SQL Server instance to
maintain, and then click Next .

  3. On the Feature Maintenance page, select the component you want to work
with, such as Analysis Services or Database Engine, and then click Next .

  4. The SQL Server Installation Wizard starts . Click Next to allow Setup to per-
form a system configuration check . When the system configuration check is
complete, note any issues and correct problems as necessary . Click Next .

  5. Setup then reviews the installed components . On the Change Or Remove
Instance page, click Change .

  6. On the Feature Selection page, double-click the entry for the component .
This expands the component details so that you can see subcomponents .
Click the icon for the subcomponent to specify its availability .

  7. Click Next, and then click Install . SQL Server then verifies the installation and
rebuilds a damaged installation as necessary . When this process is complete,
click Next, and then click Finish .

You can also use the following command line to rebuild the master database:

start /wait setup.exe /qb INSTANCENAME=MSSQLSERVER REINSTALL=SQL_Engine
 REBUILDDATABASE=1 SAPWD=Password SQLCOLLATION=DesiredCollation

where Password is the new SA password and DesiredCollation is the collation you
want to use, such as:

start /wait setup.exe /qb INSTANCENAME=MSSQLSERVER REINSTALL=SQL_Engine
 REBUILDDATABASE=1 SAPWD=Quirky345
 SQLCOLLATION=SQL_Latin1_General_CP1_CI_AI

233

CHAP TE R 8

Core Database
Administration

■■ Database Files and Logs 233

■■ Database Administration Basics 238

■■ Creating Databases 245

■■ Altering Databases and Their Options 251

■■ Managing Database and Log Size 270

■■ Manipulating Databases 275

■■ Tips and Techniques 280

Core database administration involves creating, manipulating, and supporting
databases . In Microsoft SQL Server 2008, a database is a collection of data and

the objects that represent and interact with that data . Tables, views, stored proce-
dures, triggers, and constraints are typical database objects .

A single database server instance can have up to 32,767 databases, and each
database can have more than 2 billion objects . These are theoretical limits, of
course, but they demonstrate that SQL Server can handle just about any job . To
perform most administration tasks, you must log on to the database using an
account that has the sysadmin fixed server role, such as the local sysadmin account
(sa) . Detailed information about roles and SQL Server security is found in Chapter
9, “Managing SQL Server 2008 Security .”

Database Files and Logs

Each SQL Server database has a transaction log associated with it . A transac-
tion log is a history of modifications to the database, and SQL Server uses it to
ensure that a database has integrity . All changes to the database are first written
to the transaction log and then applied to the database . If the database update is
successful, the transaction is completed and recorded as successful . If the data-
base update fails, SQL Server uses the transaction log to restore the database

 ChAPTeR 8  Core Database Administration234

to its original state (which is called rolling	back the transaction) . This two-phase
commit process enables SQL Server to restore a database automatically in case of
power failure, server outage, or other problems that might occur when you enter a
transaction .

SQL Server databases and transaction logs are contained in separate database
files . This means that each database always has at least two files associated with
it—a data file and a log file . Databases also can have secondary data files . SQL
Server uses three types of database files:

■■ Primary data files Every database has one primary data file . A primary
data file stores data and maintains records of other files used in a database .
By default, primary data files end with the .mdf extension .

■■ Secondary data files These files store additional data for a database .
Although not all databases have secondary data files, a single database can
have multiple secondary data files . By default, these files end with the .ndf
extension .

■■ Transaction log files Every database has at least one transaction log file .
This file contains information necessary to restore the database . By default,
log files end with the .ldf extension .

NOTE SQL Server also uses backup devices. Backup devices can be physical devices,

such as tape drives, or files that are stored on a local drive or a network share.

Additionally, it is important to note that SQL Server data and log files can be stored

on either FAT or NTFS partitions, but they cannot be stored on any compressed file

system.

TIP In SQL Server 2008, full-text catalogs are represented logically as virtual objects

that refer to groups of full-text indexes rather than as separate database files with

physical paths. This is a significant change from SQL Server 2005 and earlier releases.

Database files are set when you create or modify the database . Because mul-
tiple database files are allowed, SQL Server can create databases that span multiple
disk drives and that can grow in size as needed . Although the size of a SQL Server
database is often measured in gigabytes, with all editions of SQL Server except the
Express edition and the Compact edition, databases can range in size from 1 mega-
byte (MB) to a limit of 524,272 terabytes . With the Express edition and the Compact
edition, databases can have a maximum size of 4 gigabytes (GB) .

As you work with databases, keep in mind that SQL Server is designed to expand
databases automatically as necessary . This means that the master, tempdb, msdb,
and other critical databases will not run out of space under normal conditions—pro-
vided, of course, that file space is available on the configured drives and that you
have not set a maximum database size manually .

System databases are the most important databases on the server . You should
never directly update tables in system databases . Instead, use the appropriate

 Core Database Administration ChAPTeR 8 235

 management tools or stored procedures to modify the system databases if neces-
sary . The only exception is the model database, which you can update with settings
for new databases .

Table 8-1 provides a summary of other size and number constraints for SQL
Server 2008 . These constraints apply to both 32-bit and 64-bit editions unless oth-
erwise noted .

TABLE 8-1 Size and Number Constraints for the Database Engine

DATABASE ENGINE OBJECT MAXIMUM VALUE

Batch size 65,536 * network packet size; the default
is 4 kilobytes (KB) .

Bytes in source text of a stored
procedure

Lesser of batch size or 250 MB

Bytes per foreign key 900

Bytes per GROUP BY, ORDER BY 8,060

Bytes per index key 900

Bytes per primary key 900

Bytes per row 8,060 (except for varchar, nvarchar,
varbinary, sql_variant, or CLR user-
defined type columns)

Bytes per short string column 8,000

Bytes per varchar(max), varbinary(max),
xml, text, or image column

231 – 1

Characters per ntext or nvarchar(max)
column

230 – 1

Clustered indexes per table 1

Columns in GROUP BY, ORDER BY Limited only by number of bytes

Columns or expressions in a GROUP BY
WITH CUBE or WITH ROLLUP statement

10

Columns per foreign key 16

Columns per index key 16 (15 when you use XML indexes)

Columns per INSERT statement 1,024

Columns per nonwide table 1,024

Columns per primary key 16

Columns per SELECT statement 4,096

 ChAPTeR 8  Core Database Administration236

DATABASE ENGINE OBJECT MAXIMUM VALUE

Columns per wide table 30,000

Connections per client Maximum value of configured
connections

Database size 524,272 terabytes

Databases per instance of SQL Server 32,767

File size (data) 16 terabytes

File size (log) 2 terabytes

Filegroups per database 32,767

Files per database 32,767

Foreign key table references per table Unlimited; recommended maximum is
253 to maintain expected performance
levels .

Identifier length (in characters) 128

Instances per computer (no clustering) Fifty instances for the Standard,
Developer, and Enterprise editions .
Sixteen instances for the Workgroup
edition .

Instances per computer (with
clustering)

Twenty-five instances for clustered
Standard, Developer, and Enterprise
editions . Sixteen instances for the
Workgroup edition .

Length of a string containing SQL
statements (batch size)

65,536 * network packet size; the default
is 4 KB .

Locks per connection Maximum locks per server

Locks per instance of SQL Server Up to 2,147,483,647 on 32-bit editions
for static locks . Otherwise, limited only
by memory .

Nested stored procedure levels Thirty-two, but limited to eight
databases or two databases with
interleaving .

Nested subqueries 32

Nested trigger levels 32

Nonclustered indexes per table 999

 Core Database Administration ChAPTeR 8 237

DATABASE ENGINE OBJECT MAXIMUM VALUE

Number of distinct expressions in the
GROUP BY clause using CUBE, ROLLUP,
GROUPING SETS, WITH CUBE, WITH
ROLLUP

32

Number of grouping sets generated by
operators in the GROUP BY clause

4,096

Parameters per stored procedure 2,100

Parameters per user-defined function 2,100

Partitions per partitioned table or index 1,000

REFERENCES per table 253

Rows per table Limited by available storage

Statistics on nonindexed columns 30,000

Tables per database The sum of the number of all objects in a
database cannot exceed 2,147,483,647 .

Tables per SELECT statement 256

Triggers per table The sum of the number of all objects in a
database cannot exceed 2,147,483,647 .

UNIQUE indexes or constraints per
table

249 nonclustered and 1 clustered .

User connections 32,767

XML indexes 249

SQL Server 2008 supports row-overflow storage, which enables variable-length
columns to be pushed off-row and to exceed the maximum allowed size of 8,060
bytes per row . Row-overflow storage applies only to varchar, nvarchar, varbinary,
sql_variant, or common language runtime (CLR) user-defined type columns . It does
not apply to varchar(max), nvarchar(max), varbinary(max), text, image, or xml col-
umns, which have a maximum size of 231 – 1 bytes .

When the Database Engine uses row-overflow storage, it moves the record
column with the largest width to another page in the ROW_OVERFLOW_DATA
allocation unit while maintaining a 24-byte pointer on the original page . As part
of ongoing operations, the Database Engine moves large records to another page
dynamically as records are lengthened based on update operations . Update opera-
tions that shorten records might cause records to be moved back to the original
page in the IN_ROW_ DATA allocation unit . Using the sys .dm_db_index_physical_
stats object, you can obtain information about tables or indexes that might contain
row-overflow data .

 ChAPTeR 8  Core Database Administration238

Because records that contain row-overflow data are processed synchronously
instead of asynchronously, querying and performing other select operations, such as
sorts or joins, slows processing time, and this might have an impact on the server’s
performance . To reduce the performance impact, consider the frequency with which
this overflow data is likely to be queried and the percentage of rows that are likely
to overflow . If users or applications are likely to perform frequent queries on many
rows of row-overflow data, you should consider normalizing tables so that some
columns are moved to another table . You can then make queries against the data
using an asynchronous JOIN operation .

NOTE The length of individual columns must still fall within the limit of 8,000 bytes

for varchar, nvarchar, varbinary, sql_variant, and CLR user-defined type columns. Only

their combined lengths can exceed the 8,060-byte row limit of a table.

You can include columns that contain row-overflow data as key or nonkey
columns of a nonclustered index . However, the index key of a clustered index can-
not contain varchar columns that have existing data in the ROW_OVERFLOW_DATA
allocation unit . If a clustered index is created on a varchar column and the existing
data is in the IN_ROW_DATA allocation unit, subsequent insert or update actions on
the column that would push the data off-row will fail .

Database Administration Basics

You perform most database administration work through SQL Server Management
Studio . You can use SQL Server Management Studio to carry out tasks such as the
following:

■■ Viewing database information

■■ Checking user and system databases

■■ Examining database objects

This section examines each of these tasks . Keep in mind that when you’ve config-
ured Windows PowerShell for remoting and installed the SQL Server management
tools on your computer, you can execute commands on remote computers running
SQL Server . Invoke-Sqlcmd runs commands remotely when you use the –Server-
Instance parameter to specify a remote server instance that you want to work with .
Set-Location runs commands locally or remotely based on the SqlServer: provider
drive path you use .

Another way to work remotely with servers is to enter a remote session . You can
enter an interactive remote session by using Enter-PSSession . Here is an example:

enter-pssession –computername dataserver48

Here, you use your current credentials to start a remote interactive session
with DataServer48 . To specify the credentials for the session, use the –Credentials

 Core Database Administration ChAPTeR 8 239

parameter . Related tasks are covered in detail in Chapter 4, “Using Sessions, Jobs,
and Remoting,” in Windows	PowerShell	2.0	Administrator’s	Pocket	Consultant
(Microsoft Press, 2009),

Viewing Database Information in SQL Server
Management Studio
SQL Server organizes information using a top-down hierarchy that starts at the
highest level with server groups and then moves down to servers, databases, and
objects . You must work your way down to the database level to view the databases
installed on a particular server instance . If you registered a server instance and
connected to it previously, you can view its databases by completing the following
steps:

  1. In SQL Server Management Studio, use the Registered Servers view to select
a type of server, such as Database Engine . If you need to expand a server
group to see the servers listed in the group, click the plus sign (+) next to the
name of the group .

  2. In the Registered Servers view, select a server by double-clicking its name in
the list . This connects you to the server in the Object Explorer view .

NOTE  If the SQL Server service is stopped, you must restart it before accessing

the server. Additionally, if you have not authenticated the server connection, you

might need to provide a SQL login account and password. You might also need

to reestablish a connection with the server. In either case, enter any necessary

information, and then click OK or Yes to continue.

  3. In the Object Explorer view, click the plus sign (+) next to the server’s Data-
bases folder to see a list of the databases available on the server .

  4. Right-click the database you want to work with, and then select Properties .
This displays the Database Properties dialog box, shown in Figure 8-1 . The
Database Properties dialog box includes several properties pages:

■■ General Provides general database information, such as status, owner,
date created, size, and space available . This page also details the last
backup date and collation setting .

■■ Files Provides details on the data and log files associated with the
database . If the database has been configured for full-text search, the Use
Full-Text Indexing check box is selected . Catalog files associated with the
database are not listed .

■■ Filegroups Lists the filegroups associated with the database and allows
you to add or remove filegroups .

■■ Options Provides controls for viewing and managing standard database
options and settings .

 ChAPTeR 8  Core Database Administration240

■■ Change Tracking Provides controls for viewing and managing change-
tracking settings .

■■ Permissions Lists users or roles that have specific permissions allowed
or denied in the database . Also allows you to set database permissions for
users or roles .

■■ Extended Properties Provides controls for viewing and managing
extended database properties .

■■ Mirroring Provides controls for viewing and managing database mir-
roring settings .

■■ Transaction Log Shipping Details the current log shipping configura-
tion (if any) and allows you to manage log shipping .

FIGURE 8-1 The General page of the Database Properties dialog box

Viewing Database Information Using T-SQL
You can also use Transact-SQL (T-SQL) to examine database information . Transact-
SQL is an enhanced version of the standard structured query language that SQL
Server uses . In SQL Server Management Studio, access the Query view by right-
clicking the name of a server you have already connected to in the Object Explorer
view and selecting New Query . Alternatively, click New Query on the main toolbar,
select Database Engine Query, and then establish a connection to the Database
Engine on a specific server .

 Core Database Administration ChAPTeR 8 241

After you have accessed the Query view, use the following command, where
dbname is the name of the database you want to examine, to view database
information:

sp_helpdb <dbname>
go

When you view database information in this way, you get an overview of the
database as well as a listing of current data and log files . Table 8-2 summarizes the
information available when you view database properties using T-SQL . This data is
returned in two result sets . You need to scroll down in the Results pane to see the
second result set .

TABLE 8-2 Database Properties Viewable Using T-SQL

COLUMN NAME DESCRIPTION

compatibility_level The current compatibility level of the database . The level 100
indicates SQL Server 2008 compatibility .

created The date the database was created .

db_size The total size of the database, including all data and log files .

dbid The unique identifier for the database on the current server .

filegroup The filegroup associated with the database file . Filegroups
allow you to group together sets of database files .

fileid The unique identifier for the file in the current database .

filename The full file name and path .

growth The number of megabytes or percent by which the file grows .

maxsize The maximum file size . Unlimited means there is no limit .

name The name of the database or file (without a file extension) .

owner The database owner .

size The current size of a file .

status The database status .

usage The way the file is used, such as data only or log only .

Checking System and Sample Databases
A new SQL Server installation includes the system databases listed in Table 8-3 . Sys-
tem databases are critical to the proper operation of SQL Server, and an important
aspect of the administration process is backing up and maintaining these data-
bases . Sample databases can also be installed, but they are meant only to provide

 ChAPTeR 8  Core Database Administration242

examples and do not need regular maintenance . You can locate and download the
examples and sample databases from the Microsoft SQL Server Community Projects
& Product Samples Web site at www.codeplex.com/sqlserversamples . In the Microsoft
Product Samples section, you’ll find links to samples for the SQL Server compo-
nents and to the official SQL Server sample databases . If you install the samples, the
sample files are installed by default in a component-specific subfolder of C:\Program
Files\Microsoft SQL Server\100\Samples .

TABLE 8-3 Summary of System Databases

DATABASE
NAME

DATABASE
TYPE DESCRIPTION

master System Maintains information on all databases installed on the
server . This database is modified anytime you create
databases, manage accounts, or change configuration
settings . Back up the master database regularly .

model System Provides a template for all new databases . If you
want new databases to have certain properties or
permissions, put these changes in the model database .
All new databases inherit the changes .

tempdb	 System Provides a temporary workspace for processing queries
and handling other tasks . This database is re-created
each time SQL Server is started and is based on the
model database .

msdb	 System Used by the SQL Server Agent services when handling
alerts, notifications, and scheduled tasks . You can
access all the information in this database by using SQL
Server Management Studio options .

distribution System/
Replication

Used by Replication Services when you configure a
server as a publisher, distributor, or both . This database
is created when you configure replication, but it is not
created automatically with a new installation .

examining Database Objects
The main elements of a SQL Server database are referred to as objects . The objects
you can associate with a database include the following:

■■ Certificates

■■ Constraints

■■ Defaults

■■ Indexes

 Core Database Administration ChAPTeR 8 243

■■ Keys

■■ Stored procedures and extended stored procedures

■■ Tables

■■ Triggers

■■ User-defined data types

■■ User-defined functions

■■ Views

You can also associate users, roles, rules, and full-text catalogs with databases .

To examine objects within a database, complete the following steps:

  1. In SQL Server Management Studio, use the Registered Servers view to select
a type of server, such as Database Engine . If you need to expand a server
group to see the servers available in the group, click the plus sign (+) next to
the name of a group .

  2. In the Registered Servers view, select a server by double-clicking its name in
the list . This connects you to the server in the Object Explorer view .

NOTE  If you have not authenticated the server connection, you might need to

provide a SQL login account and password. You might also need to reestablish a

connection with the server. In either case, enter any necessary information and

then click Connect to continue.

  3. In the Object Explorer view, work your way down to the database level .
Expand the Databases folder, and then expand the entry for a specific data-
base to see a list of nodes for database objects, including the following ones:

■■ Database Diagrams Contains visual diagrams of a database and the
information it contains . Use Database Designer to create and manage
diagrams .

■■ Tables Contains system and user tables . System tables are used for
many purposes, including database mail, database maintenance plans,
replication, backup and restore, and log shipping . System tables should
not be modified directly .

■■ Views Contains system and user views . Standard views combine data
from one or more tables to make working with the data easier . Indexed
views have unique clusters to improve query performance . Partitioned
views join horizontally partitioned data from tables on one or more
servers .

■■ Synonyms Contains synonyms, which are alternate names for schema-
scoped objects . Applications can use synonyms to refer to objects in the
database abstractly . You can then change the underlying name of the
object without having to modify the application programming .

 ChAPTeR 8  Core Database Administration244

■■ Programmability Contains nodes used to represent most program-
mable object types and subtypes, including stored procedures, func-
tions, triggers, assemblies, data types, rules, and defaults . This node also
contains plan guides .

■■ Service Broker Contains Service Broker–related objects, including
message types, contracts, queues, services, routes, and remote service
bindings . This node also contains broker priorities .

■■ Storage Contains storage-related objects, including full-text catalogs,
partition schemes, and partition functions . This node also contains full-
text stoplists .

■■ Security Contains security-related objects, including users, roles, sche-
mas, keys, and certificates . It also contains database audit specifications .

NOTE Database objects are covered in detail in Chapters 10 through 13. For exam-

ple, you will find more information about tables, indexes, and views in Chapter 10,

“Manipulating Schemas, Tables, Indexes, and Views.”

Plan guides, broker priorities, and full-text stoplists deserve additional discussion .
Broker priorities define a priority level and the set of criteria for determining which
Service Broker conversations to assign the priority level . Servicer Broker assigns
the priority level to any conversation endpoint that uses the same combination of
contracts and services that are specified in the conversation priority . Priorities range
in value from 1 (low) through 10 (high) . The default is 5 .

You can create plan guides to help optimize queries when a small subset of que-
ries in a database application deployed from a third-party vendor are not perform-
ing as expected . In a plan guide, you can specify the T-SQL statement that you want
to be optimized and either an OPTION clause that contains the query hints you
want to use or a specific query plan you want to use to optimize the query . When
the query executes, the query optimizer matches the T-SQL statement to the plan
guide and either attaches the OPTION clause to the query at run time or uses the
specified query plan .

You can create three types of plan guides:

■■ OBJECT plan guide Matches queries that execute in the context of T-SQL
stored procedures, scalar user-defined functions, multistatement table-
valued user-defined functions, and DML triggers .

■■ SQL plan guide Matches queries that parameterize to a specified form,
execute in the context of stand-alone T-SQL statements, or execute in
batches that are not part of a database object .

■■ TEMPLATE plan guide Matches stand-alone queries that parameterize to
a specified form and override the current PARAMETERIZATION database SET
option of a database for a class of queries .

 Core Database Administration ChAPTeR 8 245

If you’ve used plan guides with earlier releases of SQL Server, your plan guides
remain intact after an upgrade, but they should be validated . You can validate exist-
ing plan guides by using the sys .fn_validate_plan_guide function . You also can use
SQL Server Profiler to monitor SQL Server for Plan Guide Unsuccessful events, which
indicate problems with a plan guide .

SQL Server discards commonly occurring strings, called stopwords, that do not
help with searches . During index creation, the Full-Text Engine omits stopwords
from the full-text index . As a result, full-text queries do not search on stopwords .
SQL Server 2008 stopwords replace SQL Server 2005 noise words .

In SQL Server 2008, you can create and use lists of stopwords . You associate
these stoplists with full-text indexes, and then SQL Server applies the list when it
builds indexes and applies queries . You create stoplists by uploading the system-
supplied stoplist to the database, by creating your own stopwords and lists, or by
combining these techniques . The system stoplist includes common stopwords for
all supported languages . You can tailor the system-supplied stoplist by adding and
removing stopwords .

Creating Databases

SQL Server uses the model database as the prototype for new databases . If you want
new databases to have a particular setup, first modify the model database, and then
create the new databases . Otherwise, you have to modify the settings of each new
database manually .

The easiest way to create a new database is by using SQL Server Management
Studio . You can also create databases using T-SQL .

Creating Databases in SQL Server Management Studio
In SQL Server Management Studio, you set database properties with buttons and
input boxes and let SQL Server do all the detail work . Create a database with the
default options by completing these steps:

  1. In SQL Server Management Studio, use the Registered Servers view to select
a type of server, such as Database Engine . If you need to expand a server
group to see the servers available in a group, click the plus sign (+) next to
the name of a group .

  2. In the Registered Servers view, select a server by double-clicking its name in
the list . This connects you to the server in the Object Explorer view .

  3. Right-click the Databases folder, and then select New Database to display the
dialog box shown in Figure 8-2 .

 ChAPTeR 8  Core Database Administration246

FIGURE 8-2 The New Database dialog box

  4. On the General page, type a name for the database in the Database Name
box . Although database names can have up to 128 characters, it is a good
idea to give a new database a short but descriptive name to make it easier to
track .

NOTE  The names of database objects are referred to as identifiers. Identifiers

can contain from 1 to 128 characters (except for local temporary tables, which can

have from 1 to 116 characters), and they must follow the specific naming conven-

tions for the identifier class to which they belong. Generally, if the identifier name

uses spaces or if it begins with a number, you must use brackets ([]) or double

quotation marks (" ") to delimit the name when referencing it in T-SQL commands.

  5. Click OK . SQL Server creates the database .

To customize the creation process, follow steps 1 through 4 (but not 5) in the
previous example, and then continue with these steps:

  1. On the General page, set the database owner by clicking the button to the
right of the Owner box to display the Select Database Owner dialog box .

  2. In the Select Database Owner dialog box, click Browse, and then in the
Browse For Objects dialog box, select the check box for the login you want
to use as the owner of the database . Click OK twice .

 Core Database Administration ChAPTeR 8 247

  3. By default, SQL Server bases the data file name on the database name . For
example, if you use Projects as the database name, the data file is named
Projects . You can change the default name by typing a new value .

  4. The Filegroup box shows which filegroup the data file belongs to . By default,
all files are placed in the primary group . Although the primary data file must
be in the primary group, you can create other data files and place them in
different filegroups . Filegroups provide options for determining where data
is stored and how it is used, as well as how data is backed up and restored .

TIP  Filegroups are designed primarily for large databases and advanced admin-

istration. If your database might grow to 1 GB or larger, consider using multiple

filegroups. Otherwise, you really do not need to use multiple filegroups. The

primary reason to use filegroups is to improve database response time. You do

this by allowing database files to be created across multiple disks, to be accessed

by multiple disk controllers, or both.

  5. In the Initial Size box, type an initial size for the database in megabytes . Use
a size that makes sense for the amount of data that the database will store .
By default, new databases have the same size as the model database . The size
range for databases is 1 MB to many terabytes .

TIP  Setting the initial database size to a reasonable value cuts down on the

overhead that might be associated with growing the database. Whether you

grow the database manually or SQL Server grows it automatically, the database is

locked until resizing is complete. This can cause delays in processing queries and

handling transactions.

NOTE  You cannot shrink a database to a size smaller than it was when you cre-

ated it. however, you can use the DBCC ShRINKFILe	statement to shrink individual

data and log files to make them smaller than their original sizes. With DBCC

ShRINKFILe, you must shrink each file individually; you cannot shrink the entire

database.

  6. By default, new databases are set to auto grow each time a data file needs to
be expanded . Click the button to the right of the Autogrowth box to adjust
the settings . As Figure 8-3 shows, the Autogrowth feature can be set to grow
a database by using a percentage or by an amount in megabytes . You can
restrict the maximum file growth to a specific size or allow unrestricted file
growth .

REAL WORLD  The Autogrowth feature helps ensure that databases do not

run out of space. When configuring a database, be careful to enable growth by a

certain amount, however. Setting a 10-percent growth rate, for example, causes a

database that is 5 GB in size to grow by a whopping 500 MB each time a data file

needs to be expanded. A server with multiple databases might run out of space

as a result of the growth factor. If you set the growth in megabytes, with 1 MB as

 ChAPTeR 8  Core Database Administration248

a minimum growth size, you know exactly how much the database will grow each

time the data file expands. You might also want to configure an alert to notify you

when the database grows to a certain size. You will learn how to configure an alert

in Chapter 16, “Database Automation and Maintenance.”

FIGURE 8-3 Configuring the Autogrowth feature

  7. In the Path box, type the full path to the data file . The name of the primary
data file should end with the .mdf file extension . By default, SQL Server uses
the default data location you selected when you installed the server . Click
the button to the right of the Path box to find a new path, or you can enter a
new path directly .

  8. Secondary data files provide an additional location for data . If you want to
configure secondary data files, click Add to start on a new line, and then
repeat steps 3 through 7 . Secondary data file names should end with the .ndf
file extension .

  9. Transaction logs are listed with the Log file type . After you configure data
files, you can configure one or more transaction log files in much the same
way that you configure the data files . Type the file name, filegroup, initial
size, and path information . Configure Autogrowth as necessary . Be sure to
name the log files with the .ldf file extension .

NOTE  Setting a size for the transaction log can be tricky. You do not want to rob

the system of needed space for data, but you do want to avoid a situation in which

the transaction logs are resized again and again because a file is locked when it

is being expanded. I recommend 2 MB to 3 MB as a minimum for most data-

bases, and 25 percent of total data file size on a moderately active database. Also,

placing transaction logs on separate drives from data files can usually improve

database performance.

 Core Database Administration ChAPTeR 8 249

  10. On the Options page, use the Collation list to choose a collation for the data-
base . Windows collation names have two components: a collation designator
and a comparison style . The collation designator specifies the alphabet or
language whose sorting rules are applied with dictionary sorting and the
code page to use when storing non-Unicode character data . The compari-
son style specifies additional collation styles as identified by the following
abbreviations:

■■ 90 Code-point sorting (updated collation to include code-point sorting)

■■ CI Case insensitive

■■ CS Case sensitive

■■ AI Accent insensitive

■■ AS Accent sensitive

■■ KS Kanatype sensitive

■■ WS Width sensitive

■■ BIN Binary sort order

■■ BIN2 Code-point binary sort (for pure code-point comparison
collations)

  11. Click OK to complete the creation process .

After you finish creating a database, you should set options and permissions for
that database . You will learn about setting options in “Setting Database Options in
SQL Server Management Studio” later in this chapter . Setting permissions is covered
in Chapter 9 .

Creating Databases Using T-SQL
You can also create a database by using the CREATE DATABASE command . This
command has options that are similar to those in the Database Properties dialog
box . The best way to learn how the command works is by creating databases in SQL
Server Management Studio first and then trying the CREATE DATABASE command .

The syntax and usage for CREATE DATABASE are shown in Sample 8-1 .

 ChAPTeR 8  Core Database Administration250

SAMPLE 8-1 CREATE DATABASE Command Syntax and Usage

Syntax

CREATE DATABASE database_name
 [ON
 [<filespec> [,...n]]
 [, <filegroup> [,...n]]
]
[
 [LOG ON { <filespec> [,...n] }]
 [COLLATE collation_name]
 [WITH <external_access_option>]
]
[;]

<filespec> ::=
{
[PRIMARY]
(NAME = logical_file_name ,
 FILENAME = "os_file_name"
 [, SIZE = size [KB | MB | GB | TB]]
 [, MAXSIZE = { max_size [KB | MB | GB | TB] | UNLIMITED }]
 [, FILEGROWTH = growth_increment [KB | MB | %]]
) [,...n] }

<filegroup> ::=
{ FILEGROUP filegroup_name [CONTAINS FILESTREAM] [DEFAULT]
 <filespec> [,...n] }

<external_access_option> ::=
{ DB_CHAINING { ON | OFF }
 | TRUSTWORTHY { ON | OFF } }

Usage

USE MASTER
GO
CREATE DATABASE Sample
ON
PRIMARY
(NAME = Sample1,
FILENAME = "c:\data\sampledat1.mdf",
SIZE = 100MB,
MAXSIZE = UNLIMITED,
FILEGROWTH = 10%),
(NAME = Sample2,
FILENAME = "c:\data\sampledat2.ndf",
SIZE = 100MB,
MAXSIZE = UNLIMITED,
FILEGROWTH = 10%)

 Core Database Administration ChAPTeR 8 251

LOG ON
(NAME = SampleLog1,
FILENAME = "c:\data\samplelog1.ldf",
SIZE = 3MB,
MAXSIZE = UNLIMITED,
FILEGROWTH = 5MB)
GO

Altering Databases and Their Options

New databases inherit options from the model database . After you create a data-
base, you can modify inherited settings at any time by using SQL Server Manage-
ment Studio or the ALTER DATABASE	statement and other SQL commands . In most
SQL Server editions, many standard options can be set to TRUE (ON) or FALSE (OFF)
states . Other options accept specific values that specify their configured state, such
as GLOBAL or LOCAL .

Setting Database Options in SQL Server Management Studio
To set database options in SQL Server Management Studio, complete the following
steps:

  1. In SQL Server Management Studio, use the Registered Servers view to select
a type of server, such as Database Engine . If you need to expand a server
group to see the servers listed in the group, click the plus sign (+) next to the
name of a group .

  2. In the Registered Servers view, select a server by double-clicking its name in
the list . This connects you to the server in the Object Explorer view .

  3. Click the plus sign (+) next to the Databases folder . Right-click the name of
a database, and then select Properties to display the Database Properties
dialog box .

  4. In the Database Properties dialog box, select Options in the Select A Page
list, as shown in Figure 8-4 . You can now configure options for the database
by using the drop-down lists provided . Most options can be turned off using
a value of False or turned on using a value of True .

  5. Click OK when you finish selecting options . Your changes take effect immedi-
ately; you do not need to restart the server .

 ChAPTeR 8  Core Database Administration252

FIGURE 8-4 The Options page of the Database Properties dialog box

Modifying Databases Using ALTeR DATABASe
SQL Server Management Studio provides one easy way to modify the configuration
of a database . Another way to modify a database is to use ALTER DATABASE . You
can use the ALTER DATABASE command to perform the following tasks:

■■ Set database options . You can use the ALTER DATABASE command instead of
the sp_dboption stored procedure .

■■ Add new data and log files to a database . All the files must be placed in the
same filegroup .

■■ Modify properties of data and log files, such as increasing file size, changing
the maximum size, or setting file growth rules .

■■ Add a new filegroup to a database .

■■ Modify the properties of an existing filegroup, such as designating whether a
filegroup is read-only or read-write and which filegroup is the default .

■■ Remove files and filegroups from a database . These elements can be
removed only when they do not contain data .

The ALTER DATABASE command is designed to make one database change at
a time . Its syntax is shown in Sample 8-2 . The examples in the listing show how
you can use ALTER DATABASE to perform important administrative tasks . You can
use the Query view in SQL Server Management Studio or SQLCMD to execute

 Core Database Administration ChAPTeR 8 253

commands . Execute commands with either the Execute Command button or the GO
statement, respectively .

SAMPLE 8-2 ALTER DATABASE Syntax and Usage

Syntax

ALTER DATABASE database_name
{ <add_or_modify_files>
 | <add_or_modify_filegroups>
 | <set_database_options>
 | MODIFY NAME = new_database_name
 | COLLATE collation_name }
[;]
<add_or_modify_files>::=
{ ADD FILE <filespec> [,...n]
 [TO FILEGROUP { filegroup_name | DEFAULT }]
 | ADD LOG FILE <filespec> [,...n]
 | REMOVE FILE logical_file_name
 | MODIFY FILE <filespec>
}
<filespec>::=
(NAME = logical_file_name
 [, NEWNAME = new_logical_name]
 [, FILENAME = 'os_file_name']
 [, SIZE = size [KB | MB | GB | TB]]
 [, MAXSIZE = { max_size [KB | MB | GB | TB] | UNLIMITED }]
 [, FILEGROWTH = growth_increment [KB | MB | %]]
 [, OFFLINE]
)
<add_or_modify_filegroups>::=
{ | ADD FILEGROUP filegroup_name
 | REMOVE FILEGROUP filegroup_name
 | MODIFY FILEGROUP filegroup_name
 { <filegroup_updatability_option>
 | DEFAULT
 | NAME = new_filegroup_name
 }
}
<filegroup_updatability_option>::=
{ { READONLY | READWRITE }
 | { READ_ONLY | READ_WRITE }
}
<set_database_options>::=
SET {
 { <optionspec> [,...n] [WITH <termination>] }
 | ALLOW_SNAPSHOT_ISOLATION {ON | OFF }
 | READ_COMMITTED_SNAPSHOT {ON | OFF } [WITH <termination>]
}

 ChAPTeR 8  Core Database Administration254

<optionspec>::=
{ <auto_option>
 | <change_tracking_option>
 | <cursor_option>
 | <database_mirroring_option>
 | <date_correlation_optimization_option>
 | <db_encryption_option>
 | <db_state_option>
 | <db_update_option>
 | <db_user_access_option>
 | <external_access_option>
 | <parameterization_option>
 | <recovery_option>
 | <service_broker_option>
 | <snapshot_option>
 | <sql_option>
}

<auto_option> ::=
{ AUTO_CLOSE { ON | OFF }
 | AUTO_CREATE_STATISTICS { ON | OFF }
 | AUTO_SHRINK { ON | OFF }
 | AUTO_UPDATE_STATISTICS { ON | OFF }
 | AUTO_UPDATE_STATISTICS_ASYNC { ON | OFF }
}

<change_tracking_option> ::=
{ CHANGE_TRACKING {
 = ON [<change_tracking_settings>]
 | <change_tracking_settings>
 | = OFF
 }
}
<change_tracking_settings> ::=
{ [AUTO_CLEANUP = { ON | OFF } [,]]
[CHANGE_RETENTION = retention_period { DAYS | HOURS | MINUTES }] }

<cursor_option> ::=
{ CURSOR_CLOSE_ON_COMMIT { ON | OFF }
 | CURSOR_DEFAULT { LOCAL | GLOBAL }
}

<partner_option> ::=
{ PARTNER { = 'partner_server'
 | FAILOVER
 | FORCE_SERVICE_ALLOW_DATA_LOSS
 | OFF
 | RESUME
 | SAFETY { FULL | OFF }

 Core Database Administration ChAPTeR 8 255

 | SUSPEND
 | TIMEOUT integer
 }
 <witness_option> ::=
 WITNESS { = 'witness_server'
 | OFF
 }
}
<date_correlation_optimization_option> ::=
{ DATE_CORRELATION_OPTIMIZATION { ON | OFF }
}
<db_encryption_option> ::=
 { ENCRYPTION { ON | OFF }
}
<db_state_option> ::=
 { ONLINE | OFFLINE | EMERGENCY }
<db_update_option> ::=
 { READ_ONLY | READ_WRITE }
<db_user_access_option> ::=
 { SINGLE_USER | RESTRICTED_USER | MULTI_USER }
<external_access_option> ::=
{ DB_CHAINING { ON | OFF }
 | TRUSTWORTHY { ON | OFF }
}
<parameterization_option> ::=
{ PARAMETERIZATION { SIMPLE | FORCED }
}
<recovery_option> ::=
{ RECOVERY { FULL | BULK_LOGGED | SIMPLE }
 | TORN_PAGE_DETECTION { ON | OFF }
 | PAGE_VERIFY { CHECKSUM | TORN_PAGE_DETECTION | NONE }
}
<service_broker_option> ::=
{ ENABLE_BROKER
 | DISABLE_BROKER
 | NEW_BROKER
 | ERROR_BROKER_CONVERSATIONS
 | HONOR_BROKER_PRIORITY { ON | OFF}
}

<snapshot_option> ::=
{ ALLOW_SNAPSHOT_ISOLATION { ON | OFF }
 | READ_COMMITTED_SNAPSHOT {ON | OFF }
}

 ChAPTeR 8  Core Database Administration256

<sql_option> ::=
{ ANSI_NULL_DEFAULT { ON | OFF }
 | ANSI_NULLS { ON | OFF }
 | ANSI_PADDING { ON | OFF }
 | ANSI_WARNINGS { ON | OFF }
 | ARITHABORT { ON | OFF }
 | COMPATIBILITY_LEVEL = { 80 | 90 | 100 }
 | CONCAT_NULL_YIELDS_NULL { ON | OFF }
 | NUMERIC_ROUNDABORT { ON | OFF }
 | QUOTED_IDENTIFIER { ON | OFF }
 | RECURSIVE_TRIGGERS { ON | OFF }
}
<termination> ::=
{ ROLLBACK AFTER integer [SECONDS]
 | ROLLBACK IMMEDIATE
 | NO_WAIT
}

Usage: Adding a File to a Database

ALTER DATABASE Customer
ADD FILE
(NAME = Customerdata2,
 FILENAME = "c:\data\customerdat2.ndf",
 SIZE = 10MB,
 MAXSIZE = 500MB,
 FILEGROWTH = 5MB)

Usage: Adding a Filegroup

ALTER DATABASE Customer
ADD FILEGROUP Secondary

Usage: Adding Files and Placing Them in a Filegroup

ALTER DATABASE Customer
ADD FILE
(NAME = Customerdata3,
 FILENAME = "c:\data\customerdat3.ndf",
 SIZE = 10MB,
 MAXSIZE = UNLIMITED,
 FILEGROWTH = 5MB),
(NAME = Customerdata4,
 FILENAME = "c:\data\customerdat4.ndf",
 SIZE = 10MB,
 MAXSIZE = UNLIMITED,
 FILEGROWTH = 5MB)
TO FILEGROUP Secondary

 Core Database Administration ChAPTeR 8 257

Usage: Setting the Default Filegroup

ALTER DATABASE Customer
MODIFY FILEGROUP Secondary DEFAULT

Usage: Modifying a File

ALTER DATABASE Customer
MODIFY FILE
(NAME = Customerdata3,
 SIZE = 20MB)

Usage: Removing a File from a Database

USE Customer
DBCC SHRINKFILE (Customerdata3, EMPTYFILE)
ALTER DATABASE Customer
REMOVE FILE Customerdata3

Usage: Setting the Recovery Model Option

ALTER DATABASE Customer
SET RECOVERY FULL
GO

Usage: Setting Single User with Rollback of Incomplete Transactions

ALTER DATABASE Customer
SET SINGLE_USER
WITH ROLLBACK IMMEDIATE
GO

NOTE The eMPTYFILe option of DBCC ShRINKFILe empties a file by moving its data

to other files in the same filegroup. Then you can use the ReMOVe FILe option of the

ALTeR DATABASe command to delete the file.

Configuring Automatic Options
SQL Server 2008 has several important features that can be managed automatically .
You will find the automatic options on the Options page of the Database Properties
dialog box . These options are shown as TRUE when they are set to ON and FALSE
when they are set to OFF . In the following list, options in the Database Properties
dialog box are shown first, with the related ALTER DATABASE keyword following in
parentheses . Automatic options include the following:

■■ Auto Close (auto_close) When this option is set to TRUE, the database
closes and resources become available again when the last user connec-
tion ends and all database processes are complete . The database reopens
automatically when a user connects to the database again . In the SQL Server

 ChAPTeR 8  Core Database Administration258

2008 Express edition, this option is set to TRUE by default . All other editions
set this option to FALSE by default, which can improve database performance
because the overhead of opening and closing databases is eliminated . When
this option is set to FALSE, the database remains open even if no users are
currently using it .

TIP  In the express edition, Auto Close is a useful feature that allows databases to

be treated like any other files. When the database is closed, you can move, copy,

or change it.

■■ Auto Create Statistics (auto_create_statistics) When this option is set
to TRUE (the default), statistics are automatically created by SQL Server for
columns used in a WHERE clause and as otherwise needed . These statistics
are used to determine the best way to evaluate a query, which in turn can
improve query performance .

■■ Auto Shrink (auto_shrink) When this option is set to TRUE, data and log
files are reduced in size and compacted automatically . When records are
deleted or purged, SQL Server automatically reduces the size of data or log
files or both file types . However, log files are reduced in size only when you
back up the transaction log or set the Recovery Model to Simple .

NOTE  Several caveats apply to Auto Shrink. The Auto Shrink option is applied

only when more than 25 percent of a file contains unused space. This causes SQL

Server to reduce the file size so that only 25 percent of file space is free, or to

set the file size to its original size setting, whichever is greater. The process that

shrinks the database checks the database size at 30-minute intervals. As with the

Autogrowth feature discussed earlier, the database is locked when SQL Server

shrinks files, which can reduce query response time. It is usually a better choice

to run the DBCC ShRINK-DATABASe command periodically or to schedule this

task on a recurring basis, as explained in “Compressing and Shrinking a Database

Manually” later in this chapter.

■■ Auto Update Statistics (auto_update_statistics) When this option is set
to TRUE (the default), existing statistics are updated automatically if data
in the related tables changes . Otherwise, existing statistics are not updated
automatically; you can only update them manually . The UPDATE STATISTICS
statement reenables automatic updating of statistics unless the NORECOM-
PUTE clause is specified .

■■ Auto Update Statistics Asynchronously (auto_update_statistics_
async) When this option is set to TRUE, queries that initiate an automatic
update of out-of-date statistics do not wait for the statistics to be updated
before compiling . Otherwise, queries that initiate an automatic update of
out-of-date statistics wait for the statistics to be updated before compiling .

 Core Database Administration ChAPTeR 8 259

To manage the automatic features using SQL Server Management Studio, follow
these steps:

  1. In the Object Explorer view in SQL Server Management Studio, right-click the
database you want to configure, and then select Properties from the shortcut
menu .

  2. In the Database Properties dialog box, select Options in the Select A Page
list .

  3. Set the individual automatic options to True or False as necessary . Click OK
when you finish setting options . Your changes take effect immediately; you
do not need to restart the server .

To manage the automatic features using T-SQL, follow these steps:

  1. In the Object Explorer view in SQL Server Management Studio, right-click
the database you want to configure, and then select New Query from the
shortcut menu .

  2. In the Query view, type ALTER DATABASE <dbname> SET <option>
<option_value> GO, where dbname is the name of the database you want
to examine, option is the name of the option to set, and option_value is the
value for the specified option . The following example shows the commands
required to turn on the auto_shrink option for the Personnel database:

ALTER DATABASE Personnel
SET auto_shrink ON
GO

  3. Execute the query by clicking Execute or by pressing F5 . If the option is set
properly, the command should complete successfully .

Controlling ANSI Compliance at the Database Level
ANSI compliance can be controlled at the database level by using database options .
You can find these options listed under the Miscellaneous heading on the Options
page of the Database Properties dialog box . The settings for these options are
shown as TRUE when they are set to ON and FALSE when they are set to OFF . In the
following list, Database Properties dialog box options are listed first, followed by the
related ALTER DATABASE keyword in parentheses:

■■ ANSI NULL Default (ansi_null_default) When this option is set to TRUE,
it changes the database default to NULL when no value is specified . You can
override this setting by explicitly stating NULL or NOT NULL when you create
user-defined data types or column definitions .

■■ ANSI NULLS Enabled (ansi_nulls) When this option is set to TRUE, any
comparison to a null value evaluates to NULL . Otherwise, comparisons of
non-Unicode values evaluate to TRUE only when both values are NULL .

■■ ANSI Padding Enabled (ansi_padding) When this option is set to TRUE,
non-null values shorter than the defined column size are padded to fill the

 ChAPTeR 8  Core Database Administration260

length of the column . Values are padded as appropriate for the relevant data
type; for example, char columns are padded with trailing blanks, and binary
columns are padded with trailing zeroes . When this option is set to FALSE,
trailing blanks are trimmed .

■■ ANSI Warnings Enabled (ansi_warnings) When this option is set to TRUE,
SQL Server issues certain warnings that would otherwise not be displayed .
For example, if this option is set to TRUE, divide-by-zero errors are displayed .
If this option is set to FALSE, these errors are not displayed .

■■ Arithmetic Abort Enabled (arithabort) When this option is set to TRUE,
it terminates a query when an overflow or divide-by-zero error occurs . If the
error occurs in a transaction, the transaction is rolled back . When the option
is set to FALSE, a warning message might be displayed, but queries and
transactions continue as if no error occurred .

■■ Concatenate Null Yields Null (concat_null_yields_null) When this
option is set to TRUE, concatenating a string containing NULL with other
strings results in NULL . If this option is set to FALSE, the null value is treated
as an empty string .

■■ Numeric Round-Abort (numeric_roundabort) When this option is set to
TRUE, an error is generated when a loss of precision occurs in an expression .
When it is set to FALSE, losses of precision do not generate error messages,
and the result is rounded to the precision of the column or variable storing
the result .

■■ Quoted Identifiers Enabled (quoted_identifier) When this option is set
to TRUE, identifiers must be delimited by double quotation marks ("…") and
literals must be delimited by single quotation marks ('…') . All strings that are
delimited by double quotation marks are interpreted as object identifiers
and do not have to follow the T-SQL rules for identifiers . When this option is
set to FALSE, you need to use quoted identifiers only if names contain spaces .

■■ Recursive Triggers Enabled (recursive_triggers) When this option is set
to TRUE, a trigger can execute recursively . Triggers can be executed directly
or indirectly . If a trigger is direct, a trigger in Table A1 modifies Table A1,
which in turn causes the trigger to fire again . If a trigger is indirect, a trigger
in Table A1 could modify data in Table A2, which in turn has a trigger that
modifies data in Table A1, and this causes the original trigger to fire again .
When this option is set to FALSE, only indirect triggers are allowed .

To manage the ANSI compliance features using SQL Server Management Studio,
follow these steps:

  1. In the Object Explorer view in SQL Server Management Studio, right-click the
database you want to configure, and then select Properties from the shortcut
menu .

  2. In the Database Properties dialog box, select Options in the Select A Page
list .

 Core Database Administration ChAPTeR 8 261

  3. Set the ANSI compliance options to True or False as necessary . Click OK when
you finish setting these options . Your changes take effect immediately with-
out restarting the server .

To manage the ANSI compliance features using T-SQL, follow these steps:

  1. In the Object Explorer view in SQL Server Management Studio, right-click
the database you want to configure, and then select New Query from the
shortcut menu .

  2. In the Query view, type ALTER DATABASE <dbname> SET <option>
<option_value> GO, where dbname is the name of the database you want
to examine, option is the name of the option to set, and option_value is
the value for the specified option . The following example shows the com-
mands required to turn on the numeric_roundabort option for the Personnel
database:

ALTER DATABASE Personnel
SET numeric_roundabort ON
GO

  3. Execute the query by clicking Execute or by pressing F5 . If the option is set
properly, the command should complete successfully .

Configuring Parameterization
SQL Server can use parameters in T-SQL statements to increase the ability of the
relational engine to match new SQL statements with existing, previously compiled
execution plans . The PARAMETERIZATION option controls how parameterization
works .

When this option is set to SIMPLE, SQL Server parameterizes very few classes of
queries and disables forced parameterization . When this option is set to FORCED,
any literal value that appears in a SELECT, INSERT, UPDATE, or DELETE statement
submitted in any form is converted to a parameter during query compilation . The
exceptions are literals that appear in many types of query constructs .

With forced parameterization, individual statements in a batch are always
parameterized . After compiling, a parameterized query is executed in the context of
the batch in which it was originally submitted . When an execution plan for a query
is cached, you can determine whether the query was parameterized by referencing
the sql column of the sys .syscacheobjects view . With parameterized queries, the
names and data types of parameters come before the text of the submitted batch in
this column, such as (@1 tinyint) . Only experienced database administrators should
use forced parameterization, and they should do so only after determining whether
and how this affects performance .

You can override the parameterization behavior for a query and for other queries
that are syntactically equivalent but differ only in their parameter values . When SQL

 ChAPTeR 8  Core Database Administration262

Server parameterizes literals, the parameters are converted to the following data
types:

■■ Money type literals parameterize to money .

■■ Integer literals whose size would otherwise fit within the int data type param-
eterize to int .

■■ Large integer literals that are not parts of predicates that involve comparison
operators parameterize to numeric data types whose precision is just large
enough to support its size and whose scale is 0 .

■■ Large integer literals that are parts of predicates that involve any comparison
operator (including <, <=, =, !=, >, >=, !<, !>, <>, ALL, ANY, SOME, BETWEEN,
and IN) parameterize to numeric(38,0) .

■■ Fixed-point numeric literals that are not parts of predicates that involve com-
parison operators parameterize to numeric data types whose precision and
scale are just large enough to support its size .

■■ Fixed-point numeric literals that are parts of predicates that involve compari-
son operators parameterize to numeric data types whose precision is 38 and
whose scale is just large enough to support its size .

■■ Binary literals parameterize to varbinary(8000) if the literal fits within 8,000
bytes . If it is larger than 8,000 bytes, it is converted to varbinary(max) .

■■ Non-Unicode string literals parameterize to varchar(8000) if the literal
fits within 8,000 characters and to varchar(max) if it is larger than 8,000
characters .

■■ Unicode string literals parameterize to nvarchar(4000) if the literal fits within
4,000 Unicode characters and to nvarchar(max) if the literal is larger than
4,000 characters .

■■ Floating point numeric literals parameterize to float(53) .

NOTE When arithmetic operators (including +, –, *, /, or %) are used to perform

implicit or explicit conversion of int, smallint, tinyint, or bigint constant values to

the float, real, decimal, or numeric data types, SQL Server applies different rules of

parameterized and nonparameterized values to calculate the type and precision of the

expression results.

SQL Server uses simple parameterization by default . When you change the
PARAMETERIZATION option from SIMPLE to FORCED, SQL Server flushes all query
plans from the plan cache of a database except those that currently are compiling,
recompiling, or running . Plans for queries that are actively compiling, recompiling,
or running are parameterized the next time they are executed . SQL Server preserves
the current setting of the PARAMETERIZATION option when reattaching or restoring
a database .

 Core Database Administration ChAPTeR 8 263

To manage parameterization using SQL Server Management Studio, follow these
steps:

  1. In the Object Explorer view in SQL Server Management Studio, right-click the
database you want to configure, and then select Properties from the shortcut
menu .

  2. In the Database Properties dialog box, select Options in the Select A Page
list .

  3. Set the Parameterization option to Simple or Forced as necessary . Click OK
when you finish setting this option . Your changes take effect immediately
without restarting the server .

To manage parameterization using T-SQL, follow these steps:

  1. In the Object Explorer view in SQL Server Management Studio, right-click
the database you want to configure, and then select New Query from the
shortcut menu .

  2. In the Query view, type ALTER DATABASE <dbname> SET PARAMETER-
IZATION <SIMPLE | FORCED> GO, where dbname is the name of the data-
base you want to examine and the parameterization option is set to a value
of SIMPLE or FORCED . The following example shows the commands required
to set the parameterization option for the Personnel database:

ALTER DATABASE Personnel
SET PARAMETERIZATION FORCED
GO

  3. Execute the query by clicking Execute or by pressing F5 . If the option is set
properly, the command should complete successfully .

Configuring Cursor Options
Cursors are used with stored procedures, with triggers, and in batch scripts to make
the contents of a result set available to other statements . You have limited control
over cursor behavior by using the options listed under the Cursor heading on the
Options page of the Database Properties dialog box . These options are shown as
TRUE when they are set to ON and FALSE when they are set to OFF . In the following
list, Database Properties dialog box options are listed first, with the related ALTER
DATABASE keyword following in parentheses:

■■ Close Cursor On Commit Enabled (cursor_close_on_commit) When this
option is set to TRUE, open cursors are closed automatically when a transac-
tion is committed or rolled back . This behavior is in compliance with SQL-92,
but the option is not set to TRUE by default . As a result, cursors remain open
across transaction boundaries, and they close only when the related connec-
tion is closed or when the cursor is explicitly closed .

NOTE  SQL-92 is the most widely used version of the SQL standard and is some-

times referred to as ANSI SQL.

 ChAPTeR 8  Core Database Administration264

■■ Default Cursor (cursor_default) When this option is set to LOCAL, cursors
are created with local scope unless otherwise specified . As a result, the cur-
sor name is valid only within this scope . When the option is set to GLOBAL,
cursors not explicitly set to LOCAL are created with a global scope and can
be referenced in any stored procedure, batch, or trigger that the connection
executes .

To manage cursor settings by using SQL Server Management Studio, follow these
steps:

  1. In the Object Explorer view in SQL Server Management Studio, right-click the
database you want to configure, and then select Properties from the shortcut
menu .

  2. In the Database Properties dialog box, select Options in the Select A Page
list .

  3. Set the Cursor options as necessary . Click OK when you finish setting options .
Your changes take effect immediately without restarting the server .

To manage the cursor settings using T-SQL, follow these steps:

  1. In the Object Explorer view in SQL Server Management Studio, right-click
the database you want to configure, and then select New Query from the
shortcut menu .

  2. In the Query view, type ALTER DATABASE <dbname> SET <option>
<option_value> GO, where dbname is the name of the database you want
to examine, option is the name of the option to set, and option_value is the
value for the specified option . The following example shows the commands
required to set cursor_default to GLOBAL for the Personnel database:

ALTER DATABASE Personnel
SET cursor_default GLOBAL
GO

  3. Execute the query by clicking Execute or by pressing F5 . If the option is set
properly, the command should complete successfully .

Controlling User Access and Database State
As you might expect, managing user access and database state is a complex pro-
cess . In SQL Server Management Studio, you can control the general state of the
database, including whether the database is read-only or read-write and who has
access to the database .

When a database is set to READ_ONLY, you can read data but not modify it . You
use this option to prevent users from changing data and modifying database con-
figuration settings . Several caveats apply when a database is read-only: automatic
recovery is skipped at system startup, locking does not take place, and the database
will not shrink . The normal mode is READ_WRITE, which allows the database to be
read and modified .

 Core Database Administration ChAPTeR 8 265

When a database is set to SINGLE_USER, only the database owner can access the
database . You use this option when you are modifying a database and temporarily
want to block access to it . When a database is set to RESTRICTED_USER, only mem-
bers of the db_owner, dbcreator, or sysadmin roles can use the database . When a
database is set to MULTI_USER, all users with the appropriate permissions to connect
to the database are permitted to use it .

To manage the database state using SQL Server Management Studio, follow
these steps:

  1. In the Object Explorer view in SQL Server Management Studio, right-click the
database you want to configure, and then select Properties from the shortcut
menu .

  2. In the Database Properties dialog box, select Options in the Select A Page
list . You can now manage the database state:

■■ To set the database to the READ_WRITE state, set the Database Read-Only
option to False .

■■ To set the database to the READ_ONLY state, set the Database Read-Only
option to True .

■■ To allow access only to the database owner, set the Restrict Access option
to SINGLE_USER .

■■ To allow access to the members of the db_owner, dbcreator, or sysadmin
roles, set the Restrict Access option to RESTRICTED_USER .

■■ To allow all users with the appropriate permissions to connect to the
database, set the Restrict Access option to MULTIPLE_USER .

  3. Click OK when you finish setting the options . Your changes take effect imme-
diately without restarting the server .

To manage the state settings using T-SQL, follow these steps:

  1. In the Object Explorer view in SQL Server Management Studio, right-click
the database you want to configure, and then select New Query from the
shortcut menu .

  2. In the Query view, type ALTER DATABASE <dbname> SET <keyword> GO,
where dbname is the name of the database you want to examine, and key-
word is one of the following states: READ_ONLY, READ_WRITE, SINGLE_USER,
RESTRICTED_USER, or MULTI_USER . The following example shows the com-
mands required to set the Personnel database for multiple-user access:

ALTER DATABASE Personnel
SET MULTI_USER
GO

  3. Execute the query by clicking Execute or by pressing F5 . If the option is set
properly, the command should complete successfully .

 ChAPTeR 8  Core Database Administration266

Setting Online, Offline, or emergency Mode
In SQL Server 2008, you can put an individual database online or offline, or you
can set an emergency state that allows you to troubleshoot for database problems .
When this option is set to ONLINE, the database is open and available for use . When
it is set to OFFLINE, the database is offline, and you can mount or dismount it as
necessary . When it is set to EMERGENCY, the database is marked READ_ONLY, log-
ging is disabled, and access is limited to members of the sysadmin fixed server role .

NOTE In SQL Server 2008, the offline or online state of a database file is maintained

independently from the state of the database. For a filegroup to be available, all files

in the filegroup must be online. If a filegroup is offline, you cannot query the related

data using SQL statements. The query optimizer does not consider the filegroup state

when selecting a query plan.

To put a database in the online, offline, or emergency state, follow these steps:

  1. In the Object Explorer view in SQL Server Management Studio, right-click
the database you want to configure, and then select New Query from the
shortcut menu .

  2. In the Query view, type ALTER DATABASE <dbname> SET <keyword>
GO, where dbname is the name of the database you want to examine, and
keyword is one of the following states: ONLINE, OFFLINE, or EMERGENCY .
The following example shows the commands required to put the Personnel
database in the emergency state for troubleshooting:

ALTER DATABASE Personnel
SET EMERGENCY
GO

  3. Execute the query by clicking Execute or by pressing F5 . If the option is set
properly, the command should complete successfully .

Managing Cross-Database Chaining and external
Access Options
Ownership chaining is used to determine how multiple objects access each other
sequentially . When chaining is allowed, SQL Server compares ownership of a calling
object to the owner of the object being called . If both objects have the same owner,
the object being called is considered to have the same object permissions as the
calling object . In this case, you can achieve a cascade effect if the initial permissions
on a view are used when the view needs access to other objects and the owners of
these objects are the same .

In some limited circumstances, you might need to configure cross-database
ownership chaining between specific databases and across all databases in a single
instance . Although this feature is disabled by default, you can enable it by using
ALTER DATABASE SET DB_CHAINING ON . When DB_CHAINING is set to TRUE (ON),

 Core Database Administration ChAPTeR 8 267

the database can be the source or target of a cross-database ownership chain . You
cannot set DB_CHAINING on the master, model, or tempdb databases . You must log
on as a member of the sysadmin fixed server role to set this option .

A related option is TRUSTWORTHY . When TRUSTWORTHY is set to TRUE (ON),
database modules that use an impersonation context can access resources outside
the database . For example, user-defined functions and stored procedures can access
resources outside the database . By default, the master database has TRUSTWORTHY
set to ON . The model and tempdb databases always have TRUSTWORTHY set to
OFF, however, and the value cannot be changed for these databases . If you want to
permit another database to access outside resources, you must set TRUSTWORTHY
to TRUE (ON) . You must be logged on as a member of the sysadmin fixed server role
to set this option .

To configure chaining or trustworthiness, follow these steps:

  1. In the Object Explorer view in SQL Server Management Studio, right-click
the database you want to configure, and then select New Query from the
shortcut menu .

  2. In the Query view, type ALTER DATABASE <dbname> SET <option>
<option_value> GO, where dbname is the name of the database you want
to examine, option is the name of the option to set, and option_value is the
value for the specified option . The following example shows the commands
required to turn on cross-database chaining for the Personnel database:

ALTER DATABASE Personnel
SET db_chaining ON
GO

  3. Execute the query by clicking Execute or by pressing F5 . If the option is set
properly, the command should complete successfully .

Configuring Recovery, Logging, and Disk I/O error
Checking Options
SQL Server 2008 has several options for managing recovery, logging, and I/O error
checking . In SQL Server Management Studio, you manage recovery settings by
using the Recovery Model and Page Verify settings on the Options page . In T-SQL,
you manage these options by using the ALTER DATABASE SET RECOVERY and ALTER
DATABASE SET PAGE_VERIFY commands .

Three recovery options are available:

■■ FULL When recovery is set to FULL, transactions are fully logged, and the
database can be recovered to the point of failure or to a specific point in
time using the transaction logs .

■■ BULK_LOGGED When recovery is set to BULK_LOGGED (managed in previ-
ous versions by using select into/bulk copy), certain SQL commands are not

 ChAPTeR 8  Core Database Administration268

logged in the transaction log . These commands include using SELECT INTO
and BULK INSERT with a permanent table, running fast bulk copy, using
UPDATETEXT or WRITETEXT without logging, and using a table load . If you
set this option and execute any command that bypasses the transaction log,
you cannot recover the database from transaction logs and BACKUP LOG
commands are prohibited . Instead, use BACKUP DATABASE to back up the
entire database, and then later you can back up from the log (provided that
you do not run any more commands that bypass the transaction log) .

■■ SIMPLE When recovery is set to SIMPLE (previously managed using
trunc .log on chkpt), the transaction log can be automatically truncated . This
setting allows the log to be cleared after transactions have been commit-
ted . After the transaction log has been cleared, you can perform BACKUP/
RESTORE only at the database level (and not with the transaction log) .

NOTE Checkpoints occur at various times. A checkpoint is issued for each database

when the SQL Server service shuts down normally. Checkpoints do not occur when the

ShUTDOWN WITh NOWAIT	statement is used. A checkpoint is executed in a single

database when a database is changed with sp_dboption. SQL Server also automatically

issues a checkpoint on a database as necessary to ensure that the designated recovery

interval can be achieved and when the log becomes 70 percent full.

NOTE The transaction log must be large enough to store all active transactions. If it

is not, you cannot roll back transactions. In a deployment environment, you should use

this option only when you can rely solely on database backups and do not supple-

ment them with transaction log backups. Note also that the tempdb database is always

truncated at a checkpoint, regardless of the setting of this option.

Disk I/O errors can cause database corruption problems and are usually the
result of power failures or disk hardware failures that occur at the time a page is
written to disk . There are three page verification options to help identify incomplete
I/O transactions caused by disk I/O errors:

■■ CHECKSUM When PAGE_VERIFY is set to CHECKSUM, checksums are used
to find incomplete I/O transactions caused by disk I/O errors . The checksum
is computed over the contents of the entire page and stored in the page
header when a page is written to disk . When the page is read from disk, the
checksum is recomputed and compared to the checksum value stored in the
page header . When there are mismatches, error message 824 is reported to
both the SQL Server error log and the Windows Event Viewer . Any I/O errors
detected by the operating system are logged with error message 823 .

■■ TORN_PAGE_DETECTION When PAGE_VERIFY is set to TORN_PAGE_
DETECTION, a bit is reversed for each 512-byte sector in an 8-KB database
page when the page is written to disk . If a bit is in the wrong state when
the page is later read, the page was written incorrectly and a torn page is
detected . If SQL Server detects a torn page during a user connection, it sends

 Core Database Administration ChAPTeR 8 269

an I/O error message 824 indicating a torn page error and terminates the
user connection . If it detects a torn page during recovery, it marks the data-
base as suspect . In either case, you might want to restore the database from
backup and apply any backup transaction logs .

TIP  You can use battery-backed disk caches to ensure that data is successfully

written to disk or not written at all. But in this case, do not set torn page detection

to TRUe.

■■ NONE When PAGE_VERIFY is set to NONE (OFF), future data page writes
will not contain a checksum or torn page bit, and pages will not be verified
at read time, even previously written pages that contain a checksum or torn
page bit .

NOTE  early versions of SQL Server used the TORN_PAGe_DeTeCTION option to

help detect I/O errors. This option is still supported, but its use is usually rejected

in favor of PAGe_VeRIFY. When TORN_PAGe_DeTeCTION is set to TRUe (ON), SQL

Server automatically detects incomplete I/O operations known as torn pages.

SQL Server 2008 also supports supplemental logging, which adds information to
the logs for third-party products . You can enable logging of additional information
by setting the SUPPLEMENTAL_LOGGING option to TRUE (ON) . Using this option
adds a lot of information to the logs, however, and can have an impact on overall
performance .

Viewing, Changing, and Overriding Database Options
Although SQL Server Management Studio makes setting database options easy, you
will often want to use SQL commands to view or change options . To do this, you
can use the sp_dboption stored procedure, individual SET commands, or the ALTER
DATABASE command . Tasks you can perform with the sp_dboption and SET com-
mands include the following:

■■ Displaying an options list To display a list of available options, type EXEC
sp_dboption .

■■ Viewing database option settings To view the current option settings for
a database, type EXEC sp_dboption <dbname>, where dbname is the name
of the database you want to examine, such as EXEC sp_dboption Subs .

■■ Enabling database options To turn on a database option, type ALTER
DATABASE <dbname> SET <option>, where dbname is the name of the
database you want to examine and option is the name of the option flag to
set to the TRUE (ON) state .

■■ Setting specific database option values To set a specific database option
value, type ALTER DATABASE <dbname> SET <option> <option_value>,
where dbname is the name of the database you want to examine, option is

 ChAPTeR 8  Core Database Administration270

the name of the option to set, and option_value is the value for the specified
option .

■■ Overriding database options Use SET options for individual sessions or
database drivers to override default settings . You can also check options by
using properties of the Databaseproperty function . See “Working with SET
Options” in Chapter 4 for more information .

NOTE  The sp_dboption stored procedure should not be used to modify the

master and tempdb databases. It is supported only for backward compatibility,

and it should be used primarily to display database options. Whenever possible,

use the ALTeR DATABASe command to modify database options instead.

Managing Database and Log Size

With SQL Server 2008, you can manage database and log size automatically or man-
ually . You can use SQL Server Management Studio or T-SQL to configure database
and log size . This section looks primarily at configuring these settings through SQL
Server Management Studio .

Configuring SQL Server to Automatically Manage File Size
To configure automatic management of database and log size in SQL Server Man-
agement Studio, complete the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect
to the appropriate server, and then work your way down to the Databases
folder .

  2. Right-click the database you want to configure, and then select Properties
from the shortcut menu .

  3. Select Files in the Select A Page list in the Database Properties dialog box .
Each data and log file associated with the database is listed under Database
Files . For each data and log file, do the following:

  a. Click the button to the right of the file’s Autogrowth box to display the
Change Autogrowth For dialog box .

  b. Set the file to grow using a percentage or an amount in megabytes, and
then either restrict the maximum file growth to a specific size or allow
unrestricted file growth .

  c. Click OK .

  4. Optionally, access the Options page and set Auto Shrink to True . Auto Shrink
compacts and shrinks the database periodically .

  5. Click OK . Your changes take effect immediately without restarting the server .

NOTE See “Creating Databases in SQL Server Management Studio” earlier in this

chapter for tips and advice on sizing databases and transaction logs.

 Core Database Administration ChAPTeR 8 271

expanding Databases and Logs Manually
Sometimes you might want to increase the size of a database or log file manually .
You can do this by completing the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect
to the appropriate server, and then work your way down to the Databases
folder .

  2. Right-click the database you want to configure, and then select Properties
from the shortcut menu .

  3. Select Files in the Select A Page list in the Database Properties dialog box . Each
data and log file associated with the database is listed under Database Files .

  4. To expand a data file, click in the related Initial Size box, and then enter a
larger file size .

You can also create and size a new secondary file for the database . The
advantage of using a new file rather than an existing file is that SQL Server
does not need to lock what might be an active database file to expand the
database .

  5. To expand a log file, click in the appropriate Initial Size box, and then enter a
larger file size in the text box that becomes available . You can also create and
size a new transaction log file .

TIP  With data and log files, the new file size must be larger than the current size.

If it is not, you get an error. The reason is that shrinking the database is handled in

a different way. See the following section, “Compressing and Shrinking a Database

Manually.”

  6. Click OK to make the changes . SQL Server locks the database while expand-
ing it, which blocks access .

TIP You can add files using T-SQL as well. The command you use is ALTeR DATABASe.

For more information about using this command, see “Altering Databases and Their

Options” earlier in this chapter.

Compressing and Shrinking a Database Manually
Compressing and shrinking a database is a bit different from expanding it, and in
many cases you want finer control over the process than you get with the Auto
Shrink option . Fortunately, you can manage this process manually, and you can also
schedule this process on a recurring basis .

To compress or shrink all database files (both data and log files) manually in SQL
Server Management Studio, complete the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect
to the appropriate server, and then work your way down to the Databases
folder .

 ChAPTeR 8  Core Database Administration272

  2. Right-click the database you want to configure . Select Tasks from the short-
cut menu, choose Shrink, and then choose Database to display the Shrink
Database dialog box, shown in Figure 8-5 .

FIGURE 8-5 The Shrink Database dialog box

  3. The Database Size area in the dialog box shows the total amount of space
allocated to all database files and the amount of free space . Use this informa-
tion to decide if you really want to shrink the database .

  4. To reorganize data pages and move them to the beginning of the data files,
select the Reorganize Files Before Releasing Unused Space check box . This
compresses the data pages but does not remove empty data pages .

NOTE  Selecting the Reorganize Files Before Releasing Unused Space option

performs the same task accomplished by using DBCC ShRINKDATABASe and

specifying the amount of free space that you want in the database after shrinking

it. If you clear the check box for this option, the database files are compressed

in the same way as when you use DBCC ShRINKDATABASe with TRUNCATeONLY,

which means that the file size is reduced without moving any data or reallocating

rows to unallocated pages.

NOTE  Log files are not reduced in size immediately. Instead, the size is reduced

when the transaction log is backed up or the log is truncated, whichever occurs

first. Also, you normally cannot shrink a database to a size smaller than the model

database (which is the database template).

 Core Database Administration ChAPTeR 8 273

  5. In the Maximum Free Space In Files After Shrinking box, set the percentage
of free space in the database . To squeeze all the extra space out of the data-
base, use a value of 0 percent, but be aware that the next write operation
might cause the database to grow automatically .

  6. Click OK to begin . Although other users can be working in the database as it
shrinks, you cannot shrink a database while the database is being backed up .

To manually compress or shrink individual database files in SQL Server Manage-
ment Studio, complete the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect
to the appropriate server, and then work your way down to the Databases
folder .

  2. Right-click the database you want to configure . Select Tasks from the short-
cut menu, choose Shrink, and then choose Files to display the Shrink File
dialog box, shown in Figure 8-6 .

FIGURE 8-6 The Shrink File dialog box

  3. Use the File Type, Filegroup, and File Name lists to select the data or log file
that you want to shrink . When you select a specific file, the total amount of
space allocated and the amount of free space are shown . Use this informa-
tion to decide whether you really want to shrink the file .

 ChAPTeR 8  Core Database Administration274

  4. Choose a shrink action as follows:

■■ Release Unused Space Truncates free space from the end of the file .
Unused space is released, and the file is reduced in size to the last allo-
cated extent . The file size is reduced without moving any data or reallo-
cating rows to unallocated pages . You can accomplish the same task by
using DBCC SHRINKDATABASE with TRUNCATEONLY and specifying the
target file .

■■ Reorganize Pages Before Releasing Unused Space Reorganizes data
pages and moves them to the beginning of the data files . This compresses
the data pages but does not remove empty data pages . You can accom-
plish the same task by using DBCC SHRINKDATABASE and specifying the
amount of free space that you want in a target file after shrinking it . After
you select this option, set the file size by selecting a value in the Shrink
File To box . The size cannot be less than the current allocated space or
more than the total extents allocated .

■■ Empty File By Migrating The Data Migrates the data in this file to
other files in the same filegroup . This option is equivalent to executing
DBCC SHRINKFILE with the EMPTYFILE option, and it allows the file to be
dropped later using the ALTER DATABASE command .

  5. Click OK . Other users can be working in the database as a file is shrunk .

Another way to shrink a database is to use T-SQL . Two commands are provided,
as shown in Sample 8-3 .

SAMPLE 8-3 DBCC SHRINKDATABASE and DBCC SHRINKFILE Syntax

DBCC SHRINKDATABASE Syntax

DBCC SHRINKDATABASE ("database_name" | database_id | 0
 [,target_percent]
 [, { NOTRUNCATE | TRUNCATEONLY }])
[WITH NO_INFOMSGS]

DBCC SHRINKFILE Syntax

DBCC SHRINKFILE ({ " file_name " | file_id }
 { [, EMPTYFILE]
 | [[, target_size] [, { NOTRUNCATE | TRUNCATEONLY }]]
 })
[WITH NO_INFOMSGS]

You use DBCC SHRINKDATABASE to shrink all data files in the database and DBCC
SHRINKFILE to shrink a specific data file . By default, these commands also compress
the database . You can override this option with TRUNCATEONLY or use NOTRUN-
CATE to specify that you only want to compress the database . To suppress informa-
tional messages, use WITH NO_INFOMSGS .

 Core Database Administration ChAPTeR 8 275

The following command compresses and then shrinks the Customer database to
30-percent free space:

DBCC SHRINKDATABASE (Customer, 30)

The following commands compress and then shrink an individual file in the Cus-
tomer database to 5 MB of free space:

USE Customer
DBCC SHRINKFILE (Customer_Data, 5)

NOTE The DBCC ShRINKFILe command is the only method you can use to shrink

individual data and log files to make them smaller than their original size. With DBCC

ShRINKFILe, you must shrink each file individually rather than try to shrink the entire

database. Additionally, the truncation options for DBCC ShRINKDATABASe and DBCC

ShRINKFILe apply only to data files; they are ignored for log files. You cannot truncate

transaction logs with these commands.

Manipulating Databases

Other core administration tasks include renaming, dropping, deleting, detaching,
and attaching databases . These tasks are examined in this section .

Renaming a Database
Although you cannot rename system databases, you can rename user databases
by using either SQL Server Management Studio or the ALTER DATABASE MODIFY
NAME statement . With the database in single-user or offline mode, right-click the
database name in SQL Server Management Studio and select Rename from the
shortcut menu . Then type the database name and press Tab .

To use T-SQL to put the database in single-user mode and change the name,
complete the following steps:

  1. Ask all users to disconnect from the database . Make sure that all SQL Server
Management Studio connections to the database are closed . If neces-
sary, stop the user processes, as explained in Chapter 5, “Managing the
Enterprise .”

  2. Access the Query view in SQL Server Management Studio, and then put the
database in single-user mode . The following example puts a database called
Customer in single-user mode:

use master
ALTER DATABASE Customer
SET single_user
GO

TIP  You execute commands in the Query view by clicking execute or by pressing

F5. With SQLCMD, you can execute commands by entering the GO statement.

 ChAPTeR 8  Core Database Administration276

  3. Rename the database by using the ALTER DATABASE statement . In the fol-
lowing example, the Customer database is renamed cust:

ALTER DATABASE Customer
MODIFY NAME = cust
GO

  4. After you run the SQL commands, set the renamed database back to
multiuser mode . The following example sets the cust database to multiuser
mode:

ALTER DATABASE cust
SET multi_user
GO

  5. Be sure that all commands, applications, and processes that use the old data-
base name point to the new database name . If you do not do this, you will
have problems using the database .

Dropping and Deleting a Database
In SQL Server 2008, dropping and deleting a database are the same thing . When
you drop a database, you remove the database and its associated files from the
server . After you drop a database, it is permanently deleted, and you cannot restore
it without using a backup . To delete references to a database without removing the
database files, use sp_detach_db, as described later in this section .

You cannot drop system databases, and you cannot drop databases that are
currently in use by SQL Server or other users . A database can be dropped regard-
less of its state . However, any replication or database snapshots on a database must
be stopped or dropped before the database can be deleted . Furthermore, if the
database is configured for log shipping, you should remove log shipping before
dropping the database . Also note that a dropped database can be re-created only
by restoring a backup . After you drop a database, you should back up the master
database .

You can drop a database by completing the following steps:

  1. In SQL Server Management Studio, right-click the database you want to drop,
and then select Delete to display the Delete Object dialog box .

  2. To delete backup and history information from the msdb database, select the
Delete Backup And Restore History Information For Databases check box .

  3. To close existing connections to the database before deleting it, select the
Close Existing Connections check box .

NOTE  You cannot drop a database that is being used by SQL Server or by other

users. For example, if you are restoring the database, or the database is published

for replication, you cannot delete it. You also cannot delete the database if there

are any active user sessions.

 Core Database Administration ChAPTeR 8 277

  4. Click OK . Optionally, back up the master database as explained in Chapter
15, “Backing Up and Recovering SQL Server 2008 .” You back up the master
database to ensure that the most current system information is stored and
that information from the old database will not be restored accidentally with
the master database .

You can also delete a database with the DROP DATABASE command . The syntax
and usage for this command are shown in Sample 8-4 .

SAMPLE 8-4 DROP DATABASE Syntax and Usage

Syntax

DROP DATABASE { database_name | database_snapshot_name} [,...n]

Usage

use master
ALTER DATABASE Customer
SET single_user
GO
DROP DATABASE "Customer"
GO

Attaching and Detaching Databases
The attach and detach operations are designed primarily to move database files
or disable databases without deleting their files . When you detach a database, you
remove references to the server in the master database, but you do not delete the
related database files . Detached databases are not displayed in SQL Server Manage-
ment Studio, and they are not accessible to users . If you want to use the database
again, you can reattach it . Attaching a database creates a new database that refer-
ences data stored in existing data and log files .

Before you can detach a database, you must ensure that none of the following
conditions are true:

■■ A database snapshot exists on the database . You must drop all of the data-
base’s snapshots before you can detach it . Snapshots can be deleted, but
they cannot be detached or attached .

■■ The database is being mirrored . You must stop database mirroring and end
the mirror session .

■■ The database is replicated and published . If it is replicated, the database
must be unpublished . Before you can detach it, you need to disable publish-
ing by running sp_replicationdboption or sp_removedbreplication .

■■ The database is suspect . You must put the database into EMERGENCY mode
and then detach it .

 ChAPTeR 8  Core Database Administration278

Usually, attaching a database places it in the same state that it was in when it was
detached . However, SQL Server 2008 disables cross-database ownership chaining
and sets the TRUSTWORTHY option to OFF when a database is attached . You can
reenable these features if necessary as discussed in “Managing Cross-Database
Chaining and External Access Options” earlier in this chapter .

When you attach a database, all primary and secondary data files must be avail-
able . If any data file has a different path than it had when the database was first
created or last attached, you must specify the file’s current path .

Detaching a Database

When you detach a database, you can specify if you want to update the statistics
before the database is detached . Updating statistics makes the database easier to
use with read-only media; otherwise, you really do not need the update . To update
statistics, set the skipchecks flag to FALSE .

Because full-text catalogs are associated with databases in SQL Server 2008, you
can also control whether they are maintained or dropped during the detach opera-
tion . By default, full-text catalogs are maintained as part of the database . To drop
catalogs, set the KeepFullTextIndexFile flag to FALSE .

You detach a database by using sp_detach_db, as shown in Sample 8-5 .

SAMPLE 8-5 sp_detach_db Syntax and Usage

Syntax

sp_detach_db [@dbname=] "dbname"
 [, [@skipchecks=] "skipchecks"]
 [, [@KeepFulltextIndexFile=] "KeepFulltextIndexFile"]

Usage

exec sp_detach_db "sample", "true"

TIP You cannot detach system databases, and you can detach user databases only

when they are not in use. Furthermore, before detaching a user database, you might

want to close all current connections, put the database in single-user mode, and then

run the detach operation.

Attaching a Database with Multiple Files

When you reattach a database, use the CREATE DATABASE statement with FOR
ATTACH . For this statement to work, all primary and secondary data files must be
available . If the database has multiple log files, all the log files must be available .
The only exception is for a read-write database with a single log file that is cur-
rently unavailable . If the database was shut down with no users or open transactions
before it was detached, FOR ATTACH automatically rebuilds the log file and updates
the primary data file as appropriate . The log file for a read-only database cannot be

 Core Database Administration ChAPTeR 8 279

rebuilt because the primary data file cannot be updated; you must provide the log
file or files in the FOR ATTACH clause .

Any full-text catalogs that are part of the database will be attached with the
database . To specify a new path to the full-text catalog, you can specify the catalog
file by supplying a directory name without a file name .

When you use the CREATE DATABASE statement with FOR ATTACH, you can
specify only the primary file name . This file contains pointers to the original loca-
tions of all other database files . If the other files have not changed location, you can
specify only the primary file name and then let the Database Engine use the primary
file to find the rest of the files .

Sample 8-6 shows the code required to attach the database by using the CREATE
DATABASE statement with FOR ATTACH .

SAMPLE 8-6 The CREATE DATABASE Statement with FOR ATTACH Syntax and Usage

Syntax

CREATE DATABASE database_name
 ON <filespec> [,...n]
 FOR { ATTACH [WITH <service_broker_option>]
 | ATTACH_REBUILD_LOG }
[;]

<filespec> ::=
{
[PRIMARY]
(
 [NAME = logical_file_name ,]
 FILENAME = "os_file_name"
 [, SIZE = size [KB | MB | GB | TB]]
 [, MAXSIZE = { max_size [KB | MB | GB | TB] | UNLIMITED }]
 [, FILEGROWTH = growth_increment [KB | MB | %]]
) [,...n]
}

Usage

CREATE DATABASE Customer
ON (FILENAME = "c:\data\customer_data.mdf")
FOR ATTACH
GO

Attaching a Database with Only Data Files

You might not need old transaction logs in a new database . If this is the case, you
can restore only data files and let SQL Server create new log files for you . To do this,
use the CREATE DATABASE statement with FOR ATTACH_REBUILD_LOG, as shown in
Sample 8-7 .

 ChAPTeR 8  Core Database Administration280

SAMPLE 8-7 The CREATE DATABASE Statement with FOR ATTACH_REBUILD_LOG Syntax and Usage

Syntax

CREATE DATABASE database_name
 ON <filespec> [,...n]
 FOR ATTACH_REBUILD_LOG }
[;]

<filespec> ::=
{
[PRIMARY]
(
 [NAME = logical_file_name ,]
 FILENAME = "os_file_name"
 [, SIZE = size [KB | MB | GB | TB]]
 [, MAXSIZE = { max_size [KB | MB | GB | TB] | UNLIMITED }]
 [, FILEGROWTH = growth_increment [KB | MB | %]]
) [,...n]
}

Usage

CREATE DATABASE Customer
ON (FILENAME = "c:\data\customer_data.mdf")
FOR ATTACH_REBUILD_LOG
GO

Tips and Techniques

All great administrators know a few tricks to help manage databases more efficiently
and keep things running smoothly . Here are a few tips to help you with database
administration .

Copying and Moving Databases
All databases except the model, msdb, and master databases can be copied or
moved using the Copy Database Wizard . You can also use this wizard to create a
copy of a database, to copy or move databases between different instances of SQL
Server, and to upgrade databases from SQL Server 2000 or SQL Server 2005 to SQL
Server 2008 . The Copy Database Wizard uses one of two techniques for copy and
move operations:

■■ Detach and Attach This method is the fastest way to copy a database, but
it requires the source database to be offline so that it can be detached and
then copied and moved . The database is then reattached when the copy/
move operation is complete . To use this technique, you must be a member
of the sysadmin fixed server role on both the source and destination servers .

 Core Database Administration ChAPTeR 8 281

Also, you should place the database in single-user mode before starting
the copy operation to ensure that there are no active sessions . If there are
active sessions, the Copy Database Wizard will not execute the move or copy
operation .

■■ SQL Management Object This method is slower, but it does not require
the source database to be offline . To use this technique, you must be a
database owner for the source database and you must have the CREATE
DATABASE permission or be a member of the dbcreator fixed server role on
the destination database . You do not have to place the database in single-
user mode prior to starting the copy/move operation . Active connections are
allowed during the operation because the database is never taken offline .

NOTE The copy/move operation preserves full-text catalogs if both the source and

destination servers are SQL Server 2008 servers. however, if the source server is a SQL

Server 2000 or SQL Server 2005 server, the full-text catalogs must be rebuilt and fully

populated again after the copy/move operation is complete.

When you move databases between different servers or disk drives, the Copy
Database Wizard copies the database to the destination server and verifies that it
is online . When you move databases between two instances on the same server,
a file system move operation is performed . If you elect to move a database, the
Copy Database Wizard deletes the source database automatically after the move is
complete . However, the Copy Database Wizard does not delete the source database
when you perform a copy operation .

You can copy or move a database by completing the following steps:

  1. In SQL Server Management Studio, right-click a database in the Object
Explorer view, point to Tasks, and then select Copy Database .

NOTE  To use the detach-and-attach method, the SQL Server Agent service must

be running and the SQL Server Agent job must be running under an Integration

Services Proxy account that can access the file system on both the source and

destination servers. For this reason, you should be sure that the SQL Server Agent

is running on the destination server before you begin. In SQL Server Management

Studio, you can start the SQL Server Agent service by right-clicking the related

node and then selecting Start.

  2. When the Copy Database Wizard starts, click Next .

  3. On the Select A Source Server page, specify the server that has the database
you want to copy or move . Type the DNS or host name of the source server,
such as SQLSERVER52 . (See Figure 8-7 .) Alternatively, you can click the button
to the right of the Source Server box to browse for available source servers .

 ChAPTeR 8  Core Database Administration282

FIGURE 8-7 The Select A Source Server page of the Copy Database Wizard

  4. Windows authentication is used by default, which means that your current
login credentials are used to determine if you have appropriate permissions .
If you want to use SQL Server authentication, select Use SQL Server Authen-
tication, and then enter your SQL Server user name and password in the text
boxes provided . Click Next .

  5. On the Select A Destination Server page, specify the server to which you are
copying or moving the selected database, and then specify the authentica-
tion technique to use . Click Next .

NOTE  SQL Server Agent must be running on the destination server.

  6. Select the transfer method—either Use The Detach And Attach Method
or Use The SQL Management Object Method . If you choose to detach and
attach the database, the source database is reattached automatically by
default if failure occurs . To prevent this, clear the If A Failure Occurs, Reattach
The Database check box . Click Next .

  7. As shown in Figure 8-8, you can now select the database you want to copy or
move . Click Next .

 Core Database Administration ChAPTeR 8 283

FIGURE 8-8 The Select Databases page of the Copy Database Wizard

  8. Use the Configure Destination Database page shown in Figure 8-9 to define
the destination configuration of each database you are copying or moving,
one at a time . Pay particular attention to the Source Database and Destina-
tion Database boxes . The Source Database box shows the current name of
the database on the source . Use the Destination Database box to set the
name that will be used on the destination server .

FIGURE 8-9 The Configure Destination Database page of the Copy Database Wizard

 ChAPTeR 8  Core Database Administration284

  9. Any data and log files associated with the database are shown with their des-
tination file name and folder . You can change the default locations by typing
new values . If you are creating a copy of a database on the same source and
destination instance, be sure to change the database name and file names .

  10. If the destination database already exists, the default option is to stop the
transfer . You can drop the existing database and force the transfer by select-
ing the Drop Any Database option .

  11. Click Next . If you are copying or moving multiple databases, you see a Con-
figure Destination Database page for each database .

  12. When you have configured all destination databases, the next page you
see is the Configure The Package page . Set the package name and logging
options you prefer, and then click Next .

  13. You can run the wizard now or schedule the wizard to run at a later time . To
run the wizard immediately and perform the copy/move operations, select
Run Immediately . To schedule the wizard to run at a later time, select Sched-
ule, and then click Change Schedule . You will then be able to schedule this
task as a new job . See Chapter 16 for details on scheduling .

  14. Click Next . Review your choices, and then click Finish . The wizard performs
the necessary tasks to prepare and create the copy/move package . If a criti-
cal error occurs during these tasks, the operation fails, and you should view
the report to determine what error occurred and then resolve it .

Moving Databases
You can use the ALTER DATABASE statement to move any system or user-defined
database files except for Resource database files . To move files, you specify the cur-
rent logical name of the file and the new file path, which includes the new file name .
You can move only one file at a time in this manner .

To move data or log files to a new location, follow these steps:

  1. Get the logical name of the data and log files associated with the database
by typing the following:

USE master
SELECT name, physical_name
FROM sys.master_files
WHERE database_id = DB_ID("Personnel");

  2. Take the database you want to work with offline by typing these commands:

ALTER DATABASE Personnel
SET offline
GO

 Core Database Administration ChAPTeR 8 285

  3. Move one file at a time to the new location by typing the following:

ALTER DATABASE Personnel
MODIFY FILE (NAME = Personnel_Data, FILENAME =
"C:\Data\Personnel_Data.mdf")
GO

  4. Repeat the previous step to move other data and log files .

  5. Put the database online by typing the following commands:

ALTER DATABASE Personnel
SET online
GO

You can verify the change or changes by typing this:

USE master
SELECT name, physical_name
FROM sys.master_files
WHERE database_id = DB_ID("Personnel");

You can move full-text catalogs by their logical name as well . However, when
specifying the new catalog location, you specify only new_path rather than new_
path/file_name . To move a full-text catalog file to a new location, follow these steps:

  1. Take the database you want to work with offline by typing the following:

ALTER DATABASE database_name
SET offline
GO

  2. Move one file at a time to the new location by typing these commands:

ALTER DATABASE database_name
MODIFY FILE (NAME = logical_name, FILENAME = "new_path".
GO

  3. Repeat the previous step to move other full-text catalog files as necessary .

  4. Put the database online by typing the following:

ALTER DATABASE database_name
SET online
GO

Moving and Resizing tempdb
The tempdb database contains temporary tables created by users, by SQL Server, or
by both . SQL Server 2008 does not store complete transactions for temporary tables
in tempdb . With temporary tables, SQL Server 2008 stores enough information to
roll back a transaction but not enough to redo a transaction .

The tempdb database is created each time you start the SQL Server service, which
ensures that the database starts clean . As with other databases, the default structure

 ChAPTeR 8  Core Database Administration286

of tempdb is based on the model database . This means that each time you start SQL
Server, a snapshot is taken of the current model database and applied to tempdb .

By default, the tempdb primary data file has a size of 8 MB and is set to auto-
matically grow the database by 10 percent when necessary . On a busy server, this
8 MB can fill up quickly, and as a result the server might need to frequently expand
tempdb . Unfortunately, while tempdb expands, SQL Server locks the database . This
can slow down queries and make the server seem unresponsive . Here are some ways
you can improve the performance of tempdb:

■■ Permanently expand tempdb to accommodate space needs during busy
periods . To do this, follow the steps described in “Expanding Databases and
Logs Manually” earlier in this chapter . Even if the model database is smaller,
tempdb retains this new size .

■■ By default, tempdb is stored in the same location as other data . To resolve
any performance issues, you can create a secondary data file for tempdb and
put this file on its own drive . Or you can move tempdb and all its associated
files to a new location .

You can move individual tempdb files or all tempdb files by completing the fol-
lowing steps:

  1. Get the logical name of the data and log files associated with tempdb by typ-
ing the following:

USE master
SELECT name, physical_name
FROM sys.master_files
WHERE database_id = DB_ID('tempdb');
GO

  2. Move each data and log file to a new location one at a time by typing these
commands:

USE master
GO
ALTER DATABASE tempdb
MODIFY FILE (NAME = logical_name, FILENAME = 'new_path/file_name')
GO

  3. Repeat the previous step to move other data and log files as necessary .

  4. Stop and restart SQL Server .

You can verify the change or changes by typing the following:

USE master
SELECT name, physical_name
FROM sys.master_files
WHERE database_id = DB_ID('tempdb');

 Core Database Administration ChAPTeR 8 287

Creating Secondary Data and Log Files
Secondary data and log files can improve the performance of busy databases and
can help make large databases easier to manage . You might want to create second-
ary files to distribute the load over several drives . For example, you could place the
primary file on drive D, secondary files on drive E, and transaction logs on drive F .
See “SQL Server 2008 and Your Hardware” in Chapter 1 for more tips on drives and
RAID arrays .

Another reason you might want to create secondary files is to make restoring a
large database easier . For example, if you have a 10-GB database in a single file, you
can restore the database only on a 10-GB drive, which you might not have at 3:00
A .M . on a Sunday if a drive fails . Instead, create several smaller files for the database,
such as five 2-GB files, and then you can restore these files to several smaller drives
if necessary .

You can create secondary data or log files by completing the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect
to the appropriate server, and then work your way down to the Databases
folder .

  2. Right-click the database you want to manage, and then select Properties to
open the Database Properties dialog box .

  3. Select the Files page in the Select A Page list in the Database Properties
dialog box .

  4. On the Files page, click Add to set a secondary data file . Then, in the
Database Files area, type a new file name, such as Personnel_Data2 or
Personnel_Log2 .

  5. Set the file type:

■■ To create the new file as a data file, select Data under File Type .

■■ To create the new file as a log file, select Log under File Type .

  6. Set the initial size of the file, click the button to the right of the Autogrowth
box, and then set Autogrowth options for the new data or log file .

  7. Click the button to the right of the Path box to find a new path, or you can
enter a new path directly . The file name is set based on the logical name and
file type .

  8. Click OK to make the changes .

 ChAPTeR 8  Core Database Administration288

Preventing Transaction Log errors
The transaction log is essential to the smooth running of SQL Server . If the log fills
up or otherwise fails, SQL Server cannot process most types of queries . To ensure
that the transaction log runs smoothly, you might want to use these techniques:

■■ To reduce the load on the transaction log, use SQL commands that are not
logged . This invalidates the transaction logs, as explained in Chapter 16 .

■■ To ensure that the log is cleaned out periodically, set the database Recov-
ery Model to Simple . This invalidates the transaction logs, as explained in
Chapter 16 .

■■ To prevent the log from running out of space, do not set a maximum file size,
but do increase the frequency of the log backup and watch the amount of
free drive space closely .

■■ To make sure you can recover transactions, increase the permanent size of
the log and increase the frequency of the log backup .

Preventing a Filegroup Is Full error
When you encounter a situation in which writing to a data file is not possible, you
will see a Filegroup Is Full error . This error usually occurs when the data file has
reached its maximum size or you have run out of file space . To reduce the chances
of this error reoccurring, you can use the following techniques:

■■ Do not set a maximum file size .

■■ Watch the amount of free drive space closely .

■■ Schedule data files to be compacted periodically .

■■ Remove unused tables, indexes, or objects .

Creating a New Database Template
The model database is used as the template for all new databases . You can avoid
repetitive work by modifying the options and properties of the model database;
then any new databases created on the server will inherit these options and
properties .

Configuring Database encryption
SQL Server 2008 provides Transparent Data Encryption (TDE) as a database encryp-
tion solution . When enabled, TDE performs real-time I/O encryption and decryp-
tion of data and log files . TDE relies on a database encryption key (DEK) stored as
a certificate in the master database or an asymmetric key protected by an encryp-
tion module . Encrypting a database with TDE provides physical protection for the
data and log files but does not provide encryption across communication channels .

 Core Database Administration ChAPTeR 8 289

You can encrypt communication channels as discussed in “Configuring Security for
Native Client Configurations” in Chapter 3 . Also keep in mind that when you use
TDE, FILESTREAM data is not encrypted .

Before you can use TDE, you must create a master key, create or obtain a certifi-
cate protected by the master key, and create a database encryption key and protect
it by the certificate . Afterward, you must enable encryption for the database .
Sample 8-8 provides the syntax and usage for the related T-SQL commands .

SAMPLE 8-8 Configuring Database Encryption

Syntax

USE master;
GO
CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'Password';
GO
CREATE CERTIFICATE CertificateName WITH SUBJECT =
 'CertificateSubject'
GO
USE DatabaseName
GO
CREATE DATABASE ENCRYPTION KEY
 WITH ALGORITHM = { AES_128 | AES_192 | AES_256
 | TRIPLE_DES_3KEY }
 ENCRYPTION BY SERVER CERTIFICATE CertificateName
GO
ALTER DATABASE DatabaseName
SET ENCRYPTION ON
GO

Usage

USE master;
GO
CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'ObyGoxDandy2974728';
GO
CREATE CERTIFICATE PersDBCert WITH SUBJECT = 'Certificate for
 Personnel DB'
GO
USE Personnel
GO
CREATE DATABASE ENCRYPTION KEY WITH ALGORITHM = TRIPLE_DES_3KEY
 ENCRYPTION BY SERVER CERTIFICATE PersDBCert
GO
ALTER DATABASE Personnel
SET ENCRYPTION ON
GO

 ChAPTeR 8  Core Database Administration290

To manage the encryption state of the database by using SQL Server Manage-
ment Studio, follow these steps:

  1. In the Object Explorer view in SQL Server Management Studio, right-click the
database you want to configure, and then select Properties from the shortcut
menu .

  2. In the Database Properties dialog box, select Options from the Select A Page
list . You can now do the following:

■■ Turn on database encryption by setting Encryption Enabled to True .

■■ Turn off database encryption by setting Encryption Enabled to False .

  3. Click OK when you finish setting the options . Your changes take effect imme-
diately without restarting the server .

You can determine the state of database encryption by using the sys .dm_data-
base_encryption_keys view . Once you enable TDE, all files and filegroups in the
database are encrypted . If any filegroups in a database are marked READ ONLY, the
database encryption operation will fail . With database mirroring or log shipping,
both databases will be encrypted and the log transactions will be encrypted when
sent between the database servers .

When you enable encryption, the Database Engine closes out the virtual transac-
tion log and starts the next virtual transaction log to ensure that no clear text is left
after the database is set for encryption . The tempdb system database is encrypted
for similar reasons . Additionally, any new full-text indexes are encrypted when a
database is set for encryption .

TIP As part of the encryption process, the Database engine also compresses the

data, although not as much as when you use compression separately. Because the

encrypted data is compressed, you cannot significantly compress the backup storage.

Because of this, Microsoft recommends that you do not use data encryption and

backup compression together.

Backup files of encrypted databases also are encrypted by using the database
encryption key . When you restore encrypted backups, the certificate protecting the
database encryption key must be available . Thus, in addition to backing up data-
bases, you must maintain backups of the server certificates to prevent data loss . If
you lose a certificate, you will lose your data .

The Database Engine doesn’t automatically replicate data from TDE-enabled
databases in an encrypted form . You must separately enable TDE if you want to
protect the distribution and subscriber databases .

291

CHAP TE R 9

Managing SQL Server 2008
Security

■■ Overview of SQL Server 2008 Security 292

■■ SQL Server 2008 Authentication Modes 301

■■ Special-Purpose Logins and Users 302

■■ Permissions 305

■■ Statement Permissions 311

■■ Roles 312

■■ Managing Server Logins 317

■■ Configuring Server Roles 326

■■ Controlling Database Access and Administration 329

■■ Managing Database Permissions 336

Microsoft SQL Server 2008 is being used more frequently both within orga-
nizations and for external access to information . Whether employees,

contractors, or outside users access your databases, your job as an administrator
is to manage that access efficiently . You do this by creating user logins, configur-
ing login permissions, and assigning roles . The permissions and roles you assign
determine which actions users can perform as well as what kinds of data they can
access .

Your primary goals in managing security should be the following:

■■ Balance the user’s need for access to data against your need to protect
data from unauthorized access .

■■ Restrict database permissions so that users are less likely to execute harmful
commands and procedures (maliciously or accidentally) .

■■ Close off other security holes, such as those that might be caused by ordi-
nary users with membership in administrator-related groups .

 ChAPTeR 9  Managing SQL Server 2008 Security292

Overview of SQL Server 2008 Security

In SQL Server 2008, all objects in a database are located in	schemas. Each schema
is owned by roles rather than by individual users, which allows multiple users to
administer database objects . This arrangement resolves an issue in earlier versions
of SQL Server, in which users could not be dropped from a database without having
to reassign the ownership of every object they owned . Now you need to change
ownership only for the schema, not for each object .

Working with Security Principals and Securables
SQL Server 2008 makes extensive uses of security principals and securables . An
entity that can request a server, database, or schema resource is referred to as a
security	principal. An item that can be secured to control access is referred to as a
securable .

Each security principal has a unique security identifier (SID) . Security principals
are managed at three levels: Windows, SQL Server, and database . The level at which
the security principal is defined sets its scope of influence . Generally, Windows-level
and SQL Server–level security principals have an instance-wide scope, and database-
level principals have a scope of influence within a specific database .

Table 9-1 lists the security principals at each level . Some security principals,
including Windows groups, database roles, and application roles, can include other
security principals . These security principals are also referred to as collections . Every
database user belongs to the public database role . When a user has not been
granted or denied specific permissions on a securable, the user inherits the permis-
sions granted to the public role on that securable .

 Managing SQL Server 2008 Security ChAPTeR 9 293

TABLE 9-1 SQL Server Principal Levels and the Included Principals

PRINCIPAL LEVEL PRINCIPALS INCLUDED

Windows level Windows domain login

Windows local login

Windows group

 SQL Server level Server role

SQL Server login

SQL Server login mapped to an asymmetric key

SQL Server login mapped to a certificate

SQL Server login mapped to a Windows login

Database level Database user

Database user mapped to an asymmetric key

Database user mapped to a certificate

Database user mapped to a Windows login

Application role

Database role

Public database role

Security principals can be assigned specific permissions on hierarchical collec-
tions of entities referred to as securables . As Table 9-2 shows, the three top-level
securables are server, database, and schema . Each of these securables contains other
securables, which in turn can contain other securables . These nested hierarchies are
referred to as scopes . You can also say that the main securable scopes in SQL Server
are server, database, and schema .

 ChAPTeR 9  Managing SQL Server 2008 Security294

TABLE 9-2 SQL Server Securable Scopes and the Securables They Contain

SECURABLE SCOPE SECURABLE CONTAINED

Server Servers/current instance

Database

Endpoint

Login

Server role

Database Application role

Assembly

Asymmetric key

Certificate

Contract

Database role

Full-text catalog

Message type

Remote service binding

Route

Schema

Service

Symmetric key

User

Schema Aggregate

Constraint

Function

Procedure

Queue

Statistic

Synonym

Table

Type

View

XML schema collection

 Managing SQL Server 2008 Security ChAPTeR 9 295

Understanding Permissions of Securables
Each SQL Server 2008 securable has permissions that can be granted to a security
principal . These permissions begin with a keyword or keywords that identify the
permission being granted . These keywords are summarized in Table 9-3 .

TABLE 9-3 Permission Keywords and How They Work

PERMISSION
KEYWORD(S) PERMISSION GRANTED

PRIMARILY
APPLIES TO

ALTER ANY
<Database>

Grants the ability to create, alter, or drop indi-
vidual securables for the database . For example,
granting a principal ALTER ANY SCHEMA for a
database gives the principal the ability to create,
alter, or drop any schema in the database .

Database
instance

ALTER ANY
<Server>

Grants the ability to create, alter, or drop indi-
vidual securables for the server . For example,
granting a principal ALTER ANY LOGIN for a
server gives that principal the ability to create,
alter, and drop any login in that server instance .

Server instance

ALTER Grants the ability to alter properties of a par-
ticular securable except for ownership . When a
principal is granted on a scope, the principal has
the ability to alter, create, or drop any securable
contained within that scope . For example, grant-
ing a principal ALTER permissions on a schema
gives that principal the ability to create, alter,
and drop objects from the schema .

Stored proce-
dures, Service
Broker queues,
functions, syn-
onyms, tables,
and views

BACKUP/
DUMP

Grants permission to back up (dump) . Database
instance

CONTROL Grants ownership-like capabilities . The principal
has all defined permissions on the securable
and can grant permissions on the securable as
well . When you assign CONTROL permissions,
consider the security model’s hierarchy . Grant-
ing CONTROL at a particular scope implicitly
includes CONTROL on all the securables under
that scope . For example, CONTROL on a data-
base implies all permissions on the database,
including all assemblies and schemas in the
database and all objects within all schemas .

Stored proce-
dures, functions,
synonyms,
Service Broker
queues, tables,
and views

 ChAPTeR 9  Managing SQL Server 2008 Security296

PERMISSION
KEYWORD(S) PERMISSION GRANTED

PRIMARILY
APPLIES TO

CREATE
<Database	
Securable>

Grants permission to create the database
securable .

Database
instance

CREATE
<Schema-
Contained	
Securable>

Grants permission to create the schema-
contained securable . Remember that ALTER
permissions on the schema are needed to create
the securable in a particular schema .

Database
instance

CREATE
<Server	
Securable>

Grants permission to create the server securable . Server instance

DELETE Grants permission to delete the securable . Synonyms,
tables, and
views

EXECUTE Grants permission to execute the securable . Stored proce-
dures, functions,
and synonyms

IMPERSON-
ATE <Login>

Grants the ability to impersonate the login .

IMPERSON-
ATE <User>

Grants the ability to impersonate the user .

INSERT Grants permission to insert data into the
securable .

Synonyms,
tables, and
views

RECEIVE Grants permission to receive Service Broker
messages .

Service Broker
queues

REFERENCES Grants permission to reference the securable . Functions,
Service Broker
queues, tables,
and views

RESTORE/
LOAD

Grants permission to restore (load) .

SELECT Grants permission to view data stored in the
securable .

Synonyms,
tables, table-
valued func-
tions, and views

 Managing SQL Server 2008 Security ChAPTeR 9 297

PERMISSION
KEYWORD(S) PERMISSION GRANTED

PRIMARILY
APPLIES TO

TAKE
OWNERSHIP

Grants the ability to take ownership of the
securable .

Stored proce-
dures, functions,
synonyms,
tables, and
views

UPDATE Grants permission to change data stored in the
securable .

Synonyms,
tables, and
views

VIEW
DEFINITION

Grants permission to view the securable defini-
tion in the related metadata .

Stored proce-
dures, Service
Broker queues,
functions, syn-
onyms, tables,
and views

examining Permissions Granted to Securables
SQL Server functions that you will find helpful for examining permissions granted to
securables include the following:

■■ sys .fn_builtin_permissions

■■ Has_perms_by_name

You will learn more about how these functions are used in the sections that
follow .

examining Built-in Permissions

Each object class from the server scope down has a specific set of grantable permis-
sions . The sys .fn_builtin_permissions function returns a description of the server’s
built-in permissions hierarchy:

sys.fn_builtin_permissions([DEFAULT | NULL
 | empty_string | '< securable_class >'])

< securable_class >::= APPLICATION ROLE | ASSEMBLY | ASYMMETRIC KEY
 | CERTIFICATE | CONTRACT | DATABASE | ENDPOINT | FULLTEXT CATALOG
 | LOGIN | MESSAGE TYPE | OBJECT | REMOTE SERVICE BINDING | ROLE
 | ROUTE | SCHEMA | SERVER | SERVICE | SYMMETRIC KEY | TYPE
 | USER | XML SCHEMA COLLECTION

 ChAPTeR 9  Managing SQL Server 2008 Security298

In the preceding code segment, DEFAULT, NULL, or an empty string returns a
complete list of built-in permissions, or you can specify the name of a specific secur-
able class to return all permissions that apply to the class .

