
Modern C
Quick Syntax
Reference

A Pocket Guide to the Language,
APIs, and Library
—
Second Edition
—
Mikael Olsson

www.allitebooks.com

http://www.allitebooks.org

Modern C Quick
Syntax Reference

A Pocket Guide to the
Language, APIs, and Library

Second Edition

Mikael Olsson

www.allitebooks.com

http://www.allitebooks.org

Modern C Quick Syntax Reference: A Pocket Guide to the Language, APIs,

and Library

ISBN-13 (pbk): 978-1-4842-4287-2 ISBN-13 (electronic): 978-1-4842-4288-9
https://doi.org/10.1007/978-1-4842-4288-9

Library of Congress Control Number: 2018967003

Copyright © 2019 by Mikael Olsson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or
audio rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at www.apress.
com/9781484242872. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Mikael Olsson
Hammarland, Länsi-Suomi, Finland

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4288-9
http://www.allitebooks.org

iii

Table of Contents

Chapter 1: Hello World ��1

Creating a Project ���1

Adding a Source File ���2

Hello World ��2

IntelliSense ���3

Chapter 2: Compile and Run ���5

Visual Studio Compilation ���5

Console Compilation ���6

Comments ���7

Chapter 3: Variables ���9

Data Types ���9

Declaring Variables ���10

Assigning Variables ���10

Printing Variables ��11

Integer Types ���12

Signed and Unsigned ��13

Sized Integers ���15

About the Author ���ix

About the Technical Reviewer ���xi

Introduction ���xiii

www.allitebooks.com

http://www.allitebooks.org

iv

Floating-Point Types ��16

Literal Suffixes ��16

Char Type ��17

Bool Type ���18

Variable Scope ��18

Chapter 4: Operators ��21

Arithmetic Operators ���21

Assignment Operators ��22

Increment and Decrement Operators ��22

Comparison Operators ��23

Logical Operators ��23

Bitwise Operators ���24

Operator Precedence ��25

Chapter 5: Pointers ���27

Creating Pointers ��27

Dereferencing Pointers ���27

Pointing to a Pointer ��28

Null Pointer ���29

Chapter 6: Arrays ��31

Array Declaration and Allocation ���31

Array Assignment ��31

Multi-Dimensional Arrays ��32

Arrays and Pointers ���32

Array Size ��33

Table of ConTenTsTable of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

v

Chapter 7: Strings ���35

Escape Characters ��36

String Functions ��37

Chapter 8: Conditionals ��39

If Statement ��39

Switch Statement ���40

Ternary Operator ���41

Chapter 9: Loops ���43

While Loop ��43

Do-While Loop ���43

For Loop ��44

Break and Continue ���45

Goto Statement ���45

Chapter 10: Functions ��47

Defining Functions ��47

Calling Functions ��47

Function Parameters ���48

Void Parameter��48

Return Statement ��49

Forward Declaration ��50

Variable Parameter Lists ���51

Pass by Value ��52

Pass by Address ��53

Return by Value or Address ���53

Inline Functions ���54

Table of ConTenTsTable of ConTenTs

vi

Chapter 11: Typedefs ��57

Chapter 12: Enums ���59

Enum Example ��60

Enum Constant Values ��60

Enum Conversions ��61

Enum Scope ��61

Chapter 13: Structs���63

Struct Objects ���63

Member Access ��64

Struct Pointers ��65

Bit Fields ���66

Chapter 14: Unions ���69

Chapter 15: Type Conversions ��71

Implicit Conversions ��71

Explicit Conversions ��72

Chapter 16: Storage Classes ���73

Auto ���73

Register ���73

External ���74

Static ���75

Volatile ��76

Chapter 17: Constants ��79

Constant Variables ��79

Constant Pointers ��79

Constant Parameters ��80

Constant Guideline ��81

Table of ConTenTsTable of ConTenTs

vii

Chapter 18: Preprocessor ���83

Including Source Files ���84

Define ��84

Undefine ��85

Predefined Macros ��85

Macro Functions ���86

Conditional Compilation ��87

Compile if Defined ���88

Error and Warning ���89

Line ���89

Pragma ��89

Chapter 19: Memory Management ���91

Malloc ���91

Free ���92

Realloc ��93

Calloc ��94

Void Pointers ���95

Function Pointers ��96

Chapter 20: Input Handling ���99

Keyboard Input ��100

File Input and Output ���102

Error Handling ���103

Chapter 21: Headers ���105

Why Use Headers ��105

What to Include in Headers ���106

Include Guards ��108

Table of ConTenTsTable of ConTenTs

viii

Chapter 22: Strings and Numbers ��109

String Conversion ��109

Number Conversion ��112

 Index ���113

Table of ConTenTsTable of ConTenTs

ix

About the Author

Mikael Olsson is a professional web entrepreneur, programmer, and

author. He works for an R&D company in Finland where he specializes

in software development. In his spare time, he writes books and creates

websites that summarize various fields of interest. The books he writes

are focused on teaching their subject in the most efficient way possible,

by explaining only what is relevant and practical without any unnecessary

repetition or theory. The portal to his online businesses and other websites

is Siforia.com.

xi

About the Technical Reviewer

Michael Thomas has worked in software

development for more than 20 years as an

individual contributor, team lead, program

manager, and vice president of engineering.

Michael has more than 10 years of experience

working with mobile devices. His current focus

is in the medical sector, using mobile devices

to accelerate information transfer between

patients and health care providers.

xiii

Introduction

The C programming language is a general-purpose, middle-level language

originally developed by Dennis M. Ritchie at Bell Labs. It was created over

the period 1969 through 1973 for the development of the UNIX operating

system, which had previously been written in assembly language. The

name C was chosen because many of its features derived from an earlier

language called B. Whereas the B language is no longer in common

use, C became and still remains one of the most popular and influential

programming languages in use today.

Although C is a general-purpose language, it is most often used

for systems programming. This includes software that controls the

computer hardware directly, such as drivers, operating systems, and

software for embedded microprocessors. C can also be used for writing

applications, which run on top of system software. However, it has largely

been superseded in that domain by higher-level languages, such as C++,

Objective-C, C#, and Java. The features of these and many other languages

are heavily influenced by C, as can be seen in some of their names.

The development of C was a major milestone in computer science,

as it was the first widely successful middle-level language for system

development. The foremost reasons for its success were that the language

was concise, fast, and powerful. It offered comparable speed to assembly

with far improved usability. The high-level constructs of the language

allowed programmers to focus mainly on the software’s design, while its

low-level capabilities still provided direct access to the hardware when

needed, as assembly had done. Furthermore, the language is relatively

simple to understand, with few keywords and what many consider to be an

elegant syntax.

xiv

Another major reason for the success of C was its portability. Unlike

assembly, the C language is platform independent. A standards-compliant

C program can therefore be compiled for a wide variety of computer

systems with few changes to its source code. Moreover, the C compiler

was small and easy to port to different CPU architectures, which together

with the language’s popularity has made C compilers available on most

computer systems.

 C Versions
In 1978, Brian Kernighan and Dennis Ritchie produced the first publicly

available description of C, now known as K&R C. This description was

succeeded in 1989 when the American National Standards Institute (ANSI)

provided a comprehensive definition of C known as ANSI C or C89. In the

following year, the same specification was adopted as an international

standard by the International Organization for Standardization and

became known as ISO C90 or just C90. C has since undergone four more

revisions by ISO (successively adopted by ANSI) with further language

extensions, including C95, C99, C11, and most recently C18, which is

the latest ANSI standard for the C programming language. The current

C18 standard provided only clarifications to C11 and introduced no new

language features.

InTroduCTIonInTroduCTIon

1© Mikael Olsson 2019
M. Olsson, Modern C Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4288-9_1

CHAPTER 1

Hello World
To begin programming in C, you need a text editor and a C compiler.

You can get both at the same time by installing an Integrated

Development Environment (IDE) that includes support for C. A good

choice is Microsoft’s Visual Studio Community Edition, which is a free

version of Visual Studio available from Microsoft’s website.1 This IDE

has built-in support for the C89 standard and includes most features up

to C99 as of the 2017 version.

Some other popular cross-platform IDEs include Eclipse CDT, Visual

Studio Code, Code::Blocks, and CodeLite. Alternatively, you can develop

using a simple text editor—such as Notepad—although this is less

convenient than using an IDE. If you choose to do so, just create an empty

document with a .c file extension and open it in the editor of your choice.

By convention, the .c extension is used for files that contain source code for

C programs.

 Creating a Project
After installing Visual Studio, with the C++ component selected during

installation, go ahead and launch the program. You then need to create

a project, which will manage the C source files and other resources. Go

to File ➤ New ➤ Project to display the New Project window. From there,

select the Visual C++ template type in the left frame. Then select the Empty

1 http://www.visualstudio.com

http://www.visualstudio.com

2

Project template in the right frame. At the bottom of the window you can

configure the name and location of the project. When you are finished,

click the OK button and the wizard will create your empty project.

 Adding a Source File
You have now created a C/C++ project. In the Solution Explorer panel

(View ➤ Solution Explorer), you can see that the project consists of four

empty folders: External Dependencies, Header Files, Resource Files, and

Source Files. Right-click on the Source Files folder and select Add ➤ New

Item. From the Add New Item dialog box, choose the C++ File (.cpp)

template. Give this source file the name myapp.c. The .c file extension will

make the file compile in C instead of C++. Click the Add button, and the

empty C file will be added to your project and opened for you.

 Hello World
The first thing to add to the source file is the main function. This is the entry

point of the program, and the code inside of the curly brackets is what

will be executed when the program runs. The brackets, along with their

content, are collectively referred to as a code block, or just a block.

int main(void) {}

Your first application will simply output the text "Hello World" to the

screen. Before this can be done, the stdio.h header needs to be included.

This header provides input and output functionality for the program, and

is one of the standard libraries that comes with all C/C++ compilers. What

the #include directive does is effectively replace the line with everything

in the specified header before the file is compiled.

#include <stdio.h>

int main(void) {}

Chapter 1 hello World

3

With stdio.h included you gain access to several new functions,

including the printf function that is used for printing text—in this case to

a console window. To call this function, you type its name followed by a set

of parentheses that includes the text string that will be displayed. The string

is delimited by double quotes, and the whole statement is followed by a

semicolon. The semicolon is used in C to mark the end of a code statement.

#include <stdio.h>

int main(void) {

 printf("Hello World");

 return 0;

}

The main function here ends with a return statement, which returns

a status code as the program exits. This can be useful if the intent is for

your program to be executed by another program. The status code can

then signal to the caller the success or failure of your program to complete

its function. By convention, the return code 0 is used to indicate that a

program or function has executed successfully.

The C89 standard requires the return statement to be present, but

following C90 the statement became optional. As of C90 the compiler will

automatically include the return statement if it is omitted. For brevity the

statement will be left out from future code examples.

 IntelliSense
When writing code in Visual Studio, a window called IntelliSense will pop

up wherever there are multiple predetermined alternatives from which

to choose. This window can also be brought up manually at any time by

pressing Ctrl+Space to provide quick access to any code entities you are

able to use within your program. This is a very powerful feature that you

should learn to make good use of.

Chapter 1 hello World

5© Mikael Olsson 2019
M. Olsson, Modern C Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4288-9_2

CHAPTER 2

Compile and Run
Before a program can run, the source code has to be translated into an

executable format by a compiler. This step transforms the human-readable

source code into binary machine code, which is a sequence of instructions

that can be executed by a computer.

 Visual Studio Compilation
Continuing from the last chapter, the Hello World program is now

complete and ready to be compiled and run. You can do this by going

to the Build menu and choosing Debug ➤ Start Without Debugging

(Ctrl+F5). Visual Studio then compiles and runs the application that

displays the text in a console window.

Depending on your version of Visual Studio, the console window

displaying Hello World may close as soon as the main function has

finished executing. To prevent this, you need to explicitly specify that this

is a console application. First right-click the Project node in the Solution

Explorer and then click on Properties to bring up the project’s properties

window. From there, navigate to Configuration Properties ➤ Linker ➤

System and set the SubSystem option to Console using the dropdown list.

Click OK and the console window will now no longer close automatically.

6

Another way to prevent the console window from closing is to add a

call to the getchar function at the end of main. This function, included

with the stdio.h header, will read a character from the keyboard and

thereby prevent the program from exiting until the return key is pressed.