The sys .fn_builtin_permissions function is accessible to the public role . You can
view the grantable permissions for all objects by using the following query:

USE master
GO
SELECT * FROM sys.fn_builtin_permissions(default)
GO

If you want to view the grantable permissions for a specific object class, you can
use the following query:

USE master
GO
SELECT * FROM sys.fn_builtin_permissions('object_class')
GO

where object_class is the object class you want to work with . The following example
examines the grantable permissions for the LOGIN class:

SELECT * FROM sys.fn_builtin_permissions('login')

You can also list object classes for which a specific permission has been granted .
In the following example, you list object classes that have the SELECT permission:

USE master
GO
SELECT * FROM sys.fn_builtin_permissions(DEFAULT)
 WHERE permission_name = 'SELECT';
GO

examining effective Permissions

The Has_perms_by_name built-in function returns the effective permissions on a
securable . Effective permissions include the following:

■■ Permissions granted directly to the user and not denied

■■ Permissions implied by a higher-level permission held by the user and not
denied

■■ Permissions granted to a role of which the user is a member and not denied

■■ Permissions held by a role of which the user is a member and not denied

 Managing SQL Server 2008 Security ChAPTeR 9 299

The Has_perms_by_name function is accessible to the public role . However, you
cannot use Has_perms_by_name to check permissions on a linked server . The basic
syntax of the Has_perms_by_name function follows:

Has_perms_by_name (
 securable ,
 securable_class ,
 permission
 [, sub-securable]
 [, sub-securable_class]
)

In the preceding code segment, securable sets the name of the securable or
NULL if the securable is the server itself . The value of securable_class sets the name
of the securable class or NULL if the securable is the server itself, and permission is a
non-NULL value representing the permission name to be checked . You can use the
permission name ANY as a wildcard to determine if the securable has any effec-
tive permissions . The optional sub-securable and sub-securable_class values specify
the name of the securable subentity and the class of securable subentity against
which the permission is tested . Both of these optional values default to NULL . If the
function returns true (1), the securable has the effective permission . If the function
returns false (0), the securable does not have the effective permission . A return value
of NULL indicates that the query failed .

You can determine if the currently logged-on user has a specific permission on
the server by executing the following query:

USE master
GO
SELECT has_perms_by_name(null, null, 'permission_name');
GO

In this code segment, permission_name is the name of the permission to
examine .

The following example checks to see if the current user has the VIEW SERVER
STATE permission:

select has_perms_by_name(null, null, 'VIEW SERVER STATE');

A true (1) or false (0) value is returned to indicate whether the user is granted the
permission .

 ChAPTeR 9  Managing SQL Server 2008 Security300

To determine if the current user has any permissions in a specific database, you
can execute the following query:

USE master
GO
SELECT has_perms_by_name('database_name', 'DATABASE', 'ANY')
GO

In this code segment, database_name is the name of the database for which you
are determining permissions .

The following example determines if the current user has any permissions in the
Personnel database:

SELECT has_perms_by_name('Personnel', 'DATABASE', 'ANY')

If the query returns 1, the current user has some permissions for the specific
database . You can indicate the current database with the db_name() function, as in:

SELECT has_perms_by_name(db_name(),'DATABASE', 'ANY')

You can determine the permissions of a specific user by using EXECUTE AS . In the
following example, you check to see if EdwardM has any permissions in the Person-
nel database:

EXECUTE AS user = 'EdwardM'
GO
SELECT has_perms_by_name('Personnel', 'DATABASE', 'ANY')
GO
REVERT
GO

Permissions on schema objects, such as tables and views, can be examined as
well . To do this, set the securable to the database name, the securable class to the
literal value 'OBJECT', and the permission name to the permission you want to
examine . To determine which tables the current user has SELECT permission on in
the current database, you use the following query:

USE Personnel
GO
SELECT has_perms_by_name(dbname(), 'OBJECT', 'SELECT') as Have_Select,
 * from sys.tables;
GO

 Managing SQL Server 2008 Security ChAPTeR 9 301

The current user has SELECT permission on tables with a 1 in the Have_Select col-
umn . By specifying the two-part or three-part name, you can examine permissions
on a specific table as well . For example, to determine if the current user has INSERT
permission on the Address table in the current database, you use a two-part name:

select has_perms_by_name('Employee.Address', 'OBJECT', 'INSERT')
 as Have_Select, * from sys.tables;

Or you use a three-part name:

select has_perms_by_name('Personnel.Employee.Address', 'OBJECT',
 'INSERT') as Have_Select, * from sys.tables;

SQL Server 2008 Authentication Modes

The SQL Server security model has two authentication modes:

■■ Windows authentication only Works best when the database is accessed
only within the organization

■■ Mixed security Works best when outside users need to access the data-
base or when you do not use Windows domains

You configure these security modes at the server level, and they apply to all
databases on the server . Note, however, that each database server instance has a
separate security architecture . This means that different database server instances
can have different security modes .

Windows Authentication
If you use the Windows authentication mode, you can use the user and group
accounts available in the Windows domain for authentication . This lets authenti-
cated users access databases without a separate SQL Server login ID and password .
This is beneficial because domain users do not have to keep track of multiple
passwords, and if they update their domain password, they will not have to change
SQL Server passwords as well . However, users are still subject to all the rules of the
Windows security model, and you can use this model to lock accounts, audit logins,
and force users to change their passwords periodically .

When you use Windows authentication, SQL Server automatically authenticates
users based on their user account names or their group membership . If you have
granted the user or the user’s group access to a database, the user is automatically
granted access to that database . By default, several local accounts are configured
to use SQL Server . These accounts are the local Administrators group account
and the local Administrator user account . (Administrator is included because it is
a member of the Administrators group by default .) Local accounts are displayed

 ChAPTeR 9  Managing SQL Server 2008 Security302

as BUILTIN\<AccountName> or COMPUTERNAME\<AccountName> in SQL
Server Management Studio . For example, Administrators is displayed as BUILTIN\
Administrators .

REAL WORLD Domain accounts are the best way to manage users who access the

database from within the organization. Also, if you assign users to security groups and

then configure access for these groups in SQL Server, you cut down on the amount

of administration you have to do. For example, if you assign users in the market-

ing department to a marketing group and then configure this group in SQL Server,

you have only one account to manage instead of 10, 20, 50, or more. When employ-

ees leave the organization or change departments, you do not have to delete user

accounts. When new employees are hired, you do not have to create new accounts

either—you only need to make sure that they are added to the correct security group.

Mixed Security and SQL Server Logins
With mixed security, you use both Windows authentication and SQL Server logins .
SQL Server logins are primarily for users outside the company, such as those who
might access the database from the Internet . You can configure applications that
access SQL Server from the Internet to use specific accounts automatically or to
prompt the user for a SQL Server login ID and password .

With mixed security, SQL Server first determines if the user is connecting using
a valid SQL Server login . If the user has a valid login and has the proper password,
the user connection is accepted . If the user has a valid login but has an improper
password, the user connection is refused . SQL Server checks the Windows account
information only if the user does not have a valid login . In this case, SQL Server
determines whether the Windows account has permission to connect to the server .
If the account has permission, the connection is accepted . Otherwise, the connec-
tion is refused .

All SQL Server servers have the built-in sa login and might also have NETWORK
SERVICE and SYSTEM logins (depending on the server instance configuration) . All
databases have built-in SQL Server users known as dbo, guest, INFORMATION_
SCHEMA, and sys . The logins and users that are provided for special purposes are
discussed in the following section .

Special-Purpose Logins and Users

You configure access to SQL Server using server logins . You can configure various
levels of access for these logins in the following ways:

■■ By the roles to which those logins belong

■■ By permitting access to specific databases

■■ By allowing or denying object permissions

 Managing SQL Server 2008 Security ChAPTeR 9 303

Just as there are two authentication modes, there are also two kinds of server
logins . You create domain logins by using domain accounts, which can be domain
or local user accounts, local group accounts, or universal and global domain group
accounts . You create SQL Server logins by specifying a unique login ID and pass-
word . Several logins are configured by default, and these include local Administra-
tors, local Administrator, sa, NETWORK SERVICE, and SYSTEM .

To narrow the scope of access to a specific database, you use database user
accounts . Several database users are configured by default, including the dbo user
(a special database user), the guest user (a special database user with limited access),
the INFORMATION_SCHEMA user, and the sys user .

In this section, you will learn more about these special-purpose logins .

Working with the Administrators Group
The Administrators group is a local group on the database server . This group’s mem-
bers normally include the local Administrator user account and any other users set
to administer the system locally . In SQL Server, this group is granted the sysadmin
server role by default .

Working with the Administrator User Account
Administrator is a local user account on the server . This account provides adminis-
trator privileges on the local system, and you use it primarily when you install a sys-
tem . If the host computer is part of a Windows domain, the Administrator account
usually has domainwide privileges as well . In SQL Server, this account is granted the
sysadmin server role by default .

Working with the sa Login
The sa login is the system administrator’s account for SQL Server . With the new
integrated and expanded security model, sa is no longer needed, and it is primarily
provided for backward compatibility with previous versions of SQL Server . As with
other administrator logins, sa is granted the sysadmin server role by default . When
you install SQL Server, the sa login is not assigned a password .

To prevent unauthorized access to the server, you should set a strong password
for this account, and you should also change the password periodically as you would
the password for a Windows account .

BEST PRACTICES Because the sa login is widely known to malicious users, you

might want to delete or disable this account if possible. Instead of using the sa login,

make system administrators members of the sysadmin server role and have them log

on using their own logins. Anyone with the sysadmin server role can then log on and

administer the server. If you ever get locked out of the server, you can log on to the

server locally by using an account with local administrator privileges and then reset

passwords or assign privileges as necessary.

 ChAPTeR 9  Managing SQL Server 2008 Security304

Working with the NeTWORK SeRVICe and SYSTeM Logins
NETWORK SERVICE and SYSTEM are built-in local accounts on the server . Whether
server logins are created for these accounts depends on the server configura-
tion . For example, if you have configured the server as a report server, you will
have a login for the NETWORK SERVICE account, and this login will be a member
of the special database role RSExecRole on the master, msdb, ReportServer, and
ReportServer TempDB databases . RSExecRole is used primarily to manage the Report
Server schema, and the service account for the server instance will also be a mem-
ber of this role .

During setup of the server instance, the NETWORK SERVICE and SYSTEM
accounts can be the selected service account for SQL Server, SQL Server Agent,
SQL Server 2008 Analysis Services, and the report server . In this case, the SYSTEM
account typically has the sysadmin server role, giving it full access for administration
of the server instance .

Working with the Guest User
The guest user is a special user that you can add to a database to allow anyone with
a valid SQL Server login to access the database . Users who access a database with
the guest account assume the identity of the guest user and inherit all the privileges
and permissions of the guest account . For example, if you configure the domain
account GOTEAM to access SQL Server, GOTEAM can access any database with a
guest login, and when GOTEAM does so, the person logging in under GOTEAM
is granted all the permissions of the guest account . If you were to configure the
Windows group DEVGROUP with guest access, you could simplify administration
because any user who is a member of the group would be able to access any data-
base as a guest .

By default, the guest user exists in the model database and is granted guest
permissions . Because model is the template for all databases you create, all new
databases include the guest account, and this account is granted guest permissions .
You can add or delete a guest from all databases except master and tempdb . Most
users access master and tempdb as guests, and for this reason, you cannot remove
the guest account from these databases . This is not a problem, however, because a
guest has limited permissions and privileges in master and tempdb .

Before using the guest user, you should note the following information about the
account:

■■ The guest user is a member of the public server role and inherits the permis-
sions of this role .

■■ The guest user must exist in a database before anyone can access it as a
guest .

■■ The guest user is used only when a user account has access to SQL Server but
does not have access to the database through this user account .

 Managing SQL Server 2008 Security ChAPTeR 9 305

Working with the dbo User
The database owner, or dbo, is a special type of database user and is granted special
privileges . Generally speaking, the user who creates a database is the database
owner . The dbo is implicitly granted all permissions on the database and can grant
these permissions to other users . Because members of the sysadmin server role are
mapped automatically to the special user dbo, logins with the sysadmin role can
perform any tasks that a dbo can perform .

Objects created in SQL Server databases also have owners . These owners are
referred to as the database	object	owners . Objects created by a member of the
sysadmin server role belong to the dbo user automatically . Objects created by users
who are not members of the sysadmin server role belong to the user who cre-
ates the object and must be qualified with the name of that user when other users
reference them . For example, if GOTEAM is a member of the sysadmin server role
and creates a table called Sales, Sales belongs to dbo and is qualified as dbo .Sales,
or simply Sales . However, if GOTEAM is not a member of the sysadmin server role
and creates a table called Sales, Sales belongs to GOTEAM and must be qualified as
GOTEAM .Sales .

NOTE Technically, dbo is a special user account and not a special-purpose login.

however, you might see it referred to as a login. You cannot log in to a server or

 database as dbo, but you might be the person who created the database or a set of

objects in it.

Working with the sys and INFORMATION_SCheMA Users
All system objects are contained in the schema named sys or the schema named
INFORMATION_SCHEMA . These are two special schemas that are created in each
database, but they are visible only in the master database . The related sys and infor-
mation schema views provide an internal system view of the metadata for all data
objects stored in a database . The sys and INFORMATION_SCHEMA users are used to
reference into these views .

Permissions

Permissions determine the actions that users can perform on SQL Server or in a
database . Permissions are granted according to the login ID, group memberships,
and role memberships . Users must have appropriate permissions before they can
perform any action that changes database definitions or accesses data . Three types
of permissions are used in SQL Server:

■■ Object permissions

■■ Statement permissions

■■ Implicit permissions

 ChAPTeR 9  Managing SQL Server 2008 Security306

Object Permissions
In SQL Server 2008, all object permissions are grantable . You can manage permis-
sions for specific objects, all objects of particular types, and all objects belonging to
a specific schema . The objects for which you can manage permissions depend on
the scope . At the server level, you can grant object permissions for servers, end-
points, logins, and server roles . You can also manage permissions for the current
server instance .

At the database level, you can manage object permissions for application roles,
assemblies, asymmetric keys, certificates, database roles, databases, full-text cata-
logs, functions, schemas, stored procedures, symmetric keys, synonyms, tables, user-
defined data types, users, views, and XML schema collections .

You control access to these objects by granting, denying, or revoking the ability
to execute particular statements or stored procedures . For example, you can grant
a user the right to select information from a table, but deny the right to insert,
update, or delete information in the table . Table 9-4 provides a summary of object
permissions .

TABLE 9-4 Object Permissions

BASE
SECURABLE CONFIGURABLE PERMISSIONS

HIGHEST
PERMISSION

CONTAINED
IN

IMPLIED
PERMISSION
FROM PARENT

APPLICA-
TION ROLE

ALTER, CONTROL, VIEW
DEFINITION

CONTROL DATABASE ALTER ANY
APPLICA-
TION ROLE,
CONTROL,
VIEW
DEFINITION

ASSEMBLY ALTER, CONTROL, EXECUTE,
REFERENCES, TAKE OWNER-
SHIP, VIEW DEFINITION

CONTROL DATABASE ALTER ANY
ASSEMBLY,
CONTROL,
EXECUTE,
REFER-
ENCES, VIEW
DEFINITION

ASYM-
METRIC
KEY

ALTER, CONTROL, REFER-
ENCES, TAKE OWNERSHIP,
VIEW DEFINITION

CONTROL DATABASE ALTER ANY
ASYMMET-
RIC KEY,
CONTROL,
REFER-
ENCES, VIEW
DEFINITION

 Managing SQL Server 2008 Security ChAPTeR 9 307

BASE
SECURABLE CONFIGURABLE PERMISSIONS

HIGHEST
PERMISSION

CONTAINED
IN

IMPLIED
PERMISSION
FROM PARENT

CERTIFI-
CATE

ALTER, CONTROL, REFER-
ENCES, TAKE OWNERSHIP,
VIEW DEFINITION

CONTROL DATABASE ALTER ANY
CERTIFICATE,
CONTROL,
REFER-
ENCES, VIEW
DEFINITION

CONTRACT ALTER, CONTROL, REFER-
ENCES, TAKE OWNERSHIP,
VIEW DEFINITION

CONTROL DATABASE ALTER ANY
CONTRACT,
CONTROL,
REFER-
ENCES, VIEW
DEFINITION

DATABASE ALTER, ALTER ANY APPLI-
CATION ROLE, ALTER ANY
ASSEMBLY, ALTER ANY
ASYMMETRIC KEY, ALTER
ANY CERTIFICATE, ALTER
ANY CONTRACT, ALTER
ANY DATABASE DDL TRIG-
GER, ALTER ANY DATABASE
EVENT NOTIFICATION,
ALTER ANY DATASPACE,
ALTER ANY FULLTEXT CATA-
LOG, ALTER ANY MESSAGE
TYPE, ALTER ANY REMOTE
SERVICE BINDING, ALTER
ANY ROLE, ALTER ANY
ROUTE, ALTER ANY SCHEMA,
ALTER ANY SERVICE, ALTER
ANY SYMMETRIC KEY, ALTER
ANY USER, AUTHENTICATE,
BACKUP DATABASE, BACKUP
LOG, CHECKPOINT, CON-
NECT, CONNECT REPLICA-
TION, CONTROL, CREATE
AGGREGATE, CREATE
ASSEMBLY, CREATE ASYM-
METRIC KEY, CREATE CERTIF-
ICATE, CREATE CONTRACT,
CREATE DATABASE,

ALTER ANY
 ASSEMBLY,
ALTER
ANY CER-
TIFICATE,
ALTER ANY
CONTRACT,
ALTER ANY
DATABASE
EVENT
NOTIFI-
CATION,
ALTER ANY
FULLTEXT
CATALOG,
ALTER ANY
MESSAGE
TYPE,
ALTER ANY
REMOTE
SERVICE
BINDING,
ALTER
ANY ROLE,
ALTER ANY
ROUTE,
ALTER ANY
SCHEMA,

SERVER ALTER ANY
DATABASE,
ALTER ANY
EVENT
NOTIFICA-
TION, ALTER
TRACE,
AUTHEN-
TICATE
SERVER,
CONTROL
SERVER,
CREATE ANY
DATABASE,
CREATE DDL
EVENT NOTI-
FICATION,
EXTERNAL
ACCESS,
VIEW ANY
DEFINITION,
VIEW SERVER
STATE

 ChAPTeR 9  Managing SQL Server 2008 Security308

BASE
SECURABLE CONFIGURABLE PERMISSIONS

HIGHEST
PERMISSION

CONTAINED
IN

IMPLIED
PERMISSION
FROM PARENT

DATABASE,
(continued)

CREATE DATABASE DDL
EVENT NOTIFICATION,
CREATE DEFAULT, CREATE
FULLTEXT CATALOG, CREATE
FUNCTION, CREATE MES-
SAGE TYPE, CREATE PRO-
CEDURE, CREATE QUEUE,
CREATE REMOTE SERVICE
BINDING, CREATE ROLE,
CREATE ROUTE, CREATE
RULE, CREATE SCHEMA,
CREATE SERVICE, CREATE
SYMMETRIC KEY, CREATE
SYNONYM, CREATE TABLE,
CREATE TYPE, CREATE VIEW,
CREATE XML SCHEMA COL-
LECTION, DELETE, EXECUTE,
INSERT, REFERENCES, SELECT,
SHOWPLAN, SUBSCRIBE
QUERY NOTIFICATIONS,
TAKE OWNERSHIP, UPDATE,
VIEW DATABASE STATE,
VIEW DEFINITION

ALTER ANY
SERVICE,
ALTER ANY
SYMMET-
RIC KEY,
CONNECT
REPLICA-
TION,
CONTROL

ENDPOINT ALTER, CONNECT, CONTROL,
TAKE OWNERSHIP, VIEW
DEFINITION

CONTROL SERVER ALTER ANY
ENDPOINT,
CONTROL
SERVER,
VIEW ANY
DEFINITION

FULLTEXT
CATALOG

ALTER, CONTROL, REFER-
ENCES, TAKE OWNERSHIP,
VIEW DEFINITION

CONTROL DATABASE ALTER ANY
FULLTEXT
CATALOG,
CONTROL,
REFER-
ENCES, VIEW
DEFINITION

 Managing SQL Server 2008 Security ChAPTeR 9 309

BASE
SECURABLE CONFIGURABLE PERMISSIONS

HIGHEST
PERMISSION

CONTAINED
IN

IMPLIED
PERMISSION
FROM PARENT

LOGIN ALTER, CONTROL, IMPER-
SONATE, VIEW DEFINITION

CONTROL SERVER ALTER ANY
LOGIN,
CONTROL
SERVER,
VIEW ANY
DEFINITION

MESSAGE
TYPE

ALTER, CONTROL, REFER-
ENCES, TAKE OWNERSHIP,
VIEW DEFINITION

CONTROL DATABASE ALTER ANY
MESSAGE
TYPE, CON-
TROL, REFER-
ENCES, VIEW
DEFINITION

OBJECT ALTER, CONTROL, DELETE,
EXECUTE, INSERT, REF-
ERENCES, SELECT, TAKE
OWNERSHIP, UPDATE, VIEW
CHANGE TRACKING, VIEW
DEFINITION

CONTROL SCHEMA ALTER,
CONTROL,
DELETE,
EXECUTE,
INSERT,
REFERENCES,
SELECT,
UPDATE,
VIEW
CHANGE
TRACK-
ING, VIEW
DEFINITION

REMOTE
SERVICE
BINDING

ALTER, CONTROL, TAKE
OWNERSHIP, VIEW
DEFINITION

CONTROL DATABASE ALTER ANY
REMOTE
SERVICE
BINDING,
CONTROL,
VIEW
DEFINITION

ROLE ALTER, CONTROL, TAKE
OWNERSHIP, VIEW
DEFINITION

CONTROL DATABASE ALTER ANY
ROLE, CON-
TROL, VIEW
DEFINITION

BASE
SECURABLE CONFIGURABLE PERMISSIONS

HIGHEST
PERMISSION

CONTAINED
IN

IMPLIED
PERMISSION
FROM PARENT

DATABASE,
(continued)

CREATE DATABASE DDL
EVENT NOTIFICATION,
CREATE DEFAULT, CREATE
FULLTEXT CATALOG, CREATE
FUNCTION, CREATE MES-
SAGE TYPE, CREATE PRO-
CEDURE, CREATE QUEUE,
CREATE REMOTE SERVICE
BINDING, CREATE ROLE,
CREATE ROUTE, CREATE
RULE, CREATE SCHEMA,
CREATE SERVICE, CREATE
SYMMETRIC KEY, CREATE
SYNONYM, CREATE TABLE,
CREATE TYPE, CREATE VIEW,
CREATE XML SCHEMA COL-
LECTION, DELETE, EXECUTE,
INSERT, REFERENCES, SELECT,
SHOWPLAN, SUBSCRIBE
QUERY NOTIFICATIONS,
TAKE OWNERSHIP, UPDATE,
VIEW DATABASE STATE,
VIEW DEFINITION

ALTER ANY
SERVICE,
ALTER ANY
SYMMET-
RIC KEY,
CONNECT
REPLICA-
TION,
CONTROL

ENDPOINT ALTER, CONNECT, CONTROL,
TAKE OWNERSHIP, VIEW
DEFINITION

CONTROL SERVER ALTER ANY
ENDPOINT,
CONTROL
SERVER,
VIEW ANY
DEFINITION

FULLTEXT
CATALOG

ALTER, CONTROL, REFER-
ENCES, TAKE OWNERSHIP,
VIEW DEFINITION

CONTROL DATABASE ALTER ANY
FULLTEXT
CATALOG,
CONTROL,
REFER-
ENCES, VIEW
DEFINITION

 ChAPTeR 9  Managing SQL Server 2008 Security310

BASE
SECURABLE CONFIGURABLE PERMISSIONS

HIGHEST
PERMISSION

CONTAINED
IN

IMPLIED
PERMISSION
FROM PARENT

ROUTE ALTER, CONTROL, TAKE
OWNERSHIP, VIEW
DEFINITION

CONTROL DATABASE ALTER ANY
ROUTE,
CONTROL,
VIEW
DEFINITION

SCHEMA ALTER, CONTROL, DELETE,
EXECUTE, INSERT, REF-
ERENCES, SELECT, TAKE
OWNERSHIP, UPDATE, VIEW
CHANGE TRACKING, VIEW
DEFINITION

CONTROL DATABASE ALTER ANY
SCHEMA,
CONTROL,
DELETE,
EXECUTE,
INSERT,
REFERENCES,
SELECT,
UPDATE,
VIEW
CHANGE
TRACK-
ING, VIEW
DEFINITION

SERVER ADMINISTER BULK OPERA-
TIONS, ALTER ANY CON-
NECTION, ALTER ANY
CREDENTIAL, ALTER ANY
DATABASE, ALTER ANY END-
POINT, ALTER ANY EVENT
NOTIFICATION, ALTER ANY
LINKED SERVER, ALTER ANY
LOGIN, ALTER RESOURCES,
ALTER SERVER STATE, ALTER
SETTINGS, ALTER TRACE,
AUTHENTICATE SERVER,
CONNECT SQL, CONTROL
SERVER, CREATE ANY
DATABASE, CREATE DDL
EVENT NOTIFICATION,
CREATE ENDPOINT, CREATE
TRACE EVENT NOTIFICA-
TION, EXTERNAL ACCESS
ASSEMBLY, SHUTDOWN,
UNSAFE ASSEMBLY, VIEW
ANY DATABASE, VIEW ANY
DEFINITION, VIEW SERVER
STATE

CONTROL
SERVER,
ALTER ANY
DATABASE,
ALTER ANY
EVENT
NOTIFI-
CATION,
ALTER ANY
ENDPOINT,
ALTER
SERVER
STATE

Not
applicable

Not
applicable

 Managing SQL Server 2008 Security ChAPTeR 9 311

BASE
SECURABLE CONFIGURABLE PERMISSIONS

HIGHEST
PERMISSION

CONTAINED
IN

IMPLIED
PERMISSION
FROM PARENT

SERVICE ALTER, CONTROL, SEND,
TAKE OWNERSHIP, VIEW
DEFINITION

CONTROL DATABASE ALTER ANY
SERVICE,
CONTROL,
VIEW
DEFINITION

SYMMET-
RIC KEY

ALTER, CONTROL, REFER-
ENCES, TAKE OWNERSHIP,
VIEW DEFINITION

CONTROL DATABASE ALTER ANY
SYMMETRIC
KEY, CON-
TROL, REFER-
ENCES, VIEW
DEFINITION

TYPE CONTROL, EXECUTE, REFER-
ENCES, TAKE OWNERSHIP,
VIEW DEFINITION

CONTROL SCHEMA CONTROL,
EXECUTE,
REFER-
ENCES, VIEW
DEFINITION

USER ALTER, CONTROL, IMPER-
SONATE, VIEW DEFINITION

CONTROL DATABASE ALTER ANY
USER, CON-
TROL, VIEW
DEFINITION

XML
SCHEMA
COLLEC-
TION

ALTER, CONTROL, EXECUTE,
REFERENCES, TAKE OWNER-
SHIP, VIEW DEFINITION

CONTROL SCHEMA ALTER,
CONTROL,
EXECUTE,
REFER-
ENCES, VIEW
DEFINITION

Statement Permissions

Statement permissions control administration actions, such as creating a database
or adding objects to a database . Only members of the sysadmin role and database
owners can assign statement permissions . By default, normal logins are not granted
statement permissions, and you must specifically grant these permissions to logins
that are not administrators . For example, if a user needs to be able to create views
in a database, you would assign permission to execute CREATE VIEW . Table 9-5 pro-
vides a summary of statement permissions that you can grant, deny, or revoke .

 ChAPTeR 9  Managing SQL Server 2008 Security312

TABLE 9-5 Statement Permissions

STATEMENT PERMISSION DESCRIPTION

CREATE DATABASE Determines if the login can create databases . The user
must be in the master database or must be a member of
the sysadmin server role .

CREATE DEFAULT Determines if the user can create a default value for a
table column .

CREATE FUNCTION Determines if the user can create a user-defined function
in the database .

CREATE PROCEDURE Determines if the user can create a stored procedure .

CREATE RULE Determines if the user can create a table column rule .

CREATE TABLE Determines if the user can create a table .

CREATE VIEW Determines if the user can create a view .

BACKUP DATABASE Determines if the user can back up the database .

BACKUP LOG Determines if the user can back up the transaction log .

Implied Permissions
Only members of predefined system roles or database/database object owners have
implied permissions . Implied permissions for a role cannot be changed . You make
other accounts members of the role to give the accounts the related implied per-
missions . For example, members of the sysadmin server role can perform any activ-
ity in SQL Server . They can extend databases, kill processes, and so on . Any account
you add to the sysadmin role can perform these tasks as well .

Database and database object owners also have implied permissions . These
permissions allow them to perform all activities either with the database, with the
object they own, or with both . For example, a user who owns a table can view, add,
change, and delete data . That user can also alter the table’s definition and control
the table’s permissions .

Roles

Roles are a lot like Windows security groups—they enable you to assign permissions
to a group of users and they can have built-in permissions (implicit permissions) that
cannot be changed . Two types of roles are available:

■■ Server roles Applied at the server level

■■ Database roles Applied at the database level

 Managing SQL Server 2008 Security ChAPTeR 9 313

Server Roles
You use server roles to grant server administration capabilities . If you make a login a
member of a role, users who use this login can perform any tasks permitted by the
role . For example, members of the sysadmin role have the highest level of permis-
sions on SQL Server and can perform any type of task .

You set server roles at the server level, and you predefine them . This means that
these permissions affect the entire server and you cannot change the permission
set . The following list provides a summary of each server role, from the lowest-level
role (bulkadmin) to the highest-level role (sysadmin):

■■ bulkadmin Designed for domain accounts that need to perform bulk
inserts into the database . Members of this role can add members to bulk-
admin and can execute the BULK INSERT statements .

■■ dbcreator Designed for users who need to create, modify, drop, and
restore databases . Members of this role can add members to dbcreator and
perform these tasks: ALTER DATABASE, CREATE DATABASE, DROP DATABASE,
EXTEND DATABASE, RESTORE DATABASE, and RESTORE LOG .

■■ diskadmin Designed for users who need to manage disk files . Members of
this role can add members to diskadmin and can use sp_addumpdevice and
sp_dropdevice .

■■ processadmin Designed for users who need to control SQL Server pro-
cesses . Members of this role can add members to processadmin and can kill
processes .

■■ securityadmin Designed for users who need to manage logins, cre-
ate database permissions, and read error logs . Members of this role can
add members to securityadmin; grant, deny, and revoke server-level and
database-level permissions; reset passwords; and read the error logs . In addi-
tion, they can also perform these tasks: sp_addlinkedsrvlogin, CREATE LOGIN,
ALTER LOGIN, DROP LOGIN, sp_droplinkedsrvlogin, GRANT CONNECT, DENY
CONNECT, sp_helplogins, and sp_remoteoption .

■■ serveradmin Designed for users who need to set serverwide configuration
options and shut down the server . Members of this role can add mem-
bers to serveradmin and can perform these other tasks: DBCC FREEPROC-
CACHE, RECONFIGURE, SHUTDOWN, sp_configure, sp_fulltext_service, and
sp_tableoption .

■■ setupadmin Designed for users who need to manage linked servers and
control startup procedures . Members of this role can add members to
setupadmin; add, drop, and configure linked servers; and control startup
procedures .

■■ sysadmin Designed for users who need complete control over SQL Server
and installed databases . Members of this role can perform any activity in SQL
Server .

 ChAPTeR 9  Managing SQL Server 2008 Security314

Fixed server roles can be mapped to the more granular permissions for SQL
Server 2008, as shown in Table 9-6 .

TABLE 9-6 Granular Permissions Associated with Fixed Server Roles

FIXED SERVER ROLE PERMISSIONS GRANTED WITH THIS ROLE

bulkadmin ADMINISTER BULK OPERATIONS

dbcreator CREATE DATABASE

diskadmin ALTER RESOURCES

processadmin ALTER ANY CONNECTION, ALTER SERVER STATE

securityadmin ALTER ANY LOGIN

serveradmin ALTER ANY ENDPOINT, ALTER RESOURCES, ALTER SERVER
STATE, ALTER SETTINGS, SHUTDOWN, VIEW SERVER STATE

setupadmin ALTER ANY LINKED SERVER

sysadmin CONTROL SERVER

Database Roles
When you want to assign permissions at the database level, you can use data-
base roles . You set database roles on a per-database basis, which means that each
database has its own set of roles . SQL Server 2008 supports three types of database
roles:

■■ User-defined standard roles

■■ User-defined application roles

■■ Predefined (or fixed) database roles

Standard roles allow you to create roles with unique permissions and privileges .
You can use standard roles to logically group users and then assign a single permis-
sion to the role rather than having to assign permissions to each user separately . For
example, you could create a role called Users that allows users to perform SELECT,
INSERT, and UPDATE operations on specific tables in the database but does not
allow them to perform any other tasks .

Application roles allow you to create password-protected roles for specific appli-
cations . For example, a user could connect through a Web-based application called
NetReady; this application would activate the role, and the user would then gain the
role’s permissions and privileges . Standard database roles or other roles cannot be
assigned to an application role . Instead, the application role is activated when the
application connects to the database .

 Managing SQL Server 2008 Security ChAPTeR 9 315

SQL Server also has predefined database roles . Predefined roles are built in and
have permissions that cannot be changed . You use predefined roles to assign data-
base administration privileges, and you can assign a single login to multiple roles .
These privileges are summarized in the following list:

■■ public The default role for all database users . Users inherit the permissions
and privileges of the public role, and this role provides the minimum permis-
sions and privileges . Any roles that you assign to a user beyond the public
role can add permissions and privileges . If you want all database users to
have specific permissions, assign the permissions to the public role .

■■ db_accessadmin Designed for users who need to add or remove logins in
a database .

■■ db_backupoperator Designed for users who need to back up a database .

■■ db_datareader Designed for users who need to view data in a database .
Members of this role can select all data from any user table in the database .

■■ db_datawriter Designed for users who need to add or modify any data
in any user table in the database . Members of this role can perform the fol-
lowing tasks on any objects in the selected database: DELETE, INSERT, and
UPDATE .

■■ db_ddladmin Designed for users who need to perform tasks related to the
data definition language (DDL) for SQL Server . Members of this role can issue
any DDL statement except GRANT, REVOKE, or DENY .

■■ db_denydatareader Designed to restrict access to data in a database
by login . Members of this role cannot read any data in user tables within a
database .

■■ db_denydatawriter Designed to restrict modification permissions in a
database by login . Members of this role cannot add, modify, or delete any
data in user tables within a database .

■■ db_owner Designed for users who need complete control over all aspects
of the database . Members of this role can assign permissions, modify data-
base settings, perform database maintenance, and perform any other admin-
istration task on the database, including dropping the database .

■■ db_securityadmin Designed for users who need to manage permissions,
object ownership, and roles .

■■ dbm_monitor Designed for users who need to monitor the current status
of database mirroring .

Fixed database roles can be mapped to the more granular permissions for SQL
Server 2008, as shown in Table 9-7 .

 ChAPTeR 9  Managing SQL Server 2008 Security316

TABLE 9-7 Granular Permissions Associated with Fixed Database Roles

FIXED DATABASE ROLE PERMISSIONS GRANTED WITH THIS ROLE

db_accessadmin ALTER ANY USER, CONNECT with GRANT option, CREATE
SCHEMA, VIEW ANY DATABASE

db_backupoperator BACKUP DATABASE, BACKUP LOG, CHECKPOINT, VIEW ANY
DATABASE

db_datareader SELECT, VIEW ANY DATABASE

db_datawriter DELETE, INSERT, UPDATE, VIEW ANY DATABASE

db_ddladmin ALTER ANY ASSEMBLY, ALTER ANY ASYMMETRIC KEY,
ALTER ANY CERTIFICATE, ALTER ANY CONTRACT, ALTER
ANY DATABASE DDL TRIGGER, ALTER ANY DATABASE
EVENT NOTIFICATION, ALTER ANY DATASPACE, ALTER
ANY FULLTEXT CATALOG, ALTER ANY MESSAGE TYPE,
ALTER ANY REMOTE SERVICE BINDING, ALTER ANY ROUTE,
ALTER ANY SCHEMA, ALTER ANY SERVICE, ALTER ANY
 SYMMETRIC KEY, CHECKPOINT, CREATE AGGREGATE,
 CREATE DEFAULT, CREATE FUNCTION, CREATE PROCEDURE,
CREATE QUEUE, CREATE RULE, CREATE SYNONYM, CREATE
TABLE, CREATE TYPE, CREATE VIEW, CREATE XML SCHEMA
COLLECTION, REFERENCES, VIEW ANY DATABASE

db_denydatareader Denies SELECT

db_denydatawriter Denies DELETE, INSERT, UPDATE

db_owner CONTROL with GRANT option, VIEW ANY DATABASE

db_securityadmin ALTER ANY APPLICATION ROLE, ALTER ANY ROLE, CREATE
SCHEMA, VIEW DEFINITION, VIEW ANY DATABASE

dbm_monitor VIEW status of database mirroring, VIEW ANY DATABASE

REAL WORLD The msdb database contains a number of special-purpose roles.

When users work with SQL Server Integration Services (SSIS), you’ll want to assign the

db_ssisadmin role to SSIS administrators, the db_ssisoperator role to SSIS operators,

and the db_ssisltduser role to limited users. When you use data collectors, you’ll want

to assign the dc_admin role to DC administrators, the dc_operator role to DC opera-

tors, and the dc_proxy role to DC proxy accounts.

Other important special-purpose roles include the PolicyAdministratorRole for admin-

istrators who perform configuration and maintenance activities for Policy-Based

Management, the ServerGroupAdministratorRole for administrators who manage and

work with registered servers, and the ServerGroupReaderRole for those who need to

see what server groups are available.

 Managing SQL Server 2008 Security ChAPTeR 9 317

Managing Server Logins

SQL Server can use Windows logins as well as logins for SQL Server . If you have con-
figured the server for mixed security, you can use both login types . Otherwise, you
can use only Windows logins . You manage logins at the server level .

Viewing and editing existing Logins
To view or edit an existing login, follow these steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the appropriate server, and then work your way down to the Security folder .

  2. Expand the Security folder at the server level and then the Logins folder to
list the current logins . Right-click a login, and then select Properties to view
the properties of the login .

  3. The Login Properties dialog box, shown in Figure 9-1, has five pages:

■■ General Provides an overview of the login configuration, including the
authentication mode (which cannot be changed), the default database
and language (which can be changed), and any mapped credentials
(which can be added or removed) .

■■ Server Roles Lists the server roles and allows you to add or remove the
login’s server roles .

■■ User Mappings Lists databases accessible by the login and allows you
to manage, on a per-database basis, the default schema, the user identity
for the database, and the assigned database roles .

■■ Securables Shows current object permissions and allows you to manage
object permissions for the login .

■■ Status Shows current status of the login, including whether the login
is enabled, locked out, or denied permission to connect to the Database
Engine .

NOTE  In the Connection area of any page, you can click the View Connection

Properties link to see detailed information about the user’s current connection

properties. This information is helpful for troubleshooting connection issues.

  4. When you finish working with the account, click OK .

 ChAPTeR 9  Managing SQL Server 2008 Security318

FIGURE 9-1 Login Properties dialog box

To view information about a login with Transact-SQL (T-SQL), use sp_helplogins .
Sample 9-1 shows the syntax and usage for this command .

SAMPLE 9-1 sp_helplogins Syntax and Usage

Syntax

sp_helplogins [[@LoginNamePattern =] 'login']

Usage

EXEC sp_helplogins 'goteam'

The output provided by sp_helplogins includes the login name, security identi-
fier, default database, and default language . To determine the server roles and
Windows groups to which the currently logged-on user either implicitly or expressly
belongs, you can execute the following query:

USE master
GO
SELECT * FROM sys.login_token;
GO

 Managing SQL Server 2008 Security ChAPTeR 9 319

Creating Logins
You create new logins in SQL Server Management Studio by using the Login—New
dialog box . If you want to use Windows user or group accounts, you must create
these accounts on the local machine or in the Windows domain and then create
the related SQL Server logins . Ask a network administrator to set up the necessary
accounts .

To create a login, follow these steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the appropriate server, and then work your way down to the Security folder
at the server level .

  2. Right-click Logins, and then select New Login to display the Login—New
dialog box, shown in Figure 9-2 .

FIGURE 9-2 The Login—New dialog box

  3. If you are creating a login for a Windows account, select the Windows
Authentication option, and then type the user name in DOMAIN\username
format, such as CPANDL\wrstanek . If you want to search Active Directory
for the domain and user information, click Search, and then use the Select
User Or Group dialog box to select the user for which you are creating
the SQL Server account . Password policy and expiration enforcement are
handled by the local Windows password policy automatically .

 ChAPTeR 9  Managing SQL Server 2008 Security320

  4. If you want to create a new SQL Server login, select the SQL Server Authen-
tication option . Type the name of the account you want to use, such as Sales
or WRSTANEK, and then enter and confirm the password for the account .
To enforce the local Windows password expiration policy on the SQL Server
login, select Enforce Password Policy . If you elect to enforce password policy,
you can also elect to enforce password expiration . To do this, select Enforce
Password Expiration .

  5. Specify the default database and default language for the login . Assigning a
default database does not give the login permission to access the database .
Instead, this option specifies the database that is used when no database is
specified in a command .

  6. Click OK to create the login . If you are creating a SQL Server login and an
identically named login already exists on the server, you will see an error .
Click OK and change the login, or click Cancel if you determine that the new
login is not needed .

You have not yet assigned any roles or access permissions . Refer to “Configur-
ing Server Roles” and “Controlling Database Access and Administration” later in this
chapter to learn how to configure these options .

You can also create logins with T-SQL . Use CREATE LOGIN	as shown in Sample
9-2 . To use this statement, you need ALTER ANY LOGIN permission on the server
(and if using credentials, you need ALTER ANY CREDENTIAL permission) .

SAMPLE 9-2 CREATE LOGIN Syntax and Usage

Syntax

CREATE LOGIN login_name { WITH < option_list1 > | FROM < sources > }

< sources >::=
 WINDOWS [WITH windows_options [,...]]
 | CERTIFICATE certificate_name
 | ASYMMETRIC KEY asym_key_name

< option_list1 >::=
 PASSWORD = 'password' [HASHED] [MUST_CHANGE]
 [, option_list2 [,...]]

< option_list2 >::=
 SID = sid
 | DEFAULT_DATABASE = database
 | DEFAULT_LANGUAGE = language
 | CHECK_EXPIRATION = { ON | OFF}
 | CHECK_POLICY = { ON | OFF}
 [CREDENTIAL = credential_name]

< windows_options >::=
 DEFAULT_DATABASE = database
 | DEFAULT_LANGUAGE = language

 Managing SQL Server 2008 Security ChAPTeR 9 321

Usage for SQL Logins

create login wrstanek WITH PASSWORD = 'MZ82$!408765RTM'

Usage for SQL Logins Mapped to Credentials

create login wrstanek WITH PASSWORD = 'MZ82$!408765RTM',
 CREDENTIAL = StanekWR

Usage for Logins from a Domain Account

CREATE LOGIN [CPANDL\wrstanek] FROM WINDOWS;

editing Logins with T-SQL
You can edit logins in SQL Server Management Studio as explained in “Viewing
and Editing Existing Logins” earlier in this chapter . Editing logins with T-SQL is more
work, however, and requires you to use the ALTER LOGIN statement . You need
ALTER ANY LOGIN permission to alter logins (and if working with credentials, the
ALTER ANY CREDENTIAL permission) . When a login is a member of the sysadmin
server role, only another member of this role can make the following changes:

■■ Reset the password without supplying the old password .

■■ Require a user to change the login password .

■■ Change the login name .

■■ Enable or disable the login .

■■ Change the login credential .

■■ Force SQL Server to check a password for compliance with Group Policy .

■■ Force SQL Server to enforce password expiration settings in Group Policy .

Sample 9-3 shows the syntax and usage for ALTER LOGIN .

SAMPLE 9-3 ALTER LOGIN Syntax and Usage

Syntax

ALTER LOGIN login_name
 {
 < status_option >
 | WITH set_option [,...]
 | <cryptographic_credential_option>
 }

< status_option >::=
 ENABLE | DISABLE

 ChAPTeR 9  Managing SQL Server 2008 Security322

< set_option >::=
 PASSWORD = 'password' | hashed_password HASHED
 [
 OLD_PASSWORD = 'oldpassword'
 | secadmin_pwd_option [secadmin_pwd_option]
]
 | DEFAULT_DATABASE = database
 | DEFAULT_LANGUAGE = language
 | NAME = login_name
 | CHECK_POLICY = { ON | OFF }
 | CHECK_EXPIRATION = { ON | OFF }
 | CREDENTIAL = credential_name
 | NO CREDENTIAL

< secadmin_pwd_opt >::=
 MUST_CHANGE | UNLOCK

<cryptographic_credentials_option> ::=
 ADD CREDENTIAL credential_name
 | DROP CREDENTIAL credential_name

Usage for Changing the Login Name

ALTER LOGIN wrstanek WITH NAME = stanekwr

Usage for Changing the Login Password

ALTER LOGIN wrstanek WITH PASSWORD = '3948wJ698FFF7';

Usage for Requiring User to Change Password

ALTER LOGIN wrstanek MUST_CHANGE

Usage for Enforcing Password Policy

ALTER LOGIN wrstanek CHECK_POLICY=ON

Usage for Enforcing Password Expiration

ALTER LOGIN wrstanek CHECK_EXPIRATION=ON

 Managing SQL Server 2008 Security ChAPTeR 9 323

Granting or Denying Server Access
When you create a new login or modify an existing login based on a Windows
account, you can explicitly grant or deny access to the server’s Database Engine for
this login . Explicitly denying access to the server is useful when a particular Windows
account should be temporarily restricted from accessing the server .

To grant or deny access for an existing login, complete the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the appropriate server, and then work your way down to the Security folder
at the server level .

  2. Expand the Security folder and the Logins folder to list the current logins .
Righ-click a login, and then select Properties to view the properties of that
login . This opens the Login Properties dialog box (shown previously in Fig-
ure 9-1) .

  3. In the Select A Page list, select Status .

  4. To grant access to the server, select the Grant option .

  5. To deny access to the server, select the Deny option .

NOTE  Denying access to the server does not prevent users from logging on to

SQL Server. Instead, it prevents them from using their Windows domain account

to log on to SQL Server. Users can still log on if they have a valid SQL Server login

ID and password.

  6. Click OK .

You can also grant or deny logins with T-SQL . To grant a login for a domain
account, use GRANT CONNECT, as shown in Sample 9-4 .

NOTE Only members of the sysadmin or securityadmin fixed server role can execute

GRANT CONNeCT and DeNY CONNeCT.

SAMPLE 9-4 GRANT CONNECT Syntax and Usage

Syntax

USE [master]
GO
GRANT CONNECT SQL TO 'login'
GO

Usage

USE [master]
GO
GRANT CONNECT SQL TO 'GALAXY\WRSTANEK'
GO

To deny access to the server for the account, use DENY CONNECT as shown in
Sample 9-5 .

 ChAPTeR 9  Managing SQL Server 2008 Security324

SAMPLE 9-5 DENY CONNECT Syntax and Usage

Syntax

USE [master]
GO
DENY CONNECT SQL TO 'login'
GO

Usage

USE [master]
GO
DENY CONNECT SQL TO 'GALAXY\WRSTANEK'
GO

enabling, Disabling, and Unlocking Logins
Similar to Windows accounts, SQL Server logins can be enabled and disabled by
administrators . Logins can also become locked based on policy settings and might
need to be unlocked . For example, if a login’s password expires, the login might
become locked .

TIP You can determine whether a login is disabled or locked by selecting the server’s

Logins node in SQL Server Management Studio. The icon for the login is updated to

show the status as locked or disabled.

To enable, disable, or unlock a login, complete the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the appropriate server, and then work your way down to the Security folder
at the server level .

  2. Expand the Security folder and the Logins folder to list the current logins .
Right-click a login, and then select Properties to view the properties of that
login . This opens the Login Properties dialog box .

  3. In the Select A Page list, select Status .

  4. You can now do the following:

■■ Enable the login by selecting Enabled under Login .

■■ Disable the login by selecting Disabled under Login .

■■ Unlock the login by clearing the Login Is Locked Out check box .

  5. Click OK .

You can also enable, disable, or unlock a login with T-SQL . To grant a login for a
domain account, use ALTER LOGIN, as shown in Sample 9-6 .

NOTE Only members of the sysadmin or securityadmin fixed server role can execute

ALTeR LOGIN.

 Managing SQL Server 2008 Security ChAPTeR 9 325

SAMPLE 9-6 Enabling, Disabling, and Unlocking Accounts

Syntax

USE [master]
GO
ALTER LOGIN 'login' DISABLE | ENABLE | UNLOCK
GO

Usage for Disabling Logins

USE [master]
GO
ALTER LOGIN 'GALAXY\WRSTANEK' DISABLE
GO

Usage for Enabling Logins

USE [master]
GO
ALTER LOGIN 'GALAXY\WRSTANEK' ENABLE
GO

Usage for Unlocking Logins

USE [master]
GO
ALTER LOGIN 'GALAXY\WRSTANEK' UNLOCK
GO

Removing Logins
When a user leaves the organization or a login is no longer needed for another
reason, you should remove the login from SQL Server . To remove a login, complete
the following steps:

  1. Start SQL Server Management Studio, and then access the appropriate
server .

  2. In the server’s Security folder, expand the Logins folder .

  3. Right-click the login you want to remove, and then select Delete from the
shortcut menu .

  4. The Delete Object dialog box shows you which account you are deleting .
Click OK to remove the account . Remember that you might also need to
delete users in each database .

Use DROP LOGIN	to delete Windows user and group accounts, as shown in
Sample 9-7 .

 ChAPTeR 9  Managing SQL Server 2008 Security326

SAMPLE 9-7 DROP LOGIN Syntax and Usage

Syntax

DROP LOGIN 'login'

Usage

DROP LOGIN 'GALAXY\WRSTANEK'

Changing Passwords
You manage Windows user and group accounts in the Windows domain or on the
local machine . Users can change their own passwords or ask the Windows admin-
istrator to reset their passwords, if necessary . For SQL Server logins, you change
passwords through SQL Server Management Studio by following these steps:

  1. Start SQL Server Management Studio, and then access the appropriate
server .

  2. In the server’s Security folder, expand the Logins folder .

  3. Right-click the login you want to change, and then select Properties to dis-
play the Login Properties dialog box .

  4. Type and then confirm the new password in the boxes provided .

  5. Click OK .

To change passwords with T-SQL, you can use ALTER LOGIN as discussed
previously .

Configuring Server Roles

Server roles set serverwide administrator privileges for SQL Server logins . You can
manage server roles by role or by individual logins .

Assigning Roles by Login
To assign or change server roles for a login, follow these steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the appropriate server, and then work your way down to the Security folder
at the server level .

  2. Expand the Security folder and the Logins folder to list the current logins .
Right-click a login, and then select Properties to display the Login Properties
dialog box and view the properties of the login .

  3. Select the Server Roles page, shown in Figure 9-3 .

  4. Grant server roles by selecting the check boxes next to the roles you want to
use . See “Server Roles” earlier in this chapter for more information .

  5. When you finish configuring server roles, click OK .

 Managing SQL Server 2008 Security ChAPTeR 9 327

FIGURE 9-3 The Server Roles page of the Login Properties dialog box

You can also configure server roles with T-SQL . The sp_addsrvrolemember stored
procedure adds a login to a server role . You can use it as shown in Sample 9-8 .

NOTE To use sp_addsrvrolemember or sp_dropsrvrolemember, you must have ALTeR

ANY LOGIN permission on the server and membership in the role to which you are

adding the new member.

SAMPLE 9-8 sp_addsrvrolemember Syntax and Usage

Syntax

sp_addsrvrolemember [@loginame =] 'login', [@rolename =] 'role'

Usage

EXEC sp_addsrvrolemember 'GALAXY\WRSTANEK', 'sysadmin'

The sp_dropsrvrolemember stored procedure removes a login from a role .
Sample 9-9 shows its syntax and usage .

 ChAPTeR 9  Managing SQL Server 2008 Security328

SAMPLE 9-9 sp_dropsrvrolemember Syntax and Usage

Syntax

sp_dropsrvrolemember [@loginame =] 'login', [@rolename =] 'role'

Usage

EXEC sp_dropsrvrolemember 'GALAXY\WRSTANEK', 'sysadmin'

Assigning Roles to Multiple Logins
The easiest way to assign roles to multiple logins is to use the Server Role Proper-
ties dialog box . To access this dialog box and configure multiple logins, follow these
steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the appropriate server, and then work your way down to the Security folder
at the server level .

  2. Expand the Server Roles node, right-click the role you want to configure,
and then select Properties . This opens the Server Role Properties dialog box,
shown in Figure 9-4 .

FIGURE 9-4 The Server Role Properties dialog box

 Managing SQL Server 2008 Security ChAPTeR 9 329

  3. To add logins, click Add, and then use the Select Logins dialog box to select
the logins to add . You can enter partial names and then click Check Names
to expand the name . To search for names, click Browse .

  4. To remove a login, select it, and then click Remove .

  5. When you finish configuring server roles, click OK .

Revoking Access Rights and Roles by Server Login
To revoke access rights or to remove a user from a role in a database, complete the
following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the appropriate server .

  2. Expand the server’s Security folder, and then expand the related Logins
folder .

  3. Double-click the login that you want to configure to display the Login Prop-
erties dialog box .

  4. Select the Server Roles page . Clear the check box next to the server roles that
you want to remove from this login .

  5. Select the User Mapping page . Clear the check box next to the databases
to which this user should not have access . Alternatively, select a database
to which access is permitted, and then modify the granted roles by clearing
options under Database Role Membership For .

  6. When you finish, click OK .

Controlling Database Access and Administration

You control database access and administration with database users and roles . Data-
base users are the logins that have the right to access the database . Database access
roles set administration privileges and other database permissions .

Assigning Access and Roles by Login
For individual logins, you can grant access to databases and assign roles by com-
pleting the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the appropriate server, and then work your way down to the Security folder .

  2. Expand the Security folder and the Logins folder to list the current logins .
Right-click the login you want to configure, and then select Properties . This
opens the Login Properties dialog box .

  3. Select the User Mapping page, shown in Figure 9-5 .

 ChAPTeR 9  Managing SQL Server 2008 Security330

FIGURE 9-5 The User Mapping page of the Login Properties dialog box

  4. Select the check box for a database for which you want the login to have
access . Then, in the Database Role Membership For list, select the check
boxes next to the database roles that this login should have on the currently
selected database .

TIP  If you select the msdb database, as shown in Figure 9-5, you can assign

special-purpose roles for SSIS, Policy-Based Management, and server groups.

  5. Repeat step 4 for other databases for which the login should have access .

  6. When you finish configuring database roles, click OK .

Assigning Roles for Multiple Logins
At the database level, you can assign database roles to multiple logins . To do this,
complete the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the appropriate server .

  2. Expand the Databases folder, and then expand the node for the database
you want to configure .

  3. Expand the database’s Security, Roles, and Database Roles folders . Double-
click the role you want to configure . This opens the Database Role Properties
dialog box, shown in Figure 9-6 .

 Managing SQL Server 2008 Security ChAPTeR 9 331

  4. To add role members, click Add to display the Select Database User Or Role
dialog box .

  5. In the dialog box, enter the name of the user or role to add . Separate names
with semicolons . You can enter partial names and then click Check Names to
expand the names . To search for names, click Browse .

  6. To remove a role member, select a database user or other role, and then click
Remove .

  7. When you finish configuring database roles, click OK .

FIGURE 9-6 The Database Role Properties dialog box .

Creating Standard Database Roles
Although predefined roles have a specific set of permissions that you cannot
change, you can set permissions for roles you create for a particular database . For
example, suppose that a database has three different types of users: standard users
who need to view data, managers who need to be able to modify data, and devel-
opers who need to be able to modify database objects . In this situation, you can
create three roles to handle these user types and then manage only these roles and
not the many different user accounts .

To create a standard database role, complete the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the appropriate server .

 ChAPTeR 9  Managing SQL Server 2008 Security332

  2. Expand the Databases folder, select a database, and then expand the node
for it .

  3. Expand the database’s Security and Roles folders . Right-click Roles, point to
New, and then choose New Database Role . This opens the Database Role—
New dialog box, shown in Figure 9-7 .

  4. Type a name for the role in the Role Name box .

TIP  Use a name for the role that is short but descriptive, such as Standard Users,

editors, Testers, or Developers.

FIGURE 9-7 The Database Role—New dialog box .

  5. The default owner of the role is dbo . To set a different owner, click the but-
ton to the right of the Owner box to display the Select Database User Or Role
dialog box .

  6. In the dialog box, enter the name of the users, the roles, or both that should
be the owners of this role . Separate names with semicolons . You can enter
partial names and then click Check Names to expand the names . To search
for names, click Browse .

  7. To add role members, click Add to display the Select Database User Or Role
dialog box .

 Managing SQL Server 2008 Security ChAPTeR 9 333

  8. In the dialog box, enter the names of the users or roles to add . Separate
names with semicolons . You can enter partial names and then click Check
Names to expand the names . To search for names, click Browse . Click OK .

  9. Select Securables in the Select A Page list in the dialog box, and then use the
Securables page options to configure database access permissions for this
role . For more information about configuring database access permissions,
see “Managing Database Permissions” later in this chapter .

  10. Click OK .

Creating Application Database Roles
Application roles are designed to be used by applications that access the database
and do not have logins associated with them . You can configure an application role
by completing the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the appropriate server .

  2. Expand the Databases folder, and then select a database and expand the
node for it .

  3. Expand the database’s Security and Roles folders . Right-click Roles, point
to New, and then choose New Application Role . This opens the Application
Role—New dialog box, shown in Figure 9-8 .

FIGURE 9-8 The Application Role—New dialog box .

 ChAPTeR 9  Managing SQL Server 2008 Security334

  4. Type a name for the role in the Role Name box .

  5. The default schema for the role is dbo . The default (or base) schema sets the
base permissions for the new role . To set a different default schema, click the
button to the right of the Default Schema box to display the Locate Schema
dialog box .

  6. In the dialog box, enter the name of the default schema . You can enter a
partial name and then click Check Names to expand the name . To search for
a schema to use, click Browse . Click OK .

  7. Select Securables in the Select A Page list, and then use the Securables page
options to configure database access permissions for this role . For more
information about configuring database access permissions, see “Managing
Database Permissions” later in this chapter .

  8. Click OK .

Removing Role Memberships for Database Users
To revoke access rights or to remove a user from a role in a database, complete the
following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the appropriate server .

  2. Expand the Databases folder, select a database, and then expand the node
for it .

  3. Expand the database’s Security and Users folders . Double-click the user
name . This opens the Database User dialog box .

  4. On the General page, clear the check box next to the database roles that this
user should not have on the currently selected database .

  5. When you finish removing roles for the database user, click OK .

Deleting User-Defined Roles
To delete a user-defined role, complete the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the appropriate server .

  2. Expand the Databases folder, select a database, and then expand the node
for it .

  3. Expand the database’s Security and Roles folders .

  4. If the role you want to remove is a database role, expand Database Roles . If
the role you want to remove is an application role, expand Application Roles .

  5. Select the role you want to delete, and then press the Delete key .

  6. The Delete Object dialog box shows you which role you are deleting . Click
OK to remove the role .

 Managing SQL Server 2008 Security ChAPTeR 9 335

NOTE User-defined roles cannot be deleted if they have members. First edit the

properties for the role, deleting any currently listed members, and then delete the

role.

T-SQL Commands for Managing Access and Roles
SQL Server provides different commands for managing database access and roles .
These commands are summarized in Sample 9-10 .

SAMPLE 9-10 Commands for Managing Database Access and Roles

Adding a User to the Current Database

CREATE USER user_name
 [{ { FOR | FROM }
 { LOGIN login_name
 | CERTIFICATE certificate_name
 | ASYMMETRIC KEY asym_key_name
 }
]
 [WITH DEFAULT_SCHEMA = schema_name]

Renaming a User or Changing Default Schema

ALTER USER user_name
 WITH < set_item > [,...n]

< set_item > ::=
 NAME = new_user_name
 | DEFAULT_SCHEMA = schema_name

Removing a User from a Database

DROP USER user_name

Listing Server Role Members

sp_helpsrvrolemember [[@rolename =] 'role']

Managing Database Standard Roles

CREATE ROLE role_name [AUTHORIZATION owner_name]
ALTER ROLE role_name WITH NAME = new_name
DROP ROLE role_name
sp_helprole [[@rolename =] 'role']

Managing Database Role Members

sp_addrolemember [@rolename =] 'role',
 [@membername =] 'security_account'
sp_droprolemember [@rolename =] 'role',
 [@membername =] 'security_account'
sp_helprolemember [[@rolename =] 'role']

 ChAPTeR 9  Managing SQL Server 2008 Security336

Managing Application Roles

CREATE APPLICATION ROLE application_role_name
 WITH PASSWORD = 'password' [, DEFAULT_SCHEMA = schema_name]

ALTER APPLICATION ROLE application_role_name
 WITH <set_item> [,...n]

<set_item> ::=
 NAME = new_application_role_name
 | PASSWORD = 'password'
 | DEFAULT_SCHEMA = schema_name

DROP APPLICATION ROLE rolename

Managing Database Permissions

The database owner, members of sysadmin, and members of securityadmin can
assign database permissions . The available permissions include the following:

■■ GRANT Gives permission to perform the related task . With roles, all mem-
bers of the role inherit the permission .

■■ REVOKE Removes prior GRANT permission but does not explicitly prevent
a user or role from performing a task . A user or role can still inherit GRANT
permission from another role .

■■ DENY Explicitly denies permission to perform a task and prevents the user
or role from inheriting the permission . DENY takes precedence over all other
GRANT permissions .

NOTE DeNY is a Transact-SQL command and is not part of the ANSI SQL-92 standard.

You can grant, deny, and revoke permissions at the database level or the object
level . You can also assign permissions by using database roles . For more informa-
tion, see “Controlling Database Access and Administration” earlier in this chapter .

Assigning Database Permissions for Statements
At the database level, you can grant, revoke, or deny permission to execute data
definition language statements, such as CREATE TABLE or BACKUP DATABASE . These
statements are summarized in Table 9-5 earlier in this chapter .

In SQL Server Management Studio, you grant, revoke, or deny database permis-
sions for statements by completing the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the appropriate server .

 Managing SQL Server 2008 Security ChAPTeR 9 337

  2. Work your way down to the Databases folder by using the entries in the left
pane .

  3. Select a database, right-click the database name, and then select Properties
to display the Database Properties dialog box .

  4. In the Select A Page list, select the Permissions page, shown in Figure 9-9 .

FIGURE 9-9 The Permissions page of the Database Properties dialog box

  5. To assign default permissions for all users, assign permissions to the pub-
lic role . To add users or roles, click Search, and then use the Select User Or
Group dialog box to select the user or role you want to add . To assign per-
missions for individual users or roles, select the user or role, and then use the
Permissions For list to grant or deny permissions as appropriate . Clear both
check boxes to revoke a previously granted or denied permission .

  6. Click OK to assign the permissions .

With T-SQL, you use the GRANT, REVOKE, and DENY commands to assign per-
missions . Sample 9-11 shows the syntax and usage for GRANT, Sample 9-12 shows
the syntax and usage for REVOKE, and Sample 9-13 shows the syntax and usage for
DENY .

 ChAPTeR 9  Managing SQL Server 2008 Security338

SAMPLE 9-11 GRANT Syntax and Usage

Syntax for Permissions on Servers and Databases

GRANT < permission > [,...n]
 TO < principal > [,...n] [WITH GRANT OPTION]
 [AS
 {
 Windows_group | SQL_Server_login | database_user
 | database_role | application_role
 }
]
< permission >::= ALL [PRIVILEGES] | permission_name
 [(column [,...n])]
< principal >::= Windows_login | SQL_Server_login
 | SQL_Server_login_mapped_to_certificate
 | SQL_Server_login_mapped_to_asymmetric_key
 | Database_user | Database_role | Application_role
 | Database_user_mapped_to_certificate
 | Database_user_mapped_to_asymmetric_key

Syntax for Permissions on Members of the Object Class

GRANT < permission > [,...n] ON [OBJECT ::] < securable_name >
 TO < principal > [,...n] [WITH GRANT OPTION]
 [AS
 {
 Windows_group | SQL_Server_login | database_user
 | database_role | application_role
 }
]
< permission >::= ALL [PRIVILEGES] | permission_name
 [(column [,...n])]
< principal >::= Windows_login | SQL_Server_login
 | SQL_Server_login_mapped_to_certificate
 | SQL_Server_login_mapped_to_asymmetric_key
 | Database_user | Database_role | Application_role
 | Database_user_mapped_to_certificate
 | Database_user_mapped_to_asymmetric_key

Syntax for Permissions on All Other Securables

GRANT < permission > [,...n] ON < scope >
 TO < principal > [,...n] [WITH GRANT OPTION]
 [AS
 {
 Windows_group | SQL_Server_login | database_user
 | database_role | application_role
 }
]

 Managing SQL Server 2008 Security ChAPTeR 9 339

< permission >::= ALL [PRIVILEGES] | permission_name
 [(column [,...n])]
< scope >::= [securable_class ::] securable_name
< securable_class >::= APPLICATION ROLE | ASSEMBLY | ASYMMETRIC KEY
 | CERTIFICATE | CONTRACT | ENDPOINT | FULLTEXT CATALOG
 | LOGIN | MESSAGE TYPE | REMOTE SERVICE BINDING | ROLE
 | ROUTE | SCHEMA | SERVICE | SYMMETRIC KEY | TYPE
 | USER | XML SCHEMA COLLECTION
< principal >::= Windows_login | SQL_Server_login
 | SQL_Server_login_mapped_to_certificate
 | SQL_Server_login_mapped_to_asymmetric_key
 | Database_user | Database_role | Application_role
 | Database_user_mapped_to_certificate
 | Database_user_mapped_to_asymmetric_key

Usage

GRANT CREATE DATABASE, CREATE TABLE
TO Users, [GALAXY\Sales]
GRANT SELECT
ON customer..customers
TO public
GRANT INSERT, UPDATE, DELETE
ON customer..customers
TO Devs, Testers

SAMPLE 9-12 REVOKE Syntax and Usage

Syntax for Permissions on Servers and Databases

REVOKE [GRANT OPTION FOR] < permission > [,...n]
 { TO | FROM } < principal > [,...n] [CASCADE]
 [AS
 {
 Windows_group | SQL_Server_login
 | database_role | application_role
 }
]
< permission >::= ALL [PRIVILEGES] | permission_name
 [(column [,...n])]
< principal >::= Windows_login | SQL_Server_login
 | SQL_Server_login_mapped_to_certificate
 | SQL_Server_login_mapped_to_asymmetric_key
 | Database_user | Database_role | Application_role
 | Database_user_mapped_to_certificate
 | Database_user_mapped_to_asymmetric_key

 ChAPTeR 9  Managing SQL Server 2008 Security340

Syntax for Permissions on Members of the Object Class

REVOKE [GRANT OPTION FOR] < permission > [,...n]
 ON [OBJECT ::] < securable_name >
 { TO | FROM } < principal > [,...n] [CASCADE]
 [AS
 {
 Windows_group | SQL_Server_login
 | database_role | application_role
 }
]
< permission >::= ALL [PRIVILEGES] | permission_name
 [(column [,...n])]
< principal >::= Windows_login | SQL_Server_login
 | SQL_Server_login_mapped_to_certificate
 | SQL_Server_login_mapped_to_asymmetric_key
 | Database_user | Database_role | Application_role
 | Database_user_mapped_to_certificate
 | Database_user_mapped_to_asymmetric_key

Syntax for Permissions on All Other Securables

REVOKE [GRANT OPTION FOR] < permission > [,...n] [ON < scope >]
 { TO | FROM } < principal > [,...n] [CASCADE]
 [AS
 {
 Windows_group | SQL_Server_login
 | database_role | application_role
 }
]
< permission >::= ALL [PRIVILEGES] | permission_name
 [(column [,...n])]
< scope >::= [< securable_class > ::] securable_name
< securable_class >::= APPLICATION ROLE | ASSEMBLY | ASYMMETRIC KEY
 | CERTIFICATE | CONTRACT | ENDPOINT | FULLTEXT CATALOG
 | LOGIN | MESSAGE TYPE | REMOTE SERVICE BINDING | ROLE
 | ROUTE | SCHEMA | SERVICE | SYMMETRIC KEY | TYPE
 | USER | XML SCHEMA COLLECTION
< principal >::= Windows_login | SQL_Server_login
 | SQL_Server_login_mapped_to_certificate
 | SQL_Server_login_mapped_to_asymmetric_key
 | Database_user | Database_role | Application_role
 | Database_user_mapped_to_certificate
 | Database_user_mapped_to_asymmetric_key

Usage

REVOKE CREATE TABLE, CREATE DEFAULT
FROM Devs, Testers
REVOKE INSERT, UPDATE, DELETE
FROM Users, [GALAXY\Sales]

 Managing SQL Server 2008 Security ChAPTeR 9 341

SAMPLE 9-13 DENY Syntax and Usage

Syntax for Permissions on Servers and Databases

DENY < permission > [,...n]
 TO < principal > [,...n] [CASCADE]
 [AS
 {
 Windows_group | SQL_Server_login | database_user
 | database_role | application_role
 }
]
< permission >::= ALL [PRIVILEGES] | permission_name
 [(column [,...n])]
< principal >::= Windows_login | SQL_Server_login
 | SQL_Server_login_mapped_to_certificate
 | SQL_Server_login_mapped_to_asymmetric_key
 | Database_user | Database_role | Application_role
 | Database_user_mapped_to_certificate
 | Database_user_mapped_to_asymmetric_key

Syntax for Permissions on Members of the Object Class

DENY < permission > [,...n] ON [OBJECT ::] < securable_name >
 TO < principal > [,...n] [CASCADE]
 [AS
 {
 Windows_group | SQL_Server_login | database_user
 | database_role | application_role
 }
]
< permission >::= ALL [PRIVILEGES] | permission_name
 [(column [,...n])]
< principal >::= Windows_login | SQL_Server_login
 | SQL_Server_login_mapped_to_certificate
 | SQL_Server_login_mapped_to_asymmetric_key
 | Database_user | Database_role | Application_role
 | Database_user_mapped_to_certificate
 | Database_user_mapped_to_asymmetric_key

Syntax for Permissions on All Other Securables

DENY < permission > [,...n] ON < scope >
 TO < principal > [,...n] [CASCADE]
 [AS
 {
 Windows_group | SQL_Server_login | database_user
 | database_role | application_role
 }
]

 ChAPTeR 9  Managing SQL Server 2008 Security342

< permission >::= ALL [PRIVILEGES] | permission_name
 [(column [,...n])]
< scope >::= [securable_class ::] securable_name
< securable_class >::= APPLICATION ROLE | ASSEMBLY | ASYMMETRIC KEY
 | CERTIFICATE | CONTRACT | ENDPOINT | FULLTEXT CATALOG
 | LOGIN | MESSAGE TYPE | REMOTE SERVICE BINDING | ROLE
 | ROUTE | SCHEMA | SERVICE | SYMMETRIC KEY | TYPE
 | USER | XML SCHEMA COLLECTION
< principal >::= Windows_login | SQL_Server_login
 | SQL_Server_login_mapped_to_certificate
 | SQL_Server_login_mapped_to_asymmetric_key
 | Database_user | Database_role | Application_role
 | Database_user_mapped_to_certificate
 | Database_user_mapped_to_asymmetric_key

Usage

DENY CREATE TABLE
 TO Devs, Testers
DENY INSERT, UPDATE, DELETE
 ON customer..customers
 TO Users, [GALAXY\Sales]

Object Permissions by Login
Object permissions apply to tables, views, and stored procedures . Permissions you
assign to these objects include SELECT, INSERT, UPDATE, and DELETE . A summary of
permitted actions by object is provided in Table 9-4 earlier in this chapter .

In SQL Server Management Studio, you grant, revoke, or deny object permissions
by completing the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the appropriate server .

  2. Work your way down to the Databases folder by using the entries in the left
pane .

  3. Expand the Databases folder, and then select a database and expand the
node for it .

  4. Expand the Security and Users folders .

  5. Double-click the user you want to configure . This displays the Database User
dialog box .

  6. In the Select A Page list, select the Securables page, shown in Figure 9-10 .

 Managing SQL Server 2008 Security ChAPTeR 9 343

FIGURE 9-10 The Securables page of the Database User dialog box

  7. To assign object permissions, click Search to display the Add Objects dialog
box .

  8. In the Add Objects dialog box, select the type of objects for which you want
to manage permissions:

■■ Select Specific Objects if you know the name of the objects for which you
want to manage permissions . Click OK . In the Select Objects dialog box,
click Object Types . Next, in the Select Object Types dialog box, select the
types of objects to find, such as Tables And Views, and then click OK . In
the Select Objects dialog box, enter the object names . Separate multiple
names with a semicolon, and click Check Names to expand partial names
you enter to full names . To browse for objects of the selected type, click
Browse . When you finish selecting objects, click OK . The selected objects
are then listed in the Database User dialog box .

■■ Select All Objects Of The Types if you want to manage permissions for all
objects of a specific type, such as all tables and views, and then click OK .
In the Select Objects dialog box, click Object Types . Next, in the Select
Object Types dialog box, select the types of objects to find, such as Tables
And Views, and then click OK . In the Select Object Types dialog box,
select the object types you want to manage, and then click OK . All objects
of the selected types are then listed in the Database User dialog box .

 ChAPTeR 9  Managing SQL Server 2008 Security344

■■ Select All Objects Belonging To The Schema if you want to manage per-
missions for all objects owned by a particular schema . In the Add Objects
dialog box, use the Schema Name list to choose the schema whose
objects you want to manage, and then click OK . All objects belonging to
the schema are then listed in the Database User dialog box .

  9. In the Database User dialog box, you’ll see a list of securables that match
your criteria . Select a securable in the upper panel to display related permis-
sions in the Permissions For panel . You can now do the following:

■■ Click the Effective tab to see the effective permissions a user is granted on
a selected securable .

■■ Click the Explicit tab to set permissions . Grant or deny permissions as
appropriate . If you grant a permission and also want the user to be able
to grant the permission, select the With Grant option . Clear both check
boxes to revoke a previously granted or denied permission .

  10. When you finish, click OK to assign the permissions .

Object Permissions for Multiple Logins
You can also assign permissions by object, and in this way assign object permissions
for multiple logins . To do this, complete the following steps:

  1. Work your way down to the Databases folder by using the entries in the left
pane .

  2. Expand the Databases folder, and then select the folder for the type of
objects you want to work with, such as Tables, Views, or Stored Procedures .

  3. Double-click the object you want to configure, or right-click the object and
select Properties . This displays the Properties dialog box .

  4. In the Properties dialog box, select the Permissions page in the Select A Page
list, as shown in Figure 9-11 . Any users or roles directly assigned permissions
on the object are listed in the Users Or Roles list .

  5. To add specific permissions for users, roles, or both, click Search to open the
Select Users Or Roles dialog box . Enter the names of the users or roles to
add . Separate names with semicolons . You can enter partial names and then
click Check Names to expand the names . To search for names, click Browse .

  6. To set permissions for the object, select a user or role in the Users Or Roles
list . You can now do the following:

■■ Click the Effective tab to see the effective permissions for the user or role .

■■ Click the Explicit tab to set permissions . Grant or deny permissions as
appropriate . If you grant a permission and also want the user or role to
be able to grant the permission, select the With Grant option . Clear both
check boxes to revoke a previously granted or denied permission .

  7. When you finish, click OK to assign the permissions .

 Managing SQL Server 2008 Security ChAPTeR 9 345

FIGURE 9-11 Permissions for an object

More information about Transact-SQL commands for assigning permissions can
be found in “Assigning Database Permissions for Statements” earlier in this chapter .

347

CHAP TE R 10

Manipulating Schemas,
Tables, Indexes, and Views

■■ Working with Schemas 348

■■ Getting Started with Tables 353

■■ Table Essentials 354

■■ Working with Tables 358

■■ Managing Table Values 371

■■ Using Views 386

■■ Creating and Managing Indexes 394

■■ Column Constraints and Rules 415

■■ Creating Partitioned Tables and Indexes 421

■■ Compressing Tables, Indexes, and Partitions 425

Objects are the fundamental units of data storage in databases . All data in a
database is contained within a Database object . Each Database object con-

tains Schema objects, and those Schema objects contain the tables, indexes, views,
and other objects that make up the database . The three basic levels of scoping and
ownership are as follows:

■■ Database Includes all objects defined within a database . This level is
owned by a specific user .

■■ Schema Includes all objects defined within a schema . This level is owned
by a database-level security principal .

■■ Schema-contained object Refers to any individual table, view, or so forth
that is defined in the database . This level is owned by a specific schema .

When you move databases designed for early versions of Microsoft SQL Server
to SQL Server 2008, this model still applies . In these databases, the dbo schema
is the owner of tables, views, and other related objects, and you can extend the
database structure by creating and using other schemas as necessary .

NOTE Policy-Based Management settings can affect your ability to name objects.

For more information, see Chapter 6, “Implementing Policy-Based Management.”

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views348

Working with Schemas

Schemas are containers of objects and are used to define the namespaces for
objects within databases . They are used to simplify management and create object
subsets that can be managed collectively . Schemas are separate from users . Users
own schemas and always have an associated default schema that the server uses
when it resolves unqualified objects in queries . This means that the schema name
does not need to be specified when accessing objects in the default schema . To
access objects in other schemas, a two-part or three-part identifier is required . A
two-part identifier specifies the schema name and the object name in the for-
mat schema_name.object_name . A three-part identifier specifies the database
name, schema name, and object name in the format database_name.schema_
name.object_name .

Database synonyms can be used to create alternate names so that a user’s
default schema contains references to other schemas . For example, if you create
a synonym for the Customers.Contact table of dbo.Contact, any user with dbo as
the default schema can access the table by using only the table name . Although
synonyms can refer to objects in other databases, including remote instances of SQL
Server, synonyms are valid only within the scope of the database in which they are
defined . This means that each database can have identically named synonyms, and
these synonyms can possibly refer to different objects .

Schemas have many benefits . Because users are no longer the direct owners of
objects, removing users from a database is a simpler task; you no longer need to
rename objects before dropping the user that created them, for example . Multiple
users can own a single schema through membership in a role or Windows group,
which makes it easier to manage tables, views, and other database-defined objects .
Multiple users can share a single default schema, which makes it easier to grant
access to shared objects .

Schemas can be used to scope database access by function, role, or purpose,
which makes accessing objects contained in a database easier . For example, you can
have schemas named for each application that accesses the database . In this way,
when users of a particular application access the database, their namespace is set
appropriately for the objects they routinely access .

You can work with schemas in Windows PowerShell by running the console
locally or by entering a remote session with a database server . Consider the follow-
ing example:

Set-Location SQLSERVER:\SQL\DbServer18\Default\Databases\OrderSystem
Set-Location schemas
Get-ChildItem | where {$_.Owner eq "DanB"}

In this example, you enter a remote session with DbServer18 and then set the
working location to the OrderSystem database on the default Database Engine

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 349

instance . After you access the database, you access the schemas within the data-
base and then return a list of all schemas owned by DanB . In the where clause, you
can search for any property of the Microsoft .SqlServer .Management .Smo .Schema
object, including Id, IsSystemObject, Name, Owner, Parent, State, and Urn .

Creating Schemas
Before you create a table, you should carefully consider the schema name . Schema
names can be up to 128 characters . Schema names must begin with an alphabetic
character and can also contain underscores (_), “at” symbols (@), pound signs (#),
and numerals . Schema names must be unique within each database . Different
databases, however, can contain like-named schemas; for example, two different
databases could each have an Employees schema .

In SQL Server Management Studio, you create a new schema by completing the
following steps:

  1. In SQL Server Management Studio, connect to the server instance that con-
tains the database in which you want to work .

  2. In Object Explorer, expand the Databases node, select a database, and then
expand the view to show its resource nodes .

  3. Expand the database’s Security node, and then right-click the Schemas node .
From the shortcut menu, choose New Schema to display the Schema—New
dialog box, shown in Figure 10-1 .

FIGURE 10-1 The Schema—New dialog box

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views350

  4. On the General page, specify the name of the schema and set the schema
owner . To search for an available database-level security principal to use as
the owner, click Search to display the Search Roles And Users dialog box,
and then click Browse to open the Browse For Objects dialog box . Select the
check box for the user or role to act as the schema owner, and then click OK
twice .

NOTE  The schema owner can be any database-level security principal (database

user, database role, or application role). Although the schema owner can own

other schemas, the owner cannot use this schema as the default schema. If the

schema owner is a role or Windows group, multiple users will own the schema.

  5. Click OK to create the schema .

The Transact-SQL command for creating schemas is CREATE SCHEMA . Sample
10-1 shows the syntax and usage for this command . The schema_element for the
command allows you to use CREATE TABLE, CREATE VIEW, GRANT, REVOKE, and
DENY statements to define tables, views, and permissions that should be created
and contained within the schema you are defining .

NOTE To specify another user as the owner of the schema being created, you must

have IMPeRSONATe permission on that user. If a database role is specified as the

owner, you must be a member of the role or have ALTeR permission on the role.

SAMPLE 10-1 CREATE SCHEMA Syntax and Usage

Syntax

CREATE SCHEMA schema_name_clause [< schema_element > [, ...n]]
< schema_name_clause >::=
 { schema_name | AUTHORIZATION owner_name
 | schema_name AUTHORIZATION owner_name }
< schema_element >::=
 { table_definition | view_definition | grant_statement
 revoke_statement | deny_statement }

Usage

CREATE SCHEMA Employees AUTHORIZATION DataTeam

Modifying Schemas
You might need to change the schema ownership or modify its permissions . One of
the primary reasons for changing the schema owner is that the owner cannot use
the schema as the default schema . You might also want to allow or deny specific
permissions on a per-user or per-role basis . After a schema is created, you cannot
change the schema name . You must drop the schema and create a new schema with
the new name .

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 351

In SQL Server Management Studio, you can change the schema owner by com-
pleting the following steps:

  1. In SQL Server Management Studio, connect to the server instance that con-
tains the database in which you want to work .

  2. In Object Explorer, expand the Databases node, select a database, and then
expand the view to show its resource nodes .

  3. Expand the database’s Security node, and then the Schemas node . Right-click
the schema you want to work with . From the shortcut menu, choose Proper-
ties to display the Schema Properties dialog box .

  4. To change the schema owner, click Search on the General page to display
the Search Roles And Users dialog box, and then click Browse to open the
Browse For Objects dialog box . Select the check box for the user or role you
want to assign as the schema owner, and then click OK twice .

You can manage granular permissions for a schema on the Permissions page in
the Schema Properties dialog box . Any user or roles that are directly assigned per-
missions on the object are listed under Users Or Roles . To configure permissions for
a user or role, complete the following steps:

  1. In the Schema Properties dialog box, select the Permissions page in the
Select A Page list .

  2. To add specific permissions for users, roles, or both, click Search . This opens
the Select Users Or Roles dialog box .

  3. In the Select Users Or Roles dialog box, enter the names of the users or roles
to add . Separate names with semicolons . You can enter partial names and
then click Check Names to expand the names . To search for names, click
Browse . When you’ve selected the users or roles to add, click OK .

  4. Select a user or role in the Users Or Roles list . Use the Permissions For list
to grant or deny permissions as appropriate . If you grant a permission to a
user and also want the user to be able to grant the permission, select the
With Grant option . Clear both check boxes to revoke a previously granted or
denied permission .

  5. When you finish, click OK to assign the permissions .

Moving Objects to a New Schema
As discussed previously, schemas are containers for objects, and there are times
when you want to move an object from one container to another . Objects can be
moved from one schema to another only within the same database . When you do
this, you change the namespace associated with the object, which changes the way
the object is queried and accessed .

Moving an object to a new schema also affects permissions on the object . All
permissions on the object are dropped when it is moved to a new schema . If the
object owner is set to a specific user or role, that user or role continues to be the

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views352

owner of the object . If the object owner is set to SCHEMA OWNER, the ownership
remains as SCHEMA OWNER, and after the move, the owner of the new schema
becomes the owner of the object .

To move objects between schemas, you must have CONTROL permission on the
object and ALTER permission on the schema to which you are moving the object .
If the object has an EXECUTE AS OWNER specification on it and the owner is set to
SCHEMA OWNER, you must also have IMPERSONATE permission on the owner of
the target schema .

In SQL Server Management Studio, you can move an object to a new schema by
completing the following steps:

  1. In SQL Server Management Studio, connect to the server instance that con-
tains the database in which you want to work .

  2. In Object Explorer, expand the Databases node, select a database, and then
expand the view to show its resource nodes .

  3. Right-click the table, view, or other object you want to move . From the short-
cut menu, choose View Dependencies . The Object Dependencies dialog box
shows the database objects that must be present for this object to function
properly and the objects that depend on the selected object . Use this dialog
box to understand any dependencies that might be affected by moving the
selected object . Click OK .

  4. Right-click the table, view, or other object, and then select Design . One
of several views displayed in the right pane is the Properties view for the
selected object . If this view is not displayed, press F4 .

  5. Under Identity, click in the Schema list and select a new schema to contain
the selected object .

CAUTION All permissions on the object are dropped immediately and irreversibly if

you have previously selected the option Don’t Warn Me Again, Proceed every Time. If

you see the warning prompt, click Yes to continue moving the object to the designated

schema. Click No to cancel the move.

The Transact-SQL command for moving objects between schemas is ALTER
SCHEMA . Sample 10-2 shows the syntax and usage for this command . When you
alter a schema, be sure you are using the correct database and are not using the
master database .

SAMPLE 10-2 ALTER SCHEMA Syntax and Usage

Syntax

ALTER SCHEMA target_schema TRANSFER source_schema.object_to_move

Usage

ALTER SCHEMA Employees TRANSFER Location.Department

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 353

Dropping Schemas
If you no longer need a schema, you can drop it, and in this way remove it from the
database . To drop a schema, you must have CONTROL permission on the schema .
Before dropping a schema, you must first move or drop all the objects that it con-
tains . If you try to delete a schema that contains objects, the drop operation will fail .

In SQL Server Management Studio, you can drop a schema by completing the
following steps:

  1. In SQL Server Management Studio, connect to the server instance that con-
tains the database in which you want to work .

  2. In Object Explorer, expand the Databases node, select a database, and then
expand the view to show its resource nodes .

  3. Expand the database’s Security and Schemas nodes . Right-click the schema
you want to drop . From the shortcut menu, choose Delete . This displays the
Delete Object dialog box .

  4. Click OK to confirm the deletion .

The Transact-SQL command for deleting schemas is DROP SCHEMA . Sample 10-3
shows the syntax and usage for this command . When you drop a schema, be sure
you are using the correct database and are not using the master database .

SAMPLE 10-3 DROP SCHEMA Syntax and Usage

Syntax

DROP SCHEMA schema_name

Usage

DROP SCHEMA Employees

Getting Started with Tables

In SQL Server 2008, the structures of tables and indexes are just as important as
the database itself, especially when it comes to performance . Tables are collec-
tions of data about a specific entity, such as a customer or an order . To describe the
attributes of these entities, you use named columns . For example, to describe the
attributes of a customer, you could use these columns: cust_name, cust_address, and
cust_phone .

Each instance of data in a table is represented as a single data entry or row .
Typically, rows are unique and have unique identifiers called primary	keys associ-
ated with them . However, a primary key is not mandatory in ANSI SQL, and it is not
required in SQL Server . The job of a primary key is to set a unique identifier for each
row in a table and to allow SQL Server to create a unique index on this key . Indexes
are user-defined data structures that provide fast access to data when you search on

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views354

an indexed column . Indexes are separate from tables, and you can configure them
automatically with the Database Engine Tuning Advisor .

Most tables are related to other tables . For example, a Customers table might
have a cust_account column that contains a customer’s account number . The
cust_account column might also appear in tables named Orders and Receivables . If
the cust_account column is the primary key of the Customers table, a foreign key
relationship can be established between Customers and Orders as well as between
Customers and Receivables . The foreign key creates a link between the tables that
you can use to preserve referential integrity in the database .

After you have established the link, you cannot delete a row in the Customers
table if the cust_account identifier is referenced in the Orders or Receivables tables .
This feature prevents you from invalidating references to information used in other
tables . You first need to delete or change the related references in the Orders or
Receivables tables, or in both tables, before deleting a primary key row in the Cus-
tomers table .

Foreign key relationships allow you to combine data from related tables in que-
ries by matching the foreign key constraint of one table with the primary or unique
key in another table . Combining tables in this manner is called a table	join, and the
keys allow SQL Server to optimize the query and quickly find related data .

Table Essentials

Tables are defined as objects in SQL Server databases . Tables consist of columns and
rows of data, and each column has a native or user-defined data type . Tables have
two units of data storage: data pages and extents . Data	pages are the fundamental
units of data storage . Extents are the basic units in which space is allocated to tables
and indexes . Data within tables can be organized using partitions .

Understanding Data Pages
For all data types except large-value data types and variable-length columns for
which the data exceeds 8 kilobytes (KB), table data is stored in data pages that have
a fixed size of 8 KB (8,192 bytes) . Each data page has a page header, data rows, and
free space that can contain row offsets . The page header uses the first 96 bytes of
each page, leaving 8,096 bytes for data and row offsets . Row offsets indicate the
logical order of rows on a page, which means that offset 0 refers to the first row in
the index, offset 1 refers to the second row, and so on . If a table contains the large
object data types varchar(max), nvarchar(max), or varbinary(max), the data might
not be stored with the rest of the data for a row . Instead, SQL Server can store a
16-byte pointer to the actual data, which is stored in a collection of 8-KB pages
that are not necessarily contiguous . A similar technique is used with variable-length
columns in which the data row exceeds 8 KB (except that 24-byte pointers are used) .

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 355

SQL Server 2008 supports the following types of data pages:

■■ Bulk Changed Map (BCM) Tracks which extents have been modified
by bulk operations since the last log file backup . Each BCM covers 64,000
extents (or approximately 4 GB of data) and has one bit for each extent in the
range it covers . If an extent has been changed by a bulk-logged operation,
the related bit for the BCM page is set to 1 . Otherwise, the bit is set to 0 . The
backup process uses this bit to scan for extents that have been modified by
bulk-logged operations and then includes those extents in the applicable
log backup . These data pages speed up logging of bulk copy operations (but
only when the database is using the bulk-logged recovery model) .

■■ Data Contains data rows with all data except for nvarchar(max),
varchar(max), varbinary(max), and xml data (as well as text, ntext, and image
data when text	in	row is set to ON) .

■■ Differential Changed Map (DCM) Tracks which extents have changed
since the last database backup . Each DCM covers 64,000 extents (or approxi-
mately 4 GB of data) and has one bit for each extent in the range it covers . If
an extent is changed since the last backup, the related bit for the DCM page
is set to 1 . Otherwise, the bit is set to 0 . During a differential backup, the
backup process uses this bit to scan for extents that have been modified and
then includes those extents in the applicable differential backup . These data
pages speed up differential backups .

■■ Global Allocation Map (GAM) Tracks which extents have been allocated
by SQL Server . Each GAM covers 64,000 extents (or approximately 4 GB of
data) and has one bit for each extent in the range it covers . When this bit is
set to 1, the associated extent is not being used (free) . When this bit is set
to 0, the associated extent is being used, and the bit setting of the Shared
Global Allocation Map (SGAM) specifies how . These data pages simplify
extent management .

■■ Shared Global Allocation Map (SGAM) Tracks which extents are being
used as mixed extents . Each SGAM covers 64,000 extents (or approximately
4 GB of data) and has one bit for each extent in the range it covers . When
this bit is set to 1, the associated extent is being used as a mixed extent and
has at least one free page . When this bit is set to 0, the associated extent is
not being used as a mixed extent or it has all its pages allocated . These data
pages simplify extent management .

■■ Index Allocation Map (IAM) Contains information about extents used by
a table or index and specifically with one of the following allocation units:
IN_ROW_DATA (holds a partition of a heap or index), LOB_DATA (holds large
object data types), or ROW_OVERFLOW_DATA (holds variable-length data
that exceeds the 8,060-byte row-size limit) . Each allocation unit has at least
one IAM page for each file on which it has extents . An IAM page covers a
4-GB range in a file, so a file larger than 4 GB would have multiple IAM pages

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views356

associated with it . IAM pages are located randomly in the database file, with
all the IAM pages for a particular allocation unit being linked in a chain .

■■ Index Contains index entries . Generally, the storage engine reads index
pages serially in key order .

■■ Page Free Space (PFS) Tracks whether a page has been allocated and the
amount of free space on each page . A PFS has one byte for each page . If the
page is allocated, the value also indicates whether the page is empty, 1 to 50
percent full, 51 to 80 percent full, 81 to 95 percent full, or 96 to 100 percent
full . The Database Engine uses PFS pages to determine which pages in an
extent are allocated or free . The relative amount of free space is maintained
only for heap and Text/Image pages so that the Database Engine can find a
page with free space to hold a newly inserted row . Indexes do not track page
free space because index key values determine where a new row is inserted .

■■ Text/Image (large object data types) Contains text, ntext, image,
nvarchar(max), varchar(max), varbinary(max), and xml data, as well as data
for variable-length columns in which the data row exceeds 8 KB (varchar,
nvarchar, varbinary, sql_variant, and CLR user-defined) .

NOTE The ntext, text, and image data types are being deprecated in favor of

nvarchar(max), varchar(max), and varbinary(max) data types.

Within data pages, SQL Server stores data in rows . Data rows do not normally
span more than one page . The maximum size of a single data row is 8,096 bytes
(including any necessary overhead) . Effectively, this means that the maximum size
of a column is 8,000 bytes, not including large object data types, and that a column
can store up to 8,000 ASCII characters or up to 4,000 2-byte Unicode characters .
Large object data type values can be up to 2 GB in size, which is too large to be
stored in a single data row . With large object data types, data is stored in a collec-
tion of 8-KB pages, which might or might not be stored contiguously .

Although collections of pages are ideal for large object data that exceeds 8,096
bytes, this storage mechanism is not ideal when the total data size is 8,096 bytes
or less . In this case, you should store the data in a single row . To do this, you must
set the text	in	row table option . The text	in	row option allows you to place small
nvarchar(max), varchar(max), varbinary(max), text, ntext, and image values directly in
a data row instead of in separate pages . This can reduce the amount of space used
to store data and can also reduce the amount of disk input/output (I/O) needed to
retrieve the values .

NOTE A table that has fixed-length rows always stores the same number of rows on

each page. A table with variable-length rows, however, stores as many rows as possible

on each page, based on the length of the data entered. As you might expect, there is a

distinct performance advantage to keeping rows compact and allowing more rows to fit

on a page. With more rows per page, you have a better cache-hit ratio and reduce I/O.

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 357

Understanding extents
An extent is a set of eight contiguous data pages, which means that extents are
allocated in 64-KB blocks and that there are 16 extents per megabyte . SQL Server
2008 has two types of extents:

■■ Mixed extents With mixed extents, different objects can own pages in the
extent . This means that up to eight objects can own a page in the extent .

■■ Uniform extents With uniform extents, a single object owns all the pages
in the extent . This means that only the owning object can use all eight pages
in the extent .

When you create a new table or index, SQL Server allocates pages from a mixed
extent to the new table or index . The table or index continues to use pages in the
mixed extent until it grows to the point at which it uses eight data pages . When this
happens, SQL Server changes the table or index to uniform extents . As long as the
table or index continues to use at least eight data pages, it will use uniform extents .

Understanding Table Partitions
In SQL Server 2008, tables are contained in one or more partitions, and each
partition contains data rows in either a heap or clustered index structure . Partition-
ing large tables allows you to manage subsets of the table data and can improve
response times when working with the table data . To improve read/write perfor-
mance, you can place partitions into multiple filegroups as well .

By default, tables have only one partition . When a table has multiple partitions,
the data is partitioned horizontally so that groups of rows are mapped into indi-
vidual partitions on the basis of a specific column . For example, you might parti-
tion a Customer_Order table by purchase date . In this example, you would split the
partition on date ranges, and each partition could hold yearly, quarterly, or monthly
data .

For a Customer table, you might partition by customer ID . You would split the
partition on name ranges, and each partition would store customer data that starts
with a certain character—such as A, B, C, D, and so on—or a character sequence,
such as Aa to Ez, Fa to Jz, Ka to Oz, Pa to Tz, and Ua to Zz .

SQL Server 2008 Enterprise edition supports on-disk storage compression in
both row and page format for tables stored as heaps, tables stored as clustered
indexes, nonclustered indexes, and indexed views . You can configure compression
of partitioned tables and indexes independently for each partition, regardless of
whether partitions are for the same object . This allows different partitions of the
same object to use different compression settings . Although enabling compres-
sion changes the physical storage format of data, compression does not require
application changes . When you plan to use compression as part of server sizing and
capacity planning, you need to carefully consider the additional overhead required
to compress and uncompress data .

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views358

With partition switching, you can use the Transact-SQL ALTER TABLE . . .SWITCH
statement to transfer subsets of your data . This statement allows you to assign a
table as a partition to an already existing partitioned table, switch a partition from
one partitioned table to another, or reassign a partition to form a single table . When
you transfer a partition, the Database Engine doesn’t move the data; it only changes
the metadata about the location of the data .

Working with Tables

SQL Server provides many ways to work with tables . You can create new tables by
using the New Table feature in SQL Server Management Studio or the CREATE TABLE
command . You can modify existing tables by using the Modify Table feature in SQL
Server Management Studio or the ALTER TABLE command . You can also perform
other table management functions, including copying, renaming, and deleting
tables .

You can work with tables in Windows PowerShell locally or by entering a remote
session with a database server . Consider the following example:

Set-Location SQLSERVER:\SQL\DataServer45\Default\Databases\Personnel
Set-Location tables
Get-ChildItem | where {$_.Schema eq "DevPers"}

In this example, you enter a remote session with DataServer45 and then set
the working location to the Personnel database on the default Database Engine
instance . After you access the database, you access the tables within the database
and then return a list of all tables in the DevPers schema . In the where clause, you
can search for any property of the Microsoft .SqlServer .Management .Smo .Table
object, including AnsiNullsStatus, ChangeTrackingEnabled, Checks, Columns,
CreateDate, DataSpaceUsed, DateLastModified, FileGroup, FileStreamFileGroup,
FileStreamPartitionScheme, ForeignKeys, FullText Index, HasAfterTrigger, HasClus-
teredIndex, HasCompressedPartitions, HasDeleteTrigger, HasIndex, HasInsertTrigger,
HasInsteadOfTrigger, HasUpdateTrigger, Id, Indexes, IndexSpaceUsed, IsIndexable,
IsPartitioned, IsSchemaOwned, MaximumDegreeOfParallelism, Name, Owner,
 Parent, PartitionScheme, PartitionSchemeParameters, PhysicalPartitions, Quoted-
IdentifierStatus, Replicated, RowCount, RowCountAsDouble, Schema, State, Statis-
tics, TextFileGroup, TrackColumnsUpdatedEnabled, Triggers, and Urn .

Creating Tables
Before you create a table, you should carefully consider the table name . Table
names can be up to 128 characters . Table names must begin with an alphabetic
character and can also contain underscores (_), “at” symbols (@), pound signs (#),
and numerals . The exception to this rule is temporary tables . Local temporary tables
have names that begin with # and are accessible to you only during the current user
session . Global temporary tables have names that begin with ## and are accessible

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 359

to anyone as long as the user session remains connected . Temporary tables are cre-
ated in the tempdb database and are automatically deleted when the user session
ends .

Table names must be unique for each schema within a database . Different sche-
mas, however, can contain like-named tables . This means you can create multiple
contacts tables as long as they are defined in separate schemas . For example, the
Customers, Employees, and Services schemas could all have a contacts table .

Each table can have up to 1,024 columns . Column names follow the same nam-
ing rules as tables and must be unique only on a per-table basis . That is, a specific
table can have only one StreetAddress column, but any number of other tables can
use this same column name .

In SQL Server Management Studio, you create a new table by completing the
following steps:

  1. In SQL Server Management Studio, connect to the server instance that con-
tains the database in which you want to work . You must have CREATE TABLE
permission in the database and ALTER permission on the schema in which
the table is being created .

  2. In Object Explorer, expand the Databases node, select a database, and then
expand the view to show its resource nodes .

  3. To create a new table, right-click the Tables node, and then select New Table
from the shortcut menu . Access the Table Designer in SQL Server Manage-
ment Studio, and you see a window similar to Figure 10-2 .

FIGURE 10-2 Create and modify tables in SQL Server Management Studio .

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views360

  4. You can now design the table using the views provided:

■■ Active File/Table view Provides quick access tabs for switching
between open files and a summary . If you select the Table view in the
Active File view, you see an overview of the table’s columns . Each column
is listed with its values for Column Name, Data Type, and Allow Nulls . For
fixed-length or variable-length data types, you follow the data type des-
ignator with the field length . If you select the Summary view in the Active
File view, you see all the tables in the current database listed by name,
associated schema, and creation date . You can double-click a listed table
to see the objects it contains .

■■ Column Properties view When you select a column in the Table view,
you can use the Column Properties view to configure the settings for that
column . Column properties that appear dimmed are fixed in value and
cannot be changed . The values of fixed properties typically depend on
the column data type and properties inherited from the Database object
itself .

■■ Table Properties view Allows you to view and set general table prop-
erties, including the table name, description, and schema . You can open
this view by pressing F4 . Any dimmed properties cannot be changed at
the table level and must be managed at the database level .

  5. The Table Designer menu also provides options for designing the table .
Because the options apply to the selected column in the Table view, you can
apply them by selecting a column first and then choosing the appropriate
option from the Table Designer menu . The same options are displayed when
you right-click a column in the Table view .

As you start creating a table, you should do the following:

■■ Use the Table Properties view to set the table name, description, and schema .
Type the name and description in the boxes provided . Use the drop-down list
to select the schema that will contain this table .

■■ Use the Table Properties view to specify the filegroup (or filegroups) in which
the table data will be stored . Regular data and large object data are config-
ured separately .

■■ To specify the storage location for regular data, expand the Regular Data
Space Specification node, and then use the Filegroup Or Partition Schema
Name list to specify the filegroup .

■■ To specify the storage location for large object data, use the Text/Image
Filegroup list .

■■ Use the Table view to create and manage columns .

■■ Rows in the Table view correspond to columns in the table in which
you are working . In Figure 10-2, the columns listed include CustomerID,
 CustomerType, and AccountNumber .

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 361

■■ Columns in the Table view correspond to column properties in the table
in which you are working . In Figure 10-2, column properties listed include
Name, Data Type, and Allow Nulls .

■■ Use Table Designer menu options to work with a selected column . You can
mark the column as the primary key, establish foreign key relationships,
check constraints, and more .

■■ Use the Column Properties view to specify the characteristics for the column
you are creating . The characteristics include the following:

■■ Name Shows or determines the name of the column .

■■ Allow Nulls Shows or determines whether null values are allowed in this
column .

■■ Data Type Shows or determines the data type for the column .

■■ Default Value Or Binding Shows or determines the default value or
binding for the column . This value is used whenever a row with a null
value for this column is inserted into the database and nulls are not
allowed in this column .

■■ Length Shows or determines the maximum number of characters for
values in the column . This property applies only when the column con-
tains fixed-length data type values .

■■ Size Shows the storage size in bytes for values in the column . This prop-
erty applies only when the column contains fixed-length data type values .

■■ Precision Shows or determines the maximum number of digits for val-
ues in the column . This property applies only when the column contains
numeric or decimal data type values .

■■ Scale Shows or determines the maximum number of digits that can
appear to the right of the decimal point for values in the column . This
property applies only when the column contains numeric or decimal data
type values .

■■ Is Identity Shows or determines whether the column is used as an
identifier column .

■■ Identity Seed Shows or sets the base value for generating unique
identifiers . This property applies only to columns whose Is Identity option
is set to Yes .

■■ Identity Increment Shows or sets the increment for generating unique
identifiers . This property applies only to columns whose Is Identity option
is set to Yes .

■■ Is Sparse Shows or determines whether the column is sparse . Sparse
columns are optimized for null values and reduce space requirements
for null values while increasing the overhead required to retrieve nonnull
values . With filtered indexes on sparse columns, the index size is reduced

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views362

because only the populated values are indexed, and this can increase
index and search efficiency .

■■ RowGuid Shows or determines whether the column contains globally
unique identifiers . This property applies only to columns whose Is Identity
option is set to Yes or Yes (Not For Replication) .

■■ Formula Shows or sets the formula for a computed column .

■■ Collation Shows or sets the default collating sequence that SQL Server
applies to the column whenever the column values are used to sort rows
of a query result .

When you finish creating the table, click Save or press Ctrl+S .

You can create tables with Transact-SQL using the CREATE TABLE command .
Sample 10-4 shows the syntax and usage for this command . Here you create the
Customers table under the Sales schema . You must have CREATE TABLE permission
in the database and ALTER permission on the schema in which the table is being
created .