#include <stdio.h>

int main(void) {

 printf("Hello World");

 getchar();

}

 Console Compilation
As an alternative to using an IDE, you can also compile source files from

a terminal window as long as you have a C compiler. For example, on a

Linux machine you can use the GNU C compiler, which is available on

virtually all UNIX systems—including Linux and the BSD family—as part

of the GNU Compiler Collection (GCC). This compiler can also be installed

on Windows by downloading MinGW1 or on Mac as part of the Xcode

development environment.2

To use the GNU compiler, you type its name gcc in a terminal window

and give it the input and output filenames as arguments. It then produces

an executable file, which when run gives the same result as one compiled

under Windows in Visual Studio.

gcc myapp.c -o myapp.exe

./myapp.exe

Hello World

1 http://www.mingw.org
2 https://developer.apple.com/xcode/

Chapter 2 Compile and run

http://www.mingw.org
https://developer.apple.com/xcode/

7

 Comments
Comments are used to insert notes into the source code. They have no

effect on the end program and are meant only to enhance the readability of

the code, both for you and for other developers. The C89 standard featured

only one comment notation, a multiline comment delimited by /* and */.

/* multi-line

 comment */

The C99 standard added the single-line comment, which starts with //

and extends to the end of the line. This comment was standardized since

it was a convenient feature found in many other programming languages,

such as C++. Many C compilers also started to support the single-line

comment long before the C99 standard was formalized.

// single-line comment

Keep in mind that whitespace characters—such as comments, spaces,

and tabs—are generally ignored by the compiler. This gives you a lot of

freedom in how you format your code.

Chapter 2 Compile and run

9© Mikael Olsson 2019
M. Olsson, Modern C Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4288-9_3

CHAPTER 3

Variables
Variables are used for storing data during program execution.

 Data Types
Depending on what data you need to store, there are several different kinds

of built-in data types in C. The so-called simple or primitive types are listed

in the following table. They consist of four integer types, three floating-

point types, as well as the char type.

Data Type Size (Byte) Description

char 1 Integer or character

short

int

long

long long

2

4

4 or 8

8

Integer

float

double

long double

4

8

8 or 16

Floating-point number

In C, the exact sizes of the data types are not fixed. The sizes shown in

the previous table are those commonly found on 32-bit and 64-bit systems.

The C standard only specifies the minimum range that is guaranteed to be

10

supported. The minimum size for char is 8 bits, for short and int it is

16 bits, for long it is 32 bits, and long long must contain at least 64 bits.

Most modern compilers make int 32 bits, which nearly universally means

4 bytes. Each integer type in the table must also be at least as large as the

one preceding it. The same applies to the floating-point types where each

type must provide at least as much precision as the preceding one.

 Declaring Variables
Before a variable can be used, it first has to be declared (created).

To declare a variable, you start with the data type you want the variable

to hold followed by an identifier, which is the name of the variable.

int myInt;

The identifier can consist of letters, numbers, and underscores, but

it cannot start with a number. It also cannot contain spaces or special

characters and must not be a reserved keyword.

int _myInt32; /* allowed */

int 32Int; /* incorrect (starts with number) */

int my Int; /* incorrect (contains space) */

int Int@32; /* incorrect (contains special character) */

int int; /* incorrect (reserved keyword) */

Note that C is a case-sensitive programming language, so uppercase

and lowercase letters have different meanings.

 Assigning Variables
To assign a value to a declared variable, you use the equals sign, which

is known as the assignment operator (=). This is called assigning or

initializing the variable.

myInt = 50;

Chapter 3 VarIables

11

The declaration and assignment can be combined into a single

statement. When a variable is assigned a value it then becomes defined.

int myInt = 50;

If you need to create more than one variable of the same type, there is a

shorthand way of doing this using the comma operator (,).

int x = 1, y = 2, z;

Once a variable has been defined (declared and assigned), you can use

it by simply referencing the variable’s name. For example, to copy the value

to another variable, you can use the following.

int a = x;

 Printing Variables
In addition to strings, the printf function can be used to print values and

variables to the standard output stream. This is done by embedding format

specifiers into the string where the value is to be printed. Each specifier

must be matched by a corresponding argument to printf of the correct

type, as seen in the following example.

#include <stdio.h>

int main() {

 int x = 5;

 printf("x is %d and 2+3 is %d", x, 2+3);

}

The %d specifier displays an integer of the char, short, or int type.

Other commonly used format specifiers are seen in the following table.

Chapter 3 VarIables

12

Specifier Output

%d or %i char, short, or int

%c Character

%s string of characters

%f float or double

%Lf long double

%ld long int

%lld long long int

%u Unsigned char, short or int

%lu Unsigned long int

%llu Unsigned long long int

%p pointer address

For more information on printf and other standard library functions,

visit the C library reference on cplusplus.com.1

 Integer Types
There are four native integer (whole number) types you can use depending

on how large a number you need the variable to hold. Typical ranges on

32-bit and 64-bit systems are given here.

char myChar = 0; /* -128 to +127 */

short myShort = 0; /* -32768 to +32767 */

int myInt = 0; /* -2^31 to +2^31-1 */

long myLong = 0; /* -2^31 to +2^31-1 */

1 http://www.cplusplus.com/reference/clibrary/

Chapter 3 VarIables

http://cplusplus.com
http://www.cplusplus.com/reference/clibrary/

13

C99 added support for the long long data type, which is guaranteed to

be at least 64 bits in size.

long long myLL = 0; /* -2^63 to +2^63-1 */

To determine the exact size of a data type, you can use the sizeof

operator. This operator returns the number of bytes that a type occupies

in the system you are compiling for. The type returned is size_t, which

is an alias for an integer type. The specifier %zu was introduced in C99

as a portable way to format this type with printf. Visual Studio does not

support this specifier and uses %Iu instead.

#include <stdio.h>

int main(void) {

 size_t s = sizeof(int);

 printf("%zu", s); /* "4" (C99) */

 printf("%Iu", s); /* "4" (Visual Studio) */

}

In addition to standard decimal notation, integers can also be assigned

by using octal or hexadecimal notation. The following values all represent

the same number, which in decimal notation is 50.

int myDec = 50 /* decimal notation */

int myOct = 062; /* octal notation (0) */

int myHex = 0x32; /* hexadecimal notation (0x) */

 Signed and Unsigned
By default, all integer types in C are signed and may therefore contain both

positive and negative values. This can be explicitly specified using the

signed keyword.

Chapter 3 VarIables

14

signed char myChar; /* -128 to +127 */

signed short myShort; /* -32768 to +32767 */

signed int myInt; /* -2^31 to +2^31-1 */

signed long myLong; /* -2^31 to +2^31-1 */

signed long long myLL; /* -2^63 to +2^63-1 */

If only positive values need to be stored, the integer types can be

declared as unsigned to double their upper range.

unsigned char uChar; /* 0 to 255 */

unsigned short uShort; /* 0 to 65535 */

unsigned int uInt; /* 0 to 2^32-1 */

unsigned long uLong; /* 0 to 2^32-1 */

unsigned long long uLL; /* 0 to 2^64-1 */

When an unsigned value is printed, the specifier %u is used for the

unsigned char, short, and int types. The unsigned long type is specified

with %lu and unsigned long long is specified with %llu.

unsigned int uInt = 0;

printf("%u", uInt); /* "0" */

The signed and unsigned keywords may be used as types on their

own, in which case the int type is assumed by the compiler.

unsigned uInt; /* unsigned int */

signed sInt; /* signed int */

In the same way, the short and long data types are abbreviations of

short int and long int.

short myShort; /* short int */

long myLong; /* long int */

Chapter 3 VarIables

15

 Sized Integers
As mentioned, the actual sizes of the integer types are implementation

dependent. For more precise specification of size, the C99 standard

introduced a number of exact-width integer types. They can be enabled by

including the stdint.h standard header.

#include <stdint.h>

/* Signed exact-width integers */

int8_t iSmall; /* 8 bits */

int16_t iMedium; /* 16 bits */

int32_t iLarge; /* 32 bits */

int64_t iHuge; /* 64 bits */

Unsigned versions of these types are available as well. Like the signed

versions, these exact-width integer types are guaranteed to have the same

number of bits across all implementations.

/* Unsigned exact-width integers */

uint8_t uSmall; /* 8 bits */

uint16_t uMedium; /* 16 bits */

uint32_t uLarge; /* 32 bits */

uint64_t uHuge; /* 64 bits */

It is recommended to use sized integers when available, to more

easily keep track of the range of your integer variables and to enhance the

portability of your programs. Compilers that comply with standards prior to

C99 may provide sized integers with different type names. Visual Studio, for

example, has built-in support for the following signed exact-width integers.

/* Visual Studio signed exact-width integers */

__int8 iSmall; /* 8 bits */

__int16 iMedium; /* 16 bits */

__int32 iLarge; /* 32 bits */

__int64 iHuge; /* 64 bits */

Chapter 3 VarIables

16

 Floating-Point Types
The floating-point types can store real numbers with different levels of

precision.

float myFloat; /* ~7 digits */

double myDouble; /* ~15 digits */

long double myLD; /* typically same as double */

The precision shown here refers to the total number of digits. A float

can accurately represent about 7 digits, whereas a double can handle

around 15 digits.

float myFloat = 12345.678;

printf("%f", myFloat); /* "12345.677734" */

When printing a floating-point number you can limit the decimal

places to, for instance, two in the following way.

printf("%.2f", myFloat); /* "12345.68" */

Floating-point numbers can be expressed using decimal, exponential,

or hexadecimal notation. Exponential (scientific) notation is used by

adding E or e followed by the decimal exponent, while the hexadecimal

floating-point notation uses P or p to specify the binary exponent. Support

for the hexadecimal notation was not standardized until C99.

double fDec = 1.23;

double fExp = 3e2; /* 3*10^2 = 300 */

double fHex = 0xAp2; /* 10*2^2 = 40 */

 Literal Suffixes
An integer literal (constant) is normally treated as an int by the compiler,

or a larger type if needed to fit the value. Suffixes can be added to the literal

to change this evaluation. With integers the suffix can be a combination of

Chapter 3 VarIables

17

U and L, for unsigned and long, respectively. C99 also added the LL suffix

for the long long type. The order and casing of these letters do not matter.

int i = 10;

long l = 10L;

unsigned long ul = 10UL;

A floating-point literal is treated as a double. The F or f suffix can be

used to specify that a literal is of the float type instead. Likewise, the L or l

suffix specifies the long double type.

float f = 1.23F;

double d = 1.23;

long double ld = 1.23L;

The compiler implicitly converts literals to whichever type is

necessary, so this type distinction for literals is usually not necessary.

If the F suffix is left out when assigning to a float variable, the compiler

may give a warning since the conversion from double to float involves

a loss of precision.

 Char Type
The char type is commonly used to represent ASCII characters. Such

character constants are enclosed in single quotes and can be stored in a

variable of char type.

char c = 'x'; /* assigns 120 (ASCII for x) */

When the char is printed with the %c format specifier the ASCII

character is displayed.

printf("%c", c); /* "x" */

Use the %d specifier to instead display the numerical value.

printf("%d", c); /* "120" */

Chapter 3 VarIables

18

 Bool Type
C99 introduced a _Bool type to increase compatibility with C++. Variables

of this type can store a Boolean value, which is a value that can only be

either 1 (true) or 0 (false).

_Bool b = 0; /* false value */

The type _Bool is usually accessed via its alias name bool defined by

the standard header stdbool.h. This header also defines the macros true

and false as aliases for 1 and 0.

#include <stdbool.h>

bool b = true; /* true value */

 Variable Scope
The scope of a variable refers to the region of code within which it is

possible to use that variable. Variables in C may be declared both globally

and locally. A global variable is declared outside of any code blocks and is

accessible from anywhere after it has been declared. A local variable, on

the other hand, is declared inside of a function and will only be accessible

within the function in which it was declared. The lifetime of a local variable

is also limited. A global variable will remain allocated for the duration of

the program, while a local variable will be destroyed when its function has

finished executing.

int globalVar; /* global variable */

int main(void) {

 int localVar; /* local variable */

}

Chapter 3 VarIables

19

The default values for these variables are also different. Global

variables are automatically initialized to zero by the compiler, whereas

local variables are not initialized at all. Uninitialized local variables will

therefore contain whatever garbage is already present in that memory

location.

int globalVar; /* initialized to 0 */

int main(void) {

 int localVar; /* uninitialized */

}

Using uninitialized variables is a common programming mistake that

can produce unexpected results. It is therefore a good idea to always give

your local variables initial values when they are declared.

int main(void) {

 int localVar = 0; /* initialized to 0 */

}

In C89, local variables must be declared before any other statements

within their scope. The later C99 standard changed this to allow variables

to be declared anywhere within a function’s scope, which can be more

intuitive.

int main(void) {

 int var1;

 /* Other statements */

 int var2; /* C99 only */

}

Chapter 3 VarIables

21© Mikael Olsson 2019
M. Olsson, Modern C Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4288-9_4

CHAPTER 4

Operators
A numerical operator is a symbol that makes the program perform a

specific mathematical or logical manipulation. The numerical operators

in C can be grouped into five types: arithmetic, assignment, comparison,

logical, and bitwise operators.