SAMPLE 10-4 CREATE TABLE Syntax and Usage

Syntax

CREATE TABLE [database_name . [schema_name] . | schema_name .]
 table_name
 ({ <col_def> | <comp_col_def> | <column_set_def> }
 [<table_constraint>] [,...n])
[ON { part_scheme_name (part_column_name) | filegroup
 | "default" }]
[TEXTIMAGE_ON { filegroup | "default" }]
[FILESTREAM_ON { part_scheme_name | filegroup | "default" }]
[WITH (<table_option> [,...n])] [;]

<col_def> ::=
column_name <data_type>
[FILESTREAM] [COLLATE collation_name] [NULL | NOT NULL]
[[CONSTRAINT constraint_name] DEFAULT constant_expression]
 | [IDENTITY [(seed ,increment)] [NOT FOR REPLICATION]]
[ROWGUIDCOL] [<column_constraint> [...n]] [SPARSE]

<data type> ::=
[type_schema_name .] type_name
 [(precision [, scale] | max
 | [{ CONTENT | DOCUMENT }] xml_schema_collection)]

<column_constraint> ::=
[CONSTRAINT constraint_name]
{ { PRIMARY KEY | UNIQUE } [CLUSTERED | NONCLUSTERED]
 [WITH FILLFACTOR = fillfactor
 | WITH (< index_option > [, ...n])]
 [ON { part_scheme_name (part_column_name) | filegroup

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 363

 | "default" }]
 | [FOREIGN KEY]
 REFERENCES [schema_name .] referenced_table_name
 [(ref_column)]
 [ON DELETE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }]
 [ON UPDATE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }]
 [NOT FOR REPLICATION]
 | CHECK [NOT FOR REPLICATION] (logical_expression)
}

<comp_col_def> ::=
column_name AS computed_column_expression
[PERSISTED [NOT NULL]]
[[CONSTRAINT constraint_name]
 { PRIMARY KEY | UNIQUE }
 [CLUSTERED | NONCLUSTERED] [WITH FILLFACTOR = fillfactor
 | WITH (<index_option> [, ...n])]
 | [FOREIGN KEY]
 REFERENCES referenced_table_name [(ref_column)]
 [ON DELETE { NO ACTION | CASCADE }] [ON UPDATE { NO ACTION }]
 [NOT FOR REPLICATION]
 | CHECK [NOT FOR REPLICATION] (logical_expression)
 [ON { part_scheme_name (part_column_name)
 | filegroup | "default" }]
]

<column_set_def> ::=
column_set_name XML COLUMN_SET FOR ALL_SPARSE_COLUMNS

< table_constraint > ::=
[CONSTRAINT constraint_name]
{ { PRIMARY KEY | UNIQUE }
 [CLUSTERED | NONCLUSTERED] (column [ASC | DESC] [,...n])
 [WITH FILLFACTOR = fillfactor |WITH (<index_option> [, ...n])]
 [ON { part_scheme_name (part_column_name) | filegroup
 | "default"}]
 | FOREIGN KEY (column [,...n])
 REFERENCES referenced_table_name [(ref_column [,...n])]
 [ON DELETE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }]
 [ON UPDATE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }]
 [NOT FOR REPLICATION]
 | CHECK [NOT FOR REPLICATION] (logical_expression)
}

<table_option> ::=
{ DATA_COMPRESSION = { NONE | ROW | PAGE }
 [ON PARTS ({ <part_number_expression> | <range> } [, ...n])]
}

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views364

<index_option> ::=
{ PAD_INDEX = { ON | OFF } | FILLFACTOR = fillfactor
 | IGNORE_DUP_KEY = { ON | OFF } | STATISTICS_NORECOMPUTE
 = { ON | OFF}
 | ALLOW_ROW_LOCKS = { ON | OFF} | ALLOW_PAGE_LOCKS = { ON | OFF}
 | DATA_COMPRESSION = { NONE | ROW | PAGE }
 [ON PARTS ({ <part_number_expression> | <range> }
 [, ...n])]
}
<range> ::=
<part_number_expression> TO <part_number_expression>

Usage

USE OrderSystemDB
CREATE TABLE Sales.Customers
(
 cust_lname varchar(40) NOT NULL,
 cust_fname varchar(20) NOT NULL,
 phone char(12) NOT NULL,
 uid uniqueidentifier NOT NULL
 DEFAULT newid()
)

Modifying existing Tables
When you work with the Table Properties view, you can use the Lock Escalation
option to configure lock escalation using the following settings:

■■ Auto With Auto, the Database Engine selects the lock escalation granular-
ity that is appropriate for the table schema . If the table is partitioned, lock
escalation is allowed to the heap or B-tree level and the lock will not be
escalated later to the table level . This can improve concurrency by reducing
lock contention . If the table is not partitioned, the Database Engine uses lock
escalation at the table level .

■■ Table With Table, the Database Engine uses lock escalation at the table
level regardless of whether the table is partitioned . Table is the default value .

■■ Disable With Disable, lock escalation is prevented in most cases, and the
Database Engine uses lock escalation only when required . For example, when
you are scanning a table that has no clustered index under the serializable
isolation level, the Database Engine must use a table lock to protect data
integrity .

In SQL Server Management Studio, you modify an existing table by completing
the following steps:

  1. In SQL Server Management Studio, connect to the server instance that con-
tains the database in which you want to work .

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 365

  2. In Object Explorer, expand the Databases node, select a database, and then
expand the view to show its resource nodes .

  3. Expand the Tables node, and then right-click the table you want to modify .
From the shortcut menu, choose Design . Then you can access the views for
designing tables, which are shown in Figure 10-2 earlier in the chapter .

  4. Make any necessary changes to the table, and then click Save or press Ctrl+S .
If the changes you make affect multiple tables, you see a prompt showing
which tables will be updated and saved in the database . Click Yes to continue
and complete the operation .

The Transact-SQL command for modifying tables is ALTER TABLE . Sample 10-5
shows the syntax and usage for this command . Here you alter the Customers table
under the Sales schema . You must have ALTER TABLE permission . Most of the subset
elements are the same as defined for CREATE TABLE . Important exceptions are
listed .

SAMPLE 10-5 ALTER TABLE Syntax and Usage

Syntax

ALTER TABLE [database_name . [schema_name] . | schema_name .]
 table_name
{ ALTER COLUMN column_name
 {
 [type_schema_name.] type_name [({ precision [, scale]
 | max | xml_schema_collection })]
 [COLLATE collation_name]
 [NULL | NOT NULL]
 | {ADD | DROP }
 { ROWGUIDCOL | PERSISTED | NOT FOR REPLICATION | SPARSE }
 }
 | [WITH { CHECK | NOCHECK }]
 | ADD
 { <column_definition>
 | <computed_column_definition>
 | <table_constraint>
 | <column_set_definition>
 } [,...n]
 | DROP
 { [CONSTRAINT] constraint_name
 [WITH (<drop_clustered_constraint_option> [,...n])]
 | COLUMN column_name
 } [,...n]
 | [WITH { CHECK | NOCHECK }] { CHECK | NOCHECK } CONSTRAINT
 { ALL | constraint_name [,...n] }
 | { ENABLE | DISABLE } TRIGGER
 { ALL | trigger_name [,...n] }
 | { ENABLE | DISABLE } CHANGE_TRACKING
 [WITH (TRACK_COLUMNS_UPDATED = { ON | OFF })]

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views366

 | SWITCH [PARTITION source_partition_number_expression]
 TO target_table
 [PARTITION target_partition_number_expression]
 | SET (FILESTREAM_ON = { partition_scheme_name | filegroup |
 "default" | "NULL" })
 | REBUILD
 [[WITH (<rebuild_option> [,...n])]
 | [PARTITION = partition_number
 [WITH (<single_partition_rebuild_option> [,...n])]]
]
 | (<table_option>)
}
[;]

<drop_clustered_constraint_option> ::=
{ MAXDOP = max_degree_of_parallelism
 | ONLINE = { ON | OFF }
 | MOVE TO { partition_scheme_name (column_name) | filegroup
 | "default" }
}

<range> ::=
<partition_number_expression> TO <partition_number_expression>

<rebuild_option> ::=
{ PAD_INDEX = { ON | OFF }
 | FILLFACTOR = fillfactor
 | IGNORE_DUP_KEY = { ON | OFF }
 | STATISTICS_NORECOMPUTE = { ON | OFF }
 | ALLOW_ROW_LOCKS = { ON | OFF }
 | ALLOW_PAGE_LOCKS = { ON | OFF }
 | SORT_IN_TEMPDB = { ON | OFF }
 | ONLINE = { ON | OFF }
 | MAXDOP = max_degree_of_parallelism
 | DATA_COMPRESSION = { NONE | ROW | PAGE}
 [ON PARTITIONS ({ <partition_number_expression> | <range> }
 [, ...n])]
}

<single_partition_rebuild__option> ::=
{ SORT_IN_TEMPDB = { ON | OFF }
 | MAXDOP = max_degree_of_parallelism
 | DATA_COMPRESSION = { NONE | ROW | PAGE} }
}

<table_option> ::=
 { SET (LOCK_ESCALATION = { AUTO | TABLE | DISABLE }) }

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 367

Usage

USE OrderSystemDB
ALTER TABLE Sales.Customers
ADD uid2 uniqueidentifier NOT NULL DEFAULT newid()
ALTER TABLE Sales.Customers
ALTER COLUMN cust_fname CHAR(10) NOT NULL
ALTER TABLE Sales.Customers
DROP Address2

Viewing Table Row and Size Information
In SQL Server Management Studio, you can view table row and size information by
completing the following steps:

  1. In SQL Server Management Studio, connect to the server instance that con-
tains the database in which you want to work .

  2. In Object Explorer, expand the Databases node, select a database, and then
expand the view to show its resource nodes .

  3. Expand the Tables node, right-click the table you want to examine, and then
select Properties from the shortcut menu . This displays the Table Properties
dialog box .

With SQL Server 2008 R1, entries under the Misc section on the General page
provide details about space used . In R2, entries under the General section on the
Storage page provide details about space used . In both cases, this information
includes the following:

■■ Data Space shows the amount of space the table uses on disk .

■■ Index Space shows the size of the table’s index space on disk .

■■ Row Count shows the number of rows in the table .

You can also view row, size, and space statistics for individual tables using the
sp_spaceused stored procedure . The following code accesses the OrderSystemDB
database and then checks the statistics for the Customers table under the Sales
schema:

USE OrderSystemDB
EXEC sp_spaceused 'Sales.Customers'

Displaying Table Properties and Permissions
In SQL Server Management Studio, you can display table properties and permissions
by completing the following steps:

  1. In SQL Server Management Studio, connect to the server instance that con-
tains the database in which you want to work .

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views368

  2. In Object Explorer, expand the Databases node, select a database, and then
expand the view to show its resource nodes .

  3. Expand the Tables node, right-click the table you want to examine, and then
select Properties to display the Table Properties dialog box .

  4. Use the General, Permissions, and Extended Properties pages of the dialog
box to view the table’s properties and permissions .

Displaying Current Values in Tables
In SQL Server Management Studio, you view a table’s current data by completing
the following steps:

  1. In SQL Server Management Studio, connect to the server instance that con-
tains the database in which you want to work .

  2. In Object Explorer, expand the Databases node, select a database, and then
expand the view to show its resource nodes .

  3. Expand the Tables node, right-click the table you want to examine, and then
choose Select Top 1000 Rows to display the first 1,000 rows of data con-
tained in the table .

  4. The lower portion of the Query Results pane provides buttons for moving
between the rows and a status area . If you select a read-only cell, the status
area displays “Cell Is Read Only .” If you have modified a cell, the status area
displays “Cell Is Modified .”

You can also list a table’s current data by using the SELECT FROM statement . In
the following example, you select from the Department table under the Human-
Resources schema in the Personnel database:

SELECT * FROM [Personnel].[HumanResources].[Department]

or

SELECT DepartmentID,Name,GroupName,ModifiedDate
 FROM [Personnel].[HumanResources].[Department]

Copying Tables
The easiest way to create a copy of a table is to use a Transact-SQL command . Use
SELECT INTO to extract all the rows from an existing table into the new table . The
new table must not already exist . The following example copies the Customers
table under the Sales schema to a new table called CurrCustomers under the BizDev
schema:

SELECT * INTO BizDev.CurrCustomers FROM Sales.Customers

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 369

You can also create the new table from a specific subset of columns in the
original table . In this case, you specify the names of the columns to copy after the
SELECT keyword . Any columns not specified are excluded from the new table . The
following example copies specific columns to a new table:

SELECT CustName, Address, Telephone, Email INTO BizDev.CurrCustomers
FROM Sales.Customers

Renaming and Deleting Tables
In SQL Server Management Studio, the easiest way to rename or delete a table is to
complete the following steps:

  1. In SQL Server Management Studio, access a database, and then expand the
Tables node to list the tables in the database .

  2. Right-click the table you want to rename or delete . From the shortcut menu,
choose View Dependencies . The Object Dependencies dialog box shows the
database objects that must be present for this object to function properly
and the objects that depend on the selected object . Use the information in
this dialog box to understand any dependencies that might be affected by
renaming or deleting the selected table . Click OK to close the Object Depen-
dencies dialog box .

  3. To rename a table, right-click the table, and then choose Rename from the
shortcut menu . You can now type a new name for the table .

  4. To delete a table, right-click the table, and then choose Delete to display the
Delete Object dialog box . Click OK .

You can also rename tables using the sp_rename stored procedure . You must
have ALTER TABLE permission and be a member of the sysadmin or dbcreator fixed
server role to rename a table with sp_rename . In the following example, you rename
the Customers table under the Sales schema CurrCustomers:

EXEC sp_rename 'Sales.Customers', 'CurrCustomers'

As long as you have ALTER permission on the schema to which the table belongs
or CONTROL permission on the table, you can remove a table from the database by
using the DROP TABLE command:

DROP TABLE Sales.CurrCustomers

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views370

If you want to delete the rows in a table but leave its structure intact, you can use
DELETE . The following DELETE command deletes all the rows in a table but does not
remove the table structure:

DELETE Sales.CurrCustomers

To use DELETE, you must be a member of the sysadmin fixed server role, the
db_owner or db_datawriter fixed database role, the table owner, or be granted
DELETE permission .

Adding and Removing Columns in a Table
You learned how to add or remove columns in a table in SQL Server Management
Studio earlier in this chapter . In Transact-SQL, you modify table columns by using
the ALTER TABLE command, which was shown earlier in Sample 10-5 .

Adding Columns

The following example adds a unique identifier column to the Customers table
under the Sales schema:

USE OrderSystemDB
ALTER TABLE Sales.Customers
ADD uid uniqueidentifier NOT NULL DEFAULT newid()

Modifying Columns

To change the characteristics of an existing column, use the ALTER COLUMN com-
mand, such as in the following example:

USE OrderSystemDB
ALTER TABLE Sales.Customers
ALTER COLUMN cust_fname CHAR(10) NOT NULL

Removing Columns

The following example removes the Address2 column from the Customers table:

USE OrderSystemDB
ALTER TABLE Sales.Customers
DROP COLUMN Address2

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 371

Scripting Tables
You can re-create and store the SQL commands needed to create tables in an .sql
file for later use . To do this, complete the following steps:

  1. In SQL Server Management Studio, access a database, and then expand the
Tables node to list the tables in the database .

  2. Select a table, right-click its name, and then select Script Table As from the
shortcut menu .

  3. Point to CREATE TO, and then select File to open the Select A File dialog box .

  4. In the dialog box, set a folder and file path for the .sql script, and then click
Save .

If you open the .sql file, you will find all the Transact-SQL statements required
to re-create the table structure . The actual data in the table is not stored with this
procedure, however .

Managing Table Values

In this section, you will learn about the techniques and concepts you need to work
with table values . Whether you want to create a new table or modify an existing
one, the techniques and concepts you need to understand are similar .

Using Native Data Types
Native data types are those built into SQL Server and supported directly . All data
types have a length value, which is either fixed or variable . The length for a numeric
or binary data type is the number of bytes used to store the number . The length
for a character data type is the number of characters . Most numeric data types also
have precision and scale . Precision is the total number of digits in a number . Scale is
the number of digits to the right of the decimal point in a number . For example, the
number 8714 .235 has a precision of seven and a scale of three .

Table 10-1 summarizes native data types that work with numbers and money .
The first column shows the general data type or data type synonym for SQL-92
compatibility . The second column shows the SQL Server data type . The third column
shows the valid range . The fourth column shows the amount of storage space used .

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views372

TABLE 10-1 Native Data Types for Numbers and Money

SQL-92
NAME—TYPE

SQL SERVER
NAME RANGE—DESCRIPTION

STORAGE
SIZE

INTEGERS

Bit bit 0, 1, or NULL 1 byte
(for each
1-bit to
8-bit
column)

Big integer bigint –263 through 263 – 1 . 8 bytes

Integer int –231 (–2,147,483,648) through 231 – 1
(2,147,483,647)

4 bytes

small integer smallint –215 (–32,768) through 215 – 1 (32,767) 2 bytes

tiny integer tinyint 0 through 255 1 byte

MONEY

Money money –922,337,203,685,477 .5808 through
+922,337,203,685,477 .5807

8 bytes

small money smallmoney –214,748 .3648 through +214,748 .3647 4 bytes

DECIMAL

dec, decimal decimal –1038 + 1 through 1038 – 1 5 to 17
bytes

Numeric decimal –1038 + 1 through 1038 – 1 5 to 17
bytes

APPROXIMATE NUMERIC

Double
precision

float –1 .79E + 308 through 1 .79E + 308 4 to 8
bytes

Float float –1 .79E + 308 through 1 .79E + 308 .
float[(n)] for n = 1 – 53

4 to 8
bytes

Float real –1 .18E – 38, 0 and –1 .18E – 38 through
3 .40E + 38 .
float[(n)] for n = 1 – 24

4 bytes

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 373

SQL-92
NAME—TYPE

SQL SERVER
NAME RANGE—DESCRIPTION

STORAGE
SIZE

SPATIAL DATA

geometry A variable-length common language
runtime (CLR) data type for storing
planar (flat-earth) data; represents
points, lines, and polygons within a
coordinate system

Varies

geography A variable-length CLR data type for
storing ellipsoidal (round-earth) data;
represents geographic objects on an
area of the Earth’s surface

Varies

OTHER NUMERICS

Cursor cursor A reference to a cursor Varies

Hierarchyid,
Sql-Hierar-
chyid

A variable-length CLR data type that
logically encodes information about a
single node in a hierarchy tree; repre-
sents the encoded path from the root
of the tree to the node

Varies

Rowversion rowversion,
timestamp

A databasewide unique number
that indicates the sequence in which
modifications took place in the data-
base (Rowversion is a synonym for
timestamp .)

8 bytes

SQL Variant sql_variant A special data type that allows a
single column to store multiple data
types (except text, ntext, sql_variant,
image, timestamp, xml, varchar(max),
varbinary(max), nvarchar(max), and
 .NET CLR user-defined types)

Varies

Table table A special data type that is used to
store a result set temporarily for
processing; can be used only to define
local variables and as the return type
for user-defined functions

Varies

Unique-
identifier

unique-
identifier

A globally unique identifier (GUID) 16 bytes

Xml xml A special data type that allows you
to store XML data; XML markup is
defined using standard text characters

Varies

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views374

Table 10-2 summarizes native data types for dates, characters, and binary data .
Again, the first column shows the general data type or data type synonym for
SQL-92 compatibility . The second column shows the SQL Server data type . The third
column shows the valid range . The fourth column shows the amount of storage
space used .

TABLE 10-2 Native Data Types for Dates, Characters, and Binary Values

SQL-92
NAME—TYPE SQL SERVER NAME RANGE—DESCRIPTION

STORAGE
SIZE

DATE

Datetime datetime January 1, 1753 through December
31, 9999; accuracy of three-
hundredths of a second

Two
4-byte
integers

small
datetime

smalldatetime January 1, 1900 through June 6, 2079;
accuracy of one minute

Two
2-byte
integers

Date date 0001-01-01 through 9999-12-31 3 bytes

Time time 00:00:00 .0000000 through
23:59:59 .9999999

3 to 5
bytes

datetime2 0001-01-01 00:00:00 .0000000
through 9999-12-31 23:59:59 .9999999

6 to 8
bytes

datetimeoffset 0001-01-01 00:00:00 .0000000
through 9999-12-31 23:59:59 .9999999
(in UTC)

8 to 10
bytes

CHARACTER

Character char Fixed-length non-Unicode character
data with a maximum length of 8,000
characters

1 byte per
character

character
varying

varchar Variable-length non-Unicode data
with a maximum length of 8,000
characters

1 byte per
character

varchar(max) Variable-length data to 231 – 1
(2,147,483,647) characters

1 byte per
character
+ 2-byte
pointer

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 375

SQL-92
NAME—TYPE SQL SERVER NAME RANGE—DESCRIPTION

STORAGE
SIZE

Text text Variable-length non-Unicode data
with a maximum length of 231 – 1
(2,147,483,647) characters

1 byte per
character

national
character

nchar Fixed-length Unicode data with a
maximum length of 4,000 characters

2 bytes
per
character

national char
varying

nvarchar Variable-length Unicode data with a
maximum length of 4,000 characters

2 bytes
per
character

 nvarchar(max) Variable-length Unicode data
with a maximum length of 231 – 1
(2,147,483,647) characters

2 bytes
per char-
acter plus
2-byte
pointer

national text ntext Variable-length Unicode data
with a maximum length of 230 – 1
(1,073,741,823) characters

2 bytes
per
character

BINARY

binary binary Fixed-length binary data with a maxi-
mum length of 8,000 bytes

Size of
data in
bytes

binary
varying

varbinary Variable-length binary data with a
maximum length of 8,000 bytes

Size of
data in
bytes

varbinary(max) Variable-length binary data to 231 – 1
(2,147,483,647) bytes

Size of
data in
bytes +
2-byte
pointer

Image image Variable-length binary data with
a maximum length of 231 – 1
(2,147,483,647) bytes

Size of
data in
bytes

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views376

When you create or modify a table in SQL Server Management Studio, you
assign a native data type by clicking in the Data Type column and using the list to
select a data type . In Transact-SQL, you set the data type when you create the table
and populate its columns or when you alter a table and add or change columns .
Sample 10-6 shows how you can use Transact-SQL commands to create a table and
its columns .

SAMPLE 10-6 Creating a Table and Its Columns

USE OrderSystemDB
CREATE TABLE Sales.Customers
 (CustomerID nchar(5) NOT NULL,
 CompanyName nvarchar(40) NOT NULL,
 ContactName nvarchar(30) NOT NULL,
 ContactTitle nvarchar(30) NOT NULL,
 Address nvarchar(60) NOT NULL,
 City nvarchar(15) NULL,
 Region nvarchar(15) NULL,
 PostalCode nvarchar(5) NULL,
 Country nvarchar(15) NULL,
 Phone nvarchar(24) NULL,
 Fax nvarchar(24) NULL)

Using Fixed-Length, Variable-Length, and Max-Length Fields
You can create binary and character data types as fixed-length, variable-length,
or max-length fields . When you use fixed-length data types, the column size you
specify is reserved in the database and can be written to without manipulating the
data in the column . This makes updates to the database quicker than with variable-
length fields . When you use variable-length data types, SQL Server squeezes more
rows into data pages, if possible . When more rows are included per data page, the
process of reading data is usually more efficient, which can translate into improved
performance for read operations . When you use max-length data types, SQL Server
stores a 2-byte pointer to the actual data in the table’s regular data space and stores
the actual data in the large object data space . Generally speaking, you should do
the following:

■■ Use fixed-length data types when the size of the data is consistent .

■■ Use variable-length data types when the size of the data varies .

■■ Use max-length data types when the size of the data exceeds the fixed-
length or variable-length limit .

To gain a better understanding of the performance implications, consider the
following scenario . With fixed-length columns of 80, 120, 40, and 500 bytes each,
rows would always be written using 750 bytes of storage (740 bytes for data plus
10 bytes of overhead for each row) . In this example, 10 rows fit on each data page
(8,096/750, without the remainder) .

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 377

If you use variable-length columns, however, the number of bytes used per row
and the number of rows stored per page would vary . For example, assume that the
average variable-length row uses 400 bytes . This includes 380 bytes of data and 20
bytes of overhead (12 bytes of overhead for rows that use variable-length data plus
2 bytes of overhead per variable-length column, thus 4 x 2 + 12 = 20) . In this case,
20 rows fit on each data page (8,096/400, without the remainder), which makes data
reads more efficient than the fixed-length example .

Using User-Defined Data Types
User-defined data types are special data types that are based on a native data type .
You will want to use user-defined data types when two or more tables store the
same type of data in a column . These columns must have exactly the same data
type, length, and nullability . You can create user-defined data types yourself, or you
can let SQL Server do the job . For example, sysname is a user-defined data type that
is used to reference database object names . The data type is defined as a variable
Unicode character type of 128 characters, which is why object names are limited to
128 characters throughout SQL Server . You can apply this concept to ensure that
specific data is used exactly as you want it to be used .

Creating User-Defined Data Types

You create user-defined data types at the database level rather than at the table
level, which is why user-defined data types are static and immutable (unchange-
able) . This ensures that no performance penalty is associated with user-defined
data types . User-defined data types do have some limitations, however . You cannot
declare a default value or check constraint as part of a user-defined data type . You
also cannot create a user-defined data type based on another user-defined data
type .

TIP When you create user-defined data types in a user-defined database, they apply

only to that database. If you want a user-defined data type to apply to multiple data-

bases, define the data type in the model database. Then the user-defined data type

will exist in all new user-defined databases.

In SQL Server Management Studio, you create a user-defined data type by com-
pleting the following steps:

  1. In SQL Server Management Studio, connect to the server instance containing
the database in which you want to work .

  2. In Object Explorer, expand the Databases node, select a database, and then
expand the view to show its resource nodes .

  3. Expand the Programmability node, right-click Types, point to New, and then
select User-Defined Data Type . This opens the New User-Defined Data Type
dialog box, shown in Figure 10-3 .

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views378

FIGURE 10-3 The New User-Defined Data Type dialog box

  4. The dbo schema is the default schema . To place the data type in a differ-
ent schema, click the button to the right of the Schema box, and then click
Browse . Select the schema you want to use, and then click OK twice .

  5. Enter a name for the new data type .

  6. In the Data Type list, select the data type on which you want to base the
user-defined data type .

  7. If the data type has a variable length, set the number of bytes or characters
for the data type . For fixed-length variables, such as int, you cannot set a
length .

  8. To allow the data type to accept null values, select Allow Nulls .

  9. Optionally, use the Default and Rule lists to select a default value or a rule to
bind to the user-defined data type .

  10. Click OK . If you open a new table or edit an existing table, you will see the
new data type as one of the last entries in the Data Type selection list .

You can also create user-defined data types with the CREATE TYPE statement .
Sample 10-7 shows the related syntax and usage .

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 379

SAMPLE 10-7 CREATE TYPE Syntax and Usage for User-Defined Data Types

Syntax

CREATE TYPE [schema_name.] type_name
 { FROM base_type
 [(precision [, scale])]
 [NULL | NOT NULL]
 | EXTERNAL NAME assembly_name [.class_name] } [;]

Usage

USE master
CREATE TYPE USPhoneNumber
FROM char(12) NOT NULL

Managing User-Defined Data Types

After you create user-defined data types, you often need to manage their proper-
ties . To manage user-defined data types, complete the following steps:

  1. In SQL Server Management Studio, connect to the server instance that con-
tains the database in which you want to work .

  2. In Object Explorer, expand the Databases node, select a database, and then
expand the view to show its resource nodes .

  3. Expand Programmability, Types, and User-Defined Data Types to list the cur-
rent user-defined data types .

  4. Right-click the user-defined data type you want to manage, and then select
from the following options:

■■ Properties, to view the data type’s properties and set dependencies

■■ Delete, to delete the data type

■■ Rename, to rename the data type

  5. To see where the data type is used in the database, right-click the user-
defined data type, and then select View Dependencies from the shortcut
menu .

Allowing and Disallowing Nulls
When you create columns in a table, you can specify whether nulls are allowed . A
null means there is no entry in the column for that row, which is not the same as
the value 0 or an empty string . Columns defined with a primary key constraint or
identity property cannot allow null values .

If you add a row but do not set a value for a column that allows null values,
SQL Server inserts the value NULL—unless a default value is set for the column .
When a default value is set for a column and you insert a null value, SQL Server
replaces NULL with the default value . Additionally, if the column allows nulls, you

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views380

can explicitly set a column to null by using the NULL keyword . Do not use quotation
marks when setting a null value explicitly .

In SQL Server Management Studio’s Table view, you can do the following:

■■ Allow nulls in a column by selecting the Allow Nulls column property .

■■ Disallow nulls in a column by clearing the Allow Nulls column property .

For an example of how to allow and disallow nulls with Transact-SQL, refer to
Sample 10-4 earlier in this chapter .

Using Default Values
Null values are useful when you do not know a value or a value is missing . If the
use of null values is not allowed according to the design specifications, you can set
a default value . A default value is used when no value is set for a column you are
inserting into a table . For example, you might want a character-based column to
have the value N/A rather than NULL, so you would set the default value as N/A.

Table 10-3 summarizes combinations of default values and nullability that are
handled in different ways . The main point to remember is that if you set a default
value, the default is used whenever a value is not specified for the column entry . This
is true even if you allow nulls .

TABLE 10-3 Default Values and Nullability

COLUMN DEFINITION
NO ENTRY, NO DEFAULT
DEFINITION

NO ENTRY, DEFAULT
DEFINITION

ENTER A NULL
VALUE

Allows null values Sets NULL Sets default value Sets NULL

Disallows null values Error occurs Sets default value Error occurs

Using Sparse Columns
The Database Engine uses the SPARSE keyword in a column definition to optimize
the storage of values in that column . When a value in a sparse column is NULL for
any row in the table, the value requires no additional storage space . In this way,
sparse columns are optimized for null values and reduce space requirements for null
values . However, sparse columns increase the overhead required to retrieve nonnull
values . They also increase the storage space required for fixed-length data types .

Sparse columns are especially appropriate for filtered indexes because sparse
columns have many null values . With filtered indexes on sparse columns, the index
size is reduced because only the populated values are indexed, and this can increase
index and search efficiency . INSERT, UPDATE, and DELETE statements can reference
sparse columns by name . You also can view and work with all the sparse columns of
a table that are combined into a single XML column called a column	set.

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 381

The text, ntext, timestamp, image, geography, geometry, and any user-defined
data types cannot be set as sparse . Although a computed column can contain a
sparse column, a computed column cannot be marked as sparse . A sparse column
cannot be used as a partition key of a clustered index or heap . However, a sparse
column can be used as the partition key of a nonclustered index . Persisted and non-
persisted computed columns that are defined on sparse columns also can be part of
a clustered key .

Sparse columns reduce the maximum size of a row from 8,060 bytes to 8,018
bytes . The following also apply to sparse columns:

■■ Cannot have the FILESTREAM, ROWGUIDCOL, or IDENTITY properties

■■ Cannot have default values or be bound to a rule

■■ Cannot be part of a clustered index or a unique primary key index

■■ Cannot be used as the partition key of a clustered index or heap

■■ Cannot be part of a user-defined table type

In SQL Server Management Studio’s Column Properties view, you can do the
following:

■■ Set a column as sparse by setting the option Is Sparse to Yes .

■■ Set a column as not sparse by setting the option Is Sparse to No .

Using Identities and Globally Unique Identifiers
When you design tables, you often need to think about unique identifiers that can
be used as primary keys or can ensure that merged data does not conflict with
existing data . Unique identifiers for primary keys might include customer account
numbers or Social Security numbers . If a unique identifier is not available, you might
want to use the identity property to generate sequential values that are unique for
each row in a table . You can also use this unique identifier to automatically generate
a customer account number, an order number, or whatever other unique value you
need .

Although the identity property provides a local solution for a specific table, it
does not guarantee that the value used as an identifier will be unique throughout
the database . Other tables in the database might have identity columns with the
same values . In most cases, this is not a problem because the identity values are
used only within the context of a single table and do not relate to other tables .
However, in some situations, you might want to use a value that is unique through-
out one or more databases, and then globally unique identifiers provide the solu-
tion you need .

Globally unique identifiers are guaranteed to be unique across all networked
computers in the world, which is extremely useful in merge replication . When you
are merging data from multiple databases, globally unique identifiers ensure that

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views382

records are not inadvertently associated with each other . For example, a company’s
New York, Chicago, and San Francisco offices might have customer account num-
bers that are unique within those local offices but are not unique at the national
level . Globally unique identifiers would ensure that account XYZ from New York and
account XYZ from Chicago are not merged as the same account .

Identities and globally unique identifiers are not mutually exclusive . Each table
can have one identifier column and one globally unique identity property . These
values are often used together . For example, all clustered indexes in SQL Server
should be unique, but they do not have to be unique .

In SQL Server Management Studio’s Table view, you set identity values for a table
by completing the following steps:

  1. Create or modify other columns in the table as appropriate, and then start a
new column for the identity value .

  2. Give the identity column a name, and then select a data type . Identifier col-
umns must use one of the following data types: tinyint, smallint, int, bigint,
decimal, or numeric . Globally unique identifier columns must have a data
type of uniqueidentifier .

TIP When you set the data type for an identifier column, be sure to consider

how many rows are in the table as well as how many rows might be added in the

future. A tinyint identifier provides only 256 unique values (0 to 255). A smallint

identifier provides 32,768 unique values (0 to 32,767).

  3. Clear the Allow Nulls check box for the identity column .

  4. To assign a globally unique identifier, select the identity column in the Table
view . In the Column Properties view, set RowGuid to Yes . A default value of
newid is created automatically for you .

NOTE The newid function is used to generate unique identifier values by com-

bining the identification number of a network card with a unique number from

the CPU clock. If a server process generates the identifier, the server’s network

card identification number is used. If the identifier is returned by application pro-

gramming interface (API) function calls, the client’s network card is used. Network

card manufacturers guarantee that no other network card in the next 100 years

will have the same number.

  5. To assign a unique identifier, select the identity column in the Table view,
expand Identity Specification in the Column Properties view, and then set Is
Identity to Yes .

  6. Type a value in the Identity Increment field . This value is the increment that
is added to the Identity Seed for each subsequent row . If you leave this field
blank, the value 1 is assigned by default .

  7. Type a value in the Identity Seed field . This value is assigned to the first row
in the table . If you leave this field blank, the value 1 is assigned by default .

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 383

  8. If you are replicating a database—as discussed in Chapter 13, “Implement-
ing Snapshot, Merge, and Transactional Replication”—and do not want the
column to be replicated, set Is Not For Replication to Yes . Typically, you want
to set Is Not For Replication to No to allow the column to be replicated .

NOTE The identity seed and increment values are used to determine the identifier

for rows. If you enter a seed value of 100 and an increment of 10, the first row has a

value of 100, the second has a value of 110, and so on.

When you create a table in Transact-SQL, globally unique identifiers are not
generated automatically . You must reference the newid function as the default value
for the identifier column, as shown in this example:

USE OrderSystemDB
CREATE TABLE Sales.Customers
 (cust_lname varchar(40) NOT NULL,
 cust_fname varchar(20) NOT NULL,
 phone char(12) NOT NULL,
 uid uniqueidentifier NOT NULL DEFAULT newid())

When you insert a new row into the table, you call newid to generate the glob-
ally unique identifier:

INSERT INTO Sales.Customers
Values ('Stanek', 'William', '123-555-1212', newid())

Using User-Defined Table Types
A user-defined table type is a special data type that represents the definition of a
table structure . You use user-defined table types when you want to declare table-
valued parameters to send multiple rows of data to a Transact-SQL statement,
stored procedure, or function without having to create a temporary table or many
parameters .

Understanding User-Defined Table Types

Table-valued parameters are similar to parameter arrays in Open Database Con-
nectivity (ODBC) and OLE DB, but they are more efficient . A table-valued parameter
is scoped to the stored procedure, function, or dynamic Transact-SQL statement,
exactly like other parameters, and has a scope like any other local variable that
is created by using a DECLARE statement . You can declare table-valued variables
within dynamic Transact-SQL statements and pass these variables as table-valued
parameters to stored procedures and functions . Transact-SQL passes table-valued
parameters to stored procedures or functions by reference to avoid making a copy
of the input data .

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views384

In many cases, table-valued parameters offer better performance than tem-
porary tables or other techniques you can use to pass a list of parameters . Table-
valued parameters perform well when you are using any of the following:

■■ Complex server logic to insert fewer than 1,000 rows from formatted data
files on the server

■■ Complex remote client processes to insert any number of rows

■■ Direct insert with remote client processes to insert fewer than 1,000 rows

However, you are better off using BULK INSERT operations when you are using
any of the following:

■■ Direct inserts from formatted data files on the server to insert any number of
rows

■■ Complex server logic to insert more than 1,000 rows from formatted data
files on the server

■■ Direct inserts of more than 1,000 rows with remote client processes

You create user-defined table types at the database level rather than at the table
level . To create and use table-valued parameters, follow these steps:

  1. Create a table type by using CREATE TYPE, and then use CREATE TABLE to
define the table structure .

  2. Create a procedure using CREATE PROCEDURE or a function using CREATE
FUNCTION that has a parameter of the table type .

  3. Declare a variable of the table type by using DECLARE @local_variable, and
then reference the table type .

  4. Add rows to the table variable by using an INSERT statement . After the table
variable is created and filled, you can pass the variable to a procedure or
function . When the procedure or function is out of scope, the table-valued
parameter is no longer available . However, the type definition remains until it
is dropped .

Table-valued parameters are strongly typed, do not acquire locks for the initial
population of data from a client, and do not cause a statement to recompile . They
also enable the client to specify sort order and unique keys, and they reduce back
and forth communications between the client and server . You can obtain informa-
tion that is associated with table-valued parameters by using the sys .parameters,
sys .types, and sys .table_types catalog views .

SQL Server does not maintain statistics on columns of table-valued parameters,
and table-valued parameters must be passed as input READONLY parameters to
Transact-SQL routines . You cannot perform data manipulation language (DML)
operations such as UPDATE, DELETE, or INSERT on a table-valued parameter in the
body of a routine . Additionally, although a table-valued parameter can be in the
FROM clause of SELECT INTO or in the INSERT EXEC string of a stored-procedure,
you cannot use a table-valued parameter as the target of a SELECT INTO or INSERT
EXEC statement .

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 385

Creating User-Defined Table Types

In SQL Server Management Studio, you create a user-defined table type by com-
pleting the following steps:

  1. In SQL Server Management Studio, connect to the server instance containing
the database in which you want to work .

  2. In Object Explorer, expand the Databases node, select a database, and then
expand the view to show its resource nodes .

  3. Expand the Programmability node, right-click Types, point to New, and then
select User-Defined Table Type . This creates a Transact-SQL query with the
basic structure of the required CREATE TYPE statement .

Sample 10-8 shows how you can use the CREATE TYPE statement to create user-
defined table types .

SAMPLE 10-8 Syntax and Usage for Creating User-Defined Table Types

Syntax

CREATE TYPE [schema_name.] type_name
{
 AS TABLE ({ <col_def> | <comp_col_def> }
 [<table_constraint>] [,...n])
}
[;]

<col_def> ::=
 column_name <data_type>
 [COLLATE collation_name] [NULL | NOT NULL]
 [DEFAULT constant_expression]
 | [IDENTITY [(seed ,increment)]]
 [ROWGUIDCOL] [<column_constraint> [...n]]

<data type> ::=
 [type_schema_name .] type_name
 [(precision [, scale] | max |
 [{ CONTENT | DOCUMENT }] xml_schema_collection)]

<column_constraint> ::=
{ { PRIMARY KEY | UNIQUE } [CLUSTERED | NONCLUSTERED]
 [WITH (<index_option> [,...n])]
 | CHECK (logical_expression)
}

<comp_col_def> ::=
{ column_name AS computed_column_expression
 [PERSISTED [NOT NULL]]
 [{ PRIMARY KEY | UNIQUE } [CLUSTERED | NONCLUSTERED]
 [WITH (<index_option> [,...n])]
 | CHECK (logical_expression)]
}

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views386

<table_constraint> ::=
{ { PRIMARY KEY | UNIQUE }
 [CLUSTERED | NONCLUSTERED] (column [ASC | DESC] [,...n])
 [WITH (<index_option> [,...n])]
 | CHECK (logical_expression)
}

<index_option> ::=
{ IGNORE_DUP_KEY = { ON | OFF } }

Usage

USE CustomerDB
CREATE TYPE StoreTableType AS TABLE
 (StoreName VARCHAR(60)
 , StoreNumeric INT)
GO

Managing User-Defined Table Types

After you create user-defined table types, you often need to manage their proper-
ties . To manage user-defined table types, complete the following steps:

  1. In SQL Server Management Studio, connect to the server instance that con-
tains the database in which you want to work .

  2. In Object Explorer, expand the Databases node, select a database, and then
expand the view to show its resource nodes .

  3. Expand Programmability, Types, and User-Defined Table Types to list the cur-
rent user-defined table types .

  4. As with any table, the user-defined table type can have associated columns,
keys, constraints, and indexes . Right-click the user-defined table type you
want to manage, and then select from the following options:

■■ Properties, to view the table type’s properties and set dependencies

■■ Delete, to delete the table type

■■ Rename, to rename the table type

  5. To see where the table type is used in the database, right-click the user-
defined table type, and then select View Dependencies from the shortcut
menu .

Using Views

Views can be thought of as virtual tables because the result sets returned by views
have the same general form as a table, with columns and rows, and views can be
referenced in queries much like tables . Several types of views can be created . Most

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 387

views are used to join data from multiple tables so that the data can be accessed
in a single result set . For example, you could create a CustOrder view that gets the
customer’s first name, last name, address, account number, and telephone number
from the Customers table and the last order details from the Orders table, which
makes the information more manageable for your company’s sales representatives .

Views can be created from other views as well, which allows you to extract
subsets of data from views and to create supersets that combine data from multiple
views . For example, you could create a subset view of the CustOrder view that shows
only the customer’s first name, last name, and telephone number . You could also
create a superset view that combines elements of the CustOrder view, AllCustOrders
view, and LastOrder view .

Working with Views
To create a view, you use a SELECT statement to select the data in one or more
tables and display it as a view . Like tables, views can be partitioned and indexed . A
partitioned view joins horizontally partitioned data from a set of base tables from
one or more servers . A partitioned view in which all base tables reside in the same
database is referred to as a local	partitioned	view. A partitioned view in which one or
more base tables reside on one or more remote servers is referred to as a distributed	
partitioned	view.

TIP Typically, you use distributed partitioned views rather than local partitioned

views because the preferred method for partitioning data locally is through parti-

tioned tables (and local partitioned views are supported only for backward compatibil-

ity). Distributed partitioned views are used to create a federation of database servers.

A federation is a group of servers that are managed separately but which cooperate to

share the query processing load of a large application or Web site.

Partitioned views also can be updatable or read-only . Updatable partitioned
views are updatable copies of the underlying tables . Read-only partitioned views
are read-only copies of the underlying tables . To perform updates on a partitioned
view, the partitioning column must be part of the base table’s primary key . If this
is not possible (or to make read-only partitioned views updatable), you can use
INSTEAD OF triggers with a partitioned view . INSTEAD OF triggers execute when-
ever a user attempts to modify data by using INSERT, UPDATE, or DELETE . Views
comprising multiple base tables must use an INSTEAD OF trigger to support inserts,
updates, and deletes that reference data in more than one table .

You index views to improve query performance . The first index created on a view
must be a unique clustered index . After the unique clustered index is created, you
can create additional nonclustered indexes on the view . A view for which you want
to create a unique clustered index must not reference any other views . It can refer-
ence only base tables, and those base tables must be in the same database as the
view and have the same owner as the view .

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views388

The query processor handles indexed and nonindexed views in different ways .
The rows of an indexed view are stored in the database in the same format as a
table . If the query optimizer uses an indexed view in a query plan, the indexed view
is handled the same way as a base table . With nonindexed views, only the view
definition is stored in the database, not the rows of the view . If the query optimizer
uses a nonindexed view in an execution plan, only the logic from the view definition
is used .

When an SQL statement references a nonindexed view, the parser and query
optimizer analyze the source of both the SQL statement and the view and resolve
them into a single execution plan . This means that there is not one plan for the SQL
statement and a separate plan for the view—there is only one execution plan .

As with tables, views are contained in schemas, and you can assign permissions
to views . Typically, you want the base tables and the related views to be in the same
schema . It is also important to note that permissions assigned to views are separate
from table permissions .

Using Windows PowerShell, you can work with views locally or by entering a
remote session with a database server . Consider the following example:

Set-Location SQLSERVER:\SQL\DataServer23\Default\Databases\Inventory
Set-Location views
Get-ChildItem | where {$_.Schema eq "DevPers"}

In this example, you enter a remote session with DataServer23 and then set
the working location to the Inventory database on the default Database Engine
instance . After you access the database, you access the view within the database
and then return a list of all tables in the DevPers schema . In the where clause, you
can search for any property of the Microsoft .SqlServer .Management .Smo .View
object, including AnsiNullsStatus, Columns, CreateDate, DateLastModified, Full-
Text Index, HasAfterTrigger, HasColumnSpecification, HasDeleteTrigger, HasIndex,
HasInsertTrigger, HasInsteadOfTrigger, HasUpdateTrigger, Id, Indexes, IsEncrypted,
IsIndexable, IsSchemaBound, IsSchemaOwned, Name, Owner, Parent, QuotedIden-
tifierStatus, ReturnsViewMetaData, Schema, State, Statistics, TextBody, TextHeader,
TextMode, Triggers, and Urn .

Creating Views
Views can have up to 1,024 columns . If you understand tables, creating views is
a straightforward process . However, there are a few rules to follow . Although the
SELECT statement used to create a view can use more than one table and other
views, you must have appropriate permissions to select from the referenced objects .
The view definition cannot include COMPUTE or COMPUTE BY clauses, an ORDER BY
clause (unless there is also a TOP clause), the INTO keyword, the OPTION clause, or a
reference to a temporary table or a table variable .

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 389

You can create a view in SQL Server Management Studio by completing the fol-
lowing steps:

  1. In SQL Server Management Studio, select a database, and then expand the
Views node to list the current views in the database . Two types of views are
available: system and user . System views provide a summarized report of
database information, such as table constraints and table privileges . User
views are defined by you or by other database users .

  2. To create a new view, right-click the Views node . From the shortcut menu,
choose New View to display the Add Table dialog box, shown in Figure 10-4 .
The Add Table dialog box has tabs that allow you to work with tables, views,
functions, and synonyms . If you select Add New Derived Tables from the
Query Designer menu and display the dialog box again, you will see a Local
Tables tab containing derived tables .

FIGURE 10-4 The Add Table dialog box

  3. In the Add Table dialog box, select a table or other object that contains data
you want to add to the view, and then click Add . This displays a view pane for
the selected object, which you can use to add columns, fields, and so on to
the view you are creating .

  4. When you finish working with the Add Table dialog box, click Close . You can
display this dialog box again at any time by selecting Add Table on the Query
Designer menu .

  5. Use the view panes provided to select the columns and fields to use in the
view, as shown in Figure 10-5 . Your actions create a SELECT statement that
can be used to generate the view .

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views390

FIGURE 10-5 Select columns and fields to use for a view .

  6. The View Properties pane is not displayed by default . In the right pane, click
the tab with the name of the view, and then press F4 to display the View
Properties pane .

  7. Set the view name, description, and schema . Type the name and description
in the fields provided . Use the drop-down list to select the schema that will
contain this view .

  8. You might want to create a dependency within a schema to ensure that any
modifications to the underlying structures that the view comprises are not
changed without first changing the view . You do this by binding the view to
the schema . If you want to bind the view to the schema, set Bind To Schema
to Yes .

NOTE When you bind a view to the schema, views or tables used in the view

cannot be dropped unless that view is dropped or changed so that it no longer

has schema binding. Furthermore, ALTeR TABLe statements executed on tables

that participate in views that have schema binding fail when these statements

affect the view definition.

  9. If you want to ensure that the view shows only distinct rows and filters out
duplicate rows, set Distinct Values to Yes .

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 391

  10. If you want the view to return a partial result set containing the top matches,
set Top to Yes, and then define the number of top matches to return as either
a fixed maximum or a percentage of the total results .

■■ To define a fixed maximum, set Expression to the maximum number of
results to return and set Percent to No . For example, set Expression to 50
to return the top 50 results .

■■ To define a percentage of the total results to return, set Expression to the
percentage of results to return and set Percent to Yes . For example, set
Expression to 10 and Percent to Yes to return the top 10 percent of the
result set .

  11. If you want to create an updatable view, set Update Using View Rules to Yes .
Updatable views cannot be created with distinct values or from top result
sets . To make sure data remains visible through the view after a modification
is committed, set Check Option to Yes . Remember, however, that updates
performed directly to a view’s base tables are not verified against the view
even when you select the Check Option .

  12. When you finish configuring the view, select Verify SQL Syntax from the
Query Designer menu . Correct any errors or issues reported during the veri-
fication process before continuing .

  13. To create the view, press Ctrl+R or select Execute SQL on the Query Designer
menu .

  14. After you run the view to update it for the latest changes, save the view .
Press Ctrl+S or click Save on the toolbar .

You can also create views using the CREATE VIEW statement . You can create a
simple view by selecting all the values in a table:

CREATE VIEW Sales.CustomView As
SELECT *
FROM Sales.Customers

Then you can work directly with the view:

SELECT * FROM Sales.CustomView

Sample 10-9 shows the full syntax and usage for CREATE VIEW .

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views392

SAMPLE 10-9 CREATE VIEW Syntax and Usage

Syntax

CREATE VIEW [schema_name .] view_name [(column [,...n])]
[WITH <view_attribute> [,...n]]
AS select_statement
[WITH CHECK OPTION] [;]

<view_attribute> ::=
{ [ENCRYPTION]
 [SCHEMABINDING]
 [VIEW_METADATA] }

Usage

CREATE VIEW Sales.CustomView As
SELECT cust_id AS Account, cust_lname AS [Last Name],
 cust_fname AS [First Name], state AS Region
FROM Sales.Customers
WHERE (state = 'WA') OR
 (state = 'HI') OR
 (state = 'CA')

Modifying Views
You can modify a view in SQL Server Management Studio by completing the follow-
ing steps:

  1. In SQL Server Management Studio, select a database, and then expand the
Views node to list the current views in the database .

  2. To modify an existing view, right-click the view, and then select Design .

  3. If you want to add tables, views, and so on, select Add Table from the Query
Designer menu .

  4. If you want to set view properties, click the tab with the name of the view
and then press F4 to display the View Properties pane .

To change an existing view without having to reset its permissions and other
properties, use ALTER VIEW . The following example changes the definition of the
Sales Custom view used in previous examples:

ALTER VIEW Sales.CustomView As
 SELECT cust_id AS Account, cust_lname AS [Customer Last Name],
 cust_fname AS [Customer First Name], state AS Region
 FROM Sales.Customers
 WHERE (state = 'WA') OR
 (state = 'CA')

Sample 10-10 shows the full syntax for ALTER VIEW .

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 393

SAMPLE 10-10 ALTER VIEW Syntax

ALTER VIEW [schema_name .] view_name [(column [,...n])]
[WITH <view_attribute> [,...n]]
AS select_statement
[WITH CHECK OPTION] [;]

<view_attribute> ::=
{ [ENCRYPTION]
 [SCHEMABINDING]
 [VIEW_METADATA] }

Using Updatable Views
SQL Server supports updatable views as well . With an updatable view, you can
change the information in the view by using INSERT, UPDATE, and DELETE state-
ments . You can create updatable views if the table columns being modified are not
affected by GROUP BY, HAVING, or DISTINCT clauses . Furthermore, an updatable
view can be modified only when the columns from one base table are being modi-
fied and those columns directly reference the underlying data . This means the data
cannot be derived from an aggregate function or computed from an expression that
uses other columns .

With updatable views, you usually want to set Check Option to Yes . If you do not
set the option, changes to the view might result in rows that are no longer dis-
played in the view . For example, consider the view created as an example previously .
The view included customer information from Washington (WA), Hawaii (HI), and
California (CA) . If you change a state value to GA, the row would disappear from the
view because Georgia-based customers are not displayed in the view .

Managing Views
You can examine view properties, set view permissions, and perform other manage-
ment tasks, just as you do with tables . To get started managing views, complete the
following steps:

  1. In SQL Server Management Studio, select a database, and then expand the
Views node to list the current views in the database .

  2. Select a view, and then right-click it to open a shortcut menu that gives you
the following choices to manage the view:

■■ Select Top 1000 Rows Displays up to 1,000 rows in the result set for
the view .

■■ Edit Top 200 Rows Displays up to 200 rows in the result set for the view
and allows you to edit the related values .

■■ Properties Examine view properties .

■■ Rename Rename the view .

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views394

■■ Delete Delete the view .

■■ View Dependencies View objects that depend on the view or objects
on which the view depends .

  3. To set permissions for a view, right-click the view, and then select Properties .
In the View Properties dialog box, select the Permissions page . You can now
manage the permissions for the view .

Creating and Managing Indexes

Indexes are a feature that helps locate and access data . Indexes provider faster
access to data because you do not need to search the entire database . With SQL
Server 2008, you can create indexes on tables, views, and computed columns . By
creating indexes on tables, you can search through the data in a table quickly . By
creating indexes on views, you can generate a result set of the view that is stored
and indexed in the database . By creating indexes on computed columns, you can
evaluate expressions and index the results (if certain criteria are met) .

Indexes are separate from tables, and you can configure them automatically
using the Database Engine Tuning Advisor . This section examines the techniques you
use to work with indexes .

Understanding Indexes
Indexes, like tables, use pages . The structure of index pages is similar to the struc-
ture of table data pages . Index pages are 8 KB (8,192 bytes) in size and have a
96-byte header . But unlike data pages, they do not have row offsets . Each index has
a corresponding row in the sys .indexes catalog view with an index ID value (index_
id) of 1 for clustered indexes or 2 through 250 for nonclustered indexes . An index
ID value of 255 indicates large object data, such as image, ntext, text, varchar(max),
nvarchar(max), varbinary(max), or xml data . (Large object data types cannot be
index key columns; varchar(max), nvarchar(max), varbinary(max), and xml data types
can be included columns, however .)

SQL Server maintains indexes using a B-tree structure, which is a basic tree struc-
ture consisting of a root node, intermediate-level nodes, and leaf nodes . Because
indexes use a tree structure, you can search them quickly and efficiently . Without
the tree structure, SQL Server would need to read each table data page in the data-
base in turn, searching for the correct record .

To put this in perspective, consider a simple table in which each data page con-
tains a single row . In this case, if SQL Server searches for data in row 800 and there
is no index, SQL Server might have to search 799 other rows before finding the right
row . With a tree structure, SQL Server navigates the nodes down the index search-
ing for the row that matches the corresponding index key . In the best-case scenario,
in which the index keys have been arranged in a full tree, the number of nodes that
need to be searched is proportional to the height of the tree . For example, 27,000

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 395

rows might be represented by 30 levels of nodes, and if so, SQL Server would have
to navigate a maximum of 15 nodes to find the matching row .

NOTE You might have noticed that I simplified this example to demonstrate the

power of indexing. Nevertheless, indexing can improve performance by orders of

magnitude, and accessing a database that doesn’t use indexing can seem extremely

slow. You must be careful, however; indexing the wrong information also can make the

database perform slowly, which is why it is so important to select the most referenced

or most used column in the table to index.

In SQL Server 2008, indexing performance has been enhanced in many ways:

■■ Index operations can be performed online, and online indexing depends on
the amount of memory allocated for indexing . Online indexing makes it pos-
sible for users to access table data and use other indexes on a table while an
index is being created, modified, or dropped .

■■ Columns that are not part of the index key can be included in nonclustered
indexes . Including them improves query performance by making all the
required data available without the need to access the table data rows . These
included columns can exceed the index size limitations of 16 key columns
and the maximum key size of 900 bytes .

■■ Both row-level and page-level index locks are allowed when accessing the
index . If you allow row locks, page locks, or both, the Database Engine deter-
mines when the locks are used .

■■ The maximum degree of parallelism can be set using MAXDOP . This controls
the number of parallel operations that can occur when you are creating,
altering, or dropping an index .

■■ Indexes can be partitioned on value ranges by using existing partition
schemes . When you partition a nonunique, clustered index, the Database
Engine adds the partitioning column to the list of clustered index keys if it
is not already specified as a key . When you partition a nonunique, nonclus-
tered index, the Database Engine adds the partitioning column as a nonkey
(included) column of the index if it is not already specified as such .

SQL Server 2008 supports two main types of indexing:

■■ Clustered indexes

■■ Nonclustered indexes

You can create clustered and nonclustered indexes on almost any column . Excep-
tions include CLR user-defined types and very large object data types—you cannot
create indexes on these data types . If you want to create indexes on computed
columns, you must ensure that the computed column expression always returns the
same result for a specific set of inputs . Although you can create an index on any
other type of column, you should always select the index column carefully . Select-
ing the correct column to index improves response time dramatically . Selecting the

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views396

wrong column to index actually can degrade response time . For more information
about which column to index, use the Database Engine Tuning Advisor .

SQL Server 2008 also supports several special types of indexing:

■■ XML indexes An XML index can be either a nonclustered index (the
default) or a clustered index . A clustered index is created for XML data from
the clustering key of the user table and an XML node identifier . Each table
can have up to 249 XML indexes . You will learn more about XML indexes in
“Using XML Indexes” on the next page .

■■ Filtered indexes A filtered index is an optimized nonclustered index on
a subset of table data . Well-designed filtered indexes reduce index storage
costs because you don’t need to index full tables . They also improve query
performance and execution plan quality because they are smaller than
full-table indexes, and they reduce maintenance overhead because they are
maintained only when the data in the index is modified . You will learn more
about filtered indexes in “Using Filtered Indexes” on the next page .

■■ Spatial indexes A spatial index is defined on a table column that contains
geometric or geographic data . A spatial index on geographic data maps
the geographic data to a two-dimensional space . Each table can have up to
249 spatial indexes . You can define spatial indexes only on a table that has a
primary key . Primary key metadata cannot be changed while a spatial index
is defined on a table, and the maximum number of primary key columns
on the table is 15 . You can create more than one spatial index on the same
spatial column, which might be necessary to index different grid parameters
in a single column .

Using Clustered Indexes
A clustered index stores the actual table data pages at the leaf level, and the table
data is physically ordered around the key . A table can have only one clustered index,
and when this index is created, the following events also occur:

■■ Table data is rearranged .

■■ New index pages are created .

■■ All nonclustered indexes within the database are rebuilt .

As a result, there are many disk I/O operations and extensive use of system and
memory resources . If you plan to create a clustered index, be sure you have free
space equal to at least 1 .5 times the amount of data in the table . The extra free
space ensures that you have enough space to complete the operation efficiently .

Normally, you create a clustered index on a primary key . You can, however, create
a clustered index on any named column, such as cust_lname or cust_id . When you
create a clustered index, the values you are indexing should be unique . If the values
are not unique, SQL Server creates secondary sort keys on rows that have duplicates
of their primary sort keys .

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 397

Using Nonclustered Indexes
In a nonclustered index, pages at the leaf level contain a bookmark that tells SQL
Server where to find the data row corresponding to the key in the index . If the table
has a clustered index, the bookmark indicates the clustered index key . If the table
does not have a clustered index, the bookmark is an actual row locator .

When you create a nonclustered index, SQL Server creates the required index
pages but does not rearrange table data . Other indexes for the table are not
deleted . Each table can have up to 249 nonclustered indexes .

Using XML Indexes
As mentioned earlier, an XML index is a special type of index that can be either
clustered or nonclustered . Before you can create an XML index, you must have a
clustered index based on the primary key of the user table, and this key is limited to
15 columns . Two types of XML indexes can be created: primary and secondary . Each
xml column in a table can have one primary XML index and one or more secondary
XML indexes . However, there must be a primary XML index before a secondary XML
index can be created on a column, and you cannot create a primary XML index on a
computed xml column .

Also, an XML index can be created only on a single xml column . You cannot
create an XML index on a non-xml column, nor can you create a relational index
on an xml column . You cannot create an XML index on an xml column in a view, on
a table-valued variable with xml columns, or on an xml type variable . Finally, the
SET options must be the same as those required for indexed views and computed-
column indexes . This means ARITHABORT must be set to ON when an XML index is
created and when values in the xml column are being inserted, deleted, or updated .

Using Filtered Indexes
As mentioned earlier, a filtered index is a special type of nonclustered index on a
subset of table data . Filtered indexes are useful in several situations . When a table
column has only a limited number of relevant values and a query selects only from
the relevant values, you can create a filtered index for the relevant data rows . When
a table column has multiple categories of data and a query selects only from a
particular category or categories, you can create a filtered index for the relevant
category or categories .

Filtered indexes are useful when your queries use simple comparison logic in
a predicate and the queries are not a replacement for views, which have broader
scope and functionality . For example, you could create a filtered index for nonnull
data rows using a query that selects only from nonnull values . Or you could create
a filtered index for a subset of categories within the data using a query that selects
only the categories you need .

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views398

NOTE You cannot create filtered indexes on views. You cannot drop, rename, or alter

the definition of a table column that is defined in a filtered index expression. You can

track dependencies for filtered index expressions by using the sys.sql_ expression_

dependencies catalog view.

In some cases, a parameterized query does not contain enough information at
compile time for the query optimizer to choose a filtered index . You might be able
to rewrite the query to provide the missing information . For example, you could
modify the query so that the query results are empty when a parameterized expres-
sion is not a subset of the filter predicate .

When creating filtered indexes, you should include only those columns that
are required in order for the query optimizer to choose the filtered index for the
query execution plan . Although the filtered index doesn’t have to cover the query, it
should . The primary key of the table does not need to be specifically included in the
filtered index definition . The primary key is automatically included in all nonclus-
tered indexes, including filtered indexes .

When the filtered index expression is equivalent to the query predicate and the
query does not return the column in the filtered index expression with the query
results, a column in the filtered index expression does not need to be a key or
included column in the filtered index definition . When the query predicate uses the
column in a comparison that is not equivalent to the filtered index expression, a
column in the filtered index expression should be a key or included column in the
filtered index definition .

When the comparison operator specified in the filtered index expression results
in an implicit or explicit data conversion, an error will occur if the conversion occurs
on the left side of a comparison operator . A workaround is to write the filtered
index expression with the data conversion operator (CAST or CONVERT) on the
right side of the comparison operator . However, this can change the meaning of the
conversion .

Determining Which Columns Should Be Indexed
Now that you know how indexes work, you can focus on which columns you should
index . Ideally, you should select columns for indexing on the basis of the types of
queries executed on the database . SQL Server Profiler can help you determine the
types of queries being run . You use SQL Server Profiler to create a trace that con-
tains a good snapshot of activities performed by users on the database .

You can examine this trace manually to see what types of queries are executed,
or you can use the trace file as a saved workload file in the Database Engine Tun-
ing Advisor . Regardless of which method you use, keep in mind that the maximum
length of all key columns that an index comprises is 900 bytes . This means that
the total size in bytes of all columns must be 900 or less . (Columns that are not
part of the index key can be included, and these included columns can exceed the
index size limitations of 16 key columns and the maximum key size of 900 bytes .)

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 399

Table 10-4 offers some guidelines about the kinds of tables and columns that can be
successfully indexed and those that do not result in useful indexes .

TABLE 10-4 Guidelines for Selecting Tables and Columns to Index

INDEX DO NOT INDEX

Tables with lots of rows Tables with few rows

Columns that are often used in queries Columns that are rarely used in queries

Columns that have a wide range of val-
ues and have a high likelihood of rows
being selected in a typical query

Columns that have a wide range of values
but have a low likelihood of rows being
selected in a typical query

Columns used in aggregate functions Columns that have a large byte size

Columns used in GROUP BY queries Tables with many modifications but few
actual queries

Columns used in ORDER BY queries

Columns used in table joins

Table 10-5 provides suggestions for the types of columns that should use clus-
tered or nonclustered indexes .

TABLE 10-5 Guidelines for Using Clustered and Nonclustered Indexes

USE CLUSTERED INDEX FOR USE NONCLUSTERED INDEX FOR

Primary keys that are searched for
extensively, such as account numbers

Primary keys that are sequential
 identifiers, such as identity columns

Queries that return large result sets Queries that return small result sets

Columns used in many queries Columns used in aggregate functions

Columns with strong selectivity Foreign keys

Columns used in ORDER BY or
GROUP BY queries

Columns used in table joins

Indexing Computed Columns and Views
With SQL Server 2008, you can index computed columns and views as well as tables .
Indexes on computed columns and views involve storing results in the database for
future reference . With computed columns, the column values are calculated and
then used to build the keys stored in the index . With views, the result set is stored by
creating a clustered index on the view . In both cases, the stored results are valid only

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views400

if all connections referring to the results can generate an identical result set, which
puts specific restrictions on how you can create indexes on computed columns and
views .

You must establish connections referring to the results by using specific SET
options, and these options must have the same settings . The options you must set
are as follows:

■■ ANSI_NULLS must be set to ON .

■■ ANSI_PADDING must be set to ON .

■■ ANSI_WARNINGS must be set to ON .

■■ ARITHABORT must be set to ON .

■■ CONCAT_NULL_YIELDS_NULL must be set to ON .

■■ QUOTED_IDENTIFIER must be set to ON .

■■ NUMERIC_ROUNDABORT must be set to OFF .

Furthermore, all operations referencing the view must use the same algorithm to
build the view result set, including the following:

■■ The CREATE INDEX statement that builds the initial result set or is used to
calculate the initial keys

■■ Any subsequent INSERT,	UPDATE, or DELETE statements that affect the data
used to build the view result set or are used to calculate keys

■■ All queries for which the query optimizer must determine whether the
indexed view is useful

Viewing Index Properties
Both tables and views can have indexes . In SQL Server Management Studio, you can
view indexes associated with a table or view by completing the following steps:

  1. In SQL Server Management Studio, select a database, and then expand the
Tables or Views node as appropriate .

  2. Select a table or view, and then expand its node to list the objects it contains .

  3. Expand the Indexes node to list the indexes associated with the selected
table or view (if any) .

  4. Right-click an index, and then select Properties to open the Index Properties
dialog box, shown in Figure 10-6 . This dialog box has several pages that let
you view and manage index properties:

■■ General Shows general properties, including the index name and type .
You can change the index type and add or remove key columns .

■■ Options Allows you to set options for rebuilding the index, recomput-
ing statistics, using row or page locks, setting the fill factor, and determin-
ing the maximum degree of parallelism .

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 401

■■ Included Columns Allows you to view and manage the included col-
umns (with nonclustered indexes) .

■■ Storage Lists the current storage configuration . Allows you to configure
filegroups and partition schemes .

■■ Spatial Lists spatial properties for columns that include geometric or
geographic data .

■■ Filter Lists the filter expression for a filtered index .

■■ Fragmentation Lists the index fragmentation data, which you can use
to determine if you need to reorganize or rebuild the index .

■■ Extended Properties Lists extended properties . Allows you to add or
remove extended properties .

FIGURE 10-6 The Index Properties dialog box

Using the sp_statistics stored procedure, you can examine the indexes for a
specific table or view . To do this, you simply specify the name of the table or view
whose indexes you want to examine, as shown in the following example:

USE OrderSystemDB
EXEC sp_statistics Sales.Customers

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views402

Creating Indexes
Only the owner of a table or view can create indexes on that table or view . You
can create indexes with a design tool in SQL Server Management Studio or with
the Transact-SQL CREATE INDEX statement . To create indexes with the design tool,
complete the following steps:

  1. In SQL Server Management Studio, connect to the server instance containing
the database in which you want to work .

  2. In Object Explorer, expand the Databases node, select a database, and then
expand it to show the database’s resource nodes .

  3. Expand the Tables or Views node as appropriate . Right-click the table or view
for which you are creating the index, and then select Design from the short-
cut menu .

  4. On the Table Designer menu, select Indexes/Keys to display the Indexes/Keys
dialog box, shown in Figure 10-7 .

FIGURE 10-7 The Indexes/Keys dialog box

  5. Any current primary/unique keys and indexes are listed in the left pane of the
dialog box . You can manage the properties of any of the keys by selecting a
key and making the necessary changes . To add an index, click Add .

  6. Click in the Columns text box, and then click the button to the right of
the Columns box . This displays the Index Columns dialog box, shown in
Fig ure 10-8 .

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 403

FIGURE 10-8 The Index Columns dialog box

  7. Under Column Name, select the column or columns you want to include
in the index . You can select only columns that have valid data types for
indexing .

  8. Each column can have a separate sort order for the index . By default, the sort
order is set to Ascending . You can set the sort order to Descending .

  9. When you finish selecting columns to index, click OK to close the Index Col-
umns dialog box .

  10. If you want to ensure that data entered into this index is unique, set the
option Is Unique to Yes . This ensures the uniqueness of values stored in the
index . You cannot set this option for XML indexes .

  11. Type should be set to Index by default . Under Identity, use the text boxes
provided to enter the index name and description . You can use up to 128
characters for the index name . Ideally, the index name should be short and
easy to associate with its purpose, such as [Index	for	Cust	ID] .

  12. Set the option Create As Clustered to Yes to create a clustered index on the
columns selected . Otherwise, a nonclustered index is created . Remember
that you can have only one clustered index per table; if the table already has
a clustered index, this option is not available .

  13. To specify the storage location for the index, expand the Data Space Speci-
fication node, and then use the Filegroup Or Partition Schema list to specify
the filegroup .

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views404

  14. To set the fill parameters, expand the Fill Specification node . Set the Fill Fac-
tor property to 0 (the default value) to let SQL Server use an optimized fill, as
described in “Setting the Index Fill” in Chapter 7 . Refer to this section as well
for information about setting the Fill Factor property to a different value to
set a specific index fill .

  15. If you want to ignore duplicate keys, set the option Ignore Duplicate Keys
to Yes . When this option is on, any attempt to insert rows that violate the
unique index fails with a warning, and the rows are not inserted . Whether
this option is set on or off, SQL Server does not allow you to create a unique
index on columns that already have duplicate values . Columns that are used
in a unique index should be set so that they do not allow nulls . Further-
more, you cannot use the Ignore Duplicate Keys option with XML indexes or
indexes created on views .

  16. Optionally, turn on automatic statistics updating by setting the option
 Re-Compute Statistics to Yes . If you set Re-Compute Statistics to No, out-of-
date statistics are not automatically recomputed .

  17. When you finish configuring the index, click Close . Select File, Save or press
Ctrl+S to save the table, which in turn saves the index you created .

  18. With nonclustered indexes, you can create filtered indexes by adding the
WHERE clause to the CREATE INDEX statement . In SQL Server Management
Studio, right-click a nonclustered index, and then select Properties to open
the Index Properties dialog box shown previously in Figure 10-6 . You can
then enter the filter on the Filter page .

Use the Transact-SQL CREATE INDEX command to create indexes with the syntax
shown in Sample 10-11 . With a nonclustered index, you can create a filtered index
by adding a WHERE clause .

SAMPLE 10-11 CREATE INDEX Syntax

Syntax Relational Index

CREATE [UNIQUE] [CLUSTERED | NONCLUSTERED] INDEX index_name
 ON <object> (column [ASC | DESC] [,...n])
 [INCLUDE (column_name [,...n])]
 [WHERE <filter_predicate>]
 [WITH (<relational_index_option> [,...n])]
 [ON { partition_scheme_name (column_name)
 | filegroup_name
 | default
 }
]
 [FILESTREAM_ON { filestream_filegroup_name
 | partition_scheme_name | "NULL" }]
[;]

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 405

<object> ::=
{ [database_name. [schema_name] . | schema_name.]
 table_or_view_name
}

<relational_index_option> ::=
{ PAD_INDEX = { ON | OFF }
 | FILLFACTOR = fillfactor
 | SORT_IN_TEMPDB = { ON | OFF }
 | IGNORE_DUP_KEY = { ON | OFF }
 | STATISTICS_NORECOMPUTE = { ON | OFF }
 | DROP_EXISTING = { ON | OFF }
 | ONLINE = { ON | OFF }
 | ALLOW_ROW_LOCKS = { ON | OFF }
 | ALLOW_PAGE_LOCKS = { ON | OFF }
 | MAXDOP = max_degree_of_parallelism
 | DATA_COMPRESSION = { NONE | ROW | PAGE}
 [ON PARTITIONS ({ <partition_number_expression> | <range> }
 [, ...n])]
}

<filter_predicate> ::=
 <conjunct> [AND <conjunct>]

<conjunct> ::=
 <disjunct> | <comparison>

<disjunct> ::=
 column_name IN (constant ,...)

<comparison> ::=
 column_name <comparison_op> constant

<comparison_op> ::=
 { IS | IS NOT | = | <> | != | > | >= | !> | < | <= | !< }

<range> ::=
<partition_number_expression> TO <partition_number_expression>

Syntax XML Index

CREATE [PRIMARY] XML INDEX index_name
 ON <object> (xml_column_name)
 [USING XML INDEX xml_index_name
 [FOR { VALUE | PATH | PROPERTY }]]
 [WITH (<xml_index_option> [,...n])]
[;]

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views406

<object> ::=
{ [database_name. [schema_name] . | schema_name.] table_name }

<xml_index_option> ::=
{ PAD_INDEX = { ON | OFF }
 | FILLFACTOR = fillfactor
 | SORT_IN_TEMPDB = { ON | OFF }
 | IGNORE_DUP_KEY = OFF
 | STATISTICS_NORECOMPUTE = { ON | OFF }
 | DROP_EXISTING = { ON | OFF }
 | ONLINE = OFF
 | ALLOW_ROW_LOCKS = { ON | OFF }
 | ALLOW_PAGE_LOCKS = { ON | OFF }
 | MAXDOP = max_degree_of_parallelism
}

Syntax Spatial Index

CREATE SPATIAL INDEX index_name
 ON <object> (spatial_column_name)
 {
 [USING <geometry_grid_tessellation>]
 WITH (<bounding_box>
 [[,] <tesselation_parameters> [,...n]]
 [[,] <spatial_index_option> [,...n]])
 | [USING <geography_grid_tessellation>]
 [WITH ([<tesselation_parameters> [,...n]]
 [[,] <spatial_index_option> [,...n]])]
 }
 [ON { filegroup_name | "default" }]
;

<object> ::=
 [database_name. [schema_name] . | schema_name.] table_name

<geometry_grid_tessellation> ::=
{ GEOMETRY_GRID }

<bounding_box> ::=
BOUNDING_BOX = ({
 xmin, ymin, xmax, ymax
 | <named_bb_coordinate>, <named_bb_coordinate>,
 <named_bb_coordinate>, <named_bb_coordinate>
 })

<named_bb_coordinate> ::= { XMIN = xmin | YMIN = ymin | XMAX = xmax
 | YMAX=ymax }

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 407

<tesselation_parameters> ::=
{ GRIDS = ({ <grid_density> [,...n] | <density>, <density>, <density>,
<density> })
 | CELLS_PER_OBJECT = n
}

<grid_density> ::=
{ LEVEL_1 = <density>
 | LEVEL_2 = <density>
 | LEVEL_3 = <density>
 | LEVEL_4 = <density>
}

<density> ::= { LOW | MEDIUM | HIGH }

<geography_grid_tessellation> ::=
{ GEOGRAPHY_GRID }

<spatial_index_option> ::=
{ PAD_INDEX = { ON | OFF }
 | FILLFACTOR = fillfactor
 | SORT_IN_TEMPDB = { ON | OFF }
 | IGNORE_DUP_KEY = OFF
 | STATISTICS_NORECOMPUTE = { ON | OFF }
 | DROP_EXISTING = { ON | OFF }
 | ONLINE = OFF
 | ALLOW_ROW_LOCKS = { ON | OFF }
 | ALLOW_PAGE_LOCKS = { ON | OFF }
 | MAXDOP = max_degree_of_parallelism
}

Managing Indexes
After you create an index, you might need to change its properties, rename it, or
delete it . You handle these tasks in SQL Server Management Studio by completing
the following steps:

  1. In SQL Server Management Studio, select a database, and then expand the
Tables or Views node as appropriate .

  2. Select a table or view and expand its node to list the objects it contains .

  3. Expand the Indexes node to list the indexes associated with the selected
table or view .

  4. Right-click an index . You can now choose from the following options:

■■ Select Properties to view the index properties, including details on space
usage and fragmentation .

■■ Select Rename to rename an index .

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views408

■■ Select Rebuild to rebuild the index . In the Rebuild Indexes dialog box, use
the Total Fragmentation and Status values to help determine whether or
not to proceed . Click OK to proceed with the rebuild . Click Cancel to exit
without performing the rebuild . SQL Server 2008 performs online index
rebuilds and reorganizations .

■■ Select Reorganize to reorganize the index . In the Reorganize Indexes
dialog box, check the total fragmentation of the index to determine
whether the index needs to be reorganized . By default, both regular data
and large object data are reorganized . Clear the Compact Large Object
Column Data option if you want to compact only regular index data .
Click OK to proceed with the reorganization . Click Cancel to exit without
performing the reorganization .

■■ Select Delete to drop the index (as long as it is not a primary key or
unique constraint) .

You can also manage indexes with the Transact-SQL commands ALTER INDEX
and DROP INDEX . You must use these commands cautiously, however, because
there are several limitations to them . For example, you cannot drop an index that
was created by defining a primary key or unique constraints . You must instead drop
the constraint with ALTER TABLE . Sample 10-12 shows the syntax for ALTER INDEX,
and Sample 10-13 shows the syntax for DROP INDEX .

NOTE ALTeR INDeX supports filtered indexes. You can modify the filtered index

expression using the CReATe INDeX WITh DROP_eXISTING statement.

SAMPLE 10-12 ALTER INDEX Syntax

ALTER INDEX { index_name | ALL }
 ON <object>
 { REBUILD
 [[PARTITION = ALL]
 [[WITH (<rebuild_index_option> [,...n])]
 | [PARTITION = partition_number
 [WITH (<single_partition_rebuild_index_option>
 [,...n])
]
]
]
 | DISABLE
 | REORGANIZE
 [PARTITION = partition_number]
 [WITH (LOB_COMPACTION = { ON | OFF })]
 | SET (<set_index_option> [,...n])
 }
[;]

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 409

<object> ::=
{ [database_name. [schema_name] . | schema_name.]
 table_or_view_name
}

<rebuild_index_option > ::=
{ PAD_INDEX = { ON | OFF }
 | FILLFACTOR = fillfactor
 | SORT_IN_TEMPDB = { ON | OFF }
 | IGNORE_DUP_KEY = { ON | OFF }
 | STATISTICS_NORECOMPUTE = { ON | OFF }
 | ONLINE = { ON | OFF }
 | ALLOW_ROW_LOCKS = { ON | OFF }
 | ALLOW_PAGE_LOCKS = { ON | OFF }
 | MAXDOP = max_degree_of_parallelism
 | DATA_COMPRESSION = { NONE | ROW | PAGE }
 [ON PARTITIONS ({ <partition_number_expression> | <range> }
 [, ...n])]
}
<range> ::=
{ <partition_number_expression> TO <partition_number_expression>
}

<single_partition_rebuild_index_option> ::=
{ SORT_IN_TEMPDB = { ON | OFF }
 | MAXDOP = max_degree_of_parallelism
 | DATA_COMPRESSION = { NONE | ROW | PAGE }
}

<set_index_option>::=
{ ALLOW_ROW_LOCKS = { ON | OFF }
 | ALLOW_PAGE_LOCKS = { ON | OFF }
 | IGNORE_DUP_KEY = { ON | OFF }
 | STATISTICS_NORECOMPUTE = { ON | OFF }
}

SAMPLE 10-13 DROP INDEX Syntax

DROP INDEX
{ <drop_relational_or_xml_or_spatial_index> [,...n]
| <drop_backward_compatible_index> [,...n]
}

<drop_relational_or_xml_or_spatial_index> ::=
 index_name ON <object>
 [WITH (<drop_clustered_index_option> [,...n])]

<drop_backward_compatible_index> ::=
 [owner_name.] table_or_view_name.index_name

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views410

<object> ::=
{
 [database_name. [schema_name] . | schema_name.]
 table_or_view_name
}

<drop_clustered_index_option> ::=
{ MAXDOP = max_degree_of_parallelism
 | ONLINE = { ON | OFF }
 | MOVE TO { partition_scheme_name (column_name)
 | filegroup_name
 | "default" }
 [FILESTREAM_ON { partition_scheme_name
 | filestream_filegroup_name
 | "default" }]
}

You also can use Windows PowerShell to work with indexes . To do this, you need
to access the Indexes collection associated with a particular table or view . Consider
the following example:

Set-Location SQLSERVER:\SQL\DbServer36\CorpServices\Databases\
 ProdWarehouse
Set-Location tables
$t = Get-ChildItem | where {$_.Name eq "Product"}
foreach ($i in $t.indexes) {$i)

In this example, you enter a remote session with DbServer36 and then set the
working location to the ProdWarehouse database on the CorpServices instance .
After you access the database, you access the tables within the database and then
return a reference to the Product table . You store this object reference in the $t vari-
able . To access each index in the Indexes collection, you use the following foreach
clause:

foreach ($i in $t.indexes) {$i)

This foreach clause iterates through the Indexes collection one index at a time
and performs whatever commands are shown between the open and close brack-
ets . Here, by entering $i, you tell PowerShell to print the name of each index .
When you work with indexes, you can use any property of the Microsoft .SqlServer .
Management .Smo .Index object, including BoundingBoxXMax, BoundingBoxXMin,
BoundingBoxYMax, BoundingBoxYMin, CellsPerObject, CompactLargeObjects,
DisallowPageLocks, DisallowRowLocks, FileGroup, FileStreamFileGroup, FileStream-
PartitionScheme, FillFactor, FilterDefinition, HasCompressedPartitions, HasFilter,
Id, IgnoreDuplicateKeys, IndexedColumns, IsClustered, IsDisabled, IsFullTextKey,
IsIndexOnComputed, IsIndexOnTable, IsPartitioned, IsSpatialIndex, IsSystemNamed,

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 411

IsUnique, IsXMLIndex, MaximumDegreeOfParallelism, Name, NoAutomaticRecom-
putation, OnlineIndexOperation, PadIndex, Parent, PartitionScheme, Partition-
SchemeParameters, SecondaryXMLIndexType, SortInTempDb, SpaceUsed, Spatial-
IndexType, State, and Urn .

Using the Database engine Tuning Advisor
The Database Engine Tuning Advisor is one of the best tools a database administra-
tor can use to facilitate the indexing and optimization processes . But before you
start this wizard, you should create a trace containing a representative snapshot of
database activity . You will use this snapshot as the workload file in the Database
Engine Tuning Advisor . For specific pointers on creating a trace file, see “Creating
and Managing Data Collector Sets” in Chapter 14 . To use the Database Engine Tun-
ing Advisor, complete the following steps:

  1. In SQL Server Management Studio, select Database Engine Tuning Advisor
on the Tools menu . Use the Connect To Server dialog box to connect to the
server you want to use .

  2. The Database Engine Tuning Advisor opens to start a new session, as shown
in Figure 10-9 . In the Workload panel, type a name for the session, such as
Personnel DB Check.

FIGURE 10-9 The Database Engine Tuning Advisor

Using the Database For Workload Analysis list, select a database to which the
Database Engine Tuning Advisor will connect for analyzing the workload:

■■ If you saved the trace data to a file, select File in the Workload panel, and
then click the Browse For A Workload File button (the binoculars icon) .

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views412

Next, use the Select Workload File dialog box to select the trace file you
previously created, and then click Open .

■■ If you saved the trace data to a table, select Table in the Workload panel,
and then click the Browse For A Workload Table button (the binoculars
icon) . Next, use the Select Workload Table dialog box to specify which
SQL Server instance to connect to and the source table to use .

  3. Select the database you want to analyze . You can analyze multiple databases
as well as individual tables within specific databases . In most cases, you will
want to examine a single database and possibly a subset of tables to reduce
the analysis time . Because you are using a trace file, the analysis does not
have to be performed on the server where the database or databases you
are tuning are located .

  4. Select the tables to analyze . If you select a database for tuning, all tables are
selected for tuning by default . Click in the appropriate field under Selected
Tables to display a list of tables in the selected database . Select the check box
for the associated table you want to add, or select the Name check box to
add all tables .

  5. Select the Tuning Options tab, shown in Figure 10-10 . You can limit the tun-
ing time by setting a specific stop time . By default, the stop time is approxi-
mately one hour from the time you created the session .

FIGURE 10-10 The Tuning Options tab of the Database Engine Tuning Advisor

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 413

  6. Under Physical Design Structures (PDS) To Use In Database, select the type of
structures that you want the tuning wizard to recommend:

■■ Indexes And Indexed Views The Database Engine Tuning Advisor will
recommend both clustered and nonclustered indexes, as well as indexed
views, to improve performance .

■■ Indexes The Database Engine Tuning Advisor will recommend clustered
and nonclustered indexes to improve performance .

■■ Indexed Views The Database Engine Tuning Advisor will recommend
only indexed views to improve performance .

■■ Nonclustered Indexes The Database Engine Tuning Advisor will recom-
mend only nonclustered indexes to improve performance .

■■ Evaluate Utilization Of Existing PDS Only The Database Engine Tun-
ing Advisor will not recommend options for improving performance and
instead will analyze only the usage of existing structures . This option can-
not be used with the Keep All Existing PDS option under Physical Design
Structures (PDS) To Keep In Database .

  7. Use the Partitioning Strategy To Employ options to determine whether the
Database Engine Tuning Advisor should consider partitioning strategies:

■■ No Partitioning The Database Engine Tuning Advisor will not consider
any partitioning strategies .

■■ Aligned Partitioning Newly recommended structures will be partition-
aligned to make partitions easy to maintain . This option cannot be used
with the Keep Indexes Only option under Physical Design Structures (PDS)
To Keep In Database .

■■ Full Partitioning Newly recommended structures will be partitioned to
provide the best performance for the workload .

  8. Use the Physical Design Structures (PDS) To Keep In Database options to
determine which (if any) existing structures will be considered for removal
from the database:

■■ Do Not Keep Any Existing PDS The Database Engine Tuning Advi-
sor will consider all existing structures for possible removal from the
database .

■■ Keep All Existing PDS The Database Engine Tuning Advisor will not
consider any existing structures for possible removal from the database .

■■ Keep Aligned Partitioning The Database Engine Tuning Advisor will
retain existing partition-aligned structures, and any recommended new
structures will be aligned with the existing partitioning scheme . (Aligned
Partitioning must also be selected as the Partitioning Strategy To Employ
option .)

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views414

■■ Keep Indexes Only The Database Engine Tuning Advisor will keep
existing clustered and nonclustered indexes . All other structures will be
considered for possible removal from the database .

■■ Keep Clustered Indexes Only The Database Engine Tuning Advisor will
keep existing clustered indexes . All other structures will be considered for
possible removal from the database .

TIP If you have selected a strong, representative snapshot of database activity in

the trace, you will probably want to select an option other than Keep All existing

PDS and let the Database engine Tuning Advisor make the appropriate sugges-

tions for you to ensure that existing structures do not conflict with the recom-

mendations the wizard might make.

  9. Click the Advanced Options button to set advanced options, as shown in
Figure 10-11 . The advanced tuning options are as follows:

■■ Define Max. Space For Recommendations (MB) Sets the maximum
space that can be used by recommended structures . The default value
depends on the database and structures selected .

■■ Max. Columns Per Index Sets the maximum number of columns that
can be used in a single index . The default is 1,023, which allows all the
columns in a table to be considered .

■■ Online Index Recommendations Sets the type of indexing recommen-
dations . By default, the Database Engine Tuning Advisor uses recommen-
dations that require the server to be taken offline . Alternatively, you can
elect to generate online recommendations when possible or to generate
only online recommendations . Online recommendations can be per-
formed when the server is online .

FIGURE 10-11 Advanced Tuning Options for the Database Engine Tuning Advisor

  10. Click OK to close the Advanced Tuning Options dialog box . When you are
ready to proceed, click the Start Analysis button or press F5 . The Database
Engine Tuning Advisor begins analyzing your workload file . Progress is shown

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 415

on the Progress tab . You can click Stop Analysis to stop the analysis at any
time .

  11. When the analysis is complete, the wizard displays recommendations on the
Recommendations tab . The recommendations are listed in two separate pan-
els, Partition Recommendations and Index Recommendations . You can view
a tuning summary and tuning reports on the Reports tab of the Database
Engine Tuning Advisor . Be sure to note the percentage of estimated improve-
ment you’ll gain by making the recommended changes . If the estimated
improvement is 0%, this can be an indicator that the trace file might not
accurately reflect the database workload .

  12. You can now do the following:

■■ Select Save Recommendations on the Actions menu to save the recom-
mended changes as an .sql script file . You can review or edit the script by
using a text editor and schedule a job to implement the changes later .

■■ Select Apply Recommendations on the Actions menu to apply the recom-
mendations or schedule the recommendations to be applied later . Under
Apply Recommendations, select Apply Now or Schedule For Later as
appropriate, and then click OK . If you select Schedule For Later, you can
set the run date and time as well .

  13. If you choose to apply the changes, the status of each change is displayed
in the Applying Recommendations dialog box . The status of each change
should be listed as Success . If you see a failure status, read the related error
message to determine why the change failed .

Column Constraints and Rules

Column constraints and rules are important aspects of database administration . You
use constraints to control the way column values are used, such as whether a value
must be unique or whether it must have a specific format . Although you usually
apply constraints directly to a specific column, you also can use rules to create con-
straints that you can apply to multiple tables in a database .

Using Constraints
SQL Server enforces the uniqueness of column values by using unique and primary
key constraints . Unique constraints are often used to create secondary keys (for
nonclustered indexes) that you can use in conjunction with the primary key . Foreign
key constraints identify the relationships between tables and ensure that referential
integrity is maintained . Other types of constraints that you might want to use are
check constraints and not null constraints . Check constraints restrict the format or
range of acceptable values for columns . Not null constraints prevent null values in a
column .

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views416

Constraints can apply to columns or to entire tables . A column constraint is
specified as part of a column definition and applies only to that column . A table
constraint is declared independently from a column definition and can apply to sev-
eral columns in the table . You must use table constraints when you want to include
more than one column in a constraint . For example, if a table has three columns in
the primary key, you must use a table constraint to include all three columns in the
primary key .

Setting Unique Constraints

When you set a unique constraint on a column or columns, SQL Server automatically
creates a unique index and then checks for duplicate values . If duplicate key values
exist, the index creation operation is cancelled and an error message is displayed .
SQL Server also checks the data each time you add data to the table . If the new data
contains duplicate keys, the insert or update operation is rolled back and an error
message is generated . You can specify that duplicate keys should be ignored by
using the IGNORE_DUP_KEY option .

In SQL Server Management Studio, you make a unique index by setting the
option Is Unique to Yes when creating the index, as described in “Creating Indexes”
earlier in this chapter, or by selecting the Unique check box on the General page of
the Index Properties dialog box . In Transact-SQL, you can set the unique constraint
when you create the index, as shown in the following example:

USE OrderSystemDB
CREATE UNIQUE INDEX [Cust ID Index]
ON Sales.Customers(cust_id)

A nonclustered index is created unless a clustered index is explicitly specified,
such as:

USE Customer
CREATE UNIQUE CLUSTERED INDEX [Cust ID Index]
ON Sales.Customers(cust_id)

Designating Primary Key Constraints

SQL Server allows you to designate any column or group of columns as a primary
key, but primary keys are often defined for identity columns . A table can have only
one primary key, and because unique values are required, no primary key column
can accept null values . Also, when you use multiple columns, the values of all the
columns are combined to determine uniqueness .

As for unique constraints, SQL Server creates a unique index for the primary key
columns . With primary key constraints, however, the index is created as a clustered
index—unless a clustered index already exists on the table or a nonclustered index is
explicitly specified .

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 417

In SQL Server Management Studio, you set the primary key when designing a
new table or modifying an existing table by completing the following steps:

  1. Clear the Allow Nulls check box for any columns that will be used in the
primary key .

  2. Select the column or columns that you want to use as the primary key by
pressing Ctrl and clicking the shaded box to the left of the column name .

  3. Click Set Primary Key on the toolbar, or select Set Primary Key on the Table
Designer menu .

 You can also set the primary key when you create or alter tables using Transact-
SQL . Examples are shown in Sample 10-14 .

SAMPLE 10-14 Creating a Table and Its Columns with a Primary Key Constraint

USE CUSTOMER
CREATE TABLE Sales.Customers
 (cust_id int NOT NULL,
 cust_lname varchar(40) NOT NULL,
 cust_fname varchar(20) NOT NULL,
 phone char(12) NOT NULL,
 CONSTRAINT PK_Cust PRIMARY KEY (cust_id))

USE CUSTOMER
ALTER TABLE Sales.Customers
 ADD CONSTRAINT PK_Cust PRIMARY KEY (cust_id)

Using Foreign Key Constraints

Foreign key constraints identify the relationships between tables and ensure that
referential integrity is maintained . A foreign key in one table points to a candidate
key in another table . Foreign keys prevent changes that would leave rows with
foreign key values in one table when no candidate keys with that value are included
in a related table . You cannot insert a row with a foreign key value if there is no can-
didate key with that value . The exception is when you insert a null foreign key value .

In the following example, the Orders table establishes a foreign key referencing
the Customer table defined earlier:

CREATE TABLE Sales.Orders
 (order_nmbr int,
 order_item varchar(20),
 qty_ordered int,
 cust_id int
 FOREIGN KEY REFERENCES Sales.Customers(cust_id)
 ON DELETE NO ACTION
)

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views418

The ON DELETE clause defines the actions that are taken if you try to delete a
row to which existing foreign keys point . The ON DELETE	clause has several options:

■■ NO ACTION Specifies that the deletion fails with an error and the delete
action on the row is rolled back .

■■ CASCADE Specifies that all rows with foreign keys pointing to the deleted
row are to be deleted as well . (CASCADE cannot be used if there is an
INSTEAD OF trigger on the ON DELETE clause .)

■■ SET NULL Specifies that all values that make up the foreign key are set to
NULL if the corresponding row in the parent table is deleted . (Foreign key
columns must be nullable .)

■■ SET DEFAULT Specifies that all the values that make up the foreign key
are set to their default values if the corresponding row in the parent table is
deleted . (Foreign key columns must have default definitions . If a column is
nullable and there is no explicit default, the column is set to NULL .)

You can also set an ON	UPDATE clause in Transact-SQL, as shown in the following
example:

CREATE TABLE Sales.Orders
 (order_nmbr int,
 order_item varchar(20),
 qty_ordered int,
 cust_id int
 FOREIGN KEY REFERENCES Sales.Customers(cust_id)
 ON UPDATE CASCADE
)

The ON	UPDATE	clause defines the actions that are taken if you try to update a
row to which existing foreign keys point . The clause also supports the NO ACTION,
CASCADE, SET NULL, and SET DEFAULT options .

Using Check Constraints

Check constraints allow you to control the format or range of values, or both, that
are associated with tables and columns . For example, you could use this type of
constraint to specify that postal codes must be entered in the format 99999 or that
phone numbers must be entered as 9999999999 . Be careful when using check con-
straints that perform implicit or explicit data type conversion because these types of
check constraints might cause partition switching or filtered indexes to fail .

In SQL Server Management Studio, you set check constraints when designing a
new table or modifying an existing table by completing the following steps:

  1. Select Check Constraints from the Table Designer menu . This displays the
Check Constraints dialog box shown in Figure 10-12 .

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 419

FIGURE 10-12 The Check Constraints dialog box

  2. You can now do the following:

■■ Edit an existing constraint . Select it in the Selected Check Constraint list,
and then modify the existing constraint expression and definition using
the boxes provided .

■■ Delete a constraint . Select it in the Selected Check Constraint list, and
then click Delete . In the Delete Object dialog box, confirm the deletion by
clicking OK .

■■ Create a new constraint . Click Add, and then type a name and description
of the constraint in the boxes provided . Click the button to the right of
the Expression box, enter the check constraint expression, and then click
OK .

  3. Click Close when you finish working with check constraints .

Check constraint expressions specify permitted characters by using regular
expressions:

■■ Use [0–9] to indicate that any numeral from 0 through 9 is permitted in the
designated position . As an example, to format a column to accommodate a
nine-digit postal code, you would use the following expression:

PostalCode LIKE '[0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9]'

■■ Use [a–z] or [A–Z] to indicate that any lowercase letter from a through z or
any uppercase letter from A through Z is permitted in the designated posi-
tion . As an example, to format a column to accommodate any five-letter
word with the first letter capitalized, you would use the following expression:

AccountCode LIKE '[A-Z][a-z][a-z][a-z][a-z]'

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views420

■■ Use [a–zA–Z0–9] to indicate that any letter or numeral is permitted in the
designated position . As an example, to format a column to accommodate
any five-character value, you would use the following expression:

CheckCode LIKE '[a-zA-Z0-9][a-zA-Z0-9][a-zA-Z0-9][a-zA-Z0-9]
 [a-zA-Z0-9]'

You can also add and remove constraints in Transact-SQL by using the CREATE
TABLE or ALTER TABLE command, such as in the following example:

USE CUSTOMER
ALTER TABLE Sales.Customers
ADD CONSTRAINT CheckZipFormat
CHECK (([PostalCode] like '[0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9]
 [0-9]'))

Using Not Null Constraints

Not null constraints specify that the column does not accept null values . Normally,
you set not null constraints when you create the table . You can also set not null
constraints when you alter a table . In SQL Server Management Studio, the Allow
Nulls column in the Table view controls the use of this constraint . If the Allow Nulls
column is cleared, the related table column does not accept nulls .

Using Rules
A rule is a constraint that you can apply to multiple columns or tables . Rules perform
the same function as check constraints and are maintained in SQL Server 2008 for
compatibility with early versions of SQL Server . Microsoft recommends that you use
check constraints rather than rules . Check constraints are more customizable and
more concise than rules . For example, although you can apply only one rule to a
column, you can apply multiple check constraints to a column .

Rules can be useful in certain situations, however . Constraints are defined within
table definitions, whereas rules are independently defined objects and are therefore
not limited to only one particular table . Rules are also bound to a table after the
table is created, and they are not deleted if the table is deleted . Another advantage
of rules is that they can be bound to any user-defined data type .

If you use care when you apply rules, you can still use rules in situations that
make them a better choice than constraints . To view existing rules in SQL Server
Management Studio, complete the following steps:

  1. In SQL Server Management Studio, connect to the server instance that con-
tains the database in which you want to work .

  2. In the Object Explorer view, expand the Databases node, and then expand
the database to show its resource nodes .

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 421

  3. Expand the Programmability and Rules nodes . You will see any existing rules
listed .

The Transact-SQL commands for creating and managing rules are CREATE RULE
and DROP RULE . You can use CREATE RULE as follows:

CREATE RULE CheckZipFormat
AS @value LIKE '[09][09][09][09][09][09][09][09][09]'

After you have created a rule, you must activate the rule to use it . You use a spe-
cial stored procedure called sp_bindrule to bind the rule to a particular table column
or user-defined data type . You can also use sp_unbindrule to remove a rule that is
bound to a table column or user-defined data type . Use the following syntax when
binding and unbinding rules:

sp_bindrule <'rule'>, <'object_name'>, [<'futureonly_flag'>]
sp_unbindrule 'object name'

Creating Partitioned Tables and Indexes

You create partitioned tables and indexes by using a multistep process that requires
the following actions:

  1. Creating a partition function to specify how a table or index that uses the
function can be partitioned

  2. Creating a partition scheme to specify the placement of the partitions within
filegroups

  3. Creating tables or indexes using the partition scheme

I discuss each of these processes in the sections that follow .

Creating Partition Functions
You use a partition function to specify how a table or index is partitioned . The
function maps to a set of partitions . To create a partition function, you specify the
number of partitions, the partitioning column, and the range of partition column
values for each partition .

Each partition function identifies a single partitioning column . Any data type
that is valid for use as an index column can be used as a partitioning column, except
timestamp . This means that you cannot specify a column that uses the ntext, text,
image, xml, varchar(max), nvarchar(max), varbinary(max), alias, or CLR user-defined
types . Computed columns that participate in a partition function must be explicitly
marked as PERSISTED .

You create a partition function by using the CREATE PARTITION FUNCTION state-
ment . Sample 10-15 shows the syntax and usage .

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views422

SAMPLE 10-15 CREATE PARTITION FUNCTION Syntax and Usage

Syntax

CREATE PARTITION FUNCTION partition_function_name
 (input_parameter_type)
AS RANGE [LEFT | RIGHT]
FOR VALUES ([boundary_value [,...n]])
[;]

Usage

CREATE PARTITION FUNCTION rangePF1 (int)
AS RANGE LEFT FOR VALUES (1, 2000, 4000, 6000);

Creating Partition Schemes
You use a partition scheme to map the partitions produced by a partition function
to a set of filegroups . A partition scheme can use only one partition function . How-
ever, a partition function can participate in more than one partition scheme .

When you create a partition scheme, you define the filegroups to which the table
partitions are mapped, based on the parameters of the partition function . You must
specify enough filegroups to hold the number of partitions, but you can also do the
following:

■■ Map all partitions to the same filegroup

■■ Map multiple partitions to the same filegroup

■■ Map each partition to a different filegroup

Using NEXT USED, you also can specify additional, unassigned filegroups in case
you want to add more partitions later . When you do this, SQL Server marks one of
the filegroups with the NEXT USED property, which means that this filegroup will
hold the next partition that is added .

You can create a partition scheme using the CREATE PARTITION SCHEME state-
ment . Sample 10-16 shows the syntax and usage .

SAMPLE 10-16 CREATE PARTITION SCHEME Syntax and Usage

Syntax

CREATE PARTITION SCHEME partition_scheme_name
AS PARTITION partition_function_name
[ALL] TO ({ file_group_name | [PRIMARY] } [,...n])
[;]

Usage

CREATE PARTITION SCHEME rangePS1
AS PARTITION rangePF1
TO (filegroup1, filegroup2, filegroup3, filegroup4, filegroup5);

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 423

Creating Partitions
When you create a table or an index, you can partition it by specifying in the
 CREATE TABLE or CREATE INDEX statement the partition scheme that the table
uses to map the partitions to filegroups and the partitioning column . The partition-
ing column must match what you’ve specified in the partition function and in the
partition scheme with regard to data type, length, and precision . If the column is
computed, you must mark it PERSISTED .

You can turn a nonpartitioned table into a partitioned table by using one of two
techniques:

■■ Create a partitioned clustered index on the table by using the CREATE INDEX
statement . When you do this, SQL Server re-creates the table in a clustered
index format . If the table already has a partitioned clustered index applied
to it, you can drop the index and rebuild it on a partition scheme by using
 CREATE INDEX with the DROP EXISTING = ON clause .

■■ Use the ALTER TABLE . . .SWITCH statement to switch the data of the table to
a range-partitioned table that has only one partition . This partitioned table
must already exist before the conversion occurs, and its single partition must
be empty .

After you modify the table to create a partitioned table, you can modify the
related partition function to add partitions as necessary . You can turn an existing
partition table into a nonpartitioned table by modifying the table’s partition func-
tion so that the table has only one partition . If a table has a partitioned clustered
index applied to it, you can obtain the same result by using the CREATE INDEX
statement with the DROP EXISTING = ON clause to drop the index and rebuild it as
a nonpartitioned index .

With SQL Management Studio, you can create partitions after you create a table
or index by completing the following steps:

  1. In SQL Server Management Studio, select a table and expand its node to list
the objects it contains . Expand the Indexes node to list the indexes associ-
ated with the selected table .

  2. Right-click the table or index that you want to partition, point to Storage,
and then select Create Partition . This starts the Create Partition Wizard . If
you see the Welcome page, click Next .

  3. On the Select A Partitioning Column page, select the one partitioning
column that you want to use . Optionally, you can elect to collocate the table
to a selected partitioned table, to storage-align indexes with the indexed
partitioning column, or both . Click Next .

  4. On the Select A Partition Function page, you can type the required definition
for a new function or select an existing partition function . Click Next .

  5. On the Select A Partition Scheme page, you can type the required definition
for a new scheme or select an existing partition scheme . Click Next .

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views424

  6. On the Map Partitions page, select the partition range as either Left Bound-
ary or Right Boundary . Next, select each filegroup in turn and specify the
boundary values . Be sure to enter an additional filegroup in addition to the
boundary values .

  7. Click Estimate Storage to determine the required space . Click Next .

  8. You can now create a script for adding partitioning, run the script immedi-
ately, or schedule a job for partitioning . If you want to create a script, you can
set scripting options . If you want to schedule these activities for later, you can
click Change Schedule to set the run date and time . Click Next .

  9. Review your selections, and then click Finish . If you choose to run a script
immediately, the status of each action is displayed on the Create Partition
Wizard Progress page . The status of each action should be listed as Success .
If you see a failure status, read the related error message to determine why
the change failed . You can generate a report by clicking Report and then
selecting a report option .

Viewing and Managing Partitions
When you query data or perform updates, there is no difference in the way you ref-
erence a partitioned table versus a table that is not partitioned . That said, however,
you can focus queries on individual partitions by using the $PARTITION function
together with the partition function name . This allows you to examine how many
rows exist in each partition, access all rows in a subset of partitions, and determine
in which partition a row with a particular partition key value currently resides or will
reside when inserted .

You can query individual partitions of a partitioned table or index by using
 $PARTITION . The syntax and usage is shown as Sample 10-17 .

SAMPLE 10-17 $PARTITION Syntax and Usage

Syntax

[database_name.] $PARTITION.partition_function_name(expression)

Usage

USE CustomerDB;
GO
CREATE PARTITION FUNCTION rangePF1 (int)
AS RANGE FOR VALUES (100, 2000, 4000, 8000) ;
GO
SELECT $PARTITION.rangePF1 (100) ;
GO

Catalog views that contain partitioning information include the following:

■■ sys .destination_data_spaces, which gets information about individual parti-
tion schemes

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 425

■■ sys .partition_functions, which gets information about individual partition
functions

■■ sys .partition_parameters, which gets information about individual param-
eters of partition functions

■■ sys .partition_range_values, which gets information about the boundary
values of a partition function

■■ sys .partition_schemes, which gets information about all the partition
schemes in a database

■■ sys .partitions, which gets partitioning information about a table or index

With SQL Management Studio, you can manage existing partitions by complet-
ing the following steps:

  1. In SQL Server Management Studio, select a table and expand its node to list
the objects it contains . Expand the Indexes node to list the indexes associ-
ated with the selected table .

  2. Right-click the table or index that you want to partition, point to Storage,
and then select Manage Partition . This starts the Manage Partition Wizard . If
you see the Welcome page, click Next .

  3. On the Select A Partition Action page, you can elect to create a staging table
for partition switching or manage a sliding-window partition . However, if you
are using non-storage-aligned indexes, you cannot switch out or switch in
data, which means you can only create a staging table . Click Next .

  4. Set the staging table or sliding window options as necessary, and then click
Next .

  5. You can now create a script for modifying partitioning, run the script imme-
diately, or schedule a job for modifying partitioning . If you want to create a
script, you can set scripting options . If you want to schedule these activities
for later, you can click Change Schedule to set the run date and time . Click
Next .

  6. Review your selections, and then click Finish . If you choose to run a script
immediately, the status of each action is displayed on the Manage Partition
Wizard Progress page . The status of each action should be listed as Success .
If you see a failure status, read the related error message to determine why
the change failed . You can generate a report by clicking Report and then
selecting a report option .

Compressing Tables, Indexes, and Partitions

SQL Server 2008 Enterprise edition supports on-disk storage compression for tables
stored as heaps, tables stored as clustered indexes, nonclustered indexes, and
indexed views . Because you can configure compression of partitioned tables and
indexes independently for each partition, different partitions of the same object can
use different compression settings .

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views426

Using Row and Page Compression
The storage engine handles all aspects of compression . SQL Server 2008 supports
two types of compression:

■■ Row compression

■■ Page compression

Row compression affects the physical storage of data within rows . Most data
types are affected in some unique way, but no application changes are required
because of these changes . Row compression reduces the metadata overhead
associated with records and uses variable-length storage for numeric types and
fixed-character strings . For example, if a value can be reduced to 1 byte through
compression, storage of the value will use only 1 byte .

When you use page compression with non–leaf-level pages of indexes, the
storage engine performs only row compression . When you use page compression
with leaf-level pages of tables and indexes, the storage engine uses three different
operations to compress the data: row compression, followed by prefix compression,
followed by dictionary compression . Typically, with prefix compression, the storage
engine finds repeated prefix values for each column, moves the prefixes to a new
row immediately following the page header and within the compression information
structure, and then changes column values to references to the prefix . Typically, with
dictionary compression, the storage engine finds repeated values anywhere on the
page and stores them within the compression information structure .

When you create a new table with page compression, the metadata for the table
indicates that page compression should be used but no actual compression occurs .
As you add data to the first data page, data is row-compressed until you fill the first
row . The next row you add initiates page compression using prefix compression
and dictionary compression . If page compression has created enough room on the
page for an additional row, the storage engine adds the row, and the related data is
page-compressed, meaning the storage engine applies row, prefix, and dictionary
compression . Keep in mind that if the space gained by page compression minus the
space that is required for the compression information structure is not significant,
the storage engine won’t use page compression for a particular page . As you add
rows, those rows either fit onto the page or require the storage engine to add a new
page . Similar to the first page, the new page is compressed using row compression
first, and then as you fill rows, the prefix and dictionary are compressed .