 Arithmetic Operators
There are the four basic arithmetic operators, as well as the modulus

operator (%), which is used to obtain the division remainder.

int x = 3 + 2; /* 5 - addition */

 x = 3 - 2; /* 1 - subtraction */

 x = 3 * 2; /* 6 - multiplication */

 x = 3 / 2; /* 1 - division */

 x = 3 % 2; /* 1 - modulus (division remainder) */

Notice that the division sign gives an incorrect result. This is because

it operates on two integer values and will therefore truncate the result and

return an integer. To get the correct value, one of the numbers must be

explicitly converted to a floating-point number.

float f = 3 / (float)2; /* 1.5 */

22

 Assignment Operators
The second group is the assignment operators. Most important, it is the

assignment operator (=) itself, which assigns a value to a variable.

int x = 0; /* assignment */

A common use of the assignment and arithmetic operators is to

operate on a variable and then to save the result back into that same

variable. These operations can be shortened with the combined

assignment operators.

x += 5; /* x = x+5; */

x -= 5; /* x = x-5; */

x *= 5; /* x = x*5; */

x /= 5; /* x = x/5; */

x %= 5; /* x = x%5; */

 Increment and Decrement Operators
Another common operation is to increment or decrement a variable by

one. This can be simplified with the increment (++) and decrement (--)

operators.

x++; /* x = x+1; */

x--; /* x = x-1; */

Both of these can be used either before or after a variable.

x++; /* post-increment */

x--; /* post-decrement */

++x; /* pre-increment */

--x; /* pre-decrement */

Chapter 4 OperatOrs

23

The result on the variable is the same whichever is used. The difference is

that the post-operator returns the original value before it changes the variable,

while the pre-operator changes the variable first and then returns the value.

int x, y;

x = 5; y = x++; /* y=5, x=6 */

x = 5; y = ++x; /* y=6, x=6 */

 Comparison Operators
The comparison operators compare two values and return either 1 or 0,

representing true or false. They are mainly used to specify conditions,

which are expressions that evaluate to either true or false.

int x = (2 == 3); /* 0 - equal to */

 x = (2 != 3); /* 1 - not equal to */

 x = (2 > 3); /* 0 - greater than */

 x = (2 < 3); /* 1 - less than */

 x = (2 >= 3); /* 0 - greater than or equal to */

 x = (2 <= 3); /* 1 - less than or equal to */

 Logical Operators
The logical operators are often used together with the comparison

operators. Logical and (&&) evaluates to true if both the left and right sides

are true, and logical or (||) is true if either the left or right side is true. For

inverting a Boolean result, there is the logical not (!) operator. Note that for

both “logical and” and “logical or” the right side will not be evaluated if the

result is already determined by the left side.

int x = (1 && 0); /* 0 - logical and */

 x = (1 || 0); /* 1 - logical or */

 x = !(1); /* 0 - logical not */

Chapter 4 OperatOrs

24

Recall that as of C99, the stdbool.h header can be included to use the

bool type to store Boolean values. The header also defines the constants

true and false to represent 1 and 0, which allows the previous example to

be rewritten as seen here.

#include <stdbool.h>

/* ... */

bool b = (true && false); /* false - logical and */

 b = (true || false); /* true - logical or */

 b = !(true); /* false - logical not */

 Bitwise Operators
The bitwise operators can manipulate individual bits inside an integer.

For example, the bitwise left shift operator (<<) moves all bits to the left

with the specified number of steps.

int x = 5 & 4; /* 101 & 100 = 100 (4) - and */

 x = 5 | 4; /* 101 | 100 = 101 (5) - or */

 x = 5 ^ 4; /* 101 ^ 100 = 001 (1) - xor */

 x = 4 << 1; /* 100 << 1 =1000 (8) - left shift */

 x = 4 >> 1; /* 100 >> 1 = 10 (2) - right shift */

 x = ~4; /* ~00000100 = 11111011 (-5) - invert */

The bitwise operators also have combined assignment operators.

int x=5; x &= 4; /* 101 & 100 = 100 (4) - and */

 x=5; x |= 4; /* 101 | 100 = 101 (5) - or */

 x=5; x ^= 4; /* 101 ^ 100 = 001 (1) - xor */

 x=4; x <<= 1; /* 100 << 1 =1000 (8) - left shift */

 x=4; x >>= 1; /* 100 >> 1 = 10 (2) - right shift */

Chapter 4 OperatOrs

25

 Operator Precedence
In C, expressions are normally evaluated from left to right. However,

when an expression contains multiple operators, the precedence of those

operators decides the order in which they are evaluated. The order of

precedence can be seen in the following table, where the operator with the

lowest precedence will be evaluated first. This same order also applies to

many other languages, such as C++ and C#.

Pre Operator Pre Operator

1 () [] . -> x++ x-- 8 &

2 ! ~ ++x --x (type) sizeof * & 9 ^

3 * / % 10 |

4 + - 11 &&

5 << >> 12 ||

6 < <= > >= 13 = op=

7 == != 14 ,

To give an example, multiplication binds harder than addition and will

therefore be evaluated first in the following line of code.

int x = 4 + 3 * 2; /* 10 */

This can be clarified by enclosing the part of the expression that will be

evaluated first in parentheses. As seen in the table, parentheses have the

highest precedence of all operators.

int x = 4 + (3 * 2); /* 10 */

Chapter 4 OperatOrs

27© Mikael Olsson 2019
M. Olsson, Modern C Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4288-9_5

CHAPTER 5

Pointers
A pointer is a variable that contains the memory address of another

variable, called the pointee.

 Creating Pointers
Pointers are declared as any other variable, except that an asterisk (*)

is placed between the data type and the pointer’s name. The data type

determines what type of memory it will point to.

int* p; /* pointer to an integer */

int *q; /* alternative syntax */

A pointer can point to a variable of the same type by prefixing that

variable with an ampersand, in order to retrieve its address and assign it to

the pointer. The ampersand is known as the address-of operator (&).

int i = 10;

p = &i; /* address of i assigned to p */

 Dereferencing Pointers
The pointer now contains the memory address to the integer variable.

Referencing the pointer will retrieve this address. To obtain the actual

value stored in that address, the pointer must be prefixed with an asterisk,

known as the dereference operator (*).

28

printf("Address of i: %p \n", p); /* ex. 0017FF1C */

printf("Value of i: %d", *p); /* 10 */

When writing to the pointer the same method is used. Without the

asterisk the pointer is assigned a new memory address, and with the

asterisk the actual value of the variable pointed to will be updated.

p = &i; /* address of i assigned to p */

p = 20; / value of i changed through p */

If a second pointer is created and assigned the value of the first pointer,

it will then get a copy of the first pointer’s memory address.

int* p2 = p; /* copy address stored in p */

 Pointing to a Pointer
Sometimes it can be useful to have a pointer that can point to another

pointer. This is done by declaring a pointer with two asterisks and then

assigning it the address of the pointer that it will reference. This way, when

the address stored in the first pointer changes, the second pointer can

follow that change.

int** r = &p; /* pointer to pointer */

Referencing the second pointer now gives the address of the first

pointer. Dereferencing the second pointer gives the address of the variable,

and dereferencing it again gives the value of the variable.

printf("Address of p: %p \n", r); /* ex. 0017FF28 */

printf("Address of i: %p \n", *r); /* ex. 0017FF1C */

printf("Value of i: %d", **r); /* 20 */

Chapter 5 pointers

29

 Null Pointer
A pointer should be set to zero when it is not assigned to a valid address.

Such a pointer is called a null pointer. Doing this allows you to check

whether the pointer can be safely dereferenced, because a valid pointer

will never be zero.

int* p = 0; /* null pointer */

The constant NULL can also be used to signify a null pointer. NULL is

typically defined as zero in C, making the choice of which to use a matter

of preference. The constant is defined by several standard library files,

including stdio.h and stddef.h.

#include <stdio.h>

/* ... */

int* p = NULL; /* null pointer */

Chapter 5 pointers

31© Mikael Olsson 2019
M. Olsson, Modern C Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4288-9_6

CHAPTER 6

Arrays
An array is a data structure used to store a collection of values that all have

the same data type.

 Array Declaration and Allocation
To declare an array, you start as you would a normal variable declaration,

but in addition, you append a set of square brackets following the array’s

name. The brackets contain the number of elements in the array.

The default values for these elements are the same as for variables—

elements in global arrays are initialized to their default values, and

elements in local arrays remain uninitialized.

int myArray[3]; /* integer array with 3 elements */

 Array Assignment
To assign values to the elements, you can reference them one at a time by

placing the element’s index inside the square brackets, starting with zero.

myArray[0] = 1;

myArray[1] = 2;

myArray[2] = 3;

32

Alternatively, you can assign values at the same time as the array is

declared by enclosing them in curly brackets. The specified array length

may optionally be left out to let the array size be decided by the number of

values assigned.

int myArray[3] = { 1, 2, 3 };

int myArray[] = { 1, 2, 3 }; /* alternative */

Once the array elements are initialized, they can be accessed by

referencing the index of the element you want.

printf("%d", myArray[0]); /* 1 */

 Multi-Dimensional Arrays
Arrays can be made multi-dimensional by adding more sets of square

brackets. As with single-dimensional arrays, they can either be filled in one

at a time or all at once during the declaration.

int mArray[2][2] = { { 0, 1 }, { 2, 3 } };

mArray[0][0] = 0;

mArray[0][1] = 1;

The extra curly brackets are optional, but including them is good

practice since it makes the code easier to understand.

int mArray[2][2] = { 0, 1, 2, 3 }; /* alternative */

 Arrays and Pointers
An array in C can be treated as a constant pointer that points to the first

element in the array. As such, array elements can referenced just as well

with pointer arithmetic. By incrementing the pointer by one, you move to

Chapter 6 arrays

33

the next element in the array, because changes to a pointer’s address are

implicitly multiplied by the size of the pointer’s data type.

(myArray+1) = 10; / myArray[1] = 10; */

Pointer arithmetic is an advanced feature that should be used with

care. The four arithmetic operators that can be used with pointers include:

+, -, ++, and --.

int* ptr = &myArray;

printf("Address of myArray[0]: %p \n", ptr); /* ex. 0028FF14 */

ptr++;

printf("Address of myArray[1]: %p", ptr); /* ex. 0028FF18 */

 Array Size
Just as with any other pointer it is possible to exceed the valid range of an

array and thereby rewrite some adjacent memory. This should always be

avoided since it can lead to unexpected results or crash the program.

int myArray[2] = { 1, 2 };

myArray[2] = 3; /* out of bounds */

To determine the length of a regular (statically allocated) array, the

sizeof operator can be used.

int length = sizeof(myArray) / sizeof(int); /* 2 */

Chapter 6 arrays

35© Mikael Olsson 2019
M. Olsson, Modern C Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4288-9_7

CHAPTER 7

Strings
A string consists of an array of characters and is delimited by double

quotes. There is no string type for storing strings in C. Instead, strings are

commonly assigned to a character array, as shown here.

char myString[] = "Hi";

Strings in C are terminated with a null character \0, which is used to

know where the string ends. The null character is added automatically

by the compiler for quoted strings, as in the previous example. The same

statement can also be written using regular array initialization syntax, in

which case the null character needs to be explicitly included.

char myString[3] = { 'H', 'i', '\0' };

Both statements produce the same result: a char array with three

elements. Note that individual characters are delimited by single quotes

and not double quotes. To print a string the format specifier %s is used with

the printf function, which outputs the literals of the string until the null

character is encountered.

printf("%s", myString); /* "Hi" */

As an alternative to the character array, a char pointer may be set to

point to a string. The string is then automatically stored in the compiled

file, giving the pointer a location to point to. In most compilers this

location is a read-only block, so unlike with the char array, the characters

in this string cannot be changed.

36

char* ptr = "Hi";

printf("%s", ptr); /* "Hi" */

 Escape Characters
To add new lines to a string, the escape character \n is used to represent a

line break.

printf("First line\nSecond line");

This backslash notation is used to write special characters that are

difficult or impossible to type on a regular keyboard. In addition to the

newline and null characters, there are several other such characters, as

seen in the following table.

Character Meaning Character Meaning

\n Newline \f Form feed

\t Horizontal tab \a Alert sound

\v Vertical tab \' Single quote

\b Backspace \" Double quote

\r Carriage return \\ Backslash

\0 Null character \? Question mark

\000 Octal number (1-3 digits) \xhh Hexadecimal number

Any one of the 128 ASCII characters can be expressed by writing a

backslash followed by the ASCII code for that character, represented as

either an octal or hexadecimal number. This is illustrated here, where the

newline character is represented in three different ways:

char line = '\n'; /* escape code */

 line = '\012'; /* octal notation */

 line = '\x0A'; /* hexadecimal notation */

CHApter 7 StriNgS

37

 String Functions
Because strings in C are arrays, the only way to make changes to them is to

change each element in the array. To simplify common string operations,

the standard header string.h includes a collection of functions for

manipulating null-terminated strings. Consider the following code, which

will be used as the template for the following string examples.