When you convert an existing table that contains data-to-page compression, the
storage engine rebuilds and reevaluates each page . Rebuilding all the pages causes
the storage engine to rebuild the related table, index, or partition .

Compression is not available for system tables . When you compress or uncom-
press a user table, the storage engine doesn’t automatically apply the compres-
sion settings to the table’s nonclustered indexes . You must configure compression
settings for each nonclustered index individually . However, when a clustered index

 Manipulating Schemas, Tables, Indexes, and Views ChAPTeR 10 427

is created on a heap, the clustered index inherits the compression state of the heap
unless you specify otherwise .

When you are compressing indexes, leaf-level pages can be compressed with
both row and page compression . However, non-leaf-level pages do not receive
page compression . Additionally, when the existing data in an index is fragmented,
you might be able to reduce the size of the index by rebuilding the index instead of
using compression . The fill factor of an index will be applied during an index rebuild,
which also could potentially increase the size of the index .

Although the storage engine handles all aspects of compression, the storage
engine presents data to most other SQL Server components in an uncompressed
state . This means that when a heap is configured for page-level compression, pages
receive page-level compression only when data is inserted by using BULK INSERT or
INSERT INTO . . . WITH (TABLOCK) or a table is rebuilt by executing the ALTER TABLE
 . . . REBUILD statement with the PAGE compression option . Changing the compres-
sion setting of a heap requires all nonclustered indexes on the table to be rebuilt so
that they have pointers to the new row locations in the heap .

Although compression can allow more rows to be stored on a page, it does not
change the maximum row size of a table or an index . You cannot enable a table for
compression when the maximum row size plus the compression overhead exceeds
the maximum row size of 8,060 bytes . The storage engine checks the row size when
the object is initially compressed as well as whenever a row is inserted or modified,
and it prevents updates that would not fit on the row when the row is uncom-
pressed . Additionally, with large-value data types and variable-length columns,
when the data exceeds 8 KB, data compression is not available for the data that is
stored separately .

The disk space requirements for enabling or disabling row or page compres-
sion are the same as for creating or rebuilding an index . For partitioned data, you
can reduce the space that is required by enabling or disabling compression for one
partition at a time . You can determine the compression state of partitions in a parti-
tioned table by querying the data_compression column of the sys .partitions view .

Setting or Changing Compression Settings
With SQL Management Studio, you manage compression after you create a table or
index by completing the following steps:

  1. In SQL Server Management Studio, select a table and expand its node to list
the objects it contains . Expand the Indexes node to list the indexes associ-
ated with the selected table .

  2. Right-click the table or index that you want to compress, point to Storage,
and then select Manage Compression . This starts the Data Compression
Wizard . If you see the Welcome page, click Next .

 ChAPTeR 10  Manipulating Schemas, Tables, Indexes, and Views428

  3. On the Select Compression Type page, you can configure compression in one
of two ways:

■■ Select a partition type for each partition Each partition is listed by its
partition number, boundary, row count, and current space . Use the Com-
pression Type list for each partition to set the compression level .

■■ Use the same compression type for each partition Select the Use
Same Compression Type For All Partitions check box, and then use the
related drop-down list to set the compression level .

  4. Click Calculate to determine the compressed space for the partition or
partitions .

  5. You can now create a script for adding compression, run the script imme-
diately, or schedule a job for compressing the partition or partitions . If you
want to create a script, you can set scripting options . If you schedule for later,
you can click Change Schedule to set the run date and time . Click Next .

  6. Review your selections and then click Finish . If you choose to run a script
immediately, the status of each change is displayed on the Compression
Wizard Progress page . The status of each action should be listed as Success .
If you see a failure status, read the related error message to determine why
the change failed . You can generate a report by clicking Report and then
selecting a report option .

You can compress tables and indexes when you create them using the CREATE
TABLE and CREATE INDEX statements . To do this, set the DATA_COMPRESSION
clause to the value you want to use . By default, data compression is disabled and set
to NONE . If you want tables or indexes to be compressed, you can specify ROW to
enable row-level compression or PAGE to enable page-level compression .

You can change the compression state of a table, index, or partition using the
ALTER TABLE or ALTER INDEX statement . If you modify a table without specifying a
compression state, the existing compression state is preserved .

You can determine how changing the compression state will affect tables and
indexes by using the sp_estimate_data_compression_savings stored procedure . To
monitor compression statistics for a SQL Server instance, use the Page compres-
sion attempts/sec and Pages compressed/sec counters of the SQL Server, Access
 Methods object . To monitor compression statistics for individual partitions, use the
sys .dm_db_index_operational_stats function .

429

CHAP TE R 11

Importing, exporting, and
Transforming Data

■■ Working with Integration Services 429

■■ Creating Packages with the SQL Server Import And Export Wizard 434

■■ Understanding BCP 453

■■ BCP Scripts 460

■■ Using the BULK INSERT Command 461

Whether you need to permanently move data from a legacy system to a new
system or want to continually move data back and forth for data warehous-

ing, Microsoft SQL Server 2008 Integration Services (SSIS) should be your first
choice . With Integration Services, you have access to an extraction, transformation,
and loading (ETL) platform that can be customized for specific applications and is
optimized for high-performance data movement and transformation . You can use
Integration Services to transform data or to copy data to or from almost any data
source, including flat file, OLE DB, and Open Database Connectivity (ODBC) data
sources . In addition, the bulk copy utility (BCP) remains available in SQL Server
2008 as a basic means of importing and exporting data .

Working with Integration Services

As an administrator, you will often perform the following Integration Services
tasks:

■■ Installing the Integration Services components using SQL Server 2008
Setup

■■ Using the SQL Server Import And Export Wizard to move data

■■ Upgrading, managing, or migrating existing Data Transformation Services
(DTS) 2000 packages to Integration Services

■■ Upgrading SQL Server 2005 Integration Services to SQL Server 2008 Inte-
gration Services

 ChAPTeR 11  Importing, Exporting, and Transforming Data430

■■ Creating and managing Integration Services packages using Business Intel-
ligence Development Studio

■■ Running Integration Services packages using Business Intelligence Develop-
ment Studio, SQL Server Management Studio, or the Dtexec command-line
utility

Before you try to perform any of these tasks, you should know how the Integra-
tion Services feature works and how it is used . After you become familiar with Inte-
gration Services, its tools, and its structures, you will be better prepared to manage
its components .

Getting Started with Integration Services
Integration Services are designed to move data accurately and efficiently and to
convert or transform data between heterogeneous data sources . You can use Inte-
gration Services when you want to perform any of the following tasks:

■■ Move data between heterogeneous systems, such as from Oracle to SQL
Server or from SQL Server to Oracle

■■ Move data, including primary and foreign keys, between instances of SQL
Server

■■ Move data from Microsoft Office Access or Microsoft Office Excel to SQL
Server or from SQL Server to Access or Excel

■■ Extract data; transform the data by performing column mappings, filling
in missing values, and so on; and then import the data on the destination
system

■■ Copy views from one database to another

Although SQL Server 2008 supports existing DTS packages and provides an
upgrade/migration path for those packages, Integration Services are the functional
replacement for DTS . The architecture of Integration Services is very different from
that of DTS . With DTS, the workflow controls and the data movement are managed
through a single component: the DTS engine . The Integration Services process sepa-
rates workflow controls and data movement into separate components:

■■ Integration Services run-time engine Stores package layout, executes
packages, controls workflow between tasks, and provides other essential
run-time services

■■ Integration Services data flow engine Manages data movement and
transformation and supports multiple sources, multiple transformations, and
multiple destinations

Integration Services has an extensible object model that includes a run-time
application programming interface (API) and a data flow API that supports the
Microsoft .NET Framework . These APIs allow developers to extend and customize
the Integration Services object model . Custom extensions can be developed for
tasks, log providers, connection managers, data flow components, and more .

 Importing, Exporting, and Transforming Data ChAPTeR 11 431

Integration Services Tools
The primary tools for working with Integration Services are Business Intelligence
Development Studio and SQL Server Management Studio . Business Intelligence
Development Studio is used to build data-transformation solutions, and SQL Server
Management Studio is used to manage Integration Services packages . Within Busi-
ness Intelligence Development Studio, you can access Integration Services Designer,
the graphical tool for creating Integration Services packages .

The SQL Server Import And Export Wizard is the new face of the old DTS Import/
Export Wizard . The wizard has been updated to support Integration Services and
has been extended to provide better support for data in flat files and for previewing
data in real time . Integration Services packages that are created by using the Import
And Export Wizard can be opened in Business Intelligence Development Studio and
then extended using Integration Services Designer .

TIP The SQL Server Import And export Wizard can run the import/export process

between any of the available data sources; you do not have to set SQL Server as either

the source or the destination. For example, you can use the SQL Server Import And

export Wizard to copy data from a text file to an excel spreadsheet.

As with DTS packages, Integration Services packages are stored in either the
msdb database or in the file system . The SQL Server Integration Services service is
responsible for managing package storage . You can manage packages from the
command line by using the Dtutil utility . You can use Dtutil to copy, move, sign, and
delete packages . To run packages, you can use Business Intelligence Development
Studio or SQL Server Management Studio to access the Execute Package Utility
(Dtexecui) . The command-line counterpart is the Dtexec utility .

On a 64-bit computer, Integration Services installs both a 32-bit and a 64-bit
version of the Dtexec utility and the Dtutil utility . Using either the Dtexec utility or
the Dtutil utility, you can create debug dump files that provide information about
the execution of a package . You can then use the information in these files to help
you diagnose and resolve package execution issues . Integration Services creates the
following debug dump files:

■■ A debug dump file in binary format with the .mtmp file extension

■■ A debug dump file in text format with the .tmp file extension

Integration Services includes the Package Configuration Wizard to assist with
configuration management . By running the Integration Services package deploy-
ment utility from Business Intelligence Development Studio, you can install pack-
ages to the msdb database in an instance of SQL Server 2008 or to the file system .
The deployment utility automatically detects and includes all package dependen-
cies, making it easier to deploy packages .

SQL Server 2008 includes tools for managing and migrating DTS packages from
previous versions of SQL Server . When you connect to a server in SQL Server Man-
agement Studio’s Object Explorer, you can expand the Legacy\Data Transformation

 ChAPTeR 11  Importing, Exporting, and Transforming Data432

Services node to list available DTS 2000 packages . You can edit or execute these
packages and migrate the packages to the Integration Services format . In Integra-
tion Services Designer, select Migrate DTS 2000 Package on the Project menu to
start the Package Migration Wizard . You can then use the wizard to migrate DTS
2000 packages stored in SQL Server or in structured storage files .

When you upgrade an instance of SQL Server 2005 to SQL Server 2008, SQL
Server doesn’t automatically upgrade existing SQL Server 2005 Integration Ser-
vices packages to the package format that SSIS uses . You have to select an upgrade
method and manually upgrade SQL Server 2005 packages by doing one or more of
the following:

■■ Use the Dtexec utility that comes with SQL Server 2008 to run the SQL Server
2005 package . When you use this method to run a SQL Server 2005 package,
the upgrade is temporary, and you cannot save the changes that result from
the upgrade .

■■ Add the SQL Server 2005 package to an existing project by using the
Add Existing Package option on the Project menu in Integration Services
Designer . Integration Services automatically upgrades the package . The
upgrade is temporary unless you save the changes to make the upgrade
permanent .

■■ Upgrade all open packages in the project by using the SSIS Package Upgrade
Wizard . To start this wizard, select Upgrade All Packages in Integration Ser-
vices Designer . Integration Services automatically upgrades open packages
that need to be upgraded . This upgrade process is permanent .

When you upgrade a SQL Server 2005 package, Integration Services does the
following:

■■ Migrates the scripts in any Script task and Script component to Microsoft
Visual Studio Tools for Applications (VSTA) . In SQL Server 2005, the scripts in
Script tasks or Script components used Microsoft Visual Studio for Applica-
tions (VSA) .

■■ Migrates the Lookup transformation to the SQL Server 2008 version . The
Lookup transformation performs lookups by joining data in input columns
with columns in a reference dataset . For SQL Server 2008, there are addi-
tional options that you might want to use .

■■ Does not migrate third-party components . You need to manually recom-
pile third-party components to enable them to work with SQL Server 2008
Integration Services .

With SQL Server 2008 Integration Services, some connection strings require dif-
ferent values because the names of certain providers have changed . Although the
SSIS Package Upgrade Wizard upgrades connection strings automatically, the other
techniques might not and you might need to do this manually .

 Importing, Exporting, and Transforming Data ChAPTeR 11 433

Integration Services and Data Providers
Data providers are a key part of Integration Services . Without these data providers,
you would not be able to communicate with other systems . SQL Server includes data
providers for the following files and applications:

■■ SQL Server

■■ Oracle

■■ Microsoft Access and Excel

■■ Microsoft Analysis Services

■■ Microsoft Data Mining Services

■■ SQLXML

■■ Text files

The flat file source driver is the all-purpose driver for import and export proce-
dures . If you do not have a native provider for your legacy database and you cannot
use the generic ODBC providers, you can usually export your data to a text file and
then import it into SQL Server . You can go from SQL Server to a legacy system using
the same technique .

Integration Services Packages
The SQL Server Import And Export Wizard is the fastest, easiest way to move data
between systems . You use the SQL Server Import And Export Wizard to create basic
Integration Services packages, which you can later view or modify using Integration
Services Designer . Packages are simply sets of tasks for importing, transforming, and
exporting data that you can reuse or schedule to run as often as needed . You can
do the following with packages:

■■ Store them in the msdb database on a local or remote server .

■■ Save them to the file system in DTSX, XML, XMLA, or TXT files, which is useful
when you want to copy, move, or e-mail packages to another location .

NOTE Integration Services does not support storage in Microsoft Visual Basic files.

DTS 2000 packages that are stored in Visual Basic files cannot be migrated to SQL

Server 2008 Integration Services.

You execute packages directly from SQL Server Management Studio or Business
Intelligence Development Studio . You can also execute packages from a command
prompt using the Dtexec utility . Within Integration Services packages, you will find
the following features:

■■ Connections Store information about the source or destination of data . In
a connection, you specify the data provider to use (such as the Microsoft OLE
DB Data Provider for SQL Server), the server to which you want to connect,
the login to use for the connection, and the database to work with for the
import/export operation . In Integration Services Designer, you use the Data
menu to select connections .

 ChAPTeR 11  Importing, Exporting, and Transforming Data434

■■ Tasks Set the operations that need to be performed within the package .
Tasks can consist of ActiveX scripts, SQL scripts, SQL queries, commands to
transfer SQL Server objects, data-driven queries, bulk insert commands, and
external processes to execute . You can even have Integration Services send
e-mail when a package completes its tasks .

■■ Workflow containers Set when and how a particular task should be
executed, such as on completion, on failure, or on success . For example, you
can schedule a task that sends e-mail on failure or on success .

■■ Control flow procedures A control flow consists of one or more tasks
and containers that execute sequentially or in parallel when the package
runs . Precedence constraints connect the package’s tasks and containers and
define the conditions for running the next task or container in the package
control flow . Tasks and containers can also be grouped in a loop and run
repeatedly as a unit within the package control flow .

■■ Data flow procedures Set the step-by-step transformation process for the
data . Before you can add a data flow to a package, the package control flow
must include a Data Flow task that is responsible for running the data flow .
A data flow consists of the source and destination adapters that extract and
load data, the transformations that modify and extend data, and the paths
that link adapters and transformations .

You can store an Integration Services package on any computer running SQL
Server, and you do not need to create or store it on the source or destination server
associated with the package . If you are editing, modifying, scheduling, or just
viewing an Integration Services package, you need to use the user account of the
package owner or an account that operates under the sysadmin role on the server
on which the package is actually stored .

Creating Packages with the SQL Server Import And
Export Wizard

Creating an Integration Services package can be one of the most complex tasks you
perform as a database administrator . Fortunately, the SQL Server Import And Export
Wizard is designed to help you build Integration Services packages with minimal
difficulty, but it is still an involved process . To help reduce complexity, it is helpful
to divide the creation process into stages and then examine each stage individually .
The stages you use to create Integration Services packages are as follows:

■■ Stage 1: Source and destination configuration

■■ Stage 2: Copy or query

■■ Stage 3: Formatting and transformation

■■ Stage 4: Save and execute

 Importing, Exporting, and Transforming Data ChAPTeR 11 435

To begin using Integration Services, start the SQL Server Import And Export Wiz-
ard, and then click Next to advance to the source selection page . To start the SQL
Server Import And Export Wizard, follow these steps:

  1. In SQL Server Management Studio, connect to the server instance containing
the database with which you want to work .

  2. In the Object Explorer view, expand the Databases node . Select a database,
and then right-click its name, point to Tasks, and select either Import Data or
Export Data .

You can also run the SQL Server Import And Export Wizard by clicking Start, typ-
ing dtswizard in the Search box, and pressing Enter .

REAL WORLD On 64-bit computers, you’ll find a 32-bit and a 64-bit version of

the Import And export Wizard. You’ll find that the 64-bit version can in many cases

perform import and export operations faster than its 32-bit counterpart. The 64-bit

version runs by default when you start the wizard at the command line or from the

Start menu.

With the 32-bit wizard, you can work with .NeT Framework data providers for ODBC,

Oracle, and SQL Server. You can work with OLe DB providers for Analysis Services, Data

Mining Services, Oracle, and SQL Server. You also can work with Microsoft Access,

Microsoft excel, flat file, and SQL Server Native Client sources.

With the 64-bit wizard, you can work only with the available 64-bit sources and des-

tinations. In most installations, this does not include Access, excel, and some OLe DB

providers (unless you’ve updated the SQL Server installation with the related clients).

Stage 1: Source and Destination Configuration
The first task associated with creating an Integration Services package is to choose
the source and destination for the import/export operation . After you start the SQL
Server Import And Export Wizard and click Next, you see the Choose A Data Source
page . At this point, complete the following steps:

  1. Use the Data Source list to select the source for the import/export operation .
SQL Server has .NET Framework, OLE DB, and other data providers . These
data providers allow you to work with SQL Server, Oracle, Access and Excel,
Analysis Services, Data Mining Services, SQLXML, and flat files . Select the
data source that matches the type of file, application, or database you want
to use as the source . For example, if you are copying from an Excel work-
sheet, choose Excel as the source for the import/export operation .

  2. Fill in any additional information required to establish a connection to the
source . (The source you select determines what additional information you
need to supply .) Click Next .

  3. Use the Destination list to select the destination for the import/export
operation .

 ChAPTeR 11  Importing, Exporting, and Transforming Data436

  4. Fill in any additional information required to establish a connection to the
destination . As with the source, the destination you select determines what
additional information you need to supply .

  5. Click Next to proceed to the next stage of the operation: copy or query .

If choosing a source and destination were as easy as these simple steps suggest,
this task would require very little effort . But sometimes knowing what additional
information you need to provide isn’t clear because you can select from several dif-
ferent kinds of sources and destinations . These sources include the following:

■■ .NET Framework data provider connections

■■ File-based data connections

■■ Server-based connections to databases other than SQL Server

■■ Server-based connections to SQL Server

■■ Flat files

In the following sections, I’ll examine each of these connection categories more
closely .

.NeT Framework Data Provider Connections

SQL Server 2008 includes .NET Framework data providers for ODBC, Oracle, and
SQL Server . The .NET Framework Data Provider for ODBC is the only ODBC driver
supported . You configure the .NET Framework data providers through a dialog box
similar to the one shown in Figure 11-1 . You must provide the following information,
depending on the .NET Framework data provider you are using:

■■ If you are using the .NET Framework Data Provider for ODBC, you must
specify the connection string, the data source name (DSN), and the name of
the ODBC driver to use when connecting to the data source .

■■ If you are using the .NET Framework Data Provider for Oracle, you must
specify the user ID and password to use in establishing the connection and
the name of the database to which you want to connect in the Data Source
text box . As necessary, you can configure other initialization, pooling, and
security parameters . To work with Oracle databases, you need to install the
Oracle client software version 8 .1 .7 or higher .

■■ If you are using the .NET Framework Data Provider for SQL Server, you must
specify the network library (options are provided in a drop-down list when
you click in the text box), the user ID and password to use in establishing the
connection, and the name of the database to which you want to connect in
the Data Source text box . As necessary, you can configure other initialization,
pooling, and security parameters .

 Importing, Exporting, and Transforming Data ChAPTeR 11 437

FIGURE 11-1 SQL Server Import And Export Wizard page for .NET Framework
data provider connections

File-Based Data Connections

You use file-based data connections with applications and databases that are file
based . For example, you use this type of connection with Access and Excel . You use
a dialog box similar to the one shown in Figure 11-2 to configure file-based connec-
tions . For Access, you must provide the following information:

■■ File Name The full file name or Universal Naming Convention (UNC) path
to the source or destination file, such as //omega/data/access/data .mdb

■■ User Name A valid user name for accessing the source or destination file

■■ Password A valid password for accessing the source or destination file

For Excel, you must provide the following information:

■■ Excel File Path The full file name or UNC path to the source or destination
file, such as //omega/data/excel/cust .xlsx

■■ Excel Version The version of Excel from which you are copying data

NOTE If the first row of the excel spreadsheet does not have column names, be sure

to clear the First Row has Column Names check box.

 ChAPTeR 11  Importing, Exporting, and Transforming Data438

FIGURE 11-2 SQL Server Import And Export Wizard page for an Access file-based data connection

Server-Based Connections to Databases Other Than SQL Server

You use server-based data connections to connect to databases other than SQL
Server . Use this type of connection with the Microsoft OLE DB Provider for Oracle,
Microsoft OLE DB Provider for Analysis Services 10 .0, Microsoft OLE DB Provider for
Data Mining Services, Microsoft OLE DB Provider for OLAP Services 8 .0, and SQL-
XMLOLEDB . You configure server-based connections by setting data link properties
that connect to a data source . Data link properties have four components:

■■ An OLE DB provider, which you select from the Source or Destination selec-
tion list in the SQL Server Import And Export Wizard .

■■ Connection options, which you set using the Connection tab in the Data Link
Properties dialog box . Connection options typically include a data source
name or server name accompanied by the user name and password informa-
tion needed to log on to the database .

■■ Advanced options, which you set using the Advanced tab in the Data Link
Properties dialog box . Advanced options let you configure network settings,
time-outs, and access permissions (as long as these options are configurable) .

■■ Initialization properties, which you view using the All tab in the Data Link
Properties dialog box . The initialization properties display all the options you
have configured for the provider and provide a central location for editing
values . Simply double-click a value to edit the associated settings .

 Importing, Exporting, and Transforming Data ChAPTeR 11 439

If you are using Oracle, the Oracle client and networking components must be
installed on the system running SQL Server . If these components are not installed,
you will not be able to use the OLE DB provider . Assuming that the Oracle client is
installed on your system, you can set the data link properties for Oracle by complet-
ing the following steps:

  1. In the SQL Server Import And Export Wizard, select Microsoft OLE DB Pro-
vider For Oracle in the Data Source or Destination list, and then click Proper-
ties to display the Connection tab of the Data Link Properties dialog box,
shown in Figure 11-3 .

FIGURE 11-3 The Connection tab of the Data Link Properties dialog box for Oracle

  2. In the Enter A Server Name text box, type the name of the Oracle server to
which you want to connect .

  3. Type the user name and password needed to log on to the database in the
appropriate text boxes .

  4. To test the connection to the server, click Test Connection . If the connection
fails, you might have improperly configured the Oracle client .

  5. You can use the Advanced and All tabs to view additional options . Change
these options as necessary .

  6. When you finish setting the data link properties for Oracle, click OK .

 ChAPTeR 11  Importing, Exporting, and Transforming Data440

Server-Based Connections to SQL Server

In addition to using the .NET Framework Data Provider for SQL Server, you can con-
nect to SQL Server by using the SQL Native Client or Microsoft OLE DB Provider for
SQL Server . The options you have available with either of these alternative connec-
tions are shown in Figure 11-4 . You can configure the connection by completing the
following steps:

  1. Use the Server Name list to select the computer running SQL Server for the
connection . If the server you want to use is not listed, type in the server
name .

  2. Select an authentication method . Type a user name and password if
necessary .

  3. Use the Database list to select a database . You must provide valid credentials,
and those credentials must have sufficient privileges .

FIGURE 11-4 SQL Server Import And Export Wizard page for SQL Native Client or Microsoft OLE DB
Provider for SQL Server

Importing and exporting Flat Files

You can use flat files as a data source or destination . When you do, you must pro-
vide additional information about the input or output formatting . The steps in the
process are similar whether you are using flat files as the source or the destination .

 Importing, Exporting, and Transforming Data ChAPTeR 11 441

To use text files as a data source, use the following process as an example and com-
plete these steps:

  1. In the SQL Server Import And Export Wizard, choose the Flat File Source
option . Then enter the full file name or UNC path to the file with which you
want to work .

TIP  If the file is in use, you will get an error message. Click OK, and then select

the file again. (This forces the SQL Server Import And export Wizard to try to read

the file again. Otherwise, you will not be able to edit the Format specifications for

the file.)

  2. After you enter the text file information, the wizard page is updated as
shown in Figure 11-5 .

FIGURE 11-5 SQL Server Import And Export Wizard page for a flat file data source

  3. The values in the Locale and Code Page boxes are set based on the file you
selected . If the values are incorrect, select the appropriate values . The file
must be encoded in an acceptable flat file format, such as ANSI (ASCII text),
IBM EBCDIC, MAC, OEM (original equipment manufacturer), UTF-7, or UTF-8 .

NOTE  When you are importing data, OeM normally refers to the native SQL

Server format. If the file contains Unicode characters, select the Unicode check box.

 ChAPTeR 11  Importing, Exporting, and Transforming Data442

  4. Specify how the file is delimited . If the file has fixed-width columns, select the
Fixed Width option from the Format list . If the columns are delimited with
commas, tabs, semicolons, or other unique characters, select the Delimited
option from the Format list .

  5. Use the Text Qualifier box to specify the qualifier for text as Double Quote
("), Single Quote ('), or None .

  6. Specify the header row delimiter by using the Header Row Delimiter list . The
available options are:

■■ {CR} {LF} for carriage return and line feed

■■ {CR} for carriage return only

■■ {LF} for line feed only

■■ Semicolon

■■ Colon

■■ Comma

■■ Tab

■■ Vertical bar for the | character

  7. To skip rows at the beginning of a file, use the Header Rows To Skip box to
set the number of rows to skip .

NOTE  If you indicate that the first row contains column names, the first row is

read and then the specified number of rows is skipped.

  8. If the first row contains column headers, select the check box for the option
Column Names In The First Data Row .

TIP  Column headers make it easier to import data. If the file does not contain

column names, you might want to click Cancel, add the column names to the first

line, and then restart the import/export procedure.

  9. This completes the General page options . For an export, the other pages are
not available or applicable, so skip to step 16 .

  10. Select Columns in the left pane of the wizard to proceed . The wizard
attempts to determine the row and column delimiters, and then it displays a
preview of the data .

  11. If you selected fixed-width columns, you must indicate to the SQL Server
Import And Export Wizard where columns start and end . Vertical lines
indicate the start and end of columns . Add column markers by clicking in
the Source Data Columns area . Remove column markers by double-clicking
them . Move column markers by clicking them and dragging them to a new
position .

 Importing, Exporting, and Transforming Data ChAPTeR 11 443

  12. If necessary, specify the end-of-row delimiter using the Row Delimiter list .

  13. If necessary, specify the column delimiter within rows .

  14. Select the Advanced page in the left pane of the wizard to configure the
output properties for each column, including the output column name,
output column width, and output data type . If there are different delimiters
between columns, you can specify the delimiter on a per-column basis .

  15. Select the Preview page in the left pane to see the data format for the
options you chose . If you notice data elements out of place, you should
reconfigure the options before continuing . You might also need to modify
the source file . In this case, click Cancel, modify the file, and then restart the
SQL Server Import And Export Wizard .

  16. Click Next when you are ready to select the destination for the import/
export operation . After selecting the destination, you are ready to move on
to the second stage of creating an Integration Services package .

Stage 2: Copy or Query
With most import or export procedures, the second stage of the process involves
specifying tables and views to copy or building a query that specifies the objects to
transfer . You first select the operation in the dialog box shown in Figure 11-6 . Then,
depending on your selection, you proceed as described in the following sections .

FIGURE 11-6 The Specify Table Copy Or Query page of the SQL Server Import And Export Wizard

 ChAPTeR 11  Importing, Exporting, and Transforming Data444

Specifying Tables and Views to Copy

If you want to copy tables and views to the destination, you must select which
tables and views you want to copy . When a text file is the data source, making the
selection is easy—only one table is available, and you cannot select any views . If you
are using any other data source, however, you must select the tables and views you
want to copy . You use the Select Source Tables And Views page of the wizard, shown
in Figure 11-7, to make your selections .

FIGURE 11-7 The Select Source Tables And Views page of the SQL Server Import And Export Wizard

To select tables and views, complete the following steps:

  1. On the Specify Table Copy Or Query page (shown in Figure 11-6), select
Copy Data From One Or More Tables Or Views, and then click Next .

  2. On the Select Source Tables And Views Page (shown in Figure 11-7), select a
table or view by clicking its entry, and then preview the data the table con-
tains by clicking Preview .

  3. When you find a table or view you want to copy, select the check box next to
its name in the Source column .

  4. By default, the destination name of the table is set to be the same as the
source table name . If you want to change the table name, edit the corre-
sponding value in the Destination column .

 Importing, Exporting, and Transforming Data ChAPTeR 11 445

  5. If you want to manipulate the row values in a table, select the table, and then
click the Edit Mappings button . Mapping row values is covered in “Stage 3:
Formatting and Transformation” later in this chapter .

Building a Query

Another way to select data for exporting is to build a query and execute it against
the source file, spreadsheet, or database . Regardless of the type of data source you
select, you build the query by completing the following steps:

  1. On the Specify Table Copy Or Query page (shown in Figure 11-6), select
Write A Query To Specify The Data To Transfer, and then click Next .

  2. On the Provide A Source Query page, you can do the following:

■■ Define a query directly in the text box provided, and then parse it to
check for accuracy by using the Parse button .

■■ Click Browse to open a previously saved query .

TIP  You can also create a query in your favorite query designer and then paste

the results into the SQL Statement text box. See the discussion that follows for

details about using Query Designer, which is provided in SQL Server Management

Studio.

  3. Click Next . On the Select Source Tables And Views page, the tables and views
selected by the previously defined query are listed and selected .

  4. By default, the destination name of the table is set to be the same as the
source table name . If you want to change the table name, edit the corre-
sponding value in the Destination column .

  5. If you want to manipulate the row values in a table, select the table and then
click the Edit Mappings button . Mapping row values is covered in “Stage 3:
Formatting and Transformation” later in this chapter .

Query Designer in SQL Server Management Studio provides the easiest way to
design a query to export data . You can start and work with Query Designer by com-
pleting the following steps:

  1. In SQL Server Management Studio, connect to the server instance containing
the database in which you want to work .

  2. In the Object Explorer view, expand the Databases node . Select a database,
right-click it, and then select New Query to display a Query window with its
own toolbar . A similar list of options (with more selections) is provided on the
Query menu .

 ChAPTeR 11  Importing, Exporting, and Transforming Data446

  3. Access Query Designer by selecting Design Query In Editor from the Query
menu or by pressing Ctrl+Shift+Q .

  4. When you first start Query Designer, the Add Table dialog box, shown in
Figure 11-8, is displayed . The Add Table dialog box has tabs that allow you to
select the tables, views, functions, and synonyms you want to work with .

FIGURE 11-8 The Add Table dialog box

  5. In the Add Table dialog box, select a table or other object that contains data
you want to add to the query, and then click Add . This displays a view pane
for the selected object, which you can use to add columns, fields, and so on
to the query you are building . When you finish working with the Add Table
dialog box, click Close . You can display this dialog box again at any time by
selecting Add Table from the Query Designer menu .

  6. Use the view panes provided to select the columns and fields to use in the
query, as shown in Figure 11-9 . Your actions create a SELECT statement that
can be used to generate the query .

 Importing, Exporting, and Transforming Data ChAPTeR 11 447

FIGURE 11-9 Query Designer

  7. When you finish designing the query, click OK to close the Query Designer
window . The query you have generated is then added to the Query window .

  8. The result of the Query Designer procedure is a complete SQL statement that
you can use to select data for exporting . Click Parse to ensure that the query
runs properly . If necessary, rebuild the query	or remove	statements that are
causing errors .

  9. Copy the query to the SQL Server Import And Export Wizard .

Stage 3: Formatting and Transformation
Transformation is the process of manipulating the source data and formatting it
for the chosen destination . The way you transform and format data depends on
the destination you choose . With most types of files, databases, and spreadsheets,
you are guided through a column-mapping and transformation process . But if you
have chosen a text file as the destination, you must also specify the format of the
output file . Because the formatting options are essentially the same as those used
for importing, you can find more information about those options in “Importing and
Exporting Flat Files” earlier in this chapter .

 ChAPTeR 11  Importing, Exporting, and Transforming Data448

Unless you specify otherwise, the SQL Server Import And Export Wizard sets the
default mapping for all selected tables . This default mapping does the following:

■■ Specifies that every column in the source table is copied

■■ Maps the original column name, data type, nullability, size, precision, and
scale to the destination table

■■ Appends the source data to the destination table, or creates the destination
table if it does not exist

You can override the default mapping by completing the following steps:

  1. The Select Source Tables And Views page lists the results of your query or all
of the available tables in the source database, spreadsheet, or file that you
selected . If you selected a particular table, you can edit its mapping by click-
ing the Edit Mappings button . This opens the Column Mappings dialog box,
shown in Figure 11-10 .

FIGURE 11-10 The Column Mappings dialog box

  2. In the Column Mappings dialog box, set the general transfer options:

■■ Create Destination Table Creates the destination table before copy-
ing source data . If the destination table exists, you must select the check
box for the Drop And Re-Create Destination Table option or an error will
occur .

■■ Delete Rows In Destination Table Deletes all rows in the destination
table before copying the source data . Indexes and constraints on the
destination table remain .

■■ Append Rows To The Destination Table Inserts the source data into
the destination table instead of overwriting existing data . This option

 Importing, Exporting, and Transforming Data ChAPTeR 11 449

does not affect existing data, indexes, or constraints in the destination
table .

NOTE  Rows might not necessarily be inserted at the end of the destination

table. To determine where rows will be inserted, use a clustered index on the

destination table.

■■ Drop And Re-Create Destination Table Drops and re-creates the des-
tination table before attempting to copy data into it, which permanently
deletes all existing data and indexes .

TIP  If the table exists at the destination, you must drop and re-create it to map

new column values to the destination table. Otherwise, you can only map source

columns to different destination columns.

■■ Enable Identity Insert Allows you to insert explicit values into the iden-
tity column of a table . This option is available only on SQL Server and only
if an identity column is detected .

■■ Edit SQL Displays the Create Table SQL Statement dialog box, which
allows you to customize the default CREATE TABLE statement .

  3. After you set the general transfer options, use the fields in the Mappings list
to determine how values are mapped from the source to the destination . The
fields are all set to default values based on the source column . If you want to
override these values for a new table, or if you are dropping and re-creating
an existing table, you can modify these values . The Mappings fields are used
as follows:

■■ Source Sets the source column to map to a destination column .

■■ Destination Click in this column, and then select an existing column
name or type a new column name for the destination table . Use the
Ignore option if a destination column should not be created .

NOTE  If a destination column already exists and you choose Ignore, the source

data will not be copied into this column.

■■ Type Select a data type for the destination column . If you select a data
type different from the data type of the source column, the data is con-
verted to the new data type during the transfer .

NOTE  Make sure you select a valid conversion option. The SQL Server Import

And export Wizard will not let you truncate data, and if you try to do so, an error

occurs.

■■ Nullable Select this check box if the destination allows NULL values .

 ChAPTeR 11  Importing, Exporting, and Transforming Data450

■■ Size Sets the length of the destination column . This value is applicable
only for the char, varchar, nchar, nvarchar, binary, and varbinary data
types .

NOTE  Setting the size smaller than the length of the source data can result in

data truncation. If this happens, the SQL Server Import And export Wizard gener-

ates an error and will not complete the data transfer.

■■ Precision Sets the maximum number of decimal digits, including deci-
mal places . This option is for decimal and numeric data types only .

■■ Scale Sets the maximum number of digits to the right of the decimal
point . This value must be less than or equal to the Precision value, and it
applies to decimal and numeric data types only .

  4. Click OK, and then repeat this process for other tables you want to transform .

  5. When you are ready to continue, click Next .

Stage 4: Save and execute
You have nearly completed the process of creating an Integration Services package .
At this stage, you specify when to use the package you have created and decide
whether the package should be saved for future use . After you click Next on the
Select Source Tables And Views page, the Save And Run Package page, shown in
Figure 11-11, appears .

FIGURE 11-11 The Save And Run Package page of the SQL Server Import And Export Wizard

 Importing, Exporting, and Transforming Data ChAPTeR 11 451

To use this page, complete the following steps:

  1. By default, the Run Immediately option is selected so that you can run the
package . If you do not want to run the package immediately, simply clear the
check box for this option .

  2. Use the options for saving the package to save it for future use . If you want
to save the package to use it later, select the Save SSIS Package check box,
and then specify where the package should be saved . The available locations
are as follows:

■■ SQL Server Saves as a local package in the msdb database so that the
package is accessible for use on the designated server .

■■ File System Saves as a DTSX file . You can add more packages to the file
as long as they have a different package name . You can then copy, move,
or e-mail the file to a different location .

  3. When you finish configuring the run and save options, use the Package
Protection Level options to set the encryption options for the package . The
options are as follows:

■■ Do Not Save Sensitive Data Creates the package, but does not save
sensitive data in the package .

■■ Encrypt Sensitive Data With User Key Creates the package with sensi-
tive data encrypted . The package can be opened or executed only by the
user who created the package (the current login account) .

■■ Encrypt Sensitive Data With Password Creates the package with
sensitive data encrypted . The package can be opened or executed with
the password you specify . This means that anyone with the password can
open or execute the package .

■■ Encrypt All Data With User Key Creates the package with all data
encrypted . The package can be opened only by the user who created the
package (the current login account) .

■■ Encrypt All Data With Password Saves the package with all data
encrypted . The package can be opened or executed with the password
you specify . This means that anyone with the password can open or
execute the package .

■■ Rely On Server Storage And Roles For Access Control Creates a
package that uses SQL Server permissions and roles to control access
(available only if you save the package to SQL Server) .

 ChAPTeR 11  Importing, Exporting, and Transforming Data452

  4. If you have opted to save the package, the next page (see Figure 11-12) lets
you set the save location . The options might differ slightly from those shown,
depending on the save location you previously selected .

FIGURE 11-12 The Save SSIS Package page of the SQL Server Import And Export Wizard

  5. Type a name and description for the package in the Name and Description
boxes . The name should be unique for the target location .

  6. If you are saving the package to SQL Server, use the Server Name list to
select the name of the computer running SQL Server to which you want to
save the package . The package is saved in the msdb database on the desig-
nated server .

  7. Select the type of authentication to use by selecting either Use Windows
Authentication or Use SQL Server Authentication . Provide an authorized user
name and password if you select the Use SQL Server Authentication option .

  8. If you are saving the package to a file, set the file location using the File
Name box .

  9. Click Next . Review the actions that will be performed, and then click Finish .

If you elected to run the package immediately, SQL Server runs the package . As
each step is completed (or if a step fails), the status is updated as shown in Figure
11-13 . If an error occurs, you can click its message entry to view a detailed report
about the error . Errors might halt execution of the package, and if they do, you have

 Importing, Exporting, and Transforming Data ChAPTeR 11 453

to redesign the package using Integration Services Designer or re-create the pack-
age using the SQL Server Import And Export Wizard .

FIGURE 11-13 Check the execution status .

SQL Server stores Integration Services packages as local packages in a desig-
nated server’s msdb database or as file-based packages . You manage packages by
using SQL Server Management Studio, Business Intelligence Development Studio,
or the Execute Package Utility (Dtexecui) . Two command-line utilities are provided
as well: Dtutil for copying, moving, signing, and deleting packages; and Dtexec for
executing packages .

Understanding BCP

The bulk copy utility (BCP) offers a command-line alternative to the SQL Server
Import And Export Wizard . The Transact-SQL counterpart to BCP import is BULK
INSERT . You will find that BULK INSERT has a similar syntax when you use it for
importing data . BCP features I’ll examine in this section include the following:

■■ Basics

■■ Syntax

■■ Permissions

■■ Modes

■■ Importing data

■■ Exporting data

 ChAPTeR 11  Importing, Exporting, and Transforming Data454

BCP Basics
BCP might continue to be a favorite of database administrators because of its great
performance and minimal overhead . You will find that import and export processes
tend to be very fast and that BCP requires very little memory to operate . BCP does
not have a graphical user interface (GUI) and is best used in two situations:

■■ To import data from a text file to a single SQL Server table or view

■■ To export data to a text file from a single SQL Server table or view

When transferring data to or from SQL Server, BCP uses ODBC .

TIP Dates are written in ODBC format. You will find that the datetime format is

yyyymmdd hh:mm:ss rather than mmm dd yyy hh:mm (A.M./P.M.). The money format

has no commas and four digits after the decimal (instead of commas and two digits

after the decimal).

NOTE When you import data using BCP, columns with computed values and time

stamps are ignored. SQL Server can automatically assign values. To do this, use a

format file to specify that the computed values or time-stamp columns in the table

should be skipped; SQL Server then automatically assigns values for the column. Dur-

ing export, computed values and time stamps are handled like other values.

BCP Syntax
Before examining how to use BCP, I’ll look at the command syntax, shown in Sample
11-1 and described further in Tables 11-1 and 11-2 . As you can see, the syntax
is extensive . BCP switches are case sensitive and order sensitive . You must use
these switches exactly as indicated, or you will have problems executing the BCP
command .

SAMPLE 11-1 BCP Syntax and Usage

Syntax

bcp {[[dbname.][owner].]{tablename | viewname } | "query"}
 {in | out | queryout | format} datafile
 [switch1 [parameter1]] [switch2 [parameter2]]
 [switchN [parameterN]]

Usage

bcp pubs..customer out customers.txt -c -U sa -P"guerilla"
bcp pubs..customer in customers.txt -f customers.fmt
 -U sa -P"guerilla"

 Importing, Exporting, and Transforming Data ChAPTeR 11 455

Table 11-1 provides a summary of key BCP parameters .

TABLE 11-1 Key Parameters Used with BCP

PARAMETER DESCRIPTION

Dbname The name of the database . This parameter is optional, and if it is not
supplied, the user’s default database is used .

Owner The schema (owner) of the table or view being used . Use the
 . . syntax for a default schema, such as pubs . .authors instead of
pubs .dbo .authors .

Tablename The name of the table to access . Use the # or ## syntax to copy a
temporary table .

Viewname The name of the destination view when copying data into SQL
Server or the source view when copying data from SQL Server .

Query T-SQL statement that generates a result set . You must use double
quotation marks around the query and specify the queryout
 parameter . These are mandatory with this option .

In Specifies an import process .

Out Specifies an export process .

Format Sets the creation of a format file . You must set the name of the
format file with the –f switch and also specify the format for this file
with –n, –c, –w, –6, or –N . When creating an XML file, you must also
specify –x .

Queryout Must be used when exporting output from an SQL query or stored
procedure .

Datafile The name of the file for importing or the name of the file to create
when exporting . This can include the full file path .

BCP also supports a wide variety of switches . These switches and their associated
parameters are summarized in Table 11-2 .

 ChAPTeR 11  Importing, Exporting, and Transforming Data456

TABLE 11-2 Switches Used with BCP

SWITCH DESCRIPTION

–a packetsize Sets the number of bytes in a network packet . The default
is 4,096 bytes . The valid range is 512 bytes through 65,535
bytes .

–b batchsize The number of rows to transfer in the batch . Each batch is
copied to the server as one transaction . By default, all rows
are copied in a single batch . Do not use with the –h ROWS_
PER_BATCH option .

–c Character data mode (ASCII text) for transfers to and from
non–SQL Server products .

–C codepage Code page being used by the import file . This is relevant
only when the data contains char, varchar, or text columns
with character values greater than 127 or less than 32 . Use
the code page value ACP with ANSI ISO 1252 data, use RAW
when no conversion should occur, use OEM to use the client’s
default code page, or type a specific code page value, such
as 850 .

–e errfile Stores error messages in the specified error file .

–E Uses identity values . Otherwise, identity values are ignored
and automatically assigned new values .

–F firstrow Sets the number of the first row to use .

–f formatfile Sets the name and path to a BCP format file . The default file
name is Bcp .fmt . If you use –n, –c, –w, –6, or –N and do not
specify –f, you will be prompted for format information, and
your responses will be saved in a format file (named Bcp .fmt
by default) .

–h loadhints Used to set load hints: FIRE_TRIGGERS, ROWS_PER_BATCH,
KILOBYTES_PER_BATCH, TABLOCK, CHECK_CONSTRAINTS,
and ORDER .

–i inputfile Sets the name of a response file that contains responses to
command prompt questions for each field when you are per-
forming a bulk copy using interactive mode .

–k Preserves null values .

–L lastrow Sets the last row to use .

–m maxerrors Sets the maximum number of errors that can occur before
terminating BCP . The default is 10 .

 Importing, Exporting, and Transforming Data ChAPTeR 11 457

SWITCH DESCRIPTION

–N Sets native export for noncharacter data and Unicode charac-
ter export for character data .

–n Sets native data mode, which is SQL Server specific .

–o outfile File to which output of BCP is redirected during unattended
operation .

–P password Password to use to log in . Do not store passwords in files
because doing so is a poor security practice .

–q Uses quoted identifiers .

–R Enables regional format copy for currency, date, and time
data .

–r rowterminator Sets the row terminator . The default is the new line character
(\n) .

–S servername Sets the name of the computer running SQL Server . You
can also follow the server name by the instance name: –S
servername\instancename .

–t fieldterminator Sets the field terminator . The default is the tab character (\t) .

–T Uses a trusted connection, which is a good security practice .

–U username Sets the user name for login .

–V Sets the data type version for native and character formats to
a previous SQL Server version . For SQL Server 7 .0, use 70; for
SQL Server 2000, use 80; for SQL Server 2005, use 90 .

–v Displays the BCP version number .

–w Sets wide character (Unicode) mode .

–x Used with the format and –f options to create an XML format
file instead of a standard text-based format file .

BCP Permissions and Modes
Although any user can run BCP, only users with appropriate permissions can access
SQL Server and the specified database objects . When you run BCP, you can set login
information using the –U and –P switches or you can use a trusted connection that
is more secure . For unattended operations, it is essential to use these switches to
ensure that permissions are granted appropriately . To import data into a table, the
user needs INSERT permission on the target table . To export data from a table, the
user needs SELECT permission for the source table .

 ChAPTeR 11  Importing, Exporting, and Transforming Data458

BCP can use three different modes:

■■ Character mode Used when you want to import or export data as ASCII
text . The switch to set this mode is –c .

■■ Native mode Used when you want to import or export data in native
format . The switch to set this mode is –n or –N .

■■ Wide mode Used when you want to import or export data as Unicode text .
The switch to set this mode is –w .

The character and wide modes are the best choices when you are copying to a
non–SQL Server product . Use native mode when you are copying data between SQL
Server tables . These modes all have their strengths and weaknesses . With character-
mode or wide-mode files, you can view the contents and make sure that you have
the right dataset; however, for imports, you must also tell SQL Server how this data
is formatted . You can do this through interactive prompts or by using a format file
containing the responses to these prompts . With native mode, you cannot view the
contents of native data files, but you do not have to specify data formatting infor-
mation when importing files either .

Importing Data with BCP
You can import data with BCP in two ways . You can start an interactive session, or
you can set the necessary responses in a format file . The following example shows
how to start an interactive session using a trusted connection:

bcp pubs..customer in customers.txt -T

To specify a format file, use the –f flag, such as in the following example:

bcp pubs..customer in customers.txt –w –f customers.fmt -T

In an interactive session, BCP prompts you for information needed to complete
the import or export process . BCP starts an interactive session when either of the
following situations occurs:

■■ You import without specifying the –c, –n, –w, or –N parameters .

■■ You export without specifying the –c, –n, –w, or –N parameters .

The interactive session allows you to customize the BCP process, much as you do
with a format file . In fact, before you try to create a format file, you should run BCP
in interactive mode and then choose to have BCP create the necessary format file
for you . This operation shows you the best way to configure the format file .

During an interactive session, you will see prompts similar to the following for
each column in a table you are importing:

Enter the file storage type of field [nchar]:
Enter prefix length of field [0]:
Enter length of field [5]:
Enter field terminator [none]:

 Importing, Exporting, and Transforming Data ChAPTeR 11 459

NOTE Pressing enter accepts the default values. To skip a column in an import file,

type 0 for the prefix length, 0 for the field length, and none for the terminator type.

You cannot skip a column when exporting data.

These prompts ask you to type various kinds of information, and in every case
the default value for the current column is shown in brackets . At the end of the
interactive session, you are asked if you want to save your responses in a format
file . If you answer yes (by typing Y), you can type the name of the format file when
prompted, as shown here:

Do you want to save this format information in a file? [Y/N]
Host filename [bcp.fmt]: customers.fmt

You can then use the format file in other BCP sessions by setting the –f switch, as
explained previously . Because the format file has a rigid syntax that you must follow,
I recommend creating a sample file to get started . As Sample 11-2 shows, each line
in the file contains information fields that determine how data should be imported .

SAMPLE 11-2 BCP Non-XML Format File

10.0
50
1 SQLINT 0 8 "" 1 CUSTOMERID ""
2 SQLNCHAR 2 25 "" 2 CUSTNAME SQL_Latin1_General_CP1_CI_AS
3 SQLNCHAR 2 20 "" 3 CUSTORG SQL_Latin1_General_CP1_CI_AS
..
50 SQLNCHAR 2 9 "" 3 POSTALCODE SQL_Latin1_General_CP1_CI_AS

The lines give you the following information:

■■ The first line sets the version of BCP used . Here the version is 10 .0, indicating
SQL Server 2008 .

■■ The second line sets the number of columns in the table you are importing .
In the example, the table contains 50 columns .

■■ Subsequent lines set the formats for each column in the table, from the first
column to the last column .

The lines defining table columns are broken down into fields, and each field sets
a different input parameter . Normally, these fields are separated by spaces . The
number of spaces does not really matter—provided there is at least one space . BCP
treats one or more spaces as a field separator . File format fields operate in the fol-
lowing manner:

■■ Field 1 sets the column number you are describing from the data file .

■■ Field 2 sets the file storage type, which is simply the data type of the column .

■■ Field 3 sets the prefix length for compacted data . A value of zero specifies
that no prefix is used .

■■ Field 4 sets the field length, which is the number of bytes required to store
the data type . Use the default value provided whenever possible .

 ChAPTeR 11  Importing, Exporting, and Transforming Data460

■■ Field 5 sets the field terminator . By default, BCP separates all fields but the
last one with tabs (\t) and separates the last field with a carriage return and
newline field (\r\n) .

■■ Field 6 sets the table column number in the database . For example, a value of
1 means that the column corresponds to the first column in the database .

■■ Field 7 sets the table column name .

■■ Field 8 sets the column collation .

exporting Data with BCP
When you export data, BCP creates a data file using the name you specify . If you are
exporting data from nonnative files (ASCII and Unicode text), the columns in this file
are separated with tabs by default, and the last column has a carriage return and
newline . You specify a tab as a terminator with \t and a carriage return and newline
with \r\n . In a format file, a tab can be an actual tab character or a series of five or
more spaces .

As when importing data, you can handle data exports interactively . For exam-
ple, if you start an export session without specifying format information, you are
prompted for this information . In the following example, you export a table to a file
called customers .txt and use semicolons as the delimiter:

bcp pubs..customer out customers.txt –c –t -T;

BCP Scripts

A BCP script is simply a batch file or a Windows Script Host file that contains BCP
commands . Sample 11-3 shows examples of how to run BCP using various script-
ing options . If you do not know how to use batch files or Windows Script Host, two
great resources are Windows	Command-Line	Administrator’s	Pocket	Consultant,	
Second Edition (Microsoft Press, 2008) and Windows	2000	Scripting	Guide (Microsoft
Press, 2003) .

SAMPLE 11-3 Using BCP in a Script

sched-export.bat

@echo off
@if not "%OS%"=="Windows_NT" goto :EXIT
bcp pubs..customer out customers.txt -c -t, -T
:EXIT

sched-export.vbs

'Nightly Bulk Copy export for the customers table
'Writes output to cust.txt and errors to err.txt
Set ws = WScript.CreateObject("WScript.Shell")
ret = ws.Run("bcp pubs..customers out cust.txt -c -t, -T
 -e err.txt",0,"TRUE")

 Importing, Exporting, and Transforming Data ChAPTeR 11 461

sched-export.js

\\Nightly Bulk Copy export for the customers table
\\Writes output to cust.txt and errors to err.txt
var ws = WScript.CreateObject("WScript.Shell");
ret = ws.Run("bcp pubs..customers out cust.txt -c -t, -T
 -e err.txt",0,"TRUE")

After you create a script file for the bulk copy command, you can schedule it as a
task to run on your system . To schedule these scripts to run every night at midnight,
for example, use the following commands:

AT 00:00 /every:M,T,W,Th,F,S,Su "sched-export.bat"
AT 00:00 /every:M,T,W,Th,F,S,Su "cscript //B sched-export.js"
AT 00:00 /every:M,T,W,Th,F,S,Su "cscript //B sched-export.vbs"

NOTE For more information on scheduling tasks, refer to Windows	Command-Line	

Administrator’s	Pocket	Consultant, Second edition or Windows	7	Administrator’s	Pocket	

Consultant, (Microsoft Press, 2009).

Using the BULK INSERT Command

A Transact-SQL command for importing data into a database is BULK INSERT . You
can use BULK INSERT in much the same way that you use BCP . In fact, most of the
parameters for BULK INSERT are the same as those used with BCP—they just have a
different syntax . This syntax is shown in Sample 11-4 .

SAMPLE 11-4 BULK INSERT Syntax and Usage

Syntax

BULK INSERT [database_name.[schema_name][table_name|view_name]]
 FROM 'data_file'
 [WITH (
 [[,] BATCHSIZE = batch_size]
 [[,] CHECK_CONSTRAINTS]
 [[,] CODEPAGE = { 'ACP' | 'OEM' | 'RAW' | 'code_page' }]
 [[,] DATAFILETYPE =
 { 'char' | 'native'| 'widechar' | 'widenative' }]
 [[,] FIELDTERMINATOR = 'field_terminator']
 [[,] FIRSTROW = first_row]
 [[,] FIRE_TRIGGERS]
 [[,] FORMATFILE = 'format_file_path']
 [[,] KEEPIDENTITY]
 [[,] KEEPNULLS]
 [[,] KILOBYTES_PER_BATCH = kilobytes_per_batch]
 [[,] LASTROW = last_row]
 [[,] MAXERRORS = max_errors]
 [[,] ORDER ({ column [ASC | DESC] } [,...n])]

 ChAPTeR 11  Importing, Exporting, and Transforming Data462

 [[,] ROWS_PER_BATCH = rows_per_batch]
 [[,] ROWTERMINATOR = 'row_terminator']
 [[,] TABLOCK]
 [[,] ERRORFILE = 'file_name']
)]

Usage

BULK INSERT pubs..customers FROM 'c:\data\customer.txt'
BULK INSERT pubs..customers FROM 'c:\cust.txt' with
 (DATAFILETYPE = 'char ',
 FORMATFILE='c:\cust.fmt')

To use BULK INSERT, you must have INSERT and ADMINISTER BULK OPERATION
permissions . You might also need ALTER TABLE permission if any of the following
conditions are true:

■■ Constraints are disabled (the default setting) . To keep constraints enabled,
use the CHECK_CONSTRAINTS option .

■■ Triggers are disabled (the default setting) . To fire triggers, use the FIRE_
TRIGGER option .

■■ KEEPIDENTITY is used to import identity values from the specified data file .

Additionally, before using BULK INSERT, you might want to set the database
recovery model to Bulk-Logged . This mode minimally logs bulk operations and
increases performance during bulk inserts . To set this option, select a database,
open its Properties dialog box, choose the Options page, and then select Bulk-
Logged under Recovery Model . You might also want to use sp_tableoption to set
the table lock on the bulk load value . When this option is set to FALSE (the default
setting), the bulk load process obtains row locks when inserting data into user-
defined tables . If you set this option to TRUE, the bulk load process obtains a bulk
update lock instead . Members of the sysadmin fixed server role, members of the
db_owner and db_ddladmin fixed database roles, and the table owner can modify
the table lock on a bulk load value .

Sample 11-5 shows how to set the table lock on a bulk load value by using
sp_tableoption .

SAMPLE 11-5 sp_tableoption Syntax and Usage

Syntax

sp_tableoption [@TableNamePattern =] 'table'
 , [@OptionName =] 'option_name'
 , [@OptionValue =] 'value'

Usage

EXEC sp_tableoption Sales.Customers 'table lock on bulk load', 'true'

463

CHAP TE R 12

Linked Servers and
Distributed Transactions

■■ Working with Linked Servers and Distributed Data 463

■■ Managing Linked Servers 469

Networking environments are becoming more and more complex . Organiza-
tions that have managed with a single server now need additional ones,

or they need to integrate their existing server with other, heterogeneous data
sources . Microsoft SQL Server 2008 provides several features for integrating one
SQL Server database with other SQL Server databases or with other data sources .
These features include distributed data, linked servers, and replication . This chap-
ter focuses on linked servers and distributed data . Distributed data includes sup-
port for distributed queries, distributed transactions, and remote stored procedure
execution . These distributed data features are handled through linked servers,
which can be computers running SQL Server or computers running other database
server software, such as Oracle Database Enterprise Edition . You will learn about
replication in the Chapter 13, “Implementing Snapshot, Merge, and Transactional
Replication .”

Working with Linked Servers and Distributed Data

Before you use distributed data, you must configure the linked servers you want
to use . Linked servers depend on OLE DB providers to communicate with one
another . Through OLE DB, you can link instances of SQL Server to other instances
of SQL Server as well as to other data sources .

You use linked servers to handle distributed queries, distributed transactions,
remote stored procedure calls, and replication . Basically, queries and transactions
are distributed when they make use of two or more database server instances .
For example, if a client is connected to one server instance and starts a query that
accesses a different server instance, the query is distributed . On the other hand, if
the same client queries two different databases on the same server instance, the
query is considered a local query and is handled internally .

 ChAPTeR 12  Linked Servers and Distributed Transactions464

You can define linked servers that point back to the server on which they
are defined . This type of linked server is called a loopback	linked	server because
 Transact-SQL statements loop through the SQL Native Client Interface provider and
back to the local server . You’ll find that loopback linked servers are most useful when
you are testing an application that uses distributed queries on a single server network .

NOTE You cannot use loopback linked servers in distributed transactions. You’ll get

an error if you try to execute a distributed query against a loopback linked server from

within a distributed transaction. In SQL Server 2008, an INSeRT...eXeCUTe statement

can execute against a loopback linked server when the connection does not have mul-

tiple active result sets (MARS) enabled.

Using Distributed Queries
When you execute a distributed query, SQL Server interprets the command and
then breaks it down for the destination OLE DB provider by using rowset requests .
A rowset is a type of database object that enables OLE DB data providers to support
data with a tabular format . As their name implies, rowset objects represent a set of
rows and columns of data . After creating the rowset objects, the OLE DB provider
calls the data source, opens the necessary files, and returns the requested informa-
tion as rowsets . SQL Server then formats the rowsets as result sets and adds any
applicable output parameters .

NOTE With SQL-92, the user connections must have the ANSI_NULLS and ANSI_

WARNINGS options before they can execute distributed queries. Be sure to configure

these options if necessary. For more information, see “Configuring User and Remote

Connections” in Chapter 7.

You can quickly create simple distributed queries by making your own rowsets .
To do this, you use the OPENROWSET function . When you use this function, you
do not need to use linked servers . Also, you can use the OPENROWSET function
in place of a table in a query if you pass parameters that identify the OLE DB data
source and provider .

You use the OPENROWSET function in the same way that you use virtual tables;
simply replace the virtual table reference with an OPENROWSET reference . Sample
12-1 shows the syntax and usage of OPENROWSET .

The BULK rowset provider is similar to the BULK INSERT statement . The data_file
parameter is used to specify the data file from which data will be copied into the
target table . A format file is required to define the column types in the result set,
except when you use SINGLE_BLOB, SINGLE_CLOB, or SINGLE_NCLOB . SINGLE_BLOB
returns the contents of the data file as a single-row/single-column rowset of type
varbinary(max) . SINGLE_CLOB reads the data file as ASCII text and returns the
contents of the data file as a single-row/single-column rowset of type varchar(max) .
SINGLE_NCLOB reads the data file as Unicode text and returns the contents as a
single-row/single-column rowset of type nvarchar(max) . Both SINGLE_CLOB and
SINGLE_NCLOB use the collation of the current database .

 Linked Servers and Distributed Transactions ChAPTeR 12 465

SAMPLE 12-1 OPENROWSET Syntax and Usage

Syntax for SELECT with Table Alias

SELECT selection FROM OPENROWSET(rowset_options) AS table_alias

Syntax for OPENROWSET

OPENROWSET
({ 'provider_name' , { 'datasource' ; 'user_id' ; 'password'
 | 'provider_string' }
 , { [catalog.] [schema.] object
 | 'query' }
 | BULK 'data_file' ,
 { FORMATFILE = 'format_file_path' [<bulk_options>]
 | SINGLE_BLOB | SINGLE_CLOB | SINGLE_NCLOB }
})

<bulk_options> ::=
 [, CODEPAGE = { 'ACP' | 'OEM' | 'RAW' | 'code_page' }]
 [, ERRORFILE = 'file_name']
 [, FIRSTROW = first_row]
 [, LASTROW = last_row]
 [, MAXERRORS = maximum_errors]
 [, ROWS_PER_BATCH = rows_per_batch]
 [, ORDER ({ column [ASC | DESC] } [,...n]) [UNIQUE]

Usage

USE pubs
GO
SELECT a.*
FROM OPENROWSET('SQLOLEDB','Pluto';'netUser';'totem12',
'SELECT * FROM pubs.dbo.authors ORDER BY au_lname, au_fname')
AS a
GO
SELECT o.*
FROM OPENROWSET('Microsoft.Jet.OLEDB.4.0','C:\
customers.mdb';'Admin';'', 'Orders')
AS o

When the OPENROWSET BULK option is used with an INSERT statement, you can
use standard table hints, such as TABLOCK, as well as the special BULK INSERT table
hints IGNORE_CONSTRAINTS, IGNORE_TRIGGERS, KEEPDEFAULTS, and KEEPIDEN-
TITY . When you use the BULK rowset provider with OPENROWSET, you must specify
column aliases in the FROM clause or specify column names in the format file . The
syntax for the SELECT statement with the table alias then becomes:

SELECT selection FROM OPENROWSET(BULK rowset_options) AS
 table_alias[(column1_alias, column2_alias,...)]

Simple distributed queries using the OPENROWSET function are useful for infre-
quent references . For frequent references to OLE DB data sources, use linked servers

 ChAPTeR 12  Linked Servers and Distributed Transactions466

instead . After you create a linked server (as discussed in “Adding Linked Servers”
later in this chapter), you can access the linked server by using several different tech-
niques . You can use the EXECUTE statement to execute both commands and stored
procedures on a linked server . EXECUTE statements that pass through a command
with the AT linked_server_name extension can include data definition language
(DDL) and data manipulation language (DML) statements, as well as commands that
return more than one result . Sample 12-2 shows the syntax for using EXECUTE in
this way .

SAMPLE 12-2 EXECUTE at linked_server Syntax and Usage

Syntax

EXEC [UTE] ({ @string_variable | [N] 'command_string' } [+ ...n]
 [{, { value | @variable [OUTPUT] } } [...n]])
 [AS { LOGIN | USER } = ' name ']
 [AT linked_server_name] [;]

Usage

EXEC ('SELECT * FROM william.sales') AT ORADBSVR38;

You also can use remote stored procedures that execute against the linked server
or distributed queries that access tables in the linked server through SELECT, INSERT,
UPDATE, and DELETE statements that reference the linked server using a four-part
name . The syntax for a four-part name is as follows:

LinkedServerName.DatabaseName.TableName.ColumnName

In this example, LinkedServerName is the name of a previously defined linked
server, DatabaseName is the name of a database, TableName is the name of a data-
base table, and ColumnName is the name of a table column, such as:

SELECT * FROM ORADBSVR38.Customers.Employees.EmployeeID

Distributed queries can use four-part names only if the OLE DB provider you
are using meets certain minimum requirements . The provider must support the
IDBSchemaRowset interface as well as restrictions on name parts . SQL Server uses a
period (.) for catalog and schema separators and the double-quotation character for
a string literal delimiter, and the provider must support these literals . If the provider
provides Unicode string literal prefixes and Unicode string literal suffixes, SQL Server
uses these . If the provider does not meet these minimum requirements, you can ref-
erence the provider only by using pass-through queries in the OPENDATASOURCE
or OPENROWSET function .

Using Distributed Transactions
Distributed transactions are transactions that use distributed queries or remote pro-
cedure calls (RPCs) . As you might expect, distributed transactions are more involved
than distributed queries, primarily because you need a mechanism that ensures

 Linked Servers and Distributed Transactions ChAPTeR 12 467

that transactions are committed uniformly or rolled back on all the linked servers .
For example, if you start a transaction that updates databases on three different
server instances, you want to be certain that the transaction is committed when it
has completed successfully or that the transaction is rolled back if an error occurs .
In this way, you ensure the integrity of the databases involved in the distributed
transaction .

In SQL Server, three components are required for distributed transactions to be
handled properly:

■■ Resource managers You must configure resource managers, which are
the linked servers used in the distributed transactions . For details about how
to configure resource managers, see “Managing Linked Servers” later in this
chapter .

■■ Distributed Transaction Coordinator service The Microsoft Distributed
Transaction Coordinator (MS DTC) service must be running on all servers that
are handling distributed transactions . If it is not, distributed transactions will
not work properly .

■■ Transaction manager The transaction manager coordinates and man-
ages distributed transactions . The transaction manager on SQL Server is the
Distributed Transaction Coordinator .

NOTE Applications other than SQL Server can use the Distributed Transaction Coor-

dinator. If you try to analyze Distributed Transaction Coordinator performance, you

should note which applications besides SQL Server are using the Distributed Transac-

tion Coordinator.

Each server instance involved in a distributed transaction is known as a resource	
manager . Resource managers coordinate transactions through a transaction man-
ager such as the Distributed Transaction Coordinator . You can use other transaction
managers if they support the X/Open XA specification for distributed transaction
processing .

You handle distributed transactions in much the same manner as you handle
local transactions . Applications start distributed transactions in several ways:

■■ Explicitly by using BEGIN DISTRIBUTED TRANSACTION

■■ Explicitly by using the methods or functions available with ODBC, OLE DB,
ADO, or the .NET Framework to join a distributed transaction started by the
application

■■ Implicitly by executing a distributed query within a local transaction

■■ Implicitly by calling a remote stored procedure within a local transaction
(provided the REMOTE_PROC_TRANSACTIONS option is set to ON)

At the end of the transaction, the application requests that the transaction be
either committed or rolled back . To ensure that the transaction is handled properly

 ChAPTeR 12  Linked Servers and Distributed Transactions468

on all servers, even if problems occur during the transaction, the transaction man-
ager uses a commit process with two phases:

■■ Phase 1: The prepare phase The transaction manager sends a “prepare
to commit” request to all the resource managers involved in the transaction .
Each resource manager performs any necessary preparatory tasks and then
reports its success or failure to the transaction manager . If all the resource
managers are ready to commit, the transaction manager broadcasts a com-
mit message and the transaction enters phase 2, the commit phase .

■■ Phase 2: The commit phase The resource managers attempt to commit
the transaction . Each resource manager then sends back a success or failure
message . If all the resource managers report success, the transaction man-
ager marks the transaction as completed and reports this to the application .
If a resource manager fails in either phase, the transaction is rolled back and
the failure is reported .

SQL Server applications manage distributed transactions either through Transact-
SQL or through the SQL Server database application programming interface (API) .
SQL Server itself supports distributed transactions by using the ITransactionLocal
(local transactions) and ITransactionJoin (distributed transactions) OLE DB interfaces,
as well as the rowset objects discussed previously . If an OLE DB provider does not
support ITransactionJoin, only read-only procedures are allowed for that provider .
Similarly, the types of queries you can execute on a linked server depend on the OLE
DB provider you are using .

With distributed queries and transactions, you can use most DML commands,
such as SELECT, INSERT, UPDATE, and DELETE . You cannot, however, use DDL com-
mands, such as CREATE, DROP, or ALTER . If you need to use DDL commands on
linked servers, you might want to create stored procedures and then execute these
stored procedures remotely when necessary .

Running the Distributed Transaction Coordinator Service
The Distributed Transaction Coordinator service must run on each server that
handles distributed transactions . Usually, you should set the service to start auto-
matically when the system starts . This ensures that the distributed transactions are
executed as expected . By using SQL Server Configuration Manager, you can control
the Distributed Transaction Coordinator service just as you do other SQL Server–
related services . For details, see “Configuring SQL Server Services” in Chapter 3 .

You can view the Distributed Transaction Coordinator service in SQL Server Man-
agement Studio by completing the following steps:

  1. In SQL Server Management Studio, connect to the server instance you want
to use .

  2. In the Object Explorer view, expand the Management node . You will see
the status of the Distributed Transaction Coordinator service . A green circle
with a triangle indicates that the service is running . A red circle with a square
indicates that the service is stopped .

 Linked Servers and Distributed Transactions ChAPTeR 12 469

Managing Linked Servers

To work properly, distributed queries and transactions depend on linked servers .
You configure the linked servers you are using by registering their connection and
data source information in SQL Server . Then you can reference the linked server
by using a single logical name . If you no longer need to link to a server, you can
remove the linked server connection .

Adding Linked Servers
If you want a server to be able to use distributed queries, distributed transactions,
or remote command execution, you must configure linked server connections to
other servers . For example, if clients that access a server named Zeta make distrib-
uted queries to Pluto and Omega, you must configure Pluto and Omega as linked
servers on Zeta . If clients that connect to Pluto make distributed queries to Zeta and
Omega, you must configure Zeta and Omega as linked servers on Pluto . To add a
linked server, complete the following steps:

  1. In SQL Server Management Studio, connect to the server instance you want
to configure .

  2. In the Object Explorer view, expand the Server Objects node .

  3. Right-click the Linked Servers entry, and then choose New Linked Server to
open the dialog box shown in Figure 12-1 .

FIGURE 12-1 The New Linked Server dialog box

 ChAPTeR 12  Linked Servers and Distributed Transactions470

  4. In the Linked Server text box, type the name of the linked server to create .

  5. If you are linking to a computer running SQL Server, select the SQL Server
option .

  6. If you are linking to a different data source, select the Other Data Source
option, and then configure the data source by using the text boxes provided .
If there is no text box available in the dialog box for a specific option, you
cannot configure that option for the selected provider . Provide information
in the text boxes as follows:

■■ Provider Select the name of the OLE DB provider to use when commu-
nicating with the specified linked server .

■■ Product Name Set the server product name for the OLE DB data source .

■■ Data Source Provide the OLE DB data source, which is used to initialize
the OLE DB provider .

■■ Provider String Type a provider-specific connection string that identi-
fies a unique data source .

■■ Location Set the location of the database for the OLE DB provider .

■■ Catalog Indicate the catalog to use when connecting to the OLE DB
provider .

REAL WORLD  The most commonly used combination of options is provider

name and data source. For example, if you are configuring a linked server for a

Microsoft Office Access database or a Microsoft Office excel spreadsheet, you

would select Microsoft Jet 4.0 OLe DB Provider and then set the data source name.

With Oracle, you would select Microsoft OLe DB Provider For Oracle and then set

the data source name.

  7. In the Select A Page list, select Server Options to configure server-specific
settings as follows:

■■ Collation Compatible Set this option to enable SQL Server to send
comparisons on character columns to the provider . Otherwise, SQL Server
evaluates comparisons on character columns locally . Set this option only
when the linked server has the same collation as the local server .

NOTE  The Collation Compatible option controls the sort order settings. If you

do not select this option, SQL Server uses the local sort order. This affects the

order of result sets, and you should note it when you develop SQL Server applica-

tions or configure clients that support distributed transactions.

■■ Data Access Set this option to enable the linked server for distributed
query access .

■■ RPC Set this option to enable remote procedure calls from the linked
server .

■■ RPC Out Set this option to enable remote procedure calls to the linked
server .

 Linked Servers and Distributed Transactions ChAPTeR 12 471

■■ Use Remote Collation Set this option to have SQL Server use the col-
lation from the linked server’s character columns . If you do not set this
option, SQL Server uses the default collation of the local server instance
to interpret data from the linked server . Only SQL Server databases take
advantage of this option .

■■ Collation Name Set this option to assign a specific collation for queries
and transactions . You must set the Collation Compatible option to False
before you can set this option .

■■ Connection Timeout Use this text box to set the time-out value for
connections made to the remote server .

■■ Query Timeout Use this text box to set the time-out value for queries
made to the remote server .

■■ Enable Promotion Of Distributed Transactions Use this text box to
enable calling a remote stored procedure and then automatically starting
a distributed transaction and enlisting the transaction with MS DTC . After
a distributed transaction has been started, remote stored procedure calls
can be made to other instances of SQL Server that have been defined as
linked servers . The linked servers are all enlisted in the distributed trans-
action, and MS DTC ensures that the transaction is completed against
each linked server .

  8. Click OK to create the linked server . Next, you must configure security set-
tings for the linked server, as discussed in “Configuring Security for Linked
Servers” later in this chapter .

The corresponding Transact-SQL command for adding linked servers is
sp_addlinkedserver . Use this stored procedure as shown in Sample 12-3 .

SAMPLE 12-3 sp_addlinkedserver Syntax and Usage

Syntax

sp_addlinkedserver [@server =] 'server'
 [, [@srvproduct =] 'product_name']
 [, [@provider =] 'provider_name']
 [, [@datasrc =] 'data_source']
 [, [@location =] 'location']
 [, [@provstr =] 'provider_string']
 [, [@catalog =] 'catalog']

Usage

EXEC sp_addlinkedserver
 @server='ORADBSVR38',
 @srvproduct='Oracle',
 @provider='OraOLEDB.Oracle',
 @datasrc='ORACLE10';
GO

 ChAPTeR 12  Linked Servers and Distributed Transactions472

Table 12-1 provides a summary of parameter values you can use when configur-
ing various OLE DB providers . The table also shows the sp_addlinkedserver param-
eter values to use for each OLE DB provider . Because some providers have different
configurations, there might be more than one row for a particular data source type .

NOTE When you want to access a mirrored SQL Server database, the connection

string must contain the database name to enable failover attempts by the data access

provider. You can specify the database name in the @provstr or @catalog parameter.

Optionally, the connection string also can provide a failover partner name.

TABLE 12-1 Parameter Values for Configuring OLE DB Providers

REMOTE OLE
DB DATA
SOURCE

OLE DB
PROVIDER

PRODUCT_
NAME

PROVIDER_
NAME DATA_SOURCE OTHER

SQL Server Microsoft
SQL Native
Client OLE
DB Provider

SQL
Server
(default)

— — —

SQL Server Microsoft
SQL Native
Client OLE
DB Provider

— SQLNCLI Network name
of SQL Server
(for default
instance)

Database
name
optional for
catalog field

SQL Server Microsoft
SQL Native
Client OLE
DB Provider

— SQLNCLI Servername\
instancename
(for specific
instance)

Database
name
optional for
catalog field

Oracle Microsoft
OLE DB
Provider for
Oracle

Any MSDAORA SQL*Net alias
for Oracle
database

—

Oracle 8 .0
and later

Oracle Pro-
vider for OLE
DB

Any OraOLEDB .
Oracle

Alias for
the Oracle
database

—

Access/Jet Microsoft
OLE DB Pro-
vider for Jet

Any Microsoft .
Jet .
OLEDB .4 .0

Full path name
of Jet data-
base file

—

ODBC data
source

Microsoft
OLE DB
Provider for
ODBC

Any MSDASQL System DSN
of ODBC data
source

—

 Linked Servers and Distributed Transactions ChAPTeR 12 473

REMOTE OLE
DB DATA
SOURCE

OLE DB
PROVIDER

PRODUCT_
NAME

PROVIDER_
NAME DATA_SOURCE OTHER

ODBC data
source

Microsoft
OLE DB
Provider for
ODBC

Any MSDASQL — ODBC
connection
string for
provider_
string

File system Microsoft
OLE DB
Provider for
Indexing
Service

Any MSIDXS Indexing Ser-
vice catalog
name

—

Microsoft
Office Excel
spreadsheet

Microsoft
OLE DB Pro-
vider for Jet

Any Microsoft .
Jet .
OLEDB .4 .0

Full path name
of Excel file

Excel 5 .0 for
provider_
string

IBM DB2
database

Microsoft
OLE DB
Provider for
DB2

Any DB2OLEDB — Catalog
name
of DB2
database in
catalog field

Configuring Security for Linked Servers
You use linked server security to control access and to determine how local logins
are used . By default, new linked servers are set to have no security context when a
user login is not defined . This blocks access to all logins not explicitly mapped to the
linked server .

To change the security settings for a linked server, complete the following steps:

  1. Start SQL Server Management Studio, and then access the local server that
contains the linked server definitions you want to change .

  2. In the Object Explorer view, expand the Server Objects node, and then
expand the Linked Servers node . You should now see an entry for each linked
server that you created on the currently selected server .

  3. Right-click the icon for the linked server you want to configure, and then
choose Properties to open the Linked Server Properties dialog box .

  4. In the Linked Server Properties dialog box, click the Security page, shown in
Figure 12-2 .

 ChAPTeR 12  Linked Servers and Distributed Transactions474

FIGURE 12-2 The Security page of the Linked Server Properties dialog box

  5. Map local logins to remote logins by clicking Add .

  6. Configure the following options on a per-login basis:

■■ Local Login Sets the ID of a local login that can connect to the linked
server .

■■ Impersonate Select this check box to use the local login ID to connect
to the linked server . The local login ID must match a login ID on the linked
server .

NOTE  If you select the Impersonate check box, you cannot map the local login

to a remote login.

■■ Remote User Sets the remote user to which the local login ID maps on
the linked server .

■■ Remote Password Sets the password for the remote user . If it is not
provided, the user might be prompted for a password .

  7. Use the options and text boxes in the lower portion of the Security page to
set a default security context for all users who do not have a specific login
setting for the linked server . These options are used as follows:

■■ Not Be Made Users without logins are not allowed access to the linked
server .

 Linked Servers and Distributed Transactions ChAPTeR 12 475

■■ Be Made Without Using A Security Context Blocks access to all log-
ins not explicitly mapped to the linked server .

■■ Be Made Using The Login’s Current Security Context Logins not
explicitly mapped to the linked server use their current login and pass-
word to connect to the linked server . Access is denied if the login and
password do not exist on the linked server .

■■ Be Made Using This Security Context Logins not explicitly mapped to
the linked server will use the login and password provided in the Remote
Login and With Password text boxes .

  8. When you finish configuring logins, click OK .

The related Transact-SQL command for configuring logins is sp_addlinkedsrv-
login . Use this stored procedure as shown in Sample 12-4 .

SAMPLE 12-4 sp_addlinkedsrvlogin Syntax and Usage

Syntax

sp_addlinkedsrvlogin [@rmtsrvname =] 'rmtsrvname'
[,[@useself =] 'TRUE' | 'FALSE' | 'NULL']
[,[@locallogin =] 'locallogin']
[,[@rmtuser =] 'rmtuser']
[,[@rmtpassword =] 'rmtpassword']

Usage

EXEC sp_addlinkedsrvlogin
 @rmtsrvname='ORADBSVR38',
 @useself='false',
 @locallogin=null,
 @rmtuser='william',
 @rmtpassword='tango98';
GO

Setting Server Options for Remote and Linked Servers
You set server options for remote and linked servers using sp_serveroption . Use
this stored procedure as shown in Sample 12-5 . Key options are summarized in
Table 12-2 .

SAMPLE 12-5 sp_serveroption Syntax and Usage

Syntax

sp_serveroption [@server =] 'server'
 ,[@optname =] 'option_name'
 ,[@optvalue =] 'option_value' ;

Usage

EXEC sp_serveroption 'ORADBSVR38', 'rpc out', true;

 ChAPTeR 12  Linked Servers and Distributed Transactions476

TABLE 12-2 Key Options for sp_serveroption

OPTION NAME OPTION USAGE/DESCRIPTION

collation compatible If TRUE, compatible collation is assumed with regard to
character set and collation sequence (or sort order), and
SQL Server sends comparisons on character columns to the
provider . Otherwise, SQL Server always evaluates compari-
sons on character columns locally .

collation name Sets the name of the collation used by the remote data
source if Use Remote Collation is TRUE and the data source
is not a SQL Server data source . The name must be a spe-
cific, single collation supported by SQL Server .

connect timeout Sets the time-out value for connecting to the linked server .
Set this option to 0 (zero) to use the sp_configure default .

data access Set to TRUE to enable a linked server for distributed query
access . Set this option to FALSE to disable the linked server
for distributed query access .

lazy schema
validation

If this option is TRUE, SQL Server skips schema checking of
remote tables at the beginning of a query .

query timeout Sets the time-out value for queries against a linked server .
Set this option to 0 (zero) to use the sp_configure default .

remote proc transac-
tion promotion

If this option is set to TRUE, calling a remote stored
procedure starts a distributed transaction and enlists the
transaction with MS DTC . Otherwise, a local transaction will
not be promoted to a distributed transaction while calling a
remote procedure call on a linked server .

rpc Set to TRUE to enable RPC from the linked server .

rpc out Set to TRUE to enable RPC to the linked server .

use remote collation If this option is set to TRUE, the collation of remote columns
is used for SQL Server data sources, and the collation
specified in Collation Name is used for non–SQL Server
data sources . Otherwise, distributed queries will always use
the default collation of the local server, while the collation
name and the collation of remote columns are ignored .

 Linked Servers and Distributed Transactions ChAPTeR 12 477

Deleting Linked Servers
If you do not need a linked server anymore, you can delete it by completing the
following steps:

  1. Start SQL Server Management Studio, and then access the local server that
contains the linked server definitions you want to delete .

  2. In the Object Explorer view, expand the Server Objects node, and then
expand the Linked Servers node . You should now see an entry for each linked
server that you created on the currently selected server .

  3. Right-click the icon for the linked server you want to remove, and then
choose Delete to open the Delete Object dialog box .

  4. In the Delete Object dialog box, click OK .

The Transact-SQL command to drop linked servers is sp_dropserver . The
 Transact-SQL command to drop linked server logins is sp_droplinkedsrvlogin . Use
these stored procedures as shown in Samples 12-6 and 12-7 .

SAMPLE 12-6 sp_dropserver Syntax and Usage

Syntax

sp_dropserver [@server =] 'server'
[, [@droplogins =]{'droplogins' | NULL}]

Usage

EXEC sp_dropserver 'ORADBSVR38', 'droplogins'

SAMPLE 12-7 sp_droplinkedsrvlogin Syntax and Usage

Syntax

sp_droplinkedsrvlogin [@rmtsrvname =] 'rmtsrvname',
[@locallogin =]'locallogin'

Usage

EXEC sp_droplinkedsrvlogin 'ORADBSVR38', 'william'

479

CHAP TE R 13

Implementing Snapshot,
Merge, and Transactional
Replication

■■ An Overview of Replication 479

■■ Planning for Replication 485

■■ Distributor Administration 490

■■ Creating and Managing Publications 499

■■ Subscribing to a Publication 512

Data replication lets you distribute data from a source database to one or
more destination databases . The source and destination databases can be

on computers running different instances of Microsoft SQL Server or on other
database systems, as long as an OLE DB provider is available for each destination
database . You have precise control over when replication occurs, what data is
replicated, and how other aspects of replication are handled . For example, you can
configure replication to occur continuously or periodically . Before I examine how
to implement replication, I’ll describe why you would want to use replication and
review the main concepts it involves .

An Overview of Replication

You use replication to copy data on one server and distribute it to other servers .
You can also use replication to copy data, transform it, and then distribute the cus-
tomized data to multiple servers . You generally use replication when you need to
manage data on multiple servers on a recurring basis . If you need to create a copy
of a database just once, you do not need replication—instead you should copy
the database as discussed in “Tips and Techniques” in Chapter 8 or in “Restoring a
Database to a Different Location” in Chapter 15 . If you need to copy and trans-
form data from one server to another server, you do not need replication either;

 ChAPTeR 13  Implementing Snapshot, Merge, and Transactional Replication480

instead, you should use the import and export procedure discussed in Chapter 11,
“Importing, Exporting, and Transforming Data .” Some reasons to use replication
include the following:

■■ To synchronize changes made to remote databases with the data in a central
database . For example, if a sales team uses remote laptops, you might need
to create a copy of data for its sales region on the laptops . Later, a salesper-
son in the field might add information or make changes when she is discon-
nected from the network . These modifications can be synchronized with the
central database by using replication .

■■ To create multiple instances of a database so that you can distribute the
workload . For example, if you have a central database that is updated regu-
larly, you might want to push changes out to departmental databases as they
occur . Employees in each department can then access data through these
departmental databases instead of all employees connecting to the central
database .

■■ To move specific data sets from a central server and distribute them to
several other servers . For example, you would use replication if you had a
central database and needed to distribute sales data to all the databases in
your company’s department stores .

■■ To customize data and distribute it to multiple subscribers . For example,
if your company sold subscriptions to your consumer credit database, you
could replicate the data for subscribers, customizing the data for each
subscriber .

Replication is designed to meet the needs of a wide variety of environments .
Replication architecture is divided into several different processes, procedures, and
components, each of which is used to customize replication for a particular situa-
tion . The replication architecture includes the following items:

■■ Replication components The server and data components used in
replication

■■ Replication agents Applications that assist in the replication process

■■ Replication variants The types of replication you can configure

Replication Components
Before working with replication, you need to know the main components of the
process and how you use them . Servers in the replication model can have one or
more of the following roles:

■■ Publisher Publishers are servers that make data for replication available to
other servers . Publishers also track changes to data and maintain other infor-
mation about source databases . Each data grouping has only one publisher .

 Implementing Snapshot, Merge, and Transactional Replication ChAPTeR 13 481

■■ Distributor Distributors are servers that distribute replicated data . Dis-
tributors store the distribution database, metadata, historical data, and (for
transactional replication) transactions .

■■ Subscriber Subscribers are the destination servers for replication . These
servers store the replicated data and receive updates . Subscribers can also
make changes to data . You can publish data to multiple subscribers .

The data being published for replication is referred to as articles and publica-
tions . Articles are the basic units for replication and can consist of a table, a subset
of a table, or other database objects . Publications are collections of articles that
subscribers can receive . You should associate articles with a publication and then
publish the publication . Articles can contain the following:

■■ An entire table

■■ Only certain columns from a table, obtained by using a vertical filter

■■ Only certain rows from a table, obtained by using a horizontal filter

■■ A table subset containing certain rows and columns

■■ A view, indexed view, or user-defined function

■■ A stored procedure

You can also specify whether schema objects are replicated . Schema objects
include constraints, indexes, triggers, collation settings, and extended properties .
When you alter tables, views, procedures, functions, or triggers by using data defini-
tion language (DDL) statements such as ALTER TABLE or ALTER VIEW on a published
object, the changes are propagated by default to all SQL Server subscribers . You
cannot publish any of the following for replication:

■■ The model, tempdb, and msdb databases

■■ System tables in the master database

In the publication and subscription model, setting up replication involves the
following steps:

  1. Selecting a replication type and model

  2. Performing any necessary preliminary tasks

  3. Configuring a distributor and enabling publishers and publication databases

  4. Creating a publication

  5. Creating subscriptions to the publication and designating subscribers

Replication Agents and Jobs
SQL Server uses various helper applications to assist in the replication process . These
applications are called replication	agents:

■■ Snapshot Agent (snapshot.exe) Creates a snapshot of data . The snapshot
includes schema and data, which are stored for distribution . The Snapshot
Agent is also responsible for updating status information in the distribution

 ChAPTeR 13  Implementing Snapshot, Merge, and Transactional Replication482

database . The Snapshot Agent runs on the distributor . Each published data-
base has its own Snapshot Agent that runs on the distributor and connects to
the publisher . Snapshot Agents are used with all types of replication .

■■ Distribution Agent (distrib.exe) Applies data from snapshot replication
or transactions from transaction replication to subscribers . The Distribution
Agent can run on the distributor or on subscribers . It runs on the distributor
for push subscriptions and on the subscriber for pull subscriptions . This agent
is not used with merge replication . (Push and pull subscriptions are discussed
in “Subscribing to a Publication” later in the chapter .)

■■ Merge Agent (replmerg.exe) Synchronizes changes that occur after the
initial snapshot is created . If any conflicts occur when the changes are being
synchronized, the conflicts are resolved using the rules set with the conflict
resolver . Depending on the configuration, Merge Agents run on the pub-
lisher or on subscribers . Merge Agents are used only with merge replication .

■■ Log Reader Agent (logread.exe) Moves transactions marked for replica-
tion from the transaction log on the publisher to the distributor . Each data-
base that is published using transactional replication has its own Log Reader
Agent that runs on the distributor and connects to the publisher . Log Reader
Agents are used only with transactional replication .

■■ Queue Reader Agent (qrdrsvc.exe) Stores database changes in a queue
where the updates can be asynchronously propagated to the publisher . This
allows subscribers to modify published data and synchronize those changes
without having an active network connection to the publisher . Queue Reader
Agents are used only with transactional replication with the queued updat-
ing option .

SQL Server 2008 does not have a separate cleanup agent . Instead, the following
replication maintenance jobs are used to perform cleanup tasks:

■■ Agent History Clean Up: DistributionDBName	 Removes replication
agent history from the distribution database . By default, this job runs every
10 minutes .

■■ Distribution Clean Up: DistributionDBName	 Deactivates subscriptions
that have not been synchronized within the maximum distribution-retention
period and removes replicated transactions from the distribution database .
By default, this job runs every 10 minutes .

■■ Expired Subscription Clean Up Removes expired subscriptions from pub-
lication databases . By default, this job runs every day at 1:00 A .M .

■■ Reinitialize Subscriptions Having Data Validation Failures Flags all sub-
scriptions that have data validation failures . The next time the Merge Agent
or Distribution Agent runs, a new snapshot is applied at the subscriber . By
default, this job is not enabled .

 Implementing Snapshot, Merge, and Transactional Replication ChAPTeR 13 483

■■ Replication Agents Checkup Detects replication agents that are not
actively logging history and writes an error to the Windows event logs if a
job step fails . By default, this runs every 10 minutes .

■■ Replication Monitoring Refresher For DistributionDBName	 Refreshes
cached queries used by the Replication Monitor . By default, this starts auto-
matically when SQL Server Agent starts and runs continuously .

Replication Variants
SQL Server supports several types of replication:

■■ Snapshot replication Takes a snapshot of current data and replaces
the entire copy of the data on one or more subscribers . With subsequent
snapshots, the entire copy of the data is again distributed to subscribers .
Although exact copies are a benefit of snapshot replication, this technique
increases the amount of overhead and traffic on the network . Another disad-
vantage of snapshot replication is that it runs only periodically, which usually
means that subscribers do not have the most current information .

In SQL Server 2008, snapshot preparation has been enhanced to allow the
processing of multiple articles while the server is scripting schema or bulk
copying data . This technique, referred to as parallel	processing, is used auto-
matically when possible . SQL Server 2008 also features resumable snapshot
delivery, which allows an interrupted snapshot delivery to be resumed auto-
matically . When delivery is resumed, only files that have not been transferred
or were partially transferred are transferred—any snapshot files that were
completely transferred are not retransferred .

■■ Transactional replication Uses transactions to distribute changes, primar-
ily in server-to-server environments . When replication starts, a snapshot of
the data is sent to subscribers . After the snapshot is sent, selected transac-
tions in the publisher’s transaction log are marked for replication and then
distributed to each subscriber separately . Snapshots are then taken periodi-
cally to ensure that the databases are synchronized . Distributed transactions
are used to ensure that incremental changes are applied consistently .

A benefit of transactional replication is that you replicate individual transac-
tions rather than an entire data set . Transactional replication can also occur
continuously or periodically, which makes the procedure more versatile
than snapshot replication by itself . To allow for easier implementation of
transactional replication for large databases, SQL Server 2008 allows you to
initialize a transactional subscription from backup . Thus, rather than using a
snapshot to initialize a subscription, you can restore any backup taken after
the creation of the publication on a subscriber . SQL Server 2008 also creates
concurrent snapshots whenever possible to reduce the amount of time that
locks are held during snapshot generation . This limits the impact on users
who are working with the database while the snapshot is being generated .

 ChAPTeR 13  Implementing Snapshot, Merge, and Transactional Replication484

■■ Merge replication Allows subscribers to make changes to replicated data
independently and primarily in a server-to-client environment . Later, you can
merge these changes into all the related source and destination databases .
The snapshots needed to initialize merge replication can be generated ahead
of time for each subscriber, or you can specify that subscribers can initiate
snapshot generation during the initial synchronization . Merge replication
does not use distributed transactions and cannot guarantee transactional
consistency . Instead, merge replication uses a conflict resolver to determine
which changes are applied . By default, merge replication processes changes
on a row-by-row basis . You can also group sets of related rows as a logical
record . This ensures that related sets of records are always processed in their
entirety at the same time on a subscriber .

SQL Server 2008 provides article-level statistics during merge replication .
This feature provides better tracking of the merge phase and also allows you
to define the order of article processing during merge synchronization . This
technique, referred to as declarative	ordering, is useful if you use triggers or
rely on triggers firing in a specific order .

In snapshot and transactional replication, subscribers normally do not change
data . However, with transactional replication, you have several options for allowing
subscribers to change data:

■■ Immediate updating Allows subscribers to make changes and then imme-
diately update the publisher . The publisher then replicates these changes to
other subscribers .

■■ Queued updating Allows subscribers to make changes and then store the
changes in a queue until they can be applied to the publisher . The publisher
then replicates the changes to other subscribers . Immediate and queued
updating are supported only in snapshot and transactional publications .

Queued updating provides fault tolerance that might be needed when databases
are separated geographically . Immediate updating requires an active connection to
the publisher, but queued updating does not . By using queued updating, subscrib-
ers can asynchronously apply changes, which means that they can store changes
when a link is inactive and then submit the changes to the publisher when the link is
active .

You can also use immediate updating with queued updating as a failover method
when you expect publishers and subscribers to be connected but do not want to
lose the ability to make updates if a link fails . Here, you configure both updating
options, using immediate updating as the primary update mechanism and switching
to queued updating when needed . You can invoke failover at any time . However,
you cannot fail back afterward until the subscriber and publisher are connected and
the Queue Reader Agent has applied all pending updates in the queue .

Both immediate updating and queued updating use transactions and the stan-
dard two-phase commit process to apply updates to the publisher . Transactions

 Implementing Snapshot, Merge, and Transactional Replication ChAPTeR 13 485

ensure that the update can be committed if it is successfully applied or rolled back
if there is a problem . The transactions are applied from a specific subscriber to the
publisher . After changes are made to the publisher, the publisher replicates the
changes to other subscribers .

Transactions are completed automatically through the update process and
are managed by the Distributed Transaction Coordinator (DTC) . Custom applica-
tions that modify subscriber data can be written as though they were updating a
single database . In a standard (default) configuration, updates to the subscriber are
applied only when they can be replicated through a transaction . If the update can-
not be replicated through a transaction, the subscriber will not be able to modify
the subscription data .

SQL Server detects subscriber changes that would conflict with changes on the
publisher . If it detects a conflict, it rejects the transaction and does not allow the
data changes . Usually, a rejection means that the subscriber needs to synchronize
with the publisher before attempting to update the data locally .

When you include stored procedures as articles in a snapshot publication, SQL
Server replicates the entire stored procedure from the publisher to the subscribers .
Changes caused by the execution of the stored procedures are replicated with new
snapshots . If you use transactional replication, however, you can replicate execu-
tion of the stored procedure instead of replicating the changes that the execution
causes . By sending an execute command rather than data changes, you reduce the
amount of data that needs to flow across the network and improve the performance
of SQL applications that use replication .

If you replicate the execution of stored procedures, you have two configura-
tion settings . You can use standard procedure execution, or you can use serialized
procedure execution . With standard procedure execution, procedure execution
is replicated to all subscribers, even if those procedures are executed in different
transactions . Because multiple transactions might be executing at a particular time,
subscribers’ data cannot be guaranteed to be consistent with the publisher’s data .
With serialized stored procedures, procedures are executed in sequence if they are
referenced within serialized transactions . If the procedures are executed outside
serialized transactions, changes to the data are replicated instead . This behavior
guarantees that the subscribers’ data is consistent with the publisher’s data .

Planning for Replication

As you have learned, the architecture for the replication process is extensive . This
ensures that the architecture is versatile enough to meet the needs of almost any
replication situation . Unfortunately, this versatility also makes replication tricky to
configure . To make replication go smoothly, you should do a bit of planning, which
involves selecting a specific replication model and performing any necessary pre-
liminary tasks before you start configuring replication .

 ChAPTeR 13  Implementing Snapshot, Merge, and Transactional Replication486

Replication Models
The main decision to make when you select a replication model involves the physi-
cal layout of the publisher, distributor, and subscriber databases . Replication models
you might want to use include the following:

■■ Peer-to-peer model Allows replication between identical participants in
the topology . The advantage of this model is that it permits roles to move
between replicated nodes dynamically for maintenance or failure manage-
ment . The disadvantage is the additional administration overhead involved
with moving roles .

■■ Central publisher model Maintains the publisher and distributor data-
bases on the same server, with one or more subscribers configured on other
servers . The advantages of this model are manageability and ease of mainte-
nance . The disadvantages include the extra workload and resource usage on
the publication server .

TIP  The central publisher model is the most common replication model.

Unfortunately, you will often find that the extra load on the publication server

slows down server performance. To reduce the server load, you should put the

distributor on its own server. Be aware, however, that doing this does not entirely

eliminate the workload on the publication server. The publisher and distributor

still need to communicate, and they still need to pass data back and forth.

■■ Central publisher with remote distributor model Maintains the
publisher and distributor databases on different servers, with one or more
subscribers configured on other servers . The advantage of this model is that
the workload is more evenly distributed . The disadvantage is that you have
to maintain an additional server .

■■ Central subscriber model A single subscriber database that collects data
from several publishers . For example, if you have ServerA, ServerB, and
ServerC, ServerA and ServerB act as central publishers and ServerC acts as
the central subscriber . In this configuration, when updates are distributed
from ServerA and ServerB, they are collected on ServerC . A central subscriber
can then republish the combined data to other servers . To use this model,
all tables used in replication must have a unique primary key; otherwise, the
replication model will not work properly .

■■ Publishing subscriber model Relays the distribution of data to other
subscribers; you can use this approach with any of the other models . For
example, if you have two geographically separated sites, a publisher can rep-
licate data to servers at site A and then have a publishing subscriber at site B
that distributes the data to servers at site B .

 Implementing Snapshot, Merge, and Transactional Replication ChAPTeR 13 487

Preliminary Replication Tasks
After selecting the replication type and model you want to use, you prepare for the
replication by performing preliminary tasks . The following sections describe the
main tasks involved, according to replication type .

Preparing for Snapshot Replication

If you use snapshot replication, the data being replicated is copied in full to data
files on the distributor . Normally, these snapshot files are the same size as the
data you are replicating, and they are stored in the SQL Server Repldata folder by
default . You should be sure that the drive on which the replication data is stored has
adequate free space . For example, if you are using snapshot replication to distribute
publication A with 500 megabytes (MB) of data, publication B with 420 MB, and
publication C with 900 MB, you should have at least 2 gigabytes (GB) of free space .
Some of the free space is needed for processing overhead; the rest is required for
the actual data .

You can also store snapshot data in an alternate location where subscribers can
retrieve it at a later time . If you use an alternate location, you have the option of
compressing the snapshot file, which reduces the disk space requirements only
for the files you are compressing . It does not change the overall space require-
ments, and it does not always reduce the initial and final space requirements . With
compression, the Snapshot Agent generates the necessary data files and then
uses the Microsoft CAB utility to compress the files . When the subscriber receives
compressed snapshot files, the files are written to a temporary location, which is
either the default client working directory or an alternate location specified in the
subscription properties . The subscriber uses the CAB utility to decompress the files
before reading them .

REAL WORLD When you create snapshot files in the default location and in an alter-

nate location on different drives, the files are created separately. This means that the

total disk space required typically is what you would expect based on the size of the

files. however, when you create snapshot files in the default location and in an alter-

nate location on the same drive, both files are initially created in the default location

and then the alternate location file is copied to its final destination. This means that

the total disk space required in the default location is twice what you might expect.

Compression does not help because the Snapshot Agent generates the necessary data

files and then compresses them.

Replication timing is another important consideration in snapshot replication .
When the Snapshot Agent creates a snapshot of a published table, the agent locks
the entire table while it bulk copies the data from the publisher to the distributor .
As a result, users cannot update any data in the table until the lock is released . To

 ChAPTeR 13  Implementing Snapshot, Merge, and Transactional Replication488

reduce the impact on operations, you should carefully schedule when replication
occurs . Some actions that might help include the following:

■■ Identifying times when operations are at their lowest levels or users do not
need write access to the tables you are replicating

■■ Identifying times when snapshots must be made and scheduling users to do
work during that time that does not require write access to the tables you are
replicating

SQL Server 2008 processes multiple articles while performing other tasks such
as scripting schema or bulk copying data . This parallel processing can increase the
speed and efficiency of the snapshot generation process . SQL Server 2008 also
features resumable snapshot delivery, which allows an interrupted snapshot delivery
to be automatically resumed . When the delivery is resumed, only files that have not
been transferred yet or have been transferred partially are transferred—any snap-
shot files that have already been transferred completely are not retransferred .

Preparing for Transactional Replication

Because transactional replication builds on the snapshot replication model, you
will want to prepare for both snapshot and transactional replication . When you use
transactional replication, an initial snapshot is sent to the distributor, and this snap-
shot is then updated on a periodic basis, such as once a month . Between snapshots,
transactions are used to update subscribers . These transactions are logged in the
distributor’s database and are cleared out only after a new snapshot is created .

Transaction logs for published databases are extremely important to success-
ful replication . As long as replication is enabled, pending transactions cannot be
cleared out of a published database until they have been passed to the distributor .
Because of this, you might need to increase the size of a published database’s trans-
action log . Furthermore, if the publisher cannot contact the distributor, or if the Log
Reader Agent is not running, transactions will continue to build up in the publisher’s
transaction logs .

With transactional replication, all published tables must have a declared primary
key . You can add a primary key to an existing table by using the ALTER TABLE
statement . (See Chapter 10, “Manipulating Schemas, Tables, Indexes, and Views .”)
Additionally, if a publication uses very large	data types, you must be sure that you
keep the following limitations in mind:

■■ When updating varchar(max), nvarchar(max), and varbinary(max) data types,
you should use the WRITE clause of the UPDATE statement to perform a par-
tial or full update . If you are performing a partial update of a varchar(max)
column, you might update the first 100 characters of a column . If you
are performing a full update, you might modify all the data in a column .
@Offset and @Length values for the WRITE clause are specified in bytes
for varbinary(max) and varchar(max) data types and in characters for the
nvarchar(max) data type .

 Implementing Snapshot, Merge, and Transactional Replication ChAPTeR 13 489

TIP  For best performance, you should insert or update data in multiples of

8,040 bytes, which ensures the data is written using whole data pages. Any WRITe

updates that insert or append new data are minimally logged when the database

recovery model is set to Simple or Bulk Logged. Minimal logging is not used when

you update existing values.

■■ When modifying text, ntext, or image data types, UPDATE initializes the
column, assigns a valid text pointer to it, and allocates at least one data
page unless the column is being updated with NULL . If you need to replace
or modify large blocks of text, ntext, or image data, Microsoft recommends
that you use WRITETEXT or UPDATETEXT instead of the UPDATE statement .
However, support for WRITETEXT and UPDATETEXT is deprecated and might
be removed in future versions of SQL Server .

■■ The SQL Server configuration option MAX TEXT REPL SIZE controls the maxi-
mum byte size of the text and image data that can be replicated . Operations
that exceed this limit will fail . Set the maximum text replication size with the
sp_configure system stored procedure .

The snapshot process can be modified for transactional replication in several
important ways . To allow for easier implementation of transactional replication of
large databases, SQL Server 2008 allows you to initialize a transactional subscrip-
tion from backup . Thus, rather than using a snapshot to initialize a subscription, you
can restore on a subscriber any backup taken after the creation of the publication .
SQL Server 2008 also creates concurrent snapshots whenever possible to reduce
the amount of time that locks are held during snapshot generation . This limits the
impact on users who are working with the database while the snapshot is being
generated .

Preparing for Merge Replication

For merge replication, all published tables must have primary keys . If a table con-
tains foreign keys or is used in validation, you must include the reference table in
the publication . Otherwise, update operations that add new rows will fail because
SQL Server cannot find the required primary key . Additionally, merge replication
affects time-stamp column usage . Time stamps are generated automatically and
are guaranteed to be unique only in a specific database . Because of this, SQL Server
replicates time-stamp columns but does not replicate the literal time-stamp values
contained in the columns . These values are regenerated when the initial snapshot
rows are applied at the subscriber .

Like transactional replication, merge replication has a few limitations when it
comes to text and image columns . For example, you must explicitly update text
and image columns with an UPDATE statement . When using merge replication,
subscribers can make changes to replicated data independently, and these changes
can be merged into all of the related source and destination databases . The Merge
Agent watches for changes that conflict with other changes . If it detects a conflict,
a conflict resolver is used to determine which change is applied and which change

 ChAPTeR 13  Implementing Snapshot, Merge, and Transactional Replication490

is rolled back . The Merge Agent can track changes at a column level or at a row
level . In column-level tracking, a conflict exists when changes are made to the same
column in a table in more than one copy . In row-level tracking, a conflict exists when
changes are made to the same row in a table in more than one copy .

Normally, subscribers to merge publications synchronize updates only with the
publisher . Subscribers can also synchronize with other servers, which they do by
designating alternate synchronization partners . It is useful to have an alternate syn-
chronization partner when you want to ensure that updates can be made even if the
primary publisher is offline or otherwise unavailable .

NOTE By default, merge replication processes changes on a row-by-row basis. You

can group sets of related rows as a logical record. This ensures that related sets of

records are always processed in their entirety at the same time on a subscriber. You can

also use declarative ordering to define the order of article processing during merge

synchronization.

Distributor Administration

As the name indicates, you use distributors to distribute replicated data . When you
work with distributors, the core set of administration tasks you perform includes
setting up new distributors, enabling publishers, enabling publication databases,
updating existing distributors, and deleting distributors .