#include <stdio.h>

#include <string.h>

int main(void) {

 char s1[11] = "Hello";

 char s2[11] = "World";

 int result;

}

The string function strcat (string concatenation) appends the

second string onto the first string. For this to work, it is important that the

destination is large enough to hold the entire string.

/* Append s2 to s1 */

strcat(s1, s2); /* s1 = "HelloWorld" */

Another string function is strcpy, which copies the characters in the

second string into the first string. The function stops when the terminating

null character for the second argument is reached.

/* Copy s1 into s2 */

strcpy(s2, s1); /* s2 = "HelloWorld" */

A string can be compared with another string using the strcmp

function. If all characters match, the function returns zero.

/* Compare s1 and s2 */

result = strcmp(s1, s2); /* 0 (equal) */

CHApter 7 StriNgS

38

When manipulating strings, it is important to take their lengths into

account to avoid overwriting adjacent memory. The length of a string

stored in a char array can be found with the strlen function. With regular

(statically allocated) strings, the allocated size can also be retrieved using

the sizeof operator.

/* Length of s1 (excluding null char) */

result = strlen(s1); /* 10 */

/* Allocated size for s1 */

result = sizeof(s1); /* 11 */

The next example shows how the sizeof operator can be used to

allocate a character array large enough to hold two other strings. Note

that the resulting string will only have one null character, so the size of its

allocated array can be one character less than the sizes of the two other

strings.

char a[] = "Hello"; /* sizeof(a) = 6 */

char b[] = "World"; /* sizeof(b) = 6 */

char c[sizeof(a) + sizeof(b) -1]; /* sizeof(c) = 11 */

strcpy(c, a);

strcat(c, b); /* "HelloWorld" */

CHApter 7 StriNgS

39© Mikael Olsson 2019
M. Olsson, Modern C Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4288-9_8

CHAPTER 8

Conditionals
Conditional statements are used to execute different code blocks based on

different conditions.

 If Statement
The if statement will execute only if the expression inside the parentheses

is evaluated to true. In C, this does not have to be a Boolean expression.

It can be any expression that evaluates to a number, in which case zero is

false and all other numbers are true.

if (x < 1) {

 printf("x < 1");

}

To test for other conditions, the if statement can be extended by any

number of else/if clauses.

else if (x > 1) {

 printf("x > 1");

}

The if statement can have one else clause at the end, which will

execute if all the previous conditions are false.

else {

 printf("x == 1");

}

40

As for the curly brackets, they can be left out if only a single statement

needs to be executed conditionally. However, it is considered good

practice to always include them since they improve readability.

if (x < 1)

 printf("x < 1");

else if (x > 1)

 printf("x > 1");

else

 printf("x == 1");

Any numeric value except for 0 is considered true when evaluated in

a Boolean context. This allows a true or false check to be simplified in the

following manner.

int done = 0;

/* ... */

/* if not done – same as if(done == 0) */

if(!done) {}

/* if done – same as if(done != 0) */

if(done) {}

 Switch Statement
The switch statement checks for equality between an integer and a series

of case labels, and then passes execution to the matching case. It may

contain any number of case clauses, and it can end with a default label for

handling all other cases.

switch (x) {

 case 0: printf("x is 0"); break;

 case 1: printf("x is 1"); break;

 default: printf("x is not 0 or 1"); break;

}

Chapter 8 Conditionals

41

Note that the statements after each case label end with the break

keyword to skip the rest of the switch. If the break is left out, execution will

fall through to the next case, which can be useful if several cases need to be

evaluated in the same way.

 Ternary Operator
In addition to the if and switch statements, there is the ternary operator

(?:) that can replace a single if/else clause. This operator takes three

expressions. If the first one is true then the second expression is evaluated

and returned; and if it is false, the third one is evaluated and returned.

x = (x < 0.5) ? 0 : 1; /* ternary operator (?:) */

Chapter 8 Conditionals

43© Mikael Olsson 2019
M. Olsson, Modern C Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4288-9_9

CHAPTER 9

Loops
There are three looping structures in C, all of which are used to execute

a specific code block multiple times. Just as with the conditional if

statement, the curly brackets for the loops can be left out if there is only

one statement in the code block.

 While Loop
The while loop runs through the code block only if its condition is true,

and it will continue looping for as long as the condition remains true. Bear

in mind that the condition is only checked at the start of each iteration

(each loop).

int i = 0;

while (i < 10) {

 printf("%d", i++); /* 0-9 */

}

 Do-While Loop
The do-while loop works in the same way as the while loop, except that

it checks the condition after the code block. It will therefore always run

through the code block at least once. Notice that this loop ends with a

semicolon.

44

int j = 0;

do {

 printf("%d", j++); /* 0-9 */

} while (j < 10);

 For Loop
The for loop is used to run through a code block a specific number of

times. It uses three parameters. The first one initializes a counter and is

always executed once before the loop. The second parameter holds the

condition for the loop and is checked before each iteration. The third

parameter contains the increment of the counter and is executed at the

end of each iteration.

int k;

for (k = 0; k < 10; k++) {

 printf("%d", k); /* 0-9 */

}

Since the C99 standard the first parameter may contain a declaration,

typically a counter variable. The scope of this variable is limited to the for

loop.

for (int k = 0; k < 10; k++) {

 printf("%d", k); /* 0-9 */

}

The for loop has several variations. One such variation is to split the

first and third parameters into several statements by using the comma

operator.

int k, m;

for (k = 0, m = 0; k < 10; k++, m--) {

 printf("%d", k+m); /* 000... (10x) */

}

Chapter 9 Loops

45

Another option is to leave out any one of the parameters. If all

parameters are left out, it becomes a never-ending loop, unless there is

another exit condition defined.

for (;;) { /* infinite loop */ }

 Break and Continue
There are two jump statements that can be used inside loops: break and

continue. The break keyword ends the loop structure, and continue skips

the rest of the current iteration and continues at the beginning of the next

iteration.

int i;

for (i = 0; i < 10; i++)

{

 if (i == 2) continue; /* start next iteration */

 else if (i == 5) break; /* end loop */

 printf("%d", i); /* "0134" */

}

 Goto Statement
A third jump statement that may be useful to know of is goto, which

performs an unconditional jump to a specified label within the same

function. This instruction is generally never used since it tends to make the

flow of execution difficult to follow.

goto myLabel; /* jump to label */

/* ... */

myLabel: /* label declaration */

Chapter 9 Loops

47© Mikael Olsson 2019
M. Olsson, Modern C Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4288-9_10

CHAPTER 10

Functions
Functions are reusable code blocks that will only execute when called.

They allow developers to divide their programs into smaller parts that are

easier to understand and reuse.

 Defining Functions
A function can be created by typing void followed by the function’s name,

a set of parentheses containing another void, and a code block. The first

use of the void keyword specifies that this function will not return a value.

The second void inside the parentheses means that the function does not

accept any arguments.

void myFunction(void) {

 printf("Hello World");

}

 Calling Functions
The previous function will print out a text message when it is called. To

invoke it, the function’s name is specified followed by an empty set of

parentheses.

48

int main(void) {

 myFunction(); /* "Hello World" */

}

 Function Parameters
The parentheses that follow the function’s name are used for passing

arguments to the function. To do this, you must first add the corresponding

parameters to the function’s parameter list.

void sum(int a, int b) {

 int sum = a + b;

 printf("%d", sum);

}

A function can be defined to take any number of arguments, and they

can have any data types. Just ensure the function is called with the same

types and number of arguments. In this example, the function accepts two

integer arguments and displays their sum.

sum(2, 3); /* "5" */

To be precise, parameters appear in function definitions, while

arguments appear in function calls. However, the two terms are sometimes

used interchangeably.

 Void Parameter
In C, functions that leave out the void keyword from their parameter list

are allowed to accept an unknown number of arguments. This is different

from C++, where leaving out void means the same as including it: that

the function takes no arguments. Therefore, to have the compiler ensure

Chapter 10 FunCtions

49

that no arguments are mistakenly passed to a parameterless function, it is

necessary in C to include void in the parameter list.

/* Accepts no arguments */

void foo(void) {}

/* Accepts an unknown number of arguments */

void bar() {}

As of C99, the use of an empty parameter list has been deprecated and

results in a warning from the compiler.

 Return Statement
A function can return a value. The void keyword before the function’s

name is then replaced with the data type the function will return, and the

return keyword is added to the function’s body followed by an argument

of the specified return type.

int getSum(int a, int b) {

 return a + b;

}

Return is a jump statement that causes the function to exit and return

the specified value to the place where the function was called. To illustrate,

the previous function can be passed as an argument to the printf function

since it evaluates to an integer.

printf("%d", getSum(5, 10)); /* "15" */

The return statement can also be used in a void function as a way to

exit the function before the end block is reached.

void dummy(void) { return; }

Chapter 10 FunCtions

50

The main function must be set to return an int type, but including an

explicit return value is only required in the C89 standard. As of C90 the

compiler will automatically add a return statement to the end of the main

function if no such statement is present, and with the C99 standard, this

implicit return value is guaranteed to be zero.

int main(void) {

 return 0; /* optional */

}

 Forward Declaration
An important thing to keep in mind in C is that a function must be

declared before it can be called. This can either be achieved by placing

the function’s implementation before any references to it, or by adding

a declaration of the function before it is called. This kind of forward

declaration is known as a prototype and provides the compiler with the

information needed to allow the function to be used before it has been

defined.

void myFunction(int a); /* prototype */

int main(void) {

 myFunction(0);

}

void myFunction(int a) {}

The parameter names do not need to be included in the prototype;

only the data types are required.

void myFunction(int);

Chapter 10 FunCtions

51

In early versions of C, an undeclared function that is referenced

is implicitly declared as a function that returns an int and takes an

unspecified number of parameters. Relying on this behavior is not

recommended and usually results in a warning from the compiler. As of

C99 this feature has been removed and will instead result in an error.

int main(void) {

 foo();

}

/* Warning: implicit declaration of foo */

int foo() { return 0; }

 Variable Parameter Lists
A function can be defined to accept a variable number of arguments,

similar to the printf function. The parameter list of such a function

must end with an ellipsis (…) and there must be at least one additional

parameter. An int parameter is typically included to let the function know

the number of extra arguments that are passed to it.

In the following example, the function accepts a variable number of

arguments that are summed up and returned to the caller. To access these

arguments the stdarg.h header file is included. This header defines a new

type, called va_list, and three functions that operate on variables of this

type: va_start, va_arg, and va_end.

#include <stdio.h>

#include <stdarg.h>

int sum(int num, ...) {

 va_list args; /* variable argument list */

 int sum = 0, i = 0;

Chapter 10 FunCtions

52

 va_start(args, num); /* initialize argument list */

 for (i = 0; i < num; i++) /* loop through arguments */

 sum += va_arg(args, int); /* get next argument */

 va_end(args); /* free memory */

 return sum;

}

int main(void) {

 printf("Sum of 1+2+3 = %d", sum(3,1,2,3)); /* 6 */

}

In contrast to C++, C does not allow function overloading or default

parameter values. However, variable parameter lists can be used to

implement functions that behave in similar ways.

 Pass by Value
Variables are by default passed by value. This means that only a copy of the

value is passed to the function. Therefore, changing the parameter in any

way will not affect the original variable, and passing large variables back

and forth can have a negative impact on performance.

#include <stdio.h>

void set(int i) { i = 1; }

int main(void) {

 int x = 0;

 set(x);

 printf("%d", x); /* "0" */

}

Chapter 10 FunCtions

53

 Pass by Address
The alternative to passing by value is to use pointer syntax to instead

pass the variable by address. When an argument is passed by address,

the parameter can be changed or replaced, and the change will affect the

original variable.

void set(int* i) { *i = 1; }

int main(void) {

 int x = 0;

 set(&x);

 printf("%d", x); /* "1" */

}

Recall that arrays can be treated as pointers. As such they will

automatically be passed by address, as shown in the following example.

void set(int a[]) { a[0] = 1; }

int main(void) {

 int x[] = { 0 };

 set(x);

 printf("%d", x[0]); /* "1" */

}

 Return by Value or Address
In addition to passing variables by value or address, a variable may also be

returned in one of these two ways. By default a function returns by value,

in which case a copy of the value is returned to the caller.

Chapter 10 FunCtions

54

int byVal(int i) { return i + 1; }

int main(void) {

 int a = 10;

 printf("%d", byVal(a)); /* "11" */

}

To instead return by address, the dereference operator is appended

to the function’s return type. The function must then return a variable

and not an expression or literal, as is allowed when returning by value.