Setting Up a New Distributor
Setting up a new distributor is the first major step in configuring replication . Before
you get started, you should prepare as follows:

■■ Select a replication type—either snapshot, transactional, or merge .

■■ Select a replication model, such as the central publisher model .

■■ Perform any necessary preliminary tasks . To meet certain limitations, you
might need to update clients and applications that modify published data-
bases directly .

When you are ready to proceed, configure the distributor by completing the fol-
lowing steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the server you want to use, and then work your way down to the Replication
folder .

TIP  If you cannot successfully connect to a remote server, the server might not

be configured to accept remote connections. As discussed in Chapter 3, “Manag-

ing the Surface Security, Access, and Network Configuration,” you need to use SQL

Server Configuration Manager to allow remote connections.

 Implementing Snapshot, Merge, and Transactional Replication ChAPTeR 13 491

  2. Right-click the Replication folder, and then select Configure Distribution . This
starts the Configure Distribution Wizard .

  3. Click Next to move past the Welcome screen . On the Distributor page of the
wizard, you can select a distributor, as shown in Figure 13-1 .

FIGURE 13-1 The Configure Distribution Wizard

  4. Because you want to set up a new distributor, accept the default option to
allow the current server to act as its own distributor, and then click Next .

  5. If SQL Server Agent isn’t already started and configured to start automati-
cally, you’ll see the SQL Server Agent Start page . Select Yes, Configure The
SQL Server Agent Service To Start Automatically, and then click Next .

  6. On the Snapshot Folder page, set the location of the folder used to store
snapshots, and then click Next .

The default path is to the %ProgramFiles%\Microsoft SQL Server\MSSQL10 .
MSSQLSERVER\MSSQL\ReplData folder on the server designated as the dis-
tributor . To guarantee that the Distribution Agent and Merge Agent running
on subscribers can access snapshots of their push and pull subscriptions, you
must place the snapshot folder on a network share and specify the network
path by typing it in the text box provided, such as \\CorpSvr09\ReplData .

TIP  Because the wizard cannot validate the path you enter, you should be sure

that the path is correct before continuing.

 ChAPTeR 13  Implementing Snapshot, Merge, and Transactional Replication492

  7. On the Distribution Database page, provide information for the distribution
database, as shown in Figure 13-2 . Enter a name for the distribution database,
and then set folder locations for the corresponding data and log files . Click
Next when you are ready to continue .

TIP  You cannot use mapped network drives as folder locations for the data and

log files.

NOTE  Be sure to use a descriptive name for the database, such as employee-

Distribution or empDistr.

FIGURE 13-2 The Distribution Database page of the Configure Distribution Wizard

  8. As shown in Figure 13-3, you need to enable publishers for this distribution
database . Only registered servers in the current domain are shown . If you
want to add a server so that it can use this distributor when it becomes a
publisher, click Add, and then do the following:

■■ Choose Add SQL Server Publisher to configure a connection to an
instance of SQL Server by using the Connect To Server dialog box . Reg-
istered servers are listed in the Server Name list; you can also browse for
others . The default authentication is Windows authentication, which uses
your current login and password . Click Connect .

■■ Choose Add Oracle Publisher to configure a connection to an Oracle
server by using the Connect To Server dialog box . Registered servers are
listed in the Server Name list; you can also browse for others . The default

 Implementing Snapshot, Merge, and Transactional Replication ChAPTeR 13 493

authentication is Oracle Standard authentication, which requires a user
login and password . Click Connect .

FIGURE 13-3 The Publishers page of the Configure Distribution Wizard

  9. To the right of registered publisher entries, you see the properties button (…) .
Click this button to open the Properties dialog box to set publisher options
for the related server . As Figure 13-4 shows, the following options are
available:

■■ Agent Connection Mode Distributors use SQL Server Agent to handle
replication tasks . SQL Server Agent must be configured to start automati-
cally . By default, synchronization agents log in to the publishers by using
the SQL Server Agent account (determined by selecting the Impersonate
The Agent Process Account option) . If you want synchronization agents
to use a specific login when connecting to publishers, select SQL Server
Authentication from the drop-down list, and then enter the login and
password to use .

■■ Default Snapshot Folder Sets the location of the folder used to store
snapshots . The Snapshot folder is stored on the distribution database and
can be in a different location for each publisher that uses the distribution
database .

  10. Click OK to close the Publisher Properties dialog box . Click Next . If you
specified a remote server as a possible publisher, you next must specify and
confirm the password that remote publishers will use to connect to the dis-
tributor . This password must be provided when a remote publisher connects

 ChAPTeR 13  Implementing Snapshot, Merge, and Transactional Replication494

to the distributor to perform administrative operations for replication . The
password must meet the Windows policy requirements for length and com-
plexity . Click Next .

FIGURE 13-4 The Publisher Properties dialog box

  11. By default, the wizard configures the distributor immediately when you click
Finish . If you would rather have the wizard generate a script that you can run
or schedule to run at a later time, clear the Configure Distribution check box
and select the Generate A Script File With Steps To Configure Distribution
check box .

  12. Click Next, and then click Finish . The wizard configures the distributor or
generates the script according to the option you specified . The success or
failure of each step is shown in the related dialog box . If a step fails, click the
link provided to display the error details . Click Close .

When you establish a server as a distributor, many areas of the server are
updated . You might note that there is a new distribution database; additional jobs,
alerts, and proxies for replication can now be listed; and other updates might be
evident . The Replication Monitor tool also becomes available . To learn how to work
with this SQL Server feature, see Chapter 14, “Profiling and Monitoring SQL Server
2008 .”

Configure publications and subscriptions as explained in “Enabling and Updating
Publishers,” “Enabling Publication Databases,” and “Creating Subscriptions” later in
this chapter .

 Implementing Snapshot, Merge, and Transactional Replication ChAPTeR 13 495

Updating Distributors
When you configure a new distributor, you can set up a new distribution database,
as discussed in the previous section, “Setting Up a New Distributor .” If you have
already configured a distributor, you can update the distributor and create addi-
tional distribution databases by completing the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the server you want to use, and then work your way down to the Replication
folder .

  2. Right-click the Replication folder, and then select Distributor Properties . This
opens the dialog box shown in Figure 13-5 .

FIGURE 13-5 The Distributor Properties dialog box

  3. You can use the options in the dialog box to change publisher and distribu-
tor data properties for the currently selected distributor . Use the Select A
Page list in the left pane as follows:

■■ General Configure distribution databases, agent profiles, and properties
for retention and queuing .

■■ Publishers Enable and disable publishers for the distributor, set pub-
lisher properties, and configure passwords for administrative links .

 ChAPTeR 13  Implementing Snapshot, Merge, and Transactional Replication496

  4. On the General page, you see a list of current distribution databases and their
settings for transaction and history retention . By default, new distribution
databases store transactions only as long as the transactions are needed—
determined by the retention setting of at least zero (0) hours—but not for
more than 72 hours, and they retain replication performance history data for
at least 48 hours .

  5. To view the current location of database and log files for a selected distribu-
tion database or change the retention settings, click the properties button
(…) in the third column to the right of the database name . This displays the
Distribution Database Properties dialog box, shown in Figure 13-6 . Use the
text boxes and options provided to manage the retention settings as neces-
sary . Click OK when you finish to apply the changes .

FIGURE 13-6 The Distribution Database Properties dialog box

  6. On the Publishers page, you see a list of current publishers for this distributor
and the distribution databases they use . A check mark next to a publisher’s
name indicates that the publisher is enabled .

  7. Click OK to close the dialog box and apply any changes .

 Implementing Snapshot, Merge, and Transactional Replication ChAPTeR 13 497

Creating Distribution Databases
Distribution databases are used to store the information being distributed to sub-
scribers . Each publisher that uses a distributor is assigned a distribution database it
can connect to . Publishers can share distribution databases, and you also can create
additional databases as necessary . If you have already configured a distributor, you
can create additional distribution databases by completing the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the server you want to use, and then work your way down to the Replication
folder .

  2. Right-click the Replication folder, and then select Distributor Properties . This
opens the dialog box shown previously in Figure 13-5 .

  3. On the General page, click New . You can now configure the new distribution
database .

  4. Enter a name for the distribution database, and then set folder locations
for the corresponding data and log files . You cannot use mapped network
drives .

  5. Use the options in the Transaction Retention and History Retention columns
to determine how long transactions and performance history are retained for
the distribution database .

  6. Click OK twice to close the open dialog boxes and create the distribution
database .

You can assign the new distribution database to any new publishers you
configure .

enabling and Updating Publishers
Distributors can work only with servers and databases that are enabled for their use .
You can enable publishers when you create a new distributor or by completing the
following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the server you want to use, and then work your way down to the Replication
folder .

  2. Right-click the Replication folder, and then select Distributor Properties .

  3. In the Distributor Properties dialog box, select the Publishers page . Use the
check boxes provided to enable or disable publishers . Only registered pub-
lishers are shown . If you want to add a server so that it can use this distribu-
tor when it becomes a publisher, click Add, and then do the following:

■■ Choose Add SQL Server Publisher to configure a connection to an
instance of SQL Server by using the Connect To Server dialog box .
Registered servers are listed in the Server Name list; you can also browse
for others . The default authentication is Windows authentication, which

 ChAPTeR 13  Implementing Snapshot, Merge, and Transactional Replication498

uses your current login and password . Click Connect . If more than one
distribution database is available, the Distribution Database box includes a
drop-down list from which you can choose the database to use .

■■ Choose Add Oracle Publisher to configure a connection to an Oracle
server by using the Connect To Server dialog box . Registered servers are
listed in the Server Name list, and you can browse for others . The default
authentication is Oracle Standard authentication, which requires a user
login and password . Click Connect . If more than one distribution database
is available, the Distribution Database box includes a drop-down list from
which you can choose the database to use .

  4. To the right of the registered publisher entries, you see the properties button
(…) . Click this button to set publisher options for the related server . The fol-
lowing options are available:

■■ Agent Connection Mode Distributors use SQL Server Agent to handle
replication tasks . SQL Server Agent must be configured to start automati-
cally . By default, synchronization agents log in to the publishers by using
the SQL Server Agent account (determined by selecting the Impersonate
The Agent Process Account option) . If you want synchronization agents
to use a specific login when they connect to publishers, select SQL Server
Authentication in this box, and then enter the login and password to use .
(This is the Administrative Link Password, which also can be set by select-
ing the publisher on the Publishers page, and then using the boxes and
options provided in the lower-right area of the dialog box .)

■■ Default Snapshot Folder Sets the location of the folder used to store
snapshots . The Snapshot folder is stored on the distribution database and
can be in a different location for each publisher that uses the distribution
database .

enabling Publication Databases
After you configure distributors and publishers, you can enable publication data-
bases by completing the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the server you want to use, and then work your way down to the Replication
folder .

  2. Right-click the Replication folder, and then select Publisher Properties . This
opens the Publisher Properties dialog box .

  3. To enable publication databases, select the Publication Databases page, and
then select the check boxes under the Transactional column to enable a
database for snapshot or transactional replication, or select the check boxes
under the Merge column to enable a database for merge replication .

  4. To enable a publication database for any type of replication, select the cor-
responding Transactional and Merge check boxes .

 Implementing Snapshot, Merge, and Transactional Replication ChAPTeR 13 499

Deleting Distribution Databases
Before you can delete a distribution database, you must remove all publications and
disable all the publishers using the distribution database . After you have done this,
you can delete distribution databases by completing the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the server you want to use, and then work your way down to the Replication
folder .

  2. Right-click the Replication folder, and then select Distributor Properties . This
opens the Distributor Properties dialog box .

  3. On the General page, select the distribution database you want to delete, and
then click Delete .

  4. Click OK to close the dialog box and perform the delete operation .

Disabling Publishing and Distribution
By using the Disable Publishing And Distribution Wizard in SQL Server Management
Studio, you can disable publishing and distribution . When you disable publishing,
the following occurs:

■■ All publications on the selected server are dropped

■■ All subscriptions to the affected publications are dropped

■■ The server is disabled as a distributor

You can disable publishing and distribution by completing the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the server you want to use, and then work your way down to the Replication
folder .

  2. Right-click the Replication folder, and then select Disable Publishing And
Distribution . This starts the Disable Publishing And Distribution Wizard .

  3. Click Next to skip the Welcome screen, and then choose Yes, Disable Publish-
ing On This Server .

  4. Click Next . If you have configured multiple publishers, review the publishers
that will be disabled .

  5. Click Next, and then click Finish .

Creating and Managing Publications

After you have configured a distributor and enabled publishers, publication data-
bases, and subscribers, you can create publications . You manage the publications
you create as you would any other SQL Server resource . For more information about
subscriptions and subscribers, see “Subscribing to a Publication” later in this chapter .

 ChAPTeR 13  Implementing Snapshot, Merge, and Transactional Replication500

Creating Publications
The easiest way to create a publication is by using SQL Server Management Studio .
To do this, complete the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the server you want to use, and then work your way down to the Replication
folder .

  2. Right-click the Local Publications folder, and then select New Publication .
This starts the New Publication Wizard . Click Next to skip the Welcome
screen .

NOTE  If you want to create an Oracle publication, select New Oracle Publication.

This starts the New Oracle Publication Wizard, which is similar to the New Publica-

tion Wizard.

  3. Choose the database on the selected server that contains the data or objects
you want to publish . You can select user databases only . Click Next .

  4. Choose the type of replication you want to use for the publication:

■■ Snapshot Publication Creates a publication setup for snapshot
replication

■■ Transactional Publication Creates a publication setup for transactional
replication

■■ Transactional Publication With Updatable Subscriptions Creates a
publication setup for transactional replication with subscriptions that can
be updated

■■ Merge Publication Creates a publication setup for merge replication

  5. If you are creating a snapshot or transactional publication, continue by using
the steps listed next in “Snapshot and Transactional Publications .”

  6. If you are creating a merge publication, continue by using the steps listed in
“Merge Publications” later in this chapter .

Snapshot and Transactional Publications

Snapshot and transactional publications are the most commonly used types of pub-
lications . With snapshot publications, the publisher periodically replaces subscriber
data with an updated snapshot . With transactional publications, the publisher
updates data, and changes are sent to subscribers through transactions .

After you start a new publication as discussed in the previous section, “Creating
Publications,” you can create a snapshot or transactional publication by completing
the following steps:

  1. Click Next to continue . On the Articles page, shown in Figure 13-7, select
the objects for replication . The Objects To Publish pane shows the types of
objects that are available for replication . Click the plus sign (+) next to the
object to see a list of available objects of the specified type .

 Implementing Snapshot, Merge, and Transactional Replication ChAPTeR 13 501

FIGURE 13-7 The Articles page of the New Publication Wizard

  2. To select all the columns in a table or view, select the table or view name
check box . Which objects are available depends on the types of objects
in the database and can include tables, stored procedures, user-defined
functions, and views . Tables without primary keys cannot be published for
transactional replication; you’ll see a key surrounded by a red circle with a
line through it in the Objects To Publish pane . Additionally, tables referenced
by views are required .

  3. To select individual columns in a table or view, expand the table or view
entry, and then select the appropriate check boxes for the columns to
include . If you are using transactional replication and selecting individual
columns, keep in mind that primary key columns are required and must be
published . Primary key columns are indicated by a key with a green asterisk .
By clearing a column check box, you exclude the related column from repli-
cation (which was previously referred to as vertically filtering a table) .

  4. Default properties are set for each selected object (article), including the des-
tination object name and object owner, the action to use if the object exists,
and whether user triggers and extended properties should be copied . You
can manage these default properties by setting global defaults, by setting
defaults for an individual article, or by doing both:

■■ To set defaults for an individual article, select it under Objects To Publish,
click Article Properties, and then select Set Properties Of Highlighted…
Article . Refer to “Setting Publication Properties” later in this chapter for
details .

 ChAPTeR 13  Implementing Snapshot, Merge, and Transactional Replication502

■■ To set defaults for all articles of a particular type, select the object type
under Objects To Publish, click Article Properties, and then select Set
Properties Of All…Articles . Refer to “Setting Publication Properties” for
details .

  5. After you select objects to use in the publication, click Next . If any issues
require changes to the publication, you will see a prompt similar to the one
shown in Figure 13-8 . Read the description carefully to determine how to
resolve the issue, and then make changes as necessary . Some important
issues that might be described in a prompt include the following:

■■ Tables referenced by views are required as are objects referenced by
stored procedures . If you do not select referenced tables or objects, you
must create them manually on the subscriber .

■■ SQL Server adds uniqueidentifier columns to any tables you have selected
for replication . Adding a uniqueidentifier column causes INSERT state-
ments without column lists to fail and increases the time needed to
generate the first snapshot .

■■ IDENTITY columns require the NOT FOR REPLICATION option . If a pub-
lished IDENTITY column does not use this option, INSERT commands
might not replicate properly .

FIGURE 13-8 Article Issues page of the New Publication Wizard

  6. Click Next . By default, all rows are published . If you want to filter your data,
you can use the Filter Table Rows page to exclude unwanted rows from

 Implementing Snapshot, Merge, and Transactional Replication ChAPTeR 13 503

published tables . As you define filters, they are added to the Filtered Tables
list . Selecting a filter shows the related WHERE clause in the Filter box . When
a filter is selected, you can click Edit to modify the settings or click Delete to
delete the filter . To define a new filter, click Add to display the Add Filter dia-
log box, shown in Figure 13-9 . Select a table to filter and then create a filter
statement that identifies which rows subscribers will receive . Enter a WHERE
clause for the corresponding SELECT published_columns FROM	TableName
statement . Click OK to close the Add Filter dialog box and return to the Filter
Table Rows page .

FIGURE 13-9 The Add Filter dialog box

  7. Click Next . The Snapshot Agent initializes subscriptions by creating a snap-
shot of publication schema and data that can be pushed to subscribers or
pulled by subscribers . You can create a snapshot immediately by selecting
Create A Snapshot Immediately . If you want the Snapshot Agent to create
snapshots periodically, select the Schedule The Snapshot Agent To Run At
The Following Times check box . By default, snapshots are made every day at
one-hour intervals . To change this schedule, click Change, and then set a new
schedule .

  8. Click Next . Set a login for each agent used in replication, which can include
the Snapshot, Log Reader, and Queue Reader agents . To configure the login

 ChAPTeR 13  Implementing Snapshot, Merge, and Transactional Replication504

for the Snapshot Agent, click the related Security Settings button, and then
do the following:

■■ Specify the Windows account under which the agent runs at the distribu-
tor . This account is referred to as the process	account. The account must
be a member of the db_owner fixed database role in the distribution
database and must have write permissions on the snapshot share . Be
sure to type domain account names in the form domain\account, such as
cpandl\sqlserver . Then type and confirm the account password .

■■ Specify whether the agent should make connections to the publisher by
impersonating the account specified in the Process Account text box or
by using a SQL Server account . If you use a SQL Server account, enter a
SQL Server login and password . In most cases, you will want to imperson-
ate the Windows account rather than use a SQL Server account .

  9. The Log Reader Agent is used with updatable and nonupdatable transac-
tional publications . By default, the Log Reader Agent uses the same login as
the Snapshot Agent . To specify separate security settings for the Log Reader
Agent, clear the Use The Security Settings From The Snapshot Agent check
box, and then click the related Security Settings button . You can then specify
the process account and how connections to the publisher are made .

  10. The Queue Reader Agent is used with updatable transactional publications .
By default, the Queue Reader Agent has a separate security context from the
other agents . To configure security, click the related Security Settings button,
and then specify the process account .

  11. Click Next . Choose the action the wizard will perform on completion . By
default, the wizard creates the publication . You can also generate a script file
with the steps to create the publication . If you want only to generate a script,
clear Create The Publication . Click Next .

  12. On the Complete The Wizard page, type a name for the publication, and
then click Finish . You will see a dialog box that shows the progress of the
creation process . If errors occur, you must resolve any problems before you
can continue; otherwise, you must restart the publication-definition process .

Merge Publications

After you start a new publication as discussed in “Creating Publications” earlier in
this chapter, you can create a merge publication by completing the following steps:

  1. Click Next to continue . Select the types of subscribers that will subscribe to
the publication . You can choose any or all of the following:

■■ SQL Server 2008 With this type of subscriber, snapshots are formatted
using native SQL Server format .

■■ SQL Server 2005 With this type of subscriber, newer data types are not
supported, including the filestream, date, and geography data types .

 Implementing Snapshot, Merge, and Transactional Replication ChAPTeR 13 505

■■ SQL Server 2005 Mobile, SQL Server Compact 3.1 And Higher With
this type of subscriber, snapshots are formatted using character format .

■■ SQL Server 2000 With this type of subscriber, logical records, replica-
tion of DDL changes, and some filter optimizations are not supported .

  2. Click Next to continue . On the Articles page, shown previously in Figure 13-7,
select the objects for replication . The Objects To Publish pane shows the
types of objects that are available for replication . Click the plus sign (+) next
to the object to see a list of available objects of the specified type .

  3. To select all the columns in a table or view, select the table or view name
entry . The objects available depend on the types of objects in the database;
they can be tables, stored procedures, user-defined functions, and views .
Tables referenced by views are required .

  4. To select individual columns in a table or view, expand the table or view
entry, and then select the appropriate entries for the columns to include . If
you are selecting individual columns, keep in mind that both primary key and
Rowguid columns are required and must be published . Primary key columns
are indicated by a key and a green asterisk . Rowguid columns are indicated
by a green asterisk . By clearing a column check box, you exclude the related
column from replication (which was previously referred to as vertically filter-
ing a table) .

  5. Default properties are set for each selected object (article), including the des-
tination object name and object owner, the action to use if the object exists,
and whether user triggers and extended properties should be copied . You
can manage these default properties by setting global defaults, by setting
defaults for an individual article, or by doing both:

■■ To set defaults for an individual article, select it under Objects To Publish,
click Article Properties, and then select Set Properties Of Highlighted…
Article . Refer to “Setting Publication Properties” later in this chapter for
details .

■■ To set defaults for all articles of a particular type, select the object type
under Objects To Publish, click Article Properties, and then select Set
Properties Of All…Articles . Refer to “Setting Publication Properties” for
details .

  6. After you select objects to use in the publication, click Next . If any issues
require changes to the publication, you will see a prompt, similar to the one
shown previously in Figure 13-8, describing the issue or issues . Read the
description carefully to determine how to resolve the problems indicated,
and then make changes as necessary . Common issues include the following:

■■ Tables referenced by views are required, as are objects referenced by
stored procedures . If you do not select referenced tables or objects, you
must create them manually on the subscriber .

 ChAPTeR 13  Implementing Snapshot, Merge, and Transactional Replication506

■■ SQL Server adds uniqueidentifier columns to any tables you have selected
for replication . Adding the uniqueidentifier column causes INSERT state-
ments without column lists to fail and increases the time needed to
generate the first snapshot .

■■ IDENTITY columns require the NOT FOR REPLICATION option . If a pub-
lished IDENTITY column does not use this option, INSERT commands
might not replicate properly .

  7. Click Next . Use the Filter Table Rows page to exclude unwanted rows from
published tables . As you define filters, they are added to the Filtered Tables
list . Selecting a filter shows the related WHERE clause in the Filter text box .
You can define filters manually and then extend those filters to other tables,
or you can attempt to automate the process .

  8. If you want to define a new filter, complete the following steps:

■■ Click Add, and then select Add Filter to display the Add Filter dialog box .
By default, all rows are published . To change this behavior, select a table
to filter, and then create a filter statement that identifies which rows sub-
scribers will receive . Enter a WHERE clause for the corresponding SELECT
published_columns FROM TableName statement .

■■ Specify how many subscribers will receive data from this table: one or
many . Merge publications use static or parameterized filters . Static filters
are evaluated when the publication is created, and all subscribers to the
publication receive the same data . Parameterized filters are evaluated
during replication synchronization, and different subscribers can receive
different partitions of data based on the subscriber login or computer
name .

■■ Click OK to close the Add Filter dialog box .

  9. After you define a filter, you can extend the filtering to a related table by
defining a join . To do this, create a filter on a table as discussed in the previ-
ous step . On the Filter Table Rows page, select the filter, click Add, and then
select Add Join To Extend The Selected Filter . This displays the Add Join
dialog box, shown in Figure 13-10 . You must now do the following:

■■ In the Joined Table list, select the joined table from the list of published
tables, and then define the INNER JOIN clause manually or by using the
builder .

■■ Specify the join options . If there is a one-to-one or one-to-many relation-
ship between rows in the joined table, select Unique Key . If rows in the
joined table do not relate to exactly one row in the filtered table, clear the
Unique Key check box . Additionally, if related changes should be handled
as a logical record and you are working with a unique key, select Logical
Record .

■■ Click OK to close the Add Join dialog box .

 Implementing Snapshot, Merge, and Transactional Replication ChAPTeR 13 507

FIGURE 13-10 The Add Join dialog box

  10. An alternative to defining filters manually is to generate filters automati-
cally . On the Filter Table Rows page, click Add, and then select Automatically
Generate Filters . In the Generate Filters dialog box, you must then define a
new filter as explained previously . SQL Server uses the defined relationships
to add joins that extend the filter to other tables .

  11. Click Next . The Snapshot Agent initializes subscriptions by creating a snap-
shot of publication schema and data that can be pushed to subscribers or
pulled by subscribers . You can create a snapshot immediately by selecting
Create A Snapshot Immediately . If you want the Snapshot Agent to cre-
ate a snapshot periodically, select Schedule The Snapshot Agent To Run . By
default, snapshots are made once every 14 days . To change this schedule,
click Change, and then set a new schedule .

  12. Click Next . Configure the login for the Snapshot Agent . Click the related
Security Settings button .

  13. Specify the Windows account under which the agent runs at the distributor .
This account is referred to as the process	account . The account must be a
member of the db_owner fixed database role in the distribution database and
must have write permissions on the snapshot share . Be sure to type domain
account names in the form domain\account, such as cpandl\sqlserver . Then
type and confirm the account password .

  14. Specify whether the agent should make connections to the publisher by
impersonating the account specified in the Process Account text box or by
using a SQL Server account . If you choose to use a SQL Server account, enter

 ChAPTeR 13  Implementing Snapshot, Merge, and Transactional Replication508

a SQL Server login and password . In most cases, you want to impersonate the
Windows account rather than use a SQL Server account . Click OK .

  15. Click Next . Choose the action the wizard performs on completion . By default,
the wizard creates the publication . You can also generate a script file with the
steps to create the publication . If you want to generate only a script, clear
Create The Publication . Click Next .

  16. On the Complete The Wizard page, type a name for the publication, and
then click Finish . You will see a dialog box that shows the progress of the
creation process . If errors occur, you must resolve any problems before you
can continue or you must restart the publication-definition process .

Viewing and Updating Publications
You can view or change the properties of publications at any time . To do so, com-
plete the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the server you want to use, and then work your way down to the Replication
folder .

  2. Select the Local Publications folder to see a list of publications for the repli-
cated database . The icon associated with a publication tells you its type:

■■ Snapshot Purple book icon with a blue circle

■■ Transactional Blue book icon with a green arrow pointing right

■■ Merge Yellow book icon with a green arrow pointing right and a blue
arrow pointing left

  3. Right-click the publication you want to change, and then select Properties to
display the Publication Properties dialog box .

  4. Use the Publication Properties dialog box to configure all the publication
options discussed in “Creating Publications” earlier in this chapter .

Setting Publication Properties
Publication properties control the behavior of replication . You can modify the
properties at any time . To edit the properties of an existing publication, follow these
steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the server you want to use, and then work your way down to the Replication
folder .

  2. Select the Local Publications folder to see a list of publications for the repli-
cated database .

  3. Right-click the publication you want to edit, and then select Properties .

  4. Choose the properties you want from the list of properties in the Publication
Properties dialog box . The available publication properties depend on the
replication type . You might see one or more of the following pages:

 Implementing Snapshot, Merge, and Transactional Replication ChAPTeR 13 509

■■ General Allows you to configure basic options and is available for all
replication types . You can view the article name, source database, and type .
You can set the description and the subscription expiration . By default, sub-
scriptions do not expire, but you can set an expiration interval in hours .

■■ Articles Allows you to view and configure published articles .

■■ Filter Rows Allows you to view and work with row filters .

■■ Snapshot Sets options for snapshots, which are used with all replica-
tion types . You can set options that control the snapshot format, either
Native SQL Server or Character . Native SQL Server can be used only when
all subscribers are running SQL Server . Character format is required when
a publisher or subscriber is not running SQL Server . You can also specify
where to put snapshot files and additional scripts to run before or after
applying a snapshot .

■■ FTP Snapshot And Internet Allows subscribers to download snap-
shot files by using File Transfer Protocol (FTP) or Web synchronization .
If you select the FTP option, snapshot files are placed in the FTP root
folder by default and anonymous login is used . With FTP, you also can
specify an alternate path from the root folder and provide a login and
password . If you select the Web Synchronization option, you allow
subscribers to synchronize subscriptions by connecting to the IIS server
you specify . The IIS server must use Secure Sockets Layer, and you must
enter the fully qualified Web address in the text box provided, such as
https://wserver2.cpandl.com/synchronize .

REAL WORLD  After you enable a publication for Web synchronization, you

must configure the IIS server by installing the SQL Server client components

and SQL Server Management Studio. Next, start SQL Server Management

Studio on the IIS server. Right-click the publication, select Configure Web

Synchronization, and then follow the prompts to create a virtual directory for

synchronization on the Web server.

On the Web Server page, create a new folder. On the Virtual Directory Infor-

mation page, set the virtual directory alias, such as synchronize, and the local

path, such as c:\Inetpub\wwwroot\websync. When prompted, copy the SQL

Server Internet Server API DLL to this folder. On the Authenticated Access

page, select Basic Authentication, clear Integrated Windows Authentication,

and then clear Digest Authentication. Configure the default domain and realm

by entering the domain of the computer that is running IIS. On the Directory

Access page, add the accounts that subscribers will use to make connections

to the IIS server. On the Snapshot Share Access page, specify the share to use

for snapshots. On 64-bit computers, you must copy Microsoft SQL Server\100\

COM\replisapi.dll to the virtual directory and then execute the following com-

mand: regsvr32 replisapi.dll.

■■ Subscription Options Provides options for allowing or disallow-
ing anonymous subscriptions, attachable subscription databases, pull

 ChAPTeR 13  Implementing Snapshot, Merge, and Transactional Replication510

subscriptions, non–SQL Server subscribers, and replication of schema
changes . By default, anonymous subscriptions, pull subscriptions, and
replication of schema changes are allowed .

■■ Publication Access List Controls who can access the publication . By
default, only sa, local administrators, the database owner, the process
accounts, and distributor_admin have access to the publication data .

■■ Agent Security Allows you to view or change the process account for
agents used by the publication .

Setting Agent Security and Process Accounts
All publications use one or more replication agents, including the Snapshot, Log
Reader, and Queue Reader agents . The Snapshot Agent is used with all publication
types . The Log Reader Agent is used with updatable and nonupdatable transac-
tional publications . By default, the Log Reader Agent uses the same login as the
Snapshot Agent . The Queue Reader Agent is used with updatable transactional pub-
lications . By default, the Queue Reader Agent has a security context that is separate
from the other agents .

If agent security is not configured properly, replication will fail . You can configure
security for these agents by completing the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the server you want to use, and then work your way down to the Replication
folder .

  2. Select the Local Publications folder to see a list of publications for the repli-
cated database .

  3. Right-click the publication you want to configure, and then select Properties
to display the Publication Properties dialog box .

  4. Select the Agent Security page .

  5. To configure the login for the Snapshot Agent or Log Reader Agent, click the
related Security Settings button, and then do the following:

■■ Specify the Windows account under which the agent runs . This account is
referred to as the process account . Be sure to type domain account names
in the form domain\account, such as cpandl\sqlserver . Then type and
confirm the account password .

■■ Specify whether the agent should make connections to the publisher by
impersonating the account specified in the Process Account text box or
by using a SQL Server account . If you choose to use a SQL Server account,
enter a SQL Server login and password . For most situations, you should
impersonate the Windows account rather than use a SQL Server account .

  6. To configure security for the Queue Reader Agent, which is used for transac-
tion replication with updating, click the related Security Settings button, and
then specify the process account .

 Implementing Snapshot, Merge, and Transactional Replication ChAPTeR 13 511

Controlling Subscription Access to a Publication
All publications have access control lists (ACLs) . For publications, access control lists
determine which logins can be used by a pull subscription and immediately update
subscribers to access the publication . By default, only sa, local administrators, the
database owner, the process accounts, and distributor_admin have access to the
publication data . To add or remove users, complete the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the server you want to use, and then work your way down to the Replication
folder .

  2. Click the Local Publications folder to see a list of publications for the repli-
cated database .

  3. Right-click the publication you want to change, and then select Properties to
display the Publication Properties dialog box .

  4. Select the Publication Access List page . Use the buttons provided to add or
remove logins .

Creating a Script for a Publication
Scripts can help you manage publications . You can generate scripts to create the
objects specified in a publication and enable the publication, or you can use them to
drop the objects specified in a publication and disable the publication .

To create a script for a publication, complete the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the server you want to use, and then work your way down to the Replication
folder .

  2. Click the Local Publications folder to see a list of publications for the repli-
cated database .

  3. Right-click the publication you want to edit, and then select Generate Scripts .

  4. In the Generate SQL Script dialog box, specify the type of script to generate .
Typically, you’ll want to create or enable the replicated objects rather than
drop or disable them .

  5. The script will call replication stored procedures to perform the necessary
tasks, and it creates any necessary jobs when executing . To script the jobs
and create a record of the jobs, select the Replication Jobs check box .

  6. Click Generate Script, and then select Save To File . In the Script File Location
dialog box, select the location where you want to save the script as an .sql
file . Click Save . By default, the file is saved as Unicode text . The file can be
executed in the Query view to re-create or drop the publication .

  7. Click Close .

NOTE In the Query view, you can access scripts by clicking the Open File button on

the toolbar and then entering the location of the script file.

 ChAPTeR 13  Implementing Snapshot, Merge, and Transactional Replication512

Deleting a Publication
When you have finished using a publication, you can delete it to release resources
that the publication uses . But before you do this, you might want to create a script
that allows you to re-create the publication automatically if you need it again . After
creating the script, you can delete the publication by completing the following
steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the server you want to use, and then work your way down to the Replication
folder .

  2. Click the Local Publications folder to see a list of publications for the repli-
cated database .

  3. Right-click the publication you want to remove, and then select Delete .

  4. When prompted to confirm the action, click Yes .

Subscribing to a Publication

The final step in the replication process is to have servers subscribe to the publica-
tion . You can do this by using push or pull subscriptions .

Subscription essentials
With push subscriptions, the publisher is responsible for replicating all changes to
subscribers without subscribers asking for the changes . You usually use push sub-
scriptions when you need to send changes to subscribers immediately or when you
want to schedule updates periodically . Because the publisher initiates the replica-
tion, push subscriptions also offer more security than pull subscriptions . However,
making the publisher responsible for replicating changes increases overhead on the
publisher and might not be the ideal subscription model for a server with a heavy
workload .

With pull subscriptions, subscribers request periodic updates of changes from
the publisher . You usually use pull subscriptions when you have a large number of
subscribers or when you need to reduce overhead on the publisher . You also might
want to use pull subscriptions for independent mobile users . A single publication
can support a mixture of push and pull subscriptions .

You can also use a special type of pull subscription called an anonymous
subscription . With an anonymous subscription, the publisher and distributor do
not maintain subscription information . Instead, the subscriber is responsible for
maintaining and synchronizing the subscription, which increases the load on the
 subscriber but reduces the load on the publisher and distributor . Accordingly,
anony mous subscriptions are most useful when you have a large number of sub-
scribers or when you allow subscriptions using the Internet .

 Implementing Snapshot, Merge, and Transactional Replication ChAPTeR 13 513

NOTE You create anonymous subscriptions to publications in the same way that you

create pull subscriptions. You enable anonymous subscriptions by using the Subscrip-

tion Options page of the Publication Properties dialog box. Set the Allow Anonymous

Subscriptions option to True to allow anonymous subscriptions. Set Allow Anonymous

Subscriptions to False to prevent anonymous subscriptions.

The Distribution Agent and Merge Agent are responsible for synchronizing
subscriptions and resetting their retention period . If these agents are not run-
ning, subscriptions become incompatible with their publications and are marked
as deactivated . A deactivated subscription is a subscription that has exceeded the
publication-retention period . Deactivated subscriptions no longer receive updates
during synchronization, and you must mark these subscriptions for reinitialization
to enable them again . If you do not reenable deactivated subscriptions before they
expire, the Expired Subscription Clean Up job will delete them .

Creating Subscriptions
The main difference between push and pull subscriptions involves how they are
initiated . The subscriber initiates pull subscriptions . The distributor initiates push
subscriptions . You configure subscriptions by completing the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect
to the database server instance that will act as a subscriber or distributor, and
then work your way down to the Replication folder .

  2. Right-click the Local Subscriptions folder, and then select New Subscriptions .
This starts the New Subscription Wizard .

  3. Click Next . You use the Publication page, shown in Figure 13-11, to specify
where you want to look for a publication . Select the Find SQL Server
Publisher or Find Oracle Publisher option, or select a registered server as
appropriate .

  4. After you select a server, you can browse available publications on that
server . Select the publication to which you want to subscribe, and then click
Next .

  5. The next page you see depends on the type of publication . With merge
publications, on the Merge Agent Location page, select Run All Agents At
The Distributor to create push subscriptions, or select Run Each Agent At
Its Subscriber to create pull subscriptions . With other publication types, on
the Distribution Agent Location page, choose where to run the Distribution
Agent or agents used with this publication . If you want the agents to run on
the distributor (creating a push subscription), select Run All Agents At The
Distributor . If you want the agents to run on each subscriber (creating a pull
subscription), select Run Each Agent At Its Subscriber .

 ChAPTeR 13  Implementing Snapshot, Merge, and Transactional Replication514

FIGURE 13-11 The Publication page of the New Subscription Wizard

  6. Click Next . On the Subscribers page, shown in Figure 13-12, choose one or
more subscribers for the publication .

FIGURE 13-12 The Subscribers page of the New Subscription Wizard

 Implementing Snapshot, Merge, and Transactional Replication ChAPTeR 13 515

  7. If you are using updatable transactional replication and a server you want
to act as a subscriber is not listed, click Add SQL Server Subscriber, and then
configure a connection to a computer running SQL Server by using the Con-
nect To Server dialog box .

  8. If you are using merge, snapshot, or nonupdatable transactional replication
and a server you want to act as a subscriber is not listed, click Add Subscriber,
and then do the following:

■■ Choose Add SQL Server Subscriber to configure a connection to a com-
puter that is running SQL Server by using the Connect To Server dialog
box . Registered servers are listed in the Server Name list, and you can also
browse for others . The default authentication is Windows authentication,
which uses your current login and password . Click Connect . Specify the
destination database in which to create the subscription or select New
Database to create a new database for the subscription .

■■ Choose Add Non-SQL Subscriber to configure a connection to an Oracle
or IBM DB2 server by using the Add Non-SQL Server Subscriber dialog
box . Enter the data source name that can be used to locate the database
on the network . SQL Server generates a connection string for the data-
base by using the data source name, login, password, and any connection
options that you specify on the Distribution Agent Security page in this
wizard . The data source name and connection string are not validated
until the Distribution Agent attempts to initialize the subscription . Click
OK . The subscription database is set as the default destination, which is
the database you specified in the data source name .

  9. The next page you see depends on the type of publication . With other
publications, you configure security for the Distribution Agent . With merge
publications, you configure security for the Merge Agent . With merge publi-
cations, you set the process account and connection options for each Merge
Agent running on subscribers (for pull subscriptions) or for the distributor
(for push subscriptions) by clicking the related properties button (…) . With
nonmerge publications, you set the process account and connection options
for each subscriber (for pull subscriptions) or for the distributor (for push
subscriptions) by clicking the related properties button (…) . After you click
the properties button (. . .), do the following:

■■ Specify the Windows account under which the Merge Agent/Distribu-
tion Agent runs for the selected server (which is either a subscriber or
a distributor) . This account is referred to as the process	account. Be sure
to type domain account names in the form domain\account, such as
cpandl\sqlserver . Then type and confirm the account password . The
account must be a member of the Publication Access list . (To check or
modify the access list, access the Local Publications folder . In the Object
Explorer view, right-click the publication, and then select Properties . This

 ChAPTeR 13  Implementing Snapshot, Merge, and Transactional Replication516

displays the Publication Properties dialog box . Select the Publication
Access List page .)

■■ Specify whether the agent should make connections to the publisher/
distributor by impersonating the account specified in the Process Account
text box or by using a SQL Server account . If you use a SQL Server
account, enter a SQL Server login and password . In most cases, you
should impersonate the Windows account rather than use a SQL Server
account . The account must be a member of the Publication Access list .

■■ Specify whether the agent should make connections to the subscriber by
impersonating the account specified in the Process Account text box or
by using a SQL Server account . If you use a SQL Server account, enter a
SQL Server login and password . In most cases, you should impersonate
the Windows account rather than use a SQL Server account . The account
must be a database owner of the subscription database .

  10. Click OK to close the Properties dialog box . Click Next . On the Synchroniza-
tion Schedule page, set the synchronization schedule for Distribution Agents
or Merge Agents by using one of the following options:

■■ Run Continuously Select this option to continuously check for updates
on the publisher .

■■ Run On Demand Only Select this option if you want to update the
subscription database manually .

■■ Define Schedule Select this option to set a periodic schedule, such as
once an hour .

  11. If you selected a publication that uses updatable transactions, the next
wizard page will be titled Updatable Subscriptions . Specify whether you want
the subscription databases to be initialized .

■■ Clear the Replicate check box for a subscriber if you do not want to create
an updatable subscription at this time .

■■ Set the Commit At Publisher option to Simultaneously Commit Changes
to enforce immediate updating . Changes are committed on both the
subscriber and the publisher at the same time, which requires a dedicated
connection .

■■ Set the Commit At Publisher option to Queue Changes And Commit
When Possible to allow queuing of changes . Queued changes are com-
mitted on the subscriber immediately and on the publisher during the
next online synchronization .

  12. If you choose to create an updatable subscription, the next page allows you
to configure the technique that will be used by the subscriber to access the
publisher . You can use an existing linked server or remote server to establish
the connection if you have already configured these options as described in
Chapter 12, “Linked Servers and Distributed Transactions .” Or you can use a

 Implementing Snapshot, Merge, and Transactional Replication ChAPTeR 13 517

SQL Server login and password, provided the login is listed on the Publica-
tion Access list .

TIP To check or modify the access list, access the Local Publications folder. In the

Object explorer view, right-click the publication, and then select Properties. This

displays the Publication Properties dialog box. Select the Publication Access List

page.

  13. Use the Initialize Subscriptions page to determine whether the subscription
databases should be initialized:

■■ Clear the Initialize check box if you have already initialized the subscrip-
tion or will initialize a transactional subscription from backup .

■■ Set the Initialize When option to Immediately to initialize the subscription
database with a snapshot of the publication data and schema as soon as
possible after the Snapshot Agent generates the snapshot .

■■ Set the Initialize When option to At First Synchronization to initialize the
subscription database with a snapshot of the publication data and schema
the first time the subscription is synchronized .

NOTE  With merge publications, initialization is handled by the Snapshot Agent

and Merge Agent. The Snapshot Agent creates the initial view of the schema and

data, and then the Merge Agent applies the snapshot either immediately or at first

synchronization.

With nonmerge publications, initialization is handled by the Snapshot Agent and

Distribution Agent. The Snapshot Agent creates the initial view of the schema and

data, and then the Distribution Agent applies the snapshot either immediately or

at first synchronization.

  14. If you are using merge replication, use the Subscription Type page to specify
whether the subscription type is server or client . With a server subscription,
subscribers can republish data to other subscribers, act as alternative sync
partners, and resolve conflicts according to the relative priority you set . With
a client subscription, subscribers cannot replicate data to other subscribers
or act as alternative sync partners . Additionally, with a client subscription,
the first subscriber to submit a change to a publisher wins any conflicts that
might arise from that change . You cannot change the subscription type later .

  15. Click Next . On the Wizard Actions page, choose the action the wizard will
perform on completion . By default, the wizard creates the subscription or
subscriptions . You can also generate a script file with the steps to create the
subscription or subscriptions . If you want to generate only a script, clear Cre-
ate The Subscription(s) . Click Next .

  16. Click Next . Check the setup, and then click Finish when you are ready to cre-
ate the subscription or subscriptions . The Creating Subscription(s) dialog box
shows you the status of the creation process . Click the message link provided
for any errors to read the error text .

 ChAPTeR 13  Implementing Snapshot, Merge, and Transactional Replication518

Viewing Subscription Properties
To view the configuration properties of a subscription, complete the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect
to the database server instance that will act as a subscriber or distributor, and
then work your way down to the Replication folder .

  2. Select the Local Publications folder to see a list of publications for the server
instance . Click Refresh or press F5 if you don’t see a list of publications .

  3. Double-click a publication to show its current subscriptions .

  4. To view the properties of a subscription, right-click the subscription name,
and then choose Properties to display the Subscription Properties dialog box .

Updating, Maintaining, and Deleting Subscriptions
To update, maintain, or delete a subscription, complete the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect
to the database server instance that will act as a subscriber or distributor, and
then work your way down to the Replication folder .

  2. Select the Local Subscriptions folder to see a list of subscriptions for the
server instance .

  3. Right-click a subscription, and then choose one of the following options:

■■ View Synchronization Status Displays a status of the synchronization
process for the selected subscription .

■■ Set Update Method For updatable subscriptions only, this option
allows you to switch between immediate updating and queued updating .

■■ Delete Deletes the subscription . Confirm the action by clicking Yes
when prompted .

You validate and reinitialize subscriptions through the associated publication . For
more details, refer to the following two sections .

Validating Subscriptions
You can validate subscriptions to verify that the subscribers have the same num-
ber of rows of replication data as the publisher . When you mark a subscription for
validation, the validation occurs the next time the Distribution Agent runs, and the
results are available in the Replication Monitor .

To validate one or more subscriptions, follow these steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect
to the database server instance that will act as a subscriber or distributor, and
then work your way down to the Replication folder .

  2. Select the Local Publications folder to see a list of publications for this server
instance .

 Implementing Snapshot, Merge, and Transactional Replication ChAPTeR 13 519

  3. If you want to validate subscriptions for a transactional publication, right-
click the transactional publication you want to use, and then choose Validate
Subscriptions . This displays the Validate Subscriptions dialog box . You
can validate all SQL Server subscriptions or the specified subscriptions on
computers running instances of SQL Server . Non–SQL Server subscriptions
cannot be validated . Optionally, click Validation Options to configure how
the Distribution Agent computes row counts, whether the Distribution Agent
compares checksums, and whether the Distribution Agent is stopped after
the validation is completed .

  4. If you want to validate all subscriptions for the selected merge publication,
select Validate All SQL Server Subscriptions . This displays the Validate All
Subscriptions dialog box . By default, the distributor validates only the row
counts on the subscriber . If all subscribers are running SQL Server, you can
also verify the data in rows by comparing checksum values .

  5. Click OK . The validation occurs the next time the Distribution Agent runs,
and the results are available in the Replication Monitor . More information
about how to work with the Replication Monitor is provided in Chapter 14 .

Reinitializing Subscriptions
You can reinitialize snapshots in a publication’s subscription database by using the
current snapshot or a new snapshot . To reinitialize all subscriptions, complete the
following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect
to the database server instance that will act as a subscriber or distributor, and
then work your way down to the Replication folder .

  2. Select the Local Publications folder to see a list of publications for this server
instance .

  3. Right-click the publication you want to work with, and then choose Reinitial-
ize All Subscriptions . This displays the Reinitialize Subscription(s) dialog box .

  4. To use the current snapshot to reinitialize the subscriptions, select Use The
Current Snapshot .

  5. To generate a new snapshot to reinitialize the subscriptions, select Use A
New Snapshot . If you want to generate the snapshot immediately, select
Generate The New Snapshot Now .

  6. Click Mark For Reinitialization .

To reinitialize a specific subscription, complete the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect
to the database server instance that will act as a subscriber or distributor, and
then work your way down to the Replication folder .

  2. Select the Local Publications folder to see a list of publications for this server
instance .

 ChAPTeR 13  Implementing Snapshot, Merge, and Transactional Replication520

  3. Double-click the publication you want to use to show its current
subscriptions .

  4. Right-click the subscription you want to reinitialize, and then choose Reini-
tialize . This displays the Reinitialize Subscription(s) dialog box .

  5. Select Use The Current Snapshot or Use A New Snapshot as appropriate . If
you want to generate a new snapshot immediately, select Generate The New
Snapshot Now .

  6. Click Mark For Reinitialization .

521

CHAP TE R 14

Profiling and Monitoring
SQL Server 2008

■■ Monitoring Server Performance and Activity 521

■■ Working with Replication Monitor 525

■■ Working with the Event Logs 528

■■ Monitoring SQL Server Performance 535

■■ Configuring a Management Data Warehouse 544

■■ Solving Performance Problems with Profiler 546

Monitoring server performance, tracking user activity, and troubleshooting
errors are essential parts of database administration, and Microsoft SQL

Server has several tools that you can use to perform these tasks . Performance
Monitor, the standard Windows Server 2008 tool for monitoring servers, has
updated counters for SQL Server . These counters allow you to track many different
server resources and activities . SQL Server Profiler, an analysis and profiling tool,
allows you to trace server events . Other tools and resources are available as well,
such as stored procedures and the SQL Server logs .

Monitoring Server Performance and Activity

Monitoring SQL Server is not something you should do haphazardly . You need to
have a plan—a set of goals that you hope to achieve . Let’s look at some reasons
you might want to monitor SQL Server and the tools you can use to do this .

Reasons to Monitor SQL Server
One of the main reasons you monitor SQL Server performance is to troubleshoot
problems . For example, if users are having problems connecting to the server,
you will want to monitor the server to find out more about what is causing these
problems . Your goal is to track down the problem by using the available monitor-
ing resources and then solve the problem effectively .

 ChAPTeR 14  Profiling and Monitoring SQL Server 2008522

Another common reason to monitor SQL Server is to improve server perfor-
mance . To achieve optimal performance, you need to minimize the time it takes for
users to see the results of queries and maximize the total number of queries that the
server can handle simultaneously . You do this by using the following techniques:

■■ Resolve hardware issues that might be causing problems . For example, if disk
read/write activity is slower than expected, work on improving disk input/
output (I/O) .

■■ Monitor memory and CPU usage and take appropriate steps to reduce the
load on the server . For example, other processes running on the server might
be using memory and CPU resources needed by SQL Server .

■■ Cut down the network traffic load on the server . With replication, for
example, you can configure remote stored procedure execution rather than
transmit large data changes individually .

Unfortunately, you often have to make tradeoffs in resource usage . For example,
as the number of users accessing SQL Server grows, you might not be able to reduce
the network traffic load, but you might be able to improve server performance by
optimizing queries or indexing .

Getting Ready to Monitor
Before you start monitoring SQL Server, it is a good idea to establish baseline
performance metrics for your server . To do this, you measure server performance
at various times and under different load conditions . You can then compare the
baseline performance with subsequent performance to determine how SQL Server
is performing . Performance metrics that are well above the baseline measurements
might indicate areas in which the server needs to be optimized or reconfigured .

After you establish the baseline metrics, prepare a monitoring plan . A compre-
hensive monitoring plan involves the following steps:

  1. Determine which server events should be monitored to help you accomplish
your goal .

  2. Set filters to preferentially select the amount of information that is collected .

  3. Configure monitors and alerts to watch the events .

  4. Log the event data so that it can be analyzed .

  5. Analyze the event data and replay the data to find a solution .

These procedures will be examined later in this chapter in “Monitoring SQL
Server Performance .” Although you should develop a monitoring plan in most cases,
sometimes you might not want to go through all these steps to monitor SQL Server .
For example, if you want to check only current user activity levels, you might not
want to use Performance Monitor and instead run the stored procedure sp_who .
You can also examine this information in the Activity Monitor window in SQL Server
Management Studio .

 Profiling and Monitoring SQL Server 2008 ChAPTeR 14 523

NOTE The stored procedure sp_who reports on current users and processes. When

you execute sp_who, you can pass a login name as an argument. If you do not specify

a login name, NULL is passed in this argument, so all logins are returned. If you use

the keyword active as the login name, you will see only active processes; any processes

waiting for the next command from a user will be excluded. Instead of a specific login

name, such as sa, you can use the numeric value for a system process ID as well.

Monitoring Tools and Resources
The primary monitoring tools you use are Performance Monitor and SQL Server
Profiler . Other resources for monitoring SQL Server include the following:

■■ Activity Monitor This monitor provides information on current users, pro-
cesses, and locks, as discussed in “Managing Server Activity” in Chapter 5 . To
display Activity Monitor, use the Object Explorer view to access an instance
of the Database Engine . Right-click the Database Engine instance, and then
select Activity Monitor .

■■ Control Point This monitor provides a central collection point for per-
formance information gathered from managed instances and deployed
data-tier applications . For more information, see “Configuring Utility Control
Points” in Chapter 7 .

■■ Database Mirroring Monitor This monitor provides information on the
status of database mirroring and allows you to verify the data flow for each
failover partner individually . The status is shown as Synchronizing when the
principal database is sending log records to the mirrored instance, Synchro-
nized when the mirrored instance is in sync with the principal database, Sus-
pended when the principal database is available but not sending data to the
mirrored instance, Disconnected when the server instance cannot connect to
its partner, and Unknown when the monitor is not connected to either mirror
partner .

■■ Job Activity Monitor This monitor provides details on the status of SQL
Server Agent jobs . To display Job Activity Monitor, use the Object Explorer
view to access an instance of the Database Engine . Expand the server node
and the SQL Server Agent node, and then double-click Job Activity Monitor .

■■ Replication Monitor This monitor provides details on the status of SQL
Server replication and allows you to configure replication alerts . To display
Replication Monitor, use the Object Explorer view to access an instance
of the Database Engine . Right-click the Replication node, and then select
Launch Replication Monitor .

■■ Event logs The information in the event logs allows you to troubleshoot
systemwide problems, including SQL Server and SQL Server Agent problems .
To access event logs, click Start, click Administrative Tools, and then select
Event Viewer .

 ChAPTeR 14  Profiling and Monitoring SQL Server 2008524

■■ SQL Server Agent logs The information in these event logs allows you
to view informational, auditing, warning, and error messages that can help
you troubleshoot SQL Server Agent problems . To access agent logs, use the
Object Explorer view to access an instance of the Database Engine . Expand
the server node and the SQL Server Agent node . Under the SQL Server Agent
node, expand the Error Logs node, and then double-click the log you want to
examine .

■■ SQL Server logs The information in these event logs allows you to view
informational, auditing, warning, and error messages that can help you
troubleshoot SQL Server problems . To access the server logs, use the Object
Explorer view to access an instance of the Database Engine . Expand the
server node and the Management node . Under the Management node,
expand the SQL Server Logs node, and then double-click the log you want to
examine .

NOTE  SQL Server documentation refers to the SQL Server and SQL Server Agent

logs as error logs. In their current implementation, however, the logs are more

accurately called event	logs, which is the terminology used in this chapter. Similar

to event logs in Windows, these logs in SQL Server contain informational and

security messages as well as error messages.

■■ DBCC statements This set of commands allows you to check SQL Server
statistics, to trace activity, and to check database integrity .

■■ sp_helpdb This stored procedure displays information about databases .

■■ sp_helpindex This stored procedure reports information about indexes on
a table or view .

■■ sp_helpserver This stored procedure provides information in SQL Server
instances configured for remote access or replication .

■■ sp_monitor This stored procedure shows key SQL Server usage statistics,
such as CPU idle time and CPU usage .

■■ sp_spaceused This stored procedure shows an estimate of disk space used
by a table, indexed view, or Service Broker queue in the current database .

■■ sp_who This stored procedure shows a snapshot of current SQL Server
users and processes .

■■ sys.dm_tran_locks This dynamic management view shows information
about object locks .

NOTE  The sys.dm_tran_locks view replaces the sp_lock stored procedure.

In addition to having the use of log files and Transact-SQL statements, you will
find a set of built-in functions that return system information . Table 14-1 provides a
summary of key functions and their usages . The values returned by these functions
are cumulative from the time SQL Server was last started .

 Profiling and Monitoring SQL Server 2008 ChAPTeR 14 525

TABLE 14-1 Built-In Functions for Monitoring SQL Server Performance and Activity

FUNCTION DESCRIPTION EXAMPLE

@@connections Returns the number of connec-
tions or attempted connections

select @@connections as
'Total Login Attempts'

@@cpu_busy Returns CPU processing time
in milliseconds for SQL Server
activity

select @@cpu_busy as 'CPU
Busy', getdate() as 'Since'

@@idle Returns SQL Server idle time in
milliseconds

select @@idle as 'Idle Time',
getdate() as 'Since'

@@io_busy Returns I/O processing time in
milliseconds for SQL Server

select @@io_busy as 'IO
Time', getdate() as 'Since'

@@pack_received Returns the number of input
packets read from the network
by SQL Server

select @@pack_received as
'Packets Received'

@@pack_sent Returns the number of output
packets written to the network
by SQL Server

select @@pack_sent as
'Packets Sent'

@@packet_errors Returns the number of network
packet errors for SQL Server
connections

select @@packet_errors as
'Packet Errors'

@@timeticks Returns the number of micro-
seconds per CPU clock tick

select @@timeticks as
'Clock Ticks'

@@total_errors Returns the number of disk
read/write errors encountered
by SQL Server

select @@total_errors as
'Total Errors', getdate() as
'Since'

@@total_read Returns the number of disk
reads by SQL Server

select @@total_read as
'Reads', getdate() as 'Since'

@@total_write Returns the number of disk
writes by SQL Server

select @@total_write as
'Writes', getdate() as 'Since'

fn_virtualfilestats Returns input/output statistics
for data and log files

select * from
fn_virtualfilestats(null,null)

Working with Replication Monitor

When you have configured replication as discussed in Chapter 13, “Implementing
Snapshot, Merge, and Transactional Replication,” you use Replication Monitor to
track the status of replication throughout the enterprise . By default, only the cur-
rently selected publisher is displayed in the Replication Monitor window, but you

 ChAPTeR 14  Profiling and Monitoring SQL Server 2008526

can add any publishers that you want to monitor and organize them into publisher
groups as necessary .

Starting and Using Replication Monitor
To start Replication Monitor, right-click the Replication folder in the Object Explorer
view, and then select Launch Replication Monitor . Replication Monitor uses icons to
indicate the general status of replication . If any publication has an error status, the
error status is indicated by a red circle around an X at all levels within Replication
Monitor .

When you select a publisher in the left pane, the right pane shows the replication
details for that publisher . By default, this information is refreshed every five seconds,
and it can be refreshed immediately by pressing F5 . As Figure 14-1 shows, the pub-
lisher view has three tabs:

■■ Publications Shows individual entries for each configured publication . An
icon indicates the type and status of the publication:

■■ A purple book icon with a blue circle indicates snapshot replication

■■ A blue book icon with a right-facing green arrow indicates transactional
replication

■■ A yellow book icon with a left-facing green arrow and a right-facing blue
arrow indicates merge replication

■■ A red circle around an X indicates error status

At a glance, you can also see the number of subscriptions to the publication,
the number of subscriptions being synchronized, the current average perfor-
mance for subscribers, and the current worst performance for subscribers .

■■ Subscription Watch List Shows the status of individual subscriptions
by type . Use the first drop-down list to specify the type of subscriptions
to display and the second drop-down list to specify whether to display all
subscriptions of the specified type or some subset, such as the 25 worst-
performing subscriptions . Note the status, such as running, error, and so
on; the performance level, such as excellent, good, poor, and so on; and the
latency .

■■ Agents Shows the SQL Server Agent jobs common to all publications on
the selected publisher . To determine if there are potential replication prob-
lems, note the status, last start time, and duration . There might be a problem
with jobs that have a status of Never Started and with jobs that have been
running for a long time .

Adding Publishers and Publisher Groups
When you first start Replication Monitor, only the currently selected publisher is
displayed in Replication Monitor . You can add publishers that you want to monitor
and organize them into publisher groups as necessary .

 Profiling and Monitoring SQL Server 2008 ChAPTeR 14 527

FIGURE 14-1 Replication Monitor

To start monitoring additional publishers and create publisher groups, follow
these steps:

  1. Start Replication Monitor . In the left pane, right-click the Replication Monitor
node, and then select Add Publisher from the shortcut menu . This displays
the Add Publisher dialog box, shown in Figure 14-2 .

FIGURE 14-2 The Add Publisher dialog box

 ChAPTeR 14  Profiling and Monitoring SQL Server 2008528

  2. Click Add, and then do the following:

■■ Choose Add SQL Server Publisher to configure a connection to a server
running SQL Server by using the Connect To Server dialog box . Registered
servers are listed in the Server Name list; you can also browse for others .
The default authentication is Windows authentication, which uses your
current login and password . Click Connect .

■■ Choose Add Oracle Publisher to configure a connection to an Oracle
server by using the Connect To Server dialog box . Registered servers are
listed in the Server Name list; you can also browse for others . The default
authentication is Oracle Standard authentication, which requires a user
login and password . Click Connect .

■■ Choose Specify A Distributor And Add Its Publishers to configure a
connection to a distributor by using the Connect To Server dialog box .
Registered servers are listed in the Server Name list; you can also browse
for others . The default authentication is Windows authentication, which
uses your current login and password . When you click Connect, Replica-
tion Monitor connects to the distributor, obtains a list of publishers for
the distributor, and then connects to these publishers as well .

NOTE  Before you can add an Oracle publisher, you must configure a connection

to the Oracle publisher’s distributor by choosing Specify A Distributor And Add Its

Publishers.

  3. Publisher groups make it easier to manage monitoring in complex enter-
prise environments . Select the publisher group to which to add a publisher
or publishers . If you want to create a new group, click New Group, specify
the group name, and then click OK . Select the new group under Show This
Publisher(s) In The Following Group .

  4. Click OK .

Working with the Event Logs

Event logs provide historical information that can help you track down problems
with SQL Server . SQL Server writes events to the SQL Server event logs, the SQL
Server Agent event logs, and the Windows application log . You can use all three
logs to track messages related to SQL Server . However, there are some things you
should know about these logs:

■■ Only the application log provides additional information on all applications
running on the server, and only the application log provides features for
filtering events based on type . For example, you can filter events so that only
error and warning messages are displayed .

 Profiling and Monitoring SQL Server 2008 ChAPTeR 14 529

■■ If you start the MSSQLServer or MSSQL$instancename service from the
command prompt, events are logged to the SQL Server event log and to
standard output . No events are recorded in the Windows application log .

■■ Windows has additional logs that can be helpful when tracking issues . If you
are tracking security issues, start with the SQL Server event logs and also
examine the Windows security log . If you are having trouble finding the
source of a problem that is preventing proper operation of SQL Server, start
with the SQL Server logs and also examine the Windows application and
system logs .

SQL Server error messages can be cryptic and difficult to read if you do not
understand the formatting . Error messages logged by SQL Server can have the fol-
lowing information:

■■ An error number that uniquely identifies the error message System
error numbers have one to five digits . System errors are numbered from 1 to
50,000 . User-defined errors start at 50,001 .

■■ A severity level that indicates how critical the message is Sever-
ity levels range from 1 to 25 . Messages with a severity level of 0 to 10 are
informational messages . Severity levels from 11 to 16 are generated by users,
and users can correct them . Severity levels from 17 to 25 indicate software or
hardware errors that you should examine .

■■ An error state number that indicates the source of the error Error state
numbers have one to three digits and a maximum value of 127 . Normally,
error state numbers indicate the line number in the SQL Server code that
generated the message .

■■ A message that provides a brief description of the error Read the
message to get more information about the error, which will help you in
troubleshooting problems .

You might see ODBC (Open Database Connectivity) and OLE DB return errors
from SQL Server that contain similar information as well . The sys .messages catalog
view in the master database contains a list of error messages and descriptions that
can be returned by SQL Server . To see all error messages that can be returned by
SQL Server, you can execute the following commands:

T-SQL

USE master
GO
SELECT * FROM sys.messages
GO

PowerShell Example 1

Invoke-Sqlcmd -Query "USE master; SELECT * FROM sys.messages;"
-ServerInstance "DataServer26\TechServices"

 ChAPTeR 14  Profiling and Monitoring SQL Server 2008530

PowerShell Example 2

Set-Location SQLSERVER:\SQL\DataServer26\TechServices
Invoke-Sqlcmd -Query "USE master; SELECT * FROM sys.messages;"

examining the Application Log
The application log contains entries for all database server instances running on the
computer, as well as entries for other business applications . You access the applica-
tion log by completing the following steps:

  1. Click Start, click Administrative Tools, and then choose Event Viewer . This
starts Event Viewer .

  2. Event Viewer displays logs for the local computer by default . If you want to
view logs on a remote computer, right-click the Event Viewer node in the
console tree (left pane), and then select Connect To Another Computer to
display the Select Computer dialog box . In the dialog box, enter the name of
the computer you want to access, and then click OK .

  3. In the console tree, expand the Windows Logs node, and then click Applica-
tion . You should see an application log similar to the one shown in Figure
14-3 . Use the information in the Source column to determine which service
or database server instance logged a particular event .

FIGURE 14-3 A Windows application log

NOTE Windows Server 2003, Windows Server 2008, and Windows Server 2008

R2 have different versions of event Viewer. On Windows Server 2003, event Viewer

 Profiling and Monitoring SQL Server 2008 ChAPTeR 14 531

doesn’t have additional nodes, and you can access the application log directly from the

console tree.

The entries in the main window of Event Viewer provide a quick overview of
when, where, and how an event occurred . To obtain detailed information on an
event, review the details provided on the General tab in the lower portion of the
main window . The event level or keyword precedes the date and time of the event .
Event levels include the following:

■■ Information An informational event that is generally related to a success-
ful action .

■■ Audit Success An event related to the successful execution of an action .

■■ Audit Failure An event related to the failed execution of an action .

■■ Warning A noncritical error that provides a warning . Details for warnings
are often useful in preventing future system problems .

■■ Error A noncritical error that you should review .

■■ Critical An error for which there is no recovery .

In addition to the date, time, and event type indicator, the summary and detailed
event entries provide the following information:

■■ Source The application, service, or component that logged the event

■■ Event ID An identifier for the specific event

■■ Task Category The category of the event, which is sometimes used to
further describe the related action

■■ User The user account that was logged on when the event occurred, if
applicable

■■ Computer The name of the computer on which the event occurred

■■ Description A text description of the event (provided in detailed entries)

■■ Data Any data or error code output by the event (provided in detailed
entries)

Warnings and errors are the two main types of events that you want to examine
closely . Whenever one of these types of events occurs and you are unsure of the
cause, review the detailed event description . If you want to see only warnings and
errors, you can filter the log . To filter a selected log on Windows Server 2003, com-
plete the following steps:

  1. From the View menu, choose the Filter option .

  2. Clear the following check boxes: Information, Success Audit, and Failure
Audit .

  3. Select the Warning and Error check boxes if they are not already selected .

  4. Click OK . You should now see a list of warning and error messages only .
Remember that these messages are for all applications running on the server
and not just for SQL Server .

 ChAPTeR 14  Profiling and Monitoring SQL Server 2008532

To filter a selected log on Windows Server 2008 or Windows Server 2008 R2,
complete the following steps:

  1. In the actions pane or on the Action menu, choose Filter Current Log .

  2. Use the Logged list to select the time frame for including logged events . You
can choose to include events from the last hour, the last 12 hours, the last 24
hours, the last 7 days, or the last 30 days .

  3. Use the Event Level check boxes to specify the level of events to include .
Select the Verbose check box to get additional detail .

  4. Use the Event Source list to select event sources to include . If you select spe-
cific event sources, all other event sources are excluded .

  5. Optionally, use the User and Computer(s) boxes to specify users and
computers that should be included . If you do not specify the users and
computers to be included, events generated by all users and computers are
included .

  6. Click OK . You should now see a filtered list of events . Review these events
carefully, and take steps to correct any problems that exist . To clear the filter
and see all events for the log, click Clear Filter in the actions pane or on the
Action menu .

examining the SQL Server event Logs
The SQL Server logs record information, warnings, errors, and auditing messages
pertaining to SQL Server activity . New logs are created when you start the SQL
Server service or when you run the sp_cycle_errorlog stored procedure . When a new
log is created, the current log is cycled to the archive . SQL Server maintains up to
five archived logs (by default) .

You can view the SQL Server event logs in SQL Server Management Studio or
through a text editor . In SQL Server Management Studio, you access the event logs
by completing the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect
to the database server of your choice, and then work your way down to the
Management folder .

  2. Expand the Management folder, and then double-click the SQL Server Logs
entry . The current log is shown with the label Current . Archived logs are
shown with descriptive labels such as Archive	#1 .

  3. Double-click the log you want to view to open it in Log File Viewer .

  4. With Log File Viewer open, you can add other logs to the log file summary
by selecting their check boxes, as shown in Figure 14-4 .

 Profiling and Monitoring SQL Server 2008 ChAPTeR 14 533

FIGURE 14-4 Log File Viewer

To access the event logs in a text editor, complete the following steps:

  1. Start a text editor, such as Notepad, and then use its Open dialog box
to access the SQL Server Log folder, normally located in MSSQL10_50 .
MSSQLSERVER\MSSQL\LOG or MSSQL10_50 .InstanceName\MSSQL\LOG .
Note that by default, permissions for the Log folder are configured so that
only the system account, members of the local Administrators group, and
SQL Server have access . If you are logged on with an account that has appro-
priate privileges, you can get permanent Full Control access to the Log folder
by clicking Continue when prompted .

  2. Open the log you want to examine . The current log file is named ERRORLOG
with no file extension . The most recent log backup has the extension .1, the
second most recent has the extension .2, and so on . If you are using Notepad
or a similar program, you won’t see the log files until you specify an appro-
priate file type, such as All Files (* .*) .

To change the number of logs that SQL Server maintains, right-click the SQL
Server Logs entry in the Object Explorer view and select Configure . In the Configure
SQL Server Error Logs dialog box, select Limit The Number Of Error Log Files, and
then set the maximum number of error log files to retain by using the Maximum
Number Of Error Log Files combo box . The default number of log files maintained is
six: one current log and five archive logs . You can change the number of logs main-
tained to any value from 6 through 99 .

 ChAPTeR 14  Profiling and Monitoring SQL Server 2008534

examining the SQL Server Agent event Logs
The SQL Server Agent logs record information, warnings, and errors pertaining to
SQL Server Agent activity . New logs are created only when you start the SQL Server
Agent service . When a new log is created, the current log is cycled to the archive .
SQL Server maintains up to five archived agent logs by default .

In SQL Server Management Studio, you access the current SQL Server Agent log
by completing the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the database server of your choice, and then work your way down to the SQL
Server Agent node .

  2. Expand the SQL Server Agent node, and then double-click the Error Logs
entry . The current log is shown with the label Current . Archived logs are
labeled Archive	#	1 and so on .

  3. Double-click the log you want to view to open it in Log File Viewer .

  4. With Log File Viewer open, you can add other logs to the log file summary
by selecting their check boxes .

To access archived SQL Server Agent event logs in a text editor, complete the
following steps:

  1. Start the text editor, and then use its Open dialog box to access the SQL
Server Log folder, which is normally located in MSSQL10_50 .MSSQLSERVER\
MSSQL\LOG or MSSQL10_50 .InstanceName\MSSQL\LOG .

  2. Open the log you want to examine . The name of the current log file is
 SQLAGENT .OUT . The most recent log backup has the extension .1, the sec-
ond most recent has the extension .2, and so on .

You can manage the SQL Server Agent logs in several ways . You can force the
SQL Server Agent to recycle the current log by right-clicking the SQL Server Agent\
Error Logs node in the Object Explorer view, selecting Recycle, and then clicking
OK . When you do this, SQL Server closes out the current agent log, moves it to an
archive log, and starts a new agent log . You can control the level of logging and set
the log file location as well . To do this, complete the following steps:

  1. Right-click the SQL Server Agent\Error Logs node in the Object Explorer view,
and then select Configure .

  2. Use the Error Log File box to set the folder path and file name of the agent log .
The default path is MSSQL10_50 .MSSQLSERVER\MSSQL\LOG\SQLAGENT .OUT
or MSSQL10_50 .InstanceName\MSSQL\LOG\SQLAGENT .OUT . New archive
files will also be created in the folder specified as part of the path .

  3. Use the Agent Log Level check boxes to control the level of logging for the
SQL Server Agent . By default, only error and warning messages are logged . If

 Profiling and Monitoring SQL Server 2008 ChAPTeR 14 535

you want to view informational messages in the logs, select the Information
check box as well .

  4. Click OK .

Monitoring SQL Server Performance

Performance Monitor is the tool of choice for monitoring SQL Server performance .
Performance Monitor displays statistics in a graphical format for the set of perfor-
mance parameters you select . These performance parameters are referred to as
counters .

When you install SQL Server on a system, Performance Monitor is updated with
a set of counters for tracking SQL Server performance parameters . These counters
also can be updated when you install services and add-ons for SQL Server . For
example, when you configure replication on a server, Replication Monitor is added
and made available through SQL Server Management Studio, and Performance
Monitor is again updated with a set of objects and counters for tracking replication
performance .

Performance Monitor creates a graph depicting the various counters you are
tracking . You can configure the update interval for this graph, but it’s set to three
seconds by default . As you will see when you work with Performance Monitor, the
tracking information is most valuable when you record the information in a log file
and when you configure alerts to send messages when certain events occur or when
certain thresholds are reached, such as when a database log file gets close to run-
ning out of free space .

The following sections examine the procedures you use with Performance
Monitor .

NOTE On Windows Server 2003, you can use similar techniques to configure coun-

ters in Performance Monitor. however, only Performance Monitor for Windows Server

2008 and Windows Server 2008 R2 include data collector sets for collecting perfor-

mance data. Data collector sets replace Performance Monitor logs and alerts.

Choosing Counters to Monitor
Performance Monitor displays information only for counters you are tracking . More
than one hundred SQL Server counters are available—and if you have configured
other SQL Server features, such as replication, you can use even more counters .
These counters are organized into object groupings . For example, all lock-related
counters are associated with the SQLServer:Locks object .

To select which counters you want to monitor, complete the following steps:

  1. You can access a stand-alone console by clicking Start, pointing to Adminis-
trative Tools, and then clicking Performance Monitor . In Server Manager, you

 ChAPTeR 14  Profiling and Monitoring SQL Server 2008536

can access this tool as a snap-in under the Diagnostics node . Double-click
the Diagnostics node to expand it . Finally, double-click and then select the
Performance node .

  2. In the Performance console, expand Monitoring Tools, and then select Per-
formance Monitor, as shown in Figure 14-5 . Any default counters are shown
in the lower portion of the Performance Monitor window . To delete a default
counter, click its entry in the Performance Monitor window, and then press
the Delete key .

FIGURE 14-5 The Performance Monitor window

  3. The Performance Monitor tool has several views and view types . Be sure
that you are viewing current activity by clicking View Current Activity on the
toolbar or pressing Ctrl+T . You can switch between the view types (Line, His-
togram Bar, and Report) by clicking Change Graph Type or pressing Ctrl+G .

  4. To add counters, click the Add button on the toolbar . (Alternatively, press
Ctrl+I with Windows Server 2003/2008 or Ctrl+N with Windows Server 2008
R2) . This displays the Add Counters dialog box, shown in Figure 14-6 .

TIP  The easiest way to learn what you can track is by exploring the objects and

counters available in the Add Counters dialog box. Select an object in the Perfor-

mance Object list, select the Show Description check box, and then scroll through

the list of counters for the object.

 Profiling and Monitoring SQL Server 2008 ChAPTeR 14 537

FIGURE 14-6 The Add Counters dialog box

  5. In the Select Counters From Computer list, enter the Universal Naming
Convention (UNC) name of the computer running SQL Server that you want
to work with, such as \\SQLServer52, or choose Local Computer to work with
the local computer .

NOTE  You need to be at least a member of the Performance Monitor Users

group in the domain or the local computer to perform remote monitoring. When

you use performance logging, you need to be at least a member of the Perfor-

mance Log Users group in the domain or the local computer to work with perfor-

mance logs on remote computers.

  6. In the Available Counters panel, performance objects are listed alphabeti-
cally . If you select an object entry by clicking it, all related counters are
selected . If you expand an object entry, you can see all the related counters
and can then select individual counters by clicking them . For example, you
could expand the entry for the SQLServer:Locks object and then select the
Average Wait Time (ms), Lock Requests/sec, and Lock Timeouts (timeout >
0)/sec counters .

  7. When you select an object or any of its counters, you see the related
instances . Choose All Instances to select all counter instances for monitoring,
or select one or more counter instances to monitor . For example, you could
select instances of Application or Database locks .

  8. When you’ve selected an object or a group of counters for an object as well
as the object instances, click Add to add the counters to the graph .

 ChAPTeR 14  Profiling and Monitoring SQL Server 2008538

  9. Repeat steps 5 through 8 to add other performance parameters .

  10. Click Close when finished .

TIP Don’t try to chart too many counters or counter instances at once. You’ll make

the display too difficult to read, and you’ll use system resources—namely, CPU time

and memory—that might affect server responsiveness.

Performance Logging
Windows Server 2008 introduces data collector sets and reports . Data collec-
tor sets allow you to specify sets of performance objects and counters that you
want to track . After you’ve created a data collector set, you can easily start or stop
monitoring the performance objects and counters included in the set . In a way, this
makes data collector sets similar to the performance logs used in earlier releases of
Windows . However, data collector sets are much more sophisticated . You can use a
single data collector set to generate multiple performance counter and trace logs .
You can also perform the following tasks:

■■ Assign access controls to manage who can access collected data

■■ Create multiple run schedules and stop conditions for monitoring

■■ Use data managers to control the size of collected data and reporting

■■ Generate reports based on collected data

In the Performance console, you can review currently configured data collector
sets and reports under the Data Collector Sets and Reports nodes, respectively . As
shown in Figure 14-7, you’ll find data sets and reports that are user defined and sys-
tem defined . User-defined data sets are created by users for general monitoring and
performance tuning . System-defined data sets are created by the operating system
to aid in automated diagnostics .

FIGURE 14-7 Access data collector sets and reports .

 Profiling and Monitoring SQL Server 2008 ChAPTeR 14 539

NOTE With SQL Server 2008, you can create several special-purpose data collector

sets automatically and then generate periodic reports to get a better understanding of

disk usage, query statistics, and server activity. See “Configuring a Management Data

Warehouse” later in this chapter for details.

Creating and Managing Data Collector Sets

To view the currently configured data collector sets, access Performance Monitor by
selecting the Performance Monitor option on the Administrative Tools menu and
then expanding the Data Collector Sets node . You can work with data collectors in a
variety of ways:

■■ You can view currently defined user or system data collector sets by selecting
either User Defined or System as appropriate . When you select a data col-
lector set in the left pane, you’ll see a list of the related data collectors in the
main pane listed by name and type . The Trace type is for data collectors that
record performance data whenever related events occur . The Performance
Counter type is for data collectors that record data on selected counters
when a predetermined interval has elapsed . The Configuration type is for
data collectors that record changes to particular registry paths .

■■ You can view running event traces by selecting Event Trace Sessions . You can
then stop a data collector running a trace by right-clicking it and selecting
Stop .

■■ You can view the enabled or disabled status of event traces that are config-
ured to run automatically when you start the computer by selecting Startup
Event Trace Sessions . You can start a trace by right-clicking a startup data
collector and selecting Start As Event Trace Session . You can delete a startup
data collector by right-clicking it and then selecting Delete .

■■ You can save a data collector as a template that can be used as the basis of
other data collectors by right-clicking the data collector and selecting Save
Template . In the Save As dialog box, select a directory, type a name for the
template, and then click Save . The data collector template is saved as an XML
file that can be copied to other systems .

■■ You can delete a user-defined data collector by right-clicking it and then
selecting Delete . If a data collector is running, you need to stop collect-
ing data first and then delete the collector . Deleting a collector deletes the
related reports as well .

Collecting Performance Counter Data

Data collectors can be used to record performance data on the selected counters at
a specific sample interval . For example, you could sample performance data for the
CPU every 15 minutes .

 ChAPTeR 14  Profiling and Monitoring SQL Server 2008540

To collect performance counter data, follow these steps:

  1. In Performance Monitor, under the Data Collector Sets node, right-click the
User-Defined node in the left pane, point to New, and then choose Data Col-
lector Set .

  2. In the Create New Data Collector Set Wizard, type a name for the data col-
lector, such as SQL Server Performance Monitor or Replication Performance
Monitor .

  3. Select the Create Manually option, and then click Next .

  4. On the What Type Of Data Do You Want To Include page, the Create Data
Logs option is selected by default . Select the Performance Counter check
box, and then click Next .

  5. On the Which Performance Counters Would You Like To Log page, click Add .
This displays the Add Counters dialog box, which you can use as previously
discussed to select the performance counters to track . When you finish
selecting counters, click OK .

  6. On the Which Performance Counters Would You Like To Log page, enter a
sample interval and select a time unit in seconds, minutes, hours, days, or
weeks . The sample interval specifies when new data is collected . For example,
if you sample every 15 minutes, the data log is updated every 15 minutes .
Click Next when you are ready to continue .

  7. On the Where Would You Like The Data To Be Saved page, type the root
path to use for logging collected data . Alternatively, click Browse, and then
use the Browse For Folder dialog box to select the logging directory . Click
Next when you are ready to continue .

BEST PRACTICES  The default location for logging is %SystemRoot%\PerfLogs\

Admin. Log files can grow in size very quickly. If you plan to log data for an

extended period, be sure to place the log file on a drive with lots of free space.

Remember, the more frequently you update the log file, the greater the drive

space and CPU resource usage on the system.

  8. On the Create The Data Collector Set page, the Run As box lists Default as
the user to indicate that the log will run under the privileges and permis-
sions of the default system account . To run the log with the privileges and
permissions of another user, click Change . Type the user name and password
for the account, and then click OK . User names can be entered in DOMAIN\
Username format, such as CPANDL\WilliamS for the WilliamS account in the
CPANDL domain .

  9. Select the Open Properties For This Data Collector Set option, and then click
Finish . This saves the data collector set, closes the wizard, and then opens the
related Properties dialog box .

 Profiling and Monitoring SQL Server 2008 ChAPTeR 14 541

  10. By default, logging is configured to start manually . To configure a logging
schedule, click the Schedule tab, and then click Add . You can now set the
active range, start time, and run days for data collection .

  11. By default, logging stops only if you set an expiration date as part of the
logging schedule . Using the options on the Stop Condition tab, you can
configure the log file to stop manually after a specified period of time, such
as seven days, or when the log file is full (if you’ve set a maximum size limit) .

  12. Click OK when you finish setting the logging schedule and stop conditions .
You can manage the data collector as explained in “Creating and Managing
Data Collector Sets” earlier in this chapter .

NOTE You can configure Windows to run a scheduled task when data collection

stops. You configure tasks to run on the Task tab in the Properties dialog box.

Collecting Performance Trace Data

You can use data collectors to record performance trace data whenever events
related to their source providers occur . A source provider is an application or oper-
ating system service that has traceable events .

To collect performance trace data, follow these steps:

  1. In Performance Monitor, under the Data Collector Sets node, right-click the
User-Defined node in the left pane, point to New, and then choose Data Col-
lector Set .

  2. In the Create New Data Collector Set Wizard, type a name for the data col-
lector, such as Database Locks Trace or Database Mirroring Trace .

  3. Select the Create Manually option, and then click Next .

  4. On the What Type Of Data Do You Want To Include page, the Create Data
Logs option is selected by default . Select the Event Trace Data check box,
and then click Next .

  5. On the Which Event Trace Providers Would You Like To Enable page, click
Add . Select an event trace provider to track, such as Active Directory Domain
Services: Core . By selecting individual properties in the Properties list and
clicking Edit, you can track particular property values rather than all values
for the provider . Repeat this process to select other event trace providers to
track . Click Next when you are ready to continue .

  6. Complete steps 7 through 12 from the previous procedure, “Collecting Per-
formance Counter Data .”

 ChAPTeR 14  Profiling and Monitoring SQL Server 2008542

Collecting Configuration Data

You can use data collectors to record changes in registry configuration . To collect
configuration data, follow these steps:

  1. In Performance Monitor, under the Data Collector Sets node, right-click the
User-Defined node in the left pane, point to New, and then choose Data Col-
lector Set .

  2. In the Create New Data Collector Set Wizard, type a name for the data col-
lector, such as SQL Server Registry or Registry Adapter Info .

  3. Select the Create Manually option, and then click Next .

  4. On the What Type Of Data Do You Want To Include page, the Create Data
Logs option is selected by default . Select the System Configuration Informa-
tion check box, and then click Next .

  5. On the Which Registry Keys Would You Like To Record page, click Add . Type
the registry path to track . Repeat this process to add other registry paths .
Click Next when you are ready to continue .

  6. Complete steps 7 through 12 from the procedure “Collecting Performance
Counter Data .”

Viewing Data Collector Reports
When you troubleshoot problems, you’ll often want to log performance data over
an extended period of time and then review the data to analyze the results . For each
data collector that has been or is currently active, you’ll find related data collector
reports . As with data collector sets themselves, data collector reports are organized
into two general categories: user-defined and system .

You can view data collector reports in Performance Monitor . Expand the Reports
node, and then expand the individual report node for the data collector you want
to analyze . Under the data collector’s report node, you’ll find individual reports for
each logging session . A logging session begins when logging starts, and it ends
when logging is stopped .

The most recent log is the one with the highest log number . If a data collector is
actively logging, you won’t be able to view the most recent log . You can stop col-
lecting data by right-clicking a data collector set and selecting Stop . Collected data
is shown by default in a graph spanning the start of data collection to the end of
data collection .

You can modify the report details by using the following techniques:

  1. In the monitor pane, press Ctrl+Q or click the Properties button on the tool-
bar . This displays the Performance Monitor Properties dialog box .

  2. Click the Source tab .

 Profiling and Monitoring SQL Server 2008 ChAPTeR 14 543

  3. Specify data sources to analyze . Under Data Source, click Log Files, and then
click Add to open the Select Log File dialog box . You can now select addi-
tional log files to analyze .

  4. Specify the time window that you want to analyze . Click Time Range, and
then drag the Total Range bar to specify the appropriate starting and ending
times . Drag the left edge to the right to make the start time earlier . Drag the
right edge to the left to make the end time later .

  5. Click the Data tab . You can now select counters to view . Select a counter, and
then click Remove to remove it from the graph view . Click Add to display the
Add Counters dialog box, which you can use to select the counters that you
want to analyze .

NOTE  Only counters that you selected for logging are available. If you don’t see

a counter that you want to work with, you need to modify the data collector prop-

erties, restart the logging process, and then check the logs at a later date.

  6. Click OK . In the monitor pane, click the Change Graph Type button to select
the type of graphing .

Configuring Performance Counter Alerts
You can configure alerts to notify you when certain events occur or when certain
performance thresholds are reached . You can send these alerts as network messages
and as events that are logged in the application event log . You can also configure
alerts to start application and performance logs .

To configure an alert, follow these steps:

  1. In Performance Monitor, under the Data Collector Sets node, right-click the
User-Defined node in the left pane, point to New, and then choose Data Col-
lector Set .

  2. In the Create New Data Collector Set Wizard, type a name for the data col-
lector, such as DB Application Locks Alert or SQL Server Replication Alert .

  3. Select the Create Manually option, and then click Next .

  4. On the What Type Of Data Do You Want To Include page, the Create Data
Logs option is selected by default . You don’t want to use this option or its
related check boxes . Instead, select the Performance Counter Alert option,
and then click Next .

  5. On the Which Performance Counters Would You Like To Monitor page, click
Add to display the Add Counters dialog box . This dialog box is identical to
the Add Counters dialog box discussed previously . Use the Add Counters
dialog box to add counters that trigger the alert . Click OK when you finish .

  6. In the Performance Counters panel, select the first counter, and then use
the Alert When text box to set the occasion when an alert for this counter
is triggered . Alerts can be triggered when the counter is above or below a

 ChAPTeR 14  Profiling and Monitoring SQL Server 2008544

specific value . Select Above or Below, and then set the trigger value . The unit
of measurement is whatever makes sense for the currently selected counter
or counters . For example, to create an alert for when processor time is more
than 95 percent, you would select Over and then type 95 . Repeat this pro-
cess to configure other counters you’ve selected .

  7. Click Next . Complete steps 8 through 12 from the procedure “Collecting
Performance Counter Data” earlier in the chapter

Configuring a Management Data Warehouse

SQL Server 2008 has a built-in feature called the management	data	warehouse. This
feature uses several special-purpose data collector sets to automatically collect
disk usage, query statistics, and server activity information . To use this feature, you
must configure a data collection host and then set up data collection for SQL Server
instances you want to track .

Understanding Management Data Warehouses
When you configure a management data warehouse, you can enable data collec-
tion whenever you want to monitor SQL Server performance and then generate
reports to review the collected information . When you finish evaluating SQL Server
performance, you should free server resources used for collection by disabling data
collection .

To enable data collection, you must create a management data warehouse . The
warehouse is a database that stores the collected data as well as related report data .
As the selected SQL Server instance will then act as a data collection host, you must
also ensure that SQL Server Agent is properly configured . SQL Server Agent jobs are
used to collected data at periodic intervals on any SQL Server instance for which
you’ve subsequently configured data collection .

Any database you use as a management data warehouse has three special-
purpose roles:

■■ mdw_reader Members of this role are able to access the management
data warehouse and read reports .

■■ mdw_writer Members of this role are able to write and upload data to the
management data warehouse . All data collectors must have this role .

■■ mdw_admin Members of this role have full access and can perform read,
write, update, and delete operations in the management data warehouse .

These special-purpose roles are stored in the msdb database on the data col-
lection host and no user is a member of these roles by default . While users who
are members of the sysadmin role have full access to data collector views, admin-
istrators must be explicitly added to the appropriate role or roles to perform other
operations .

 Profiling and Monitoring SQL Server 2008 ChAPTeR 14 545

Creating the Management Data Warehouse
A management data warehouse stores your data collector information . You can cre-
ate a management data warehouse by completing the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect
to the server you want to use, and then expand the Management folder . If
data collection hasn’t been configured, you’ll see a red down arrow on the
Data Collection icon . Right-click Data Collection, and then select Configure
Management Data Warehouse .

  2. Select Create Or Upgrade A Management Data Warehouse, and then click
Next .

  3. SQL Server stores the collected data in a database . If you want to use an
existing database to store the data, select the database in the list provided .
Otherwise, click New and create a database for storing the collected data .
Click Next .

  4. On the Map Logins And Users page, you can map logins and users to man-
agement data warehouse roles . Later, by configuring logins for the msdb
database, you can modify membership in these roles as discussed in “Man-
aging Server Logins” in Chapter 9 . When you click Next and then click Finish,
the wizard sets up the management data warehouse and maps logins and
users as necessary . If an error occurs, you need to review the error details,
correct the problem, and then repeat this procedure .

Setting Up Data Collection
You can set up data collection by completing the following steps:

  1. In SQL Server Management Studio’s Object Explorer view, expand the
Management folder, right-click Data Collection, and then select Configure
Management Data Warehouse .

  2. Select Set Up Data Collection, and then click Next .

  3. Click the options (. . .) button to the right of the Server Name box . Connect to
the data collection host, and then select the collection database in the list
provided .

  4. Optionally, set a cache directory that is used to store collected data before
it is uploaded to the specified database . If you don’t specify a directory, the
TEMP directory is used .

  5. When you click Next and then click Finish, the wizard starts system collection
sets and enables data collection . If an error occurs, you need to review the
error details, correct the problem, and then repeat this procedure .

 ChAPTeR 14  Profiling and Monitoring SQL Server 2008546

Managing Collection and Generating Reports
When you set up collection, data collection is enabled automatically . You can turn
data collection on or off by right-clicking the Data Collection node and selecting
Enable Data Collection or Disable Data Collection as appropriate . In SQL Server
Management Studio’s Object Explorer view, you can generate data collection
reports by expanding the Management folder, right-clicking Data Collection, point-
ing to Reports, pointing to Management Data Warehouse, and then selecting the
type of report to generate . You can generate the following reports: Server Activity
History, Disk Usage History, or Query Statistics History .

Solving Performance Problems with Profiler

Whether you are trying to track user activity, troubleshoot connection problems, or
optimize SQL Server, SQL Server Profiler is one of the best utilities available . Profiler
enables you to trace events that occur in SQL Server . Events you can track in Profiler
are similar to counters you can monitor in Performance Monitor . They are organized
into groups called event	classes, and you can track one or more events for any of
the available event classes . The strengths of Profiler are its advanced features and
extensive customization capabilities .

You can record and replay Profiler traces when you want to analyze the data—
and this is one area in which Profiler excels . You can use Profiler to do the following:

■■ Use the information to find slow-running queries and then determine what is
causing the queries to run slowly .

■■ Go through statements one step at a time to find the cause of a problem .

■■ Track a series of statements that cause a particular problem and then replay
the trace on a test server to determine the cause .

■■ Use trace information to determine the cause of deadlocks .

■■ Monitor user and application activity to discover actions that are using CPU
time or queries that are taking a long time to process .

I’ll first look at how you can work with Profiler . Then I’ll examine how to create
and manage traces .

Using Profiler
You can start Profiler in several ways:

■■ Click Start, type profiler.exe in the Search box, and then press Enter .

■■ Select the related option on the Microsoft SQL Server 2008/Performance
Tools or Microsoft SQL Server 2008 R2/Performance Tools menu .

■■ In SQL Server Management Studio, select SQL Server Profiler from the Tools
menu .

 Profiling and Monitoring SQL Server 2008 ChAPTeR 14 547

Figure 14-8 shows Profiler in the process of running a trace . The columns shown
for the trace, such as EventClass, are completely configurable when you set up the
trace, allowing you to select or clear columns as necessary . Two columns you want
to pay particular attention to are Duration and CPU . The Duration column shows (in
milliseconds) how long a particular event has been running . The CPU column shows
(in milliseconds) the amount of CPU processing time the event requires .

FIGURE 14-8 Using SQL Server Profiler to trace SQL Server events

Stored procedures provide an alternative to Profiler . Using these stored proce-
dures gives you some options that you do not have with SQL Server Profiler . You
can:

■■ Store traces in the Windows application log .

■■ Autostart a trace when SQL Server starts .

■■ Forward event data to another computer running SQL Server (Windows
only) .

To create traces with stored procedures, complete the following steps:

  1. Create a trace definition using sp_trace_create .

  2. Set events to capture using sp_trace_setevent .

  3. Set event filters using sp_trace_setfilter .

 ChAPTeR 14  Profiling and Monitoring SQL Server 2008548

Creating New Traces
You use traces to record events generated by local and remote SQL servers . You run
traces in the Profiler window and store them for later analysis .

To start a new trace, complete the following steps:

  1. Start SQL Server Profiler, and then click the New Trace button . Or select File,
New Trace .

  2. Use the Connect To Server dialog box to connect to the server you want to
trace .

You will see the Trace Properties dialog box, shown in Figure 14-9 .

FIGURE 14-9 The Trace Properties dialog box

  3. In the Trace Name text box, type a name for the trace, such as Data Trace or
Deadlock Trace For CustomerDB .

  4. You can store traces as they are being created by selecting the Save To File
or the Save To Table check box, or use both of these options . You can store
a running trace later by selecting File, Save As, and then choosing either the
Trace File option or the Trace Table option .

BEST PRACTICES  There are advantages and disadvantages to using trace files

and trace tables. You can use trace files to store traces quickly and efficiently

using minimal system resources. Trace tables make it easy to store a trace directly

in a table on another server, but you use much more of the system’s resources and

usually have slower response times. Also, storing a trace saves only the trace data.

It does not save the trace definition. To reuse the trace definition, you have to

export the trace definition.

 Profiling and Monitoring SQL Server 2008 ChAPTeR 14 549

  5. SQL Server Profiler templates are used to save trace definitions that contain
the events, data columns, and filters used in a trace . The Use The Template
list lets you to choose a template to use as the basis of the trace . Select the
TSQL_Replay template if you want to replay the trace .

NOTE  SQL Server Profiler templates end with the .tdf file extension.

  6. Click the Events Selection tab, shown in Figure 14-10 . The currently selected
template determines the events that are selected for tracking by default . The
best way to learn the types of events you can trace is to select each event or
event class and read its description at the bottom of the Events Selection tab .
Move the pointer to a specific column to see details about that data column .

FIGURE 14-10 Select events to trace .

  7. Only a subset of traceable events and event classes is displayed by default .
To see all event classes available, select the Show All Events check box . The
event classes that can be traced include Broker, CLR, Cursors, Database, Dep-
recation, Errors And Warnings, Full Text, Locks, OLEDB, Objects, Performance,
Progress Report, Query Notifications, Scans, Security Audit, Server, Sessions,
Stored Procedures, TSQL, Transactions, and User Configurable .

  8. Only a subset of the traceable data columns is displayed by default . To see all
data columns, select the Show All Columns check box .

  9. Select event subclasses to add to the trace . If you select a subclass, all data
columns for that class are tracked .

 ChAPTeR 14  Profiling and Monitoring SQL Server 2008550

  10. As necessary, select individual data columns for event subclasses to track
specific data columns for an event subclass (versus all data columns for a
subclass) . At a minimum, you should track the following:

■■ Cursors, CursorExecute

■■ Cursors, CursorOpen

■■ Cursors, CursorPrepare

■■ Sessions, ExistingConnection

■■ Stored Procedures, RPC:OutputParameter

■■ Stored Procedures, RPC:Starting

■■ TSQL, Exec Prepared SQL

■■ TSQL, Prepare SQL

■■ TSQL, SQL:BatchStarting

TIP  If you are tracking distributed queries, be sure to add the hostName column

that corresponds to the ServerName in the display window. For transactions, be

sure to add the TransactionID column. Also, if you plan to replay the trace for

troubleshooting, refer to “Replaying a Trace” on the next page for specific event

classes and data columns that you need to select.

  11. To focus the trace on specific types of data, you might want to set criteria
that exclude certain types of events . If so, select an event category you want
to filter, click the Column Filters button to open the Edit Filter dialog box,
and then set filter criteria . For each event category, you can use different fil-
tering criteria . To use the criteria, you click on the related plus sign and then
enter the appropriate value in the text box provided . When you finish, click
OK to close the Edit Filter dialog box . You use the filter criteria as follows:

■■ Equals, Not Equal To, Greater Than Or Equal, or Less Than Or
Equal Use these criteria to set the values that trigger the event . Events
with values outside the specified range are excluded . For example, with
the CPU event category, you can specify that only events using 1000 mil-
liseconds or more (greater than or equal to) of CPU time are captured . If
events use less CPU time than specified, they are excluded .

■■ Like or Not Like Enter strings to include or exclude for this event cat-
egory . Use the wildcard character (%) to match a series of characters . Use
the semicolon (;) to separate multiple strings . For example, you can use
the Application Name category to exclude all application names that start
with MS and SQL	Server by typing MS%;SQL Server% .

  12. When you finish configuring the trace, click Run to start the trace .

 Profiling and Monitoring SQL Server 2008 ChAPTeR 14 551

Working with Traces
Profiler displays information for multiple traces in separate windows that can be
cascaded or tiled . Use the buttons on the Profiler toolbar to control your work
with traces . Create a new trace by clicking the New Trace button, and then use the
options in the New Trace dialog box to configure the trace . Create a trace template
by clicking New Template, setting trace properties, and then clicking Save . Once you
have an active trace, you can do the following:

■■ Start the trace by clicking the Start Selected Trace button .

■■ Pause the trace by clicking the Pause Selected Trace button . You can then use
the Start Selected Trace button to resume the trace at the point at which it
was stopped .

■■ Stop the trace by clicking the Stop Selected Trace button . If you start the
trace again with the Start Selected Trace button, Profiler displays data again
from the beginning of the trace process; new data is appended to the files or
tables to which you are capturing data .

■■ Edit trace properties by clicking the Properties button .

Saving a Trace
When you create traces in Profiler, you create trace data and trace definitions . The
Profiler window displays trace data, and you can also store it in a file, in a table, or in
both . The trace data records a history of events that you are tracking, and you can
use this history to replay the events for later analysis . The Trace Properties dialog
box displays the trace definition . You can use the trace definition to create a new
trace based on the existing trace .

To save trace data, complete the following steps:

  1. Access the Profiler window that displays the trace you want to save .

  2. Select File, point to Save As, and then select Trace File or Trace Table .

  3. Use the Save As dialog box to select a folder location . Type a file name, and
then click Save . Trace files end with the .trc extension .

To save a trace definition, complete the following steps:

  1. Access the Profiler window that displays the trace with the definition you
want to save .

  2. Select File, point to Save As, and then select Trace Template .

  3. Use the Select Template Name dialog box to select a folder location . Type a
file name, and then click OK . Trace templates end with the .tdf extension .

Replaying a Trace
One of the main reasons you create traces is to save them and replay them later .
When replaying traces, Profiler can simulate user connections and authentication,

 ChAPTeR 14  Profiling and Monitoring SQL Server 2008552

which allows you to reproduce the activity recorded in the trace . You can replay
traces in different ways to help you troubleshoot different kinds of problems:

■■ Execute traces step by step to closely monitor each step in the trace .

■■ Execute traces using the original timeline to simulate user loads .

■■ Execute traces with a high replay rate to stress-test servers .

As you monitor the trace execution, you can look for problem areas . Then, when
you identify the cause of problems you are trying to solve, you can correct them
and rerun the original trace definition . If you are still having problems, you need
to reanalyze the trace data or look at other areas that might be causing problems .
Keep in mind that you might need to specify different events to capture in the
subsequent trace .

Requirements for Replaying Traces

Traces that you want to replay must contain a minimum set of events and data
columns . If the trace does not contain the necessary elements, you will not be able
to replay the trace . The required elements are in addition to any other elements that
you want to monitor or display with traces .

TIP If you select the TSQL_Replay template, the required event classes and data

classes are enabled for tracing by default. If you select another template, you might

need to manually select the required event classes and data columns.

You should capture the following event classes to allow a trace to be replayed
and analyzed correctly: Audit Login, Audit Logout, ExistingConnection, RPC
Output Parameter, RPC:Completed, RPC:Starting, SQL:BatchCompleted, and
SQL:BatchStarting . When you are replaying server-side cursors, you must add
CursorClose, CursorExecute, CursorOpen, CursorPrepare, and CursorUnprepare .
When you are replaying server-side prepared SQL statements, you must add Exec
Prepared SQL and Prepare SQL .

You should capture the following data columns to allow a trace to be replayed
and analyzed correctly: ApplicationName, BinaryData, ClientProcessID, DatabaseID,
DatabaseName, EndTime, Error, EventClass, EventSequence, HostName, IsSystem,
LoginName, NTDomainName, NTUserName, ServerName, SPID, StartTime, and
TextData .

Replaying Traces on a Different Server

You can replay a trace on a server other than the server originally traced . When you
replay a trace on another server, this server is called the target	system . To replay
traces on the target, you should ensure that all logins contained in the trace meet
the following criteria:

■■ Are created on the target system and are in the same database as the source
system

 Profiling and Monitoring SQL Server 2008 ChAPTeR 14 553

■■ Have the same permissions they had originally

■■ Have the same passwords they had originally

■■ Are set to use a default database that matches the database on the source
system

If these settings are not the same, you will see errors, but the replay operation
will continue . Also, database IDs on the target system must be the same as those on
the source system . The easiest way to set up databases on the target is to complete
the following steps:

  1. Back up the master database on the source and any user databases used in
the trace .

  2. Restore the databases on the target as explained in “Restoring a Database to
a Different Location” in Chapter 15 .

Replaying and Analyzing a Trace

Replaying a trace allows you to analyze problems . To begin, start Profiler, and then
select the Open Trace File or Open Trace Table option, as appropriate for the type of
trace you want to replay . After you select the trace to replay, the trace is then loaded
into the Profiler window . Events and commands recorded in the trace are summa-
rized in the Profiler window, as shown in Figure 14-11 . You can select an entry to see
an expanded list of commands executed .

FIGURE 14-11 The Profiler window

 ChAPTeR 14  Profiling and Monitoring SQL Server 2008554

As Figure 14-11 also shows, the toolbar in the replay window differs from the
standard toolbar . The buttons provide just about everything that you need to
debug traces, including:

■■ Start Replay Starts executing the trace

■■ Pause Replay Pauses execution of the trace

■■ Stop Replay Stops execution of the trace

■■ Execute One Step Allows you to move through the trace one step at a
time

■■ Run To Cursor Allows you to move through the trace using cursor sets

■■ Toggle Breakpoint Allows you to set breakpoints for the trace execution

When you start the replay, you need to connect to the server, and then the
initial dialog box is displayed to configure replay options . (See Figure 14-12 .) You
configure the options in the Replay Configuration dialog box to control where and
how the playback takes place . Start by setting the destination server for the replay
operation . By default, the replay server is set to the current (local) server . Click
Change to use a different replay server, and then set the replay options .

FIGURE 14-12 The Replay Configuration dialog box

The replay options determine how closely the replay mirrors the original event
execution . You can choose from the following options in the dialog box:

■■ Replay Events In The Order They Were Traced Events are started in the
order in which they originally started . This enables debugging, but it does
not guarantee timing of event execution . Events might be executed sooner
than their original start time or after their original start time, depending on
current activity levels, the current speed of connections, and other factors .

 Profiling and Monitoring SQL Server 2008 ChAPTeR 14 555

■■ Replay Events Using Multiple Threads Events are replayed as quickly as
they can be processed . No timing is maintained between events . When one
event completes, the next event is started . This optimizes performance and
disables debugging .

The Display Replay Results check box controls whether the replay results are
displayed in the Profiler window . To display results, select this option . To hide results,
clear this option .

You can also select an output file to which to save the result of the replay for
later viewing . The output file allows you to review the replay just as you would any
other trace file .

557

CHAP TE R 15

Backing Up and Recovering
SQL Server 2008

■■ Creating a Backup and Recovery Plan 557

■■ Selecting Backup Devices and Media 566

■■ Using Backup Strategies 568

■■ Creating a Backup Device 570

■■ Performing Backups 572

■■ Restoring a Database 583

■■ Restoring the master Database 601

Information is the fuel that drives the enterprise, and the most critical informa-
tion is often stored in databases . Databases are where you find an organization’s

customer account information, partner directories, product knowledge base, and
other important data . To protect an organization’s data and to ensure the avail-
ability of its databases, you need a solid database backup and recovery plan .

Backing up databases can protect against accidental loss of data, database cor-
ruption, hardware failures, and even damage from natural disasters . It is your job
as a database administrator to perform backups and store the backups you create
in a safe and secure location .

Creating a Backup and Recovery Plan

Creating and implementing a backup and recovery plan is one of your most
important duties as a database administrator . Think of database backup as an
insurance plan for the future—and for your job . Important data is deleted acciden-
tally all the time . Mission-critical data can become corrupt . Natural disasters can
leave your office in ruins . With a solid backup and recovery plan in place, you can
recover from any of these situations . Without one, you are left with nothing after a
disaster of any kind .