The variable returned should never be a local variable since the memory

to these variables is released when the function ends. Instead, return

by address is commonly used to return an argument that has also been

passed to the function by address.

int* byAdr(int* i) { (*i)++; return i; }

int main(void) {

 int a = 10;

 int *p = byAdr(&a);

 printf("%d", *p); /* "11" */

}

 Inline Functions
When calling a function it is important to keep in mind that a certain

performance overhead occurs. To potentially remove this overhead,

the programmer can recommend that the compiler inlines the calls to a

specific function by using the inline function modifier. This keyword was

added in the C99 standard. It is most suited for use with small functions

that are called inside loops, as shown in the following example. Larger

functions should not be inlined since this can significantly increase the

size of the code, which may instead decrease performance.

Chapter 10 FunCtions

55

inline int increment(int a) { return ++a; }

int main(void) {

 int i;

 for(i = 0; i < 100;) {

 i = increment(i);

 }

}

Note that the inline keyword is only a recommendation. The

compiler may—in its attempts to optimize the code—choose to ignore this

recommendation, and it may also inline functions that do not have the

inline modifier.

Chapter 10 FunCtions

57© Mikael Olsson 2019
M. Olsson, Modern C Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4288-9_11

CHAPTER 11

Typedefs
An alias for a type can be created using the typedef keyword followed by

the type and alias name. By convention, uppercase letters are commonly

used for these definitions.

typedef unsigned char BYTE;

Once defined, the alias can be used as a synonym for its specified type.

BYTE b; /* unsigned char */

typedef does not only work for existing types, but can also include a

definition of a user-defined type—such as a struct, union, or enum. This

can make a complex type easier to understand.

typedef struct { int points; } score;

score a, b, c;

a.points = 10;

If used properly, a type alias can simplify a long or confusing type

name, making the code easier to understand. Another benefit they provide

is the ability to change the definition of a type from a single location, which

can help make a program more portable.

59© Mikael Olsson 2019
M. Olsson, Modern C Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4288-9_12

CHAPTER 12

Enums
An enum is a user-defined type consisting of a fixed list of named

constants. In the following example, the enumeration type is called color

and contains three constants: RED, GREEN and BLUE.

enum color { RED, GREEN, BLUE };

The color type can be used to create variables that may hold one of

these constant values. In C, the variable declaration must be preceded by

enum, whereas this is optional in C++.

int main(void) {

 enum color c = RED;

}

Enum variables may also be declared when the enum is defined, by

placing the variable names before the final semicolon. This position is

known as the declarator list.

enum color { RED, GREEN, BLUE } c, d;

60

 Enum Example
The switch statement provides a good example of when enumerations can

be useful. Compared to using ordinary constants, the enumeration has the

advantage that it lets the programmer clearly specify what values a variable

should be allowed to contain.

switch(c) {

 case RED: break;

 case GREEN: break;

 case BLUE: break;

}

Bear in mind that enums in C are not typesafe, unlike their C++

equivalent. It is up to the programmer to ensure that enum types and

constants are used correctly, as most compilers will not enforce this.

Enums in C simply provide a way to group a set of integer constants

and have them be automatically numbered. For this purpose, the enum

identifier is not strictly necessary and may optionally be omitted.

enum { RED, GREEN, BLUE } c;

 Enum Constant Values
Enumerated constants are of the int type. Usually there is no need to know

the underlying values that these constants represent, but in some cases it

can be useful. By default, the first constant in the enum list has the value

zero and each successive constant is one value higher.

enum color {

 RED /* 0 */

 GREEN /* 1 */

 BLUE /* 2 */

};

Chapter 12 enums

61

These default values can be overridden by assigning values to the

constants. The values can be computed and do not have to be unique.

enum color {

 RED = 5, /* 5 */

 SCARLET = RED, /* 5 */

 BLUE = RED+2, /* 7 */

};

 Enum Conversions
The compiler can implicitly convert an enumerated constant to an integer.

An integer can also be converted back into an enum variable.

int i = RED;

enum color c = i;

Some compilers warn when an integer is assigned to an enum variable

since this makes it possible to assign a value that is not one of its specified

constants. To suppress this warning, an explicit type cast can be used.

enum color c = (enum color)i;

 Enum Scope
An enum does not have to be declared globally. It can also be placed

locally within a function, in which case it will only be usable within the

function in which it was defined.

/* Global enum */

enum speed { SLOW, NORMAL, FAST };

int main(void) {

 /* Local enum */

 enum color { RED, GREEN, BLUE };

}

Chapter 12 enums

63© Mikael Olsson 2019
M. Olsson, Modern C Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4288-9_13

CHAPTER 13

Structs
A struct or structure is a user-defined type used for grouping a collection

of related variables under a single name. To define a structure you use

the struct keyword, followed by an optional identifier and a code block

containing variable declarations. The definition of this new type ends with

a semicolon.

struct point {

 int x, y;

};

Unlike arrays, structs allow data items of different kinds to be

combined. Structs may contain variables, pointers, arrays, or other user-

defined types. In contrast to C++, structs in C may not contain functions.

 Struct Objects
To declare a variable of a struct type, the struct keyword is followed by

the type name and the variable identifier. Variables of struct type are

commonly referred to as objects or instances.

int main(void) {

 struct point p; /* object declaration */

}

64

Objects may also be created when the struct is defined, by placing

the object names before the final semicolon. This position is called the

declarator list. If the optional struct identifier is left out, this becomes

the only way to create objects of the struct type. Such a struct without an

identifier is called an unnamed struct and provides a way for programmers

to prevent any more instances of the type from being created.

struct /* unnamed struct */

{

 int x, y;

} a, b; /* object declarations */

It is common in C to use typedef when defining structures. This

aliasing removes the need to include the struct keyword when declaring

objects of the struct type, resulting in the shorter syntax used in C++.

typedef struct point point;

struct point {

 int x, y;

};

int main(void) {

 point p; /* struct omitted */

}

 Member Access
Variables of a struct type are called fields or members. These fields are

accessed using the member of operator (.) prefixed by the object name.

Fields of an object are by default undefined, so it is important to assign

them a value before they are read.

Chapter 13 StruCtS

65

int main(void) {

 point p;

 p.x = 1;

 p.y = 2;

}

Similar to an array, struct objects may also be initialized when they

are declared by enclosing the values in curly brackets. The values are then

assigned in order based on the corresponding members of the struct.

This way of assigning values to a composite type is known as aggregate

initialization.

struct point {

 int x, y;

} r = { 1, 2 }; /* assigns x and y */

int main(void) {

 point p = { 1, 2 };

}

C99 introduced designated initializers, which allow structures to be

initialized in any order by specifying the names of the fields. Any omitted

fields will be automatically initialized to 0.

int main(void) {

 point p = { .y = 2, .x = 1 };

}

 Struct Pointers
A struct is a value type, not a reference type like an array. As such, any

assignment or argument passing for objects will copy the field values and

not the object reference. This is different from many modern languages

where composite types are automatically assigned and passed by reference.

Chapter 13 StruCtS

66

int main(void) {

 point p = { 1, 2 };

 point r = p; /* copies field values */

}

For large structures the performance cost of this copy operation may

be significant. Therefore it is common to use pointers when passing

objects to functions, to avoid having to copy and return the whole object.

void init_struct(point* a) {

 (*a).x = 1;

 (*a).y = 2;

}

int main(void) {

 point p;

 init_struct(&p);

}

As shown in this example, the pointer must be dereferenced before

the member of the operator can be used to access the fields. Since this

operation is so common, there is a syntactical shortcut available, known as

the infix operator (->), which automatically dereferences the pointer.

point p;

point* r = &p;

r->x = 1; /* same as (*r).x = 1; */

 Bit Fields
The C programming language offers a way to optimize memory use within

a struct type by allowing the bit length of integer fields to be specified.

Chapter 13 StruCtS

67

Such a field is called a bit field, and its length is set by placing a colon after

the field name followed by the number of bits. The length must be less

than or equal to the bit length of the specified type.

struct my_bits

{

 unsigned short f1 : 1;

 unsigned short f2 : 1;

 unsigned short id : 10;

} a;

Bit fields are packed as compactly as possible, while keeping in mind

that the size of an object needs to be a multiple of the size of the types it

contains. In this case the needed 12 bits will require 16 bits (two bytes) to

be reserved for the object, as that is the size of the short type. Had bit fields

not been used, the three shorts and consequently the struct would occupy

48 bits instead.

int main(void) {

 printf("%d bytes", sizeof(a)); /* "2 bytes" */

}

This feature is useful when programming for embedded systems,

where hardware resources may be very constrained.

Chapter 13 StruCtS

69© Mikael Olsson 2019
M. Olsson, Modern C Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4288-9_14

CHAPTER 14

Unions
The union type is identical to the struct type, except that all fields share

the same memory position. Therefore, the size of a union is the size of

the largest field it contains. In the following code, this is the integer field,

which is four bytes.

union mix {

 char c; /* 1 byte */

 short s; /* 2 bytes */

 int i; /* 4 bytes */

};

Given this memory sharing, the union type can only be used to store

one value at a time, because changing one field will overwrite the value of

the others.

int main(void) {

 union mix m;

 m.c = 0xFF; /* set first 8 bits */

 m.s = 0; /* reset first 16 bits */

}

The benefit of a union, in addition to efficient memory usage, is that it

provides multiple ways of using the same memory location. For example,

the following union has three data members that allow access to the same

group of four bytes in different ways.

70

union mix {

 char c[4]; /* 4 bytes */

 struct { short hi, lo; } s; /* 4 bytes */

 int i; /* 4 bytes */

} m;

The int field accesses all four bytes at once, the struct two bytes at a

time, and the char array allows each byte to be referenced individually.

The bit pattern for this is illustrated in the next example. Keep in mind

that the internal order of bytes for primitive data types is not defined in C.

Because of this, the order of the four bytes that make up the int may be

reversed on some platforms.

m.i=0xFF00F00F; /* 11111111 00000000 11110000 00001111 */

m.s.lo; /* 11111111 00000000 */

m.s.hi; /* 11110000 00001111 */

m.c[3]; /* 11111111 */

m.c[2]; /* 00000000 */

m.c[1]; /* 11110000 */

m.c[0]; /* 00001111 */

Chapter 14 Unions

71© Mikael Olsson 2019
M. Olsson, Modern C Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4288-9_15

CHAPTER 15

Type Conversions
Converting an expression from one type to another is known as type

casting or type conversion. This can be done either implicitly by the

compiler or explicitly with code.

 Implicit Conversions
An implicit conversion is performed automatically by the compiler when

an expression needs to be converted into one of its compatible types. For

example, any conversions between the primitive data types can be done

implicitly.

long l = 5; /* int -> long */

double d = l; /* long -> double */

These implicit conversions can also take place within an expression,

allowing you to mix different primitive types together. When types of

different sizes are involved, the result will be of the larger type, so an int

and double will produce a double value.

double d = 5 + 2.5; /* int -> double */

Implicit conversions of primitive types can be further grouped into two

kinds: promotion and demotion. Promotion occurs when an expression

gets implicitly converted into a larger type, and demotion occurs when

converting an expression to a smaller type.

72

/* Promotion */

long l = 5; /* int promoted to long */

double d = l; /* long promoted to double */

/* Demotion */

int i = 10.5; /* warning: possible loss of data */

char c = i; /* warning: possible loss of data */

Because a demotion can result in the loss of information, these

conversions generate a warning on many compilers. If the potential

information loss is intentional, the warning can be suppressed by using an

explicit cast.

 Explicit Conversions
An explicit cast is performed by placing the desired data type in

parentheses to the left of the expression that needs to be converted.

int i = (int)10.5; /* double demoted to int */

char c = (char)i; /* int demoted to char */

Keep in mind that casting a variable only makes it temporarily evaluate

as a different type; it does not change the variable’s underlying type.

Chapter 15 type Conversions

73© Mikael Olsson 2019
M. Olsson, Modern C Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4288-9_16

CHAPTER 16

Storage Classes
Every variable has a storage class that determines its scope and lifetime.

These storage classes include the following: auto, register, extern, and

static. Each of these classes is also a keyword that can be placed before the

data type to determine to which storage class a variable belongs.

 Auto
The default storage class for local variables is auto, which can be explicitly

specified with the auto keyword. Memory for automatic variables is

allocated when the code block is entered and freed upon exit. The scope

of these variables is local to the block in which they are declared, as well as

any nested blocks.

int main(void) {

 auto int localVar; /* auto variable */

}

 Register
The register storage class hints to the compiler that a local variable will

be heavily used and should therefore be kept in a CPU register instead of

RAM memory to provide quicker access. Variables of the register storage

74

class cannot use the address-of operator (&), since registers do not have

memory addresses. They also cannot be larger than the register size, which

is usually the same as the processor’s word size.

int main(void) {

 register int counter; /* register variable */

}

Use of the register keyword has become deprecated since modern

compilers are automatically able to optimize which variables should be

stored in registers.