 ChAPTeR 15  Backing Up and Recovering SQL Server 2008558

Initial Backup and Recovery Planning
Creating and implementing a backup and recovery plan takes time . You need to
figure out which databases need to be backed up, how often the databases should
be backed up, and other details . To help you create a plan, consider the following
questions:

■■ What types of databases are you backing up? System and user data-
bases often have different backup and recovery needs . For example, the
master database is essential for all Microsoft SQL Server operations . If the
master database fails or becomes corrupt, it takes the whole server down
with it . But you do not need to back up the master database every hour, as
you might need to do with a critical user database that handles real-time
customer transactions . You need to back up master only after you create
a database, change configuration values, configure SQL logins, or perform
similar activities that make changes to databases on a server .

■■ How important is the data in a database? How you judge the data’s
importance can help determine when and how you should back it up .
Although you might back up a development database weekly, you would
probably back up a production database at least daily . The data’s importance
also drives your decision about the type of backup . To protect the data in a
development database, you could make a full backup once a week . For an in-
house customer order database that is updated throughout each weekday,
you would want to perform full backups twice a week and supplement this
with daily differential backups and hourly backups for the transaction logs .
You might even set named log marks that allow recovery up to a specific
point in the work .

■■ How often are changes made to a database? The frequency of changes
can drive your decision about how often a database should be backed up .
Because a read-only database does not ordinarily change, it does not need
to be backed up regularly . On the other hand, a database that is updated
nightly should be backed up after the nightly changes are posted . A data-
base that is updated around the clock should be backed up continually .

■■ How quickly do you need to recover the data? When you create a
backup plan, it is important to consider the amount of time it will take to
recover lost data . For mission-critical databases, you likely need to get
the database online again swiftly; to do this, you might need to alter your
backup plan . Instead of backing up to a drive set with software RAID 1, for
example, you might want to back up to disk drives that use hardware RAID 5 .

■■ Do you have the equipment to perform backups? You need backup
hardware to perform backups . If you do not have the hardware, you can-
not perform backups . To perform timely backups, you might need several
backup devices and several sets of backup media . Backup hardware includes
optical drives, removable disk drives, and plain old disk drives .

 Backing Up and Recovering SQL Server 2008 ChAPTeR 15 559

■■ Can you compress backups? SQL Server 2008 Enterprise edition and later
releases support compression backups, and any SQL Server 2008 or later
edition can restore compressed backups . Because a compressed backup is
smaller than an uncompressed backup of the same data, SQL Server requires
less device input/output (I/O), and the backup itself requires less storage
space . Typically, this increases backup and restore speed significantly . How-
ever, compression and decompression can significantly increase processor
overhead, and this could adversely affect server performance .

■■ What is the best time to schedule backups? You should schedule back-
ups when database usage is as low as possible . Using this approach speeds
up the backup process . However, in the real world, you cannot always sched-
ule backups for off-peak hours . This means that you need to carefully plan
when important databases are backed up .

■■ Do you need to store backups off site? Storing copies of backups at an
off-site location is essential to the recovery of your systems in the event of
a natural disaster . In your off-site storage location, you should also include
copies of the software required to restore operations on a new system .

NOTE Availability options, such as log shipping, are not a substitute for backups.

even if you use log shipping, mirroring, or clustering, you still need to create backups.

Backing up a database differs from backing up a server or a workstation, primar-
ily because you often need to combine all (or nearly all) of the available techniques
to ensure that you can recover a database completely . The basic types of backups
you can perform include the following:

■■ Full database backups A full backup of a database includes all objects,
system tables, and data . When the backup starts, SQL Server copies every-
thing in the database and also includes portions of the transaction logs that
are needed while the backup is in progress . You can use a full backup to
recover the complete state of the data in a database at the time the backup
operation finishes .

■■ Differential backups Designed to back up data that has changed since the
last full backup . Because only changes are stored, this type of backup takes
less time, and you can perform it more often . As with full backups, differ-
ential backups include portions of the transaction logs that are needed to
restore the database when the backup operation finishes .

TIP  You can use differential backups only in conjunction with full backups, and

you cannot perform differential backups on the master database. Do not confuse

differential backups with incremental backups. Differential backups record all

changes since the last full backup (which means the amount of data that is backed

up grows over time). Incremental backups record changes since the most recent

full or incremental backup (which means the size of the data backed up incremen-

tally is usually much smaller than a full backup).

 ChAPTeR 15  Backing Up and Recovering SQL Server 2008560

■■ Transaction log backups Transaction logs are serial records of all data-
base modifications and are used during recovery operations to commit com-
pleted transactions and to roll back uncompleted transactions . When you
back up a transaction log, the backup stores the changes that have occurred
since the last transaction log backup and then truncates the log, which clears
out transactions that have been committed or canceled . Unlike full and dif-
ferential backups, transaction log backups record the state of the transaction
log at the time the backup operation starts (not when it ends) .

■■ File and filegroup backups These backups allow you to back up data-
base files and filegroups rather than an entire database . This type of backup
is useful if you are dealing with a large database and want to save time by
backing up individual files rather than the entire database . Many factors
affect file and filegroup backups . When you use file and filegroup backups,
you must back up the transaction log as well . Because of this dependency,
you cannot use this backup technique if Truncate Log On Checkpoint is
enabled . Furthermore, if objects in the database span multiple files or
filegroups, you must back up all the related files and filegroups at the same
time .

REAL WORLD When you create full-text indexes, you can specify the filegroup in

which an index should be created. If you don’t specify a filegroup, the index becomes

part of the primary filegroup for the database. however, you might want to store

full-text indexes in secondary filegroups because doing so can give you additional

recovery options. You can view the filegroup ID of the filegroup that contains a full-

text index by selecting the data_space_id column of the sys.fulltext_indexes view.

If the filegroup that contains the full-text index is brought online after the filegroup

that contains the table data, users might experience problems with full-text queries.

Specifically, full-text queries will fail because the index is not available. When change

tracking is enabled, user data manipulation language (DML) statements will fail until

the index filegroup is available. Any status functions that ordinarily access the full-text

index fail also. As soon as you bring both the full-text index filegroup and the table

data filegroup online, full-text index queries will succeed, and all other full-text opera-

tions will be restored.

TIP With databases that have one or more read-only filegroups, you might want

to include contingencies for partial backups and partial differential backups in your

planning. With a partial backup, you back up all the data in the primary filegroup and

every read/write filegroup automatically. Partial backups do not, however, automati-

cally include read-only filegroups. SQL Server includes read-only filegroups only when

you explicitly specify them. With a partial differential backup, you back up only the

data extents that were modified since the most recent partial backup of the same set

of filegroups.

 Backing Up and Recovering SQL Server 2008 ChAPTeR 15 561

SQL Server 2008 uses recovery models to help you plan backups . The types
of databases you are backing up and the types of backups you perform drive the
choices for recovery models . Three recovery models are available:

■■ Simple The simple recovery model is designed for databases that need to
be recovered to the point of the last backup . The backup strategy with this
model should consist of full and differential backups . You cannot perform
transaction log backups when the simple recovery model is enabled . SQL
Server 2008 turns on the Truncate Log On Checkpoint option, which clears
out inactive entries in the transaction log on checkpoint . Because this model
clears out transaction logs, it is ideal for most system databases .

■■ Full The full recovery model is designed for databases that need to be
recovered to the point of failure or to a specific point in time . When you use
this model, all operations are logged, including bulk operations and bulk
loading of data . The backup strategy with this model should include full,
differential, and transaction log backups or full and transaction log backups
only .

■■ Bulk-logged The bulk-logged recovery model reduces log space usage
but retains most of the flexibility of the full recovery model . With this model,
bulk operations and bulk loads are minimally logged and cannot be con-
trolled on a per-operation basis . You need to manually redo bulk operations
and bulk loads if the database fails before you perform a full or differential
backup . The backup strategy with this model should include full, differential,
and transaction log backups or full and transaction log backups only .

Each database can have a different recovery model . By default, the master, msdb,
and tempdb databases use the simple recovery model, and the model database uses
the full recovery model . The model database is the template database for all new
databases, so if you change a default setting, all new databases for the database
server instance use the new default model . You set the recovery model by complet-
ing the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the appropriate server .

  2. If you plan to switch from bulk-logged recovery to simple recovery, perform
a transaction log backup prior to making the change, and then change your
backup strategy so that you no longer perform transaction log backups .

  3. Expand the Databases folder . If you are configuring recovery for a system
database, expand the System Databases folder as well .

  4. Right-click the database you want to change, and then choose Properties .
This displays the Database Properties dialog box .

  5. Use the Recovery Model list on the Options page to change the recovery
model, and then click OK .

  6. If you switch from simple recovery to full recovery or bulk-logged recovery,
add transaction log backups to your backup strategy for the database .

 ChAPTeR 15  Backing Up and Recovering SQL Server 2008562

SQL Server 2008 includes several features that allow you to create standby serv-
ers . Following are the three general types of standby servers:

■■ Hot standby server A server that is automatically updated and comes
online automatically if a primary server or database fails

■■ Warm standby server A server that is automatically updated but which
must be brought online manually if a primary server or database fails

■■ Cold standby server A server that is manually updated and must be
brought online manually if a primary server or database fails

Database mirroring, log shipping, and database copies allow you to create
standby servers . You use database mirroring to establish a hot standby server, called
a mirror	server, on which the database is continuously brought up to date and to
which failover can occur automatically if the primary database fails . You use log
shipping to establish a warm standby server, called a secondary	server . On a second-
ary server, the database is automatically updated from log backups, but you must
bring the server online manually if the primary database fails . You create a copy of a
database to establish a cold standby server . On a cold standby server, the database
is manually updated, and you must bring the server online manually if the primary
database fails .

Planning for Mirroring and Mirrored Database Backups
Mirroring allows you to create hot standby servers . You can mirror any database
except for master, msdb, temp, and model . You can configure and enable mirroring
by using the Mirroring page in the Database Properties dialog box . As discussed in
“Ensuring Availability and Scalability” in Chapter 2, mirroring requires up to three
servers: a principal server, a mirror server, and a witness server .

Backups are not used with mirrored databases in the same way that they are
with other databases . When mirroring is configured, backups of a principal data-
base are used to initialize the mirror database on the mirror server . As part of the
mirror-creation process, you can back up and restore individual files and filegroups .
However, you must restore all files and filegroups before you begin mirroring . If
you want to work only with a subset of a database and its objects, use replication
instead, as discussed in Chapter 13, “Implementing Snapshot, Merge, and Transac-
tional Replication .”

When mirroring databases, remember the following information:

■■ While database mirroring is active, you cannot back up or restore the mirror
database .

■■ Although you can back up the principal database, you cannot use BACKUP
LOG WITH NORECOVERY .

■■ You cannot restore the principal database (that is what mirroring is for) . The
mirror will correct itself after failover .

 Backing Up and Recovering SQL Server 2008 ChAPTeR 15 563

Planning for Backups of Replicated Databases
Databases that are replicated present a special problem for backup and restoration
planning, primarily because the traditional database architecture is extended to
include three server roles (which all have related databases):

■■ Publisher A server that makes data available for replication, tracks changes
to data, and maintains other information about source databases . Each pub-
lisher has a publication database .

■■ Distributor A server that distributes replicated data and stores the distribu-
tion database . Each distributor has a distribution database .

■■ Subscriber A destination server for replication . Subscriber databases
store the replicated data, receive updates, and in some cases can also make
changes to data . Each subscriber has a subscription database .

As you do with other system databases, you should regularly back up the pub-
lication, distribution, and subscription databases . On the publisher, distributor, and
all subscriber servers, you should back up the master and msdb system databases
at the same time as you back up the replication databases . When you restore the
publication database, you should also restore the master and msdb databases on
the publisher server . When you restore the distribution database, you should also
restore the master and msdb databases on the distributor server . When you restore
the subscription database, you should also restore the master and msdb databases
on the subscriber server .

Subscription database backups should be no older than the shortest retention
period of all publications to which the subscriber subscribes . If the shortest reten-
tion period is 10 days, the backup you plan to restore should be no older than 10
days . To ensure successful recovery of a subscription database, subscribers should
synchronize with the publisher before the subscription database is backed up . They
should also synchronize after the subscription database is restored . Synchronizing
prior to backup helps ensure that if a subscriber is restored from backup, the sub-
scription is still within the publication retention period .

You can restore replicated databases to the same server and database from
which the backup was created or to another server or database . If you restore a
backup of a replicated database to another server or database, replication settings
are not preserved, and you need to re-create all publications and subscriptions after
backups are restored, except in the case of log shipping . If you use log shipping, you
can restore a replicated database to a standby server, and the replication settings
are preserved .

With merge replication, any replication-related changes should be captured in
the log backups . If you do not perform log backups, the publication database should
be backed up whenever a setting relevant to replication is changed . After restor-
ing the publication database from a backup, you should synchronize the publication
database with a subscription database or reinitialize all subscriptions to the publica-
tions in the publication database . You can synchronize the publication database or

 ChAPTeR 15  Backing Up and Recovering SQL Server 2008564

reinitialize subscriptions as discussed in “Subscribing to a Publication” in Chapter 13 .
Be sure to check the identity ranges in tables that contain IDENTITY columns after
restoring a database .

NOTE In merge replication, the distribution database has a limited role. It does not

store any data used in change tracking, and it does not provide temporary storage

of merge replication changes to be forwarded to subscription databases (as it does in

transactional replication).

With transactional replication, you set the Sync With Backup option on the distri-
bution and publication databases for the following reasons:

■■ Turn this option on for the distribution database to ensure that transactions
in the log of the publication database will not be truncated until they have
been backed up at the distribution database . This allows the distribution data-
base to be restored to the last backup, and any missing transactions then can
be delivered from the publication database to the distribution database while
replication continues unaffected . Although this has no effect on replication
latency, it can delay the truncation of the log on the publication database
until the corresponding transactions in the distribution database have been
backed up .

■■ Turn this option on for the publication database if your application can toler-
ate additional latency to be sure that transactions are not delivered to the
distribution database until they are backed up at the publication database .
This allows you to restore the last publication database backup at the pub-
lisher without any possibility of the distribution database having transactions
that the restored publication database does not have . Latency and through-
put are affected because transactions cannot be delivered to the distribution
database until they have been backed up at the publisher .

Planning for Backups of Very Large Databases
If you need to develop a plan to back up and restore very large databases, you
might want to take advantage of parallel backup and restore . The parallel backup
and restore process allows SQL Server to use multiple threads to read and write
data . This means SQL Server can read data from and write data to multiple data
sources . The backup and restore process uses parallel I/O in different ways:

■■ Backing up uses one thread per disk device to read data from a database
when the database has files on several disk devices .

■■ A restore operation uses one thread per disk device as it initializes a database
that it is creating for the restore process if the database is defined with files
on several disks .

■■ Both backup and restore operations use one thread per backup device when
a backup set is stored on multiple backup devices .

 Backing Up and Recovering SQL Server 2008 ChAPTeR 15 565

As you can see from this information, to take advantage of parallel I/O, you must
implement your backup strategy so that databases do the following:

■■ Use multiple disk drives for storing data

■■ Use multiple backup devices for backing up and restoring data

After you determine the backup operations to use on each database and how
often you want to back up each database, you can select backup devices and media
that meet these requirements . Backup devices and media are covered later in this
chapter .

Planning for Backup Compression
Backup compression is disabled by default . You can set a global default with com-
pression on or off on a per-instance basis by completing the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the appropriate server .

  2. Right-click the server entry, and then select Properties . This displays the
Server Properties dialog box .

  3. On the Database Settings page, select the Compress Backup check box to
turn on backup compression . Clear the Compress Backup check box to turn
off backup compression . Click OK .

Using Transact-SQL (T-SQL), you can set the global default for compression
by using the server configuration option Backup Compression Default for the
sp_configure stored procedure . As shown in the following example, use a value of
1 to turn compression on:

EXEC sp_configure 'backup compression default', '1'
GO
RECONFIGURE WITH OVERRIDE
GO

You can override the global default when you create or schedule database back-
ups . However, the global setting is extremely important because the server-level
setting for compression determines whether the data SQL Server sends is com-
pressed when you use log shipping and database mirroring . Specifically, you must
enable backup compression at the server level to enable log backup compression
for log shipping and database mirroring .

You can calculate the compression ratio of a database backup by dividing the
original backup size by the compressed backup size . You can obtain both val-
ues from the backupset column in the msdb database, as shown in the following
example:

SELECT backup_size/compressed_backup_size FROM msdb..backupset

 ChAPTeR 15  Backing Up and Recovering SQL Server 2008566

The compression ratio of a compressed backup depends on the type of data
you have compressed . For example, although you can compress encrypted data,
encrypted data has a significantly lower compression ratio than unencrypted data .
Additionally, if the database itself is already compressed, compressing the backup
won’t necessarily reduce the backup size .

In a standard configuration, backup compression—whether used for data-
base backups, log shipping, or log mirroring—can significantly increase processor
utilization, and this can have an impact on SQL Server performance . To reduce the
performance impact for long-running database backups, you can compress backups
by using a user session for which the Resource Governor has limited CPU utilization .

Selecting Backup Devices and Media

Many different solutions are available for backing up data . Some are fast and expen-
sive . Others are slow but very reliable . The backup solution that is right for your
organization depends on many factors, including the following:

■■ Capacity This refers to the amount of data that you need to back up on a
routine basis . Can the backup hardware support the required load given your
time and resource constraints?

■■ Reliability The reliability of the backup hardware and media determines
how useful the backups you create are when you need them to restore lost
data . Can you afford to sacrifice reliability to meet budget or time needs?

■■ Extensibility The extensibility of the backup solution refers to its ability
to expand beyond its original capacity . Will this solution meet your needs as
your organization grows?

■■ Speed Consider the speed with which data can be backed up and recov-
ered . Can you afford to sacrifice speed to reduce costs?

■■ Cost The cost of backup solution choices affects your decision . Does the
solution fit within your budget?

Capacity, reliability, extensibility, speed, and cost are the main issues that influ-
ence your choice of a backup plan . If you determine the relative value of these issues
to your organization, you will be able to select an appropriate backup solution for
your situation . Some of the most commonly used backup solutions include the fol-
lowing hardware and media:

■■ Tape drives Tape drives are the most common backup devices . Tape drives
use magnetic tape cartridges to store data . Magnetic tapes are relatively
inexpensive, but they are not highly reliable . Tapes can break or stretch . They
can also lose information over time . The average capacity of tape cartridges
ranges from 24 gigabytes (GB) to 80 GB . Compared with other backup solu-
tions, tape drives are fairly slow . Their biggest advantage is their low cost .

 Backing Up and Recovering SQL Server 2008 ChAPTeR 15 567

■■ Digital Audio Tape (DAT) drives DAT drives are quickly replacing stan-
dard tape drives as the preferred type of backup device . Many DAT formats
are available . The most commonly used format is Digital Linear Tape (DLT)
or Super DLT . With SDLT 320 and 600, tapes have a capacity of either 160 GB
or 300 GB uncompressed (320 GB or 600 GB compressed) . If you work for a
large organization, you might want to look at Linear Tape Open (LTO) . LTO-3
tapes have a capacity of 400 GB uncompressed (800 GB compressed) .

TIP  To perform faster backup and recovery operations, you can use multiple

backup devices with SQL Server. For example, if it normally takes four hours to

perform a full backup or restoration of a database, you can cut the backup and

restoration time in half by using two backup devices; with four backup devices,

you could fully back up or restore the database in an hour.

■■ Autoloader tape systems Autoloader tape systems (tape library systems)
use a magazine of tapes to create extended backup volumes capable of
meeting an enterprise’s high-capacity needs . With an autoloader system,
tapes within the magazine are automatically changed as needed during the
backup or recovery process . Most autoloader tape systems use DAT tapes
formatted for DLT, SDLT, or LTO . Typical DLT drives can record up to 45 GB
per hour, and you can improve that speed by purchasing a tape library
system with multiple drives . In this way, you can record on multiple tapes
simultaneously . In contrast, most SDLT and LTO drives record over 100 GB
per hour, and by using multiple drives in a system you can record hundreds
of gigabytes per hour . An example enterprise solution uses 16 LTO drives to
achieve data transfer rates of more than 13 .8 terabytes (TB) per hour and can
store up to 500 tapes for a total storage capacity of more than 800 TB .

■■ Removable disk drives Removable disks, such as external USB drives or
eSATA drives, are increasingly being used as backup devices . Removable disks
offer good speed and ease of use for a single drive or single system backup .
However, disk drives and removable disks tend to be more expensive than
standard tape or tape library systems .

■■ Disk drives Disk drives provide the fastest way to back up and restore files .
Using disk drives, you can often accomplish in minutes what takes hours with
a tape drive . So when business needs mandate a speedy recovery, nothing
beats a disk drive . The cost of disk drives, however, might be higher com-
pared to tape library systems .

■■ Disk-based backup systems Disk-based backup systems provide com-
plete backup and restore solutions by using large arrays of disks to achieve
high performance . High reliability can be achieved when you use redundant
array of independent disks (RAID) to build in redundancy and fault toler-
ance . Typical disk-based backup systems use virtual library technology so

 ChAPTeR 15  Backing Up and Recovering SQL Server 2008568

that Windows sees them as autoloader tape library systems . This makes them
easier to work with . An example enterprise solution has 128 virtual drives and
16 virtual libraries per node for total storage of up to 7 .5 TB per node . When
fully scaled, this enterprise solution can store up to 640 TB and transfer up to
17 .2 TB per hour .

Selecting a backup device is an important step in implementing a backup and
recovery plan, but it is not the only step . You also need to purchase the tapes, the
disks, or both that will allow you to implement your backup and recovery plan . The
number of tapes, disks, or drives you need depends on the following factors:

■■ How much data you will be backing up

■■ How often you will be backing up the data

■■ How long you need to keep additional data sets

Typically, you implement backups by using a rotation schedule with two or more
sets of tapes, disks, or files on a drive . Having more than one set of media allows
you to increase media longevity by reducing media usage, and at the same time it
reduces the number of actual tapes, disks, or files you need to ensure that you have
data available when necessary .

BEST PRACTICES For important databases, I recommend using four media sets. Use

two sets in regular rotation. Use the third set for the first rotation cycle at the begin-

ning of each month, and use the fourth set for the first rotation cycle of each quarter.

This technique allows you to recover the database in a wide variety of situations.

Using Backup Strategies

Table 15-1 lists backup strategies you might want to use . As you can see, these strat-
egies are based on the type of database as well as the type of data . When planning
a backup strategy, remember the following:

■■ The master database stores important information about the structure of
other databases, including the database size . Whenever database informa-
tion or structure changes, master might be updated without your knowing
about it . For example, the size of most databases changes automatically, and
when this happens master is updated . Because of this, often the best backup
strategy for master is to schedule backups every other day and to rotate
through several backup sets so that you can go back to several different ver-
sions of master if necessary .

■■ You can use transaction logs to recover databases up to the point of
failure and up to a point of work . To recover a database to a point of
work, you must insert named log marks into the transaction log by using

 Backing Up and Recovering SQL Server 2008 ChAPTeR 15 569

BEGIN TRANSACTION WITH MARK . You can then recover to a mark in the
log by using RESTORE LOG WITH STOPATMARK or RESTORE LOG WITH
STOPBEFOREMARK .

TABLE 15-1 Backup Strategies for System and User Databases

DATABASE
TYPE DETAILS STRATEGY

User Recovery up
to the minute

Run full backups twice a week if possible . Use nightly
differential backups, and back up the recovery trans-
action log every 10 minutes during business hours .
Do not use Truncate Log On Checkpoint because
this will make recovering some transactions impos-
sible . To improve backup/restore speed, use multiple
backup devices whenever possible .

Recovery up
to a point of
work

Run full backups twice a week if possible . Use nightly
differential backups, and back up the recovery trans-
action log every 10 minutes during business hours .
Do not use Truncate Log On Checkpoint . Use named
transactions to insert named marks into the trans-
action logs . To improve backup/restore speed, use
multiple backup devices whenever possible .

Recovery up
to the hour

Run full backups twice a week if possible . Use nightly
differential backups, and back up the recovery trans-
action log every 60 minutes during business hours .
Do not use Truncate Log On Checkpoint . To improve
backup/restore speed, use multiple backup devices
whenever possible .

Recovery of
daily changes

Run full backups at least once a week . Use nightly dif-
ferential backups, and back up the changes transac-
tion log every four hours during business hours . Do
not use Truncate Log On Checkpoint .

Read-only Schedule a full backup of the database every 30 days,
and supplement this with an additional full backup
whenever the database is modified .

 ChAPTeR 15  Backing Up and Recovering SQL Server 2008570

DATABASE
TYPE DETAILS STRATEGY

System distribution Available when you configure replication and the
server is acting as a distributor . Schedule full backups
after snapshots . With transactional replication, sched-
ule regular log backups .

master Run full backups immediately after creating or
removing databases, changing the size of a database,
adding or removing logins, or modifying server con-
figuration settings . Do not forget to maintain several
backup sets for master .

model Treat like a read-only database .

msdb If you schedule jobs through the SQL Server Agent,
back up this database regularly because this is where
the job schedule and history are maintained and
backup history is stored .

publication Available when you configure replication and the
server is acting as a publisher . If you do not perform
log backups, the publication database should be
backed up whenever a setting relevant to replication
is changed .

subscription Available when you configure replication and the
server is acting as a subscriber . Subscription database
backups should be no older than the shortest reten-
tion period of all publications to which the subscriber
subscribes .

tempdb Normally does not need to be backed up . This data-
base is re-created each time you start SQL Server .

Creating a Backup Device

Earlier versions of SQL Server required you to configure backup devices before you
could back up databases . With SQL Server 2008, you do not need to explicitly define
backup devices . Nevertheless, backup devices do provide an easy way to ensure that
you create backups that have the same file name and location time after time . By
using consistent names and locations, you can more easily manage the backup and
recovery processes .

 Backing Up and Recovering SQL Server 2008 ChAPTeR 15 571

To create a backup device using SQL Server Management Studio, complete the
following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the appropriate server .

  2. Expand the server’s Server Objects folder .

  3. Right-click Backup Devices, and then choose New Backup Device to open the
dialog box shown in Figure 15-1 .

FIGURE 15-1 The Backup Device dialog box

  4. In the Device Name box, type the name of the logical backup device . Use a
short but descriptive name, such as Customer Device or Master Device .

  5. If you installed a tape drive and want to back up to the tape drive, select the
Tape option, and then use the related drop-down list to select the target
drive .

  6. If you are backing up to a file, select the File option, and then type the
full path to the backup file you want to associate with this device, such as
F:\SQLData\Backups\Personnel .bak .

  7. Click OK . SQL Server will attempt to verify the backup file location . If there is
a problem, you will see a prompt notifying you of any issues .

 ChAPTeR 15  Backing Up and Recovering SQL Server 2008572

With Transact-SQL, you can create backup devices by using sp_addumpdevice .
Sample 15-1 shows the syntax and usage for this command, which uses many differ-
ent arguments, including device_type, logical_name, physical_name, controller_type,
and device_status . The device_type argument is the type of device you are using—
disk or tape . The logical_name argument is the name of the backup device . The
physical_name argument is the full path to the backup file, and controller_type is 2
for a disk or 5 for a tape . The device_status argument is either noskip, to read ANSI
tape headers, or skip, to skip ANSI tape headers .

SAMPLE 15-1 sp_addumpdevice Syntax and Usage

Syntax

sp_addumpdevice [@devtype =]'device_type',
 [@logicalname =] 'logical_name',
 [@physicalname =] 'physical_name'
 [, {
 [@cntrltype =] controller_type |
 [@devstatus =] 'device_status' }
]

Usage

EXEC sp_addumpdevice 'disk', 'Customer', 'c:\mssql\backup\cust.bak'
EXEC sp_addumpdevice 'disk', 'Customer on Backup Server',
 '\\omega\backups\cust.bak'
EXEC sp_addumpdevice 'tape', 'Customer on Tape', '\\.\tape0'

Performing Backups

Backups are an essential part of database administration . They are so important
that SQL Server provides multiple backup procedures and several ways to create
backups—all designed to help you manage database backup and recovery easily
and effectively . In this section, you will learn about standard backup procedures
and the Transact-SQL backup process . The final component in a successful backup
strategy involves database maintenance plans, which you will learn about in Chapter
16, “Database Automation and Maintenance .”

Creating Backups in SQL Server Management Studio
In SQL Server Management Studio, you can start the backup process by right-
clicking the database you want to back up, pointing to Tasks, and then selecting
Back Up . I will focus on how you use the Back Up Database dialog box to perform
backups in the following situations:

■■ When you want to create a new backup set

■■ When you want to add to an existing backup set

 Backing Up and Recovering SQL Server 2008 ChAPTeR 15 573

Creating a New Backup Set

Whenever you back up a database for the first time or start a new rotation on an
existing backup set, follow these steps to create the backup:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the appropriate server .

  2. Expand the Databases folder . Right-click the database you want to back up,
point to Tasks, and then select Back Up . This opens the Back Up Database
dialog box, shown in Figure 15-2 .

FIGURE 15-2 The Back Up Database dialog box

  3. The database you want to back up should be selected in the Database list in
the dialog box . The current recovery model for this database is also shown,
but it is shaded because the recovery model cannot be changed . You cannot
create transaction log backups when the recovery model is set to Simple .

  4. Because this is a new backup set, select the type of backup you want to per-
form . Typically, for a first backup you want to perform a full backup . You can
add to the backup set later by using other types of backups .

  5. You can back up the entire database or a subset of its files and filegroups .
By default, Backup Component is set to Database to create a database
backup . If you want to create a file and filegroup backup, select the Files And
Filegroups option . The Select Files And Filegroups dialog box opens, and you
can select the check boxes for the files and filegroups you want to back up .
Click OK after making your selections .

 ChAPTeR 15  Backing Up and Recovering SQL Server 2008574

NOTE  The only available backup option for the master database is Full. That is

because you can only run full backups on master.

  6. In the Backup Set area, use the Name text box to enter a name for the
backup set you are creating . Use an ordinary, nontechnical name that will
help you tell at a glance what the backup contains . For example, name the
first backup set for the Customer database Customer Backup Set 1 . Then you
can add the full, differential, and transaction log backups for this rotation to
the set .

  7. In the Description box, type a description of the backup, such as “Set 1 con-
tains the weekly full, daily differential, and hourly transaction log backups .
This is the full backup for the week .”

  8. Use the Backup Set Will Expire options to set an expiration interval or date .
This allows the backup to overwrite the media after a specified period or
date .

  9. If a backup set exists and is listed in the Destination area, select it and click
Remove .

  10. Click Add to display the Select Backup Destination dialog box, shown in
Figure 15-3 . To use a new file as the backup destination, select the File Name
option, and then type the full path to the backup file, such as E:\Data\Back-
ups\Cust .bak or \\Omega\Backups\Cust .bak . To use a backup device, select
the Backup Device option, and then choose the backup destination using the
drop-down list . Click OK when you are ready to continue .

FIGURE 15-3 The Select Backup Destination dialog box

  11. To set additional options for the backup, select the Options page . You use
the available options as follows:

■■ Back Up To The Existing Media Set Select this option if you are using
an existing media set . You can specify whether to append to the existing
backup set or overwrite all existing backup sets .

 Backing Up and Recovering SQL Server 2008 ChAPTeR 15 575

■■ Check Media Set Name And Backup Set Expiration Use this option
to ensure that you are writing to the correct tape set and that the tape
expiration date has not been reached . If you select this option, enter the
media set name that should be verified .

■■ Back Up To A New Media Set, And Erase All Existing Backup
Sets Select this option if you want to create a new media set and erase
all existing media sets . Then enter the media set name and an optional
description .

■■ Verify Backup When Finished Choose this option to verify the entire
backup and check for errors . Generally, it is a very good idea to verify
your backups .

■■ Perform Checksum Before Writing To Media Use this option to check
the data you are backing up prior to writing it . Selecting this option is the
same as using the CHECKSUM or NOCHECKSUM options with the BACKUP
statement . If you perform a checksum, you can also specify to continue
on checksum error .

■■ Continue On Error Select this option to continue a backup after
encountering one or more errors . If you do not select this option, SQL
Server cancels the backup upon encountering an error .

■■ Truncate The Transaction Log Select this option to clean out entries
that are no longer needed after the backup . These entries are for transac-
tions that have been committed or rolled back . (This option is set by
default for transaction log backups .)

■■ Back Up The Tail Of The Log Use this option to back up the active
transaction log (those transactions that have not been completed and
are at the tail of the log) . When you use the full or bulk-logged recov-
ery model, you must back up the active transaction log before you can
restore the database with SQL Server Management Studio .

TIP  You usually want to perform one last log backup before you try to restore

a corrupt database. When you do, you should clear this option and perform the

log backup without truncation. This option is the same as running BACKUP LOG

NO_TRUNCATe.

■■ Unload The Tape After Backup Select this option to eject the tape
after the backup . Optionally, you also can elect to rewind the tape before
unloading . Both options are valid only with tape devices .

■■ Set Backup Compression Use these settings to set the compression
option . You can use the server-level default setting or explicitly turn com-
pression on or off .

  12. Click OK to start the backup . If you opted to verify the data, the verification
process starts immediately after the backup ends .

 ChAPTeR 15  Backing Up and Recovering SQL Server 2008576

Adding to an existing Backup Set

When you want to add to an existing backup set, complete the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the appropriate server .

  2. Expand the Databases folder . Right-click the database you want to back up,
point to Tasks, and then select Back Up to open the Back Up Database dialog
box, shown previously in Figure 15-2 .

  3. The database you want to back up should be selected in the Database list .

  4. Select the type of backup you want to perform: Full, Differential, or Transac-
tion Log . Typically, when you are adding to an existing set, you do so using
a differential or transaction log backup . You cannot create transaction log
backups when the recovery model is set to Simple .

  5. You can back up the entire database or a subset of its files and filegroups . By
default, Backup Component is set to Database to create a database backup .
If you want to create a file and filegroup backup, select the Files And File-
groups option . The Select Files And Filegroups dialog box is then displayed .
Select the check boxes for the files and filegroups to back up, and then click
OK .

  6. In the Backup Set area, use the Name box to enter a name for the backup
you are creating . In the Description box, type a description of the backup,
such as “Daily differential backup .”

  7. Use the Backup Set Will Expire options to set an expiration interval or date .
This allows the backup to overwrite the media after a specified period or
date .

  8. A backup set should be listed in the Destination area . If so, click Contents to
see the current contents of this backup set . If a backup set is not listed, click
Add to display the Select Backup Destination dialog box, and then specify
the location of the existing backup . Click OK when you are ready to continue .

  9. Select the Options page . Because you are adding more data to the existing
backup set, the options Backup To The Existing Media Set and Append To
The Existing Backup Set should be selected .

REAL WORLD  Because compressed and uncompressed backups cannot coexist

in a media set, be sure to set the same compression option. Whether you back up

data to a tape or disk drive, you should use the tape rotation technique. Create

multiple sets, and then write to these sets on a rotating basis. With a disk drive, for

example, you could create these backup files on different network drives and use

them as follows:

■■ \\omega\data1drive\backups\cust_set1.bak Used in weeks 1, 3, 5, and so

on for full and differential backups of the Customer database

■■ \\omega\data2drive\backups\cust_set2.bak Used in weeks 2, 4, 6, and so

on for full and differential backups of the Customer database

 Backing Up and Recovering SQL Server 2008 ChAPTeR 15 577

■■ \\omega\data3drive\backups\cust_set3.bak Used in the first week of the

month for full backups of the Customer database

■■ \\omega\data4drive\backups\cust_set4.bak Used in the first week of the

quarter for full backups of the Customer database

Do not forget that each time you start a new rotation on a tape set, you should

overwrite the existing media. For example, you should append all backups in

week 1. Then, when starting the next rotation in week 3, you should overwrite

the existing media for the first backup and append the remaining backups for the

week.

  10. For transaction log backups, you usually want to select the Truncate The
Transaction Log check box . This ensures that inactive entries are cleared out
of the transaction log after a backup .

  11. Click OK to start the backup . If you opted to verify the data, the verify pro-
cess starts immediately after the backup ends .

Using Striped Backups with Multiple Devices
Through a process called parallel	striped	backups, SQL Server can perform backups
to multiple backup devices simultaneously . As you can imagine, writing multiple
backup files at the same time can dramatically speed up backup operations . The key
to achieving this speed, however, is having physically separate devices, such as three
different tape devices or three different drives that you are using for the backup .
You cannot write parallel backups to a single tape device, and you cannot write
parallel backups to the same drive .

Multiple devices used in a backup operation are referred to as a media	set. SQL
Server allows you to use from 2 to 32 devices to form a media set . These devices
must be of the same type . For example, you cannot create a striped backup with
one backup tape device and one backup drive device .

The two main operations involved in parallel striped backups are creating a new
media set and adding to an existing media set .

Creating a New Media Set

To create a new media set using multiple devices, complete the following steps:

  1. Select the server you want to use, and then create each of the backup
devices you need in the media set, as described in “Creating a Backup
Device” earlier in this chapter .

  2. Right-click the database you want to back up, point to Tasks, and then select
Back Up to display the Back Up Database dialog box .

  3. Follow the steps outlined in “Creating a New Backup Set” earlier in this chap-
ter . Repeat step 10 in that procedure for each backup device you want to use
in the media set .

 ChAPTeR 15  Backing Up and Recovering SQL Server 2008578

Adding to an existing Media Set

To add to an existing media set, complete the following steps:

  1. Right-click the database you want to back up, point to Tasks, and then select
Back Up to display the Back Up Database dialog box .

  2. Follow the steps outlined in “Adding to an Existing Backup Set” earlier in this
chapter . The only difference is that in step 8 of that procedure, you should
see a list of all the backup devices used in the media set . If you do not, you
need to add them one by one using the Add button and the related Select
Backup Destination dialog box .

Using Transact-SQL Backup
An alternative to using the backup procedures in SQL Server Management Studio is
to use the T-SQL BACKUP statement . You use BACKUP DATABASE to back up data-
bases and BACKUP LOG to back up transaction logs .

BEST PRACTICES If you back up databases using Transact-SQL, you lose one of the

biggest benefits of SQL Server—the automated recovery process. With automated

recovery, you do not have to worry about which backup to apply in which situation,

which command flags to use, and so on. Furthermore, because you can schedule

automated and unattended backups, you do not really need to run backups manually

through SQL Server as often as in the past. I recommend using the SQL Server Man-

agement Studio backup and restore process whenever possible.

BACKUP DATABASE has dual syntax . Sample 15-2 shows the syntax and usage for
full and differential backups . A full backup is the default operation .

SAMPLE 15-2 BACKUP DATABASE Syntax and Usage for Full and Differential Backups

Syntax

BACKUP DATABASE { database_name | @database_name_var }
TO < backup_device > [,...n]
[[MIRROR TO < backup_device > [,...n]] [...next-mirror]]
[WITH
 [BLOCKSIZE = { blocksize | @blocksize_variable }]
 [[,] { CHECKSUM | NO_CHECKSUM }]
 [[,] { COMPRESSION | NO_COMPRESSION }]
 [[,] { STOP_ON_ERROR | CONTINUE_AFTER_ERROR }]
 [[,] DESCRIPTION = { 'text' | @text_variable }]
 [[,] DIFFERENTIAL]
 [[,] NAME = { backup_set_name | @backup_set_name_var }]
 [[,] PASSWORD = { password | @password_variable }]
 [[,] EXPIREDATE = { date | @date_var }
 | RETAINDAYS = { days | @days_var }]
 [[,] { FORMAT | NOFORMAT }]
 [[,] { INIT | NOINIT }]
 [[,] { NOSKIP | SKIP }]

 Backing Up and Recovering SQL Server 2008 ChAPTeR 15 579

 [[,] MEDIADESCRIPTION = { 'text' | @text_variable }]
 [[,] MEDIANAME = { media_name | @media_name_variable }]
 [[,] MEDIAPASSWORD = { mediapassword |
 @mediapassword_variable }]
 [[,] { NOREWIND | REWIND }]
 [[,] { NOUNLOAD | UNLOAD }]
 [[,] BUFFERCOUNT = { buffercount | @buffercount_variable }
 | MAXTRANSFERSIZE = { maxtransfersize |
 @maxtransfersize_variable }]
 [[,] RESTART]
 [[,] STATS [= percentage]]
 [[,] COPY_ONLY]
]
<backup_device> ::=
{
 { logical_backup_device_name | @logical_backup_device_name_var }
 |
 { DISK | TAPE } = { 'physical_backup_device_name' |
 @physical_backup_device_name_var }
}

Usage

USE master
EXEC sp_addumpdevice 'disk', 'Customer Backup Set 1',
 'f:\data\backup\Cust2.dat'
BACKUP DATABASE 'Customer' TO 'Customer Backup Set 1'

Sample 15-3 shows the BACKUP DATABASE syntax for file and filegroup backups .

SAMPLE 15-3 BACKUP DATABASE Syntax and Usage for File or Filegroup Backups

Syntax

BACKUP DATABASE { database_name | @database_name_var }
 <file_or_filegroup> [,...f]
TO <backup_device> [,...n]
[[MIRROR TO <backup_device> [,...n]] [...next-mirror]]
[WITH
 [BLOCKSIZE = { blocksize | @blocksize_variable }]
 [[,] { CHECKSUM | NO_CHECKSUM }]
 [[,] { COMPRESSION | NO_COMPRESSION }]
 [[,] { STOP_ON_ERROR | CONTINUE_AFTER_ERROR }]
 [[,] DESCRIPTION = { 'text' | @text_variable }]
 [[,] DIFFERENTIAL]
 [[,] NAME = { backup_set_name | @backup_set_name_var }]
 [[,] PASSWORD = { password | @password_variable }]
 [[,] EXPIREDATE = { date | @date_var }
 | RETAINDAYS = { days | @days_var }]
 [[,] { FORMAT | NOFORMAT }]
 [[,] { INIT | NOINIT }]

 ChAPTeR 15  Backing Up and Recovering SQL Server 2008580

 [[,] { NOSKIP | SKIP }]
 [[,] MEDIADESCRIPTION = { 'text' | @text_variable }]
 [[,] MEDIANAME = { media_name | @media_name_variable }]
 [[,] MEDIAPASSWORD = { mediapassword |
 @mediapassword_variable }]
 [[,] { NOREWIND | REWIND }]
 [[,] { NOUNLOAD | UNLOAD }]
 [[,] BUFFERCOUNT = { buffercount | @buffercount_variable }
 | MAXTRANSFERSIZE = { maxtransfersize |
 @maxtransfersize_variable }]
 [[,] RESTART]
 [[,] STATS [= percentage]]
 [[,] COPY_ONLY]
]
<file_or_filegroup> :: =
 { FILE = { logical_file_name | @logical_file_name_var }
 |
 FILEGROUP = { logical_filegroup_name |
 @logical_filegroup_name_var }
 | READ_WRITE_FILEGROUPS }
<backup_device> ::=
{
 { logical_backup_device_name | @logical_backup_device_name_var }
 |
 { DISK | TAPE } = { 'physical_backup_device_name' |
 @physical_backup_device_name_var }
}

Usage

USE master
EXEC sp_addumpdevice 'disk', 'Customer Backup Set 1',
 'f:\data\backup\Cust2.dat'
BACKUP DATABASE Customer
 FILE = 'Customer_data',
 FILEGROUP = 'Primary',
 FILE = 'Customer_data2',
 FILEGROUP = 'Secondary'
 TO 'Customer Backup Set 1'

Sample 15-4 shows the syntax for BACKUP LOG . By default, this command trun-
cates the log after the backup .

 Backing Up and Recovering SQL Server 2008 ChAPTeR 15 581

SAMPLE 15-4 BACKUP LOG Syntax and Usage

Syntax for Backing Up the Log

BACKUP LOG { database_name | @database_name_var }
{
 TO <backup_device> [,...n]
[[MIRROR TO <backup_device> [,...n]] [...next-mirror]]
 [WITH
 [BLOCKSIZE = { blocksize | @blocksize_variable }]
 [[,] { CHECKSUM | NO_CHECKSUM }]
 [[,] { COMPRESSION | NO_COMPRESSION }]
 [[,] { STOP_ON_ERROR | CONTINUE_AFTER_ERROR }]
 [[,] DESCRIPTION = { 'text' | @text_variable }]
 [[,] EXPIREDATE = { date | @date_var }
 | RETAINDAYS = { days | @days_var }]
 [[,] PASSWORD = { password | @password_variable }]
 [[,] { FORMAT | NOFORMAT }]
 [[,] { INIT | NOINIT }]
 [[,] { NOSKIP | SKIP }]
 [[,] MEDIADESCRIPTION = { 'text' | @text_variable }]
 [[,] MEDIANAME = { media_name | @media_name_variable }]
 [[,] MEDIAPASSWORD = { mediapassword |
 @mediapassword_variable }]
 [[,] NAME = { backup_set_name | @backup_set_name_var }]
 [[,] NO_TRUNCATE]
 [[,] { NORECOVERY | STANDBY = undo_file_name }]
 [[,] { NOREWIND | REWIND }]
 [[,] { NOUNLOAD | UNLOAD }]
 [[,] BUFFERCOUNT = { buffercount | @buffercount_variable }
 | MAXTRANSFERSIZE = { maxtransfersize |
 @maxtransfersize_variable }]
 [[,] RESTART]
 [[,] STATS [= percentage]]
 [[,] COPY_ONLY]
]
}
<backup_device> ::=
{
 { logical_backup_device_name | @logical_backup_device_name_var }
 |
 { DISK | TAPE } = { 'physical_backup_device_name' |
 @physical_backup_device_name_var }
}

Syntax for Truncating the Log

BACKUP LOG { database_name | @database_name_var }
{
 [WITH
 { NO_LOG | TRUNCATE_ONLY }]
}

 ChAPTeR 15  Backing Up and Recovering SQL Server 2008582

Usage

USE master
EXEC sp_addumpdevice 'disk', 'Customer_log1',
 'f:\data\backup\Cust_log.dat'
BACKUP LOG Customer
 TO Customer_log1

Performing Transaction Log Backups
Transaction logs are essential to the timely recovery of SQL Server databases . Unlike
database backups, which can be full or differential, transaction log backups are
usually incremental . This means that each transaction log backup has a record of
transactions only within a certain time frame . Transaction logs are always applied in
sequence—with the completion time of the last full or differential backup marking
the beginning of a transaction log sequence .

Consequently, to restore a database you must apply each transaction log in
sequence up to the point of failure . For example, if you run a full backup at 1:00 P .M .
and the database fails at 1:46 P .M ., you should restore the last full backup and then
apply each transaction log backup created after the last full backup, such as the
backups at 1:15 P .M ., 1:30 P .M ., and 1:45 P .M . As you can see, without the incremen-
tal transaction log backups, you would lose all the transactions that took place after
the 1:00 P .M . full backup .

You perform transaction log backups as you do any other backup . Still, there are
a few details that you should know before beginning this kind of backup, and the
following sections cover these details .

Options and Commands That Invalidate Log Sequences

Although the normal backup process for transaction logs is fairly straightforward,
SQL Server has some tricky features involving the option flags that you can set for
the backup, the database, or both . The following database options prevent you from
using a transaction log sequence to recover a database:

■■ Truncate Log On Checkpoint Clears out inactive entries in the transaction
log on checkpoint, which means you cannot use the log for recovery .

■■ Using Non-Logged Operations Commands that bypass the log invalidate
a log backup sequence .

■■ ALTER DATABASE Adding or deleting files with ALTER DATABASE invali-
dates a backup sequence .

TIP As mentioned previously, the completion time of the last full or differential

backup marks the beginning of a transaction log sequence. If you use any of the previ-

ous commands and invalidate a log sequence, perform a full or differential backup to

start a new sequence.

 Backing Up and Recovering SQL Server 2008 ChAPTeR 15 583

Log Truncation Options

When you back up transaction logs, you have several options that determine how
the backups are made . With SQL Server Backup in SQL Server Management Studio,
you can use the Truncate The Transaction Log option . Setting this option clears out
committed transactions from the log after a log backup . The BACKUP LOG com-
mand normally clears out committed or aborted transactions after a log backup as
well . However, you can override this behavior with the following options:

■■ TRUNCATE_ONLY Removes inactive entries from the log without creating
a backup . This option invalidates the log sequence .

■■ NO_LOG Same as TRUNCATE_ONLY, but this option does not log the
BACKUP LOG command in the transaction log . This option is designed for a
situation in which the transaction log or its home drive is full and you must
truncate the log without writing to the log device .

■■ NO_TRUNCATE Writes all the transaction log entries from the last backup
to the point of failure . Use this option when the database is corrupt and you
are about to restore it .

TIP After you use TRUNCATe_ONLY or NO_LOG, always perform a full or differential

backup. This revalidates the log sequence. Additionally, because you can grow logs

automatically, you should rarely encounter a situation in which you need to truncate

the log without logging. The log can run out of space only if you set a maximum size

or the drive or drives that the log uses run out of space.

Restoring a Database

Occasional database corruption, hardware failure, and natural disasters do happen,
and as a database administrator you need to be able to restore a database if any of
these events occur . Even if you are a pro at backup and restore procedures, keep in
mind that restoring a database is different from restoring an operating system or
recovering other types of applications . The mix of full, differential, and transaction
log backups ensures that you can get up-to-the-minute recovery of a database, but
it complicates the recovery process .

In the following section, you will find tips and advice on troubleshooting data-
base corruption . After that, you will find step-by-step procedures for restoring a
database in various situations, including the following:

■■ Restoring a database using backups created in SQL Server Management
Studio

■■ Restoring a file or filegroup

■■ Restoring a database to a different location

■■ Restoring a database using Transact-SQL

 ChAPTeR 15  Backing Up and Recovering SQL Server 2008584

NOTE You cannot restore SQL Server 2008 backups using an earlier version of SQL

Server. In SQL Server 2008, you cannot restore system database backups that were

created by using SQL Server 2000 or SQL Server 2005 to SQL Server 2008. You can,

however, restore user database backups in SQL Server 2008 that were created by using

SQL Server 2000, SQL Server 2005, or SQL Server 2008. After you restore a SQL Server

2005 or SQL Server 2000 database to SQL Server 2008, the database becomes available

immediately and is then automatically upgraded to SQL Server 2008.

Database Corruption and Problem Resolution
All the knowledge you have accumulated as a database administrator is most
important in one defining moment . That is the moment when you attempt to
restore a database . The techniques you use to restore a database depend on the
backup options you used and the state of the database . As you know, the backup
techniques available are full, differential, transaction log, and file/filegroups . What
you might not know is how to restore a database by combining these techniques .

Table 15-2 lists some recovery strategies for corrupted databases . These strate-
gies show how to recover a database with various combinations of the available
backup operations . If you use SQL Server Management Studio for backup and
restore operations, these procedures are performed for you automatically in most
cases . The actual step-by-step process is covered later in this chapter .

TABLE 15-2 Recovery Strategies for Databases

BACKUP TYPE RESTORE PROCESS

Full backups only Restore the database using the last full backup .

Full and differential
backups

Restore the last full backup with NORECOVERY, and then
restore the last differential backup with RECOVERY .

Full and transaction
log backups

Back up the current transaction log with NO_TRUNCATE .
Restore the last full backup with NORECOVERY . Apply
log backups from that time forward in sequence using
NORECOVERY . Apply the last differential backup with the
RECOVERY option .

Full, differential,
and transaction log
backups

Back up the current transaction log with NO_TRUNCATE .
Restore the last full backup with NORECOVERY, then
transaction log backups, and then the last differential
backup with NORECOVERY . Apply log backups from that
time forward in sequence using NORECOVERY . Apply the last
backup using the RECOVERY option .

Now you know how to restore a database in theory . But before you begin actu-
ally restoring a database, you should be sure that the database is really corrupt

 Backing Up and Recovering SQL Server 2008 ChAPTeR 15 585

and cannot be recovered by other means . To troubleshoot database problems and
potential corruption, complete the following steps:

  1. Start with the SQL Server logs . See what types of error messages are in the
logs, paying particular attention to errors that occur during database startup .
Also take a look at user-related errors . If you find errors, you can look up the
error numbers in SQL Server Books Online or the Microsoft Online Support
Web site (search.support.microsoft.com) . You access the server logs through
the Management folder in SQL Server Management Studio, as discussed in
Chapter 14, “Profiling and Monitoring SQL Server 2008 .”

  2. Check the state of the database . Every time you start SQL Server, it goes
through a recovery process on each database . If the recovery process has
problems, the mode or state of the database might be abnormal . To check
the mode or state, use the following properties of the databaseproperty
function:

■■ IsShutDown If this property is set to 1, the database is shut down
because of problems during startup .

■■ IsEmergencyMode If this property is set to 1, the database is in emer-
gency mode, which allows a suspect database to be used .

■■ IsSingleUser, IsDboOnly, IsReadOnly, or IsOffline If these properties
are set to 1, the database is in a limited or no access mode and needs to
be made operational so that it can be accessed .

■■ IsSuspect If this property is set to 1, the database is suspect, which
means it is possibly corrupted .

■■ IsInLoad If this property is set to 1, the database is going through the
loading process .

■■ IsInRecovery If this property is set to 1, the database is going through
the recovery process .

■■ IsNotRecovered If this property is set to 1, the database failed to
recover and is in an unstable state .

  3. If possible, try to use the DBCC command to further troubleshoot or repair
the database . DBCC is covered in Chapter 16 .

  4. If these procedures indicate that you have a corrupt database that cannot be
repaired, restore the database from backup .

You can use the databaseproperty function as shown in Sample 15-5 .

SAMPLE 15-5 The databaseproperty Function Syntax and Usage

Syntax

databaseproperty('database','property')

Usage

select databaseproperty('Customer','IsEmergencyMode')

 ChAPTeR 15  Backing Up and Recovering SQL Server 2008586

Restoring a Database from a Normal Backup
SQL Server Management Studio tracks all the backups you create for each database;
when you need to restore a database, SQL Server Management Studio automatically
configures the restore . You can restore a database by using the default settings or
by fine-tuning the restore operation as necessary .

To restore a database, complete the following steps:

  1. If you are using transaction logs and the database is still running, you should
back up the current transaction log with NO_TRUNCATE . If you are using the
SQL Server Backup dialog box, this means that you should select Back Up
The Tail Of The Log on the Options page of the Back Up Database dialog box
when performing the transaction log backup .

  2. In SQL Server Management Studio, connect to the appropriate server in the
Object Explorer view .

  3. Expand the Databases folder . Right-click the database you want to restore .
On the shortcut menu, point to Tasks, select Restore, and then select Data-
base . This opens the Restore Database dialog box, shown in Figure 15-4 .

FIGURE 15-4 The Restore Database dialog box

  4. The database currently selected is displayed in the To Database list in the
Destination For Restore area at the top of the dialog box . If you are restoring

 Backing Up and Recovering SQL Server 2008 ChAPTeR 15 587

the database to its original location, leave the database in the To Database
list as it is . If you want to restore the database to an alternate location, select
a different database to use as the destination or type the name of a new
database for the restore operation .

NOTE  This option is provided to allow you to restore a database to a different

location, as described in “Restoring a Database to a Different Location” later in

this chapter. All databases on the server except master and tempdb are included in

the drop-down list as possible values.

  5. By default, the database is restored to the most recent possible point in
time . If multiple backups are available, you might be able to select a point
in time for the restore . For example, if you know that GOTEAM accidentally
deleted the Accounts table at 12:16 P .M ., you could restore the database to
a point just prior to this transaction, such as 12:15 P .M . To use the point-in-
time option, click the properties (…) button to the right of the To A Point In
Time text box . This opens the Point In Time Restore dialog box . Choose the
option A Specific Date And Time, select a date and time using the text boxes
provided, and then click OK .

  6. The database currently selected is displayed in the From Database list under
Source For Restore . If you are restoring a different database, choose this
database instead . Only databases that have backup history in the msdb are
listed .

NOTE  Restoring a database from a tape device or other backup device is differ-

ent from a normal backup. This is primarily because you have to work with backup

media (tapes) that might contain multiple backups, as well as multiple backup

media sets (tape sets). If you are restoring from a device, select From Device, and

then click the related properties (…) button. You can then use the Specify Backup

dialog box to specify the backup media and its location for the restore operation.

You can add multiple locations and view the contents of added backup sets as well.

  7. Use the Select The Backup Sets To Restore list to select the backup set to
restore . By default, the last full set (including the last full backup, differential
backups since the last full backup, and transaction log backups since the last
full backup) should be selected . The selected backups can also represent the
most current backup set (according to a recovery plan) that meets the point-
in-time recovery requirements .

REAL WORLD  Normally, you want to start with the last complete backup set.

however, if you know that the last backup set is bad or contains transactions that

you do not want to apply, such as a massive table deletion, go back to a previous

backup set by selecting a different full backup and its related differential and

transaction log backups as the starting point.

 ChAPTeR 15  Backing Up and Recovering SQL Server 2008588

  8. The lower portion of the Restore Database dialog box provides a backup his-
tory for the selected database . You can use the information in the history as
follows:

■■ Restore Allows you to select which backup sets to restore . Default
selections are based on the first backup to restore, and they go forward in
time through differential and transaction log backups . You should rarely
need to change the default selections .

■■ Name Indicates the name of the backup set .

■■ Component Shows the backed-up component as Database, File, or a
blank entry . A blank entry indicates a transaction log backup .

■■ Type Indicates the type of backup performed as Full, Differential, or
Transaction Log .

■■ Server Shows the Database Engine instance that performed the backup .

■■ Database Displays the name of the database backed up .

■■ Position Shows the position of the backup set in the volume .

■■ First LSN For log backups, this is the log sequence number (LSN) of the
first transaction in the backup set, which helps with ordering transaction
logs for the restore operation .

■■ Last LSN For log backups, this is the LSN of the last transaction in the
backup set, which helps with ordering transaction logs for the restore
operation .

■■ Checkpoint LSN For log backups, this is the LSN of the most recent
checkpoint at the time the backup was created, which helps with ordering
transaction logs for the restore operation .

■■ Full LSN The LSN of the most recent full database backup .

■■ Start Date Displays a date and time stamp that indicates when the
backup operation started .

■■ Finish Date Displays a date and time stamp that indicates when the
backup operation finished .

■■ Size Shows the size of the backup .

■■ User Name Displays the name of the user who performed the backup
operation .

■■ Expiration Indicates the date and time the backup set expires .

  9. Select the Options page to configure options for the restore operation .
The Options page is shown in Figure 15-5 . You use the available options as
follows:

■■ Overwrite The Existing Database Allows the restore operation to
overwrite any existing databases and their related files . (This is the same
as using RESTORE with the REPLACE option .)

 Backing Up and Recovering SQL Server 2008 ChAPTeR 15 589

■■ Preserve The Replication Settings Ensures that any replication set-
tings are preserved when restoring a published database to a server other
than the server where the database was originally created . You must
select the Leave The Database Ready For Use By Rolling Back Uncom-
mitted Transactions option . (This is the same as using RESTORE with the
PRESERVE_REPLICATION option .)

■■ Prompt Before Restoring Each Backup Automatically prompts after
completing a successful restore and before starting the next restore . The
prompt includes a Cancel button, which is useful to cancel the restore
operation after a particular backup is restored . This is a good option to
use when you need to swap tapes for different media sets .

■■ Restrict Access To The Restored Database Sets the database in
restricted-user mode so that only dbo, dbcreator, and sysadmin can
access it . (This is the same as using RESTORE with the RESTRICTED_USER
option .)

■■ Restore The Database Files As Allows you to change the restore loca-
tion for database files .

FIGURE 15-5 The Options page of the Restore Database dialog box

 ChAPTeR 15  Backing Up and Recovering SQL Server 2008590

  10. Set the recovery state by using one of the following options:

■■ Leave The Database Ready To Use Completes the entire restore pro-
cess and applies all the selected backups, which can include a full backup,
a differential backup, and multiple transaction log backups . All completed
transactions are applied, and any uncompleted transactions are rolled
back . When the restore process is complete, the database is returned to
ready status, and you can use it for normal operations . (This is the same
as using RESTORE WITH RECOVERY .)

■■ Leave The Database Non-Operational This is essentially a manual
restore that allows you to go step by step through the backups . SQL
Server completes the entire restore process and applies all the selected
backups, which can include a full backup, a differential backup, and mul-
tiple transaction log backups . When the restore is complete, the database
is not returned to ready status, and you cannot use it for normal opera-
tions . All transactions have not been processed, and the database is wait-
ing for you to apply additional transaction logs . Apply these transaction
logs using this mode, and then for the last transaction log, set the mode
to Leave The Database Ready To Use . All completed transactions are then
applied, and any uncompleted transactions are rolled back . (This is the
same as using RESTORE WITH NORECOVERY .)

■■ Leave The Database In Read-Only Mode This is similar to the Leave
The Database Non-Operational option, with some exceptions . When the
restore process ends, the database is in read-only mode, and it is ready
for additional transaction logs to be applied . With the database in read-
only mode, you can check the data and test the database . If necessary,
apply additional transaction logs . Then, for the last transaction log, set
the mode to Leave The Database Ready To Use . All completed transac-
tions are then applied, and any uncompleted transactions are rolled back .
(This is the same as using RESTORE WITH STANDBY .)

REAL WORLD  When you use the option Leave The Database In Read-Only

Mode, SQL Server also creates an Undo file, which you can use to undo the restore

operation. To commit the restore operations and the final transactions without

restoring another transaction log, you could use the following code:

RESTORE DATABASE Customer
WITH RECOVERY

This commits final transactions (if possible), deletes the Undo file, and puts the

database back in operational mode. Although you might want to use WITh

ReCOVeRY at this stage, you probably do not want to use WITh NOReCOVeRY

because you will undo all the changes from the restore and might end up with an

empty database.

 Backing Up and Recovering SQL Server 2008 ChAPTeR 15 591

  11. When you are ready to start the restore operation, click OK . Stop the restore
at any time by clicking Stop Action Now . If an error occurs, you will see a
prompt with an error message .

Restoring Files and Filegroups
You can restore files and filegroups from database backups or file backups individu-
ally, in combination with each other, or all together . If any changes were made to
the files or filegroups, you must also restore all transaction log backups that were
created after the files or filegroups were backed up .

Although you can usually recover individual files or filegroups, there are excep-
tions . If tables and indexes are created that span multiple filegroups, all the related
filegroups must be restored together . Do not worry, however, because SQL Server
generates an error prior to starting the restore if a required filegroup is missing .
Further, if the entire database is corrupt, you must restore all files and filegroups in
the database . In both cases, you must also apply transaction log backups created
after the file or filegroup backups you are restoring .

To restore files or filegroups, complete the following steps:

  1. If you are using transaction logs and the database is still running, you should
back up the current transaction log with NO_TRUNCATE . If you are using the
SQL Server Backup dialog box, this means that you should select Back Up
The Tail Of The Log on the Options page of the Back Up Database dialog box
when performing the transaction log backup .

  2. In SQL Server Management Studio, connect to the appropriate server in the
Object Explorer view .

  3. Expand the Databases folder . Right-click the database you want to restore .
On the shortcut menu, point to Tasks, select Restore, and then select Files
And Filegroups . This opens the Restore Files And Filegroups dialog box,
shown in Figure 15-6 .

  4. The database currently selected is listed in the To Database box under
Destination To Restore . If you are restoring files or filegroups to their original
database, this is what you want to use . If you want to restore the files or file-
groups to a different database, select the database to use as the destination
or type the name of a new database for the restore operation .

NOTE  This option is provided so that you can restore a database to a different

location, as described in the next section, “Restoring a Database to a Different

Location.” All databases on the server except master and tempdb	are listed as pos-

sible values.

 ChAPTeR 15  Backing Up and Recovering SQL Server 2008592

FIGURE 15-6 The Restore Files And Filegroups dialog box

  5. The database currently selected is listed in the From Database list under
Source For Restore . If you are restoring files and filegroups for a different
database, choose this database instead . Only databases that have backup
history in the msdb are listed .

  6. The lower portion of the Restore Files And Filegroups dialog box provides a
backup history for the files and filegroups in the selected database . You can
use the information in the history as follows:

■■ Restore The selected check boxes indicate backup files to restore .

NOTE  No default selections are made under Restore; you must choose the files

manually.

■■ Name The name of the backup set .

■■ File Type The type of data in the backup . Data that is contained in
tables is listed as Rows Data . Binary large object (BLOB) data that is stored
in the file system is listed as Filestream Data . Transaction log data is listed
as Log .

■■ Type The type of backup performed as Full, Differential, or Transaction
Log .

■■ Server The Database Engine instance that performed the backup .

 Backing Up and Recovering SQL Server 2008 ChAPTeR 15 593

■■ File Logical Name The logical name of the file .

■■ Database The name of the file that was backed up .

■■ Start Date A date and time stamp indicating when the backup opera-
tion started .

■■ Finish Date A date and time stamp indicating when the backup opera-
tion finished .

■■ Size The size of the backup .

■■ User Name The name of the user who performed the backup
operation .

  7. Select the backup files you want to restore .

  8. Select the Options page to configure options for the restore operation . The
available options are the same as those discussed in “Restoring a Database
from a Normal Backup” earlier in this chapter .

  9. When you are ready to start the restore operation, click OK .

Restoring a Database to a Different Location
When you restore a database to a different location, you are essentially copying the
database from backups . If you use this procedure to copy a database to a new loca-
tion on the same computer, you create a copy of the database that can have sepa-
rate files and a different database name . Restoring a database to a different location
is similar to the process discussed previously of restoring files and filegroups . The
main differences are as follows:

■■ On the General page, under Destination To Restore, type a new name for
the database in the To Database box . For example, if you are restoring
the Customer database to a new location, name the copy Customer 2 or
CustomerCopy.

■■ When you access the Options page, you must override the default destina-
tion paths and enter new destination paths for all the files you are restoring .
Simply click in the Restore As box, and then enter a new file path, or you can
click the related properties (…) button to select a new Restore As location .

If you use this procedure to copy a database to a different computer, you can
create a working copy of the database on another server . You do not need to create
a new database or perform any preliminary work, with one exception—if you want
to use backup devices on the destination server, you should set them up before-
hand . Also, before you begin the restore, you should be sure that the destination
computer is using the same code page, sort order, Unicode collation, and Unicode
locale as the source server . If these configuration settings are not identical, you will
not be able to run the database on the destination server .

 ChAPTeR 15  Backing Up and Recovering SQL Server 2008594

Recovering Missing Data
If you suspect that part of a database is missing or corrupted, you can perform a
partial restore to a new location so that you can recover the missing or corrupted
data . To do this, use the PARTIAL option with the RESTORE DATABASE statement as
discussed in “Using Transact-SQL Restore Commands” later in this chapter . You can
restore partial databases only at the filegroup level . The primary file and filegroup
are always restored along with the files that you specify and their corresponding
filegroups . Files and filegroups that are not restored are marked as Offline, and you
cannot access them .

To carry out the restore and recovery process, complete the following steps:

  1. Perform a partial database restore . Give the database a new name and loca-
tion in the RESTORE DATABASE statement, and use MOVE…TO to move the
original database source files to new locations, such as:

RESTORE DATABASE new_custdb_partial
 FILEGROUP = 'Customers2'
 FROM DISK='g:\cust.dmp'
 WITH FILE=1,NORECOVERY,PARTIAL,
 MOVE 'cust' TO 'g:\cu2.pri',
 MOVE 'cust_log' TO 'g:\cu2.log',
 MOVE 'cust_data_2' TO 'g:\cu2.dat2'
GO

  2. Extract any needed data from the partial restore and insert it into the data-
base from which it was deleted .

Creating Standby Servers
The notion of restoring a backup to a different computer can be extended to create
a standby backup server that you can bring online if the primary server fails . When
you create a standby server, you have two options:

■■ You can create a cold standby that you synchronize manually .

■■ Or you can create a warm standby that SQL Server synchronizes
automatically .

Creating a Cold Standby

To create a standby that you synchronize manually, complete the following steps:

  1. Install SQL Server on a new server system using an identical configuration .
This means that the destination server should use the same code page, sort
order, Unicode collation, and Unicode locale as the source server .

  2. Copy all the databases on the primary server to this new system by specify-
ing a different restore location in the Restore Database dialog box .

 Backing Up and Recovering SQL Server 2008 ChAPTeR 15 595

  3. Maintain the copies of the databases by periodically applying the transaction
log backups from the primary server to the standby server .

  4. You might want to leave the standby server in standby mode so that the
database is read-only . This allows users to access the database but not make
changes .

If one or more databases on the primary server fail for any reason, you can make
the corresponding databases on the standby server available to users . However,
before you do this, you should synchronize the primary server and the standby
server by completing the following steps:

  1. On the standby server, apply any transaction log backups created on the
primary server that have not been applied yet . You must apply these backups
in the proper time sequence .

  2. Create a backup of the active transaction log on the primary server, and then
apply this backup to the database on the standby server . This ensures up-to-
the-minute synchronization . Be sure to recover the database or specify that
the database should be put in operational mode after this backup is applied .

TIP  If you need to make the standby server appear to be the primary server,

you might need to take the primary server off the network and rename it. Then

rename the standby server so that it appears to be the primary.

  3. After you restore the primary server to working condition, any changes to
the standby server’s databases need to be restored to the primary server . If
they are not, those changes are lost when you start using the primary server
again .

NOTE  Standby servers are not the same as a SQL Server failover cluster, which

is created by using the SQL Server Failover Cluster Wizard and Microsoft Cluster

Service. Standby servers store a second copy of a database on their hard disk

drives. Virtual servers use a single copy of a database that is accessed from a

shared storage device.

Creating a Warm Standby

SQL Server 2008 Enterprise edition includes a feature called log	shipping . You can
use log shipping to create a standby server that is automatically synchronized with
the primary server . To do this, follow these steps:

  1. Install SQL Server on a new server system using an identical configuration .
This means that the destination server should use the same code page, sort
order, Unicode collation, and Unicode locale as the source server .

  2. Copy all the databases on the primary server to this new system by specify-
ing a different restore location in the Restore Database dialog box .

  3. On the primary server, configure log shipping as described in Chapter 17,
“Managing Log Shipping and Database Mirroring .”

 ChAPTeR 15  Backing Up and Recovering SQL Server 2008596

The primary server is referred to as the source	server . The servers receiving the
logs are referred to as destination	servers . After configuring log shipping, you should
periodically check the status of log shipping on the source server and destination
servers .

If one or more databases on the primary server fail for any reason, you can make
the corresponding databases on the standby server available to users . To do that,
follow these steps:

  1. Check the status of log shipping on the destination server to be sure that the
most recent logs have been applied .

  2. Take the primary server off the network and rename it .

  3. Rename the standby server so that it appears to be the primary server .

  4. Check connections to the new primary server .

After you restore the primary server to working condition, any changes to the
standby server’s databases need to be restored to the primary server . If they are not,
those changes are lost when you start using the primary server again .

Using Transact-SQL Restore Commands
You can also restore databases using Transact-SQL . The commands you use are
RESTORE DATABASE and RESTORE LOG . You can use RESTORE DATABASE to restore
an entire database, specific files and filegroups, or part of a corrupted database .
Sample 15-6 shows the syntax and usage for a complete restore . The option WITH
RECOVERY is the default mode .

SAMPLE 15-6 RESTORE DATABASE Syntax and Usage for a Complete Restore

Syntax

RESTORE DATABASE { database_name | @database_name_var }
[FROM <backup_device> [,...n]]
[WITH
 [BUFFERCOUNT = { buffercount | @buffercount_variable }]
 [[,] { CHECKSUM | NO_CHECKSUM }]
 [[,] { STOP_ON_ERROR | CONTINUE_AFTER_ERROR }]
 [[,] MAXTRANSFERSIZE = { maxtransfersize |
 @maxtransfersize_variable }]
 [[,] { CONTINUE_AFTER_ERROR | STOP_ON_ERROR }]
 [[,] ENABLE_BROKER
 [[,] ERROR_BROKER_CONVERSATIONS
 [[,] NEW_BROKER
 [[,] FILE = { file_number | @file_number }]
 [[,] PASSWORD = { password | @password_variable }]
 [[,] KEEP_CDC]
 [[,] KEEP_REPLICATION]
 [[,] MEDIANAME = { media_name | @media_name_variable }]
 [[,] MEDIAPASSWORD = { mediapassword |
 @mediapassword_variable }]

 Backing Up and Recovering SQL Server 2008 ChAPTeR 15 597

 [[,] BLOCKSIZE = { blocksize | @blocksize_variable }]
 [[,] MOVE 'logical_file_name' TO 'operating_system_file_name']
 [,...n]
 [[,] { RECOVERY | NORECOVERY | STANDBY =
 {standby_file_name | @standby_file_name_var } }
]
 [[,] REPLACE]
 [[,] RESTART]
 [[,] RESTRICTED_USER]
 [[,] { REWIND | NOREWIND }]
 [[,] STATS [=percentage]]
 [[,] STOPAT = { date_time | @date_time_var } |
 [,] STOPATMARK = { 'lsn:lsn_number' } [AFTER 'datetime'] |
 [,] STOPBEFOREMARK = { 'lsn:lsn_number' } [AFTER 'datetime']
]
 [[,] { UNLOAD | NOUNLOAD }]
]
[;]
<backup_device> ::=
{ { 'logical_backup_device_name' | @logical_backup_device_name_var }
 | { DISK | TAPE } = { 'physical_backup_device_name' |
 @physical_backup_device_name_var } }

Usage

RESTORE DATABASE Customer
 FROM TAPE = '\\.\tape0'

Usage

RESTORE DATABASE Customer
 FROM Customer_1
 WITH NORECOVERY,
 MOVE 'CustomerData1' TO 'F:\mssql7\data\NewCust.mdf',
 MOVE 'CustomerLog1' TO 'F:\mssql7\data\NewCust.ldf'
RESTORE LOG Customer
 FROM CustomerLog1
 WITH RECOVERY

Using RESTORE DATABASE, you also can restore files and filegroups . Sample 15-7
shows the related syntax and usage .

 ChAPTeR 15  Backing Up and Recovering SQL Server 2008598

SAMPLE 15-7 RESTORE DATABASE Syntax and Usage for a File and Filegroup Restore

Syntax

RESTORE DATABASE { database_name | @database_name_var }
 <file_or_filegroup_or_pages> [,...f]
[FROM <backup_device> [,...n]]
[WITH [RECOVERY | NORECOVERY]
 [BUFFERCOUNT = { buffercount | @buffercount_variable }]
 [[,] { CHECKSUM | NO_CHECKSUM }]
 [[,] { STOP_ON_ERROR | CONTINUE_AFTER_ERROR }]
 [[,] MAXTRANSFERSIZE = { maxtransfersize |
 @maxtransfersize_variable }]
 [[,] { CONTINUE_AFTER_ERROR | STOP_ON_ERROR }]
 [[,] FILE = { file_number | @file_number }]
 [[,] PASSWORD = { password | @password_variable }]
 [[,] MEDIANAME = { media_name | @media_name_variable }]
 [[,] MEDIAPASSWORD = { mediapassword |
 @mediapassword_variable }]
 [[,] BLOCKSIZE = { blocksize | @blocksize_variable }]
 [[,] MOVE 'logical_file_name' TO 'operating_system_file_name']
 [,...n]
 [[,] RECOVERY | NORECOVERY]
 [[,] REPLACE]
 [[,] RESTART]
 [[,] RESTRICTED_USER]
 [[,] { REWIND | NOREWIND }]
 [[,] STATS [=percentage]]
 [[,] { UNLOAD | NOUNLOAD }]
]
[;]
<backup_device> ::=
{ { logical_backup_device_name|
 @logical_backup_device_name_var }
 | { DISK | TAPE } = { 'physical_backup_device_name' |
 @physical_backup_device_name_var } }
<file_or_filegroup_or_pages> ::=
{ FILE = { logical_file_name | @logical_file_name_var }
 | FILEGROUP = { logical_filegroup_name |
 @logical_filegroup_name_var } }
 | PAGE = 'file:page [,...p]' }

Usage

RESTORE DATABASE Customer
 FILE = 'Customerdata_1',
 FILE = 'Customerdata_2',
 FILEGROUP = 'Primary'
 FROM Customer_1
 WITH NORECOVERY
RESTORE LOG Customer
 FROM CustomerLog1

 Backing Up and Recovering SQL Server 2008 ChAPTeR 15 599

Sample 15-8 shows the syntax for performing a partial restore . This command
creates a new database that is based on a partial copy of the backup data . When
you use this procedure, database_name represents the new name for the database,
and the MOVE…TO command is used to move the original database source files to
new locations .

SAMPLE 15-8 RESTORE DATABASE Syntax and Usage for a Partial Restore

Syntax

RESTORE DATABASE { database_name | @database_name_var }
 <files_or_filegroups>
[FROM <backup_device> [,...n]]
[WITH PARTIAL
 [BUFFERCOUNT = { buffercount | @buffercount_variable }]
 [[,] { CHECKSUM | NO_CHECKSUM }]
 [[,] { STOP_ON_ERROR | CONTINUE_AFTER_ERROR }]
 [[,] MAXTRANSFERSIZE = { maxtransfersize |
 @maxtransfersize_variable }]
 [[,] { CONTINUE_AFTER_ERROR | STOP_ON_ERROR }]
 [[,] FILE = { file_number | @file_number }]
 [[,] PASSWORD = { password | @password_variable }]
 [[,] MEDIANAME = { media_name | @media_name_variable }]
 [[,] MEDIAPASSWORD = { mediapassword |
 @mediapassword_variable }]
 [[,] BLOCKSIZE = { blocksize | @blocksize_variable }]
 [[,] MOVE 'logical_file_name' TO 'operating_system_file_name']
 [,...n]
 [[,] NORECOVERY]
 [[,] REPLACE]
 [[,] RESTART]
 [[,] RESTRICTED_USER]
 [[,] { REWIND | NOREWIND }]
 [[,] STATS [=percentage]]
 [[,] STOPAT = { date_time | @date_time_var } |
 [,] STOPATMARK = { 'lsn:lsn_number' } [AFTER datetime] |
 [,] STOPBEFOREMARK = { 'lsn:lsn_number' } [AFTER datetime]
]
 [[,] { UNLOAD | NOUNLOAD }]
]
[;]
<backup_device> ::=
{ { logical_backup_device_name | @logical_backup_device_name_var }
 | { DISK | TAPE } = { 'physical_backup_device_name' |
 @physical_backup_device_name_var } }

<files_or_filegroups> ::=
 { FILE = { logical_file_name | @logical_file_name_var }
 | FILEGROUP = { logical_filegroup_name |
 @logical_filegroup_name_var }}
 [,...f]

 ChAPTeR 15  Backing Up and Recovering SQL Server 2008600

Usage

RESTORE DATABASE cust_part
 FILEGROUP = 'Customers2'
 FROM DISK = 'g:\cust.dmp'
 WITH FILE = 1,NORECOVERY,PARTIAL,
 MOVE 'cust' TO 'g:\cu2.pri',
 MOVE 'cust_log' TO 'g:\cu2.log',
 MOVE 'cust_data_2' TO 'g:\cu2.dat2'
GO
RESTORE LOG cust_part
 FROM DISK = 'g:\cust.dmp'
 WITH FILE = 2,RECOVERY
GO

Sample 15-9 shows how you can use RESTORE LOG .

SAMPLE 15-9 RESTORE LOG Syntax and Usage

Syntax

RESTORE LOG { database_name | @database_name_var }
 <file_or_filegroup_or_pages> [,...f]
[FROM <backup_device> [,...n]]
[WITH
 [BUFFERCOUNT = { buffercount | @buffercount_variable }]
 [[,] { CHECKSUM | NO_CHECKSUM }]
 [[,] { STOP_ON_ERROR | CONTINUE_AFTER_ERROR }]
 [[,] MAXTRANSFERSIZE = { maxtransfersize |
 @maxtransfersize_variable }]
 [[,] { CONTINUE_AFTER_ERROR | STOP_ON_ERROR }]
 [[,] FILE = { file_number | @file_number }]
 [[,] PASSWORD = { password | @password_variable }]
 [[,] KEEP_REPLICATION]
 [[,] MEDIANAME = { media_name | @media_name_variable }]
 [[,] MEDIAPASSWORD = { mediapassword |
 @mediapassword_variable }]
 [[,] BLOCKSIZE = { blocksize | @blocksize_variable }]
 [[,] MOVE 'logical_file_name' TO 'operating_system_file_name']
 [,...n]
 [[,] { RECOVERY | NORECOVERY | STANDBY =
 {standby_file_name | @standby_file_name_var } }
]
 [[,] REPLACE]
 [[,] RESTART]
 [[,] RESTRICTED_USER]
 [[,] { REWIND | NOREWIND }]
 [[,] STATS [=percentage]]
 [[,] STOPAT = { date_time | @date_time_var } |
 [,] STOPATMARK = { 'mark_name' | 'lsn:lsn_number' }
 [AFTER datetime] |

 Backing Up and Recovering SQL Server 2008 ChAPTeR 15 601

 [,] STOPBEFOREMARK = { 'mark_name' | 'lsn:lsn_number' }
 [AFTER datetime]
]
 [[,] { UNLOAD | NOUNLOAD }]
]
[;]
<backup_device> ::=
{ { logical_backup_device_name |
 @logical_backup_device_name_var }
 | { DISK | TAPE } = { 'physical_backup_device_name' |
 @physical_backup_device_name_var } }
<file_or_filegroup_or_pages> ::=
{ FILE = { logical_file_name | @logical_file_name_var }
 | FILEGROUP = { logical_filegroup_name |
 @logical_filegroup_name_var } }
 | PAGE = 'file:page [,...p]' }

Usage

RESTORE DATABASE Customer
 FROM Customer_1, Customer_2
 WITH NORECOVERY
RESTORE LOG Customer
 FROM CustomerLog1
 WITH NORECOVERY
RESTORE LOG Customer
 FROM CustomerLog2
 WITH RECOVERY, STOPAT = 'Dec 11, 2010 3:30 PM'

Restoring the master Database

The master database is the most important database in the SQL Server database
management system . This database stores information about all the databases on
a server, server configuration, server logons, and other important information . If
master gets corrupted, operations on the server might grind to a halt, and you have
to recover master using one of two techniques .

If you can start SQL Server, you can restore master from backup by using a
process similar to what you would use to restore any other database . To do this,
complete the following steps:

  1. You can back up master only by using a full backup . As a result, no differen-
tial or transaction log backups will be available . This means that you might
not be able to restore master exactly as it was before the failure, and that
normally you should use the recovery state of Leave The Database Ready
To Use .

  2. When you finish restoring the master database, you might need to manually
apply any changes made since the last full backup .

 ChAPTeR 15  Backing Up and Recovering SQL Server 2008602

  3. After you check the server and verify that everything is okay, make a full
backup of master .

If you cannot start SQL Server and you know master is the cause of the problem,
you can restore master by completing the following steps:

  1. Rebuild the master database by running Setup . Use Setup to rebuild, verify,
and repair the SQL Server instance and its system databases .

  2. After you rebuild master and get SQL Server back online, you can restore the
last backup of master to return the server to its most current state .

  3. Because Rebuild Master rebuilds the msdb and model databases, you might
need to restore these databases from backup as well .

  4. Re-create any backup devices if necessary .

  5. Re-enter logins and other security settings if necessary .

  6. Restore replication databases if necessary .

  7. Restore or attach user databases if necessary .

  8. Restore other server configuration settings if necessary .

As you can see from this step-by-step procedure, restoring master can take a
lot of time and work, which is why it is so important to back up master regularly .
When you finish recovering the server, be sure to make a full backup of the master
database .

603

CHAP TE R 16

Database Automation
and Maintenance

■■ Overview of Database Automation and Maintenance 604

■■ Using Database Mail 606

■■ Using SQL Server Agent 612

■■ Managing Alerts 615

■■ Managing Operators 619

■■ Scheduling Jobs 621

■■ Automating Routine Server-to-Server Administration Tasks 632

■■ Multiserver Administration 637

■■ Database Maintenance 641

Automation and maintenance go hand in hand . You can automate many
routine database administration tasks, most of which have to do with main-

tenance issues such as backing up databases or running consistency checks . Auto-
mation allows you to increase productivity, complete tasks while away from your
computer, and more . You can configure the server to monitor processes and user
activities, to check for errors, and to alert you when related events occur . If you
configure alerts properly, Microsoft SQL Server 2008 can monitor itself, and you
can focus on other areas of administration . You can also schedule jobs to automate
routine administration tasks . You can configure these jobs to run once or on a
recurring basis, such as weekly or on the third Tuesday of every month .

 ChAPTeR 16  Database Automation and Maintenance604

Overview of Database Automation and Maintenance

SQL Server 2008 has four main database automation and maintenance components:

■■ Database Mail Enables e-mail alerts and notifications .

■■ SQL Server Agent Enables self-monitoring by using alerts, operator notifi-
cations, and scheduled jobs .

■■ Database Maintenance Plans Enable automated maintenance .

■■ Log Shipping Enables automatic synchronization with standby servers as
discussed in Chapter 17, “Managing Log Shipping and Database Mirroring .”

Typically, when you want to use these automation and maintenance features, you
select the following configurations:

  1. Configure Database Mail for msdb and other databases . The msdb database
is used by SQL Server Agent for scheduling alerts and jobs and to track oper-
ators . When you enable Database Mail, Database Mail objects are created in
the msdb database . These objects allow msdb to act as a mail host server for
sending alerts, notifications, and other types of messages .

  2. Configure the SQL Server Agent service for your environment . Typically, you
want to ensure that the service is automatically started with the operating
system, that it uses the correct startup account, and that it has the correct
mail profile so that it can be used with Database Mail .

  3. Configure SQL Server Agent alerts, jobs, and operators to enable automatic
alerts and scheduled jobs . Alerts are automatically generated messages that
bring an error or issue to the attention of an administrator or other user . Jobs
are scheduled tasks that run automatically when triggered or at a specific
interval . Operators are individuals to whom you want to send alerts and
notifications .

  4. Configure Database Maintenance Plans to automate routine database opti-
mization and maintenance . Even though you can automate many routine
tasks, you should regularly review report histories to track maintenance
plan execution . Additionally, you might find that occasionally you need to
perform some optimization and maintenance tasks manually, and you can do
this with database maintenance plans as well .

  5. Optionally, configure log shipping to enable other computers running SQL
Server to act as standby servers that can be brought online manually in case
of primary server failure . Typically, log shipping is used as an alternative
to database mirroring, which is discussed in Chapter 15, “Backing Up and
Recovering SQL Server 2008 .” However, both features can be configured,
enabled, and in use simultaneously on any given SQL Server instance .

Some database maintenance tasks might require exclusive access to SQL Server .
In single-user mode, you can connect to an instance using SQL Server Management
Studio’s Query Editor . However, Object Explorer might fail because it requires more
than one connection for some operations . The best way to manage SQL Server in

 Database Automation and Maintenance ChAPTeR 16 605

single-user mode is to execute Transact-SQL statements by connecting only through
the Query Editor in SQL Server Management Studio or by using the Sqlcmd utility .

NOTE You should stop the SQL Server Agent service before connecting to an

instance of SQL Server in single-user mode. Otherwise, the SQL Server Agent service

uses the connection, and the connection will not be available to you.

You can also use single-user mode to regain access to a server instance as a
system administrator . In single-user mode, any member of the computer’s local
Administrators group can connect to the instance of SQL Server . They do so as a
member of the sysadmin fixed server role . This allows you to correct access prob-
lems that stem from the sa account becoming disabled or otherwise inaccessible
and to work with instances on which there are no valid members of the sysadmin
fixed server role .

Databases can also be set to single-user mode . If a database on the current
server instance is in single-user mode and there is an active connection to the data-
base, you might not be able to perform a maintenance task . You need to return the
database to multiuser mode before continuing . If you cannot obtain access to the
database to return it to multiuser mode, you can force the database mode change
by following these steps:

  1. Log on to the server and open an elevated, administrative command prompt .
Use the NET STOP command to stop the SQL Server instance you want to
change . For example, if you want to stop the default SQL Server instance,
type net stop mssqlserver .

  2. Use the CD command to change to the Binn directory for the SQL Server
instance . For example, type cd "C:\Program Files\Microsoft SQL Server\
MSSQL10_50.MSSQLSERVER\MSSQL\Binn" .

  3. Put the server instance in single-user mode by typing sqlservr –m .

  4. Start a second command prompt, and then open a dedicated administrator
connection to SQL Server by typing sqlcmd –A . Be sure to provide a user
name and password if necessary by using the –U and –P parameters .

  5. Perform the necessary maintenance tasks by using Sqlcmd .

  6. Set the database in single-user mode back to normal mode by using
 sp_dboption . For example, if the database is named cust, type:

USE master
EXEC sp_dboption 'cust', 'single user', 'FALSE';
GO

  7. At the first command prompt (where SQL Server is running), press Ctrl+C to
stop SQL Server . When prompted to confirm, type Y .

  8. Start the SQL Server instance you are working with by using NET START . For
example, if you want to start the default SQL Server instance, type net start
mssqlserver .

 ChAPTeR 16  Database Automation and Maintenance606

Using Database Mail

Database Mail is an essential part of database automation . You must configure
Database Mail so that alerts and other types of messages can be sent to administra-
tors or other users . Database Mail provides SQL Server with the ability to generate
and send e-mail messages as a mail client using the Simple Mail Transfer Protocol
(SMTP) . The Database Mail configuration process performs the following tasks:

■■ Installs database messaging objects in the msdb database

■■ Configures Database Mail accounts and profiles

■■ Configures Database Mail security

Database Mail is a full-featured replacement for SQL Mail . Database Mail acts as
a mail client and sends its messages to designated SMTP servers . Any SMTP server,
including a Microsoft Exchange server, can receive and deliver messages generated
by Database Mail .

Performing the Initial Database Mail Configuration
Like most mail clients, Database Mail uses mail profiles and mail accounts to send
e-mail messages . The profile defines the mail environment Database Mail uses and
can be associated with one or more SMTP mail accounts . Because the mail accounts
are used in priority order, you can configure multiple accounts on different mail
servers as a safeguard against mail-server failure or network problems that might
prevent message delivery . You can then configure the Database Mail profile to use
these separate accounts . If mail cannot be delivered to the first account listed in the
profile, the second one is tried, and so on .

The mail profile can be public or private . A public profile is available to any user
or application for any configured Database Mail host on the current server instance .
A private profile is available only to explicitly defined users and applications . If you
are configuring Database Mail for SQL Server Agent or a specific application, you
usually want to use a private profile . If you are configuring Database Mail for general
use, you usually want to use a public profile .

Before you configure Database Mail, you should create the SMTP accounts Data-
base Mail will use or have your organization’s mail administrator do this . If you are
configuring Database Mail for SQL Server Agent, it is a good idea to have the e-mail
address and account name reflect this . For example, set the user name as SQL Agent
and the e-mail address as sqlagent@yourcompany .com . To configure Database
Mail, you need the account user name, e-mail address, and SMTP server name . If
the SMTP server requires authentication, and most do, you also need the logon user
name and password for the account .

 Database Automation and Maintenance ChAPTeR 16 607

You can use SQL Server Management Studio to configure Database Mail for the
first time by completing the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect
to the server instance of your choice, and then expand the server’s Manage-
ment folder .

  2. Right-click Database Mail, and then select Configure Database Mail . This
starts the Database Mail Configuration Wizard . Click Next .

  3. Accept the default value of Set Up Database Mail By Performing The Follow-
ing Tasks, and then click Next .

  4. When prompted to enable the Database Mail feature, click Yes .

  5. On the New Profile page, type the name and description of the mail profile
that Database Mail will use, such as Mail Profile For SQL Server Agent . The
profile is used to define the mail environment for Database Mail .

  6. To specify an SMTP account that the profile will use to send e-mail messages,
click Add . This displays the New Database Mail Account dialog box, shown in
Figure 16-1 .

FIGURE 16-1 The New Database Mail Account dialog box

  7. In the Account Name and Description text boxes, enter the name and
description of the account you are configuring for use with Database Mail .
This information is used only with Database Mail and is shown in SQL Server
dialog boxes .

 ChAPTeR 16  Database Automation and Maintenance608

  8. In the E-Mail Address box, type the e-mail address of the Database Mail
account, such as sqlagent@cpandl .com .

  9. In the Display Name box, type the name that will appear in the From field of
outgoing messages .

  10. In the Reply E-Mail box, type the e-mail address to which replies to Data-
base Mail messages can be sent . For example, if you want administrators to
send follow-up information to a lead administrator, you would put the lead
administrator’s e-mail address in the Reply E-Mail text box .

  11. In the Server Name box, type the host name of the mail server, such as smtp .
You can also type the fully qualified domain name of the mail server, such as
smtp .cpandl .com . Using the full domain name ensures a successful connec-
tion when the mail server is in a different domain .

  12. By default, most SMTP servers use TCP port 25 for communications . If
your SMTP server uses a different TCP port for communications, enter the
TCP port number in the field provided . Additionally, select the This Server
Requires A Secure Connection (SSL) check box if you’ve installed a Secure
Sockets Layer (SSL) certificate for SQL Server and want to encrypt SMTP com-
munications using SSL .

  13. Database Mail needs to log on to the mail server to submit mail for delivery .
Select the appropriate option under SMTP Authentication, based on your
mail server configuration:

■■ Windows Authentication Using Database Engine Service Creden-
tials Database Mail logs in to the designated mail server by using the
credentials of the SQL Server service (MSSQLService) for the current
Database Engine instance .

■■ Basic Authentication Database Mail logs in to the designated mail
server using the user name and password you have provided . Enter a user
name for the account . Type and confirm the password for the account in
the text boxes provided .

■■ Anonymous Authentication Database Mail logs in to the designated
mail server as an anonymous user . The mail server must be configured to
allow anonymous logins (which is not a good security practice) .

  14. Click OK to close the New Database Mail Account dialog box .

  15. Repeat steps 6 through 14 to specify other mail accounts to associate with
the Database Mail profile . The account listed first is the account that Data-
base Mail tries to use first . As necessary, use the Move Up and Move Down
buttons to set the priority for multiple accounts . Click Next .

  16. If you are creating a public profile, select the Public check box on the Public
Profiles tab . To make the profile the default for all mail host databases and
users, set Default Profile to Yes . (See Figure 16-2 .)

 Database Automation and Maintenance ChAPTeR 16 609

FIGURE 16-2 The Public Profiles tab

  17. If you are creating a private profile, select the Private Profiles tab . Use the
User Name list to select a user to which you will grant profile access . The
default user is the SQL Server Agent service account . After you select a user
in the list, select the Access check box to grant access to the profile, and then
repeat this action as necessary to grant access to other users . To make the
profile the default for the selected mail host database and user, set Default
Profile to Yes . Click Next .

  18. System parameters are used by all database mail hosts configured for a SQL
Server instance . Configure the default system parameters by using the fol-
lowing options, and then click Next:

■■ Account Retry Attempts Sets the number of times to retry sending the
message . The default is 1 . If you have configured multiple accounts, this
might be sufficient because it provides for one retry . However, when you
are configuring mail for SQL Server Agent, you usually want to set this so
that three to five attempts are made to send a message .

■■ Account Retry Delay Sets the delay (in seconds) between retry
attempts . The default is 60 seconds, which is far too long if Database Mail
is trying to deliver critical alerts . A retry delay of 30 to 60 seconds might
be preferred when you are configuring mail for SQL Server Agent .

■■ Maximum File Size Sets the maximum size (in bytes) for any generated
message, including headers, message text, and included attachments . The
default is 1,000,000 bytes (976 kilobytes) . When you are configuring mail

 ChAPTeR 16  Database Automation and Maintenance610

for SQL Server Agent, this is usually sufficient . If applications generate
messages that include graphics or multimedia, however, this might not be
sufficient .

■■ Prohibited Attachment File Extensions Sets the types of files that
cannot be sent as attachments by indicating file extensions . To prevent
abuse of Database Mail, a more inclusive list would include all file exten-
sions designated as high risk by Attachment Manager in Group Policy,
including .ade, .adp, .app, .asp, .bas, .bat, .cer, .chm, .cmd, .com, .cpl, .crt,
 .csh, .exe, .fxp, .hlp, .hta, .inf, .ins, .isp, .its, .js, .jse, .ksh, .lnk, .mad, .maf,
 .mag, .mam, .maq, .mar, .mas, .mat, .mau, .mav, .maw, .mda, .mdb, .mde,
 .mdt, .mdw, .mdz, .msc, .msi, .msp, .mst, .ops, .pcd, .pif, .prf, .prg, .pst, .reg,
 .scf, .scr, .sct, .shb, .shs, .tmp, .url, .vb, .vbe, .vbs, .vsmacros, .vss, .vst, .vsw,
 .ws, .wsc, .wsf, and .wsh .

■■ Database Mail Executable Minimum Lifetime Sets the minimum time
for Database Mail to run while generating a message . The lifetime should
be set to optimize usage of the Database Mail executable file . You do not
want the server to create the related objects in memory and then remove
them from memory over and over again . You do want the related objects
to be cleared out when they are not needed . The default value of 600
seconds (10 minutes) is generally sufficient .

■■ Logging Level Determines the level of logging with regard to Database
Mail . The default value, Extended, configures Database Mail to perform
extended logging of related events . To reduce logging, you can set the
level to Normal so that only important events, such as warnings and
errors, are logged .

NOTE  The logging level also can be set to Verbose. however, this setting should

be used only for troubleshooting Database Mail. When you finish troubleshoot-

ing, reset the logging level to extended or Normal.

  19. Review the setup actions that will be performed, and then click Finish . The
Configuring page shows the success or failure of each action . Click the link
provided for any error message to see details about the error that occurred,
and then take any necessary corrective action . Click Close .

TIP If you are enabling Database Mail for use with the SQL Server Agent service, you

must ensure the service is running and configured for automatic startup. See “Con-

figuring the SQL Server Agent Service” later in this chapter for details. You can check

the status of SQL Server Agent in the Object explorer view in SQL Server Management

Studio. If the service is not running, right-click the SQL Server Agent node, and then

select Start.

 Database Automation and Maintenance ChAPTeR 16 611

Managing Database Mail Profiles and Accounts
Database Mail can be configured to use one or more mail profiles, and each mail
profile can have one or more mail accounts associated with it . Database Mail profiles
can be either of the following:

■■ Public Available to any user or application on the current server instance

■■ Private Available only to explicitly defined users and applications

Database Mail accounts are used in priority order and are a safeguard against
mail server failure or network problems that could prevent message delivery . If mail
cannot be delivered to the first account listed in the profile, the second one is tried,
and so on .

To manage profiles and their accounts or to add a profile, follow these steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect
to the server instance of your choice, and then expand the server’s Manage-
ment folder .

  2. Right-click Database Mail, and then select Configure Database Mail to display
the Database Mail Configuration Wizard . Click Next .

  3. Select Manage Database Mail Accounts And Profiles, and then click Next .

  4. If you have configured multiple Database Mail hosts on this server instance
and want to define separate profiles for these Database Mail hosts, select
Create A New Profile, click Next, and then follow steps 5 through 13 in the
procedure “Performing the Initial Database Mail Configuration” earlier in
this chapter to define the new profile and the accounts associated with this
profile .

  5. If you want to modify an existing profile or add an account to an existing
profile, select View, Change, Or Delete An Existing Profile, and then click
Next . Use the Profile Name list to select the profile to manage . You can then
add, remove, or prioritize accounts for this profile, as described in steps 6
through 13 in “Performing the Initial Database Mail Configuration .”

  6. Click Next, and then click Finish . The Configuring page shows the success or
failure of each action . Click the link provided for any error message to see
details about the error that occurred, and then take any necessary corrective
action . Click Close .

To set a mail profile as public or private, follow these steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect
to the server instance of your choice, and then expand the server’s Manage-
ment folder .

  2. Right-click Database Mail, and then select Configure Database Mail to display
the Database Mail Configuration Wizard . Click Next .

  3. Select Manage Profile Security, and then click Next .

 ChAPTeR 16  Database Automation and Maintenance612

  4. The Public Profiles tab shows public profiles . Clear the Public check box if you
want to make a profile private . To make a public profile the default for all
mail host databases and users, set Default Profile to Yes .

  5. The Private Profiles tab shows private profiles that are accessible only to a
specific database and user . Use the drop-down lists to select the database
and user for which you want to configure a private profile . After selecting
a user in the drop-down list, select the Access check box to grant access to
the profile, and then repeat this action as necessary to grant access to other
users . To make a private profile the default for the selected mail host data-
base and user, set Default Profile to Yes .

  6. Click Next, and then click Finish . The Configuring page shows the success or
failure of each action . Click the link provided for any error message to see
details about the error that occurred, and then take any necessary corrective
action . Click Close .

Viewing or Changing Database Mail System Parameters
Database Mail system parameters are set globally for each SQL Server instance . If
you want to manage the global system parameters for Database Mail, follow these
steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect
to the server instance of your choice, and then expand the server’s Manage-
ment folder .

  2. Right-click Database Mail, and then select Configure Database Mail to display
the Database Mail Configuration Wizard . Click Next .

  3. Select View Or Change System Parameters . Click Next .

  4. Make changes as appropriate to the system parameters . See “Performing the
Initial Database Mail Configuration” earlier in this chapter for details about
configuring individual parameters .

  5. Click Next, and then click Finish . The Configuring page shows the success or
failure of each action . Click the link provided for any error message to see
details about the error that occurred, and then take any necessary corrective
action . Click Close .

Using SQL Server Agent

SQL Server Agent is the driving force behind database automation . It is responsible
for processing alerts and running scheduled jobs . When alerts are triggered and
when scheduled jobs fail, succeed, or complete, you can notify SQL Server opera-
tors . Operator notifications are also processed through SQL Server Agent .

 Database Automation and Maintenance ChAPTeR 16 613

Accessing Alerts, Operators, and Jobs
You can use SQL Server Management Studio to access resources related to SQL
Server Agent by completing the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the server instance of your choice, and then expand the server’s SQL Server
Agent folder . (SQL Server Agent must be running to expand the related
node .)

  2. You should see entries for Alerts, Operators, and Jobs . Select one of these
entries in the left pane to display its properties . If the Object Explorer Details
window is not displayed automatically, press F7 or choose Object Explorer
Details on the View menu .

  3. Any jobs or alerts that appear dimmed are configured but not enabled .
Double-click an alert, operator, or job entry to access its associated Proper-
ties dialog box .

NOTE If you have configured replication on the server, you will see many alerts and

jobs that you can configure to make it easier to monitor replication. To start these

alerts or jobs, you need to enable them and set the appropriate property settings.

Configuring the SQL Server Agent Service
The SQL Server Agent service executes scheduled jobs, triggers alerts, and per-
forms other automated tasks . Each SQL Server Database Engine instance has its
own SQL Server Agent service . You can control the related service (SQLServerAgent
or SQLAgent$instancename) just as you do the SQL Server service . For SQL Server
Agent to work properly, you should configure the SQL Server Agent service to run
automatically . The startup account used by the SQL Server Agent service deter-
mines access permissions for SQL Server Agent . If the startup account does not have
appropriate permissions, SQL Server Agent will not run properly . In most cases, you
should use a Windows domain account that is a member of the sysadmin role . This
ensures that SQL Server Agent can generate alerts, run jobs, and restart services as
necessary .

To configure the SQL Server Agent service, complete the following steps:

  1. In SQL Server Configuration Manager, select the SQL Server Services node in
the left pane to see the related SQL Server services in the right pane .

  2. Right-click the SQL Server Agent service for the Database Engine instance
you are configuring, and then select Properties .

  3. SQL Server Agent can run using a built-in system account or a designated
Windows account:

■■ Choose Built-In Account to use one of the built-in system accounts as the
startup account . The drop-down menu gives you three options: Local
System, Local Service, and Network Service . Local System grants access to
the local system and certain systemwide privileges, such as Act As Part Of

 ChAPTeR 16  Database Automation and Maintenance614

The Operating System . Local Service grants access to the local system as a
regular service account . Network Service grants access to the local system
and allows SQL Server Agent to access the network, such as when it is
necessary to connect to remote systems .

■■ Choose This Account to control permissions and privileges using a
Windows account . Type the user name and password of a Windows
domain account . You can also click Browse to search for an account in the
Select User Or Group dialog box .

  4. If you changed the service account, you must stop and then start the service .
Do this by clicking Restart . If the service is stopped already, click Start instead .

  5. On the Service tab, Start Mode should be set to Automatic . If it is not, click in
the Start Mode list and select Automatic .

  6. Click OK .

Setting the SQL Server Agent Mail Profile
The SQL Server Agent service sends alerts and notifications through e-mail mes-
sages . Two options are allowed . You can use Database Mail or SQL Mail (which has
been deprecated) . When you initially set up Database Mail to send alerts and noti-
fications, you configure one or more databases as mail hosts and define client set-
tings so that users and applications such as SQL Server Agent can send SMTP e-mail
messages through your organization’s SMTP mail server . To use Database Mail for
SQL Server Agent alerts and notifications, you must do the following:

  1. Configure msdb as a database mail host .

  2. Designate a profile for this database .

  3. Grant profile access to the SQL Server Agent service account .

SQL Mail configures SQL Server Agent as a mail client to send mail by using the
Messaging Application Programming Interface (MAPI) through your organization’s
MAPI-compliant mail server . To use SQL Mail with SQL Server Agent, you must
configure SQL Mail, create a MAPI profile on the system (such as a Microsoft Office
Outlook mail profile), and then modify SQL Server Agent properties so that the SQL
Mail profile is enabled for the MAPI profile .

You designate the SQL Mail profile by completing the following steps:

  1. In the SQL Server Management Studio Management folder, right-click the
SQL Server Agent entry, and then select Properties .

  2. On the Alert System page, select Enable Mail Profile .

  3. Select SQL Mail as the mail system, and then select the appropriate mail
profile . If you want to test the configuration, click Test .

  4. Click OK .

TIP If you are using Database Mail with SQL Server Agent, enable Mail Profile should

not be selected. The mail profile is configured through Database Mail.

 Database Automation and Maintenance ChAPTeR 16 615

Using SQL Server Agent to Restart Services Automatically
You can configure SQL Server Agent to restart the SQL Server and SQL Server Agent
services automatically if they stop unexpectedly . Configuring automatic restart of
these services is a good idea because it might keep you from getting paged if the
server stops for some reason at 3:00 A .M . on a Tuesday morning .

To configure automatic service restart, complete the following steps:

  1. In the SQL Server Management Studio Management folder, right-click the
SQL Server Agent entry, and then select Properties .

  2. On the General page, select the Auto Restart SQL Server If It Stops Unexpect-
edly check box and also select the Auto Restart SQL Server Agent If It Stops
Unexpectedly check box .

  3. Click OK .

Managing Alerts

Using alerts, you can send e-mail, pager, or Net Send alerts when errors occur or
when performance conditions are reached . For example, you can configure an alert
to send a message when a Log File Is Full error occurs or when the number of dead-
locks per second is more than five . You can also execute a job on an alert event .

Using Default Alerts
Default alerts are configured when you configure features such as replication . The
names of alerts configured when you set up replication begin with Replication: and
include the following:

■■ Replication: Agent Success Tells you that the replication agent was
successful

■■ Replication: Agent Failure Tells you that the replication agent failed

■■ Replication: Agent Retry Tells you that the replication agent failed and is
retrying

■■ Replication: Expired Subscription Dropped Tells you that an expired
subscription was dropped, which means the subscriber will not be updated
anymore

■■ Replication: Subscriber Has Failed Data Validation Tells you that data in
the subscriber’s subscription could not be validated

■■ Replication: Subscriber Has Passed Data Validation Tells you that data
in the subscriber’s subscription was validated

■■ Replication: Subscription Reinitialized After Validation Failure Tells
you that data in the subscriber’s subscription was reinitialized with a new
snapshot

 ChAPTeR 16  Database Automation and Maintenance616

These replication alerts are disabled and do not have operators assigned either .
If you want to use these alerts, you need to enable them and assign operators .
Other default alerts for replication are used to issue warnings and are enabled in a
standard configuration .