 External
The external storage class, specified with the extern keyword, is used

to reference a variable or function defined in another compilation unit.

A compilation unit consists of a source file plus any included header

files. Functions default to the external storage class, so marking function

prototypes with extern is optional.

/* app.c */

extern void foo(void); /* declared function */

int main(void) {

 foo(); /* external function call */

}

/* func.c */

void foo(void) {} /* defined function */

When extern is used with a global variable it becomes declared but

not defined, so no memory is allocated for it. This tells the compiler that

the variable is defined elsewhere. As with functions, it is necessary to

declare global variables before they can be used in a compilation unit

outside the one containing the definition.

Chapter 16 Storage ClaSSeS

75

/* app.c */

int globalVar; /* defined variable */

int main(void) {

 globalVar = 1;

}

/* func.c */

extern int globalVar; /* declared variable */

int foo(void) {

 globalVar++;

}

Keep in mind that a global variable or function may be declared

externally multiple times in a program, but they may only be defined once.

 Static
The static storage class restricts the scope of a global variable or function

to the compilation unit that defines it. The lifetime of static entities is the

whole program duration, which is the same as entities belonging to the

external storage class.

/* Only visible within this compilation unit */

static int myInt;

static void myFunc(void) {}

Local variables may be declared as static to make the function preserve

the variable for the duration of the program. A static local variable is only

initialized once—when execution first reaches the declaration—and that

declaration is then ignored every subsequent time the execution passes

through.

Chapter 16 Storage ClaSSeS

76

/* Store number of calls to this function */

void myFunc(void) {

 static int count = 0;

 count++;

}

Knowing that a code entity can only be accessed and altered within a

limited scope simplifies debugging, as it reduces potential dependencies

between compilation units. Therefore, it is a good idea to declare all global

variables and functions as static, unless they have an actual need to be

exposed outside of their own compilation unit.

 Volatile
Another type modifier in C is volatile. This modifier tells the compiler

that a variable’s value may be changed by something external to the

program and that the value must therefore be reread from memory every

time it is accessed. Like const, the volatile modifier can appear either

before or after the type, and it can be used together with a storage class

modifier.

volatile int var; /* recommended order */

int volatile var; /* alternative order */

In the following example, the function waits for a variable to be set by

some external event. Without the volatile modifier, the compiler may

decide to optimize this loop condition by replacing it with an infinite loop,

as it assumes the variable is never changed.

volatile int ext = 0;

void poll(void) {

 while(ext == 0) {}

}

Chapter 16 Storage ClaSSeS

77

Global variables should be declared volatile if their value is shared and

can be changed externally. This can occur because an interrupt service

routine modifies the variable, or because it is changed by another thread in

a multi-threaded application. A third use case for volatile is with memory-

mapped peripheral devices, which can change hardware registers outside

of the program’s control.

Chapter 16 Storage ClaSSeS

79© Mikael Olsson 2019
M. Olsson, Modern C Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4288-9_17

CHAPTER 17

Constants
A constant is a variable with a value that cannot be changed once it has

been assigned. This allows the compiler to enforce that a variable’s value is

not changed anywhere in the code by mistake.

 Constant Variables
A variable can be made into a constant by adding the const keyword either

before or after the data type. This modifier makes the variable read-only,

and it must therefore be assigned a value at the same time as it is declared.

Attempting to change the constant anywhere else results in a compile-time

error.

const int var = 5; /* recommended order */

int const var2 = 10; /* alternative order */

 Constant Pointers
When it comes to pointers, const can be used in two ways. First, the

pointer can be made constant, which means that it cannot be changed to

point to another location.

int myPointee;

int* const p = &myPointee; /* constant pointer */

80

Second, the pointee can be declared constant. This means that the

variable pointed to cannot be modified through this pointer.

const int* q = &var; /* constant pointee */

It is possible to declare both the pointer and the pointee as constant to

make them both read-only.

const int* const r = &var; /* constant pointer & pointee */

Referencing a constant from a non-constant pointer will produce a

warning or error on most compilers. This is because such an assignment

makes it possible to accidentally rewrite the constant’s value.

int* s = &var; /* error: const to non-const assignment */

 Constant Parameters
Function parameters can be made constant to prevent them from being

altered within the function. The main benefit of this is to let programmers

know that the function leaves its pointer arguments untouched. When

used consistently, it can also provide information about which functions

can be expected to modify their pointer arguments.

#include <stdio.h>

void foo(const int* x) {

 if (x != NULL) {

 int i = *x; /* allowed */

 x = 1; / compile-time error */

 }

}

Chapter 17 Constants

81

 Constant Guideline
In general, it is a good idea to always declare variables as constants if

they do not need to be modified. This ensures that the variables are not

changed anywhere in the program by mistake, which in turn can help

prevent bugs.

Chapter 17 Constants

83© Mikael Olsson 2019
M. Olsson, Modern C Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4288-9_18

CHAPTER 18

Preprocessor
The preprocessor is a text substitution tool that modifies the source code

before it is compiled. This modification is done according to the preprocessor

directives that are included in the source files. The directives are easily

distinguished from normal programming code in that they all start with a hash

sign (#). They must always appear as the first non- whitespace character on a

line and do not need to end with a semicolon. The following table shows the

preprocessor directives available in C along with their functions.

Directive Description

#include File include

#define

#undef

Define macro

Undefine macro

#ifdef

#ifndef

If macro defined

If macro not defined

#if

#elif

#else

#endif

If

Else if

Else

End if

#line

#error

#pragma

Set line number

Abort compilation

Set compiler option

84

 Including Source Files
The #include directive inserts the contents of a file into the current source

file. Its most common use is to include header files (.h), both user-defined

and library ones. Library header files are enclosed between angle brackets

(<>). This tells the preprocessor to search for the header in the default

directory where it is configured to look for standard header files.

#include <stdio.h> /* search library directory */

Header files that you create for your own program are enclosed within

double quotes (""). The preprocessor will then search for the file in the

same directory as the current file. In case the header is not found there, the

preprocessor will then search among the standard header files.

#include "myfile.h" /* search current, then default */

The double quoted form can also be used to specify an absolute or

relative path to the file.

#include "c:\myfile.h" /* absolute path */

#include "..\myfile.h" /* relative path */

 Define
Another important directive is #define, which is used to create compile-

time constants, also called macros. After the directive, the name of the

constant is specified followed by what it will be replaced by.

#define PI 3.14 /* macro definition */

The preprocessor will go through the code and change any

occurrences of this constant with whatever comes after it in its definition

until the end of the line.

double d = PI; /* d = 3.14 */

ChAptEr 18 prEproCESSor

85

By convention, constants should be named in uppercase letters with

each word separated by an underscore. That way, they are easy to spot

when reading the source code.

 Undefine
A #define directive should not be used to directly override a previously

defined macro. Doing so will give a compiler warning, unless the macro

definitions are the same. In order to redefine an existing macro, it first

needs to be undefined using the #undef directive. Attempting to undefine

a macro that is not currently defined will not generate a warning.

#undef PI /* undefine */

#undef PI /* allowed */

 Predefined Macros
There are a number of macros that are predefined by the compiler. To

distinguish them from other macros, their names begin and end with two

underscores. The standard macros that all ANSI C-compliant compilers

include are listed in the following table.

Directive Description

__FILE__ the name and path of the current file.

__LINE__ the current line number.

__DATE__ the compilation date in MM DD YYYY format.

__TIME__ the compilation time in hh:MM:SS format.

__func__ the name of the current function. Added in C99.

__STDC__ Defined as 1 if the compiler complies with the ANSI C

standard.

ChAptEr 18 prEproCESSor

86

A common use for predefined macros is to provide debugging

information. To give an example, the following error message includes the

file name and line number where the message occurs.

printf("Error in %s at line %d", __FILE__, __LINE__);

 Macro Functions
A macro can be made to take arguments. This allows them to define

compile-time functions. For example, the following macro function gives

the square of its argument.

#define SQUARE(x) ((x)*(x))

The macro function is called just as if it were a regular C function.

Keep in mind that for this kind of function to work, the arguments must be

known at compile time.

int x = SQUARE(2); /* 4 */

Note the extra parentheses in the macro definition that are used to

avoid problems with operator precedence. Without the parentheses the

following example would give an incorrect result, as the multiplication

would then be carried out before the addition.

#define SQUARE(x) x*x

int main(void) {

 int x = SQUARE(1+1); /* 1+1*1+1 = 3 */

}

To break a macro function across several lines, you can use the

backslash character. This will escape the newline character that marks

the end of a preprocessor directive. For this to work there must not be any

whitespace after the backslash.

ChAptEr 18 prEproCESSor

87

#define MAX(a,b) \

 a>b ? \

 a:b

Although macros can be powerful, they tend to make the code more

difficult to read and debug. Macros should therefore only be used when

they are necessary and should always be kept short. C code such as

constant variables, enums, and inline functions can often accomplish the

same goal more efficiently and safely than #define directives can.

 Conditional Compilation
The directives used for conditional compilation can include or exclude

part of the source code if a certain condition is met. First, there are the #if

and #endif directives, which specify a section of code that will be included

only if the condition after the #if directive is true. Note that this condition

must evaluate to a constant expression.

#define DEBUG_LEVEL 3

#if DEBUG_LEVEL > 2

 /* ... */

#endif

Just as with the C if statement, any number of #elif (else if) directives

and one final #else directive can be included.

#if DEBUG_LEVEL > 2

 /* ... */

#elif DEBUG_LEVEL == 2

 /* ... */

#else

 /* ... */

#endif

ChAptEr 18 prEproCESSor

88

Conditional compilation also provides a useful means of temporarily

commenting out large blocks of code for testing purposes. This often

cannot be done with the regular multi-line comment since they cannot be

nested.

#if 0

 /* Removed from compilation */

#endif

 Compile if Defined
Sometimes, a section of code should only be compiled if a certain macro

has been defined, irrespective of its value. For this purpose, two special

operators can be used: defined and !defined (not defined).

#define DEBUG

#if defined DEBUG

 /* ... */

#elif !defined DEBUG

 /* ... */

#endif

The same effect can also be achieved using the directives #ifdef and

#ifndef, respectively. The #ifdef section is compiled only if the specified

macro has been previously defined. Note that a macro is considered

defined even if it has not been given a value.

#ifdef DEBUG

 /* ... */

#endif

#ifndef DEBUG

 /* ... */

#endif

ChAptEr 18 prEproCESSor

89

 Error and Warning
When the #error directive is encountered, the compilation is aborted. This

directive can be useful, for example, to determine whether or not a certain

line of code is being compiled. It can optionally take a parameter that

specifies the description of the generated compilation error.

#error "Compilation aborted"

Many C compilers also include the non-standard directive #warning.

This directive displays a warning message without halting the compilation.

#warning "Function X is deprecated, use Y instead"

 Line
A less commonly used directive is #line, which can change the line

number that is displayed when an error occurs during compilation.

Following this directive, the line number will as usual be increased by

one for each successive line. The directive can take an optional string

parameter that sets the file name that will be shown when an error occurs.

#line 5 "myapp.c"

 Pragma
The last standard directive is #pragma, or pragmatic information. This

directive is used to specify options to the compiler; and as such, they are

vendor specific. To give an example, #pragma message can be used with

many compilers to output a string to the build window.

/* Show compiler message */

#pragma message "Compiling " __FILE__ "..."

ChAptEr 18 prEproCESSor

91© Mikael Olsson 2019
M. Olsson, Modern C Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4288-9_19

CHAPTER 19

Memory Management
In the examples so far, the programs have only had as much memory

available as has been declared for the variables at compile time. This is

referred to as static allocation. If any additional memory is needed at

runtime, it becomes necessary to use dynamic allocation. The C standard

library provides several functions for managing dynamically allocated

memory, including malloc, free, realloc, and calloc. These functions

are found in the stdlib.h header file.

 Malloc
The malloc function takes a size in bytes and returns a pointer to a

block of free memory of that size. This dynamically allocated memory is

uninitialized and can only be accessed through pointers.

#include <stdio.h>

#include <stdlib.h>

int main(void) {

 /* Dynamic memory allocation (1*5 = 5 bytes) */

 char* ptr = malloc(sizeof(char) * 5);

}

92

The sizeof operator is used to get the number of bytes for the given

data type on the current system. This number is multiplied by five to

allocate a block large enough to contain exactly five chars, provided that

the system has that much free memory available. If it does not, malloc

returns null to signal that it has failed to allocate the memory, in which

case the function may need to signal to its caller that it too has failed.

char* ptr = malloc(sizeof(char) * 5);

if (ptr == NULL) {

 /* No memory allocated, exit function */

 return -1;

}

By convention, functions that return a pointer, such as malloc, use the

value NULL to indicate failure. This is different from functions that return a

value, which traditionally use 0 to indicate success and -1 to signal failure.