Creating error Message Alerts
Error message alerts are triggered when SQL Server generates an error message .
You can create an error message alert by completing the following steps:

  1. In SQL Server Management Studio, access the SQL Server Agent entry on the
server running SQL Server Agent .

  2. Double-click the SQL Server Agent entry in the left pane to expand it .

  3. Right-click Alerts, and then select New Alert from the shortcut menu . This
displays the New Alert dialog box, shown in Figure 16-3 .

FIGURE 16-3 The New Alert dialog box

  4. Type a short but descriptive name for the alert in the Name text box . In Fig-
ure 16-3, the alert is named Database Consistency Error .

  5. In the Type list, choose SQL Server Event Alert . You can now set alerts
according to the number or severity level of error messages .

  6. Use the Database Name list to choose the database in which the error must
occur to trigger the alert . To specify all databases on the server, select the All
Databases option .

 Database Automation and Maintenance ChAPTeR 16 617

  7. To set alerts by error number, select Error Number, and then type an error
number in the related text box . To see all error messages that can be
returned by SQL Server, you can query the master database by using SELECT
* FROM SYS .MESSAGES, as discussed in Chapter 14, “Profiling and Monitoring
SQL Server 2008 .”

  8. To set alerts by severity level, select Severity, and then use the related list to
choose a severity level that triggers the alert . You usually want to configure
alerts for severity levels 19 through 25 (which are the levels for fatal errors) .

  9. To restrict alerts to messages containing specific text strings, select the Raise
Alert When Message Contains check box, and then type the text to filter for
in the Message Text box .

  10. Configure the alert response as explained in the next section, “Handling Alert
Responses .” Click OK to create the alert .

handling Alert Responses
In response to an alert, you can execute SQL Server jobs, notify operators of the
alert, or both . To configure the response to an alert, complete the following steps:

  1. In SQL Server Management Studio, access the SQL Server Agent entry on the
server running SQL Server Agent .

  2. Expand the SQL Server Agent and Alerts folders .

  3. Double-click the alert you want to configure, and then select the Response
page, as shown in Figure 16-4 .

FIGURE 16-4 The Response page of the New Alert dialog box

 ChAPTeR 16  Database Automation and Maintenance618

  4. To execute a job in response to the alert, select the Execute Job check box .

  5. If you want to execute an existing job, use the related jobs list to select it .
You can enter the full or partial job name to display matches . To be sure you
have the correct job, click View Job to view a job’s properties .

  6. If you want to create a new job, click New Job, and then configure the job as
discussed in “Scheduling Jobs” later in this chapter .

  7. To notify designated operators of an alert rather than just logging the alert,
select the Notify Operators check box .

  8. Operators configured to handle alerts and schedule jobs are shown in the
Operator List area . The available notification methods depend on how the
operator account is configured . You can select the E-Mail, Pager, or Net Send
notification type or all three . Click New Operator to configure a new opera-
tor, or click View Operator to view the properties of the operator selected in
the Operator List area .

  9. Select the Options page .

  10. Use the Include Alert Error Text In check boxes to specify whether error text
should be sent with the notification message . By default, error text is sent
only with E-Mail and Net Send notifications .

  11. Set an additional message to send to operators by using the Additional Noti-
fication Message To Send text box .

  12. Set the delay between responses for subsequent alert notifications by using
the Delay Between Responses boxes labeled Minutes and Seconds .

TIP  To limit the number of alert responses triggered, you probably want to set a

delay response value of five minutes or more.

  13. Click OK to complete the configuration .

Deleting, enabling, and Disabling Alerts
Deleting an alert removes its entry from the alerts list . Because old alerts might be
useful to you (or another database administrator) in the future, you might want to
disable them instead of deleting them . When an alert is disabled, no alerts are trig-
gered if the related event occurs .

To delete, enable, or disable an alert, complete the following steps:

  1. In SQL Server Management Studio, access the SQL Server Agent entry on the
server running SQL Server Agent .

  2. Expand the SQL Server Agent and Alerts folders .

  3. Any alerts that appear dimmed are configured but not enabled . To enable or
disable an alert, right-click it, and then select Enable or Disable as appropri-
ate . Click Close .

 Database Automation and Maintenance ChAPTeR 16 619

  4. To delete an alert, click it, and then press Delete . In the Delete Object dialog
box, click OK to confirm the deletion .

Managing Operators

Operators are special accounts that can be notified when alerts are triggered and
when scheduled jobs fail, succeed, or complete . Before operators become available,
you need to register them . After you register operators, you can enable or disable
them for notifications .

Registering Operators
You register operators by completing the following steps:

  1. In SQL Server Management Studio, access the SQL Server Agent entry on the
server running SQL Server Agent .

  2. Expand the SQL Server Agent folder .

  3. Right-click the Operators entry in the left pane, and then choose New
Operator to display the New Operator dialog box, shown in Figure 16-5 .

FIGURE 16-5 New Operator dialog box

  4. Type a name for the operator in the Name text box .

  5. Specify the e-mail, Net Send, or pager account (or all three) to notify .

 ChAPTeR 16  Database Automation and Maintenance620

TIP  If you specify a pager account for the operator, you can set a duty sched-

ule for the pager by using the text boxes and check boxes in the Pager On Duty

Schedule area. This option is helpful if you have operators who should be notified

only during working hours. To set default configuration settings for pagers, access

the Alert System page of the SQL Server Agent Properties dialog box.

  6. Select the Notifications page to specify existing alerts that the operator
should receive (if any) . Existing alerts are listed in the Alert Name column . If
you find an alert that the operator should receive, select the corresponding
check box in the E-Mail, Pager, and Net Send columns as appropriate .

  7. Click OK to register the operator .

Deleting and Disabling Notification for Operators
When database administrators leave an organization or go on vacation, you might
want to delete or disable their associated operator accounts . To do this, complete
the following steps:

  1. In SQL Server Management Studio, access the SQL Server Agent entry on the
server running SQL Server Agent .

  2. Expand the SQL Server Agent and Operators folders .

  3. To disable an operator, double-click the operator entry in the right pane to
display the Operator Properties dialog box . Clear the Enabled check box on
the General page, and then click OK .

  4. To delete an operator, click its entry in the right pane, and then press Delete .
The Delete Object dialog box is displayed .

  5. If the operator has been selected to receive alert or job notifications, you will
see a Reassign To option in the Delete Object dialog box . To reassign notifi-
cation duty, select a different operator by using the Reassign To list . You can
view or change the properties of this operator by clicking Properties .

  6. Click OK to delete the operator .

Configuring a Fail-Safe Operator
When things go wrong with notifications, operators do not get notified and prob-
lems might not be corrected in a timely manner . To prevent this, you might want
to designate a fail-safe operator . The fail-safe operator is notified in the following
situations:

■■ SQL Server Agent cannot access system tables in the msdb database, which is
where operator definitions and notification lists are stored .

■■ All pager notifications to designated operators have failed, or the designated
operators are off duty (as defined in the pager schedule) .

 Database Automation and Maintenance ChAPTeR 16 621

NOTE Using the fail-safe operator for pager notification failure might seem strange,

but it is a good way to ensure that alerts are handled efficiently. e-mail and Net Send

messages almost always reach their destination—but the people involved are not

always watching their e-mail or sitting at their computer to receive Net Send mes-

sages, so the fail-safe operator is a way to guarantee notification.

To configure a fail-safe operator, complete the following steps:

  1. Right-click the SQL Server Agent entry in SQL Server Management Studio,
and then select Properties .

  2. In the SQL Server Agent Properties dialog box, select the Alert System page .

  3. Select the Enable Fail-Safe Operator check box .

  4. Use the Operator list to choose an operator to designate as the fail-safe
operator . You can reassign the fail-safe duty by selecting a different opera-
tor, or you can disable the feature by clearing the Enable Fail-Safe Operator
check box .

  5. Use the Notify Using check boxes to determine how the fail-safe operator is
notified .

  6. Click OK .

Scheduling Jobs

Job scheduling is a key part of database automation . You can configure SQL Server
jobs to handle almost any database task .

Creating Jobs
You create jobs as a series of steps that contain actions in the sequence in which you
want to execute them . When you schedule jobs in conjunction with other SQL Server
facilities, such as database backups or data transformation, the necessary commands
are configured for you . Normally, these commands are set as step 1, and all you
need to do is set a run schedule for the job . You can add extra steps to these jobs
and thus perform other tasks . For example, after importing data, you might want to
back up the related database . To do this, you schedule the import in the SQL Server
Import And Export Wizard and then edit the associated job in SQL Server Manage-
ment Studio to add an additional step for backing up the database . By coordinating
the two processes, you ensure that the import operation is completed before start-
ing the backup .

Another reason for editing a job created by a different SQL Server facility is to
add notifications based on success, failure, and completion of the job . In this way,
you can notify operators of certain conditions, and you do not have to search
through logs to determine whether the job executed properly .

 ChAPTeR 16  Database Automation and Maintenance622

When you schedule jobs to execute for alerts, you configure the entire job pro-
cess from start to finish by performing the following tasks:

■■ Create a job definition .

■■ Set steps to execute .

■■ Configure a job schedule .

■■ Handle completion, success, and failure notification messages .

Assigning or Changing Job Definitions
Whether you are creating a new job or editing an existing job, the steps for working
with job definitions are the same:

  1. In SQL Server Management Studio, access the SQL Server Agent entry on the
server running SQL Server Agent .

  2. Expand the SQL Server Agent and Jobs folders .

  3. Existing jobs are shown in the right pane . Double-click a job to access its
related Properties dialog box, which is essentially the same as the New Job
dialog box shown in Figure 16-6 .

To create a new job, right-click the Jobs entry, and then choose New Job to
display the New Job dialog box .

FIGURE 16-6 The General page of the New Job dialog box

 Database Automation and Maintenance ChAPTeR 16 623

  4. In the Name text box, type a descriptive name for the job . The name can be
up to 128 characters . If you change the name of an existing job, the job is
displayed with the new name . Any references to the old job name in logs or
history files remain the same and are not modified .

  5. Job categories allow you to organize jobs so that they can be easily searched
and differentiated . The default category is Uncategorized (Local) . Use the
Category list to choose a different category for the job .

NOTE  Job categories are created and managed through a separate process.

To create a new job category or update an existing category, use the techniques

described in “Managing Job Categories” later in this chapter.

  6. By default, the current user owns the job . Administrators can reassign jobs to
other users . To do this, use the Owner list . You can use only predefined log-
ons . If the logon you want to use is not available, you need to create a logon
for the account .

  7. Type a description of the job in the Description text box . You can use up to
512 characters .

  8. If job scheduling across multiple servers is configured, select the Targets
page, and then designate the target server . The target server is the server
on which the job runs . To run on the currently selected server, select Target
Local Server . To run on multiple servers, select Target Multiple Servers, and
then choose the target servers .

  9. Set Steps, Schedules, and Notifications as explained in the following sections .

Setting Steps to execute
Jobs can have one or more steps . SQL Server Agent always attempts to execute the
start step, but additional steps can be executed conditionally, such as when the start
step succeeds or fails . You work with steps using the Steps page in the New Job dia-
log box, shown in Figure 16-7 . The page displays any existing steps for the job . You
can use the boxes and buttons in this dialog box as follows:

■■ New Creates a new step .

■■ Insert Inserts a step before the currently selected step .

■■ Edit Allows edits to the selected step .

■■ Delete Deletes the selected step .

■■ Move Step Up/Down Changes the order of the selected step .

■■ Start Step Sets which step is executed first . The green flag icon identifies
the start step in the step list .

When you create or edit a step, you see a dialog box similar to the one shown in
Figure 16-8 .

 ChAPTeR 16  Database Automation and Maintenance624

FIGURE 16-7 The Steps page of the New Job dialog box

FIGURE 16-8 The New Job Step dialog box

 Database Automation and Maintenance ChAPTeR 16 625

To configure this dialog box, complete the following steps:

  1. Type a short but descriptive name for the step in the Step Name text box .

  2. Use the Type list to choose a step type from the following choices:

■■ Transact-SQL Script (T-SQL) Execute Transact-SQL commands . Type
Transact-SQL commands in the Command area or load the statements
from a Transact-SQL script . To load commands from a script, click Open,
and then select the Transact-SQL script you want to use . The entire con-
tents of the script are then stored with this step .

■■ ActiveX Script Run ActiveX scripts . You can write ActiveX scripts in
VBScript, JScript, or another active scripting language configured for use
on the system . Enter script statements directly into the Command area
or load the statements from a script file . Again, the entire contents of the
script are then stored with this step . Changes made to the script file later
are not updated automatically .

■■ Operating System (CmdExec) Execute operating system commands .
Enter the operating system commands on a separate line, being sure
that you specify the full path to commands and in command parameters .
Commands can run batch scripts, Windows scripts, command-line utilities,
or applications .

■■ Replication [Agent Name] Pass Transact-SQL commands to designated
replication agents . You can script the Distributor, Snapshot, Merge, Queue
Reader, and Transaction–Log Reader agents with Transact-SQL com-
mands . To see examples, refer to the existing jobs that are configured to
handle replication, distribution, and subscription processes on the server
(if available) .

■■ SQL Server Analysis Services Command/Query Pass commands or
queries to SQL Server Analysis Services . Type commands and queries in
the Command area or load the commands and queries from an Analysis
Server file . To load from a file, click Open, and then select the Analysis
Server Command (.xmla) or Analysis Server Query (.mdx) file to use . The
entire contents of the file is stored with this step .

■■ SQL Server Integration Services Package Execute SQL Server Integra-
tion Services packages stored on a specific server .

TIP  Scripts that you change later are not updated automatically. You need to

edit the step properties and reload the script file. Additionally, you should not edit

existing replication jobs. Instead, modify the replication process as described in

Chapter 13, “Implementing Snapshot, Merge, and Transactional Replication.”

  3. When executing Transact-SQL commands or scripts, use the Database list to
set the database on which the commands are executed .

  4. Select the Advanced page, shown in Figure 16-9 .

 ChAPTeR 16  Database Automation and Maintenance626

FIGURE 16-9 The Advanced page of the New Job Step dialog box

  5. Use the On Success Action list to set the action to take when the step suc-
ceeds . You can choose from the following options:

■■ Go To The Next Step continues sequential execution of the job .

■■ Go To Step … . continues execution of the job at a specified step .

■■ Quit The Job Reporting Success halts execution of the job and reports
success .

■■ Quit The Job Reporting Failure halts execution of the job and reports
failure .

  6. By default, Retry Attempts is set to 0, and SQL Server Agent does not try to
execute steps again . You can change this behavior by setting the number of
retry attempts and a retry interval . You do this by using the Retry Attempts
and Retry Interval (Minutes) boxes, respectively . The retry interval is the delay
in minutes between retries .

  7. If the job fails on all retry attempts (if any), the action set in the On Fail-
ure Action list is executed . The available options are the same as those for
success .

  8. Optionally, configure a file for logging output from Transact-SQL and
CmdExec commands . Type the file name and path in the Output File text
box, or click the related options button (…) to search for an existing file .

 Database Automation and Maintenance ChAPTeR 16 627

TIP  You might want to create a central log file for the output of all jobs or all

jobs in a particular category. If you do this, be sure to select the Append Output

To existing File option rather than allow the file to be overwritten. This ensures

that the output file does not get overwritten. An alternative is to include the step

output in the job history.

  9. Click the options button (…) next to the Run As User box to set the login to
use when executing commands . By default, commands are run using the cur-
rent login ID .

  10. Click OK to complete the step configuration .

Configuring Job Schedules
You track schedules on the Schedules page of the New Job dialog box, as shown
in Figure 16-10 . Jobs can have one or more schedules associated with them, and
just as you can enable or disable jobs and their individual steps, you can enable or
disable individual schedules . This makes the job scheduling process very flexible .
For example, you could set one schedule to execute the job on weekdays at 2 A .M .,
another to execute the job every Sunday at 8 A .M ., and another for execution at
10 P .M . only when needed .

FIGURE 16-10 The Schedules page of the New Job dialog box

 ChAPTeR 16  Database Automation and Maintenance628

Whether you are creating a new job or editing an existing job, you work with
schedules on the Schedules page as follows:

■■ Create a new schedule Click New to configure a new schedule .

■■ Pick a schedule Click Pick to select an existing schedule, and then click Edit
to view or modify its properties .

■■ Edit a schedule Select a previously selected schedule, and then click Edit
to view or modify its properties .

■■ Delete a schedule Select a previously selected schedule, and then click
Remove to remove the schedule .

You create or edit schedules by completing the following steps:

  1. Click New to open the New Job Schedule dialog box, or click Edit to open
the Edit Job Schedule dialog box . These dialog boxes are essentially the same
except for the title . Figure 16-11 shows the New Job Schedule dialog box .

FIGURE 16-11 The New Job Schedule dialog box

  2. Type a name for the schedule, and then select one of the following schedule
types:

■■ Start Automatically When SQL Server Agent Starts Runs the job
automatically whenever SQL Server Agent starts .

■■ Start Whenever The CPUs Become Idle Runs the job whenever the
CPU is idle . CPU idle time is specified on the Advanced page of the SQL
Server Agent Properties dialog box .

 Database Automation and Maintenance ChAPTeR 16 629

■■ One Time Runs the job once at the date and time specified in the Date
and Time boxes .

■■ Recurring Runs the job according to the recurring schedule displayed .

  3. Recurring jobs are the ones that need the most explanation . You can sched-
ule recurring jobs to run on a daily, weekly, or monthly basis . To run the job
on a daily basis, choose Daily from the Occurs list, and then use the Recurs
Every box to set the run interval . Daily recurring jobs can run every day,
every other day, or every Nth day .

  4. To run the job on a weekly basis, choose Weekly from the Occurs list, and
then configure the job using these boxes:

■■ Recurs Every Nth Week(s) Allows you to run the task every week,
every other week, or every Nth week

■■ Check boxes for days of the week Set the day or days of the week on
which the task runs, such as on Monday or on Monday, Wednesday, and
Friday

  5. To run the job on a monthly basis, choose Monthly from the Occurs list, and
then configure the job using these boxes:

■■ Day N Of Every Nth Month Sets the day of the month and specifies
in which months the job runs . For example, if you select Day 15 of every
second month, the job runs on the 15th day of alternating months .

■■ The Nth Day Of Every Nth Month Sets the job to run on the Nth
occurrence of a day in a given month, such as the second Monday of
every month or the third Sunday of every other month .

  6. Set the Daily Frequency for the daily, weekly, or monthly job . You can con-
figure jobs to run one or more times on their scheduled run date . To run the
job once on a given date, select Occurs Once At and then set a time . To run
the job several times on a given date, select Occurs Every and then set a time
interval in hours or minutes . Afterward, set a starting and ending time, such
as from 7:30 A .M . to 5:30 P .M .

  7. By default, schedules begin on the current date and do not have a desig-
nated end date . To change this behavior, select the End Date option, and
then use the Start Date and End Date boxes to set a new duration for the
schedule .

  8. Click OK to complete the schedule process .

handling Job Alerts
Alerts can be generated when jobs are run . You can define and manage job-specific
alerts by using the Alerts page of the New Job dialog box . To configure alerts, com-
plete the following steps:

  1. Access the Alerts page of the job you want to configure .

 ChAPTeR 16  Database Automation and Maintenance630

  2. Any current alerts are listed by name and type . You can take the following
actions for an alert:

■■ Edit an alert by selecting it and clicking Edit .

■■ Add an alert by clicking Add to display the New Alert dialog box . Use the
dialog box features to define the alert as discussed previously .

■■ Remove an alert by selecting it and clicking Remove .

handling Notification Messages
Notification messages are generated when a job succeeds, fails, or completes . You
can handle these messages in several ways . You can notify operators, log the related
event, automatically delete the job, or do all three . To configure notification, com-
plete the following steps:

  1. Access the Notifications page of the job you want to configure . This page is
shown in Figure 16-12 .

FIGURE 16-12 The Notifications page of the New Job dialog box

  2. You can notify operators by using an e-mail message, a page, or a Net Send
message . Select the check box for the technique you want to use . Choose
an operator to handle the notification, and then choose a notification type .
Repeat this process to configure other notification methods .

  3. To log a particular type of notification message in the event log, select the
Write To The Windows Application Event Log check box, and then select the

 Database Automation and Maintenance ChAPTeR 16 631

notification type to log . Usually, you want to log failure, so select When The
Job Fails .

  4. To delete a job upon notification, select the Automatically Delete Job check
box, and then choose the notification type that triggers the deletion .

  5. Click OK .

Managing existing Jobs
In SQL Server Management Studio, you manage jobs with SQL Server Agent . To do
that, complete the following steps:

  1. In SQL Server Management Studio, access the SQL Server Agent entry on the
server running SQL Server Agent .

  2. Expand the SQL Server Agent and Jobs folders .

  3. You can now double-click a job entry to access its related Properties dialog
box or right-click a job entry to display a shortcut menu . The following com-
mands are available on the shortcut menu:

■■ Delete Deletes the job definition . Before deleting a complex job, you
might want to create a script that can be used to re-create the job .

■■ Disable Disables the job so that it will not run .

■■ Enable Enables the job so that it will run .

■■ Rename Allows you to rename the job . Type the new name, and then
press Enter or Tab .

■■ Script Job As Choose Create To, and then select File to generate a
Transact-SQL script file that you can use to re-create the job .

■■ Start Job At Step Starts the selected job if it is not already running .

■■ Stop Job Stops the selected job if it is running .

■■ View History Displays the Log File Viewer dialog box . This dialog box
lets you view summary or detail information about the job execution .

Managing Job Categories
You use job categories to organize jobs into topical folders . When you install SQL
Server, default job categories are created automatically . You can add new job cat-
egories and change the existing categories at any time .

Working with Job Categories

To create a new job category or update an existing category, complete the following
steps:

  1. In SQL Server Management Studio, access the SQL Server Agent entry on the
server running SQL Server Agent .

  2. Expand the SQL Server Agent folder . Right-click Jobs, and then choose Man-
age Job Categories . This displays the Manage Job Categories dialog box .

 ChAPTeR 16  Database Automation and Maintenance632

  3. You can delete a category by selecting it and clicking Delete .

  4. You can view the jobs associated with a category by selecting it and clicking
View Jobs .

  5. To add a category or to change the properties of a category, follow the steps
outlined in the following sections, “Creating Job Categories” and “Updating
Job Categories .”

Creating Job Categories

You can create a new job category by completing the following steps:

  1. Access the Manage Job Categories dialog box as explained previously . Click
Add to display a Properties dialog box .

  2. Type a name for the category in the Name text box, and then select the
Show All Jobs check box .

  3. All jobs defined on the current server should now be listed . Add a job to
the new category by selecting the corresponding check box in the Select
column . Remove a job from the new category by clearing the corresponding
check box in the Select column .

  4. Click OK .

Updating Job Categories

You can update an existing job category by completing the following steps:

  1. Access the Manage Job Categories dialog box as explained previously . Click
View Jobs to display a New Job Category Properties dialog box .

  2. Select the Show All Jobs check box . All jobs defined on the current server
should now be listed .

  3. Add a job to a new category by selecting the corresponding check box in the
Select column . Remove a job from the category by clearing the correspond-
ing check box in the Select column .

  4. Click OK .

Automating Routine Server-to-Server
Administration Tasks

Anytime you deploy multiple computers that run SQL Server or multiple instances
of SQL Server within an organization, you need a way to handle routine server-
to-server administration tasks . For example, if you have a database on one server,
you might need to copy user accounts from one server to another . SQL Server
2008 allows you to automate routine server-to-server administration tasks by
using scripts . You can write the scripts to the Query Editor or save them to a file for
later use .

 Database Automation and Maintenance ChAPTeR 16 633

The server-to-server administration tasks you can automate include the
following:

■■ Copying user accounts, tables, views, and other objects from one database to
another

■■ Copying alerts, jobs, and scheduled jobs from one server to another

The sections that follow explain how you can automate these administration
tasks .

Copying User Accounts, Tables, Views, and Other Objects
from One Database to Another
Using the Script Wizard, you can generate T-SQL scripts that allow you to re-create
the objects contained in a specified database . Scripts can be written to the Query
Editor window so that you can run them immediately, or they can be saved to files
so that you can run them later . By running a script against a database other than
the one from which it was generated, you can create copies of objects in other
databases .

With SQL Server 2008 R1, you can create copies of objects by completing the
following steps:

  1. Start SQL Server Management Studio, and then access the server of your
choice .

  2. In the Object Explorer view, right-click the Management folder, and then
select Generate Scripts . This starts the Generate SQL Server Scripts Wizard .
Click Next .

  3. Select the database you want to script, and then click Next .

  4. Set the script options summarized in Table 16-1 to determine how the copy
operation works, and then click Next .

  5. Select the objects you want to script, and then click Next . Objects you can
script include database triggers, database roles, schemas, stored procedures,
tables, user-defined functions, users, and views .

  6. You will see one Choose page for each type of object you select . Use these
pages to choose the individual objects to script . For example, if you are
scripting tables and views, you can choose the tables to script and then the
views to script .

  7. Choose an output option . You can create the script as a file, copy it to the
Clipboard, or send it to the New Query Editor window . Click Next when you
are ready to continue .

  8. When you click Finish, the script is created and copied to the destination
you specified . Click Close . You can then run the script as needed against a
specified database . For example, if you are copying users from Customer to
Projects, you insert USE PROJECTS at the beginning of the script before run-
ning it on the server containing the Projects database .

 ChAPTeR 16  Database Automation and Maintenance634

TABLE 16-1 Script Options for the Script Wizard

SCRIPT OPTION DEFAULT WHEN TRUE

ANSI Padding True Generates statements about ANSI padding .

Append To File False Appends the script to an existing file rather
than overwriting the file .

Continue Scripting
On Error

False Continues writing the script if an error occurs .

Convert UDDTs To
Base Types

False Converts user-defined data types (UDDTs) to
base types .

Generate Script For
 Dependent Objects

False Scripts dependent objects .

Include Descriptive
Headers

True Includes descriptive header comments
for each object scripted . (Does not affect
how objects are created later; it only sets
comments .)

Include If NOT EXISTS False Scripts the objects so that they are re-created
only if they do not already exist .

Include System
Constraint Names

False Includes system-generated constraint names
to enforce declarative referential integrity .

Include Unsupported
Statements

False Includes statements that are not supported
on the specified server instance type (R2
only) .

Schema Qualify
Object Names

True Prefixes object names with the object schema .

Script Bindings False Includes options to set binding .

Script Change
Tracking

False Includes the change-tracking information .

Script Check
Constraints

True Checks constraints for each table or view
scripted .

Script Collation False Writes the collation settings of the object to
the script .

Script Create True Creates designated objects (as opposed to
dropping designated objects) .

Script Data False Scripts the data for each table scripted .

Script Data
 Compression Options

False Includes the data-compression information .

 Database Automation and Maintenance ChAPTeR 16 635

SCRIPT OPTION DEFAULT WHEN TRUE

Script Defaults True Scripts the default values for the object .

Script Drop False Drops designated objects (as opposed to
creating designated objects) .

Script Extended
Properties

True Scripts the extended properties of objects .

Script For Server
Version

SQL Server
2008 or
SQL Server
2008 R2

Creates the script to be compatible with the
specified SQL Server version .

Script For The
 Database Engine
Type

Stand-
alone
Instance

Scripts only features compatible for the speci-
fied server instance type . You can specify a
stand-alone instance or a SQL Azure database
(R2 only) .

Script Foreign Keys True Scripts foreign keys for each table or view
scripted .

Script Full-Text
Indexes

False Scripts full-text indexes for each table or view
scripted .

Script Indexes False Scripts indexes for each table or view scripted .

Script Logins False Scripts all logins available on the server . Pass-
words are not scripted .

Script Object-Level
Permissions

False Scripts permissions for the object as per the
original database .

Script Primary Keys True Scripts primary keys for each table or view
scripted .

Script Statistics Do not
script
statistics

Controls whether statistics for table or
indexed view objects are scripted .

Script Triggers True Scripts triggers for each table or view scripted .

Script Unique Keys True Scripts unique keys for each table or view
scripted .

Script Use Database True Sets a USE statement with the name of the
original database at the top of the script .

Types Of Data To
Script

Schema
only

Controls the types of included elements as
schema only, schema and data, or data only
(R2 only) .

 ChAPTeR 16  Database Automation and Maintenance636

With R2, you can create copies of objects by completing the following steps:

  1. Start SQL Server Management Studio, and then access the server of your
choice .

  2. In the Object Explorer view, expand Databases, right-click a database, point
to Tasks, and then select Generate Scripts . This starts the Generate And Pub-
lish Scripts Wizard . If the Introduction page is displayed, click Next .

  3. Select the check boxes for the objects you want to script, and then click Next .
Objects you can script include database triggers, database roles, schemas,
stored procedures, tables, user-defined functions, users, and views . You can
also choose to script the entire database and all database objects .

  4. Choose an output option . You can create the script as a file, publish it to a
Web service such as SQL Azure, copy it to the Clipboard, or send it to a New
Query Editor window .

  5. Click Advanced . Set the script options summarized in Table 16-1 to deter-
mine how the copy operation works, and then click Next . When you publish
a script to a Web service, you have a similar (but reduced) set of options, and
the default values are different in some instances . You also need to specify a
provider and target database .

  6. Click Next to review the options, and then click Next again to create the
script or publish it to the destination you specified .

  7. Review the save or publishing results . If any errors occurred, use the links
provided to get more information, correct any problems, and then repeat
this entire procedure . Optionally, click Save Report to generate a detailed
report . Click Finish .

Copying Alerts, Operators, and Scheduled Jobs from One
Server to Another
You use alerts, operators, and scheduled jobs to automate routine administration
tasks . If you have already created alerts, operators, and jobs on one server, you can
reuse them on another server . To do this, you create a script for the alert, operator,
or job you want to copy, and then you run the script against a target server . You
need to edit a job’s properties to ensure that they make sense for the target server .
For example, if you created a set of jobs to periodically check the Support database
and then added custom steps to handle various database states, you could copy
these jobs to another server and then edit the job properties to apply the tasks to
the Customer database on the target server .

You can copy alerts, operators, or jobs from one server to another server by
completing the following steps:

  1. In SQL Server Management Studio, access the SQL Server Agent entry on the
server running SQL Server Agent .

  2. Expand the SQL Server Agent folder, and then expand the Alerts, Jobs, or
Operators folder as appropriate for the type of object you are copying .

 Database Automation and Maintenance ChAPTeR 16 637

  3. Right-click the alert, operator, or job, point to Script…As, Create To, and then
select File . In the Save As dialog box, specify the save location and name for
the Transact-SQL script file . Click Save .

  4. Use the Object Explorer view to connect to the server on which you want
to create the new alert, operator, or job . Right-click the server in the Object
Explorer view, and then select New Query .

  5. Click the Open File button or press Ctrl+O . Select the script file you previ-
ously created .

The script is set to use the msdb database because alert, job, and operator
objects are stored in that database .

  6. Click Execute or press F5 to run the script and create the object in the msdb
database .

Multiserver Administration

Multiserver administration allows you to use one server to manage alerts and job
scheduling for other servers from a central location . You centrally manage alerts
through event forwarding . You centrally manage job scheduling by designating
master servers and target servers .

event Forwarding
If you have multiple instances of SQL Server running on multiple systems through-
out the network, event forwarding is a time and resource saver . With event forward-
ing, you can forward application log events to a central server and then process
those events on this server . Thus, rather than having to configure alerts on 12
different server instances, you configure event forwarding on 11 servers and have
one server handle all the incoming events . You can then use the application log’s
Computer field to determine the system on which the event occurred and take the
appropriate corrective actions by using scripts or remote procedure calls .

To configure event forwarding, complete the following steps:

  1. In SQL Server Management Studio, access the SQL Server Agent entry on the
server running SQL Server Agent .

  2. Right-click the SQL Server Agent entry, and then select Properties .

  3. Select the Advanced page of the SQL Server Agent Properties dialog box,
shown in Figure 16-13 .

  4. Select the Forward Events To A Different Server check box .

  5. Use the Server box to type the name of a registered server that will handle
the events . If the server you want to use is not registered, you need to regis-
ter it and then access the SQL Server Agent Properties dialog box again .

 ChAPTeR 16  Database Automation and Maintenance638

FIGURE 16-13 The Advanced page of the SQL Server Agent Properties dialog box

  6. Set the type of events to forward by selecting Unhandled Events or All
Events . An unhandled event is one that you have not configured alerts for on
the current server .

  7. In the If Event Has Severity At Or Above list, select the severity threshold for
events that are forwarded .

TIP  To reduce network traffic caused by event forwarding, set the severity

threshold to a fairly high value. Fatal errors have a severity level of 19 through 25.

  8. Click OK .

Multiserver Job Scheduling
When you want to centrally manage job scheduling, you need to create a master
server and one or more target servers . The SQL Server Agent running on the master
server can do the following:

■■ Centrally manage jobs for the target servers . You can then create jobs on the
master server that run on the targets . For details, see “Assigning or Changing
Job Definitions” earlier in this chapter .

■■ Download jobs to a target . For details, see “Managing Existing Jobs” earlier in
this chapter .

 Database Automation and Maintenance ChAPTeR 16 639

Multiserver Scheduling Requirements

For the master/target relationship to work correctly, you must do the following:

■■ Be sure that the master server and all target servers are running SQL Server
2008 .

■■ Use domain accounts, not local accounts, when configuring the master and
targets .

■■ Be sure that SQL Server Agent is running on the master server and all target
servers .

Configuring Master Servers

To create a master server, complete the following steps:

  1. In SQL Server Management Studio, access the SQL Server Agent entry on the
server running SQL Server Agent .

  2. Right-click the SQL Server Agent entry, point to Multi Server Administration,
and then select Make This A Master . This starts the Master Server Wizard .

  3. Read the Welcome page, and then click Next .

  4. As shown in Figure 16-14, create a special operator to handle multiserver
job notifications . This operator, called the Master Server Operator, is created
on the master and on all target servers that use this master . Set an e-mail, a
pager, and a Net Send address as appropriate . You can change this informa-
tion later by editing the Master Server Operator properties on the master
server . Click Next .

FIGURE 16-14 The Master Server Operator page of the Master Server Wizard

 ChAPTeR 16  Database Automation and Maintenance640

  5. Select the target servers to associate with this master server . If a server is not
registered, you can add a connection for it by clicking Add Connection . The
process of associating target servers with a master is called enlisting . Later,
you can remove the association by right-clicking SQL Server Agent in SQL
Server Management Studio, selecting Multi Server Administration, and then
selecting Manage Target Servers .

  6. When you click Next, the wizard checks to be sure that the versions of SQL
Server running on the master and target servers are compatible . If target
servers are running different versions of SQL Server, note any compatibility
issues listed . Click Close .

  7. Specify the account that the target server will use to connect to the master
server and download jobs . If Windows authentication is allowed on the mas-
ter server, the new login will be created automatically .

  8. Click Next, and then click Finish . The wizard performs the necessary tasks
and reports its progress . You will be notified of any errors .

  9. Click Close when the configuration is finished .

Configuring Target Servers

You can configure one or more target servers for each master server . You create
target servers by completing the following steps:

  1. In SQL Server Management Studio, access the SQL Server Agent entry on the
server running SQL Server Agent .

  2. Right-click the SQL Server Agent entry, point to Multi Server Administration,
and then select Make This A Target . This starts the Make TSX Wizard .

  3. Read the Welcome page, and then click Next .

  4. Click Pick Server to select a master server for this target server . Use the Con-
nect To Server dialog box to connect to the master server . The master server
is the source server from which SQL Server Agent jobs will be downloaded .

  5. When you click Next, the wizard checks to be sure that the versions of SQL
Server running on the master and target servers are compatible . If target
servers are running different versions of SQL Server, note any compatibility
issues listed . Click Close .

  6. Specify the account that the target server will use to connect to the master
server and download jobs . If Windows authentication is allowed on the mas-
ter server, the new login will be created automatically .

  7. Click Next, and then click Finish . The wizard performs the necessary tasks
and reports its progress . You will be notified of any errors .

  8. Click Close when the configuration is finished .

 Database Automation and Maintenance ChAPTeR 16 641

Database Maintenance

Database maintenance involves various tasks . Most of these tasks have been dis-
cussed in previous chapters; this section does not go into detail about tasks already
covered . Instead, I’ve provided checklists that you can use as a starting point for
your maintenance efforts . The rest of the section explains how to set up mainte-
nance plans and run database consistency checks .

Database Maintenance Checklists
The following checklists provide recommended daily, weekly, and monthly mainte-
nance tasks .

Daily

■■ Monitor application, server, and agent logs .

■■ Configure alerts for important errors that are not configured for alert
notification .

■■ Check for performance and error alert messages .

■■ Monitor job status, particularly jobs that back up databases and perform
replication .

■■ Review the output from jobs in the job history or output file or in both .

■■ Back up databases and logs (as necessary and if not configured as automatic
jobs) .

Weekly

■■ Monitor available disk space on drives .

■■ Monitor the status of linked, remote, master, and target servers .

■■ Check the maintenance plan reports and history to determine the status of
maintenance plan operations .

■■ Generate an updated record of configuration information by executing
sp_configure .

Monthly

■■ Monitor server performance, tweaking performance parameters to improve
response time .

■■ Manage logins and server roles .

■■ Audit server, database, and object permissions to ensure that only authorized
users have access .

■■ Review alert, job, and operator configurations .

 ChAPTeR 16  Database Automation and Maintenance642

As Needed

■■ Back up the SQL Server registry data .

■■ Run database integrity checks and update database statistics . (SQL Server
2008 handles this automatically in most cases .)

Using Maintenance Plans
Maintenance plans provide an automated way to perform essential maintenance
tasks . You can run a maintenance plan against a single database or multiple data-
bases running on a designated target server . You can also generate report histories
for maintenance plan execution .

You create maintenance plans with the Maintenance Plan Wizard or with the
Maintenance Plan Package Designer . Both techniques are similar:

■■ With the wizard, the wizard’s pages guide you through the steps of selecting
maintenance tasks to perform, configuring execution history logging, and
setting an execution schedule . When you complete the wizard steps, the wiz-
ard generates the package that performs the designated maintenance tasks .

■■ With the package designer, you specify servers, add tasks to perform from a
predefined list of maintenance tasks, and configure execution history logging
as necessary . After you configure connections to the server on which you want
to perform maintenance, you build the maintenance plan by dragging tasks
from the Maintenance Plan Tasks toolbox to the design window . The order in
which you add tasks sets the order of execution . If a task requires additional
input, such as database or server names, double-clicking the task opens a
Properties dialog box that lets you specify the information that’s needed .

The set of maintenance tasks you can perform is similar whether you are working
with the wizard or the designer:

■■ Back Up Database Allows you to specify the source databases and the
destination files or tapes and overwrite options for a full, differential, or
transaction log backup . In the wizard interface, there are separate task list-
ings for each backup type .

■■ Check Database Integrity Performs internal consistency checks of the
data and index pages on the designated databases .

■■ Execute SQL Server Agent Job Allows you to select SQL Server Agent jobs
to run as part of the maintenance plan .

■■ Execute T-SQL Statement Allows you to run any Transact-SQL script as
part of the maintenance plan . (Available only in the Maintenance Plan Pack-
age Designer .)

■■ Clean Up History Deletes historical data about backup and restore, SQL
Server Agent, and maintenance plan operations .

■■ Maintenance Cleanup Deletes files created when executing maintenance
plans .

 Database Automation and Maintenance ChAPTeR 16 643

■■ Notify Operator Sends an e-mail message to a designated SQL Server
Agent operator . (Available only in the Maintenance Plan Package Designer .)

■■ Rebuild Index Rebuilds indexes to improve the performance of index scans
and seeks . This task also optimizes the distribution of data and free space on
the index pages, allowing for faster future growth .

■■ Reorganize Index Defragments and compacts clustered and nonclustered
indexes on tables and views to improve index-scanning performance .

■■ Shrink Database Reduces the disk space used by the designated databases
by removing empty data and log pages .

■■ Update Statistics Updates the query optimizer statistics regarding the
distribution of data values in the tables . This improves the query optimizer’s
ability to determine data access strategies, which can ultimately improve
query performance .

When you first start working with maintenance plans, you probably want to run
the Maintenance Plan Wizard and let the wizard design the necessary package for
you . After you have created a package, you can modify it in the Maintenance Plan
Package Designer view .

TIP For most installations, I recommend configuring separate maintenance plans for

system and user databases. This approach gives you greater flexibility for determin-

ing how and when maintenance operations are performed. For large installations, you

might want to have separate maintenance plans for each database so that you can

work with different databases on different days or at different times of the day.

Creating Maintenance Plans

You can create a maintenance plan by completing the following steps:

  1. In SQL Server Management Studio, access the Management folder on the
server where you want to create the maintenance plan . This can be a differ-
ent server from the one on which the maintenance plan will run .

  2. Right-click Maintenance Plans, and then select Maintenance Plan Wizard .

  3. Read the Welcome page, and then click Next . Type a name and description
for the maintenance plan, such as Engineering DB Server Maintenance and
Backup Plan .

  4. By default, maintenance plans run on demand, which means you must start
them manually . You also can schedule maintenance plans to run automati-
cally . If you want each maintenance task to have a separate run schedule,
select Separate Schedule For Each Task . When you configure each task later,
create the necessary schedule by clicking the Change button, setting a run
schedule, and then clicking OK . If you want to use a single run schedule for
the entire plan, select Single Schedule For The Entire Plan Or No Schedule,
click Change, set a run schedule, and then click OK . Click Next when you are
ready to continue .

 ChAPTeR 16  Database Automation and Maintenance644

  5. As shown in Figure 16-15, select the check boxes for the maintenance tasks
you want to perform, and then click Next . The order in which tasks are listed
on the Select Maintenance Task Order page determines the order in which
the tasks are executed . Select a task, and then click the Move Up or Move
Down button as appropriate to change the task’s order . When the tasks are
in the run order you want to use, click Next .

FIGURE 16-15 The Select Maintenance Tasks page of the Maintenance Plan Wizard

  6. Next, for each task that can be applied to one or more databases, you need
to choose the database or databases on which the tasks will be performed .
Typically, you can perform a task on all databases, all system databases, all
user databases, or a combination of one or more individual databases . You
might also need to configure individual task parameters . When you finish
configuring tasks, click Next . Following are guidelines for each task:

■■ Back Up Database Select the databases for which you want to create a
full, differential, or transaction log backup . You can back up to disk or to
tape and either append or overwrite existing backup files . Typically, you
want to create a backup file for every selected database . With disk-based
backups, you can set a specific backup directory and create subdirectories
for each database being backed up . You can also set the file extension
for the backups . The default extension is .bak . To verify the integrity of
backups upon completion, select Verify Backup Integrity .

■■ Check Database Integrity Select the databases on which you want
to perform internal consistency checks . By default, both data and index

 Database Automation and Maintenance ChAPTeR 16 645

pages are checked . If you want to check only data pages, clear Include
Indexes .

■■ Execute SQL Server Agent Job Select SQL Server Agent jobs to run as
part of the maintenance plan . Any available jobs on the server are listed,
and you can select the related check box to execute the job whenever the
maintenance plan runs .

■■ Cleanup History Historical data about backup and restore, SQL Server
Agent, and maintenance plan operations is stored in the msdb database .
When the history cleanup task runs, any historical data older than four
weeks is deleted on the target server by default . You can modify the type
of historical data cleaned up and set the Older Than criteria to different
values . For example, you might find that you need to maintain historical
data for a full quarter . If so, set Remove Historical Data Older Than to 3
Months .

■■ Rebuild Index Select the databases on which you want to rebuild
indexes . If you select specific databases, you can specify whether all
table and view indexes are rebuilt or only a specific table or view index
is rebuilt . For example, if you want to rebuild the NWCustomer view in
the Orders database, click in the Databases list, select These Databases,
choose the Orders database, and then click OK .

Next, under Object, select View, and then click in the Selection list .
Select These Objects, choose dbo .NWCustomers, and then click OK . The
affected indexes are dropped and re-created with a new fill factor . You
can choose Reorganize Pages With The Default Amount Of Free Space to
re-create indexes with the fill factor that was specified when the indexes
were created . Choose Change Free Space Per Page Percentage To if you
want to specify a new fill factor . The higher the percentage, the more free
space is reserved on the index pages and the larger the index grows . The
default is 10 percent . Valid values are 0 through 100 .

NOTE  Fill factors are discussed in “Setting the Index Fill” in Chapter 7. Reorga-

nizing pages changes table indexes and thus invalidates existing statistics. You

cannot reorganize data and update statistics in the same plan, and you might want

to create separate maintenance plans for handling each of these important tasks.

■■ Reorganize Index Select the databases you want to defragment and
compact . If you select specific databases, you can specify whether all
tables and views are reorganized or only a specific table or view is reor-
ganized . For example, if you want to reorganize the Customers table in
the Orders database, click in the Databases list, select These Databases,
choose the Orders database, and then click OK . Next, under Object, select
Table, and then click in the Selection list . Select These Objects, choose
dbo .Customers, and then click OK .

 ChAPTeR 16  Database Automation and Maintenance646

■■ Shrink Database Select the databases on which you want to reduce
disk space by removing empty data and log pages . Use Shrink Data-
base When It Grows Beyond to specify the database size that triggers
this task . Free space in a database is removed only when the size of the
database file exceeds this value . The default value is 50 megabytes (MB),
which means that if there is more than 50 MB of free space, SQL Server
will shrink the database to the size specified . Use Amount Of Free Space
To Remain After Shrink to set the amount of unused space that should
remain after the database is reduced in size . The value is based on the
percentage of the actual data in the database . The default value is 10
percent . Valid values are 0 through 100 . Free space can be returned to the
operating system or retained for future use by the database .

■■ Update Statistics Select the databases on which you want to update
query optimizer statistics . If you select specific databases, you can specify
whether statistics for all tables and views are updated or only a specific
table or view is updated . By default, both column and index statistics are
updated . You also can specify to update only column or index statistics .

  7. Use the Select Report Options page, shown in Figure 16-16, to determine
how maintenance plan reports are handled . By default, whenever a mainte-
nance plan runs, a report is generated . The report can be written to a file in
any designated folder location, sent by e-mail to a SQL Server Agent opera-
tor, or both . Click Next .

FIGURE 16-16 The Select Report Options page of the Maintenance Plan Wizard

 Database Automation and Maintenance ChAPTeR 16 647

  8. Review the maintenance plan . Click Finish to complete the process and gen-
erate the SQL Server Agent job to handle the designated maintenance tasks .
These jobs are labeled according to the name of the maintenance plan . Click
Close .

Checking Maintenance Reports and history

Creating a maintenance plan is only the beginning . After you create a plan, you
need to check maintenance reports and history periodically . Maintenance reports
are stored as text files in a designated directory, sent as e-mail messages to des-
ignated SQL Server Agent operators, or both . You can view file-based reports in a
standard text editor or word processor . To access maintenance history through SQL
Server Management Studio, complete the following steps:

  1. In SQL Server Management Studio, access the Management folder on the
server of your choice .

  2. Right-click Maintenance Plans, and then select View History . This displays the
Log File Viewer, shown in Figure 16-17 .

FIGURE 16-17 The Log File Viewer

  3. Under Select Logs in the left pane, Maintenance Plans should be selected by
default . There should also be a log entry for each maintenance plan config-
ured on the server .

 ChAPTeR 16  Database Automation and Maintenance648

  4. Choose the maintenance plan or plans for which you want to review a job
history .

  5. Use the summary in the right pane to review the job history . Click Close when
you finish .

Viewing, editing, Running, and Deleting Maintenance Plans

You can view, edit, run, or delete maintenance plans by completing the following
steps:

  1. In SQL Server Management Studio, access the Management folder on the
server of your choice .

  2. Select Maintenance Plans in the left pane . You will see existing maintenance
plans in the right pane .

  3. You can now do the following:

■■ View or edit a maintenance plan by double-clicking the maintenance plan
entry in the right pane . This opens the plan in the Maintenance Plan Pack-
age Designer .

■■ Delete a maintenance plan by selecting its entry and pressing Delete . In
the Delete Object dialog box, click OK to confirm the deletion .

■■ Execute the maintenance plan by right-clicking it and selecting Execute .

Checking and Maintaining Database Integrity
You rarely have to perform database integrity checks with SQL Server 2008 . When
you do, you can use maintenance plans to handle most of the work . On the rare
occasions when you want to perform consistency checks manually, you use the
DBCC command . DBCC stands for database	consistency	check . There are many dif-
ferent DBCC commands . The ones you use most often to maintain a database are
covered in the following sections .

Using DBCC CheCKDB

The DBCC CHECKDB command checks the consistency of the entire database and is
the primary method used to check for database corruption . The command ensures
the following:

■■ Index and data pages are linked correctly .

■■ Indexes are up to date and sorted properly .

■■ Pointers are consistent .

■■ The data on each page is up to date .

■■ Page offsets are up to date .

■■ Indexed views, varbinary(max) data in the file system, and Service Broker
data are validated .

 Database Automation and Maintenance ChAPTeR 16 649

NOTE When you run DBCC CheCKDB, you do not have to run DBCC CheCKALLOC

on the database, DBCC CheCKTABLe on every table and view in the database, or DBCC

CheCKCATALOG on database catalogs. DBCC CheCKDB performs similar validation

tasks for you.

Sample 16-1 shows the syntax and usage for the DBCC CHECKDB command .
When you run the command without a repair option, errors are reported but not
corrected . To correct errors, you need to put the database in single-user mode and
then set a repair option . After you repair the database, create a backup .

SAMPLE 16-1 DBCC CHECKDB Syntax and Usage

Syntax

DBCC CHECKDB
('database_name' | database_id | 0
 [, NOINDEX
 | { REPAIR_ALLOW_DATA_LOSS
 | REPAIR_FAST
 | REPAIR_REBUILD
 }])
 [WITH {
 [ALL_ERRORMSGS]
 [, ESTIMATEONLY]
 [, EXTENDED_LOGICAL_CHECKS]
 [, NO_INFOMSGS]
 [, TABLOCK]
 [, { PHYSICAL_ONLY | DATA_PURITY }]
 }]

Usage

DBCC CHECKDB ('customer', NOINDEX)
DBCC CHECKDB ('customer', REPAIR_REBUILD)

The REPAIR_FAST option performs minor repairs that do not consume a lot of
time and will not result in data loss . The REPAIR_REBUILD option performs com-
prehensive error checking and correction that requires more time to complete but
does not result in data loss (but the database must be in single-user mode) . The
REPAIR_ALLOW_DATA_LOSS option performs all the actions of REPAIR_REBUILD
and adds new tasks that might result in data loss . These tasks include allocating and
deallocating rows to correct structural problems and page errors as well as deleting
corrupt text objects .

TIP When trying to fix database problems, start with RePAIR_FAST or RePAIR_

ReBUILD. If these options do not resolve the problem, use RePAIR_ALLOW_DATA_LOSS.

Remember that running the RePAIR_ALLOW_DATA_LOSS option might result in an

unacceptable loss of important data. To ensure that you can recover the database in

its original state, place the DBCC command in a transaction so that you can inspect the

results and roll back the transaction if necessary.

 ChAPTeR 16  Database Automation and Maintenance650

Using DBCC CheCKTABLe

To correct problems with individual tables, you can use the DBCC CHECKTABLE
command . As shown in Sample 16-2, the syntax and usage for this command are
almost the same as for DBCC CHECKDB . The database you want to work with must
be selected for use .

SAMPLE 16-2 DBCC CHECKTABLE Syntax and Usage

Syntax

DBCC CHECKTABLE
('table_name' | 'view_name'
 [, NOINDEX
 | index_id
 | { REPAIR_ALLOW_DATA_LOSS
 | REPAIR_FAST
 | REPAIR_REBUILD }
])
 [WITH {
 [ALL_ERRORMSGS]
 [, ESTIMATEONLY]
 [, EXTENDED_LOGICAL_CHECKS]
 [, NO_INFOMSGS]
 [, TABLOCK]
 [, { PHYSICAL_ONLY | DATA_PURITY }]
 }]

Usage

DBCC CHECKTABLE ('receipts')
DBCC CHECKTABLE ('receipts', REPAIR_REBUILD)

Using DBCC CheCKALLOC

To check the consistency of database pages, you can use DBCC CHECKALLOC .
Again, the syntax for this command is nearly identical to the previous DBCC com-
mands . One item worth noting is that Sample 16-3 shows a NOINDEX option that is
maintained only for backward compatibility with previous SQL Server versions . The
command always checks the consistency of page indexes .

SAMPLE 16-3 DBCC CHECKALLOC Syntax and Usage

Syntax

DBCC CHECKALLOC
(['database_name' | database_id | 0]
 [, NOINDEX
 |
 { REPAIR_ALLOW_DATA_LOSS
 | REPAIR_FAST

 Database Automation and Maintenance ChAPTeR 16 651

 | REPAIR_REBUILD
 }])
 [WITH { [ALL_ERRORMSGS]
 [, NO_INFOMSGS]
 [, TABLOCK]
 [, ESTIMATEONLY] }
]

Usage

DBCC CHECKALLOC ('customer')
DBCC CHECKALLOC ('customer', REPAIR_REBUILD)

Using DBCC CheCKCATALOG

Another useful DBCC command is CHECKCATALOG . You use this command to check
the consistency of a database’s systems tables . Sample 16-4 shows the syntax and
usage of this command .

SAMPLE 16-4 DBCC CHECKCATALOG Syntax and Usage

Syntax

DBCC CHECKCATALOG
[('database_name' | database_id | 0)]
 [WITH NO_INFOMSGS]

Usage

DBCC CHECKCATALOG ('customer')

Using DBCC CheCKIDeNT

You use the CHECKIDENT command to check a table’s identity value and set a new
identity value . Sample 16-5 shows the syntax and usage of this command .

SAMPLE 16-5 DBCC CHECKIDENT Syntax and Usage

Syntax

DBCC CHECKIDENT
(table_name
 [, { NORESEED
 | { RESEED [, new_reseed_value] } }
])
 [WITH NO_INFOMSGS]

Usage

DBCC CHECKIDENT ('customer', NORESEED)
DBCC CHECKIDENT ('customer', RESEED, 50)

 ChAPTeR 16  Database Automation and Maintenance652

Using DBCC CheCKFILeGROUP

To check the allocation and structural integrity of all table and index views in a file-
group, you can use the DBCC CHECKFILEGROUP command . Sample 16-6 shows the
syntax and usage of this command .

SAMPLE 16-6 DBCC CHECKFILEGROUP Syntax and Usage

Syntax

DBCC CHECKFILEGROUP
[
 [({ filegroup | filegroup_id | 0 }
 [, NOINDEX]
)]
 [WITH
 {
 [ALL_ERRORMSGS | NO_INFOMSGS]
 [, TABLOCK]
 [, ESTIMATEONLY]
 }
]
]

Usage

USE CUSTOMER
GO
DBCC CHECKFILEGROUP (1, NOINDEX)
GO

Using DBCC UPDATeUSAGe

To report and correct pages and row count inaccuracies in catalog views, you
can use DBCC UPDATEUSAGE . Sample 16-7 shows the syntax and usage of this
command .

SAMPLE 16-7 DBCC UPDATEUSAGE Syntax and Usage

Syntax

DBCC UPDATEUSAGE
 ({ database_name | database_id | 0 }
 [, { table_name | table_id | view_name | view_id }
 [, { index_name | index_id }]]
) [WITH [NO_INFOMSGS] [,] [COUNT_ROWS]
]

Usage

DBCC UPDATEUSAGE ('CustomerDB')
DBCC UPDATEUSAGE ('CustomerDB', 'Inventory.Item')

653

CHAP TE R 17

Managing Log Shipping and
Database Mirroring

■■ Log Shipping 653

■■ Database Mirroring 668

■■ Using Mirroring and Log Shipping 681

You should strongly consider using log shipping and database mirroring in
just about any environment in which you deploy Microsoft SQL Server 2008 .

Log shipping and database mirroring are disaster-recovery solutions designed to
help improve the availability and quick recovery of SQL Server 2008 . They do this
by establishing a standby database that can be used if your production database
becomes unavailable because of an outage or disaster . Because log shipping and
database mirroring create a copy of a database, they can help protect you against
many types of data loss as well . For example, with a delayed log shipping configu-
ration, you can protect a production database against physical corruption of data
and accidental deletion of data . Whether you use log shipping, database mirror-
ing, or a combination of the two is a design choice that depends on your availabil-
ity and recovery needs .

Log Shipping

You use log shipping to establish one or more secondary databases that can be
brought online manually if a primary database fails . First I’ll provide an overview of
log shipping and then discuss how it is implemented .

Log Shipping: how It Works
Log shipping consists of a source database and a target database . Any changes
that are made to the source database are backed up, copied to the target data-
base, and then applied . Because of the way log shipping works, you can use log
shipping only with the full or bulk-logged recovery model .

 ChAPTeR 17  Managing Log Shipping and Database Mirroring654

Log shipping requires at least two separate SQL Server instances:

■■ A primary server instance on which you have configured a database to act as
the primary (source) database for log shipping

■■ A secondary server instance on which you have configured a database to act
as the secondary (target) database for log shipping

REAL WORLD As part of your planning, you should consider carefully the hardware

configuration of your secondary servers. Although a secondary server is idle most of

the time, you ideally want to use hardware that can handle the normal workload of the

primary server. This ensures that the secondary server can act as the primary server

during an extended outage.

As you determine whether log shipping and database mirroring are right for your

 organization, you might also want to consider whether you should establish geograph-

ically separate primary and secondary servers as a safeguard against natural disasters.

In the past, because of bandwidth limitations and other constraints, it wasn’t always

feasible to use log shipping or database mirroring with geographically dispersed serv-

ers. With SQL Server 2008 enterprise edition, however, you can configure compression

with log shipping and database mirroring to dramatically reduce the amount of data

transferred over networks.

All administration of the log shipping configuration is performed on the primary
server . You can extend log shipping in several ways:

■■ By configuring multiple secondary databases on multiple secondary servers,
you can establish multiple standbys that can be brought online in case the
primary database fails . You can think of each secondary database as a cold
standby .

■■ By configuring an optional monitoring server, you can track the history and
status of log shipping . The monitoring server can also be configured to raise
alerts if log shipping operations fail to occur as scheduled .

■■ By configuring secondary servers for query processing, you can reallocate
query processing from a primary server to one or more secondary servers .

Log shipping uses a backup folder for logs . Because all log shipping servers must
have access to this folder, this folder should be on a network or distributed share,
and the secondary server proxy accounts (which are by default the SQL Server Agent
accounts used on the secondary servers) must have read and write permissions on
this folder .

SQL Server Agent is the essential ingredient that enables log shipping . A SQL
Server Agent job is scheduled to copy the primary server’s transaction logs to the
backup folder . This job is referred to as the backup	job. Other SQL Server Agent jobs
also are used to copy the transaction logs from the backup share to the secondary
server and to restore the transaction logs on the secondary server . These jobs are
referred to as copy	and	restore	jobs. By default, the backup, copy, and restore jobs
run every 15 minutes .

 Managing Log Shipping and Database Mirroring ChAPTeR 17 655

When you enable and configure log shipping, the related SQL Server Agent jobs
are created automatically . There is always only one of each job on a server, even if
you have configured log shipping on multiple databases . You should never edit the
job properties directly . Instead, edit the backup settings on the primary database for
log shipping .

REAL WORLD When a database is updated frequently, a short interval between

backup, copy, and restore operations helps ensure that the secondary databases are

synchronized with the primary database. In some situations, however, you might want

to set a longer interval to reduce the workload and resource usage associated with

the backup, copy, and restore operations. For example, if the primary database is

overworked and has few resources available, you might want to set a longer interval

for each of the jobs. If the primary database is updated infrequently, you might want

to set a longer interval for each of the jobs. If you want to protect against possible

data loss on the primary database that can occur because of physical corruption of

data and accidental deletion of data, you might want to set a longer interval for each

of the jobs as well. Then, if you catch the problem and SQL Server hasn’t replicated the

errors to the secondary database, you should be able to recover the lost data from the

secondary database.

When you configure log shipping, tables are created in the msdb database on
the servers acting as the primary, secondary, and monitoring servers . Stored proce-
dures also are created to perform the necessary operations, cleanup, and monitor-
ing . Related alerts are configured automatically to help you monitor log shipping .

Preparing for Log Shipping
Log shipping requires a very specific configuration to work properly . To prepare
your servers for log shipping, first follow these general steps:

  1. Log shipping is set on a per-database basis . Access the Database Properties
dialog box for the primary database . On the Options page, check that the
Recovery Model is set to Full or Bulk-Logged . Log shipping databases cannot
use the simple recovery model .

  2. Configure the service-related accounts for SQL Server 2008 so that they can
access the network . See “Setting the Startup Service Account” in Chapter 3 .

NOTE  Preferably, the SQL Server service and the SQL Server Agent service for

the Database engine instance will use a domain account with appropriate permis-

sions. The SQL Server Agent service for the related Database engine instance run-

ning on the primary server will back up the transaction logs to the backup folder

you specify in the log shipping configuration. The SQL Server Agent service for

the related Database engine instance running on the secondary server will copy

files from the backup location to a designated copy folder.

  3. You need to ensure that remote connections to SQL Server 2008 are enabled
on the primary and secondary servers . See “Managing the Connections Con-
figuration” in Chapter 3 .

 ChAPTeR 17  Managing Log Shipping and Database Mirroring656

  4. Create a shared resource to use as the backup folder for log shipping . Set
permissions so that secondary server proxy accounts (which are by default
the SQL Server Agent accounts used on the secondary servers) have read and
write permissions on this folder .

TIP  A good resource for learning how to create shared folders and set shared

folder permissions is Windows	Server	2008	Administrator’s	Pocket	Consultant, Sec-

ond edition (Microsoft Press, 2010). See the sections “Configuring Standard File

Sharing” and “Managing Share Permissions” in Chapter 15 of this book.

  5. Enable log shipping on the primary database as discussed in “Enabling Log
Shipping on the Primary Database” on the next page .

  6. Specify the log shipping secondary databases as discussed in “Adding Log
Shipping Secondary Databases” later in the chapter .

  7. Optionally, add a monitoring server to track job history and alerts . The moni-
toring server runs an alert job that generates alerts when backup operations
have not completed successfully within the predefined intervals .

Upgrading SQL Server 2000 Log Shipping to
SQL Server 2008 Log Shipping
Unlike SQL Server 2000 log shipping, which is configured using maintenance
plans, SQL Server 2008 log shipping is configured as part of the standard database
properties . Because of this difference, you cannot directly update SQL Server 2000
log shipping to SQL Server 2008 log shipping . You can, however, migrate your SQL
Server 2000 log shipping configuration to SQL Server 2008 log shipping .

To upgrade the log shipping configuration, complete the following steps:

  1. Upgrade all secondary server instances to SQL Server 2008 . When you
upgrade the secondary server instances, any log shipping databases will
remain SQL Server 2000 databases because they will be in an offline state .

  2. Upgrade the primary server to SQL Server 2008 . The primary database will
be unavailable while the upgrade is in progress, and you will not be able to
fail over to a secondary server .

  3. Enable the primary database for log shipping . To ensure that backup logs are
applied properly, use the same backup share that you used with your SQL
Server 2000 log shipping configuration .

  4. Specify the secondary servers . In the Secondary Database Settings dialog
box, you must select the option No, The Secondary Database Is Initialized
during the configuration . The secondary database is upgraded automatically
to a SQL Server 2008 database when you start shipping logs .

SQL Server 2008 does not use any of the log shipping tables used by SQL Server
2000 . After the migration, you can remove the following SQL Server 2000 log ship-
ping tables:

■■ log_shipping_databases	

 Managing Log Shipping and Database Mirroring ChAPTeR 17 657

■■ log_shipping_monitor	

■■ log_shipping_plan_databases	

■■ log_shipping_plan_history	

■■ log_shipping_plans	

■■ log_shipping_primaries	

■■ log_shipping_secondaries	

You can also delete any log shipping SQL Server Agent jobs created by SQL
Server 2000 .

enabling Log Shipping on the Primary Database
You can enable log shipping by completing the following steps:

  1. In SQL Server Management Studio, access the primary server in the Object
Explorer view .

  2. Right-click the database you want to be the primary database and select
Properties .

  3. On the Transaction Log Shipping page, select the Enable This As A
Primary Database In A Log Shipping Configuration check box, as
shown in Figure 17-1 .

FIGURE 17-1 The Transaction Log Shipping page in the Database Properties dialog box

 ChAPTeR 17  Managing Log Shipping and Database Mirroring658

  4. Click Backup Settings to display the Transaction Log Backup Settings dialog
box, shown in Figure 17-2 .

FIGURE 17-2 The Transaction Log Backup Settings dialog box

  5. Type the UNC path for the network share where the transaction logs are cre-
ated on the primary server, such as \\ENGSQL\Data\Logs .

  6. If the network share location is an actual folder on the local server, you can
set the local path for the primary server to use . Otherwise, leave the related
box blank .

  7. Use the Delete Files Older Than boxes to configure how long old transaction
logs copied to the backup folder are retained . The default value is 72 hours
(3 days) . Before you change this value, consider the amount of available
space in the backup location and the size of the logs . You don’t want the
backup location to run out of available space . However, you also want to be
sure that you keep old transaction logs for a sufficient period of time .

  8. By default, the backup job runs every 15 minutes . You can modify this as
necessary by clicking Schedule and setting a new backup schedule . SQL
Server monitors backup jobs . If no backup occurs within a specified time, you
can configure log shipping to generate an alert . Set the Alert If No Backup
Occurs Within option to the time to wait before generating an alert for failed
backup operations .

 Managing Log Shipping and Database Mirroring ChAPTeR 17 659

NOTE  The default value for alerts is one hour. If you are using delayed log ship-

ping, you should adjust this value appropriately. For example, if you are delaying

log shipping for one hour, you might want SQL Server to provide an alert within

two hours of backup failure.

  9. With SQL Server 2008 Enterprise edition, you can configure backup compres-
sion by using one of the following options in the Set Backup Compression
list:

■■ Use The Default Server Setting Uses the default server setting for
compression to determine whether backup compression is used .

■■ Compress Backup Enables backup compression . Typically, you want
to enable backup compression when you want to reduce the size of the
backups and thereby reduce the amount of data transmitted over the
network .

■■ Do Not Compress Backup Disables backup compression . Typically,
you want to disable backup compression when you are concerned about
resource usage on the primary and secondary servers . By disabling
compression, you reduce any overhead associated with compressing or
uncompressing backups .

  10. Optionally, to better track statistics, status, and error messages related to log
shipping, you should configure a log shipping monitor . Although the monitor
server can be any computer running SQL Server 2008, you might want to
use a separate, centralized monitor server . By centralizing monitoring, you
can more easily keep track of log shipping status and shift the associated
workload to another server . The steps for configuring a log shipping monitor
are as follows:

  a. On the Transaction Log Shipping page, select the Use A Monitor Server
Instance check box, and then click Settings . This displays the Log Ship-
ping Monitor Settings dialog box, shown in Figure 17-3 .

  b. Click Connect . Use the Connect To Server dialog box to connect to the
server that will monitor log shipping . The account you use must be a
member of the sysadmin fixed server role on the server .

  c. During the backup, copy, and restore operations, SQL Server must be
able to connect to the monitor server to update the status of these log
shipping operations . SQL Server can do this either by impersonating the
SQL Server Agent proxy account or by using a specific SQL Server login .
Choose the related Monitor Connections option as appropriate .

  d. Use the Delete History After boxes to configure how long log shipping
history information is retained on the monitor server before it is deleted .
The default value is 96 hours . Typically, you want to retain copies for at
least this long or longer . To enable more in-depth troubleshooting, you
might want to retain at least seven days of history information .

 ChAPTeR 17  Managing Log Shipping and Database Mirroring660

  e. Optionally, set the name of the related SQL Server Agent job . Click OK to
complete the log shipping monitor configuration .

FIGURE 17-3 Optionally, configure a monitor server .

  11. When you click OK to complete the log shipping configuration, SQL Server
creates all the jobs needed for log shipping and performs related actions .
As shown in Figure 17-4, SQL Server lists the success or error status of each
action . If an error occurs, click the related error message to get details, make
any necessary changes to resolve the problem, and then begin the configu-
ration process again from step 1 .

FIGURE 17-4 Check the action status and resolve any errors .

  12. Click Close . Click OK to close the Database Properties dialog box .

 Managing Log Shipping and Database Mirroring ChAPTeR 17 661

Adding Log Shipping Secondary Databases
After you enable log shipping, you can add a log shipping secondary database by
completing the following steps:

  1. In SQL Server Management Studio, access the primary server in Object
Explorer .

  2. Right-click the primary database and select Properties .

  3. On the Transaction Log Shipping page, click Add under Secondary Data-
bases . This displays the Secondary Database Settings dialog box, shown in
Figure 17-5 .

FIGURE 17-5 Initialize the secondary database .

  4. Click Connect . Use the Connect To Server dialog box to connect to the sec-
ondary server .

  5. To initialize the secondary database, you must restore a full backup of the
primary database on the secondary server by using WITH NORECOVERY . If
you have already done this, select the option No, The Secondary Database
Is Initialized . Otherwise, select one of the following options to initialize the
secondary database:

■■ Yes, Generate A Full Backup Creates a full backup of the primary
database and restores it by using WITH NORECOVERY on the secondary
server . Click Restore Options to set the folder paths for data and log files .

 ChAPTeR 17  Managing Log Shipping and Database Mirroring662

■■ Yes, Restore An Existing Backup Uses the full backup of the primary
database specified in the Backup File box . Click Restore Options to set the
folder paths for data and log files .

TIP  SQL Server can back up the primary database and copy it to the secondary

server, or you can manually copy a backup of the primary database to the second-

ary server and then restore it. If you have a very large database, you probably

want to manually copy the backup and then restore it. Otherwise, a copy/restore

operation over the network might take too long. Keep in mind the restore opera-

tion will fail if a database with the same name as the primary database exists on

the secondary server.

  6. On the Copy Files tab, shown in Figure 17-6, specify the local folder to use
as the destination folder for transaction log copy operations . A SQL Server
Agent job running on the secondary server handles this copy task, and the
SQL Server Agent service account must have access to the specified folder .

FIGURE 17-6 Configure the copy options .

  7. Use the Delete Copied Files After boxes to configure how long transaction
log copies are retained . Typically, you want to retain copies for at least 72
hours . Before you change this value, consider the amount of available space
in the copy location and the size of the logs . You don’t want the copy loca-
tion to run out of free space . However, you also want to be sure that you
keep old transaction logs for a sufficient period of time .

  8. By default, the copy job runs every 15 minutes . Click Schedule to change the
run schedule .

 Managing Log Shipping and Database Mirroring ChAPTeR 17 663

  9. On the Restore Transaction Log tab, shown in Figure 17-7, specify the data-
base state when restoring backups as either No Recovery Mode or Standby
Mode . With No Recovery Mode, the transaction logs are applied by using
WITH NORECOVERY, and the database is left in a nonoperational state . With
Standby Mode, the database is in an operational standby state .

FIGURE 17-7 Configure the restore options .

  10. By default, the restore job runs every 15 minutes . Click Schedule to change
the run schedule .

  11. By default, the delay value for restoring backups is set to zero (0) minutes .
This means backups are restored whenever the restore job runs . If you want
to delay restoring backups, you can set a specific delay in minutes, hours, or
days . The delay should never be longer than the Delete Copied Files After
setting on the Copy Files tab (and be sure to account for the restore job run
interval) .

  12. If no restore occurs within a specified time, you can configure log shipping
to generate an alert . Set the Alert If No Restore Occurs Within option to the
time to wait before generating an alert for failed restore operations .

  13. Click OK to start the secondary configuration . The progress of the configu-
ration is displayed . If an error occurs, click the related link to read the error
message, take corrective action as necessary, and then begin the configura-
tion process again from step 1 .

  14. Click OK to close the Database Properties dialog box, and then click Close
when the configuration is complete .

 ChAPTeR 17  Managing Log Shipping and Database Mirroring664

Changing the Transaction Log Backup Interval
By default, transaction log backups are created every 15 minutes . To change the
frequency of backup creation, follow these steps:

  1. In SQL Server Management Studio, access the primary server in the Object
Explorer view .

  2. Right-click the primary database and select Properties .

  3. On the Transaction Log Shipping page, click Backup Settings . This displays
the Transaction Log Backup Settings dialog box .

  4. Note the Job Name under Backup Job . Click Edit Job to display the Job Prop-
erties dialog box .

  5. Set the schedule type and run frequency for the backup job . Typically, you
want to use a recurring daily job and a daily run frequency in hours or min-
utes . To work with schedules, access the Scheduled page in the Job Proper-
ties dialog box, and then click Edit under Schedule List .

  6. Click OK three times to close all open dialog boxes and apply the settings .

Changing the Copy and Restore Intervals
By default, transaction logs copied from backup and restore operations are per-
formed every 15 minutes . To change the frequency of the copy and restore opera-
tions, follow these steps:

  1. In SQL Server Management Studio, access the primary server in the Object
Explorer view .

  2. Right-click the primary database and select Properties .

  3. On the Transaction Log Shipping page, secondary servers and databases are
listed by server instance and database name . Select the secondary database
you want to modify, and then click the related properties (…) button . This
displays the Secondary Database Settings dialog box .

  4. On the Copy Files tab, click Schedule to display the Job Schedule Properties
dialog box . Set the run frequency for the copy job, and then click OK .

  5. On the Restore Transaction Log tab, click Edit Job to open the Job Properties
dialog box . Click the Schedules tab, select the schedule you want to change,
and then click Edit . This opens the Job Schedule Properties dialog box . Set
the run frequency for the restore job . Typically, you want to use a recurring
daily job and a daily run frequency in hours or minutes . Click OK four times
to close all open dialog boxes and apply the settings .

Monitoring Log Shipping
The easiest way to monitor log shipping is through the SQL Server Agent job his-
tory . Anytime you suspect that a server is having problems with log shipping, these
jobs are the first place you should look to help you identify the root cause of the

 Managing Log Shipping and Database Mirroring ChAPTeR 17 665

problem . In Object Explorer, expand SQL Server Agent, and then expand the Jobs
folder to see a list of jobs . Look for jobs related to log shipping . If you right-click a
job, you can select View History to get more detailed information that will include
error messages useful for troubleshooting .

Another way to check the status of log shipping is to run a status report . In the
status report, you’ll see information about recent log shipping activities . Any alerts
are shown as well, so you know immediately about recent failed jobs . You can run a
status report by following these steps:

  1. In Object Explorer, right-click the SQL Server instance acting as a primary
server, secondary server, or monitor server .

  2. Point to Reports, point to Standard Reports, and then click Transaction Log
Shipping Status .

Log shipping can fail for a number of reasons, but the most common reasons are
related to disk space and permissions . The disks used for backup and copy opera-
tions must have enough free space to retain files through the retention period . The
SQL Server Agent service for the related Database Engine instance running on the
primary server will back up the transaction logs to the backup folder, and it must
have read and write permissions on the folder . The SQL Server Agent service for the
related Database Engine instance running on the secondary server will copy files
from the backup location to a designated copy folder, and it must have read permis-
sions on the backup folder and both read and write permissions on the copy folder .

Network connectivity and server problems also can cause log shipping to fail . For
these types of problems, you often have to dig into the Windows event logs and the
SQL Server logs . As discussed in Chapter 14, “Profiling and Monitoring SQL Server
2008,” look through the logs for errors and warnings . Use the related error mes-
sages to help you diagnose and resolve the problem .

Failing Over to a Secondary Database
In most cases, when you manually fail over from a primary database to a secondary
database, the two databases will not be fully synchronized . This lack of synchroniza-
tion can occur for either or both of the following reasons:

■■ Some transaction log backups created on the primary server might not have
been copied or applied to the secondary server yet .

■■ Changes to the databases on the primary server might have occurred since
the last transaction log backup .

Because the databases might not be fully synchronized, you should synchronize
the primary database with the secondary database before using the secondary
database, and then you should bring the secondary server online . To do this, follow
these steps:

  1. Back up the syslogins table in the master database to a text file . You will use
this file to synchronize sysusers to syslogins on the secondary server when

 ChAPTeR 17  Managing Log Shipping and Database Mirroring666

failover occurs . If you do not do this, you will have orphaned connections
and users will not be able to properly connect to the secondary database
after failover . The best way to handle this issue is to create a SQL Server
Agent job that runs daily after the backup and uses Bulk Copy to back up the
syslogins table in the master database to a text file on the secondary server
or any available network share . Here is an example:

bcp master..syslogins out \\server34\data\syslogins.dat -N -S . -T

NOTE  The –T option specifies that you want to use trusted Windows authenti-

cation. In this situation, this means the job will run under the SQL Server Agent

service account’s credentials.

  2. Copy any remaining transaction log backup files from the backup share
location to the copy destination folder on the secondary server . You can do
this manually or by starting the copy job on each secondary server . To start
the copy job on a secondary server, expand the SQL Server Agent and Jobs
nodes, right-click the copy job, and then select Start Job .

  3. Apply any unapplied transaction log backups . You can do this manually or
by running the restore job on the secondary server . To start the restore job
on the secondary server, expand the SQL Server Agent and Jobs nodes, right-
click the restore job, and then select Start Job .

  4. If possible, back up the active transaction log on the primary server by using
NO_TRUNCATE . When you are using the SQL Server Backup dialog box, you
should select the Back Up The Tail Of The Log option on the Options page
of the Back Up Database dialog box when you perform the transaction log
backup . Alternatively, use the following commands:

USE master
GO
BACKUP LOG database_name TO device_name
WITH NO_TRUNCATE,INIT

For example:

USE master
GO
BACKUP LOG personnel TO DISK='\\sqlserver52\backup\logtail.trn'
WITH NO_TRUNCATE,INIT

  5. If you are able to back up the active transaction log, apply the log backup
to the secondary server . This ensures that the secondary server has the most
up-to-date version of the data . Regardless, uncommitted transactions from

 Managing Log Shipping and Database Mirroring ChAPTeR 17 667

the primary server are lost . You can apply the log on the secondary server by
using the following commands:

USE master
GO
RESTORE LOG database_name FROM device_name
WITH RECOVERY

For example:

USE master
GO
RESTORE LOG personnel FROM DISK='\\sqlserver52\backup\logtail.trn'
WITH RECOVERY

  6. Resolve the logins between the primary and the secondary servers . You can
do this by using the following commands:

EXEC sp_resolve_logins @dest_db= 'database_name'
 @dest_path= 'path'
 @filename= 'filename'

For example:

EXEC sp_resolve_logins @dest_db= 'personnel'
 @dest_path= '\\sqlserver52\data\'
 @filename= 'syslogins.dat'

  7. Users can now log in to the database by using the logins and passwords that
they normally use with the primary database server . To complete the con-
figuration, you need to modify any applications that connect to the primary
database and point them to the secondary database . You can do this by
specifying the new database server by name or IP address or by modifying
the connection string or other settings in the ODBC data source name (DSN) .

After you have failed over to the secondary server, you can configure the
secondary database to act as the primary database . Then you will be able to swap
primary and secondary databases as needed . The steps required for the initial role
change are different from those required for subsequent role changes .

The first time you want to fail over to the secondary database and make it your
new primary database, you must follow these steps:

  1. Manually fail over from the primary database to a secondary database, as
discussed previously .

  2. Disable the log shipping backup job on the original primary server and the
copy and restore jobs on the original secondary server .

 ChAPTeR 17  Managing Log Shipping and Database Mirroring668

  3. Configure log shipping on the secondary database, which is now acting as
the primary database . You must use the same backup share as the original
primary server, add the original primary server as a secondary server in
the log shipping configuration, and choose No, The Secondary Database Is
Initialized .

After you have completed the steps for an initial role change, you can perform
subsequent role changes by completing these steps:

  1. Perform the manual failover steps and bring the secondary database online .
When you are backing up the active transaction log on the primary server,
you must use WITH NORECOVERY .

  2. Disable the log shipping backup job on the original primary server and the
copy and restore jobs on the original secondary server .

  3. Enable the log shipping backup job on the secondary server, which is now
acting as the primary server, and enable the copy and restore jobs on the
primary server, which is now acting as the secondary server .

Disabling and Removing Log Shipping
When you remove log shipping from a primary database, SQL Server disables log
shipping and removes all jobs and history from the primary, secondary, and monitor
server instances . You can remove log shipping by following these steps:

  1. In SQL Server Management Studio, access the primary server in the Object
Explorer view .

  2. Right-click the primary database and select Properties .

  3. On the Transaction Log Shipping page, clear the Enable This As A Primary
Database In A Log Shipping Configuration option, and then click OK .

  4. When prompted to confirm, click Yes . SQL Server removes all jobs and his-
tory from the primary, secondary, and monitor server instances .

Database Mirroring

Mirroring allows you to create hot standby servers . SQL Server 2008 allows you to
mirror any database except for master, msdb, temp, and model . You can configure
and enable mirroring by using the Mirroring page in the Database Properties dialog
box . As discussed in “Ensuring Availability and Scalability” in Chapter 2, mirroring
requires up to three servers: a principal server, a mirror server, and a witness server .

Database Mirroring essentials
The principal server is the source server with the principal database in the mirror
pair . The mirror server is the target server with the target database in the mirror
pair . The witness server is an optional monitoring server that is preferably physically
separate from the principal and mirror servers .

 Managing Log Shipping and Database Mirroring ChAPTeR 17 669

SQL Server 2008 has three operating modes for database mirroring:

■■ Synchronous mirroring that requires a witness and provides a high-
availability solution with transaction safety set to FULL

■■ Synchronous mirroring that doesn’t require a witness and provides a high-
protection solution with transaction safety set to FULL

■■ Asynchronous mirroring that doesn’t require a witness and provides a high-
performance solution with transaction safety set to OFF

REAL WORLD Asynchronous operation enhances performance at the expense of

high availability. Because high-performance mode uses only the principal server and

the mirror server, problems on the mirror server never affect the principal server. If

you lose the principal server, the mirror database is marked as disconnected but is

available as a warm standby.

Synchronous mirroring with a witness is the only operating mode that allows
automatic failover . Synchronous mirroring requires that the mirror receives data,
confirms committing the data, and sends an acknowledgment back to the principal
prior to the principal committing the data and proceeding to the next operation . On
a fast network, this arrangement works well in most cases . On a slow network, hav-
ing to wait for acknowledgment can cause serious performance issues .

On the other hand, asynchronous mirroring does not require acknowledgment .
The principal sends data to the mirror as resources are available but does not wait
for acknowledgment before proceeding to the next operation . Although trans-
actional consistency is always maintained between the principal and mirror, the
mirror typically is not current with the principal . For example, when the principal is
experiencing heavy transactional volume, the mirror could lag behind the principal
by several minutes or more .

As you do with log shipping, you must ensure logins are synchronized between
the principal and mirror databases . You can synchronize logins by backing up the
syslogins table in the master database to a text file . You use this file to synchronize
sysusers to syslogins on the secondary server when failover occurs . Without this step,
you will have orphaned connections and users will not be able to properly connect
to the secondary database after failover . The best way to handle this is to create a
SQL Server Agent job that runs daily after the backup and uses a bulk copy to back
up the syslogins table in the master database to a text file on the secondary server
or any available network share . Here is an example:

bcp master..syslogins out \\server34\data\syslogins.dat -N -S . -T

NOTE The –T option specifies that you want to use trusted Windows authentica-

tion. In this situation, this means the job will run under the SQL Server Agent service

account’s credentials.

 ChAPTeR 17  Managing Log Shipping and Database Mirroring670

When you need to resolve the logins between the principal database and mirror
database, you can do this by using the following commands:

EXEC sp_resolve_logins @dest_db= 'database_name'
 @dest_path= 'path'
 @filename= 'filename'

For example:

EXEC sp_resolve_logins @dest_db= 'personnel'
 @dest_path= '\\sqlserver52\data\'
 @filename= 'syslogins.dat'

Users will then be able to log in to the mirror database by using the logins and
passwords that they normally use with the principal database .

Configuring Database Mirroring
After you install SQL Server 2008 on the servers that will be used in mirroring, you
must prepare for mirroring by doing the following:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the server you want to act as the principal .

  2. Right-click the database you want to work with, and then choose Properties .
This displays the database’s Properties dialog box . On the Options page, set
the Recovery Model to Full . Click OK .

  3. In the Registered Servers view, right-click the principal server and choose
SQL Server Configuration Manager . This starts SQL Server Configuration
Manager with the server selected for configuration .

  4. Select the SQL Server Services node in the left pane . In the right pane, note
the Log On As account for the SQL Server service on the instance that will act
as the principal .

  5. Perform a full backup of the principal database .

  6. In the Object Explorer view, connect to the server you want to act as the
mirror .

  7. Restore a full backup of the principal database on the mirror server instance
by using NORECOVERY .

  8. Right-click the database you want to work with on the mirror, and then
choose Properties to display the database’s Properties dialog box . On the
Options page, set the Recovery Model to Full . Click OK .

  9. In the Registered Servers view, right-click the mirror server and choose SQL
Server Configuration Manager . This starts SQL Server Configuration Manager
with the server selected for configuration .

 Managing Log Shipping and Database Mirroring ChAPTeR 17 671

  10. Select the SQL Server Services node in the left pane . In the right pane, note
the Log On As account for the SQL Server service on the instance that will act
as the mirror .

  11. In the Object Explorer view, connect to the server you want to act as the wit-
ness (if any) .

  12. In the Registered Servers view, right-click the witness server and choose SQL
Server Configuration Manager . This starts SQL Server Configuration Manager
with the server selected for configuration .

  13. Select the SQL Server Services node in the left pane . In the right pane, note
the Log On As account for the SQL Server service on the instance that will act
as the witness (if any) .

After you prepare for mirroring, you then must configure the mirror endpoints
and mirror security . To do this, complete the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the server you want to act as the principal .

  2. Expand the Databases folder . Right-click the database you want to work with,
and then choose Properties to display the database’s Properties dialog box .

  3. On the Mirroring page, click Configure Security . When the wizard starts, click
Next on the opening page . If you are using a witness server to enable syn-
chronous mode with automatic failover, accept the default answer of Yes on
the Include Witness Server page of the wizard, and then click Next . Other-
wise, select No to specify that you are not using a witness server .

  4. If you specified that you want to include a witness server, you’ll see the
Choose Servers To Configure page . Typically, you want to configure security
on all the servers that are part of the mirror set . Accept the default (which
has the appropriate server types selected) on the Choose Servers To Config-
ure page of the wizard, and then click Next .

  5. On the Principal Server Instance page, the current server is selected by
default as the principal, as shown in Figure 17-8 . Set a listener port and
endpoint name for this server as part of the mirror set . If the principal, mirror,
and witness are instances on the same server, the related endpoints must
use different listener ports . If the roles are assigned to different servers, the
endpoints can use the same listener ports . The default is TCP port 5022 . By
default, data sent through the endpoint is encrypted to ensure that your data
is secure . If you don’t want to use encryption, clear the Encrypt Data Sent
Through This Endpoint check box . Click Next .

 ChAPTeR 17  Managing Log Shipping and Database Mirroring672

FIGURE 17-8 Configure the principal server instance

TIP  To enable automatic decryption of the database master key of a mirror data-

base, you must provide the password used to encrypt the master key to the mirror

server instance. Use sp_control_dbmasterkey_password to create a credential for

the database master key before you start database mirroring. You must repeat this

process for every database you want to mirror.

  6. On the Mirror Server Instance page, use the Mirror Server Instance list to
select the server that will act as the mirror . The principal and mirror cannot
be the same server instance . As necessary, click Connect, and then use the
Connect To Server dialog box to connect to the server you want to use .

  7. Set a listener port and endpoint name . The default endpoint name is Mir-
roring . If the principal, mirror, or witness are instances on the same server,
the related endpoints must use different listener ports . If the roles are
assigned to different servers, the endpoints can use the same listener ports .
The default is TCP port 5022, unless the witness is on the same server as the
principal and mirror (in which case, the default is TCP port 5023) . Click Next .

  8. If you aren’t using a witness server, skip to step 10 . Otherwise, on the Witness
Server Instance page, use the Witness Server Instance list to select the server
that will act as the witness . The principal and witness cannot be the same
server instance, nor can the mirror and witness be the same server instance .

 Managing Log Shipping and Database Mirroring ChAPTeR 17 673

  9. Set a listener port and endpoint name for the witness server . The default
endpoint name is Mirroring . If the principal, mirror, or witness are instances
on the same server, the related endpoints must use different listener ports .
Otherwise, the endpoints can use the same listener ports . The default is TCP
port 5022 unless the witness is on the same server as the principal and mirror
(in which case, the default is TCP port 5024) . Click Next .

  10. On the Service Accounts page, shown in Figure 17-9, you can configure ser-
vice accounts . If the server instances use different domain accounts for their
SQL Server service accounts and those accounts are in the same domain or in
trusted domains, enter the account names in the boxes provided . For domain
accounts, be sure to enter the account name in DOMAIN\username format .
If the service accounts are different, the wizard will grant CONNECT permis-
sions on the endpoints for each account .

FIGURE 17-9 Configure service accounts in the same or trusted domains .

  11. Click Next, and then click Finish . The wizard then configures security for mir-
roring . As shown in Figure 17-10, the wizard lists the success or error status of
each action . If an error occurs, click the related error message to get details,
make any necessary changes to resolve the problem, and then begin the
configuration process again from step 1 of the configuration procedure .

 ChAPTeR 17  Managing Log Shipping and Database Mirroring674

FIGURE 17-10 Check the action status and resolve any errors .

  12. Click Close, and then click Do Not Start Mirroring .

  13. The Database Properties dialog box should still be open to the Mirroring
page . Set the mirror operating mode you want to use . If you have configured
a witness server, you can use High Safety With Automatic Failover mode to
ensure high availability .

  14. Prior to starting database mirroring, you must ensure that the mirror server
has a copy of the principal database in a recovery state . If you’ve restored the
principal database on the mirror and put it in a recovery state, click Start Mir-
roring, and then click Yes when prompted . Otherwise, perform any necessary
actions, and then click Start Mirroring on the Mirroring page in the Database
Properties dialog box .

If you need to restore the principal database on the mirror and put it in a recov-
ery state, you can do this by using the following commands:

RESTORE DATABASE database_name FROM device_name
WITH MOVE 'data_file' TO 'mirror_data_file'
MOVE 'log_file' TO 'mirror_log_file'
NORECOVERY

 Managing Log Shipping and Database Mirroring ChAPTeR 17 675

For example:

RESTORE DATABASE personnel FROM DISK='\\sqlserver52\backup\db.bak'
WITH MOVE 'data_file' TO 'c:\sql\data\data_file.mdf'
MOVE 'log_file' TO 'c:\sql\data\data_file.ldf'
NORECOVERY

Here, the NORECOVERY clause keeps the database closed so that the transaction
log can be applied . To initialize the database, you must then apply a transaction
log to the mirror database . As shown in the following example, you again leave the
database in NORECOVERY mode so that when mirroring is started, the log records
from the principal can be applied properly:

RESTORE LOG personnel FROM DISK='\\sqlserver52\backup\logtail.trn'
WITH NORECOVERY

You can then start mirroring by clicking Start Mirroring on the Mirroring page in
the Database Properties dialog box .

Managing and Monitoring Mirroring
You can view the current status of mirroring by completing the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the principal server .

  2. Expand the Databases folder . Right-click the database you want to work with,
and then choose Properties to display the database’s Properties dialog box .

  3. Select the Mirroring page . The current mirroring status is displayed at the
bottom of the page .

After you have configured and started mirroring, you can manage mirroring on
the Mirroring page by using the following options:

■■ Click Pause to temporarily stop mirroring . When prompted to confirm, click
Yes . Click Resume to resume mirroring .

■■ Click Stop Mirroring to stop mirroring . When prompted to confirm, click Yes .
Click Start Mirroring to start mirroring again .

■■ If you are using a witness, failover occurs automatically . You can also force
failover by clicking the Failover button .

Mirroring details can be obtained by using the following catalog views:

■■ sys.database_mirroring Displays the database mirroring metadata for
each mirrored database in a server instance .

■■ sys.database_mirroring_endpoints Displays information about the data-
base mirroring endpoint of the server instance .

■■ sys.database_mirroring_witnesses Displays the database mirroring meta-
data for each of the sessions in which a server instance is the witness .

 ChAPTeR 17  Managing Log Shipping and Database Mirroring676

In Performance Monitor, you can use the SQLServer:Database Mirroring object to
monitor mirroring performance as follows:

■■ Use the Log Bytes Sent/sec counter to monitor the amount of log data sent
per second .

■■ Use the Transaction Delay counter to determine whether mirroring is affect-
ing performance on the principal server .

■■ Use the Redo Queue and Log Send Queue counters to determine whether
the mirror database is keeping up with the principal database .

Although related catalog views and performance counters are helpful, they are
no substitute for the Database Mirroring Monitor utility, which provides an overview
and status of all mirroring activities . You can access and use Database Mirroring
Monitor by completing the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the principal server .

  2. Expand the Databases folder . Right-click the principal database, point to
Tasks, and then select Launch Database Mirroring Monitor .

  3. By default, no mirrored databases are registered for monitoring, so you need
to register the databases you want to monitor . Click the Register Mirrored
Database link .

  4. In the Register Mirrored Database dialog box, use the Server Instance list to
select a mirrored database to monitor, and then click Connect . Use the Con-
nect To Server dialog box to connect to the related server instance . You can
register principals, mirrors, and witnesses as necessary . Click OK .

  5. You then see a mirroring entry for each mirrored pair or grouping . By select-
ing the related entry in the left pane, you will see details in the right pane .
On the Status tab, you’ll find summary details regarding the current state of
database mirroring . On the Warning tab, you will find any related warnings
regarding database mirroring .

Like log shipping, database mirroring can fail for a number of reasons . To help
you diagnose and resolve problems with database mirroring, use the status, error,
and warning messages provided in Database Mirroring Monitor . Network connec-
tivity and server problems also can cause database mirroring to fail . For these types
of problems, you often have to dig into the Windows event logs and the SQL Server
logs . As discussed in Chapter 14, look through the logs for errors and warnings . Use
the related error messages to help you diagnose and resolve the problem .

TIP With SQL Server 2008 enterprise edition, database mirroring partners automati-

cally try to resolve certain types of errors that prevent reading a data page. If the

partner is unable to read a page and is in a synchronized state, the partner requests

a fresh copy from the other partner. If this request succeeds, the unreadable page is

replaced by the copy, which resolves the error in most cases. Specific error types that

can be automatically repaired include error number 823 for cyclic redundancy checks,

 Managing Log Shipping and Database Mirroring ChAPTeR 17 677

error number 824 for logical data errors (such as torn write or bad page checksum),

and error number 829 for pages marked as restore pending.

The transaction safety property determines whether a database runs synchro-
nously or asynchronously . A database owner can change the transaction safety
level at any time from FULL, the highest availability mode that supports automatic
failover when a witness is present, to OFF, the highest performance mode that
doesn’t support automatic failover . During a database mirroring session, the mir-
rored database is always in a specific mirroring state, which indicates the commu-
nication status and data flow . The partners use the mirroring state to monitor the
mirrored database . The principal and mirror databases are always in the same state
except when there is a pending failover . If a witness is set for the session, each of the
partners monitors the witness by using its connection state .

The relationship between the principal, mirror, and optional witness is referred
to as the quorum . If a witness exists, the witness has one of several states . When the
witness is connected to a partner, the witness is in the CONNECTED state relative
to that partner and has quorum with that partner . In this case, the database can be
made available even if one of the partners is unavailable . On the other hand, when
the witness exists but is not connected to a partner, the witness is in the UNKOWN
or DISCONNECTED state relative to that partner . In this case, the witness lacks
quorum with that partner, and if the partners are not connected to each other, the
database becomes unavailable .

The possible mirroring states for databases are as follows:

■■ DISCONNECTED Indicates a partner has lost communication with the
other partner .

■■ PENDING_FAILOVER Indicates that failover has begun but the server has
not transitioned into the mirror role . When a failover is initiated, the principal
database goes into the PENDING_FAILOVER state, terminates any user con-
nections, and takes over the mirror role .

■■ SUSPENDED Indicates the mirror copy of the database is not available . The
principal database is running without sending any logs to the mirror server, a
condition known as running	exposed . This is the state after a failover . A mir-
roring session can also go into a SUSPENDED state as a result of redo errors
or if the administrator pauses the session . SUSPENDED is a persistent state
that survives partner shutdowns and startups .

■■ SYNCHRONIZED Indicates the principal and mirror are fully synchronized .
The database remains in this state as long as the principal server continues to
send changes to the mirror server and the mirror server continues to apply
changes to the mirror database without lagging behind . When transaction
safety is set to FULL, automatic failover and manual failover are both sup-
ported in the SYNCHRONIZED state and there is no data loss after a failover .
However, when transaction safety is OFF, some data loss is always possible,
even in the SYNCHRONIZED state .

 ChAPTeR 17  Managing Log Shipping and Database Mirroring678

■■ SYNCHRONIZING Indicates that the contents of the mirror database are
lagging behind the contents of the principal database . The principal server is
sending log records to the mirror server, which is in the process of applying
the changes to the mirror database to roll it forward .

You can view the safety level and state of the witness for a database by using the
sys .database_mirroring catalog view . The relevant columns are mirroring_safety_
level, mirroring_safety_level_desc, mirroring_witness_name, and mirroring_witness_
state_desc . Here is an example:

SELECT mirroring_safety_level, mirroring_safety_level_desc,
mirroring_witness_name, mirroring_witness_state_desc FROM
sys.database_mirroring

Recovering by Using Failover
Each operating mode has different quorum states and recovery scenarios depend-
ing on which node in the relationship is lost . The quorum states and recovery
scenarios are as follows:

■■ Full quorum A full quorum relationship exists when the principal, mirror,
and witness can all communicate with each other . If the principal is lost and
the witness is up and running, SQL Server will automatically fail over to the
mirror .

■■ Quorum A quorum relationship exists when the witness is available and
either partner can communicate with it . If the mirror is lost, the principal
retains control . If the principal is lost and the mirror is available, you have to
manually fail over . If the witness is lost and the principal and mirror are up
and running, a partner-to-partner quorum is established .

■■ Partner-to-partner quorum A partner-to-partner quorum exists when
only the principal and mirror can communicate with each other . Because only
the witness is missing, no failover occurs . If the principal is lost and the mirror
is available, you have to manually fail over .

If the principal server fails while the mirror server is available, the database owner
can make the database available by forcing service to fail over to the mirror data-
base . Forcing service allows you to use a mirror server as a warm standby server .

Forcing service works like this: After the principal server fails with the database
in an unsynchronized state (or in a synchronized state when automatic failover does
not occur), the database owner can make the database available by forcing service
to fail over to the mirror database . Forcing service suspends the session, temporarily
preserving all data in the original principal database . After the original principal is
in service and able to communicate with the new principal server, you can resume
service . However, when the session resumes, any unsent log records and related
updates are lost . Therefore, force service only if you are willing to risk losing some
data in order to restore service to the database immediately .

 Managing Log Shipping and Database Mirroring ChAPTeR 17 679

Keep the following in mind:

■■ High-safety mode without automatic failover supports forcing service when-
ever the principal server is disconnected .

■■ High-safety mode with automatic failover supports forcing service whenever
the mirror server and witness are connected to each other and neither is
connected to the principal server (provided that the mirror server was not in
the process of rolling back the mirror database when it was last connected to
the principal) .

■■ High-performance mode supports forcing service whenever the principal
server is disconnected . If a witness exists, forcing service requires that the
mirror server and witness are connected to each other .

With synchronous mirroring in a high-safety configuration you can manually fail
over to the mirror in the event the principal fails by using the following steps:

  1. On the mirror, run the command ALTER DATABASE database_name SET
PARTNER FORCE_SERVICE_ALLOW_DATA_LOSS, where database_name is the
name of the database to fail over, such as:

ALTER DATABASE personnel SET PARTNER FORCE_SERVICE_ALLOW_DATA_LOSS

If the principal is still available and you run this command, you get an error
telling you that the mirror is not in the correct state to become the principal
database .

  2. The mirror becomes the new principal and database mirroring stops . When
the original principal becomes available, it is marked as mirroring in a sus-
pended state . You can ensure that the users and logins are synchronized by
running the sp_resolve_logins stored procedure or by restoring the master
database from a previous backup of the original principal . Be sure to point
any applications to the new principal server again as necessary .

With asynchronous mirroring in a high-performance configuration with transac-
tion safety set to OFF, you can fail over to the mirror in the event the principal fails
by using the following steps:

  1. On the mirror, run the command ALTER DATABASE database_name SET
PARTNER OFF, where database_name is the name of the database to fail over,
such as:

ALTER DATABASE personnel SET PARTNER OFF

  2. To recover the database, run the command RESTORE DATABASE database_
name WITH RECOVERY, such as:

RESTORE DATABASE personnel WITH RECOVERY

 ChAPTeR 17  Managing Log Shipping and Database Mirroring680

  3. The mirror becomes the new principal, and database mirroring stops . When
the original principal becomes available, it is marked as mirroring in a sus-
pended state . You can ensure that the users and logins are synchronized by
running the sp_resolve_logins stored procedure or by restoring the master
database from a previous backup of the original principal . Be sure to point
any applications to the new principal server again as necessary .

Removing Database Mirroring
The database owner can manually stop a database mirroring session at any time, at
either partner . When you remove mirroring, all information about the mirroring ses-
sion is dropped, each partner server instance is left with a separate copy of the data-
base, and the relationship between the partners and between each partner and the
witness breaks permanently . If the partners are connected and communicating with
each other when the session is stopped, their relationship is immediately broken
on both computers . If the partners are disconnected and not communicating, the
relationship is broken immediately on the partner from which mirroring is stopped .
When the other partner tries to reconnect, it discovers that the database mirroring
session has ended, and the mirroring relationship is then broken .

You can remove database mirroring by completing the following steps:

  1. Start SQL Server Management Studio . In the Object Explorer view, connect to
the principal server .

  2. Expand the Databases folder . Right-click the principal database, point to
Tasks, and then select Mirror . This opens the Mirroring page of the Database
Properties dialog box .

  3. To remove mirroring, click Remove Mirroring . When prompted to con-
firm, click Yes . The session is stopped, and mirroring is removed from the
database .

Because the mirror database was created by using the RESTORE WITH NORE-
COVERY option, the mirror database is left in the RESTORING state . At this point,
you can drop the former mirror database or restore it by using WITH RECOVERY .
When you recover the database, its data will not necessarily be identical to that in
the former principal database .

To continue mirroring after stopping a session, you must establish a new data-
base mirroring session and at least one log backup must be taken on the principal
database and applied to the mirror database . Any additional log backups taken
since mirroring was removed also must be applied to the mirror database . There-
fore, if you created log backups after stopping mirroring, apply them to the mirror
database before restarting mirroring .

 Managing Log Shipping and Database Mirroring ChAPTeR 17 681

Using Mirroring and Log Shipping

Mirroring and log shipping are two different options that you can use to improve
availability . The principal database used in database mirroring can act as the primary
database in log shipping as well . You might want to use this configuration in a situ-
ation in which you have a critical database and you want to have multiple standby
servers available . For example, you might use either of the following options:

■■ Mirroring, to establish a single standby that comes online if the principal fails .
With a fully synchronous mirroring configuration, automatic failover occurs
if the principal database is lost, as long as the mirror server and witness can
communicate with each other . Automatic failover causes the mirror server
to assume the principal role and bring its database online as the principal
database . When the former principal comes back online, it comes online as
the mirror .

■■ Log shipping, to establish one standby or more, which can be manually
brought online in case the primary and mirror both fail . Transaction logs are
shipped from a primary database to a central backup folder . Secondary serv-
ers access the backup folder and restore the transaction logs in their second-
ary databases to keep the servers synchronized . If the primary database fails,
any secondary database can be brought online manually as the new primary
database .

When you use both mirroring and log shipping, you usually configure mirroring
first and then log shipping by following these general steps:

  1. Restore backups of the principal database onto the server that will act as the
mirror by using the NORECOVERY option .

  2. Set up database mirroring by configuring the principal and mirror servers
and, as necessary, the witness server (required for synchronous mirroring and
automatic failover) .

  3. Restore backups of the principal database to servers that will act as log ship-
ping secondary (destination) databases .

  4. Create a shared resource to use as the backup folder for log shipping .

  5. Configure the principal database as the log shipping primary database for
one or more secondary (destination) databases .

  6. Configure the mirror server as a log shipping primary server with the same
log shipping configuration as the primary server . This allows log shipping to
continue after database mirroring fails over .

  7. If mirroring fails over, the former mirror server comes online as the primary
server . If the backup folder is not available to both the primary and mirror
servers, log shipping backup jobs fail when the mirror server takes over as
the primary server . To prevent this, create the backup folder on a shared
network resource .