Additional return values can be used to give the user of the function more

detailed information about the return state.

 Free
An important thing to remember about dynamic allocation is that this

memory will not be released when the pointer goes out of scope, as with

local variables. Instead, the memory has to be manually released with the

function free, which releases the memory block at the specified address.

free(ptr); /* release allocated memory */

This allows you to control the lifetime of a dynamically allocated

object, but it also means that you are responsible for freeing that memory

once it is no longer needed. Forgetting to free dynamic memory will give

the program unwanted memory leaks, because that memory will stay

allocated until the program shuts down.

Chapter 19 MeMory ManageMent

93

A pointer to released memory should be set to NULL immediately

to show that it is no longer set to a valid reference. This is especially

important for pointers that are repeatedly allocated and freed within

a program, as trying to free an already freed memory block leads to

undefined behavior. Likewise, a NULL check should be carried out prior to

using a pointer to make sure it is valid.

if (ptr) { /* same as: if (ptr != NULL) */

 free(ptr);

 ptr = NULL; /* null pointer */

}

It is interesting to note that the function free only accepts one

argument, the starting address for the memory block. The actual size of the

block does not need to be provided. This is because the implementation

of malloc and free keeps track of the size of each block as it is allocated,

typically by storing the size next to the block.

 Realloc
An allocated memory block can be resized with the realloc function.

This function takes two arguments: the pointer to a previously allocated

memory block and the new total size requested. If the pointer passed to

realloc is NULL then the function behaves as malloc.

/* Allocate space for 5 chars */

char* p = malloc(sizeof(char) * 5);

/* Increase size to 10 chars */

char* new_p = realloc(p, sizeof(char) * 10);

This return value is stored in a new pointer, in case realloc fails

to allocate the extra memory and returns NULL. This prevents the only

reference to the previously allocated memory block from being lost, which

would lead to a memory leak.

Chapter 19 MeMory ManageMent

94

/* On failure, free memory and exit */

if (!new_p) { /* if (new_p == NULL) */

 if (p) {

 free(p);

 p = NULL;

 }

 return -1;

}

/* On success, update pointer */

else {

 p = new_p;

}

 Calloc
The memory block returned by malloc is uninitialized, so it will contain

whatever data happens to be in that memory region. If it is important to

fill the memory block with zeroes then the calloc function can be used

instead. In addition to initializing the memory to zero, this function takes

an extra argument in the first position, specifying the number of blocks to

be allocated.

int *a;

/* Allocate memory for 3 integers, all set to 0 */

a = (int*)calloc(3, sizeof(int));

printf("Sum is: %d\n", a[0]+a[1]+a[2]); /* "Sum is 0" */

free(a); /* deallocate memory */

Chapter 19 MeMory ManageMent

95

Another way to initialize a memory block is with the memset function.

This function takes three arguments: a pointer to the starting address, the

value to be filled, and the number of bytes to fill with this value.

int *arr;

int size = 3 * sizeof(int);

/* Allocate memory for 3 integers */

arr = (int*)malloc(size);

/* Fill entire memory block with zeros */

memset(arr, 0, size);

free(arr); /* deallocate memory */

 Void Pointers
It is sometimes necessary to use pointers without regard to the type

they reference. This is achieved by specifying the pointer type as void*,

known as a void pointer. A void pointer can store the address of any type

of variable and can be cast to any pointer type, making them useful as a

universal pointer. This type is what allows the free function to accept any

pointer argument, and allows malloc to return a pointer that can be cast

to any pointer type. The following example illustrates how the void pointer

can be used to change the values of two variables of different types.

int i;

char c;

/* Change i through void pointer */

void *vptr = &i;

((int)vptr) = 1;

Chapter 19 MeMory ManageMent

96

/* Change c through void pointer */

vptr = &c;

((char)vptr) = 'a';

Note that a void pointer may not be dereferenced without first casting

it to the appropriate pointer type. The compiler is unable to check that this

type cast is valid, which is why void pointers should be used with care.

 Function Pointers
Another useful application of pointers is to point to functions. This allows

functions to be passed to other functions or stored in arrays. Consider the

following function.

void func(int x) {

 printf("Value is %d\n", x);

}

A function pointer that can reference this function needs to have a

matching return type and list of argument types. Note the parentheses

wrapped around the pointer identifier in the following function pointer

declaration. They are important so that the compiler does not view this as

a function declaration.

void (*p)(int);

Now a reference to the function can be assigned to this function

pointer. Since the compiler knows this is a function the address-of operator

(&) is not necessary. Also, since this pointer points to code and not data,

this memory must not be deallocated with free.

p = func;

p = &func; /* alternative */

Chapter 19 MeMory ManageMent

97

The function can be called like an ordinary function. The compiler

will automatically dereference the function pointer if necessary when it is

called as a function.

func(5); /* "Value is 5" */

(*func)(5); /* alternative */

Function pointers can be passed to other functions, allowing

functionality to be plugged into existing code. Keep in mind that the return

type and list of argument types of the passed function pointer need to

match the parameter of the function.

void mycaller(void (*a)()) {

 a();

}

void myfunc() {

 printf("Hello World\n");

}

int main(void) {

 mycaller(&myfunc); /* & is optional */

}

Chapter 19 MeMory ManageMent

99© Mikael Olsson 2019
M. Olsson, Modern C Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4288-9_20

CHAPTER 20

Input Handling
When a C program is executed, it can accept arguments that are passed

to it from the command line. These command-line arguments are useful

for controlling the behavior of the program from outside the code. The

arguments are passed to the main function, which is then set to accept two

parameters as shown here.

int main(int argc, char* argv[]) {}

The integer argc is the number of arguments passed, and argv is a

pointer array to the supplied command-line arguments. The first argument

argv[0] is the name of the program, so the argument count in argc begins

with 1 when no arguments are passed. If the program name is not available

on the host environment, the first element will be an empty string instead.

A simple program that prints all arguments is given here.

#include <stdio.h>

int main(int argc, char* argv[]) {

 int i;

 for(i=0; i<argc; i++) {

 printf("Argument %d is: %s\n", i, argv[i]);

 }

}

100

When a program is executed from a terminal window, the string

arguments are listed after the file name, separated by spaces. If the

argument itself contains a space it can be delimited by double quotes. In

the following example, the previous program is compiled and executed

with two arguments.

gcc myapp.c -o myapp.exe

./myapp.exe test "Hello World"

Argument 0 is myapp.exe

Argument 1 is test

Argument 2 is Hello World

 Keyboard Input
Input from the command line can also be passed to a program while it is

running, using for instance the scanf function. The first argument to this

function is a formatting string that uses the same placeholders as printf,

such as %d for accepting an int type. The second argument is the address

to a variable that will hold the value of the expected input type.

#define _CRT_SECURE_NO_DEPRECATE

#include <stdio.h> /* scanf */

int main(void)

{

 int a, b, c;

 printf("Enter first number: ");

 scanf("%d", &a);

 printf("Enter second number: ");

 scanf("%d", &b);

 c = a + b;

 printf("%d + %d = %d\n", a,b,c);

}

Chapter 20 Input handlIng

101

Visual Studio considers scanf to be unsafe, so to use it with that

compiler, you need the define directive seen at the start of this code. Given

the proper input (followed by pressing Return), the function performs as

expected.

gcc myapp.c -o myapp.exe

./myapp.exe

Enter first number: 2

Enter second number: 3

2 + 3 = 5

The scanf function does not perform bounds checking, so it is

susceptible to buffer overflows when reading more than one character at a

time. A more robust function for handling user input is fgets, which reads

a string of text until the newline character appears. This function takes

three arguments: the buffer, the maximum length of characters to read

(including the null character), and the stream from which to read. The

stream in this case is the standard input stream, designated by stdin.

#include <stdio.h> /* fgets */

int main(void)

{

 char name[10];

 printf("Enter your name: ");

 fgets(name, 10, stdin);

 printf("Hi %s", name);

}

Keep in mind that the newline character that marks the end of the

input will be included in the string. If the string provided is too long, only

the first nine characters plus the NULL character will be stored in this char

array.

Chapter 20 Input handlIng

102

gcc myapp.c -o myapp.exe

./myapp.exe

Enter your name: Tom

Hi Tom

 File Input and Output
Writing a file to the hard drive allows a program to store data that persists

even after the program has shut down. A file can be opened for reading or

writing using the fopen function. This function returns a pointer to a file

handler and it takes two arguments: the file to open (including the path if

needed) and the access mode for the file. Specifying the access mode as

"w+" will create an empty file and return a handler that allows both reading

and writing. Once it’s opened, a variant of printf called fprintf can be

used to write content to the file. Note that the file handler is passed as the

first argument to this function. After completing this task the file handler

should be closed to free up resources by passing it to the fclose function.

#define _CRT_SECURE_NO_DEPRECATE /* for Visual Studio */

#include <stdio.h> /* fopen, fprintf, fclose */

int main(void)

{

 /* Create and open a file for reading/writing */

 FILE *fp = fopen ("file.txt", "w+");

 /* Write text to the file */

 fprintf(fp, "%s\n%s", "Hello", "World");

 /* Close the file */

 fclose(fp);

}

Chapter 20 Input handlIng

103

A text file has now been created in the same folder as the program. We

will now read its content with another program. First the file is opened for

reading by passing the r argument to fopen. Using the fgets function, the

file is read one line at a time in a loop until the end of the file is reached,

indicated by NULL being returned. Once all content has been read, the file

is closed.

#define _CRT_SECURE_NO_DEPRECATE /* for Visual Studio */

#include <stdio.h> /* fopen, fgets, fclose */

int main(void)

{

 char buf[100];

 FILE *fp = fopen("file.txt", "r");

 while(fgets(buf,100,fp)!=NULL) {

 printf("Line contains: %s\n", i, buf);

 }

 fclose(fp);

}

 Error Handling
The return value of file-handling functions should be checked to make

sure each operation is successful. For instance, in this case if the file to

be read is missing, then fopen will fail. In addition to returning NULL,

the function will set the errno integer. This variable is used by many

standard C library functions to indicate what kind of error has occurred.

The variable is provided by the errno.h header file and is zero at program

startup, indicating no error. Prior to calling a library function, the variable

should be reset to zero since library functions will never do this in the

absence of errors.

Chapter 20 Input handlIng

104

#define _CRT_SECURE_NO_DEPRECATE /* for Visual Studio */

#include <stdio.h> /* fopen, fclose */

#include <errno.h> /* errno */

int main(void)

{

 errno = 0;

 FILE *fp = fopen("missing.txt", "r");

 if(fp == NULL) {

 perror("File read failed");

 return 1; /* failed */

 }

 fclose(fp);

 return 0; /* success */

}

The perror function seen here prints a descriptive error message

based on the current errno value.

gcc myapp.c -o myapp.exe

./myapp.exe

File read failed: No such file or directory

Chapter 20 Input handlIng

105© Mikael Olsson 2019
M. Olsson, Modern C Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4288-9_21

CHAPTER 21

Headers
As a project grows it is common to split the code up into different source

files. When this happens, the interface and implementation are generally

separated. The interface is placed in a header file, which commonly has

the same name as the source file and a .h file extension. This header file

contains forward declarations for the source file entities that need to be

accessible to other compilation units in the project.

 Why Use Headers
C requires everything to be declared before it can be used. It is not enough

to just compile the necessary source files in the same project. For example,

if a function is placed in func.c, and a second file named app.c in the

same project tries to call it, the compiler will report that it cannot find the

function (or, prior to C99, that it has implicitly declared it).

/* func.c */

void myFunc(void) {

 /* ... */

}

/* app.c */

int main(void) {

 myFunc(); /* error: myFunc identifier not found */

}

106

To make this work as intended, the function's prototype has to be

included in app.c.

/* app.c */

void myFunc(void); /* prototype */

int main(void) {

 myFunc(); /* ok */

}

This can be made more convenient if the prototype is placed in a

header file named func.h and this header is included in app.c through

the use of the #include directive. This way, when changes are made to

func.c, there is no need to update the prototypes in app.c. Furthermore,

any source file that wants to use the shared code in func.c can just include

this one header.

/* func.h */

void myFunc(void); /* prototype */

/* app.c */

#include "func.h"

 What to Include in Headers
As far as the compiler is concerned there is no difference between a header

file and a source file. The distinction is only conceptual. The key idea is

that the header should contain the interface of the implementation file—

that is, the code that other source files will need to use. This may include

shared macros, constants, and type definitions, as those shown here.

/* app.h - Interface */

#define DEBUG 0

const double PI = 3.14;

typedef unsigned long ulong;

Chapter 21 headers

107

The header can also contain prototypes of the shared functions defined

in the source file. Internal functions used only within the source file should

be left out of the header, to keep them private from the rest of the program.

void myFunc(void); /* prototype */

Additionally, shared global variables are typically declared as extern in

the header, while their definitions lay in the source file.

/* app.h */

extern int myGlobal;

/* app.c */

int myGlobal = 0;

It should be noted that the use of shared global variables is

discouraged. This is because the larger a program becomes, the more

difficult it is to keep track of which functions access and modify these

variables. The preferred method is to instead pass variables to functions

only as needed, in order to minimize the scope of those variables.

The header should not include any executable statements, with

one exception. A shared function that is declared as inline needs to be

defined in the header. Otherwise, the compiler will not have the definition

necessary for inlining the function available to it.

/* app.h */

inline void inlineFunc(void) {}

If a header requires other headers, it is common to include those files

as well, to make the header stand alone. This ensures that everything

needed is included in the correct order, solving potential dependency

problems for every source file that needs the header.

/* app.h */

#include <stddef.h>

void mySize(size_t);

Chapter 21 headers

108

Note that since headers mainly contain declarations, any extra headers

included should not affect the size of the program, although they may slow

down the compilation.

 Include Guards
An important thing to bear in mind when using header files is that a code

entity, such as a constant, typedef, or enum, may only be defined once in

every project. Consequently, including the same header file more than

once will often result in compilation errors. The standard way to prevent

this is to use a so-called include guard. An include guard is created by

enclosing the body of the header in a #ifndef section that checks for a

macro specific to that header file. Only when the macro is not defined is

the file included. The macro is then defined, which effectively prevents the

file from being included again.

/* app.h */

#ifndef APP_H

#define APP_H

/* ... */

#endif

Chapter 21 headers

109© Mikael Olsson 2019
M. Olsson, Modern C Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4288-9_22

CHAPTER 22

Strings and Numbers
The standard C library contains several functions for making conversions

between strings and numbers.

 String Conversion
One built-in conversion function is atoi, which converts a string into an

integer type. The following example illustrates the use of this function by

converting all command-line string arguments into numbers and adding

them together.

#include <stdio.h> /* printf */

#include <stdlib.h> /* atoi */

int main(int argc, char* argv[]) {

 int i, sum=0;

 for(i=0; i < argc; i++) {

 sum += atoi(argv[i]);

 }

 printf("Sum is: %d\n", sum);

}

Passing a non-numeric argument to atoi will typically evaluate as

zero; however, the C standard does not define this behavior so it is not

guaranteed across all implementations. Also, the function does not

110

distinguish between a failed conversion and the number zero. Here is an

example output from running the program with both correct and incorrect

arguments.

gcc myapp.c -o myapp.exe

./myapp.exe 2 3

Sum is 5

./myapp.exe Hello 0

Sum is 0

Since no error-handling capabilities are provided by atoi, use of this

function is discouraged. The preferred alternative is to instead convert

strings with the safer strtol function. As seen in the following code, this

function takes as many characters as it can to form a valid integer value. If

a valid integer cannot be formed, then zero is guaranteed to be returned.

#include <stdio.h> /* printf */

#include <stdlib.h> /* strtol */

int main(void) {

 char str[] = "-123test";

 char *end;

 long r;

 r = strtol(str, &end, 10);

 printf("Number part %ld\n", r); /* -123 */

 printf("String part %s\n", end); /* "test" */

}

In addition to the string to be converted, the strtol function takes two

more arguments, a char pointer and an integer. The char pointer will point

to the last parsed character in the string, so for a successful conversion

of the entire string this will be the null character found at the end of the

string. The integer argument is the expected base value (between 2 and

36) of the integer, so for a hexadecimal number this would be set to 16

Chapter 22 StringS and numberS

111

instead of 10, as seen in the next example. Note that the function skips

any whitespace characters at the beginning of the string and stops if it

encounters a non-numeric character.

#include <stdio.h> /* printf */

#include <stdlib.h> /* strtol */

int main(void) {

 char str[] = "5 F";

 char *end;

 long r1, r2;

 r1 = strtol(str,&end,10); /* 5 */

 r2 = strtol(end,&end,16); /* 15 */

 if (*end == '\0') { /* entire string parsed */

 printf("%ld+%ld is %ld",r1,r2,r1+r2); /* 5+15 is 20 */

 }

}

Recall that the errno variable is changed by some C library functions

to indicate certain errors. In the case of the strtol function, the errno

variable is used to signal overflow, which is caused when the number is too

large or small to fit in the long data type. When this occurs errno is set to

ERANGE, which is a macro defined in errno.h to represent a range error. In

the next example, overflow occurs when trying to convert a number larger

than what the long type can hold. The long type will then be assigned the

largest value it can hold instead, a shortcut for which is provided by the

LONG_MAX macro.

#include <stdio.h> /* printf */

#include <stdlib.h> /* strtol */

#include <errno.h> /* errno */

int main(void) {

 const char* str = "9223372036854775808"; /* LONG_MAX+1 */

Chapter 22 StringS and numberS

112

 char *end;

 long res;

 errno = 0;

 res = strtol(str,&end,10); /* LONG_MAX */

 if (errno == ERANGE) {

 printf("Overflow"); /* "Overflow" */

 }

}

 Number Conversion
When printf is called with a number as an argument, there is a string

conversion happening. The standard library provides a variant of printf

called snprintf that can be used to store the resulting string instead of

printing it, as seen in the following code.

int main(void) {

 int num = 123;

 char buffer[4];

 snprintf(buffer, sizeof(buffer), "%d", num);

}

In addition to the typical arguments supplied to printf, the snprintf

function takes two more arguments at the start: the output buffer and the

maximum number of characters (including the null character) that it will

store in the buffer.

Chapter 22 StringS and numberS

113© Mikael Olsson 2019
M. Olsson, Modern C Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4288-9

Index

A
Aggregate initialization, 65
Arithmetic operators, 21
Arrays

assignment, 31–32
declaration and allocation, 31
multi-dimensional, 32
and pointers, 32–33
sizeof operator, 33

Assignment operators, 22
atoi function, 109

B
Bit field, 67
Bitwise operators, 24–25
Break and continue statements, 45

C
Calloc function, 94, 95
Char type variable, 9, 17
Command line arguments, 99
Comparison operators, 23
Compile and run

comments, 7
console compilation, 6
visual studio compilation, 5,

100, 102–103, 109, 112

Conditional statements
if statement, 39, 40
switch statement, 40

Constants
guideline, 81
parameters, 80
pointers, 79–80
variable, 79

D
Declarator list, 59, 64
Dereference operator, 27–28
Dereference pointers, 27
Do-while loop, 43

E
Enum

color, 59
constant values, 60–61
conversions, 61
scope, 61
switch statement, 60
variables, 59

Escape characters, 36
Exact-width integer

types, 15
Explicit conversions, 72

https://doi.org/10.1007/978-1-4842-4288-9

114

F
Floating-point literal suffix, 17
Floating-point type

variable, 9–10, 16
For loop, 44–45
Free function, 93
Functions

calling, 47
definition, 47
forward declaration, 50–51
inline, 54–55
parameters, 48
pass by address, 53
pass by value, 52
return by value/

address, 53–54
return statement, 49–50
variable parameter lists, 51–52
void parameter, 48

G
GNU Compiler Collection

(GCC), 6
Goto statement, 45

H
Headers, 84

function’s prototype, 106
include guards, 108
interface and

implementation, 105
shared global variables, 107

Hello world
integrated development

environment (IDE), 1
IntelliSense, 3
printf function, 3
project, 1
return statement, 3
source file, 2

I, J, K
If statement, 39–40
Implicit conversions, types of, 71–72
Increment and decrement

operators, 22
Infix operator, 66
Input Handling

error, 103–104
file, 102–103
keyboard, 100–102

Integer type variable, 9
Integrated development

environment (IDE), 1
IntelliSense, 3

L
Logical operators, 23
Loops

break and continue, 45
do-while, 43
for, 44–45
goto statement, 45
while, 43

Index

115

M
Macros, 84
Malloc function, 91–92
Memory management

calloc function, 94, 95
description, 91
free function, 92
malloc function, 91–92
realloc function, 93, 94
void pointer, 95–97

Multi-dimensional arrays, 32

N
Null pointer, 29
Number conversion, 112

O
Operator precedence, 25

P, Q
Pointers

address-of operator, 27
data type, 27
dereferencing, 27–28
null, 29
pointing to pointer, 28

Preprocessor
ANSI C compliant

compilers, 85
conditional compilation, 87–88
define macro (#define), 84

description, 83
error and warning, 89
file include (#include), 84
if macro defined

(#ifdef), 88–89
line, 89
macro functions, 86–87
pragma, 89
undefine macro (#undef), 85

printf function, 11

R
realloc function, 93, 94

S
Single-dimensional arrays, 32
Static allocation, 91
Storage classes

auto, 73
external, 74
register, 73
static, 75–76
volatile, 76–77

String
character array, 35
conversion, 109–112
escape character, 36
functions, 37–38
null character, 35
strcat (string concatenation), 37
strcpy (string copy), 37
strlen function, 38

Index

116

strtol function, 110–111
Struct/structure

bit field, 67
member access, 64–65
objects, 63–64
pointers, 65–66
user-defined type, 63

Switch statement, 40–41

T
Ternary operator, 41
Type conversions

explicit, 72
implicit, 71–72

Typedef, 57

U
Union, 69–70
Unnamed struct, 64

V
Variables

assigning, 10–11
bool type, 18
char type, 17
data types, 9
declaration, 10
floating-point types, 16
global, 18–19
integer size, 15–16
integer types, 12–13
literal suffixes, 16–17
local, 18–19
printf function, 11–12
signed and unsigned, 13, 15

Void pointer, 96
Volatile modifier, 76–77

W, X, Y, Z
While loop, 43

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Hello World
	Creating a Project
	Adding a Source File
	Hello World
	IntelliSense

	Chapter 2: Compile and Run
	Visual Studio Compilation
	Console Compilation
	Comments

	Chapter 3: Variables
	Data Types
	Declaring Variables
	Assigning Variables
	Printing Variables
	Integer Types
	Signed and Unsigned
	Sized Integers
	Floating-Point Types
	Literal Suffixes
	Char Type
	Bool Type
	Variable Scope

	Chapter 4: Operators
	Arithmetic Operators
	Assignment Operators
	Increment and Decrement Operators
	Comparison Operators
	Logical Operators
	Bitwise Operators
	Operator Precedence

	Chapter 5: Pointers
	Creating Pointers
	Dereferencing Pointers
	Pointing to a Pointer
	Null Pointer

	Chapter 6: Arrays
	Array Declaration and Allocation
	Array Assignment
	Multi-Dimensional Arrays
	Arrays and Pointers
	Array Size

	Chapter 7: Strings
	Escape Characters
	String Functions

	Chapter 8: Conditionals
	If Statement
	Switch Statement
	Ternary Operator

	Chapter 9: Loops
	While Loop
	Do-While Loop
	For Loop
	Break and Continue
	Goto Statement

	Chapter 10: Functions
	Defining Functions
	Calling Functions
	Function Parameters
	Void Parameter
	Return Statement
	Forward Declaration
	Variable Parameter Lists
	Pass by Value
	Pass by Address
	Return by Value or Address
	Inline Functions

	Chapter 11: Typedefs
	Chapter 12: Enums
	Enum Example
	Enum Constant Values
	Enum Conversions
	Enum Scope

	Chapter 13: Structs
	Struct Objects
	Member Access
	Struct Pointers
	Bit Fields

	Chapter 14: Unions
	Chapter 15: Type Conversions
	Implicit Conversions
	Explicit Conversions

	Chapter 16: Storage Classes
	Auto
	Register
	External
	Static
	Volatile

	Chapter 17: Constants
	Constant Variables
	Constant Pointers
	Constant Parameters
	Constant Guideline

	Chapter 18: Preprocessor
	Including Source Files
	Define
	Undefine
	Predefined Macros
	Macro Functions
	Conditional Compilation
	Compile if Defined
	Error and Warning
	Line
	Pragma

	Chapter 19: Memory Management
	Malloc
	Free
	Realloc
	Calloc
	Void Pointers
	Function Pointers

	Chapter 20: Input Handling
	Keyboard Input
	File Input and Output
	Error Handling

	Chapter 21: Headers
	Why Use Headers
	What to Include in Headers
	Include Guards

	Chapter 22: Strings and Numbers
	String Conversion
	Number Conversion

	Index