683

Index

A
abbreviations (collation

styles), 249
access . See	also permissions

access control lists
(ACLs), 511

Analysis Services and,
60–62

authentication modes,
301–302

central management,
173

client access, 57
controlling, 329–336
Database Engine items,

58–60
database state and,

264–265
deployment planning,

37–39
external options,

266–267
granting or denying,

323–324
logins, 317–326
management data

warehouses, 544–545
Performance Monitor,

536
publication access, 510
remote access, 57
Reporting Services, 62
restored databases, 589
revoking, 329
roles, 312–316, 326–329
security goals, 291
special-purpose logins,

302–305
access control lists (ACLs),

511
Access databases, 430, 433,

437, 472
account provisioning, 49–50,

51
accounts

copying, 633–636
database mirroring

and, 673
install configuration, 47
log shipping configura-

tion, 655
mail, 606, 611–612

process, 507, 510, 515
replication agents and,

510
service, 10–11
special-purpose,

302–305
startup service, 69
user groups and, 65–67

Active Directory, 95, 228
Active Directory Helper, 9,

63, 66
Active File/Table view, 360
ActiveX scripts, 165, 434, 625
activity

monitoring . See moni-
toring

performance metrics,
522

Activity Monitor, 151–157,
159, 522, 523

ad hoc connections, 58
ad hoc distributed queries,

113–115
ad hoc policy evaluation, 9,

63, 66
ad hoc reports, 62
Address Windowing Exten-

sions (AWE), 203, 206–207
administration

adding, deleting, and
manipulating data-
bases, 275–280

altering databases,
251–270

automating tasks, 603
backing up, 572–583
backup planning,

557–566
basics, 238–245
command-line tools,

16–21
copying or moving

databases, 280–286
creating databases,

245–251
database mirroring,

675–678
database size, 270–275
database templates,

288
dedicated connections,

37–39
encryption, 288–290

files and logs, 233–238,
270–275

graphical tools, 12–15
maintenance, 603,

641–652
multiserver administra-

tion, 637–640
Policy-Based Manage-

ment, 161–164
secondary data and log

files, 287
server-to-server tasks,

632–637
system stored proce-

dures, 93–100
administrator accounts,

10–11, 48, 303
advanced configuration

parameters, 113–115
affinity masks, 167, 212
affinity settings (processors),

210–211
Agent History Clean Up

job, 482
agents, 481–483, 524 . See	

also replication agents;
names	of	specific	agents

aggregate functions, 399
aggregates, securable, 294
alerts . See	also errors and

error messages
ANSI warning options,

117, 260
central administration,

637–638
configuring, 604
copying, 636–637
Database Mail, 606–612
database mirroring, 676
default alerts, 615–616
deleting, enabling, or

disabling, 618–619
error numbers, 529, 617
error severity levels, 617
Event Viewer display,

531
job execution, 629–630
log shipping, 654,

658–659
performance counters,

543–544
policy compliance, 188
policy events, 163

684

aligned partitioning

alerts, continued
responses, 617–618
SQL Server Agent, 142,

612, 613
triggers, 613, 616

aligned partitioning, 413
ALTER DATABASE statement

ANSI compliance,
259–261

automatic options,
257–259

changing settings,
117–121, 251–257

compatibility levels, 108
configuration options,

101, 106–107
cross-database chain-

ing, 266–267
cursor options, 263–264
database state, 264–265
manipulating data-

bases, 275–280
moving databases,

284–285
online, offline, or emer-

gency modes, 266
parameterization,

261–263
recovery, logging, and

I/O error checking,
267–269

syntax, 252–257
transaction log recov-

ery issues, 582
user access, 264–265

Analysis Services, 1, 9
AWE, 206–207
configuring instances,

51
data provider connec-

tions, 438
Deployment Wizard, 15
importing data to or

from, 433
importing policies,

171–172
initializing, 64
installing, 45
job steps, 625
managing access,

60–62
multidimensional

databases and data
mining, 30–32

server groups, 127
user group, 66

Analysis Services Deploy-
ment Wizard, 15

anonymous authentication,
608

anonymous connections, 61

anonymous subscriptions,
509, 512–513

ANSI compliance, 259–261
ANSI nulls . See	also nulls

ALTER DATABASE
 options, 117

ANSI compliance set-
tings, 259

SET options, 102, 103,
106, 218, 219, 400

SQL-92 settings, 464
ANSI padding

ALTER DATABASE
 options, 117

ANSI compliance set-
tings, 259

script settings, 634
SET options, 102, 103,

106, 218, 219, 400
ANSI SET options, 101
ANSI SQL (SQL-92), 263, 464
ANSI warnings

ALTER DATABASE
 options, 117

ANSI compliance set-
tings, 260

distributed queries, 464
SET options, 102, 103,

106, 107, 218, 219
APIs, 93–94
AppleTalk, 77
application database roles,

333–334
application logs, 528–532
application roles, 292, 293,

294, 306, 314
applications, repointing, 667
archive logs, 533, 534
arithmetic operators, 262
articles, 481, 484, 501, 505,

509
ASCII text, 458
assemblies, 294, 306
asymmetric keys, 288, 293,

294, 306
asynchronous mirroring,

669, 679–680
attachable subscription data-

bases, 509
attaching databases,

277–280
attachments (mail), 610
auditing, 200–203, 531
authentication

anonymous connec-
tions, 61

configuring, 201–202
Database Engine, 49–50
distributors, 493
exported registration

details, 135

log shipping failovers
and, 666

logins, 10
mixed security modes,

301–302
packages, 452
policy evaluation and,

186
policy settings, 168
PowerShell and, 138,

141
simulating with traces,

551–555
SMTP and, 606, 608
types of, 192
Web synchronization,

509
Windows vs . SQL Server,

110
authentication modes,

301–302
Auto Close option, 257–258
Auto Create Statistics

 option, 258
autogrowing, 166, 247–248,

270
auto-shrinking, 166, 258,

271–275
auto-updating statistics, 258
auto-closing databases, 165
autoloader tape systems,

567
automated recovery pro-

cess, 578
automated Server Agent

tasks, 142
automatic failover, 674
automatic server startup,

143–144
automatic service restart,

615
automation, 604–605

alerts, 615–619
copying items to serv-

ers, 636–637
Database Mail, 606–612
failover, 674
operators, 619–621
recovery, 578
scheduling jobs,

621–632
server startup, 143–144
server-to-server tasks,

632–637
service restarts, 615
single-user mode, 605
SQL Server Agent, 142,

612–615
availability, 36–37, 669, 674
AWE (Address Windowing

Extensions), 203, 206–207

685

checksum

B
backing up and backup sets

Analysis Services and,
32

assessing needs,
558–559

automated recovery,
578

backup devices, 234,
570–572

backup intervals, 664
backup sets, 572,

575–577, 587
backup types, 559–560,

576
compression, 228,

565–566, 575, 576
creating backups,

572–577
database mirroring, 562
encryption and, 290
erasing backups, 575
expiration intervals, 574
hardware and media,

566–568
histories, backup, 588
initializing replications,

483, 489
large databases,

564–565
log shipping databases,

661–663
maintenance plans,

642, 644
new backup sets,

573–575
offsite backups, 559
parallel backup/restore,

564–565
parallel striped backups,

577–578
permissions, 312
planning backup

and recovery, 557,
568–570

policies, 165, 167
recovering and restor-

ing, 583–601
recovery models,

561–562
replicated databases,

563–564
restoring transaction

logs, 586
retention, 227, 497, 513,

563, 658, 662
rotation schedules, 568
standby servers, 562,

594–596
subsystems, 32

time-outs, 226–227
transaction logs,

582–583
T-SQL statements,

578–582
verification, 575

BACKUP commands,
578–582

Backup Database dialog
box, 572

backup devices, 234,
566–568

backup folders, 654, 656
backup jobs, 654, 658
backup sets, 572, 575,

576–577, 587
baseline memory, 205
baseline performance met-

rics, 522
batch scripts, 263–264
batch size limitations, 235
batch-level configuration,

101, 102–104
BCM (Bulk Changed Map),

355
BCP (bulk copy program),

16, 19, 453–454
applications for DACs,

198
exporting data, 460
importing data,

458–460
parameters, 455, 458
permissions and modes,

457–458
scripts, 460–461
switches, 454, 456–457
syntax, 454–457
versions of, 459

binary data types, 375,
376–377

binary large objects (BLOBs),
50, 70–73, 592

binary literals, 262
bindings, 294, 309, 361, 390,

421, 634
BitLocker Drive Encryp-

tion, 39
BLOBs (binary large objects),

50, 70–73, 592
Blocked By values, 153, 157
blocked process thresholds,

167
blocked resources, 154–156
blocking connections,

157–158
Blocking information, 157
bookmarks, 397
breakpoints, traces, 554
broker priorities, 244
building queries, 445–447

built-in permissions,
297–298

Bulk Changed Map (BCM),
355

bulk copy program . See BCP
bulk logging, 267
bulk-logged recovery, 462,

561, 653, 655
Business Intelligence Devel-

opment Studio, 15, 45

C
C2 audit logging, 201–202
cache, 227
cache-hit ratios, 204, 356
candidate keys, 417
catalog views, 86, 87–93, 95,

424–425, 652, 675
categories

jobs, 631–632
policies, 162, 163, 182,

183–185
central log shipping servers,

659–660
central management servers

alert and job schedules,
637–640

configuring, 172–175
policy management,

164
querying multiple serv-

ers, 176
subordinate servers/

groups, 174–175
central publisher or sub-

scriber replication models,
486

certificates, 10, 81, 242, 288,
293, 294, 307

change tracking, 30, 87, 95,
240, 634

Change Tracking view, 87
character data types,

376–377
character mode (BCP), 458
characters

case, 419
data types, 374–375
importing or exporting

text files, 442
limitations, 235
schema names, 349
table names, 358

check constraints, 415,
418–420, 634

checklists, maintenance,
641–642

checkpoint LSNs, 588
checkpoints, 148, 227, 268
checksum, 166, 268, 575

686

chip information

chip information, 194
classes, auditing security,

201
cleanup agents, 482
cleanup tasks, 642
client configuration, 82–84
Client Network Utility . See

SQL Server Configuration
Manager

closing
cursors, 263
databases, 165, 257–258

CLR (common language
runtime), 58, 61, 89, 395

CLR Assembly view, 87
Cluster service, 36–37
clustered indexes, 395–396

compression and, 425,
426–427

indexing views, 387
limitations, 235
selecting columns for,

399
clustering

backups and, 559
Database Engine

 objects and, 236
CmdExec commands, 165,

625
cmdlets, 21–26, 137–139, 238
code pages, 593
cold standby servers, 562,

594–595, 654
collation

changing, 230–231
columns, 362
designators and com-

parison styles, 49, 249
distributed queries, 464
linked servers, 470, 476
policies, 166
remote collation, 471
replicating settings, 481
restored databases, 593
scripts and, 634
settings, 48, 362

Collation Designator, 49
collections, 292
Column Properties view, 360
column sets, 380–381
columns

adding or deleting, 370
BCP import or export,

459
column sets, 380–381
computed, 399–400
constraints and rules,

415–420
globally unique IDs, 362
identity columns,

416–417

import/export mapping,
447–450

indexing, 398–399, 402
limitations, 235, 359
maximum number, 414
modifying, 370
in nonclustered indexes,

395
nulls in, 379–380
number allowed in

views, 388
properties, 360,

361–362
in publications, 502, 505
replaying traces and,

552
row-overflow storage,

237–238
sparse, 361–362,

380–381
traces, 549
variable length, 354

COM (component object
model), 61

command-line tools
administration, 16–21,

137–141
management, 148–149
running SQL Server,

149–150
commas, 442
committing transactions,

467–468, 484–485,
666–667

Common Criteria Evaluation
Level 4 (EAL4+) require-
ments, 202–203

common language runtime
(CLR), 58, 61, 89, 395

Compact edition (SQL
Server), 7, 127, 505

comparison operators, 398
comparison styles (collation),

249
compatibility levels, 108
compatibility views, 86
completed jobs, 630–631
compliance, policies,

185–188
component object model

(COM), 61
compression

backup media, 228
backup planning, 559,

565–566
backup settings, 575
copying settings, 634
database size and,

271–275
indexes, 425–428

log shipping settings
and, 659

media set limitations,
576

partitioned tables,
357–358

partitions, 425–428
ratios, 565
tables, 425–428
types of, 426–427

computed columns or views,
399–400

Computer Management,
144, 147

concatenate nulls options,
103, 107, 118, 219, 260

conditions, 162, 172,
178–180, 182

configuration . See	also
Database Engine Tuning
Advisor

access, 58–62
Active Directory infor-

mation, 228
ALTER DATABASE,

117–121
auditing, 201–203
authentication, 200–201
automation tools,

604–605
backup compression,

228
cache flushing, 227
catalog view types,

87–93
compatibility levels, 108
configuration servers,

163
connections, 76–77,

216–219, 220
Customer Feedback

Reporting, 73–74
data collection, 542
Database Mail, 606–611
database mirroring,

670–675, 681
databases, 106–107,

117–121
distributors, 490–494
DTC, 142–143
dump directories, 73–74
dynamic settings, 111
error reporting, 73–74
event logs, 533
facets, 176–178
fibers, 214–215
file streaming, 70–73,

221–222
index fill factor, 225–226
I/O subsystems, 34–36
job schedules, 627–629

687

Data Compression Wizard

language settings, 222
linked servers, 469–476
log shipping, 655–656,

661–663, 681
maintenance tools,

604–605
management servers,

172–175
Management Studio,

109–112, 191–194
master and target serv-

ers, 639–640
memory usage,

203–209
monitoring changes,

542
nested triggers, 223
networks, 75
parallel processing,

210–214
parameter settings,

112–117
planning deployments,

39–40
Policy-Based Manage-

ment, 161–189
priorities, 214–215
queries, 109–112
query execution,

223–224
replication, 485–490
retention periods, 227,

497, 513, 563, 658,
662

self-configuring
 options, 113

self-tuning feature, 85,
208

server options, 105–106
services, 62–74, 143–150
SET options, 102–104
SQL Server Agent, 142,

613–614
SQL Server options, 101
stored procedures,

109–121
system catalog data,

86–87
system stored proce-

dures, 93–106
threading, 214–215
time-outs, 226–227
troubleshooting,

228–231
Year 2000 support, 224

configuration servers, 163
connections

ad hoc, 58
blocking connections,

157–158
configuration, 101,

216–220

connecting to servers,
136

data providers, 436,
438–439, 440

default query-process-
ing, 217–219

file-based data, 437
limitations, 237
log shipping configura-

tion, 655
Management Studio,

124–125, 192–194
monitoring, 151–152,

525
orphaned, 666, 669
remote, 76–77, 140, 141,

220, 238
replication updates

and, 484
SET options, 102–104
simulating with traces,

551–555
SSIS packages, 433
trace data, 550

connectivity, 37–39
constraints

column constraints,
415–420

copying with scripts,
634

object values and limits,
235–237

as objects, 242
replicating, 481
as securable, 294
types of, 415–420

contracts, 294, 307
control flows, 434
Control Point monitor, 523
control points, 194–200
copy and restore jobs,

654–655
Copy Database Wizard, 280
copying

accounts, 633–636
bulk copy program,

453–454
databases, 280–284,

593, 661
log shipping copy jobs,

664
objects, 633–636
queries, 445–447
replication . See replica-

tion
server registrations,

132–136
tables, 368–369,

442–445, 633–636
views, 430, 442–445,

633–636

core database . See Database
Engine

corrupt databases, 583–601,
653

costs of backup media, 566
counters

alert configuration,
543–544

data collectors, 539–541
mirroring monitors, 676
selecting, 535–538

CPUs
affinity policies, 167, 210
configuring, 210–214
determining number

of, 194
displaying utilization,

199
hot-add functional-

ity, 40
monitoring, 522, 524,

525
parallel processing, 213
processing time, 547
SQL Server require-

ments, 3–4
threading and, 214–215
utility control points

and, 195
Create New Data Collector

Set Wizard, 540
critical errors, 531
cross-database chaining,

266–267, 278
cursors

data types, 373
options, 263–264
replaying traces, 554
system stored proce-

dures, 95
trace data, 550

Customer Feedback Report-
ing, 53, 73–74

cyclic redundancy checks,
676

D
DACs (data-tier applications),

43, 59, 194, 197–198, 199
daily backups, 558
daily changes, recovering,

569
daily jobs, 629
daily maintenance tasks, 641
data collector sets, 538–542,

542–544
data collectors, 316,

544–546
Data Compression Wizard,

427–428

688

data conversion operators

data conversion operators,
398

data definition language
(DDL), 91, 162, 336–342,
468

data files
backup needs, 558
utility control points

and, 195
data flows, 434
data manipulation language

(DML), 384, 560
data mining, 30–32, 60,

433, 438
Data Mining Services, 433,

438
data pages, 354–356
data providers

building queries,
445–447

computers running SQL
server, 440

copying tables or views,
443–445

file-based data connec-
tions, 437

flat files, 440–443
Integration Services

and, 433
linked servers and, 463
 .NET Framework, 436
non-SQL Server–based,

438–439
PowerShell and, 139
product names, 470
sources and destina-

tions, 435–443
data replication . See replica-

tion
data sets, 480, 538 . See	also

data collector sets
data source names (DSNs),

436
data sources or destinations .

See destinations; sources
Data Spaces view, 88
data synchronization . See

synchronizing
data-tier applications (DACs),

43, 194, 197–198, 199
data types

check constraints,
418–420

columns, 361
dates, characters, and

binary data, 374–376
fields, 376–377
identity columns, 382
money, 372
native, 371–373
numeric, 372–373
as objects, 243

pointers to objects, 354
precision and scale, 371
properties, 379
script usage, 635
spatial, 373
transactional replica-

tion, 488
user-defined, 377–379

data validation failures, 482
data warehouses, 195, 200,

544–546
database encryption keys

(DEKs), 288–290
Database Engine, 20

associating policies
with, 181

configuring, 49–50
connecting to, 124
core database, 1
encryption and, 290
full-text search, 8
importing policies,

171–172
initializing, 64
installing services, 45
instances, 41–42
managing access, 58–60
object values and limits,

235–237
replication, 8
script compatibility, 635
server groups, 127
services, 1, 8, 45
SQL Server Agent ser-

vice, 613
startup parameters,

145–148
system stored proce-

dures, 95–96
Tuning Advisor, 15, 20,

398, 411–415
Database Engine Services,

1, 8, 45
Database Engine Tuning

 Advisor, 15, 20, 398,
411–415

Database Mail
configuring, 604,

607–612
enabling, 58
SQL Server Agent and,

610, 614
stored procedures,

96–97
Database Mail Configuration

Wizard, 607–610
Database Maintenance Plan

stored procedures, 97
Database Maintenance Plan

Utility, 19
Database Management

Plans, 604

database mirroring, 37
vs . backup and recov-

ery, 559
catalog views, 88
components of,

668–670
configuring, 670–675
failovers, 678–680
file streaming and, 71
linking servers, 472
log shipping and, 604,

681
mirror servers, 37, 472,

562, 668
monitoring, 523,

675–678, 676
pausing or stopping,

675
Performance Monitor,

676
principal servers, 668
quorum states, 677–678
removing, 680
standby servers, 562
synchronous or asyn-

chronous, 669
troubleshooting,

676–677
views, 88
witness servers, 668

Database Mirroring Monitor,
523, 676

Database Mirroring view, 88
database object owners,

305, 347
database owner role . See

dbo roles and users
Database Properties dialog

box, 257–261
database roles, 292–294,

314–316
database scope, 293–294
databases . See	also specific	

types	of	databases	(master,	
msdb,	etc.)

access, 124, 125–126,
329–336

adding, deleting,
or manipulating,
275–280

administration, 329–336
altering, 251–270
attaching or detaching,

277–280
auto-growing, 166,

247–248, 270
automatic options,

257–259
backing up . See backing

up and backup sets
basics of administering,

238–245

689

detaching databases

collation, 249
compressing, 271–275
configuration options,

101
copying and moving,

277–286, 633–636
creating, 245–251
cross-database chain-

ing, 266–267
database state, 264–265
defragmenting, 170,

645
diagrams of, 243
dropping or deleting,

276–277
encryption, 288–290
expanding, 270–271
file size, 270–275
filegroup errors, 288
files, 233–238
indexes . See indexes
integrity checks,

648–652
large, 564–565
limits, 233
log shipping, 653–655
logs, 233–238, 270–275
maintenance, 641–652
management data

warehouses, 195, 200,
544–546

Management Studio,
124, 125–126,
239–240, 251–252

mirroring, 668–680
modifying, 251–252
object management,

242–245
object values and limits,

235–237
online, offline, or

emergency modes,
94, 266

overwriting, 588
permissions, 307–308,

336–345
planning recovery,

557–566
policy categories, 163
primary data files, 234
properties list, 241
recovering, 583–601
renaming, 275–276
roles, 292, 293, 294,

314–316
samples, 241–242
schemas . See schemas
scope, 293–294
secondary data files,

234, 287
as securable, 294

security levels, 292–293
SET commands,

269–270
shrinking, 247–248,

270–275
single-user mode, 605
size, 270–275
states, 585, 590
system databases,

234–235, 241–242
system tables, 92–93
system views, 92–93
tables . See tables
taking offline, 94
templates, 288
transaction errors, 288
transaction logs,

233–238
T-SQL viewing, 240–241
tuning, 15, 20, 398,

411–415
viewing, 239–241
views . See views
working copies of, 593

Databases and Files view, 87
dates, 222, 224, 374, 454,

588, 629
DATs (digital audio tape

drives), 567
day formats, 222
DBCC commands, 524,

648–652
DB-Library, 226–227
dbo-only databases, 585
dbo roles and users, 305

authentication modes,
302

db_ roles, 313–316
implied permissions,

312
object owners, 305, 347
policies, 169
statement permissions,

311
dbo schema, 188, 347
DCM (Differential Changed

Map), 355
DDL (data definition lan-

guage), 91, 468
deadlocks, 157–158, 167, 546
debug dump files, 431
debugging traces, 554
decimal data types, 372
declarative ordering, 484
dedicated administrator

connections, 37–39, 76–77
defaults as objects, 242
defragmenting databases,

170, 645
DEKs (database encryption

keys), 288–290

deleting
alerts, 618–619
columns, 370
conditions, 180
databases, 276–277 . See	

also specific	kinds	of	
databases	(master,	
msdb,	etc.)

groups, 129
indexes, 410–411
instances, 228
job definitions, 631
job schedules, 628
jobs, 631
linked servers, 476
log shipping configura-

tions, 668
logins, 303, 325
maintenance plans, 648
mirroring configura-

tions, 680
objects with scripts, 635
operators, 620
policies, 183
publications, 512
roles, 334
rows, 418
schemas, 353
server registration, 137
SQL Server 2000 tables,

656–657
startup parameters, 146
subordinate servers/

groups, 175
subscriptions, 518
tables, 369–370
user-defined data col-

lectors, 539
users, 334

delimited files, 442
deployment

access, 37–39
availability, 36–37
configuration, 39–40
connectivity, 37–39
data-tier applications,

197–198
integration roles, 27–33
performance and,

33–34
planning, 33–40
scalability, 36–37
security, 39–40
SQL Server Setup, 40–55
virtualized, 41–42

descriptive headers, 634
destinations, 435–443,

447–450, 596 . See	also
data providers; replication

detaching databases,
277–280

690

Developer edition

Developer edition (SQL
Server), 5, 206–207

developer roles, 331–333
devices . See disk drives;

hardware
differential backups, 559,

576, 578, 584, 588
Differential Changed Map

(DCM), 355
digital audio tape drives, 567
Digital Linear Tape (DLT),

567
directories, 50, 51, 73–74,

194
disaster recovery . See

recovery
disconnecting

from control points, 197
from servers, 136

disk-based backup systems,
567

Disk Defragmenter tool, 170
disk drives

assessing needs, 558,
566–568

backup devices, 234,
567, 570–572

disk space require-
ments, 47

malfunctioning, 170
RAID, 4, 34–36, 558,

567–568
SQL Server require-

ments, 4
utility control points

and, 195
disk I/O errors, 268–269
disk mirroring, 4, 240, 277
disk space

compression, 425–428
log shipping settings,

662, 665
monitoring, 524
tuning advice, 414

disk striping, 4
diskadmin role, 313–314
distributed data, types, 463
distributed partition views,

387
distributed queries, 97,

464–466, 550
Distributed Transaction

Coordinator, 9
configuring, 142–143
linked servers, 468
MS DTC service, 467
replication and, 485
running, 468
stored procedures and

queries, 220

distributed transactions, 463,
466–468, 471

distributing loads, 287
Distribution Agent, 482, 513,

515, 516, 517
Distribution Clean Up job,

482
distribution databases, 242,

481, 492, 495–497, 499,
563, 564, 570

distributors, 481
backing up, 563
creating, 490–494
deleting databases, 499
disabling publishing,

499
distribution databases,

497
enabling publishers,

497–498
planning architecture,

486
properties, 497
publication databases,

498
retention settings, 497
snapshots, 493
updating, 495–496

DLTs (Digital Linear Tapes),
567

DML (data manipulation
language), 384, 468

documenting policies, 182
domain accounts, 10–11, 48,

69, 302, 673
domain logins, 293, 303
double quote delimiters, 442
driver error messages, 170
dropping

databases, 276–277
schemas, 353

DSNs (data source names),
436

dta .exe (Database Tuning
Advisor), 15, 20, 398,
411–415

DTC . See Distributed Trans-
action Coordinator

dtexec .exe (execution pack-
age utility), 20, 431, 432

Dtexecui utility, 431
DTS 2000, 27–28, 432
DTS 2000 Package Migration

Wizard, 28
DTS Import/Export Wizard .

See SQL Server Import
And Export Wizard

DTS services, 430 . See	also
SQL Server Integration
Services (SSIS)

dtutil .exe, 21

dump directories, 73–74
dump files, 431
duplicate keys, 404, 416
duty schedules, 620
dynamic configuration set-

tings, 111
dynamic lock policies, 168
dynamic management view,

92–93
dynamic memory allocation,

203, 205
dynamic TCP/IP configura-

tion, 80–81

E
EAL4+ requirements,

202–203
editing . See modifying
editions of SQL Server

Compact edition, 7,
127, 505

Developer edition, 5,
206–207

Enterprise edition, 6,
206–207

Express edition, 7
localized versions, 222
R1 and R2 releases, 5,

6–7, 195, 198, 367,
633–636

R2 Datacenter, 5, 6–7
R2 Parallel Data Ware-

house, 5, 7
recovery and, 584
script compatibility, 635
Standard edition, 5–6,

206–207
upgrading, 54
viewing edition infor-

mation, 194
Web edition, 7
Workgroup edition, 5

effective permissions,
297–301

effective policies, 163
EFS (Encrypting File System),

39
e-mail

accounts, 606, 611–612
alerts, 615–619
Database Mail, 58,

96–97, 606–612
fail-safe operators and,

621
job notifications,

630–631
mail host servers, 604,

606–612
SQL Mail, 60, 99, 614

691

extraction, transformation, and loading (ETL) platform

SQL Server Agent pro-
file, 606, 614

stored procedures,
96–97, 99

emergency mode, 266, 585
Encrypting File System

(EFS), 39
encryption

available types of, 39
catalog views, 90
configuring, 288–290
database mirroring, 671
forcing, 81
packages, 451
policies, 165
transparent, 120

endpoints
catalog views, 88
database mirroring, 671,

672, 673
permissions, 308
as securable, 294
status of, 59

Endpoints view, 88
enforcing

passwords, 169
policies, 184–185

enlisting target servers, 640
Enterprise edition (SQL

Server), 6, 206–207, 659,
676

enterprise management
centralized servers,

172–175
Management Studio,

123–127
monitoring activity,

150–159
MSDTC, 142–143
policies, 171–189
server groups, 127–130
server management,

130–137
SQL Server Agent, 142
SQL Server Startup,

143–150
Windows PowerShell,

137–141
Enterprise Manager . See

SQL Server Management
Studio

erasing backups, 575
error logs

as monitoring tool, 524
startup parameters,

147, 148
error numbers, 529, 617
error state numbers, 529
errors and error messages

alerts, 615–619

during backups, 575
catalog views, 88
components of mes-

sages, 529
concurrent connections,

217
critical and noncriti-

cal, 531
database mirroring, 676
disk I/O errors, 268–269
Error 824, 166
error reporting, 73–74
“filegroup is full” error,

288
list of, 170
operators for indexes,

398
packet errors, 525
policy-generated, 170
read/write errors, 525
report settings, 52–53
script execution, 634
studying before recov-

ery, 585
viewing, 529

eSATA drives, 567
ETL platforms, 27–28, 429
evaluation expressions,

178–180
evaluation modes (policies),

162–163, 182, 185–188
event logs

configuring, 533
database mirroring

 issues, 676
list of messages, 170
monitoring events,

528–532
as monitoring tool,

523, 524
policy compliance

records, 188
policy-generated mes-

sages, 170
recycling, 534
viewing, 532–535

Event Viewer, 523, 530–532
EventId messages, 170
events

alerts, 616
duration, 547
error message 825, 170
error message 833, 170
event classes, 549, 552
event subclasses,

549–550
forwarding, 637–638
job notifications,

630–631

recording with traces,
548–550

replaying order of, 554
system event messages

list, 170
traceable, 541, 546
tracing, 539, 549
types of, 531

Excel, 430, 433, 437, 473
Execute Package Utility, 431
executing packages, 431,

450–453
existing backup sets,

576–577
existing media sets, 578
expanding databases,

166, 247–248, 270–271,
285–286

expiration intervals, 574,
576, 588

expired password settings,
169

expired subscriptions, 482,
513

exporting compliance
results, 187

exporting data
bulk copy utility (BCP),

453–461
BULK INSERT command,

461–462
Import And Export Wiz-

ard . See SQL Server
Import And Export
Wizard

SSIS and, 429–434
exporting object states, 177
exporting policies, 164,

171–172
exporting registration detail,

132–136
Express edition (SQL Server),

7
extended properties, 88,

240, 402, 481, 635
extended stored procedures,

97, 243
extensibility of backup

media, 566
extents, 355–356, 357
external access options,

266–267
external processes, 434
extracting

data, 430
data-tier applications,

197–198
extraction, transformation,

and loading (ETL) plat-
form, 27–28, 429

692

facets

F
facets, 161, 163, 176–180
fail-safe operators, 620–621
failed jobs, 630–631
failover clustering, 72, 595
failover methods, 484
failovers

database mirroring,
669, 674

forcing, 678–680
mirroring states and,

677
recovery, 678–680
replication methods,

484
Fiber Channel (FC), 4
fibers, 214–215
fields, 376–377, 459
file-based data connections,

437
file I/O streaming, 72–73
file size and space

Auto Shrink option, 258
database assignments,

247
displaying utilization,

199
expanding, 234
limitations, 236
mail messages, 609
unused space, 272, 274

file streaming, 50, 70–73,
221–222, 592

file systems, 473
filegroups

backups, 560, 579,
591–593

database assignments,
247

DBCC commands, 652
encryption, 290
filegroup is full error,

288
FILESTREAM filegroups,

71
partition schemes, 422
restoring, 591–593,

597–598
views, 88, 239

files
attachments (mail), 610
autogrowing, 166
database files, 233–238
encryption, 290
file backups, 560, 579,

591–593
location policies, 165
restoring, 591–593,

597–598

size . See file size and
space

streaming, 50, 70–73,
221–222

viewing, 239
Filestream Data, 592
FILESTREAM filegroups, 71
fill factor, 225–226, 401, 645
filtered application logs,

531–532
filtered indexes, 396,

397–398
filtered tables, 502–503,

506–507, 509
filtered trace information,

550
fixed-length fields, 376–377
fixed-length rows, 356
fixed memory configura-

tion, 206
fixed roles, 314–316
fixed-point numeric literals,

262
flat files, 440–443
floating data types, 372
floating point numeric liter-

als, 262
flushing cache, 227
forced parameterization,

261–263
forcing service to failover,

678–680
foreign keys, 235, 236, 354,

417–418, 635
formats, text file, 441
formatting data, 418–420,

447–450
formulas, 362
forwarding notifications,

637–638
fragmentation, 170, 402, 645
free space, 273, 274
FTP snapshots, 509
full backups, 559, 576, 578,

584, 588, 601–602
full logging, 267
full partitioning, 413
full quorum relationships,

678
full recovery, 561, 653, 655
full-text catalogs

detaching databases
and, 278

moving, 285
permissions, 308
reattaching databases,

279
as securable, 294
storing, 234

full-text indexes, 71, 97, 234,
235, 236, 560, 635

full-text search, 8, 97
full-text stoplists, 244–245
functions

monitoring functions,
524–525

as objects, 243
partition functions,

421–422
permissions, 295–297
as securable, 294

G
GAM (Global Allocation

Map), 355
General Extended stored

procedures, 97
geographic data types, 373,

396
geographic location of serv-

ers, 654
geographic server groups,

127
geometric data types, 373,

396
Global Allocation Map

(GAM), 355
global temporary tables,

358–359
globally unique column

IDs, 362
globally unique identifiers

(GUIDs), 373, 381–383
grantable permissions,

297–298
granular permissions, 351
graphical administration

tools, 12–15
group accounts, 301–302
Group Policy, 10, 39
groups

accounts, 301–302
authentication, 301–302
policy categories,

183–185
schema ownership and,

348
security levels, 293
as security principals,

292
server groups, 127–130
subordinate servers,

174–175
user groups, 65–67

guest accounts, 167, 302,
304

GUID data types, 373,
381–383

693

instances

H
hard disks . See disk drives
hard page fault errors, 170
hardware

backup devices, 234,
570–572

backup needs, 558,
566–568

driver error messages,
170

error messages, 170
malfunctioning, 170
monitoring, 522
performance, 2–5,

33–34
requirements, 2–5
secondary servers, 654
temperature, 34

hardware RAID, 34–36
heaps, 425, 427
help files for policies, 182
high-performance modes,

679
high-risk attachments, 610
high-safety modes, 679
history

backups, 588
cleaning up, 482, 645
jobs, 631
log shipping, 664–665
maintenance, 647–648
maintenance plan tasks,

642
hot standby servers, 562
hot-add functionality, 40
hot-add memory, 147, 207
hours, recovering up to, 569
HTTP services, 62
HTTPS protocol, 141

I
IAM (Index Allocation Map),

355–356
IBM DB2 databases, 473
IDBSchemaRowset interface,

466
identifier columns, 361,

416–417
identifiers, 236, 260, 348 .

See	also globally unique
identifiers

identity columns, 382, 502,
506

identity increments, 361
identity seeds, 361, 383
identity values, 381–383, 651
idle time, 524, 525, 628
IIS servers, 509

image columns, 489
image data types, 375, 394
impersonation, 474, 507–508
implied permissions, 312
Import And Export Data

Wizard, 15
importing data, 429–434,

453–462 . See	also SQL
Server Import And Export
Wizard

importing policies, 164,
171–172

importing registrations,
132–136

incremental backups, 559
Index Allocation Map (IAM),

355–356
Index data pages, 356
index fill factor, 225–226,

401
index fragmentation data,

402
index ID values, 394
index keys, 235
index locks, 395, 401
index pages, 394
indexed views, 29, 243,

387–388, 425
indexes, 353–354, 394–396

compression, 425–428
computed columns/

views, 399–400
creating, 402–407
deleting, 410–411
fill factor, 225–226, 401
index locks, 395
index pages, 394
maintenance plan tasks,

643
memory allocation, 208
monitoring, 524
naming, 410–411
as objects, 242
parallelism, 401
partitioned, 421–425
performance and, 395
properties, 400–401,

402, 410
rebuilding, 401, 411,

643, 645
recommendations,

414–415
recovering, 591
reorganizing, 411, 643,

645
replicating, 481
script usage, 635
selecting columns,

398–399, 402
statistics, 401

storage, 402
tree structure, 394–395
Tuning Advisor, 411–415
types of, 395–396
unique indexes, 416

information events, 531
Information Schema views,

86
inheriting permissions, 292
initializing

initialization scripts,
25–26

log shipping servers,
661

reinitializing subscrip-
tions, 519–520

input packets, 525
input/output statistics, 525
installation

adding components, 53
Installation Wizard, 42
instance features, 8
new server instances,

42–53
PowerShell tools, 140
repairing, 54
shared features, 8
Windows installer, 7–8

Installation Wizard, 42
instances

adding, 53
applying policies to, 164
associating policies

with, 181
catalog views, 87
central management

servers, 173
collation, 230–231
configuration options,

101
connecting to, 124–125
creating new, 41–42
default, 42
displaying for backups,

588
distributing workloads,

480
enrolling in control

points, 195, 197
installing instance

features, 8
limitations, 236
managed, 195, 199
named or default, 46
permissions, 295–297
recovering, 229–230
repairing, 54
as securable, 294
SQL Server Agent ser-

vice, 613

694

integer data types

instances, continued
SQL Server Setup, 42–53
startup parameters, 148
system stored proce-

dures, 95
uninstalling, 54–55

integer data types, 372
integer literals, 262
integration roles, 27–33
Integration Services . See	

SQL Server Integration
Services (SSIS)

Integration Services
 Designer, 431

integrity checks, 642,
644–645, 648–652

Internet access to snapshots,
509

invalidating log sequences,
582

I/O affinity, 210, 211
I/O processing time, 525
I/O request policy messages,

170
I/O subsystems, 33–34,

34–36
IPv4 and IPv6 addresses, 80
ISQL (SQLCMD), 15–18, 20

J
Jet databases, 472
Job Activity Monitor, 523
job categories, 623, 631–632
job definitions, 622–623, 631
job shipping, 595–596
jobs

alerts, 629–630
categories, 623,

631–632
central administration,

637–638
configuring, 604
copying, 636–637
creating, 621–622
daily, weekly, or

monthly, 629
deleting, 631
deleting schedules, 628
disabling or enabling,

631
execution logs, 626
history, 631
Job Activity Monitor,

523
job definitions,

622–623, 631
log shipping, 654–655,

664–665

maintenance plans,
642, 645

monitoring, 526
notification messages,

630–631
one-time, 629
recurring, 629
replication, 481–483
responding to alerts,

617–618
schedules, 627–629,

638–640
scripts, 631
SQL Server Agent, 142,

612, 613
starting, 628, 631
steps to execute,

623–627
stopping, 631
successful, failed, or

completed, 630–631
joined tables, 506
joining data in views,

386–387

K
keys, 243 . See	also specific	

types	of	keys	(foreign,	pri-
mary,	etc.)

killing processes, 159

L
language settings, 194, 222
large object data types,

356, 394
lazy schema validation, 476
legacy data, migrating,

431–432
license terms, 44
lifetime settings (mail), 610
lightweight pooling, 168,

215
limitations, databases,

235–237
Linear Tape Open (LTO), 567
linked objects, 61
linked servers

adding, 469–473
collation, 476
configuring, 475–476
deleting, 476
distributed queries,

464–466
distributed transactions,

463, 466–468
DTC service, 468
Linked Servers view, 88

loopback linked servers,
464

OLE DB parameters,
472–473

security, 473–475
Linked Servers view, 88
listen ports, 77, 78, 79, 671,

672, 673
literals, 262
loading process (databases),

585
local Administrators group

account, 301
local Administrator user

 account, 301
local connections, 76–77
local logins, 293, 474
local partitioned views, 387
local server instances, 61
local service accounts, 11
local system accounts,

10–11, 48
localized versions of SQL

Server, 222
locks

dynamic lock policies,
168

index locks, 395, 401
lock escalation, 364
lock-related counters,

535
monitoring, 524
replication updates, 487
server logins, 324–325
tempdb databases, 286
troubleshooting,

157–158
types of, 153–156

Log data, 592
log files . See logs
Log Reader Agent, 482,

503–504, 510
log sequence numbers

(LSNs), 588
log shipping

alerts, 658–659
vs . backup and recov-

ery, 559
backup intervals, 664
components in,

653–655
configuring, 604
database mirroring and,

37, 681
disabling, 668
disk space issues, 665
failing over, 665–668
file streaming and, 71
in Management Studio,

240

695

master servers

monitor servers,
659–660

monitoring activity,
664–665

performance and, 566
permissions issues, 665
preparations for,

655–656
primary databases,

657–660
recovery, 665–668
removing, 668
secondary databases,

661–663
standby servers, 562
system stored proce-

dures, 98
upgrading SQL Server

2000, 656–657
Log Shipping Agent, 20
logical data errors, 677
logins

access control lists
(ACLs), 511

assigning roles by,
326–329

authentication, 10
authentication modes,

301–302
BCP import and export,

457
controlling access,

329–336
creating, 319–321
database mirroring

and, 669
editing, 317–318,

321–322
enabling, disabling, or

unlocking, 324–325
GRANT or DENY access,

323–324
linked servers, 473–475
login auditing, 201–203
management data

warehouses, 545
managing for servers,

317–326
object permissions,

342–344
passwords, 326
permissions, 309
policy settings, 168
removing, 325
replication agents,

503–504, 510
resolving after failover,

667
script usage, 635
as securable, 294
security levels, 293

SMTP servers, 606
special-purpose,

302–305
logs

audit log files, 202
backup folders (log

shipping), 654
configuring number

of, 533
creating new, 279–280
Database Mail, 610
expanding size, 270–271
invalidating log

 sequences, 582
job execution, 626
locations, 540
log marks, 568
log mirroring, 566
managing size, 270–275
monitoring, 528–532
as monitoring tool, 524
performance improve-

ments, 287
performance logging,

538–542
policies, 165
Reader Agent, 482,

503–504, 510
reattaching databases,

278–280
recovery strategies, 585
recycling, 534
reports, 542–543
restoring, 600
size, 540
supplemental logging,

269
transaction log recov-

ery, 582
transaction logs,

233–238
utility control points

and, 195
viewing, 530–532,

532–535
lookup caches, 28
Lookup transformation, 432
loopback linked servers, 464
LSNs (log sequence num-

bers), 588
LTO (Linear Tape Open), 567

M
mail . See e-mail
maintenance, 604–605

checklists, 641–642
integrity checks,

648–652
maintenance plans,

642–648

reports, 646, 647–648
scheduling jobs,

621–632
server-to-server tasks,

632–637
single-user mode, 605
SQL Server Agent,

612–615
system stored proce-

dures, 97
Maintenance Plan Package

Designer, 642
Maintenance Plan Wizard,

642, 643–647
maintenance plans, 642–648
Make TSX Wizard, 640
managed code vs . T-SQL,

28–29
managed instances, 199
management . See	also

 administration; databases
command-line tools,

148–149
Management Studio,

124
Management Tools, 45
policy-based, 161–164
server activity, 150–159
Windows PowerShell,

137–141
management data ware-

houses, 544–546
Management Tools, 45
mandating policies, 183–185
manual failovers, 679
MAPI (Messaging Appli-

cation Programming
Interface), 614

mapping
columns, 447–450
partitions, 424

MARS (multiple active result
sets), 37–39, 102

master database, 242
backup and recovery,

558, 568, 570
compatibility levels, 108
configuration options,

106–107
rebuilding, 230–231
restoring, 601–602
startup parameters, 147
symmetric key policies,

169
system tables, 92–93
system views, 91–93

master keys, 289–290, 672
Master Server Operator, 639
Master Server Wizard,

639–640
master servers, 638–640

696

maximum free space

maximum free space, 273
maximum memory alloca-

tion, 203, 205
maximum user connections,

216–217
MDAC (Microsoft Data

 Access Components), 42
MDX queries, 31
mean time to failure (MTTF),

34
media and media sets

backup needs, 566–568
creating new, 577
expiration, 574
restoring from, 587
rotation schedules, 568

memory
AWE memory support,

206–207
configuring, 203–209
dynamic, 203, 205
fixed, 206
hardware require-

ments, 3
hot-add memory, 40,

207
indexing and, 208
monitoring, 522
physical memory, 205
query execution,

208–209
Merge Agent, 482, 489–490,

513, 515, 516, 517
merge publications,

504–508, 519
merge replication, 484,

489–490, 563–564
merging tables, 354
message types, 294, 309
messages, 88, 163, 170 .

See	also errors and error
messages

Messages view, 88
Messaging Application

Programming Interface
(MAPI), 614

messaging services, 2
Microsoft Access, 430, 433,

437, 472
Microsoft Cluster Service,

595
Microsoft Data Access Com-

ponents (MDAC), 42
Microsoft Data Mining

Services, 433, 438
Microsoft Distributed Trans-

action Coordinator . See
Distributed Transaction
Coordinator

Microsoft Excel, 430, 433,
437, 473

Microsoft OLE DB Provider
for SQL Server, 440

Microsoft SQL Server . See
SQL Server 2008

Microsoft SQL Server
Integration Services . See
SQL Server Integration
Services (SSIS)

Microsoft Visual Basic, 433
Microsoft Visual Studio 2010,

197, 198
Microsoft Visual Studio Tools

for Applications (VSTA),
432

Microsoft Windows . See
Windows

migrating
data, 274
legacy data, 431–432
scripts, 432
SQL Server 2000 log

shipping, 656–657
minimal logging, 30
minimum memory alloca-

tion, 203, 205
minutes, recovering up to,

569
mirror endpoints, 671
mirror security, 671
mirror servers, 37, 472, 562,

668, 677–678 . See	also
database mirroring

mirroring databases . See
database mirroring

mixed extents, 357
mixed security mode, 302
Mobile edition (SQL Server),

505
model database, 242

backing up, 570
compatibility levels, 108
configuration options,

106–107
as prototype, 245
restoring, 230–231
symmetric key policies,

169
using as templates, 288

modifying
columns, 370
Database Mail param-

eters, 612
database options,

251–257
job schedules, 628
job steps, 623–627
logins, 317–318,

321–322
maintenance plans, 648
policies, 183
schemas, 350–351

server groups, 129–130
server registration

details, 136
tables, 364–367, 423
traces, 551
views, 392–393

money-related data, 262,
372, 454

monitor servers, 654, 656,
668

monitoring
built-in functions for,

524–525
database mirroring,

675–678
deadlocks, 167
event log information,

528–532
log shipping, 664–665
management data

warehouses, 544–546
performance, 535–544
performance metrics,

522
reasons for, 521–522
Replication Monitor,

525–535
reports, 542–543
resource waits and

blocks, 153–156
server activity, 150–159
SQL Server Profiler,

546–555
tools and resources,

523–525
user commands, 159
witness servers, 668

month formats, 222
monthly jobs, 629
monthly maintenance tasks,

641
moving

databases, 277–280,
280–285

objects in schemas,
351–352

server groups, 129–130
servers to new groups,

136–137
subordinate servers/

groups, 175
tempdb database,

285–286
msdb database, 242

backing up, 570
configuring as mail

host, 614
policy data, 164, 188
restoring, 230–231
special roles in, 316

697

operators (individuals)

symmetric key policies,
169

MTTF (mean time to failure),
34

multidimensional databases,
30–32

multinode server clusters, 42
multiple active result sets,

37–39, 102
multiprocessors, 4
multiserver administration,

637–640
multiserver tasks, 632–637
multitasking, 210, 214–215
multiuser databases, 265
multiuser mode, 605

N
N/A value, 380
named instances, 46
Named Pipes protocol,

76–78, 82–83
names

collations, 249
columns, 361
control points, 196
databases, 246, 275–276
groups, 127
indexes, 410–411
packages, 452
registered servers, 132
schemas, 348, 349
script usage, 634
tables, 358–359

namespaces, 348
native client configuration,

42, 81
native data types, 371–373,

374–376
nested triggers, 162, 189,

223, 236
 .NET Framework, 42, 61,

430, 436
Net Send alerts, 615–619,

621, 630–631
network configuration

Named Pipes clients,
82–83

Named Pipes protocol,
77–78

native clients, 81–82
Network Configuration

node, 75
Shared Memory clients,

82
Shared Memory proto-

col, 77
TCP/IP clients, 83–84
TCP/IP protocol, 78–79

network interface cards
(NICs), 212

network packets, 169
network service accounts, 11
network shares, 658
network traffic, monitor-

ing, 522
new databases, 245–249
New Subscription Wizard,

513–517
NICs (network interface

cards), 212
nodes in indexes, 394–395
nonaligned partitioned

indexes, 208
nonclustered indexes,

395–399, 425, 426–427
noncritical errors, 531
nonindexed views, 388
nonlogged operations, 582
nonoperational databases,

590
nonpartitioned tables, 423
non–SQL Server subscrip-

tions, 510
non-Unicode string literals,

262
not null constraints, 415, 420
“not recovered” databases,

585
notification messages,

630–631, 643 . See	also
alerts; errors and error
messages

ntext data types, 235, 355,
356, 381, 394, 421, 489

nulls, 361, 379–381, 415, 420 .
See	also ANSI nulls

numeric data, 372–373, 419
numeric round-abort

 options, 219, 260, 400
nvarchar(max) data type,

354, 356, 375, 488
NWLink IPX/SPX, 77

O
Object Explorer view, 12–13,

171–189, 193
OBJECT plan guide, 244
objects

copying, 633–636
database object owners,

305
monitoring object locks,

524
moving in schemas,

351–352
permissions, 306–311,

342–344
replicating, 481

schema objects, 300,
347, 481

tables as, 354
types of, 242–245
values and limits,

235–237
viewing, 12–13, 88–89,

171–189, 193
Objects view, 88–89
ODBC catalog functions, 86
ODBC connection states, 217
ODBC data sources, 472–473
ODBC drivers, 436
ODBC errors, 529
ODBC functions, 95
off-site backups, 559
off-duty operators, 620–621
offline databases, 266, 585
OLAP (online analytical pro-

cessing), 2, 30–32, 438
OLE Automation, 59, 98
OLE clients, 224
OLE DB connections, 217,

438, 440, 465–466
OLE DB errors, 529
OLE DB providers, 463, 470,

472–473
OLE DB schema rowsets,

86–87
OLE DB verification, 17
On Change modes, 162–163,

188, 189
On Demand mode, 162–163,

188
On Schedule mode, 162–163,

188
on-demand maintenance

plans, 643
on-demand replication

updates, 516
online analytical processing

(OLAP), 2, 30–32, 438
online databases, 266
online index recommenda-

tions, 414
opening databases, 165
operating system com-

mands, 625
operating system informa-

tion, 194
operators (arithmetic), 262
operators (individuals)

automation, 619–621
configuring, 604
copying, 636–637
deleting, 620
disabling notifications,

620
fail-safe, 620–621
policy conditions,

178–180

698

optimization

operators (individuals),
continued

registering, 619
responding to alerts,

617–618
SQL Server Agent, 612,

613
optimization, 411–415, 604
Oracle databases

connections, 436, 438,
439

importing data to or
from, 430, 433

linked server param-
eters, 472

monitoring, 528
replication connections,

492
order of events, 554
orphaned connections, 669
OSQL tool (SQLCMD), 15–18,

20
“out of locks” errors, 168
output packets, 525
overflow errors, 260
overwriting databases, 588
ownership

database objects, 305
ownership chaining,

266–267, 278
permissions, 297

P
Package Configuration

Wizard, 431
Package Migration Wizard,

432
packages, 433–434

authentication, 452
building queries,

445–447
copying tables or views,

442–445
creating, 434–435
data formatting,

447–450
job steps, 625
managing, 431
migrating, 431–432
Package Configuration

Wizard, 431
Package Migration

Wizard, 432
saving and executing,

450–453
sources and destina-

tions, 435–443
packet errors, 525
packet monitoring, 525
page faults per second, 204

Page Free Space (PFS), 356
page verification, 166,

268–269
pagers, 615–619, 620,

630–631
pages, 166, 204, 268–269,

354, 426–427, 650–651
parallel backup and restore,

564–565
parallel I/O, 564–565
parallel processing, 210–214,

483, 488
parallel striped backups,

577–578
parallelism, 395, 401
parameters

advanced configuration,
113–115

BCP, 455, 458
changing settings, 116
current settings,

115–116
Database Mail, 609–610
forced parameteriza-

tion, 261–263
Invoke-Sqlcmd cmdlet,

138
limitations, 237
OLE DB providers,

472–473
simple parameteriza-

tion, 261–263
standard configuration,

112–113
startup, 145–148

partial backups, 560
partial differential backups,

560
partial restores, 594, 599
partial updates, 488
Partition Function view, 89
partition switching, 358
partition-aligned indexed

views, 29
partition-aligned structures,

413
partitioned indexes, 208, 423
partitioned tables, 29, 208,

423
partitioned views, 243,

387–388
partitions

catalog views, 89
compression, 425–428
creating, 423–424
indexes and, 395
mapping, 424
partition functions,

421–422
partition schemes,

422–423

partition switching, 358
tables, 357–358
types of, 413
viewing and querying,

424–425
partner-to-partner relation-

ships, 678
passwords, 10, 39, 169, 326,

451, 672
paths, 139–140, 147, 658
pausing

database mirroring, 675
traces, 551

PDS (Physical Design Struc-
tures), 413

peer-to-peer replication
model, 486

performance . See	also Per-
formance Monitor

alerts, 543–544,
615–619

baseline metrics, 522
compression and, 228,

566
counters, 535–538
data collector sets,

538–542
fields and, 376–377
filtered indexes and, 396
fixed memory and, 206
hardware architecture

and, 2–5
indexes and, 395
management data

warehouses, 544–546
mirroring models, 669
mirroring monitors, 676
monitoring . See moni-

toring
planning systems,

33–34
query execution,

208–209
replication and, 486,

489
reports, 538–543
secondary data and log

files, 287
SQL Server Profiler,

546–555
tempdb database,

285–286
trace data, 541
Tuning Advisor, 411–415
utility control points,

194–200
Performance Monitor

access, 536
configuration changes,

542
counters, 535–538

699

promoting transactions

current activity, 536
data collector sets,

538–542
database mirroring, 676
performance logging,

538–542
reports, 542–543
vs . stored procedures,

522
Performance Monitor Users

group, 536
permissions

BCP, 457–458
built-in and effective,

297–310
DDL statements,

336–342
external access options,

266–267
GRANT, REVOKE, and

DENY, 336
granular, 351
guests, 167
implied, 312
inheriting through roles,

292
keywords, 295–297
log shipping, 656, 665
object, 306–311,

342–344
policy alerts, 163
policy evaluation and,

186
public server roles, 167
schemas, 350–351
script usage, 635
securable, 295–297
standard database roles,

331–333
startup service

 accounts, 69
statement permissions,

311–312
tables, 367–368
user groups, 65–67
viewing, 240, 297–301
views, 388, 393–394

PFS (Page Free Space), 356
Physical Design Structures

options, 413
physical memory, 205, 206,

207
pipeline parallelism, 28
plan guides, 244–245
planning

backup and recovery,
557–566

deployment, 33–40
log shipping, 655–656
replication system,

485–490

platform information, 194
points in time, restoring

to, 587
points of failure and work,

568, 569
policies and Policy-Based

Management, 39, 161–164
administering, 164–171
alert numbers, 163
categories, 162, 182,

183–185
cmdlets, 24
conditions, 162,

178–180, 182
creating policies,

181–183
documenting, 182
editing, 183
enabling or disabling,

183
evaluation modes,

162–163, 182,
185–188

facets, 161, 176–178
global settings, 199
history, 164, 185,

187–188
identifying for data-

bases, 185
import/export func-

tions, 164, 171–172
list of policies, 164–170
management servers,

164, 172–175
managing access, 58
mandating, 183–185
policy groups, 164
roles, 316
subscribing to, 164
targets, 162, 182
troubleshooting,

188–189
violations, 162

policy groups, 164
pooling threads, 214
PowerShell . See SQL Server

PowerShell; Windows
PowerShell

precision, 361, 371, 450
predefined policies, 164–170
predefined roles, 314–316
prefix compression, 426–427
primary data files, 234, 248,

278–279
primary databases

backing up, 661–663
configuring, 657–660
failing over, 665–668
swapping, 667–668

primary keys, 353
clustered indexes, 396
constraints, 415,

416–417
indexing and, 399
limitations, 235
merge replication, 489
partitioned views, 387
script usage, 635
transactional replica-

tion, 488
unique IDs, 381–383

primary servers (log ship-
ping), 654

primary XML indexes, 397
principal servers, 37, 668,

677–678
priorities, configuring,

214–215
private mail profiles, 606,

611–612
privileged databases, 169
privileges, 11
process accounts, 507, 510,

515
processes

current activity, 523
deadlocks, 157
killing, 159
monitoring, 151–152,

524
policies, 167
SSIS packages and, 434

processing time, 525, 547
processors

affinity, 167, 210, 211
assigning SQL Server

to, 212
configuring, 210–214
determining number

of, 194
displaying utilization,

199
parallel processing, 213
SQL requirements, 3–4

product keys, 44
product names (data provid-

ers), 470
profiler .exe . See SQL Server

Profiler
profiles

mail, 606, 611–612
SQL Server Agent, 614

profiling with stored proce-
dures, 547

programmability, 244
prohibited attachments, 610
projects, viewing, 13
promoting transactions,

471, 476

700

properties

properties
data types, 379
distributors (replica-

tion), 497
evaluating expressions,

178–180
facets, 176–178
indexes, 400–401, 402,

410
list of database proper-

ties, 241
publications, 508–510
publishers, 493
replicating, 481
servers . See Server

Properties dialog box
subscriptions, 518
tables, 367–368
user-defined tables, 385
viewing, 240–241
views, 393–394

protocol encryption, 81
protocols, 82
providers . See data providers
public mail profiles, 606,

611–612
publication databases,

490–494, 498–500, 563,
564, 570

publications, 481
access control lists, 510,

511
creating, 499–500
deleting, 512
merge publications,

504–508
monitoring, 526
properties, 508–510
scripts, 511
snapshot publications,

500–504
subscriptions, 509,

512–520
transactional, 500–504
updating, 508
viewing, 508

published databases, 277
publisher groups, 526–528
publishers, 480

backing up, 563
creating publications,

499–500
disabling publishing,

499
distribution databases

and, 492
enabling and updating,

497–498
groups, 526–528
monitoring, 526–528
planning architecture,

486

properties, 493
publishing subscriber model,

486
pull subscriptions, 509–510,

511, 512
push subscriptions, 512

Q
queries

building, 445–447
configuring execution,

223–224
copying, 445–447
costs of, 213, 223–224
default connections,

217–219
determining types of,

398–399
distributed queries, 463,

464–466
executing, 110–112
job steps, 625
limitations, 236
Management Studio

and, 109–112
MDX queries, 31
memory and, 203,

208–209
minimum size, 209
multiple server queries,

176
parallel processing and,

213
partitioned tables/

indexes, 424–425
plan guides, 244–245
policy conditions,

178–180
Query Designer,

445–447
Query Editor, 13, 605,

632
query governor,

223–224
secondary server pro-

cessing, 654
slow-running, 546
SSIS packages and, 434
star join queries, 31
system stored proce-

dures, 97
templates, 13
time-outs, 471, 476
T-SQL views, 240–241

Query Designer, 445–447
Query Editor, 13, 605, 632
query governor, 223–224
Queue Reader Agent, 482,

503–504, 510

queued updating (replica-
tion), 484

queues, 2, 294, 295–297
quorum states, 677–678
quotation mark delimiters,

442
quoted identifiers

ANSI compliance, 260
vs . bracketed, 138
SET options, 102, 104,

106, 107, 118

R
R1 and R2 releases

control points and, 195
copying objects,

633–636
extracting applications,

198
R2 Datacenter, 5, 6–7
R2 Parallel Data Ware-

house, 5, 7
table rows and size, 367

RAID
backup needs, 558,

567–568
hardware and software,

34–36
RAID 0, 0 + 1, and 5, 4,

34–36
SQL Server require-

ments, 4
RAM, 3, 194 . See	also

memory
read errors, 170, 525
read-only databases, 121,

167, 264–265, 569, 585,
590

read-only partitioned views,
387

read-write databases,
264–265

reattaching databases,
278–279

rebuilding
indexes, 401, 411, 643,

645
master database,

230–231
recommendations (indexes),

414–415
recovery

automated process, 578
backup strategies,

569–570
Bulk-Logged mode

and, 462
complications in, 583
database corruption,

584–585

701

resources

files and filegroups,
591–593

log shipping, 653, 655,
663, 664

master database,
601–602

mirroring, 653, 674–675,
678–680

mission-critical data-
bases, 558

options, 267–269
parallel backup/restore,

564–565
partial restores, 594
policy settings, 167
problem resolution,

584–585
rebuilding configura-

tion, 228–231
recovery states, 590
restoring from backups,

586–591
restoring to different

locations, 593
secondary data and log

files, 287
SQL Server models,

561–562
standby servers,

594–596
time-outs, 226–227
T-SQL commands,

596–601
undoing recoveries, 590

recovery states, 590
recurring jobs, 629
recursive triggers, 120, 260
recycling logs, 534
Registered Servers view, 13,

127–137, 176
registering

management servers,
173–174

operators, 619
servers, 130–137
subordinate servers,

174–175
registration details, servers,

130–137
registry changes, 542
reinitializing subscriptions,

482, 519–520
related tables, 354
relational data warehousing,

28–30
releases for SQL Server 2008 .

See R1 and R2 releases
remote access, 524, 655
remote collation, 476
remote connections, 76–77,

140, 141, 220, 238

remote distributor model,
486

remote logins, 474
remote procedure calls, 466,

470, 476
remote servers, 88
remote service bindings,

294, 309
remote stored procedures,

463, 466
removable disk drives, 567
removing . See deleting
reorganizing

data pages, 272, 274
indexes, 411, 643, 645

repairing
installations, 54, 649
master database,

230–231
replacing databases, 588
replaying traces, 551–555
replication, 479–480

agents, 481–483, 510,
625

alerts, 615–616
articles, 481
backup plans, 563–564
benefits of, 480
cleanup agents,

482–483
components, 480–481
counters and, 535
Database Engine Ser-

vices, 8
detaching databases

and, 277
distributors, 481,

490–499
encryption and, 290
file streaming and, 71
jobs, 481–483
linked servers and, 463
Management Studio

access, 124
merge replication, 484
models for, 486
monitoring, 19, 518,

524, 525–535
planning system,

485–487
preliminary tasks,

487–490
publication subscrip-

tions, 512–520
publications, 481,

499–508
publishers, 480
recovery process and,

589
snapshots, 483
subscribers, 481
transactional, 483

types of, 483–485
updating options, 484

replication agents, 481–483,
510, 625

Replication Agents Checkup
job, 483

Replication Monitor, 19, 518,
523, 525–528

Replication Monitoring
Refresher job, 483

Replication Services, 242
reply addresses, 608
Report Manager, 2, 62
Report Server, 2
Report Server Web Service,

62
Report Services Configura-

tion Manager, 19
Reporting Services, 2, 9,

32–33
access, 62
configuring instances,

51–52
importing policies,

171–172
initializing, 64
installing, 45
server groups, 127
user group, 67

Reporting Services Key Man-
agement Utility, 19

Reporting Services Utility, 19
reports

data collector reports,
542–543

enabling, 62
error and usage, 52–53,

73–74
formats, 32–33
log shipping activity,

665
maintenance plans,

604, 646
management data

warehouses, 546
performance logging,

538–542
policy compliance

reports, 186
residual information protec-

tion (RIP), 203
Resource Governor, 30, 89
resource managers, 467
Resource process informa-

tion, 157
resources

control points, 194,
199–200

resource health, 196
resource managers, 467
wait times and blocks,

153

702

responding to alerts

responding to alerts,
617–618

restarting services automati-
cally, 615

Restore Database dialog
box, 586–591

restore operations, 664 . See	
also recovery

restoring data . See recovery
result sets, 391
resumable snapshot delivery,

488
retention period, 227, 497,

513, 563, 658, 662
RIP (residual information

protection), 203
roles

access and, 314–316,
329–336

application databases,
333–334

assigning, 326–329
creating, 331–334
deleting, 334
login assignments,

326–329
management data

warehouses, 544
managers, 331–333
msdb database, 316
multiple logins, 330–331
package encryption

and, 451
permissions, 309
primary and secondary

databases, 667–668
removing users from,

329, 334
revoking, 329
schema ownership and,

348
schema security and,

292
security levels, 293
as security principals,

292
server roles, 313–314
standard database,

331–333
rolling back transactions,

234, 467–468
rotation schedules, 568, 576
routes, 294, 310
row compression, 426–427
rows, 353

in data pages, 354
fixed vs . variable length,

356
limitations, 237
row offsets, 354

row-overflow storage,
237–238

size information, 367
text in row option, 356
updating, 418
variable length columns,

354
Rows Data, 592
rowsets, 464
RPCs (remote procedure

calls), 466, 470, 476
rsconfigtoo .exe (Report

Services Configuration
Manager), 19

rskeymgmt .exe (Reporting
Services Key Management
Utility), 19

rules, 312, 420–421 . See	also
check constraints

“running exposed” state, 677

S
sa login, 302, 303
sample databases, 241–242
SATA II, 33
saving

policies, 178
SSIS packages, 450–453
traces, 551

scalability, 36–37
scalable shared databases

(SSDs), 32
Scalar Types view, 89
scale, 361, 371, 450
schedule planning, 559
scheduled duty rosters, 620
scheduled jobs

backups, 569–570, 658
configuring, 604,

627–629
copying, 636–637
masters and targets,

638–640
scheduled maintenance

plans, 643
scheduled performance

counters, 538
scheduled policy evalua-

tions, 187
scheduled replication

 updates, 516
scheduled reports, 62
scheduled rotation, 568
scheduled trace logs, 538
schema objects, 300, 347,

481
schema scope, 293–294
schema-contained objects,

347

schemas
catalog views, 89
creating, 349–350
dropping, 353
identifiers, 348
lazy schema validation,

476
modifying, 350–351
moving objects in,

351–352
object names, 634
permissions, 310
as securable, 294
security and roles, 292
synonyms and, 348
user ownership, 348
views in, 388
Windows PowerShell,

348–349
XML views, 91

Schemas view, 89
schemes, partition, 422–423
scopes, 293–294
Script Wizard, 633–636
scripts

ActiveX job scripts, 625
bulk copy program,

460–461
copying objects,

633–636
cursor options, 263–264
initialization sample,

25–26
jobs, 631
migrating, 432
packages and, 434
PowerShell, 137–141
publications, 511
server-to-server tasks,

632
signature execution

policy, 22
tables, 371
T-SQL job scripts, 625
views, 13–14

SCSI host adapters, 170
SDLT (Super DLT), 567
secondary data files, 234,

248, 278–279, 287
secondary databases (log

shipping), 661–663,
665–668

secondary servers (log ship-
ping), 562, 654, 656

secondary XML indexes, 397
securables, 292–294,

297–311
Secure Sockets Layer (SSL),

10, 608

703

Server-Wide Configuration view

security
account types and, 11,

302–305
auditing levels, 201–203
authentication,

200–201, 301–302
component access,

58–62
database administra-

tion, 329–336
Database Engine, 49–50
database mirroring, 671
encryption types, 39
goals for, 291
linked servers, 473–475
logins, 302–305,

317–326
Management Studio

access, 124
Performance Monitor,

536
permissions . See per-

missions
planning deployments,

39–40
policy execution and,

164
principals, 292–294
replication agents, 510
roles, 292, 312–316,

326–329
schemas in, 292
securables, 292–297
Security view, 90
special-purpose

logins and accounts,
302–305

system stored proce-
dures, 98–99

utility control points
and, 200

viewing objects, 244
security identifiers (SIDs),

292
security principals, 292–294
Security view, 90
self-tuning, 85, 208
sensitive data imports, 451
serialized procedure execu-

tion, 485
server clustering . See Cluster

service; clustering
server groups

adding servers to, 130
creating, 128–129
deleting, 129
editing or moving,

129–130
managing, 127–130
moving servers,

136–137

querying multiple serv-
ers, 176

registration details,
132–136

subordinate groups,
174–175

server logins
assigning roles by,

326–329
controlling access,

329–336
creating, 319–321
editing, 317–318,

321–322
enabling, disabling, or

unlocking, 324–325
GRANT or DENY access,

323–324
passwords, 326
removing, 325
security levels, 293
viewing and editing,

317–318
Server Network Utility . See

SQL Server Configuration
Manager

Server Properties dialog box
Active Directory infor-

mation, 228
authentication and

auditing properties,
200–203

backup compression,
228

connecting to servers,
192–194

current settings, 193
file streaming, 221–222
flushing cache, 227
index fill factor, 225–226
language settings, 222
memory, 203–209
nested triggers, 223
parallel processing,

210–214
query execution,

223–224
remote connections,

220
retention periods, 227
system and server infor-

mation, 194
threading, priorities,

and fibers, 214–215
time-outs, 226–227
user connections,

216–219
utility control points,

194–200
Year 2000 support, 224

server roles, 294, 313–314

server scope, 293–294
server-based connections to

data providers, 440
servers . See	also specific	

types	of	servers	(publish-
ers,	principals,	subscrib-
ers,	etc.)

adding to server
groups, 130

backing up, 572–583
central management,

172–175
central monitor servers,

659–660
centralized notifications

and jobs, 637–640
configuring, 105–106,

191–194
connecting to, 12–13,

136
copying alerts,

 operators, and jobs,
636–637

database mirroring,
668–680

disconnecting from, 136
job scheduling,

638–640
linked servers . See

linked servers
log shipping and,

653–655
Management Studio,

130–137
monitoring activity,

150–159
moving to new groups,

136–137
multiserver administra-

tion, 637–640
permissions, 310
policy categories, 163
PowerShell manage-

ment, 137–141
registration informa-

tion, 130–137
as resource managers,

467
server objects, 124
server scope, 293–294
server-to-server tasks,

632–637
single-user mode,

604–605
viewing information,

194
server-to-server tasks,

632–637
Server-Wide Configuration

view, 91

704

service accounts

service accounts
customizing, 47
database mirroring, 673
log shipping configura-

tion, 655
startup service

 accounts, 69
types of, 10–11
user groups, 65–67

Service Broker, 2, 21, 59, 244,
295–297

Service Broker view, 90
service master keys, 147
services

automatic startup,
143–144

configuring, 62–74
file streaming, 70–73
log shipping configura-

tion, 655
managing, 67–68
permissions, 311
restarting automati-

cally, 615
as securable, 294
startup service

 accounts, 69
Services Manager . See SQL

Server Configuration
Manager

Services utility, 65, 67
SET commands, 217–219,

269–270
SET options, 101, 102–104
severity levels (errors), 529,

617
SGAM (Shared Global

 Allocation Map), 355
shared features, installing, 8
shared folders, 656
Shared Global Allocation

Map (SGAM), 355
Shared Memory protocol,

77, 81–82
SharePoint Server, 32
shrinking databases, 166,

247–248, 258, 271–275,
643, 646

shutdowns, 170, 585
Simple Object Access Proto-

col (SOAP), 59
simple parameterization,

261–263
simple recovery, 268, 561
single quote delimiters, 442
single-user databases, 265,

585
single-user mode, 604–605
size

columns, 361
database files, 166

SMP (symmetric multipro-
cessing), 4, 212

SMTP accounts, 606, 607,
608, 614

Snapshot Agent, 481–482,
487, 503–504, 507, 510,
517

snapshot publications,
500–504, 508

snapshot replication, 483,
487–488

snapshots
detaching databases

and, 277
distributors, 493
filegroups, 71
FTP snapshots, 509
options, 509
transactional replica-

tion, 488–489
Tuning Advisor, 411

SOAP (Simple Object Access
Protocol), 59

software RAID, 34–36
Solutions Explorer view, 13
sort orders, 593
sources . See	also data

providers
data providers, 447–450
data replication . See

replication
database mirroring

servers, 668
job shipping and, 596
log shipping databases,

653–655
mapping columns in,

447–450
product names, 470
restoring databases, 587
SSIS packages, 435–443
standby servers and,

596
sparse columns, 361–362,

380–381
spatial data types, 373
spatial indexes, 396
spatial properties (indexes),

402
sp_configure stored proce-

dures, 101, 111, 217–219,
476, 489

sp_dboption procedure . See
ALTER DATABASE state-
ment

special characters, 349, 358,
442

sp_serveroption procedure,
475–476

sp_spaceused procedure,
367, 524

sp_trace stored procedures,
547

sp_who stored procedures,
523, 524

SQL Active Directory Helper,
9, 63, 66

SQL Diagnostics Utility, 20
SQL Full-Text Filter Daemon

Launcher, 9
SQL Mail, 60, 99, 614 . See	

also Database Mail
SQL Native Client, 57, 440,

464
SQL plan guide, 244
SQL Query Command-Line

Utility (SQLCMD), 15–18,
20

SQL Server 2000, 505,
656–657

SQL Server 2005, 432, 504
SQL Server 2008 . See	also

Compact edition; Devel-
oper edition; Enterprise
edition; Express edition;
Mobile edition; R1 and R2
releases; Standard edition;
Web edition; Workgroup
edition

administrative tools,
12–15

authentication, 110
command-line tools,

16–21
configuring and tun-

ing, 85
data provider connec-

tions, 436
editions of, 5–8
event logs, 528–535
failover clusters, 595
hardware architecture

for, 2–5
importing data to or

from, 430, 433
linked servers, 472
localized versions of,

222
logins, 302, 303
object values and limits,

235–237
recovery models, 561
repairing, 54
replication, 492
security level, 292–293
SSIS package scripts,

434
subscriptions, 504
uninstalling, 54
upgrading, 54
user groups, 66
Windows modifications

and services, 8–11

705

SQL Server Management Studio

SQL Server Agent, 9, 20, 612
alerts, 612, 613,

616–617
configuring, 47, 142,

604, 613–614
creating new logs, 534
distributors, 493
event forwarding,

637–638
event log monitoring,

528–532
initializing, 64
job definitions, 622–623
job histories, 664–665
job monitoring, 526
job scheduling,

638–640
jobs, 612, 613, 631
log shipping functions,

654–655
logs as monitoring tool,

524
mail, 610, 614
Management Studio

access, 124
msdb database, 242
operators, 612, 613,

619–621
policy evaluation jobs,

162, 189
restarting services, 615
system stored proce-

dures, 99–100
user groups, 66

SQL Server authentication,
110

SQL Server Books Online, 45
SQL Server Browser, 9, 65, 67
SQL Server Configuration

Manager, 14, 15
access, 57
configuring services,

63–67
database mirroring, 670
file streaming, 72–73
running, 62
services and start mode,

67–68
starting up services, 145
startup parameters,

145–148
SQL Server Database Engine .

See Database Engine
SQL Server Database Engine

Tuning Advisor, 15, 20,
398, 411–415

SQL Server Execution Pack-
age Utility, 20, 431, 432

SQL Server Failover Cluster
Wizard, 595

SQL Server Import And
Export Wizard

building queries,
445–447

copying tables or views,
442–445

creating packages,
434–435

data formats, 447–450
moving packages,

433–434
saving and executing

packages, 450–453
sources and destina-

tions, 435–443
starting and running,

434–435
SQL Server Installation Cen-

ter, 15, 40, 41
SQL Server Integration

Services (SSIS), 2, 9, 27–28,
430

applications for DACs,
198

components, 430
data providers and, 433
vs . DTS 2000, 27–28
dump files, 431
encryption, 452
executing packages,

433–434, 450–453
initializing, 64
installing, 45
Integration Services

Designer, 431
job steps, 625
roles, 316
saving packages,

450–453
server groups, 127
SQL Server SSIS Package

Utilities, 21
tasks and functions,

429–430
tools, 431–432
user groups, 67

SQL Server Internet Server
API, 509

SQL Server Log Shipping
Agent, 20

SQL Server Management
Studio, 15, 123–124 . See	
also Server Properties
dialog box

access, 323, 329–336
administration, 329–336
altering databases,

251–252
ANSI compliance,

259–261
automatic options,

257–259

backups, 571, 572–577
compression, 427–428
configuration, 191–194
connecting to databases

or instances, 125–126
cross-database chain-

ing, 266–267
cursor options, 263–264
database information,

239–240
Database Mail, 607
database manipulation,

275–280
database states,

264–265
distributors, 490–494
DTC, 142–143
encryption, 290
event logs, 532–535
file sizes, 270–275
group management,

127–130
identity values, 382–383
indexes, 402–404,

407–408, 416
linked servers, 469–471
logins, 317–321, 324,

325
new databases, 245–249
online, offline, or emer-

gency modes, 266
parameterization,

261–263
partitions, 423–424, 425
permissions, 336–337,

342–345
Policy-Based Manage-

ment, 162, 171–189
publications, 500,

508–510
queries, 109–112
recovery, logging, and

I/O error checking,
267–269

revoking rights, 329
role assignments,

326–329
rules, 420–421
schema management,

349–353
server management,

130–137
SQL Server Agent, 142
tables, 358–369
Tuning Advisor, 15, 20,

398, 411–415
user access, 264–265
user-defined data types,

377–378
user-defined tables, 384
views, 12–13, 389–391,

392

706

SQL Server PowerShell

SQL Server PowerShell,
20–26 . See	also Windows
PowerShell

SQL Server Profiler, 15, 20,
99, 398, 546–551

SQL Server Replication Diff
Tool, 21

SQL Server service
(Windows), 9

SQL Server Setup
adding components, 53
deployment, 40–55
launching, 40
new server instances,

41–42, 53
repairing installations,

54
running, 42–53
user groups for services,

65–67
SQL Server SSIS Package

Utilities, 21
SQL Server Startup, 143–144
SQL Server Utility, 194–200
SQL Server VSS Writer, 9, 65
SQL variant data type, 373
SQL-92, 263, 464
sqlagent .exe . See SQL Server

Agent
SqlClient .NET Data Provider,

39
sqlcmd .exe (SQL Query

Command-Line Utility),
15–18, 20

sqldiag .exe (SQL Diagnostics
Utility), 20

sqllogship .exe (SQL Server
Log Shipping Agent), 20

sqlmaint .exe (Database
Maintenance Plan Util-
ity), 19

SQLmonitor .exe (Replication
Monitor), 19, 518, 523,
525–528

sqlps .exe (SQL Server Power-
Shell), 20–26

sqlserv .exe . See Database
Engine

SQLServr .exe, 149–150
SQLXML, 433
SQLXMLOLEDB data pro-

vider connections, 438
ssbdiagnose .exe (Service

Broker Diagnostics Utility),
2, 21, 59, 244, 295–297

SSDs (scalable shared data-
bases), 32

SSIS . See SQL Server Integra-
tion Services (SSIS)

SSIS Package Upgrade
Wizard, 432

SSL (Secure Sockets Layer),
10, 608

standard configuration,
112–113

standard database roles,
331–333

Standard edition (SQL
Server), 5–6, 206–207

standard procedure execu-
tion, 485

standard roles, 314
standard views, 243
standby servers, 562,

594–596, 604, 653
star join queries, 31
start mode, 67–68
starting jobs, 631
startup parameters, 145–148
startup service accounts, 69
statement permissions,

311–312
statements

configuration options,
101

troubleshooting, 546
static TCP/IP configurations,

79–80
statistics

automatically creating,
258

maintenance plan tasks,
643, 646

monitoring, 525
performance counters,

535–538
recomputing, 401
script usage, 635
as securable, 294
startup parameters, 148
table-valued variables,

384
tracking, 148, 237
updating, 258

status messages, 676
steps (jobs), 623–627
stoplists, 244–245
stopwords, 244–245
storage

indexes, 402
viewing objects in, 244

stored procedures .
See extended stored
 procedures; system stored
procedures

storing traces, 548
strings, 235, 236, 260
striped backups, 577–578
subordinate server groups,

174–175
subordinate servers, 174
subqueries, 236

subscribers, 481, 486, 500,
514, 563

subscribing
to policies and policy

groups, 164
to policy categories, 185

subscription databases, 516,
517, 563, 570

subscriptions, 512–513
access control lists

(ACLs), 511
anonymous, 512–513
cleaning up, 482
creating, 513–517
deactivated, 513
deleting, 518
expired, 513
initializing, 503, 516, 517
maintaining, 518
monitoring, 526
properties, 518
publication settings,

509
pull and push subscrip-

tions, 512
reinitializing, 519–520
retention periods, 513
security, 515
subscribers, 481, 486,

500, 514, 563
subscription databases,

516, 517, 563, 570
synchronizing, 513
types of, 509–510
updating, 518
validating, 518–519

subsets of data, 386–387
Super DLT, 567
supplemental logging, 269
surface security, 58–62
suspect databases, 166,

277, 585
swapping primary and

secondary databases,
667–668

switches (BCP), 454, 456–457
symbols, 349, 358, 442
symmetric keys, 169, 294,

311
symmetric multiprocessing

(SMP), 4, 212
Sync Framework, 2, 45
synchronizing

Database Mirroring
Monitor, 523

databases after failover,
665–668

forcing failovers,
678–680

log shipping databases,
655

707

tables

logins in database mir-
roring, 669

replication changes, 480
standby servers, 595
subscriptions, 513

SYNCHRONIZING state, 678
synchronous mirroring

models, 669, 679
synonyms, 243, 294,

295–297, 348
sys user accounts, 302, 305
sysadmin fixed server role,

38, 303, 311, 313–314
sys .indexes catalog, 394
system catalog, 86–87,

87–93
system databases, 241–242,

558, 570, 643
system event messages list,

170
system information views,

194
SYSTEM logins, 302, 304
system stored functions, 87
system stored procedures .

See	also extended stored
procedures

cursor options, 263–264
distributed queries and,

466
limitations, 235, 236,

237
list of, 94–100
Management Studio

queries, 109–112
monitoring current

activity, 524
as objects, 243
permissions, 295–297,

312
profiling, 547
in publications, 502
replication and, 485
trace data, 550
types of, 93–94
viewing server informa-

tion, 194
system tables, 91–93, 169,

243, 426
system views, 91–93, 243
system-defined data sets,

538

T
T-SQL statements

access, 323, 337–341
ANSI compliance,

259–261
automatic options,

257–259

backups, 572, 578–582
catalog information, 87
cmdlets, 21–26,

137–139, 238
copying objects,

633–636
cursor options, 263–264
data type selection, 376
database manipulation,

275–280
database states,

264–265
distributed transactions,

468
encryption, 289–290
file sizes, 270–275
file streaming, 70–73,

221
globally unique IDs, 383
importing data,

461–462
indexes, 404–407,

408–410
job scripts, 625
linked servers, 471–473
logins, 318, 320,

321–322, 324–326
maintenance plan tasks,

642
vs . managed code,

28–29
new databases, 249–251
parameterization,

261–263
partition switching, 358
plan guides and, 244
policy conditions,

178–180
PowerShell, 137
querying multiple serv-

ers, 176
recovery, logging, and

I/O error checking,
267–269

recovery commands,
596–601

revoking access,
337–341

roles, 327–328, 329,
335–336

rules, 421
schema management,

350–353
single-user mode,

604–605
SQLCMD tool and, 17
system stored proce-

dures, 94
table management,

358–372
table-valued variables,

383–386

trace data, 550
user access, 264–265
user-defined data types,

378–379
user-defined tables,

384–385
view commands,

240–241, 391–393
Table Designer, 361
table joins, 354, 399, 506
Table Properties view, 360
Table view, 360
tablediff .exe (SQL Server

Replication Diff Tool), 21
tables

BCP import or export,
459

column constraints and
rules, 415–420

compression, 357–358,
425–428

copying, 368–369,
442–445, 633–636

creating, 358–364
current values in, 368
data pages, 354–356
data types, 373
DBCC commands, 650,

651
default values, 380
deleting, 369–370
deleting columns, 370
elements of, 353–354
extents, 357
fields, 376–377
global temporary

tables, 358–359
identities and unique

IDs, 381–383
joined tables, 506
limitations, 235–237
list of system views,

91–93
list of tables, 92–93
lock escalation, 364
modifying, 364–367,

423
names, 358–359, 369
native data types,

371–373
nulls, 379–380
as objects, 243
partitions, 357–358,

421–425
permissions, 295–297,

312, 367–368
properties, 360,

367–368
in publications, 502, 505
recovering, 591, 650,

651
relationships, 354

708

table-valued variables and parameters

tables, continued
replicating, 481
row and size informa-

tion, 367
Rows Data, 592
scripting, 371
as securable, 294
sparse columns,

380–381
SQL Server 2000 log

shipping, 656–657
Table Designer, 361
Tuning Advisor, 411–415
user-defined data types,

377–379
user-defined table

types, 383–386
table-valued variables and

parameters, 383–386
tape backups, 226–227,

566, 587
tape library systems, 567
tapes, ejecting, 575
target databases, 653–655
target servers, 668
target systems, 552,

638–640
targets

compliance evaluation,
187

policies, 162, 163, 182
tasks

checklists, 641–642
copying, 636–637
maintenance plans,

644–646
server-to-server tasks,

632–637
SSIS packages, 434

TCP ports, 608, 671
TCP/IP configuration, 78–84
TDE (Transparent Data

Encryption), 288–290
tempdb database, 169, 242,

285–286, 290, 570
temperature of hardware, 34
Template Explorer view, 13
TEMPLATE plan guide, 244
templates

data collectors, 539
model database, 288

text data, 374, 394, 489
text files, 433, 440–443
Text/Image (large object

data types) data pages,
356

third-party components, 432
threads, 168, 210, 214–215,

555
time data types, 374
time stamps, 373, 489, 588

time-outs, 170, 226–227,
471, 476

timing replication updates,
487

traces
analyzing, 553–554
creating, 548–550
debugging, 554
modifying, 551
replaying, 551–555
saving, 551
stopping and starting,

551
storing, 548
target systems, 552
trace data, 541, 551
trace definitions, 549,

551
trace events, 546
trace files, 398, 411, 548
trace flags, 148
trace tables, 548

tracing policies, 168
tracking changes . See

change tracking
traffic loads, 522
transaction log backups, 560

adding to existing sets,
576

creating, 582–583
log sequence numbers

and, 588
log shipping, 654–655
points of failure and

work, 568
recovery, 584

transaction log shipping . See
log shipping

transaction logs, 233–238
backing up before

restoring, 586
encryption and, 290
location, 248
log shipping . See log

shipping
permissions, 312
preventing errors, 288
reattaching databases,

279–281
settings, 267–269
size of, 248, 268
startup parameters, 147
transactional replica-

tion, 488
truncating, 575, 577,

580–583
transaction managers, 467 .

See	also Distributed Trans-
action Coordinator

transaction safety, 669, 677

transactional publications,
500–504, 508, 519

transactional replication,
483, 488–489, 564

transactions
committing or rolling

back, 467–468
distributed transactions,

463
transaction safety, 669,

677
uncommitted, 666–667

Transact-SQL statements .
See T-SQL statements

transfer rates, 33
transforming data . See	also

SQL Server Import And
Export Wizard

bulk copy utility (BCP),
453–461

BULK INSERT command,
461–462

imported or exported
data, 447–450

SSIS and, 429–434
transparent data encryption

(TDE), 39, 288–290
tree structure of indexes,

394–395
triggers

alerts, 613, 616
configuration, 223
cursor options, 263–264
limitations, 236, 237
nested, 162, 189, 223,

236
as objects, 243
policies and, 162, 189
recursive, 120, 260
replicating, 481
script usage, 635
updating partitioned

views, 387
troubleshooting . See	also

monitoring
blocking connections,

157–158
configuration, 228–231
corrupt databases, 575
database mirroring, 653,

676–677
deadlocks, 157–158
event logs, 528–532
EventID messages, 170
“filegroup is full” error,

288
integrity checks,

648–652
log shipping, 653,

665–668

709

views

master database,
230–231, 601–602

online, offline, or emer-
gency modes, 266

policies, 188–189
recovering and restor-

ing, 583–601
SQL Server Profiler,

546–555
traces, 548–550
transaction log backups,

582–583
transaction log errors,

288
truncated data, 449
truncated transaction logs,

268, 575, 577, 580–581,
582, 583

truncating databases, 274
Trusted Computer System

Evaluation Criteria stan-
dard, 201

trusted connections, 201
TRUSTWORTHY option, 267
tuning

Database Engine Tuning
Advisor, 15, 20, 398,
411–415

self-tuning, 85, 203, 208
types

permissions, 311
as securable, 294

U
UCPs (utility control points),

43, 194–200
UDDTs (user-defined data

types), 377–379, 634
UDM (Unified Dimension

Model), 30–31
Ultra320 SCSI, 33
UMDWs (utility management

data warehouses), 195,
200, 544–546

uncommitted transactions,
666–667

Undo files, 590
Unicode collation, 593
Unicode locales, 593
Unicode string literals, 262
Unicode text, 458
Unified Dimension Model

(UDM), 30–31
uniform extents, 357
uniform resource names

(URNs), 23
uninstalling SQL Server,

54–55

uninterruptible power sup-
plies (UPSs), 4–5

unique constraints, 415, 416
unique identifiers, 373,

381–383
unique keys, 635
uniqueidentifier columns,

502, 506
unloading tapes, 575
unsupported statements,

634
untrusted connections, 201
unused space, 272, 274
updatable views, 393
UPDATE statement, 29–30,

213, 261, 393, 489
updating

distributors, 495–496
job categories, 632
partitioned views, 387
publications, 500–504,

508
rows, 418
server registration

details, 132
statistics, 258, 643, 646
subscriptions, 518
system tables, 169
timing replication, 487
transactional replica-

tion, 488–489
upgrading

applications for DACs,
198

connection strings, 432
migrating legacy data,

431–432
SQL Server, 54
SQL Server 2000 log

shipping, 656–657
UPSs (uninterruptible power

supplies), 4–5
URNs (uniform resource

names), 23
USB drives, 567
USE statement, 108, 635
user access settings,

264–265 . See	also access;
accounts

user accounts, 301–302 . See	
also accounts

user commands, 159
user databases, 230–231,

558, 569, 643
user groups, 65–67
user IDs, 10
user keys, 451
user tables, 243
user views, 243

user-defined application
roles, 314

user-defined data sets, 538
user-defined data types,

377–379, 634
user-defined functions, 61,

312
user-defined standard roles,

314
user-defined table types,

383–386
users

monitoring, 524
permissions, 311
removing from roles,

329, 334
reporting current activ-

ity, 523
schema ownership, 348
as securable, 294
security levels, 293
standard roles, 331–333
viewing permissions,

300
utility control points (UCPs),

43, 194–200
Utility Explorer view, 195,

199–200
utility management data

warehouses (UMDWs),
195, 200, 544–546

V
vacations, 620–621
validating subscriptions,

518–519
values

check constraints and,
418–420

columns, 361
current tables, 368

varbinary(max) data type,
354, 356, 375, 394, 488

varchar(max) data type, 354,
356, 374, 394, 488

variable length rows, 356
variable-length fields,

376–377
verifying backups, 575
versions of SQL Server . See

editions of SQL Server
VIA support, 77
views, 386–387

binding to schemas, 390
computed, 399–400
copying, 430, 633–636
creating, 387–392
database mirroring, 675
filtered indexes and, 398

710

virtual address space

views, continued
limitations on, 388
modifying, 392–393
as objects, 243
partition information,

424–425
permissions, 295–297,

312, 388, 393–394
properties, 393–394
as securable, 294
table views, 360
updatable, 393

virtual address space, 147,
207

virtual files, 525
virtual memory configura-

tion, 203
virtual servers, 595
virtualized deployments,

41–42
Visual Basic, 433
Visual Studio 2010, 197, 198
Visual Studio Tools for

 Applications, 432
Volume Shadow Copy Ser-

vice (VSS), 9
volume utilization, 199
VSS (Volume Shadow Copy

Service), 9
VSTA (Microsoft Visual

Studio Tools for Applica-
tions), 432

W
Wait Resource values, 153
Wait Time values, 153, 157
Wait Type values, 153, 157

warm standby servers, 562,
595–596

warnings . See alerts
Web Assistant, 60 . See	also

Reporting Services
Web edition (SQL Server), 7
Web synchronization, 509
weekly backups, 558
weekly jobs, 629
weekly maintenance tasks,

641
wide mode (BCP), 458
Windows

application logs,
528–532

SQL Server modifica-
tions and services for,
8–11

Windows authentication,
110, 168, 186, 301–302,
608

Windows collation names,
249

Windows Event Log policies,
170

Windows Fibers, 215
Windows groups, 292, 293
Windows Installer, 7
Windows Management

Framework, 140
Windows PowerShell

indexes, 410–411
installing tools, 140, 141
integrating, 21–26
providers and, 139
remote computer

 access, 238
schema access, 348–349
server management,

137–141

table management, 358
view commands, 388

Windows Server 2003, 204,
530–531

Windows Server 2008,
530–531

Windows-level security,
292–293

WinRM 2 .0, 140, 141
witness servers, 37, 88, 668,

671–672, 677–678
worker threads, 168,

214–215
workflow containers, 434
Workgroup edition (SQL

Server), 5
working copies of databases,

593
workloads, 89, 480
write errors, 525

X
XML, Analysis Services

 usage, 31
XML data types, 373, 394
XML indexes, 237, 396, 397
XML schema collections,

294, 311
XML Schemas view, 91
XML stored procedures, 100
XQuery scripts, 24, 137

Y
Year 2000 support, 224

	Cover
	Copyright Page

	Table of Contents
	Acknowledgments
	Introduction
	Chapter 1: SQL Server 2008 Administration Overview
	SQL Server 2008 and Your Hardware
	SQL Server 2008 Editions
	SQL Server and Windows
	Services for SQL Server
	SQL Server Logins and Authentication
	Service Accounts for SQL Server

	Using the Graphical Administration Tools
	Using the Command-Line Tools
	BCP
	SQLCMD
	Other Command-Line Tools

	Using SQL Server PowerShell
	Running and Using Cmdlets
	Running and Using SQL Server PowerShell
	Working with SQL Server Cmdlets

	Chapter 2: Deploying SQL Server 2008
	SQL Server Integration Roles
	Using SQL Server Integration Services
	Using SQL Server 2008 for Relational Data Warehousing
	Using SQL Server 2008 for Multidimensional Databases and Data Mining
	Using SQL Server 2008 for Managed Reporting

	Planning for Your SQL Server 2008 Deployment
	Building the Server System for Performance
	Configuring the I/O Subsystem
	Ensuring Availability and Scalability
	Ensuring Connectivity and Data Access
	Managing SQL Server Configuration and Security

	Running and Modifying SQL Server Setup
	Creating New Instances of SQL Server
	Adding Components and Instances
	Repairing a SQL Server 2008 Installation
	Upgrading Your Edition of SQL Server 2008
	Uninstalling SQL Server

	Chapter 3: Managing the Surface Security, Access, and Network Configuration
	Managing SQL Server Component Feature Access
	Configuring SQL Server Services
	Managing the Services Configuration
	Managing Service State and Start Mode
	Setting the Startup Service Account
	Configuring File Streaming
	Configuring Service Dump Directories, Error Reporting, and Customer Feedback Reporting

	Managing the Network and SQL Server Native Client Configuration
	Managing the Connections Configuration
	Specifying the Shared Memory Network Configuration
	Specifying the Named Pipes Network Configuration
	Specifying the TCP/IP Network Configuration
	Configuring Security for Native Client Configurations
	Configuring the Native Client Protocol Order
	Configuring the Shared Memory Native Client Configuration
	Configuring the Named Pipes Native Client Configuration
	Configuring the TCP/IP Native Client Configuration

	Chapter 4: Configuring and Tuning SQL Server 2008
	Accessing SQL Server Configuration Data
	Working with the System Catalog and Catalog Views
	Working with System Stored Procedures

	Techniques for Managing SQL Server Configuration Options
	Setting Configuration Options
	Working with SET Options
	Working with Server Options
	Working with Database Options
	Managing Database Compatibility

	Configuring SQL Server with Stored Procedures
	Using SQL Server Management Studio for Queries
	Executing Queries and Changing Settings
	Checking and Setting Configuration Parameters
	Changing Settings with ALTER DATABASE

	Chapter 5: Managing the Enterprise
	Using SQL Server Management Studio
	Getting Started with SQL Server Management Studio
	Connecting to a Specific Server Instance
	Connecting to a Specific Database

	Managing SQL Server Groups
	Introducing SQL Server Groups
	Creating a Server Group
	Deleting a Server Group
	Editing and Moving Server Groups
	Adding SQL Servers to a Group

	Managing Servers
	Registering a Connected Server
	Registering a New Server in the Registered Servers View
	Registering Previously Registered SQL Server 2000 Servers
	Updating Registration for Local Servers
	Copying Server Groups and Registration Details from One Computer to Another
	Editing Registration Properties
	Connecting to a Server
	Disconnecting from a Server
	Moving a Server to a New Group
	Deleting a Server Registration

	Using Windows PowerShell for SQL Server Management
	Starting, Stopping, and Configuring SQL Server Agent
	Starting, Stopping, and Configuring Microsoft Distributed Transaction Coordinator
	Managing SQL Server Startup
	Enabling or Preventing Automatic SQL Server Startup
	Setting Database Engine Startup Parameters
	Managing Services from the Command Line
	Managing the SQL Server Command-Line Executable

	Managing Server Activity
	Examining Process Information
	Tracking Resource Waits and Blocks
	Troubleshooting Deadlocks and Blocking Connections
	Tracking Command Execution in SQL Server
	Killing Server Processes

	Chapter 6: Implementing Policy-Based Management
	Introducing Policy-Based Management
	Working with Policy-Based Management
	Managing Policies Throughout the Enterprise
	Importing and Exporting Policies
	Configuring Central Management Servers
	Executing Statements Against Multiple Servers
	Configuring and Managing Policy Facets
	Creating and Managing Policy Conditions
	Creating and Managing Policies
	Managing Policy Categories and Mandating Policies
	Evaluating Policies
	Troubleshooting Policy-Based Management Policies

	Chapter 7: Configuring SQL Server with SQL Server Management Studio
	SQL Server Management Studio Essentials
	Managing the Configuration with SQL Server Management Studio
	Determining System and Server Information
	Configuring Utility Control Points

	Configuring Authentication and Auditing
	Setting the Authentication Mode
	Setting the Auditing Level
	Enabling or Disabling C2 Audit Logging
	Enabling or Disabling Common Criteria Compliance

	Tuning Memory Usage
	Working with Dynamically Configured Memory
	Using Fixed Memory
	Enabling AWE Memory Support
	Optimizing Memory for Indexing
	Allocating Memory for Queries

	Configuring Processors and Parallel Processing
	Optimizing CPU Usage
	Setting Parallel Processing

	Configuring Threading, Priority, and Fibers
	Configuring User and Remote Connections
	Setting Maximum User Connections
	Setting Default Connection Options
	Configuring Remote Server Connections

	Managing Server Settings
	Enabling or Disabling File Streaming Support
	Setting the Default Language for SQL Server
	Allowing and Disallowing Nested Triggers
	Controlling Query Execution
	Configuring Year 2000 Support

	Managing Database Settings
	Setting the Index Fill
	Configuring Backup and Restore Time-Out Options
	Configuring Backup and Restore Retention Options
	Flushing the Cache with Checkpoints
	Compressing the Backup Media

	Adding and Removing Active Directory Information
	Troubleshooting Configuration Problems
	Recovering from a Bad Configuration
	Changing Collation and Rebuilding the master Database

	Chapter 8: Core Database Administration
	Database Files and Logs
	Database Administration Basics
	Viewing Database Information in SQL Server Management Studio
	Viewing Database Information Using T-SQL
	Checking System and Sample Databases
	Examining Database Objects

	Creating Databases
	Creating Databases in SQL Server Management Studio
	Creating Databases Using T-SQL

	Altering Databases and Their Options
	Setting Database Options in SQL Server Management Studio
	Modifying Databases Using ALTER DATABASE
	Configuring Automatic Options
	Controlling ANSI Compliance at the Database Level
	Configuring Parameterization
	Configuring Cursor Options
	Controlling User Access and Database State
	Setting Online, Offline, or Emergency Mode
	Managing Cross-Database Chaining and External Access Options
	Configuring Recovery, Logging, and Disk I/O Error Checking Options
	Viewing, Changing, and Overriding Database Options

	Managing Database and Log Size
	Configuring SQL Server to Automatically Manage File Size
	Expanding Databases and Logs Manually
	Compressing and Shrinking a Database Manually

	Manipulating Databases
	Renaming a Database
	Dropping and Deleting a Database
	Attaching and Detaching Databases

	Tips and Techniques
	Copying and Moving Databases
	Moving Databases
	Moving and Resizing tempdb
	Creating Secondary Data and Log Files
	Preventing Transaction Log Errors
	Preventing a Filegroup Is Full Error
	Creating a New Database Template
	Configuring Database Encryption

	Chapter 9: Managing SQL Server 2008 Security
	Overview of SQL Server 2008 Security
	Working with Security Principals and Securables
	Understanding Permissions of Securables
	Examining Permissions Granted to Securables

	SQL Server 2008 Authentication Modes
	Windows Authentication
	Mixed Security and SQL Server Logins

	Special-Purpose Logins and Users
	Working with the Administrators Group
	Working with the Administrator User Account
	Working with the sa Login
	Working with the NETWORK SERVICE and SYSTEM Logins
	Working with the Guest User
	Working with the dbo User
	Working with the sys and INFORMATION_SCHEMA Users

	Permissions
	Object Permissions

	Statement Permissions
	Implied Permissions

	Roles
	Server Roles
	Database Roles

	Managing Server Logins
	Viewing and Editing Existing Logins
	Creating Logins
	Editing Logins with T-SQL
	Granting or Denying Server Access
	Enabling, Disabling, and Unlocking Logins
	Removing Logins
	Changing Passwords

	Configuring Server Roles
	Assigning Roles by Login
	Assigning Roles to Multiple Logins
	Revoking Access Rights and Roles by Server Login

	Controlling Database Access and Administration
	Assigning Access and Roles by Login
	Assigning Roles for Multiple Logins
	Creating Standard Database Roles
	Creating Application Database Roles
	Removing Role Memberships for Database Users
	Deleting User-Defined Roles
	T-SQL Commands for Managing Access and Roles

	Managing Database Permissions
	Assigning Database Permissions for Statements
	Object Permissions by Login
	Object Permissions for Multiple Logins

	Chapter 10: Manipulating Schemas, Tables, Indexes, and Views
	Working with Schemas
	Creating Schemas
	Modifying Schemas
	Moving Objects to a New Schema
	Dropping Schemas

	Getting Started with Tables
	Table Essentials
	Understanding Data Pages
	Understanding Extents
	Understanding Table Partitions

	Working with Tables
	Creating Tables
	Modifying Existing Tables
	Viewing Table Row and Size Information
	Displaying Table Properties and Permissions
	Displaying Current Values in Tables
	Copying Tables
	Renaming and Deleting Tables
	Adding and Removing Columns in a Table
	Scripting Tables

	Managing Table Values
	Using Native Data Types
	Using Fixed-Length, Variable-Length, and Max-Length Fields
	Using User-Defined Data Types
	Allowing and Disallowing Nulls
	Using Default Values
	Using Sparse Columns
	Using Identities and Globally Unique Identifiers
	Using User-Defined Table Types

	Using Views
	Working with Views
	Creating Views
	Modifying Views
	Using Updatable Views
	Managing Views

	Creating and Managing Indexes
	Understanding Indexes
	Using Clustered Indexes
	Using Nonclustered Indexes
	Using XML Indexes
	Using Filtered Indexes
	Determining Which Columns Should Be Indexed
	Indexing Computed Columns and Views
	Viewing Index Properties
	Creating Indexes
	Managing Indexes
	Using the Database Engine Tuning Advisor

	Column Constraints and Rules
	Using Constraints
	Using Rules

	Creating Partitioned Tables and Indexes
	Creating Partition Functions
	Creating Partition Schemes
	Creating Partitions
	Viewing and Managing Partitions

	Compressing Tables, Indexes, and Partitions
	Using Row and Page Compression
	Setting or Changing Compression Settings

	Chapter 11: Importing, Exporting, and Transforming Data
	Working with Integration Services
	Getting Started with Integration Services
	Integration Services Tools
	Integration Services and Data Providers
	Integration Services Packages

	Creating Packages with the SQL Server Import And Export Wizard
	Stage 1: Source and Destination Configuration
	Stage 2: Copy or Query
	Stage 3: Formatting and Transformation
	Stage 4: Save and Execute

	Understanding BCP
	BCP Basics
	BCP Syntax
	BCP Permissions and Modes
	Importing Data with BCP
	Exporting Data with BCP

	BCP Scripts
	Using the BULK INSERT Command

	Chapter 12: Linked Servers and Distributed Transactions
	Working with Linked Servers and Distributed Data
	Using Distributed Queries
	Using Distributed Transactions
	Running the Distributed Transaction Coordinator Service

	Managing Linked Servers
	Adding Linked Servers
	Configuring Security for Linked Servers
	Setting Server Options for Remote and Linked Servers
	Deleting Linked Servers

	Chapter 13: Implementing Snapshot, Merge, and Transactional Replication
	An Overview of Replication
	Replication Components
	Replication Agents and Jobs
	Replication Variants

	Planning for Replication
	Replication Models
	Preliminary Replication Tasks

	Distributor Administration
	Setting Up a New Distributor
	Updating Distributors
	Creating Distribution Databases
	Enabling and Updating Publishers
	Enabling Publication Databases
	Deleting Distribution Databases
	Disabling Publishing and Distribution

	Creating and Managing Publications
	Creating Publications
	Viewing and Updating Publications
	Setting Publication Properties
	Setting Agent Security and Process Accounts
	Controlling Subscription Access to a Publication
	Creating a Script for a Publication
	Deleting a Publication

	Subscribing to a Publication
	Subscription Essentials
	Creating Subscriptions
	Viewing Subscription Properties
	Updating, Maintaining, and Deleting Subscriptions
	Validating Subscriptions
	Reinitializing Subscriptions

	Chapter 14: Profiling and Monitoring SQL Server 2008
	Monitoring Server Performance and Activity
	Reasons to Monitor SQL Server
	Getting Ready to Monitor
	Monitoring Tools and Resources

	Working with Replication Monitor
	Starting and Using Replication Monitor
	Adding Publishers and Publisher Groups

	Working with the Event Logs
	Examining the Application Log
	Examining the SQL Server Event Logs
	Examining the SQL Server Agent Event Logs

	Monitoring SQL Server Performance
	Choosing Counters to Monitor
	Performance Logging
	Viewing Data Collector Reports
	Configuring Performance Counter Alerts

	Configuring a Management Data Warehouse
	Understanding Management Data Warehouses
	Creating the Management Data Warehouse
	Setting Up Data Collection
	Managing Collection and Generating Reports

	Solving Performance Problems with Profiler
	Using Profiler
	Creating New Traces
	Working with Traces
	Saving a Trace
	Replaying a Trace

	Chapter 15: Backing Up and Recovering SQL Server 2008
	Creating a Backup and Recovery Plan
	Initial Backup and Recovery Planning
	Planning for Mirroring and Mirrored Database Backups
	Planning for Backups of Replicated Databases
	Planning for Backups of Very Large Databases
	Planning for Backup Compression

	Selecting Backup Devices and Media
	Using Backup Strategies
	Creating a Backup Device
	Performing Backups
	Creating Backups in SQL Server Management Studio
	Using Striped Backups with Multiple Devices
	Using Transact-SQL Backup
	Performing Transaction Log Backups

	Restoring a Database
	Database Corruption and Problem Resolution
	Restoring a Database from a Normal Backup
	Restoring Files and Filegroups
	Restoring a Database to a Different Location
	Recovering Missing Data
	Creating Standby Servers
	Using Transact-SQL Restore Commands

	Restoring the master Database

	Chapter 16: Database Automation and Maintenance
	Overview of Database Automation and Maintenance
	Using Database Mail
	Performing the Initial Database Mail Configuration
	Managing Database Mail Profiles and Accounts
	Viewing or Changing Database Mail System Parameters

	Using SQL Server Agent
	Accessing Alerts, Operators, and Jobs
	Configuring the SQL Server Agent Service
	Setting the SQL Server Agent Mail Profile
	Using SQL Server Agent to Restart Services Automatically

	Managing Alerts
	Using Default Alerts
	Creating Error Message Alerts
	Handling Alert Responses
	Deleting, Enabling, and Disabling Alerts

	Managing Operators
	Registering Operators
	Deleting and Disabling Notification for Operators
	Configuring a Fail-Safe Operator

	Scheduling Jobs
	Creating Jobs
	Assigning or Changing Job Definitions
	Setting Steps to Execute
	Configuring Job Schedules
	Handling Job Alerts
	Handling Notification Messages
	Managing Existing Jobs
	Managing Job Categories

	Automating Routine Server-to-Server Administration Tasks
	Copying User Accounts, Tables, Views, and Other Objects from One Database to Another
	Copying Alerts, Operators, and Scheduled Jobs from One Server to Another

	Multiserver Administration
	Event Forwarding
	Multiserver Job Scheduling

	Database Maintenance
	Database Maintenance Checklists
	Using Maintenance Plans
	Checking and Maintaining Database Integrity

	Chapter 17: Managing Log Shipping and Database Mirroring
	Log Shipping
	Log Shipping: How It Works
	Preparing for Log Shipping
	Upgrading SQL Server 2000 Log Shipping to SQL Server 2008 Log Shipping
	Enabling Log Shipping on the Primary Database
	Adding Log Shipping Secondary Databases
	Changing the Transaction Log Backup Interval
	Changing the Copy and Restore Intervals
	Monitoring Log Shipping
	Failing Over to a Secondary Database
	Disabling and Removing Log Shipping

	Database Mirroring
	Database Mirroring Essentials
	Configuring Database Mirroring
	Managing and Monitoring Mirroring
	Recovering by Using Failover
	Removing Database Mirroring

	Using Mirroring and Log Shipping

	Index
	About the Author

